WO2021020500A1 - Information processing device and marketing activity assistance device - Google Patents
Information processing device and marketing activity assistance device Download PDFInfo
- Publication number
- WO2021020500A1 WO2021020500A1 PCT/JP2020/029208 JP2020029208W WO2021020500A1 WO 2021020500 A1 WO2021020500 A1 WO 2021020500A1 JP 2020029208 W JP2020029208 W JP 2020029208W WO 2021020500 A1 WO2021020500 A1 WO 2021020500A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- analysis
- unit
- analyzed
- image
- analysis target
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/02—Marketing; Price estimation or determination; Fundraising
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
Definitions
- the present invention relates to an information processing device and a marketing activity support device. More specifically, the present invention relates to an information processing device that extracts useful information from a recorded image, analyzes and displays it, and a marketing activity support device including the information processing device.
- a device for market research is being developed to detect the behavior of the purchaser from the surveillance image taken inside the store and acquire what kind of product the purchaser is interested in as marketing data (patent). Reference 1).
- Patent Document 1 is useful as a proposal for a process of extracting marketing data from an image.
- the system described in Patent Document 2 is also useful as a specific means of utilizing the data obtained in this way.
- the system described in Patent Document 3 is also useful as a means for grasping the status of inventory and the like, which changes from moment to moment, in real time by image processing technology.
- An object of the present invention is to provide a means for efficiently extracting and analyzing only useful data from a huge amount of recorded images.
- the present invention solves the above-mentioned problems by the following solutions.
- the description will be given with reference numerals corresponding to the embodiments of the present invention, but the present invention is not limited thereto.
- a category designation unit that can specify a specific analysis target category, and an object extraction unit that extracts analysis target objects belonging to the analysis target category specified by the category designation unit from recorded images.
- An object analysis unit that analyzes the extracted attributes and / or movements of the analysis target object, and an analysis unit that analyzes the analyzed attributes and / or movement statistics of the analysis target object, and the analysis unit and the statistics.
- a dashboard that displays statistical data including analysis results is provided, and the analysis target object is extracted by the object extraction unit, and the attributes and / or movement of the analysis target object by the object analysis unit.
- the analysis is executed by a machine learning type image recognition means having a neural network, and the object analysis unit has a position in the recorded image which is a two-dimensional image and a three-dimensional image to be recorded.
- An information processing device including a coordinate setting unit that sets coordinates associated with an actual position in space in the recorded image.
- the invention of (1) omits the process of visually reproducing a huge amount of recorded images in extracting and analyzing image data for obtaining useful data from a huge amount of recorded images, and has a neural network. It was decided to perform the above extraction and analysis completely and automatically using a machine learning type image recognition means (so-called deep learning type image recognition means). This makes it possible to obtain useful data that has been processed into a format that is easy for the user to understand in a short processing time. Further, according to the invention of (1), for example, even from an image having only two-dimensional information acquired only by a monocular camera that can be acquired at a low cost without introducing a distance measuring device, a 3D camera, or the like. The motion analysis of the object to be analyzed can be efficiently executed with high accuracy only by the automatic processing by the coordinate setting unit.
- the recorded image is input to the object extraction unit as digital data, and the analysis target object is directly extracted from the digital data without going through a conversion process into a two-dimensional image that can be visually recognized by humans.
- the information processing apparatus according to (1).
- the invention of (2) has a configuration in which no work that requires human visibility is involved in the process of extracting and analyzing necessary data from the image in the invention of (1). This makes it possible to obtain useful data that has been processed into a format that is easy for the user to understand in an extremely short processing time.
- the object analysis unit is configured to include a face recognition information acquisition unit capable of analyzing the age and gender of the person from image information related to the person's face, according to (1) or (2).
- the invention of (3) is configured to further include a face recognition information acquisition unit that acquires unique face recognition information of the object (person) to be analyzed in the invention of (1) or (2).
- a face recognition information acquisition unit that acquires unique face recognition information of the object (person) to be analyzed in the invention of (1) or (2).
- the object analysis unit is configured to include a skeleton extraction unit that extracts the skeleton of the object to be analyzed, which is composed of skeleton lines connecting a plurality of feature points, and is individually composed of changes in the positions of the feature points.
- the information processing apparatus according to any one of (1) to (3), which recognizes the movement of the object to be analyzed.
- a marketing activity support device according to any one of (1) to (4), wherein the statistical data is marketing data.
- a category designation unit that can specify a specific analysis target category, and an object extraction unit that extracts analysis target objects belonging to the analysis target category specified by the category designation unit from recorded images.
- An object analysis unit that analyzes the attributes and / or movements of each of the extracted objects to be analyzed, and an analysis unit that analyzes the analyzed attributes and / or movement statistics of the analysis target object.
- An information processing system including a coordinate setting unit set in the recorded image.
- the invention of (6) omits the process of visually reproducing a huge amount of recorded images in extracting and analyzing image data for obtaining useful data from a huge amount of recorded images, and has a neural network. It was decided to perform the above extraction and analysis completely and automatically using a machine learning type image recognition means (so-called deep learning type image recognition means). This makes it possible to obtain useful data that has been processed into a format that is easy for the user to understand in a short processing time. Further, according to the invention of (6), for example, even from an image having only two-dimensional information acquired only by a monocular camera that can be acquired at a low cost without introducing a distance measuring device, a 3D camera, or the like. The motion analysis of the object to be analyzed can be efficiently executed with high accuracy only by the automatic processing by the coordinate setting unit.
- a marketing activity support system according to (6), wherein the statistical data is marketing data.
- the category designation step for designating a specific analysis target category and the object extraction section extract the analysis target object belonging to the analysis target category specified in the category designation step from the recorded image.
- the object extraction step and the object analysis unit analyze the attributes and / or movements of the extracted individual objects to be analyzed, and the object analysis step and the analysis unit analyze the attributes and / or movement statistics of the analyzed objects.
- the analysis step for analyzing the quantity and the statistical data display step for displaying the statistical data in which the dashboard includes the analysis result of the statistic are provided, and the analysis target object by the object extraction step is provided.
- the coordinate setting unit Is an information processing method in which coordinates for associating a position in the recorded image, which is a two-dimensional image, with an actual position in the three-dimensional space to be recorded are set in the recorded image.
- the invention of (8) omits the process of visually reproducing a huge amount of recorded images in extracting and analyzing image data for obtaining useful data from a huge amount of recorded images, and has a neural network. It was decided to perform the above extraction and analysis completely and automatically using a machine learning type image recognition means (so-called deep learning type image recognition means). This makes it possible to obtain useful data that has been processed into a format that is easy for the user to understand in a short processing time.
- the recorded image is input to the object extraction unit as digital data, and the digital data is converted from the digital data to a two-dimensional image that can be visually recognized by humans.
- the information processing method according to (8), wherein the object to be analyzed is directly extracted.
- the invention of (9) omits the process of visually reproducing a huge amount of recorded images in extracting and analyzing image data for obtaining useful data from a huge amount of recorded images, and has a neural network. It was decided to perform the above extraction and analysis completely and automatically using a machine learning type image recognition means (so-called deep learning type image recognition means). This makes it possible to obtain useful data that has been processed into a format that is easy for the user to understand in a short processing time.
- the invention of (10) further includes a face recognition information acquisition unit that acquires unique face recognition information when the object to be analyzed is a person in the invention of (9) or (10).
- a face recognition information acquisition unit that acquires unique face recognition information when the object to be analyzed is a person in the invention of (9) or (10).
- the skeleton extraction unit extracts the skeleton of the analysis target object composed of skeleton lines connecting a plurality of feature points, and the individual analysis target objects are extracted from the position fluctuations of the feature points.
- the information processing method according to any one of (8) to (10), wherein the movement of is recognized.
- a category designation unit that can specify a specific analysis target category, and an object extraction unit that extracts analysis target objects belonging to the analysis target category specified by the category designation unit from recorded images.
- An object analysis unit that analyzes the extracted attributes and / or movements of the analysis target object, and an analysis unit that analyzes the analyzed attributes and / or movement statistics of the analysis target object, and the analysis unit and the statistics.
- the object analysis unit includes a dashboard for displaying statistical data including analysis results, and the object analysis unit has a position in the recorded image, which is a two-dimensional image, and a three-dimensional space to be recorded.
- a coordinate setting unit that sets coordinates associated with an actual position in the recorded image in the recorded image, the analysis belonging to the specific analysis target category from the recorded image.
- Display on the dashboard statistical data including the object analysis step analyzed by the recognition means, the analysis step for analyzing the analyzed attribute and / or motion statistics, and the analysis result of the statistics.
- the invention of (13) omits the process of visually reproducing a huge amount of recorded images in extracting and analyzing image data for obtaining useful data from a huge amount of recorded images, and has a neural network. It was decided to perform the above extraction and analysis completely and automatically using a machine learning type image recognition means (so-called deep learning type image recognition means). This makes it possible to obtain useful data that has been processed into a format that is easy for the user to understand in a short processing time.
- the information processing device of the present invention is an information processing technique that can be widely applied to all information processing devices that take a recorded image as input data and output the analysis result in an arbitrary format that is easy for the user to use. According to the information processing apparatus of the present invention, by selecting and designating an arbitrary target category from various objects included in the recorded image, useful analysis results for the category can be automatically obtained.
- Such an information processing apparatus of the present invention is useful for marketing activities (for example, a specific area) from a huge amount of recorded images taken by a surveillance camera or the like installed in a public space.
- An embodiment used as a "marketing activity support device” that extracts, analyzes, and displays the traffic volume of a person with a specific attribute and the degree of attention to a specific item in the above can be mentioned as an example of the preferred embodiment.
- an embodiment in which the information processing device of the present invention is used as a “marketing activity support device” will be described in detail as the best mode of the present invention.
- the marketing activity support device 1 uses a recorded image 2 that has been recorded for a certain period from the past to the present and is held in a playable state as input data for analysis. Then, statistical data that can be obtained from the recorded image 2 and is useful in marketing activities is output as analysis result (marketing data) 3 as audiovisual information that is easy for humans to understand.
- the "marketing data” in the present specification is statistical data that can be obtained by analyzing a characteristic quantity related to the movement of a person or an object within a predetermined area, and is used for marketing activities. So, it refers to any data that can be used as a basis for judgment or reference information.
- the basic configuration of the marketing activity support device 1 is as shown in FIG.
- the marketing activity support device 1 has a category designation unit 10 that can select and specify a specific analysis target category, an object extraction unit 20 that extracts individual objects to be analyzed from the recorded image 2, and an object extraction unit 20.
- the object analysis unit 30 that analyzes the attributes and / or movements of the individual analysis target objects extracted by, the analysis unit 40 that analyzes the attributes and / or movement statistics of the analyzed analysis target objects, and the statistics. It is configured to include a dashboard 50 that displays marketing data, which is statistical data that includes analysis results.
- the category designation unit 10 the object extraction unit 20, the object analysis unit 30, and the analysis unit 40 are collectively referred to as a “calculation processing unit”.
- the “calculation processing unit” is connected to a playback device or the like capable of outputting the image data of the recorded image 2 so that the image data of the recorded image 2 can be input.
- This connection can be a wired connection using a dedicated communication cable or a wired LAN connection. Further, the connection is not limited to a wired connection, and may be a connection using various wireless communications such as a wireless LAN, short-range wireless communication, and a mobile phone line.
- the recorded image 2 is sent to the arithmetic processing unit (object extraction unit 20) not as a visible image form but as a digital data form that can be arithmetically processed by an information processing device. It is preferable that the configuration is such that it is directly input.
- the analysis target object By configuring the analysis target object to be directly extracted from the input data in the digital format without going through the conversion process to the two-dimensional image format that can be seen by humans and the display process of such a two-dimensional image. Objects to be analyzed can be automatically extracted from a huge amount of image data in a shorter time.
- the object extraction unit 20 and the object analysis unit 30 are all machine learning type image recognition means (so-called) having a neural network. , Deep learning type image recognition means), the processing related to each extraction and analysis is executed. The details of the operation of each of these parts will be described later.
- the component including the dashboard 50 for displaying the analysis result to the user is arranged as an independent device in a different place away from the other components.
- both of these components can be implemented as a form of a decentralized "marketing activity support system" in which both of these components are connected by a wired or wireless line as illustrated above.
- the component including the dashboard 50 described above is composed of a plurality of information processing terminals, and the function of one arithmetic processing unit is shared by the plurality of dashboards 50. It can also be implemented as a form of "activity support system". For example, a part or all of the plurality of dashboards 50 may be a small portable information processing terminal. By implementing each of these forms, each part constituting the marketing activity support device 1 can be distributed and arranged in an optimum location in consideration of economic efficiency, user convenience, and the like. ..
- the recorded image 2 input to the marketing activity support device 1 is not limited to an image having a specific content, format, and amount of information. Any image can be used that contains data that may be suitable for the intended use by data analysis. Surveillance images in public spaces and the like, where an enormous amount of images have been accumulated in recent years, are an example of an optimal data source for recorded images 2. Such a monitoring image is a treasure trove of marketing data in which a large amount of images capable of grasping the flow of people, the movement of products, the movement of a clerk, etc. are accumulated, and by using the marketing activity support device 1, This can be used efficiently and effectively.
- the marketing activity support device 1 obtains only useful analysis results for an image containing a huge amount of data at random, such as the above-mentioned monitoring image, without performing a reproduction process that can be visually recognized by an analysis worker. be able to. Therefore, it is possible to obtain only useful information for marketing activities without infringing on the privacy of the photographed person to be extracted.
- the "arithmetic processing unit” including the category designation unit 10, the object extraction unit 20, the object analysis unit 30, and the analysis unit 40 can be configured by using, for example, a personal computer, a tablet terminal, a smartphone, or the like. .. Alternatively, the "arithmetic processing unit” can be configured by a dedicated device specialized for image processing operations. In any of these configurations, the "arithmetic processing unit” includes hardware such as a CPU, memory, and communication unit.
- the "arithmetic processing unit" having the above configuration concretely executes various operations of the marketing activity support device and the marketing activity support method described below by executing the "program" for the computer. Can be done.
- the category designation unit 10 designates a specific analysis target category to be analyzed by the analysis unit 40. This designation may be configured to manually set an arbitrary target each time the worker uses the marketing activity support device 1. Alternatively, the category designation unit 10 may be configured such that a specific analysis target category is set in advance by default, and the setting is manually changed only when necessary. In any case, the analysis target category selected in the category designation unit 10 is transmitted to the object extraction unit 20 as a command, and the objects belonging to the analysis target category are extracted from the recorded image 2 according to the command.
- the object extraction unit 20 can recognize “people” and “bottles” individually, and intends to obtain marketing data by analyzing and analyzing their movements and attributes. If so, the analysis target category 1 may be designated as "person” and the analysis target category 2 may be designated as "bottle” in the category designation unit.
- the analysis target category is set to "female in her thirties”. It is also possible to specify.
- the object extraction unit 20 extracts the analysis target object belonging to the analysis target category designated by the category designation unit 10 from the recorded image 2.
- the extraction by the object extraction unit 20 is executed at high speed by a machine learning type image recognition means having a neural network, a so-called deep learning type image recognition means.
- the object extraction unit 20 analyzes the "people and animals and plants" and "objects" (hereinafter, collectively referred to as "objects") existing in the recorded image 2 and designated by the category designation unit 10. Objects belonging to the target category (objects to be analyzed) are extracted by deep learning type image recognition means. For example, as shown in FIG. 3, the object extraction unit 20 extracts the analysis target objects (person H and object M) existing in the recorded image 2.
- FIG. 3 is a conceptual diagram relating to extraction, and actually reproducing such an image in a real-time visible state is not an indispensable constituent requirement in the apparatus, system, and method of the present invention.
- the algorithm of the image recognition processing means for extracting the analysis target object from the recorded image 2 is not particularly limited, but "You only look once (YOLO)" can be preferably used.
- "You only view (YOLO)" as an image recognition means for extracting and specifying an analysis target object in the object extraction unit 20
- about 1000 types of analysis target objects can be individually processed in parallel at the same time. It is also possible to extract. According to this, only useful objects required for analysis at the present time are extracted from a huge amount of image information accumulated over a certain period of time in the past at high speed and more accurately than manual work by human visual inspection. be able to.
- the object analysis unit 30 analyzes the attributes and / or movements of the individual objects to be analyzed extracted by the object extraction unit 20, and the analysis by the object analysis unit 30 is also a machine learning type image recognition means having a neural network. It is executed by a so-called deep learning type image recognition means.
- An image recognition technique using a machine learning type image recognition means image recognition means using deep learning having a neural network is disclosed below, for example. "Deep Learning and Image Recognition, Operations Research" (Http: //www.orsj.o.jp/archive2/or60-4/or60_4_198.pdf)
- the object analysis unit 30 further includes a face authentication information acquisition unit 31, a coordinate setting unit 32, and a skeleton extraction unit 33 as its internal configuration.
- the algorithm of the machine learning type image recognition means (image recognition means using deep learning) having a neural network that analyzes the attributes and / or movements of the object to be analyzed is not limited to a specific algorithm.
- the object analysis unit 30 is configured to include the skeleton extraction unit 33, a technique called "OpenPose” disclosed in the following document is used as the algorithm of the image recognition processing means for extracting the skeleton. Is preferable. "Zhe Cao et al. Realtime Multi-Person 2D Human Pose Estimation using Part Affinity Fields, CVPR 2017"
- the object analysis unit 30 includes a face recognition information acquisition unit 31 capable of analyzing the age and gender of the person from the image information related to the person's face.
- a face recognition information acquisition unit 31 capable of analyzing the age and gender of the person from the image information related to the person's face.
- various conventionally known face recognition information acquisition devices can be used.
- the object analysis unit 30 preferably includes a coordinate setting unit 32 that sets identifiable coordinates by associating the position of the object to be analyzed in the image with the actual position in the three-dimensional space to be recorded. ..
- a coordinate setting unit 32 that sets identifiable coordinates by associating the position of the object to be analyzed in the image with the actual position in the three-dimensional space to be recorded. ..
- the coordinate setting unit 32 performs a process of setting identifiable coordinates by associating the position corresponding to the floor surface in the image of the recorded image 2 which is a two-dimensional image with the actual size.
- the coordinates set by the coordinate setting unit 32 are, when a certain arbitrary position is specified in the recorded image 2 and the position is on the floor surface, the floor surface is in the space of the actual monitoring area. It is a coordinate that can identify which position it corresponds to. That is, the position on the coordinate to be set is set in association with the actual size. Since the recorded image 2 captured by the photographing unit 120 is two-dimensional image information, even if a position in the recorded image 2 is selected (specified), it is any position in the actual three-dimensional space. I can't identify.
- the coordinate setting unit 32 sets the coordinates corresponding to the floor surface.
- the object analysis unit 30 preferably includes a skeleton extraction unit 33 that extracts the skeleton of the object to be analyzed composed of skeleton lines connecting a plurality of feature points.
- the skeleton extraction unit 33 is composed of a plurality of feature points and a skeleton line connecting the plurality of feature points of the object to be analyzed (for example, the person H and the object M in FIG. 3) extracted by the object extraction unit 20. The process of extracting the skeleton of each analysis target is performed.
- the "skeleton" of the object to be analyzed is a linear figure formed by connecting a plurality of feature points of the object to be analyzed.
- FIG. 4 is a diagram showing a state in which the skeleton is extracted from the person H to be analyzed.
- the positions corresponding to the crown of the person H, the left hand H 2 , and the tips of the other limbs and the main joints, which are the objects to be analyzed are grasped as feature points (h 1 , ..., H n ).
- the "skeleton" of the analysis target H formed by these plurality of feature points and the line segments connecting them is recognized as the "skeleton" of the analysis target object in the recorded image 2. ..
- the object analysis unit 30 includes the skeleton extraction unit 33, it is possible to recognize the "movement" of the object to be analyzed based on the information related to the fluctuation of the "position" of the feature points constituting the extracted skeleton.
- the "movement” referred to here includes all movements of the analysis target object that can be grasped by the position change of the feature point of the skeleton, such as the position change of the analysis target object and the posture change without the position change. (See FIGS. 5 and 6).
- the analysis target category includes "person” and "object”
- the skeleton of the object to be analyzed can be extracted by any of various conventionally known methods or a combination thereof.
- the skeleton of "human” can be extracted from the two-dimensional recorded image 2.
- the standing position of the person H can be specified on the coordinates including the three-dimensional information (depth information), for example, from the size and shape of the person H in the recorded image 2, the person H in the actual three-dimensional space It is possible to calculate and grasp the actual size and three-dimensional shape of. That is, it is possible to acquire three-dimensional data related to the position and movement of the person H and the object M from the two-dimensional image data (position information of the feature points superimposed on the coordinates in the recorded image 2).
- depth information depth information
- the person H in the actual three-dimensional space It is possible to calculate and grasp the actual size and three-dimensional shape of. That is, it is possible to acquire three-dimensional data related to the position and movement of the person H and the object M from the two-dimensional image data (position information of the feature points superimposed on the coordinates in the recorded image 2).
- FIG. 6 is a diagram showing a state in which the movement of each analysis target object is recognized based on the information related to the fluctuation of the three-dimensional position of each feature point constituting the skeleton of each analysis target object.
- the position of the left hand H2 of the person H specified as the analysis target object is from the position h2 0 (xh2 0 , yh2 0 , zh2 0 ) to the position h2 1 (xh2 1 , yh2 1 , yh2 1 ) in the actual three-dimensional space.
- the object analysis unit 30 can also detect the line-of-sight direction of the monitored object (person) by including the skeleton extraction unit 33.
- the monitoring target is concerned.
- the line-of-sight direction of an object (person) can be detected. Specifically, the direction from the midpoint of the base, which connects the points corresponding to the positions of both ears in the above triangle, to the apex, which is the point corresponding to the position of the nose, is within the three-dimensional space of the person to be monitored. It can be detected as the line-of-sight direction at.
- the line-of-sight direction detection is not limited to the above method, and other conventionally known line-of-sight detection means can be appropriately combined with the present invention.
- the analysis unit 40 analyzes the attribute and / or movement statistic of the object to be analyzed analyzed by the object analysis unit 30 and converts it into data. Then, the numerical data related to the statistics obtained as the analysis result of the attributes and movements of the object to be analyzed is output to the dashboard 50.
- the statistic that is the analysis result of the object to be analyzed for example, the flow and residence time of people by age and gender at a specific position in a specific sales floor, and the sales of products displayed at that position. Correlation with and the like can be mentioned.
- the analysis unit 40 may be configured in a server independent of the dashboard, or may be configured on the client side by using a personal computer, a tablet terminal, a smartphone, or the like. In any configuration, the analysis unit 40 performs the above analysis process by providing hardware such as a CPU, a memory, and a communication unit.
- the dashboard 50 displays statistical data (for example, 3a to 3e in FIG. 2) including the analysis result of the statistic by the analysis unit 40.
- the dashboard 50 is a device that visualizes marketing data with a graph or the like for analysis and displays management numerical values or the like in an easy-to-analyze manner.
- the dashboard 50 includes a commercially available desktop personal computer in which a business application for managing marketing data (for example, a Web application) is installed, a commercially available notebook personal computer, a PDA (Personal Digital Assistants), a smartphone, and a tablet personal computer. It can also be configured by a portable information processing device such as a computer.
- the information processing method (marketing activity support method) of the present invention executed by the operation of the marketing activity support device 1 includes a category designation step executed by the category designation unit 10, an object extraction step executed by the object extraction unit 20, and an object.
- the object analysis step executed by the analysis unit 30, the analysis step executed by the analysis unit 40, and the statistical data display step executed by the dashboard are sequentially performed to be executed as an entire process.
- the object extraction step and the object analysis step are machine learning type image recognition means having a neural network (deep learning type image recognition). Means).
- the analysis unit 40 designates a specific analysis target category to be analyzed.
- the analysis target category is specified by the object extraction unit 20 selecting an arbitrary category that can be individually classified and extracted in the recorded image 2.
- the analysis target category can be specified by manually designating an arbitrary target each time the worker uses the marketing activity support device 1, or can be specified in advance. It is also possible to set the analysis target category of the above by default, and manually change and specify the setting only when necessary.
- the object extraction unit 20 extracts individual analysis target objects belonging to the analysis target category specified in the category designation step from the recorded image 2.
- the object extraction step is executed by a machine learning type image recognition means having a neural network.
- the object analysis step In the object analysis step, the attributes and / or movements of the individual analysis target objects extracted in the object extraction step are analyzed by the object analysis unit 30.
- the object analysis step is also performed by a machine learning type image recognition means having a neural network.
- the coordinate setting process by the coordinate setting unit 32 is performed in advance prior to the analysis of the object to be analyzed.
- the recorded image 2 is given three-dimensional information in advance by a distance measuring means such as a distance sensor or a 3D camera, the coordinate setting process by the coordinate setting unit 32 is not always performed in the monitoring method of the present invention. This is not a required process.
- the analysis unit 40 analyzes the attribute and / or motion statistics analyzed in the object analysis step for the object to be analyzed extracted in the object extraction step.
- an appropriate analysis target category may be appropriately specified in the analysis target category designation step according to the content of the statistical data to be finally displayed on the dashboard 50. Good.
- the analysis target category For example, if you want to obtain the analysis result of the movement of the clerk of the store, specify "person” as the analysis target category and register the unique biometric information such as the face authentication information of the clerk in the object analysis department in advance. By setting, only the clerk is identified from the extracted "people”, the movement is analyzed, and the analyzed movement is statistically analyzed, so that the movement of the clerk of the store can be obtained from the recorded image.
- the analysis result of the above can be obtained, and this result can be displayed on the dashboard 50 in an arbitrary format such as a graph that is easy for the user to understand.
- Information processing device (marketing activity support device) 10
- Category designation unit 20
- Object extraction unit 30
- Object analysis unit 31
- Face recognition information acquisition unit 32
- Coordinate setting unit 33
- Skeleton extraction unit 40
- Dashboard 2 Recorded images 3, 3a, 3b, 3c Analysis results (marketing data)
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Finance (AREA)
- Strategic Management (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Accounting & Taxation (AREA)
- Development Economics (AREA)
- Entrepreneurship & Innovation (AREA)
- Game Theory and Decision Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Economics (AREA)
- Marketing (AREA)
- General Business, Economics & Management (AREA)
- Image Analysis (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
The present invention provides a means for efficiently extracting and analyzing only useful data from an enormous volume of recorded images. An information processing device 1 is provided with: a category designation unit 10; an object extraction unit 20 that extracts an object to be analyzed from recorded images 2; an object analysis unit 30 that analyzes the attribute and/or the motion of the object to be analyzed; an analysis unit 40 that analyzes the statistical amount of the attribute and/or the motion of the object to be analyzed; and a dashboard 50 that displays statistical data configured by including the analyzing result, wherein the extraction of the object to be analyzed by the object extraction unit 20 and the analysis of the attribute and/or the motion of the object to be analyzed by the object analysis unit 30 are executed by a machine-learning type image recognition means having a neural network.
Description
本発明は、情報処理装置、及び、マーケティング活動支援装置に関する。本発明は、より詳しくは録画済の画像から有用な情報を抽出し解析して表示する、情報処理装置、及び、それを含んで構成されるマーケティング活動支援装置に関する。
The present invention relates to an information processing device and a marketing activity support device. More specifically, the present invention relates to an information processing device that extracts useful information from a recorded image, analyzes and displays it, and a marketing activity support device including the information processing device.
店舗内を撮影した監視画像から、購買者の行動を検出し、購買者がどんな商品に興味を持っているか等をマーケティングデータとして取得しようという市場調査用の機器の開発が行われている(特許文献1参照)。
A device for market research is being developed to detect the behavior of the purchaser from the surveillance image taken inside the store and acquire what kind of product the purchaser is interested in as marketing data (patent). Reference 1).
又、取得したマーケティングデータをより有効に活用できるように、購買者が何れの客層(顧客属性)に属するか等を判定し、更には、その客層のエリア分析データ等を取得して、顧客属性や地域を考慮したマーケティング戦略の立案を可能にするシステムも提案されている。(特許文献2参照)。
In addition, in order to make more effective use of the acquired marketing data, it is determined which customer group (customer attribute) the purchaser belongs to, and further, the area analysis data of the customer group is acquired to obtain the customer attribute. A system has also been proposed that enables the planning of marketing strategies that take into consideration the region and region. (See Patent Document 2).
或いは、陳列棚等の画像中の各商品を、画像認識技術を利用して検出、照合することにより、在庫管理の効率を高め、顧客が実店舗内で買い物し易いようにするためのアシストも行う画像認識システムも提案されている(特許文献3参照)。
Alternatively, by detecting and collating each product in the image such as a display shelf using image recognition technology, it is possible to improve the efficiency of inventory management and assist the customer to easily shop in the actual store. An image recognition system to be used has also been proposed (see Patent Document 3).
特許文献1に記載の機器は、画像からマーケティングデータを抽出する処理の一案としては有用である。特許文献2に記載のシステムも、そのようにして得たデータの活用方法の具体的手段としては有用である。又、特許文献3に記載のシステムも刻一刻と変化する在庫等の状況を画像処理技術によってリアルタイムで把握する手段としては有用である。
The device described in Patent Document 1 is useful as a proposal for a process of extracting marketing data from an image. The system described in Patent Document 2 is also useful as a specific means of utilizing the data obtained in this way. Further, the system described in Patent Document 3 is also useful as a means for grasping the status of inventory and the like, which changes from moment to moment, in real time by image processing technology.
ここで、近年、公共スペースの各所における防犯用の監視カメラの設置数の増大に伴って、録画済の画像の蓄積量も膨大なものとなっている。しかしながら、例えば、過去の一定期間(数日から数年)にまで遡って、これらの膨大な録画済画像から有用なデータのみを効率よく抽出して解析する手段については上記何れの文献においても言及されていない。
Here, in recent years, with the increase in the number of surveillance cameras for crime prevention installed in various places in public spaces, the amount of recorded images accumulated has become enormous. However, for example, a means for efficiently extracting and analyzing only useful data from these enormous recorded images by going back to a certain period (several days to several years) in the past is mentioned in any of the above documents. It has not been.
上記のような膨大な蓄積画像から効率よく有用な情報を短時間で抽出して解析する手段の開発が望まれていた。本発明は、膨大な録画済画像から有用なデータのみを効率よく抽出して解析する手段を提供することを目的とする。
It has been desired to develop a means for efficiently extracting and analyzing useful information in a short time from the huge amount of accumulated images as described above. An object of the present invention is to provide a means for efficiently extracting and analyzing only useful data from a huge amount of recorded images.
本発明は、以下の解決手段により、上述の課題を解決する。尚、理解を容易にするために、本発明の実施形態に対応する符号を付して説明するが、これに限定されるものではない。
The present invention solves the above-mentioned problems by the following solutions. In addition, in order to facilitate understanding, the description will be given with reference numerals corresponding to the embodiments of the present invention, but the present invention is not limited thereto.
(1) 特定の解析対象カテゴリーを指定することができる、カテゴリー指定部と、前記カテゴリー指定部によって指定されている前記解析対象カテゴリーに属する解析対象オブジェクトを録画済画像から抽出する、オブジェクト抽出部と、抽出された前記解析対象オブジェクトの属性及び/又は動きを分析する、オブジェクト分析部と、分析された前記解析対象オブジェクトの属性及び又は動きの統計量を解析する、解析部と、前記統計量の解析結果を含んで構成される統計データを表示する、ダッシュボードと、を備え、前記オブジェクト抽出部による前記解析対象オブジェクトの抽出、及び、前記オブジェクト分析部による前記解析対象オブジェクトの属性及び/又は動きの分析が、何れも、ニューラルネットワークを有する機械学習型の画像認識手段により実行され、前記オブジェクト分析部は、2次元画像である前記録画済画像中における位置と、録画対象とされている3次元空間内における実際の位置とを関連づける座標を、前記録画済画像中に設定する座標設定部を含んで構成されている、情報処理装置。
(1) A category designation unit that can specify a specific analysis target category, and an object extraction unit that extracts analysis target objects belonging to the analysis target category specified by the category designation unit from recorded images. , An object analysis unit that analyzes the extracted attributes and / or movements of the analysis target object, and an analysis unit that analyzes the analyzed attributes and / or movement statistics of the analysis target object, and the analysis unit and the statistics. A dashboard that displays statistical data including analysis results is provided, and the analysis target object is extracted by the object extraction unit, and the attributes and / or movement of the analysis target object by the object analysis unit. The analysis is executed by a machine learning type image recognition means having a neural network, and the object analysis unit has a position in the recorded image which is a two-dimensional image and a three-dimensional image to be recorded. An information processing device including a coordinate setting unit that sets coordinates associated with an actual position in space in the recorded image.
(1)の発明は、膨大な量の録画済画像から有用なデータを得るための画像データの抽出と分析とにおいて、膨大な録画済画像を視認可能に再生するプロセスを省き、ニューラルネットワークを有する機械学習型の画像認識手段(所謂ディープラーニング型の画像認識手段)を用いて完全に自動的に上記の抽出と分析を行うこととした。これにより、短い処理時間で、使用者が理解容易な形式に加工されている有用なデータを得ることができる。又、(1)の発明によれば、例えば、距離測定デバイスや3Dカメラ等を導入することなく廉価で取得可能な単眼カメラによってのみ取得された2次元情報のみを有する画像からであっても、解析対象オブジェクトの動きの分析を、座標設定部による自動的な処理のみにより高い精度で効率よく実行することができる。
The invention of (1) omits the process of visually reproducing a huge amount of recorded images in extracting and analyzing image data for obtaining useful data from a huge amount of recorded images, and has a neural network. It was decided to perform the above extraction and analysis completely and automatically using a machine learning type image recognition means (so-called deep learning type image recognition means). This makes it possible to obtain useful data that has been processed into a format that is easy for the user to understand in a short processing time. Further, according to the invention of (1), for example, even from an image having only two-dimensional information acquired only by a monocular camera that can be acquired at a low cost without introducing a distance measuring device, a 3D camera, or the like. The motion analysis of the object to be analyzed can be efficiently executed with high accuracy only by the automatic processing by the coordinate setting unit.
(2) 前記オブジェクト抽出部には、前記録画済画像がデジタルデータとして入力され、人間が視認可能な二次元画像への変換処理を経由せずに、該デジタルデータから前記解析対象オブジェクトが直接抽出される、(1)に記載の情報処理装置。
(2) The recorded image is input to the object extraction unit as digital data, and the analysis target object is directly extracted from the digital data without going through a conversion process into a two-dimensional image that can be visually recognized by humans. The information processing apparatus according to (1).
(2)の発明は、(1)の発明における画像からの必要データの抽出と分析の過程に人間の視認が必要な作業を一切介在させない構成とした。これにより、極めて短い処理時間で、使用者が理解容易な形式に加工されている有用なデータを得ることができる。
The invention of (2) has a configuration in which no work that requires human visibility is involved in the process of extracting and analyzing necessary data from the image in the invention of (1). This makes it possible to obtain useful data that has been processed into a format that is easy for the user to understand in an extremely short processing time.
(3) 前記オブジェクト分析部は、人の顔に係る画像情報から当該人の年齢及び性別を分析することができる顔認証情報取得部を含んで構成されている、(1)又は(2)に記載の情報処理装置。
(3) The object analysis unit is configured to include a face recognition information acquisition unit capable of analyzing the age and gender of the person from image information related to the person's face, according to (1) or (2). The information processing device described.
(3)の発明は、(1)又は(2)の発明において、解析対象オブジェクト(人)の固有の顔認証情報を取得する顔認証情報取得部を、更に備える構成とした。これにより、解析対象オブジェクトの属性の分析を、自動的な処理のみにより高い精度で効率よく実行することができる。
The invention of (3) is configured to further include a face recognition information acquisition unit that acquires unique face recognition information of the object (person) to be analyzed in the invention of (1) or (2). As a result, the analysis of the attributes of the object to be analyzed can be efficiently executed with high accuracy only by automatic processing.
(4) 前記オブジェクト分析部は、複数の特徴点を連接する骨格線で構成される前記解析対象オブジェクトの骨格を抽出する骨格抽出部を含んで構成されていて、前記特徴点の位置変動から個々の前記解析対象オブジェクトの動きを認識する、(1)から(3)の何れかに記載の情報処理装置。
(4) The object analysis unit is configured to include a skeleton extraction unit that extracts the skeleton of the object to be analyzed, which is composed of skeleton lines connecting a plurality of feature points, and is individually composed of changes in the positions of the feature points. The information processing apparatus according to any one of (1) to (3), which recognizes the movement of the object to be analyzed.
(4)の発明は、例えば、後述の「OpenPose」等の画像解析手段を用いることにより、特に解析対象オブジェクトが人である場合に、当該解析対象オブジェクト(人)の複数の特徴点が連接されてなる骨格を抽出し、これら各特徴点の位置や速度を解析することによって、解析対象オブジェクトの動きを認識することができる構成としたものである。これによれば、解析対象オブジェクトの各種の動きを、解析対象オブジェクトの体形(形状)等に関わらずより高い精度でもれなく認識することができる。
In the invention of (4), for example, by using an image analysis means such as "OpenPose" described later, a plurality of feature points of the analysis target object (person) are connected, especially when the analysis target object is a person. By extracting the skeleton and analyzing the position and speed of each of these feature points, the movement of the object to be analyzed can be recognized. According to this, various movements of the analysis target object can be recognized with higher accuracy regardless of the body shape (shape) of the analysis target object.
(5) (1)から(4)の何れかに記載の情報処理装置であって、前記統計データがマーケティングデータである、マーケティング活動支援装置。
(5) A marketing activity support device according to any one of (1) to (4), wherein the statistical data is marketing data.
(5)の発明によれば、既に蓄積されている膨大な画像情報から、使用者が理解容易な形式に加工されている有用なマーケティングデータを極めて短い処理時間で得ることができる。
According to the invention of (5), useful marketing data processed into a format that is easy for the user to understand can be obtained in an extremely short processing time from the enormous amount of image information that has already been accumulated.
(6) 特定の解析対象カテゴリーを指定することができる、カテゴリー指定部と、前記カテゴリー指定部によって指定されている前記解析対象カテゴリーに属する解析対象オブジェクトを録画済画像から抽出する、オブジェクト抽出部と、抽出された個々の前記解析対象オブジェクトの属性及び/又は動きを分析する、オブジェクト分析部と、分析された前記解析対象オブジェクトの属性及び/又は動きの統計量を解析する、解析部と、前記統計量の解析結果を含んで構成される統計データを表示する、ダッシュボードと、を備え、前記オブジェクト抽出部による前記抽出、及び前記オブジェクト分析部による前記分析が、何れも、ニューラルネットワークを有する機械学習型の画像認識手段により実行され、前記オブジェクト分析部は、2次元画像である前記録画済画像中における位置と、録画対象とされている3次元空間内における実際の位置とを関連づける座標を、前記録画済画像中に設定する座標設定部を含んで構成されている、情報処理システム。
(6) A category designation unit that can specify a specific analysis target category, and an object extraction unit that extracts analysis target objects belonging to the analysis target category specified by the category designation unit from recorded images. An object analysis unit that analyzes the attributes and / or movements of each of the extracted objects to be analyzed, and an analysis unit that analyzes the analyzed attributes and / or movement statistics of the analysis target object. A machine equipped with a dashboard for displaying statistical data including analysis results of statistics, and the extraction by the object extraction unit and the analysis by the object analysis unit both have a neural network. Executed by a learning type image recognition means, the object analysis unit obtains coordinates that relate a position in the recorded image, which is a two-dimensional image, to an actual position in the three-dimensional space to be recorded. An information processing system including a coordinate setting unit set in the recorded image.
(6)の発明は、膨大な量の録画済画像から有用なデータを得るための画像データの抽出と分析とにおいて、膨大な録画済画像を視認可能に再生するプロセスを省き、ニューラルネットワークを有する機械学習型の画像認識手段(所謂ディープラーニング型の画像認識手段)を用いて完全に自動的に上記の抽出と分析を行うこととした。これにより、短い処理時間で、使用者が理解容易な形式に加工されている有用なデータを得ることができる。又、(6)の発明によれば、例えば、距離測定デバイスや3Dカメラ等を導入することなく廉価で取得可能な単眼カメラによってのみ取得された2次元情報のみを有する画像からであっても、解析対象オブジェクトの動きの分析を、座標設定部による自動的な処理のみにより高い精度で効率よく実行することができる。
The invention of (6) omits the process of visually reproducing a huge amount of recorded images in extracting and analyzing image data for obtaining useful data from a huge amount of recorded images, and has a neural network. It was decided to perform the above extraction and analysis completely and automatically using a machine learning type image recognition means (so-called deep learning type image recognition means). This makes it possible to obtain useful data that has been processed into a format that is easy for the user to understand in a short processing time. Further, according to the invention of (6), for example, even from an image having only two-dimensional information acquired only by a monocular camera that can be acquired at a low cost without introducing a distance measuring device, a 3D camera, or the like. The motion analysis of the object to be analyzed can be efficiently executed with high accuracy only by the automatic processing by the coordinate setting unit.
(7) (6)に記載の情報処理システムであって、前記統計データがマーケティングデータである、マーケティング活動支援システム。
(7) A marketing activity support system according to (6), wherein the statistical data is marketing data.
(7)の発明によれば、既に蓄積されている膨大な画像情報から、使用者が理解容易な形式に加工されている有用なマーケティングデータを極めて短い処理時間で得ることができる。
According to the invention of (7), useful marketing data processed into a format that is easy for the user to understand can be obtained in an extremely short processing time from the enormous amount of image information that has already been accumulated.
(8) カテゴリー指定部において、特定の解析対象カテゴリーを指定するカテゴリー指定ステップと、オブジェクト抽出部が、録画済画像から、前記カテゴリー指定ステップにおいて指定された解析対象カテゴリーに属する解析対象オブジェクトを抽出する、オブジェクト抽出ステップと、オブジェクト分析部が、抽出された個々の前記解析対象オブジェクトの属性及び/又は動きを分析する、オブジェクト分析ステップと、解析部が、分析された前記属性及び/又は動きの統計量を解析する、解析ステップと、ダッシュボードが、前記統計量の解析結果を含んで構成される統計データを表示する、統計データ表示ステップと、を備え、前記オブジェクト抽出ステップによる前記解析対象オブジェクトの抽出、及び、前記オブジェクト分析ステップによる前記解析対象オブジェクトの属性及び/又は動きの分析が、何れも、ニューラルネットワークを有する機械学習型の画像認識手段により実行され、前記オブジェクト分析ステップにおいて、座標設定部が、2次元画像である前記録画済画像中における位置と、録画対象とされている3次元空間内における実際の位置とを関連づける座標を、前記録画済画像中に設定する、情報処理方法。
(8) In the category designation section, the category designation step for designating a specific analysis target category and the object extraction section extract the analysis target object belonging to the analysis target category specified in the category designation step from the recorded image. , The object extraction step and the object analysis unit analyze the attributes and / or movements of the extracted individual objects to be analyzed, and the object analysis step and the analysis unit analyze the attributes and / or movement statistics of the analyzed objects. The analysis step for analyzing the quantity and the statistical data display step for displaying the statistical data in which the dashboard includes the analysis result of the statistic are provided, and the analysis target object by the object extraction step is provided. Both the extraction and the analysis of the attributes and / or movements of the analysis target object by the object analysis step are executed by the machine learning type image recognition means having a neural network, and in the object analysis step, the coordinate setting unit Is an information processing method in which coordinates for associating a position in the recorded image, which is a two-dimensional image, with an actual position in the three-dimensional space to be recorded are set in the recorded image.
(8)の発明は、膨大な量の録画済画像から有用なデータを得るための画像データの抽出と分析とにおいて、膨大な録画済画像を視認可能に再生するプロセスを省き、ニューラルネットワークを有する機械学習型の画像認識手段(所謂ディープラーニング型の画像認識手段)を用いて完全に自動的に上記の抽出と分析を行うこととした。これにより、短い処理時間で、使用者が理解容易な形式に加工されている有用なデータを得ることができる。
The invention of (8) omits the process of visually reproducing a huge amount of recorded images in extracting and analyzing image data for obtaining useful data from a huge amount of recorded images, and has a neural network. It was decided to perform the above extraction and analysis completely and automatically using a machine learning type image recognition means (so-called deep learning type image recognition means). This makes it possible to obtain useful data that has been processed into a format that is easy for the user to understand in a short processing time.
(9) 前記オブジェクト抽出ステップにおいて、前記オブジェクト抽出部には、前記録画済画像がデジタルデータとして入力され、人間が視認可能な二次元画像への変換処理を経由せずに、該デジタルデータから前記解析対象オブジェクトが直接抽出される、(8)に記載の情報処理方法。
(9) In the object extraction step, the recorded image is input to the object extraction unit as digital data, and the digital data is converted from the digital data to a two-dimensional image that can be visually recognized by humans. The information processing method according to (8), wherein the object to be analyzed is directly extracted.
(9)の発明は、膨大な量の録画済画像から有用なデータを得るための画像データの抽出と分析とにおいて、膨大な録画済画像を視認可能に再生するプロセスを省き、ニューラルネットワークを有する機械学習型の画像認識手段(所謂ディープラーニング型の画像認識手段)を用いて完全に自動的に上記の抽出と分析を行うこととした。これにより、短い処理時間で、使用者が理解容易な形式に加工されている有用なデータを得ることができる。
The invention of (9) omits the process of visually reproducing a huge amount of recorded images in extracting and analyzing image data for obtaining useful data from a huge amount of recorded images, and has a neural network. It was decided to perform the above extraction and analysis completely and automatically using a machine learning type image recognition means (so-called deep learning type image recognition means). This makes it possible to obtain useful data that has been processed into a format that is easy for the user to understand in a short processing time.
(10) 前記オブジェクト分析ステップにおいて、顔認証情報取得部が、人の顔に係る画像情報から当該人の年齢及び性別を分析する、(8)又は(9)に記載の情報処理方法。
(10) The information processing method according to (8) or (9), wherein in the object analysis step, the face recognition information acquisition unit analyzes the age and gender of the person from the image information related to the person's face.
(10)の発明は、(9)又は(10)の発明において、解析対象オブジェクトが人である場合に、その固有の顔認証情報を取得する顔認証情報取得部を、更に備える構成とした。これにより、解析対象オブジェクトの属性の分析を、自動的な処理のみにより高い精度で効率よく実行することができる。
The invention of (10) further includes a face recognition information acquisition unit that acquires unique face recognition information when the object to be analyzed is a person in the invention of (9) or (10). As a result, the analysis of the attributes of the object to be analyzed can be efficiently executed with high accuracy only by automatic processing.
(11) 前記オブジェクト分析ステップにおいて、骨格抽出部が、複数の特徴点を連接する骨格線で構成される前記解析対象オブジェクトの骨格を抽出し、前記特徴点の位置変動から個々の前記解析対象オブジェクトの動きが認識される、(8)から(10)の何れかに記載の情報処理方法。
(11) In the object analysis step, the skeleton extraction unit extracts the skeleton of the analysis target object composed of skeleton lines connecting a plurality of feature points, and the individual analysis target objects are extracted from the position fluctuations of the feature points. The information processing method according to any one of (8) to (10), wherein the movement of is recognized.
(11)の発明は、例えば、後述の「OpenPose」等の画像解析手段を用いることにより、解析対象オブジェクトの複数の特徴点が連接されてなる骨格を抽出し、これら各特徴点の位置や速度を解析することによって、解析対象オブジェクト)の動きを正確に認識することができる構成としたものである。これによれば、解析対象オブジェクトの各種の動きを、解析対象オブジェクトの体形(形状)等に関わらずより高い精度で認識することができる。
In the invention of (11), for example, by using an image analysis means such as "OpenPose" described later, a skeleton formed by connecting a plurality of feature points of an object to be analyzed is extracted, and the position and velocity of each feature point are extracted. By analyzing the above, the movement of the object to be analyzed) can be accurately recognized. According to this, various movements of the analysis target object can be recognized with higher accuracy regardless of the body shape (shape) of the analysis target object.
(12) (8)から(11)の何れかに記載の情報処理方法であって、前記統計データがマーケティングデータである、マーケティング活動支援方法。
(12) A marketing activity support method according to any one of (12) (8) to (11), wherein the statistical data is marketing data.
(12)の発明によれば、既に蓄積されている膨大な画像情報から、使用者が理解容易な形式に加工されている有用なデータを極めて短い処理時間で得ることができる。
According to the invention of (12), useful data processed into a format that is easy for the user to understand can be obtained in an extremely short processing time from the enormous amount of image information that has already been accumulated.
(13) 特定の解析対象カテゴリーを指定することができる、カテゴリー指定部と、前記カテゴリー指定部によって指定されている前記解析対象カテゴリーに属する解析対象オブジェクトを録画済画像から抽出する、オブジェクト抽出部と、抽出された前記解析対象オブジェクトの属性及び/又は動きを分析する、オブジェクト分析部と、分析された前記解析対象オブジェクトの属性及び又は動きの統計量を解析する、解析部と、前記統計量の解析結果を含んで構成される統計データを表示する、ダッシュボードと、を備え、前記オブジェクト分析部は、2次元画像である前記録画済画像中における位置と、録画対象とされている3次元空間内における実際の位置とを関連づける座標を、前記録画済画像中に設定する座標設定部を含んで構成されている、情報処理装置において、録画済画像から、特定の前記解析対象カテゴリーに属する前記解析対象オブジェクトを、ニューラルネットワークを有する機械学習型の画像認識手段によって抽出する、オブジェクト抽出ステップと、抽出された個々の前記解析対象オブジェクトの属性及び/又は動きを、ニューラルネットワークを有する機械学習型の画像認識手段によって分析する、オブジェクト分析ステップと、分析された前記属性及び/又は動きの統計量を解析する、解析ステップと、前記統計量の解析結果を含んで構成される統計データをダッシュボードに表示する、統計データ表示ステップと、を、前記情報処理装置に実行させるプログラム。
(13) A category designation unit that can specify a specific analysis target category, and an object extraction unit that extracts analysis target objects belonging to the analysis target category specified by the category designation unit from recorded images. , An object analysis unit that analyzes the extracted attributes and / or movements of the analysis target object, and an analysis unit that analyzes the analyzed attributes and / or movement statistics of the analysis target object, and the analysis unit and the statistics. The object analysis unit includes a dashboard for displaying statistical data including analysis results, and the object analysis unit has a position in the recorded image, which is a two-dimensional image, and a three-dimensional space to be recorded. In an information processing apparatus that includes a coordinate setting unit that sets coordinates associated with an actual position in the recorded image in the recorded image, the analysis belonging to the specific analysis target category from the recorded image. An object extraction step of extracting a target object by a machine learning type image recognition means having a neural network, and a machine learning type image having a neural network of the attributes and / or movements of each extracted object to be analyzed. Display on the dashboard statistical data including the object analysis step analyzed by the recognition means, the analysis step for analyzing the analyzed attribute and / or motion statistics, and the analysis result of the statistics. A program for causing the information processing apparatus to execute the statistical data display step.
(13)の発明は、膨大な量の録画済画像から有用なデータを得るための画像データの抽出と分析とにおいて、膨大な録画済画像を視認可能に再生するプロセスを省き、ニューラルネットワークを有する機械学習型の画像認識手段(所謂ディープラーニング型の画像認識手段)を用いて完全に自動的に上記の抽出と分析を行うこととした。これにより、短い処理時間で、使用者が理解容易な形式に加工されている有用なデータを得ることができる。
The invention of (13) omits the process of visually reproducing a huge amount of recorded images in extracting and analyzing image data for obtaining useful data from a huge amount of recorded images, and has a neural network. It was decided to perform the above extraction and analysis completely and automatically using a machine learning type image recognition means (so-called deep learning type image recognition means). This makes it possible to obtain useful data that has been processed into a format that is easy for the user to understand in a short processing time.
(14) (13)に記載のプログラムであって、前記統計データがマーケティングデータである、マーケティング活動支援用のプログラム。
(14) A program for supporting marketing activities according to (13), wherein the statistical data is marketing data.
(14)の発明によれば、既に蓄積されている膨大な画像情報から、使用者が理解容易な形式に加工されている有用なデータを極めて短い処理時間で得ることができる。
According to the invention of (14), useful data processed into a format that is easy for the user to understand can be obtained in an extremely short processing time from the enormous amount of image information that has already been accumulated.
本発明によれば、膨大な録画済画像から有用なデータのみを効率よく抽出して解析する手段を提供することができる。
According to the present invention, it is possible to provide a means for efficiently extracting and analyzing only useful data from a huge amount of recorded images.
以下、本発明を実施するための最良の形態について適宜図面を参照しながら説明する。
Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings as appropriate.
<情報処理装置(マーケティング活動支援装置)>
本発明の情報処理装置は、録画済画像を入力データとして、その解析結果を使用者が利用し易い任意の形式で出力する情報処理装置全般に広く適用することができる情報処理技術である。本発明の情報処理装置によれば、録画済画像に含まれる様々な対象物から任意の対象カテゴリーを選択して指定することによって、当該カテゴリーについて有用な解析結果を自動的に得ることができる。 <Information processing device (marketing activity support device)>
The information processing device of the present invention is an information processing technique that can be widely applied to all information processing devices that take a recorded image as input data and output the analysis result in an arbitrary format that is easy for the user to use. According to the information processing apparatus of the present invention, by selecting and designating an arbitrary target category from various objects included in the recorded image, useful analysis results for the category can be automatically obtained.
本発明の情報処理装置は、録画済画像を入力データとして、その解析結果を使用者が利用し易い任意の形式で出力する情報処理装置全般に広く適用することができる情報処理技術である。本発明の情報処理装置によれば、録画済画像に含まれる様々な対象物から任意の対象カテゴリーを選択して指定することによって、当該カテゴリーについて有用な解析結果を自動的に得ることができる。 <Information processing device (marketing activity support device)>
The information processing device of the present invention is an information processing technique that can be widely applied to all information processing devices that take a recorded image as input data and output the analysis result in an arbitrary format that is easy for the user to use. According to the information processing apparatus of the present invention, by selecting and designating an arbitrary target category from various objects included in the recorded image, useful analysis results for the category can be automatically obtained.
このような、本発明の情報処理装置は、特には、公共スペースに設置されている監視用カメラ等によって撮影された膨大な量の録画済画像から、マーケティング活動に有用なデータ(例えば、特定エリアにおける特定の属性の人の通行量、特定のアイテムに対する注目度)を抽出、解析、表示する「マーケティング活動支援装置」として用いる実施形態を、その好ましい実施形態の一例として挙げることができる。以下、本発明の情報処理装置を「マーケティング活動支援装置」として用いる実施形態を、本発明最良の形態として、その詳細を説明する。
Such an information processing apparatus of the present invention is useful for marketing activities (for example, a specific area) from a huge amount of recorded images taken by a surveillance camera or the like installed in a public space. An embodiment used as a "marketing activity support device" that extracts, analyzes, and displays the traffic volume of a person with a specific attribute and the degree of attention to a specific item in the above can be mentioned as an example of the preferred embodiment. Hereinafter, an embodiment in which the information processing device of the present invention is used as a “marketing activity support device” will be described in detail as the best mode of the present invention.
[全体構成]
マーケティング活動支援装置1は、過去から現在に至るまでの何れかの一定期間に亘って録画されていて、再生可能な状態で保持されている録画済画像2を、分析用の入力データとして用いる。そして、録画済画像2から得ることができ、マーケティング活動において有用な統計データを解析結果(マーケティングデータ)3として、人が理解し易い視聴覚情報として出力する。尚、本明細書における、「マーケティングデータ」とは、所定の領域内における人や物の動きに係る特徴的な量を解析して得ることが可能な統計データであって、マーケティング活動を行う上で、判断の根拠や参考情報となりうる、あらゆるデータのことを言う。 [overall structure]
The marketingactivity support device 1 uses a recorded image 2 that has been recorded for a certain period from the past to the present and is held in a playable state as input data for analysis. Then, statistical data that can be obtained from the recorded image 2 and is useful in marketing activities is output as analysis result (marketing data) 3 as audiovisual information that is easy for humans to understand. The "marketing data" in the present specification is statistical data that can be obtained by analyzing a characteristic quantity related to the movement of a person or an object within a predetermined area, and is used for marketing activities. So, it refers to any data that can be used as a basis for judgment or reference information.
マーケティング活動支援装置1は、過去から現在に至るまでの何れかの一定期間に亘って録画されていて、再生可能な状態で保持されている録画済画像2を、分析用の入力データとして用いる。そして、録画済画像2から得ることができ、マーケティング活動において有用な統計データを解析結果(マーケティングデータ)3として、人が理解し易い視聴覚情報として出力する。尚、本明細書における、「マーケティングデータ」とは、所定の領域内における人や物の動きに係る特徴的な量を解析して得ることが可能な統計データであって、マーケティング活動を行う上で、判断の根拠や参考情報となりうる、あらゆるデータのことを言う。 [overall structure]
The marketing
マーケティング活動支援装置1の基本構成は、図1に示す通りである。マーケティング活動支援装置1は、特定の解析対象カテゴリーを選択して指定することができるカテゴリー指定部10、録画済画像2から解析対象とする個々のオブジェクトを抽出するオブジェクト抽出部20、オブジェクト抽出部20によって抽出された個々の解析対象オブジェクトの属性及び/又は動きを分析するオブジェクト分析部30、分析された解析対象オブジェクトの属性及び/又は動きの統計量を解析する解析部40、及び、統計量の解析結果を含んで構成される統計データであるマーケティングデータを表示するダッシュボード50を含んで構成される。尚、以後、本明細書においては、カテゴリー指定部10、オブジェクト抽出部20、オブジェクト分析部30及び解析部40をまとめて「演算処理部」とも総称する。
The basic configuration of the marketing activity support device 1 is as shown in FIG. The marketing activity support device 1 has a category designation unit 10 that can select and specify a specific analysis target category, an object extraction unit 20 that extracts individual objects to be analyzed from the recorded image 2, and an object extraction unit 20. The object analysis unit 30 that analyzes the attributes and / or movements of the individual analysis target objects extracted by, the analysis unit 40 that analyzes the attributes and / or movement statistics of the analyzed analysis target objects, and the statistics. It is configured to include a dashboard 50 that displays marketing data, which is statistical data that includes analysis results. Hereinafter, in the present specification, the category designation unit 10, the object extraction unit 20, the object analysis unit 30, and the analysis unit 40 are collectively referred to as a “calculation processing unit”.
「演算処理部」は、録画済画像2の画像データを入力することができるように録画済画像2の画像データを出力可能な再生装置等と接続されている。この接続は、専用の通信ケーブルを利用した有線接続、或いは、有線LANによる接続とすることができる。又、有線接続に限らず、無線LANや近距離無線通信、携帯電話回線等の各種無線通信を用いた接続としてもよい。
The "calculation processing unit" is connected to a playback device or the like capable of outputting the image data of the recorded image 2 so that the image data of the recorded image 2 can be input. This connection can be a wired connection using a dedicated communication cable or a wired LAN connection. Further, the connection is not limited to a wired connection, and may be a connection using various wireless communications such as a wireless LAN, short-range wireless communication, and a mobile phone line.
尚、マーケティング活動支援装置1には、録画済画像2が、視認可能な映像の形態としてではなく、情報処理機器によって演算処理が可能なデジタルデータの形態として演算処理部(オブジェクト抽出部20)に直接入力されるような構成とすることが好ましい。人間が視認可能な二次元画像の形式への変換処理とそのような二次元画像の表示処理を経由せずに、デジタル形式の入力データから解析対象オブジェクトが直接抽出される構成とすることで、膨大な画像データから、より短い時間で解析対象オブジェクトを、自動的に抽出することができる。
In the marketing activity support device 1, the recorded image 2 is sent to the arithmetic processing unit (object extraction unit 20) not as a visible image form but as a digital data form that can be arithmetically processed by an information processing device. It is preferable that the configuration is such that it is directly input. By configuring the analysis target object to be directly extracted from the input data in the digital format without going through the conversion process to the two-dimensional image format that can be seen by humans and the display process of such a two-dimensional image. Objects to be analyzed can be automatically extracted from a huge amount of image data in a shorter time.
そして、マーケティング活動支援装置1において、演算処理部を構成する上記各部のうち、オブジェクト抽出部20、及び、オブジェクト分析部30については、何れも、ニューラルネットワークを有する機械学習型の画像認識手段(所謂、ディープラーニング型の画像認識手段)によって各抽出、分析に係る処理が実行される構成とする。これらの各部の動作の詳細については後述する。
Then, in the marketing activity support device 1, among the above-mentioned units constituting the arithmetic processing unit, the object extraction unit 20 and the object analysis unit 30 are all machine learning type image recognition means (so-called) having a neural network. , Deep learning type image recognition means), the processing related to each extraction and analysis is executed. The details of the operation of each of these parts will be described later.
又、マーケティング活動支援装置1は、少なくとも、使用者に解析結果を表示するダッシュボード50を含む構成部分が、独立した装置として、その他の構成部分とは離間した別の場所に配置されていて、尚且つ、それらの上記両構成部分が、上述において例示したような有線又は無線回線で接続されている分散型の「マーケティング活動支援システム」の形態として実施することもできる。
Further, in the marketing activity support device 1, at least the component including the dashboard 50 for displaying the analysis result to the user is arranged as an independent device in a different place away from the other components. Moreover, both of these components can be implemented as a form of a decentralized "marketing activity support system" in which both of these components are connected by a wired or wireless line as illustrated above.
或いは、マーケティング活動支援装置1は、上述のダッシュボード50を含む構成部分が、複数の情報処理端末によって構成されていて、一の演算処理部の機能を複数のダッシュボード50で共有する、「マーケティング活動支援システム」の形態として実施することもできる。例えば、複数のダッシュボード50の一部又は全部は、携帯可能な小型の情報処理端末であってもよい。これらの各形態で実施することにより、マーケティング活動支援装置1を構成する各部分を経済効率性や使用者の利便性等に配慮して、それぞれの装置を最適な場所に分散配置することができる。
Alternatively, in the marketing activity support device 1, the component including the dashboard 50 described above is composed of a plurality of information processing terminals, and the function of one arithmetic processing unit is shared by the plurality of dashboards 50. It can also be implemented as a form of "activity support system". For example, a part or all of the plurality of dashboards 50 may be a small portable information processing terminal. By implementing each of these forms, each part constituting the marketing activity support device 1 can be distributed and arranged in an optimum location in consideration of economic efficiency, user convenience, and the like. ..
[録画済画像]
マーケティング活動支援装置1に入力する録画済画像2は、特定の内容・形式・情報量の画像に限定されない。データ解析によって使用目的に適うこととなる可能性のあるデータが含まれている、あらゆる画像を用いることができる。近年、膨大な量の画像の蓄積が進んでいる公共スペース等における監視画像は、録画済画像2として最適なデータ源の一例である。このような監視画像は、人の流れ、商品の動き、店員の動き等を把握することができる画像が大量に蓄積されているマーケティングデータの宝庫であり、マーケティング活動支援装置1を用いることにより、これを、効率良く有効活用することが可能となる。 [Recorded image]
The recordedimage 2 input to the marketing activity support device 1 is not limited to an image having a specific content, format, and amount of information. Any image can be used that contains data that may be suitable for the intended use by data analysis. Surveillance images in public spaces and the like, where an enormous amount of images have been accumulated in recent years, are an example of an optimal data source for recorded images 2. Such a monitoring image is a treasure trove of marketing data in which a large amount of images capable of grasping the flow of people, the movement of products, the movement of a clerk, etc. are accumulated, and by using the marketing activity support device 1, This can be used efficiently and effectively.
マーケティング活動支援装置1に入力する録画済画像2は、特定の内容・形式・情報量の画像に限定されない。データ解析によって使用目的に適うこととなる可能性のあるデータが含まれている、あらゆる画像を用いることができる。近年、膨大な量の画像の蓄積が進んでいる公共スペース等における監視画像は、録画済画像2として最適なデータ源の一例である。このような監視画像は、人の流れ、商品の動き、店員の動き等を把握することができる画像が大量に蓄積されているマーケティングデータの宝庫であり、マーケティング活動支援装置1を用いることにより、これを、効率良く有効活用することが可能となる。 [Recorded image]
The recorded
マーケティング活動支援装置1は、例えば、上記の監視画像のように膨大なデータがランダムに含まれている画像について、分析作業者が視認可能な再生処理を伴わずに、有用な解析結果のみを得ることができる。よって、抽出対象となる被撮影人物のプライバシーを侵害せずに、マーケティング活動にとって有用な情報のみを得ることができる。
The marketing activity support device 1 obtains only useful analysis results for an image containing a huge amount of data at random, such as the above-mentioned monitoring image, without performing a reproduction process that can be visually recognized by an analysis worker. be able to. Therefore, it is possible to obtain only useful information for marketing activities without infringing on the privacy of the photographed person to be extracted.
[演算処理部]
カテゴリー指定部10、オブジェクト抽出部20、オブジェクト分析部30及び解析部40を含んで構成される「演算処理部」は、例えば、パーソナルコンピュータやタブレット端末、スマートフォン等を利用して構成することができる。或いは、「演算処理部」は、画像処理動作に特化した専用の装置により構成することもできる。これらの何れの構成においても、「演算処理部」は、CPU、メモリ、通信部等のハードウェアを備えている。 [Calculation processing unit]
The "arithmetic processing unit" including thecategory designation unit 10, the object extraction unit 20, the object analysis unit 30, and the analysis unit 40 can be configured by using, for example, a personal computer, a tablet terminal, a smartphone, or the like. .. Alternatively, the "arithmetic processing unit" can be configured by a dedicated device specialized for image processing operations. In any of these configurations, the "arithmetic processing unit" includes hardware such as a CPU, memory, and communication unit.
カテゴリー指定部10、オブジェクト抽出部20、オブジェクト分析部30及び解析部40を含んで構成される「演算処理部」は、例えば、パーソナルコンピュータやタブレット端末、スマートフォン等を利用して構成することができる。或いは、「演算処理部」は、画像処理動作に特化した専用の装置により構成することもできる。これらの何れの構成においても、「演算処理部」は、CPU、メモリ、通信部等のハードウェアを備えている。 [Calculation processing unit]
The "arithmetic processing unit" including the
そして、上記構成を有する「演算処理部」は、コンピュータ用の「プログラム」を実行することにより、以下に説明するマーケティング活動支援装置の各種動作、及び、マーケティング活動支援方法を具体的に実行することができる。
Then, the "arithmetic processing unit" having the above configuration concretely executes various operations of the marketing activity support device and the marketing activity support method described below by executing the "program" for the computer. Can be done.
[カテゴリー指定部]
カテゴリー指定部10は、解析部40において解析対象とする特定の解析対象カテゴリーを指定する。この指定は、作業者がマーケティング活動支援装置1を用いる度毎に、都度、手動操作で任意の対象を設定する構成としてもよい。或いは、カテゴリー指定部10は、予め、特定の解析対象カテゴリーがデフォルトで設定されていて、必要な場合だけ当該設定を手動で変更する構成とすることもできる。何れにしても、カテゴリー指定部10において選択されている解析対象カテゴリーが、オブジェクト抽出部20に指令として伝達され、その指令に従って、録画済画像2から解析対象カテゴリーに属するオブジェクトが抽出される。 [Category designation section]
Thecategory designation unit 10 designates a specific analysis target category to be analyzed by the analysis unit 40. This designation may be configured to manually set an arbitrary target each time the worker uses the marketing activity support device 1. Alternatively, the category designation unit 10 may be configured such that a specific analysis target category is set in advance by default, and the setting is manually changed only when necessary. In any case, the analysis target category selected in the category designation unit 10 is transmitted to the object extraction unit 20 as a command, and the objects belonging to the analysis target category are extracted from the recorded image 2 according to the command.
カテゴリー指定部10は、解析部40において解析対象とする特定の解析対象カテゴリーを指定する。この指定は、作業者がマーケティング活動支援装置1を用いる度毎に、都度、手動操作で任意の対象を設定する構成としてもよい。或いは、カテゴリー指定部10は、予め、特定の解析対象カテゴリーがデフォルトで設定されていて、必要な場合だけ当該設定を手動で変更する構成とすることもできる。何れにしても、カテゴリー指定部10において選択されている解析対象カテゴリーが、オブジェクト抽出部20に指令として伝達され、その指令に従って、録画済画像2から解析対象カテゴリーに属するオブジェクトが抽出される。 [Category designation section]
The
例えば、オブジェクト抽出部20において、「人」と「ボトル」とを個別に認識することができる場合であって、それらの動きや属性等の分析及び解析によって、マーケティングデータを得ることを企図する場合であれば、カテゴリー指定部において、解析対象カテゴリー1を「人」とし、解析対象カテゴリー2を「ボトル」と指定すればよい。或いは、オブジェクト抽出部20が顔認証機能によって人の性別や年齢を個別に認識することが可能な機能を有する場合であれば、例えば、カテゴリー指定ステップにおいて、解析対象カテゴリーを「30代女性」と指定することも可能である。
For example, when the object extraction unit 20 can recognize "people" and "bottles" individually, and intends to obtain marketing data by analyzing and analyzing their movements and attributes. If so, the analysis target category 1 may be designated as "person" and the analysis target category 2 may be designated as "bottle" in the category designation unit. Alternatively, if the object extraction unit 20 has a function capable of individually recognizing the gender and age of a person by the face recognition function, for example, in the category designation step, the analysis target category is set to "female in her thirties". It is also possible to specify.
[オブジェクト抽出部]
オブジェクト抽出部20は、カテゴリー指定部10によって指定されている解析対象カテゴリーに属する解析対象オブジェクトを録画済画像2から抽出する。このオブジェクト抽出部20による抽出は、ニューラルネットワークを有する機械学習型の画像認識手段、所謂、ディープラーニング型の画像認識手段によって高速で実行される。 [Object extraction unit]
Theobject extraction unit 20 extracts the analysis target object belonging to the analysis target category designated by the category designation unit 10 from the recorded image 2. The extraction by the object extraction unit 20 is executed at high speed by a machine learning type image recognition means having a neural network, a so-called deep learning type image recognition means.
オブジェクト抽出部20は、カテゴリー指定部10によって指定されている解析対象カテゴリーに属する解析対象オブジェクトを録画済画像2から抽出する。このオブジェクト抽出部20による抽出は、ニューラルネットワークを有する機械学習型の画像認識手段、所謂、ディープラーニング型の画像認識手段によって高速で実行される。 [Object extraction unit]
The
オブジェクト抽出部20は、録画済画像2中に存在する「人及び動植物」や「物」(以下、これらを総称して「オブジェクト」とも言う)のうち、カテゴリー指定部10によって指定されている解析対象カテゴリーに属するオブジェクト(解析対象オブジェクト)を、ディープラーニング型の画像認識手段によって抽出する。オブジェクト抽出部20は、例えば、図3に示すように、録画済画像2の中に存在する解析対象オブジェクト(人Hと物M)を抽出する。但し、図3は抽出に係る概念図であって、実際にこのような映像をリアルタイム視認可能な状態で再生することは、本発明の装置、システム、方法においては、必須の構成要件ではない。
The object extraction unit 20 analyzes the "people and animals and plants" and "objects" (hereinafter, collectively referred to as "objects") existing in the recorded image 2 and designated by the category designation unit 10. Objects belonging to the target category (objects to be analyzed) are extracted by deep learning type image recognition means. For example, as shown in FIG. 3, the object extraction unit 20 extracts the analysis target objects (person H and object M) existing in the recorded image 2. However, FIG. 3 is a conceptual diagram relating to extraction, and actually reproducing such an image in a real-time visible state is not an indispensable constituent requirement in the apparatus, system, and method of the present invention.
録画済画像2から解析対象オブジェクトの抽出を行う画像認識処理手段のアルゴリズムは特に限定されないが、「You only look once (YOLO)」を好ましく用いることができる。例えば、オブジェクト抽出部20において解析対象オブジェクトを抽出して特定する画像認識手段として「You only look once (YOLO)」を用いることにより、例えば、1000種類程度の解析対象オブジェクトを同時に並行して個別に抽出することも可能である。これによれば、過去の一定以上の時間に蓄積されている膨大な画像情報から、現時点において解析に必要とする有用なオブジェクトのみを高速で且つ人の視認による手動の作業よりも正確に抽出することができる。
The algorithm of the image recognition processing means for extracting the analysis target object from the recorded image 2 is not particularly limited, but "You only look once (YOLO)" can be preferably used. For example, by using "You only view (YOLO)" as an image recognition means for extracting and specifying an analysis target object in the object extraction unit 20, for example, about 1000 types of analysis target objects can be individually processed in parallel at the same time. It is also possible to extract. According to this, only useful objects required for analysis at the present time are extracted from a huge amount of image information accumulated over a certain period of time in the past at high speed and more accurately than manual work by human visual inspection. be able to.
[オブジェクト分析部]
オブジェクト分析部30は、オブジェクト抽出部20によって抽出された個々の解析対象オブジェクトの属性及び/又は動きを分析する、このオブジェクト分析部30による分析も、ニューラルネットワークを有する機械学習型の画像認識手段、所謂、ディープラーニング型の画像認識手段によって実行される。尚、ニューラルネットワークを有する機械学習型の画像認識手段(ディープラーニングを用いた画像認識手段)を用いた画像認識技術については、例えば、下記に公開されている。
「ディープラーニングと画像認識、オペレーションズ・リサーチ」
(http://www.orsj.o.jp/archive2/or60-4/or60_4_198.pdf) [Object Analysis Department]
Theobject analysis unit 30 analyzes the attributes and / or movements of the individual objects to be analyzed extracted by the object extraction unit 20, and the analysis by the object analysis unit 30 is also a machine learning type image recognition means having a neural network. It is executed by a so-called deep learning type image recognition means. An image recognition technique using a machine learning type image recognition means (image recognition means using deep learning) having a neural network is disclosed below, for example.
"Deep Learning and Image Recognition, Operations Research"
(Http: //www.orsj.o.jp/archive2/or60-4/or60_4_198.pdf)
オブジェクト分析部30は、オブジェクト抽出部20によって抽出された個々の解析対象オブジェクトの属性及び/又は動きを分析する、このオブジェクト分析部30による分析も、ニューラルネットワークを有する機械学習型の画像認識手段、所謂、ディープラーニング型の画像認識手段によって実行される。尚、ニューラルネットワークを有する機械学習型の画像認識手段(ディープラーニングを用いた画像認識手段)を用いた画像認識技術については、例えば、下記に公開されている。
「ディープラーニングと画像認識、オペレーションズ・リサーチ」
(http://www.orsj.o.jp/archive2/or60-4/or60_4_198.pdf) [Object Analysis Department]
The
"Deep Learning and Image Recognition, Operations Research"
(Http: //www.orsj.o.jp/archive2/or60-4/or60_4_198.pdf)
又、オブジェクト分析部30は、その内部構成として、顔認証情報取得部31、座標設定部32、骨格抽出部33を更に備えるものであることが好ましい。
Further, it is preferable that the object analysis unit 30 further includes a face authentication information acquisition unit 31, a coordinate setting unit 32, and a skeleton extraction unit 33 as its internal configuration.
解析対象オブジェクトの属性及び/又は動きの分析を行うニューラルネットワークを有する機械学習型の画像認識手段(ディープラーニングを用いた画像認識手段)のアルゴリズムは特定のアルゴリズムには限定されない。但し、オブジェクト分析部30を、骨格抽出部33を備える構成とする場合において、骨格を抽出する画像認識処理手段のアルゴリズムとしては、下記文献に開示されている「OpenPose」と称される技術を用いることが好ましい。
「Zhe Cao 他 Realtime Multi-Person 2D Human Pose Estimation using Part Affinity Fields, CVPR 2017」 The algorithm of the machine learning type image recognition means (image recognition means using deep learning) having a neural network that analyzes the attributes and / or movements of the object to be analyzed is not limited to a specific algorithm. However, when theobject analysis unit 30 is configured to include the skeleton extraction unit 33, a technique called "OpenPose" disclosed in the following document is used as the algorithm of the image recognition processing means for extracting the skeleton. Is preferable.
"Zhe Cao et al. Realtime Multi-Person 2D Human Pose Estimation using Part Affinity Fields, CVPR 2017"
「Zhe Cao 他 Realtime Multi-Person 2D Human Pose Estimation using Part Affinity Fields, CVPR 2017」 The algorithm of the machine learning type image recognition means (image recognition means using deep learning) having a neural network that analyzes the attributes and / or movements of the object to be analyzed is not limited to a specific algorithm. However, when the
"Zhe Cao et al. Realtime Multi-Person 2D Human Pose Estimation using Part Affinity Fields, CVPR 2017"
(顔認証情報取得部)
オブジェクト分析部30は、人の顔に係る画像情報から当該人の年齢及び性別を分析することができる顔認証情報取得部31を備えることが好ましい。顔認証情報取得部31としては、従来の公知の各種の顔認証情報取得装置を用いることができる。オブジェクト分析部30が顔認証情報取得部31を備えることにより、解析対象カテゴリーが「人」である場合に、解析対象カテゴリーに属する解析対象オブジェクト(人)の年齢や性別等の属性を、高い精度で自動的に分析することができる。 (Face recognition information acquisition department)
It is preferable that theobject analysis unit 30 includes a face recognition information acquisition unit 31 capable of analyzing the age and gender of the person from the image information related to the person's face. As the face recognition information acquisition unit 31, various conventionally known face recognition information acquisition devices can be used. By providing the face authentication information acquisition unit 31 in the object analysis unit 30, when the analysis target category is "person", the attributes such as age and gender of the analysis target object (person) belonging to the analysis target category can be highly accurate. Can be analyzed automatically with.
オブジェクト分析部30は、人の顔に係る画像情報から当該人の年齢及び性別を分析することができる顔認証情報取得部31を備えることが好ましい。顔認証情報取得部31としては、従来の公知の各種の顔認証情報取得装置を用いることができる。オブジェクト分析部30が顔認証情報取得部31を備えることにより、解析対象カテゴリーが「人」である場合に、解析対象カテゴリーに属する解析対象オブジェクト(人)の年齢や性別等の属性を、高い精度で自動的に分析することができる。 (Face recognition information acquisition department)
It is preferable that the
(座標設定部)
オブジェクト分析部30は、画像中の解析対象オブジェクトの位置を、録画対象とされている3次元空間内における実際の位置と関連付けて特定可能な座標を設定する座標設定部32を、備えることが好ましい。これにより、録画済画像2が2次元情報のみを有する画像データからなるものである場合にも、解析対象オブジェクトの動きの分析を、座標設定部32による自動的な処理のみにより高い精度で効率よく実行することができる。 (Coordinate setting part)
Theobject analysis unit 30 preferably includes a coordinate setting unit 32 that sets identifiable coordinates by associating the position of the object to be analyzed in the image with the actual position in the three-dimensional space to be recorded. .. As a result, even when the recorded image 2 is composed of image data having only two-dimensional information, the analysis of the movement of the object to be analyzed can be efficiently processed with high accuracy only by the automatic processing by the coordinate setting unit 32. Can be executed.
オブジェクト分析部30は、画像中の解析対象オブジェクトの位置を、録画対象とされている3次元空間内における実際の位置と関連付けて特定可能な座標を設定する座標設定部32を、備えることが好ましい。これにより、録画済画像2が2次元情報のみを有する画像データからなるものである場合にも、解析対象オブジェクトの動きの分析を、座標設定部32による自動的な処理のみにより高い精度で効率よく実行することができる。 (Coordinate setting part)
The
この座標設定部32は、2次元画像である録画済画像2の画像中における床面に相当する位置を実寸法と関連付けて特定可能な座標を設定する処理を行う。この座標設定部32が設定する座標とは、録画済画像2中において、ある任意の位置を特定し、その位置が床面にあるとしたときに、その床面が実際の監視領域の空間においてどの位置に相当するのか特定可能な座標である。即ち、この設定される座標上の位置は、実寸法と関連付けて設定される。撮影部120が撮影する録画済画像2は、二次元の画像情報であることから、録画済画像2中である位置を選択(特定)したとしても、実際の三次元空間上のどの位置であるのかを特定することができない。しかし、床面上に実寸法と関連付けた座標を設定した上で、録画済画像2中で選択(特定)する位置を、床面であると限定すれば、録画済画像2中で選択(特定)された位置が実空間(監視領域)のどの位置の床面であるのかを特定可能となる。そこで、座標設定部32は、床面に対応させた座標を設定する。
The coordinate setting unit 32 performs a process of setting identifiable coordinates by associating the position corresponding to the floor surface in the image of the recorded image 2 which is a two-dimensional image with the actual size. The coordinates set by the coordinate setting unit 32 are, when a certain arbitrary position is specified in the recorded image 2 and the position is on the floor surface, the floor surface is in the space of the actual monitoring area. It is a coordinate that can identify which position it corresponds to. That is, the position on the coordinate to be set is set in association with the actual size. Since the recorded image 2 captured by the photographing unit 120 is two-dimensional image information, even if a position in the recorded image 2 is selected (specified), it is any position in the actual three-dimensional space. I can't identify. However, if the position to be selected (specified) in the recorded image 2 is limited to the floor surface after setting the coordinates associated with the actual dimensions on the floor surface, it is selected (specified) in the recorded image 2. ) It becomes possible to identify the position of the floor surface in the real space (monitoring area). Therefore, the coordinate setting unit 32 sets the coordinates corresponding to the floor surface.
(骨格抽出部)
又、オブジェクト分析部30は、上述の通り、複数の特徴点を連接する骨格線で構成される解析対象オブジェクトの骨格を抽出する骨格抽出部33を備えることが好ましい。骨格抽出部33は、オブジェクト抽出部20が抽出した解析対象オブジェクト(例えば、図3における人Hと、物M)について、複数の特徴点とそれらの複数の特徴点を連接する骨格線とで構成される各解析対象の骨格を抽出する処理を行う。 (Skeletal extraction section)
Further, as described above, theobject analysis unit 30 preferably includes a skeleton extraction unit 33 that extracts the skeleton of the object to be analyzed composed of skeleton lines connecting a plurality of feature points. The skeleton extraction unit 33 is composed of a plurality of feature points and a skeleton line connecting the plurality of feature points of the object to be analyzed (for example, the person H and the object M in FIG. 3) extracted by the object extraction unit 20. The process of extracting the skeleton of each analysis target is performed.
又、オブジェクト分析部30は、上述の通り、複数の特徴点を連接する骨格線で構成される解析対象オブジェクトの骨格を抽出する骨格抽出部33を備えることが好ましい。骨格抽出部33は、オブジェクト抽出部20が抽出した解析対象オブジェクト(例えば、図3における人Hと、物M)について、複数の特徴点とそれらの複数の特徴点を連接する骨格線とで構成される各解析対象の骨格を抽出する処理を行う。 (Skeletal extraction section)
Further, as described above, the
本明細書において、解析対象オブジェクトの「骨格」とは、解析対象オブジェクトの複数の特徴点とこれらを連接してなる線状の図形である。図4は、解析対象である人Hから骨格が抽出されている状態を示す図である。図4において、解析対象オブジェクトである人Hの頭頂部、左手H2、及び、その他の四肢の先端や主たる関節部分に対応する位置が特徴点(h1、・・・、hn)として把握されており、これらの複数の特徴点と、それらを連接する線分とによって形成される解析対象Hの「骨格」が、録画済画像2内の解析対象オブジェクトの「骨格」として認識されている。
In the present specification, the "skeleton" of the object to be analyzed is a linear figure formed by connecting a plurality of feature points of the object to be analyzed. FIG. 4 is a diagram showing a state in which the skeleton is extracted from the person H to be analyzed. In FIG. 4, the positions corresponding to the crown of the person H, the left hand H 2 , and the tips of the other limbs and the main joints, which are the objects to be analyzed, are grasped as feature points (h 1 , ..., H n ). The "skeleton" of the analysis target H formed by these plurality of feature points and the line segments connecting them is recognized as the "skeleton" of the analysis target object in the recorded image 2. ..
オブジェクト分析部30が骨格抽出部33を備えることにより、抽出された骨格を構成する特徴点の「位置」の変動に係る情報に基づいて、解析対象オブジェクトの「動き」を認識することができる。尚、ここでいう「動き」には、解析対象オブジェクトの位置変動、位置変動を伴わない姿勢の変化等、骨格の特徴点の位置変動によって把握することが可能な解析対象オブジェクトのあらゆる動きが含まれる(図5、図6参照)。
When the object analysis unit 30 includes the skeleton extraction unit 33, it is possible to recognize the "movement" of the object to be analyzed based on the information related to the fluctuation of the "position" of the feature points constituting the extracted skeleton. The "movement" referred to here includes all movements of the analysis target object that can be grasped by the position change of the feature point of the skeleton, such as the position change of the analysis target object and the posture change without the position change. (See FIGS. 5 and 6).
又、解析対象カテゴリーが「人」及び「物」を含んでいる場合に、「人」の骨格を構成する特徴点の速度ベクトルと「物」の骨格を構成する特徴点の速度ベクトルとの差分を入力値とし、この入力値と既定の閾値との比較によっても、解析対象の動きに係る特徴を分析することができる。これにより、例えば、「人が物を掴んでそのまま持ち去る」というような「人」の「物」に対する動作を含めた解析対象オブジェクトの動きを統合的に分析することができる(図5、6参照)。
Further, when the analysis target category includes "person" and "object", the difference between the velocity vector of the feature points constituting the skeleton of "human" and the velocity vector of the feature points constituting the skeleton of "object". Is used as an input value, and the characteristics related to the movement of the analysis target can also be analyzed by comparing this input value with a predetermined threshold value. This makes it possible to comprehensively analyze the movement of the object to be analyzed, including the movement of the "person" with respect to the "object", such as "a person grabs an object and takes it away as it is" (see FIGS. 5 and 6). ).
解析対象オブジェクトの骨格の抽出は、具体的には、従来公知の様々な手法の何れか、又は、それらを組合せて行うことができる。一例として、上述の「OpenPose」を用いることにより、2次元の録画済画像2から「人」の骨格を抽出することができる。
Specifically, the skeleton of the object to be analyzed can be extracted by any of various conventionally known methods or a combination thereof. As an example, by using the above-mentioned "OpenPose", the skeleton of "human" can be extracted from the two-dimensional recorded image 2.
図4は、オブジェクト抽出部20によって解析対象オブジェクトとして抽出された人H及び物Mについて、抽出されたそれぞれの骨格の特徴点(h1、h2、・・・h5)、(m1)が、座標設定部32によって設定されている3次元情報(奥行情報)を含む座標上に重ね合わされている状態を示す図である。
In FIG. 4, for the person H and the object M extracted as the objects to be analyzed by the object extraction unit 20, the coordinate points (h1, h2, ... h5) and (m1) of the extracted skeletons are set. It is a figure which shows the state which is superposed on the coordinates including the three-dimensional information (depth information) set by the part 32.
そして、人Hの立ち位置が、3次元情報(奥行情報)を含む座標上で特定できれば、例えば、録画済画像2内での人Hのサイズや形状から、実際の3次元空間内における人Hの実際のサイズや立体形状を算出して把握することができる。つまり、2次元の画像データ(録画済画像2内の座標上に重ね合わされた特徴点の位置情報)から、人Hや物Mの位置や運動に係る三次元データを取得することができる。
Then, if the standing position of the person H can be specified on the coordinates including the three-dimensional information (depth information), for example, from the size and shape of the person H in the recorded image 2, the person H in the actual three-dimensional space It is possible to calculate and grasp the actual size and three-dimensional shape of. That is, it is possible to acquire three-dimensional data related to the position and movement of the person H and the object M from the two-dimensional image data (position information of the feature points superimposed on the coordinates in the recorded image 2).
図6は、各解析対象オブジェクトの骨格を構成する各特徴点の3次元位置の変動に係る情報に基づいて、各解析対象オブジェクトの動きが認識される状態を示す図である。ここでは、解析対象オブジェクトとして特定された人Hの左手H2の位置が、実際の3次元空間内において位置h20(xh20、yh20、zh20)から位置h21(xh21、yh21、zh21)に移動したこと、及び、同じく解析対象オブジェクトである物Mについては位置m10(xm10、ym10、zm10)に静止していること、そして、「人Hの左手H2の移動後の位置h21と、物Mの位置m10とが、実際の3次元空間内において一致していること」が認識されている。
FIG. 6 is a diagram showing a state in which the movement of each analysis target object is recognized based on the information related to the fluctuation of the three-dimensional position of each feature point constituting the skeleton of each analysis target object. Here, the position of the left hand H2 of the person H specified as the analysis target object is from the position h2 0 (xh2 0 , yh2 0 , zh2 0 ) to the position h2 1 (xh2 1 , yh2 1 , yh2 1 ) in the actual three-dimensional space. zh2 1) it has moved in, and the position m1 0 for M thing is also analyzed object (xm1 0, ym1 0, zm1 0) that is stationary and movement of the left hand H2 of the "human H a position h2 1 after, and the position m1 0 of the object M, that are consistent in actual three-dimensional space "is recognized.
尚、オブジェクト分析部30は、骨格抽出部33を備えることによって、監視対象オブジェクト(人)の視線方向を検知することもできる。例えば、監視対象オブジェクト(人)に係る両耳と鼻の位置に対応する「3か所の視線方向検知用特徴点」を結んで形成される三角形の「3次元位置情報」から、当該監視対象オブジェクト(人)の視線方向を検知することができる。具体的には、上記の三角形において両耳の位置に対応する点を結んでなる底辺の中点から、鼻の位置に対応する点である頂点に向かう方向を、監視対象人物の3次元空間内での視線方向として検知することができる。尚、視線方向の検知は、上記方法に限らず従来公知のその他の視線検出手段を適宜本発明に組合せて用いることもできる。
Note that the object analysis unit 30 can also detect the line-of-sight direction of the monitored object (person) by including the skeleton extraction unit 33. For example, from the triangular "three-dimensional position information" formed by connecting the "feature points for detecting the direction of the line of sight of three places" corresponding to the positions of both ears and the nose of the object (person) to be monitored, the monitoring target is concerned. The line-of-sight direction of an object (person) can be detected. Specifically, the direction from the midpoint of the base, which connects the points corresponding to the positions of both ears in the above triangle, to the apex, which is the point corresponding to the position of the nose, is within the three-dimensional space of the person to be monitored. It can be detected as the line-of-sight direction at. The line-of-sight direction detection is not limited to the above method, and other conventionally known line-of-sight detection means can be appropriately combined with the present invention.
[解析部]
解析部40は、オブジェクト分析部30において分析された解析対象オブジェクトの属性及び/又は動きの統計量を解析してデータ化する。そして、解析対象オブジェクトの属性、動きの解析結果として得ることができる統計量に係る数値データを、ダッシュボード50に出力する。尚、解析対象オブジェクトの解析結果である統計量の具体例として、例えば、特定の売り場の特定の位置における年齢・性別毎の人の流れや滞留時間と、当該位置に陳列されている商品の売り上げとの相関等を挙げることができる。 [Analysis Department]
Theanalysis unit 40 analyzes the attribute and / or movement statistic of the object to be analyzed analyzed by the object analysis unit 30 and converts it into data. Then, the numerical data related to the statistics obtained as the analysis result of the attributes and movements of the object to be analyzed is output to the dashboard 50. As a specific example of the statistic that is the analysis result of the object to be analyzed, for example, the flow and residence time of people by age and gender at a specific position in a specific sales floor, and the sales of products displayed at that position. Correlation with and the like can be mentioned.
解析部40は、オブジェクト分析部30において分析された解析対象オブジェクトの属性及び/又は動きの統計量を解析してデータ化する。そして、解析対象オブジェクトの属性、動きの解析結果として得ることができる統計量に係る数値データを、ダッシュボード50に出力する。尚、解析対象オブジェクトの解析結果である統計量の具体例として、例えば、特定の売り場の特定の位置における年齢・性別毎の人の流れや滞留時間と、当該位置に陳列されている商品の売り上げとの相関等を挙げることができる。 [Analysis Department]
The
解析部40は、ダッシュボードとは独立したサーバー内に構成してもよいし、パーソナルコンピュータやタブレット端末、スマートフォン等を利用して、クライアント側に構成することもできる。何れの構成においても、解析部40は、CPU、メモリ、通信部等のハードウェアを備ることによって、上記解析処理を行う。
The analysis unit 40 may be configured in a server independent of the dashboard, or may be configured on the client side by using a personal computer, a tablet terminal, a smartphone, or the like. In any configuration, the analysis unit 40 performs the above analysis process by providing hardware such as a CPU, a memory, and a communication unit.
[ダッシュボード]
ダッシュボード50は、解析部40による統計量の解析結果を含んで構成される統計データ(例えば、図2における3a~3e)を表示する。ダッシュボード50は、マーケティングデータを分析用にグラフ等で可視化して経営数値等を分析し易く表示する装置である。 [Dashboard]
Thedashboard 50 displays statistical data (for example, 3a to 3e in FIG. 2) including the analysis result of the statistic by the analysis unit 40. The dashboard 50 is a device that visualizes marketing data with a graph or the like for analysis and displays management numerical values or the like in an easy-to-analyze manner.
ダッシュボード50は、解析部40による統計量の解析結果を含んで構成される統計データ(例えば、図2における3a~3e)を表示する。ダッシュボード50は、マーケティングデータを分析用にグラフ等で可視化して経営数値等を分析し易く表示する装置である。 [Dashboard]
The
ダッシュボード50は、マーケティングデータを管理する業務アプリケーション(例えば、Webアプリケーション等)がインストールされた市販のデスクトップ型パーソナルコンピュータや、市販のノート型パーソナルコンピュータ、PDA(Personal Digital Assistants)、スマートフォン、タブレット型パーソナルコンピュータ等の携帯型情報処理装置によって構成することもできる。
The dashboard 50 includes a commercially available desktop personal computer in which a business application for managing marketing data (for example, a Web application) is installed, a commercially available notebook personal computer, a PDA (Personal Digital Assistants), a smartphone, and a tablet personal computer. It can also be configured by a portable information processing device such as a computer.
[マーケティング活動支援装置の動作]
マーケティング活動支援装置1の動作により実行される本発明の情報処理方法(マーケティング活動支援方法)は、カテゴリー指定部10において実行されるカテゴリー指定ステップ、オブジェクト抽出部20において実行されるオブジェクト抽出ステップ、オブジェクト分析部30において実行されるオブジェクト分析ステップ、解析部40において実行される解析ステップ、及び、ダッシュボードにおいて実行される統計データ表示ステップと、が順次行われることによって、全体プロセスとして実行される。 [Operation of marketing activity support device]
The information processing method (marketing activity support method) of the present invention executed by the operation of the marketingactivity support device 1 includes a category designation step executed by the category designation unit 10, an object extraction step executed by the object extraction unit 20, and an object. The object analysis step executed by the analysis unit 30, the analysis step executed by the analysis unit 40, and the statistical data display step executed by the dashboard are sequentially performed to be executed as an entire process.
マーケティング活動支援装置1の動作により実行される本発明の情報処理方法(マーケティング活動支援方法)は、カテゴリー指定部10において実行されるカテゴリー指定ステップ、オブジェクト抽出部20において実行されるオブジェクト抽出ステップ、オブジェクト分析部30において実行されるオブジェクト分析ステップ、解析部40において実行される解析ステップ、及び、ダッシュボードにおいて実行される統計データ表示ステップと、が順次行われることによって、全体プロセスとして実行される。 [Operation of marketing activity support device]
The information processing method (marketing activity support method) of the present invention executed by the operation of the marketing
そして、本発明の情報処理方法(マーケティング活動支援方法)においては、上記各ステップのうち、オブジェクト抽出ステップ及びオブジェクト分析ステップが、ニューラルネットワークを有する機械学習型の画像認識手段(ディープラーニング型の画像認識手段)によって実行される。
In the information processing method (marketing activity support method) of the present invention, among the above steps, the object extraction step and the object analysis step are machine learning type image recognition means having a neural network (deep learning type image recognition). Means).
(カテゴリー指定ステップ)
カテゴリー指定ステップにおいては、解析部40において解析対象とする特定の解析対象カテゴリーが指定される。この解析対象カテゴリーの指定は、オブジェクト抽出部20が録画済画像2中において個別に分類抽出することが可能な任意のカテゴリーを選択することにより行われる。この解析対象カテゴリーの指定は、上述の通り、作業者がマーケティング活動支援装置1を用いる度毎に、都度、手動操作で任意の対象を指定することによって行うこともできるし、或いは、予め、特定の解析対象カテゴリーをデフォルトで設定しておき、必要な場合だけ当該設定を手動で変更して指定することによって行うこともできる。 (Category specification step)
In the category designation step, theanalysis unit 40 designates a specific analysis target category to be analyzed. The analysis target category is specified by the object extraction unit 20 selecting an arbitrary category that can be individually classified and extracted in the recorded image 2. As described above, the analysis target category can be specified by manually designating an arbitrary target each time the worker uses the marketing activity support device 1, or can be specified in advance. It is also possible to set the analysis target category of the above by default, and manually change and specify the setting only when necessary.
カテゴリー指定ステップにおいては、解析部40において解析対象とする特定の解析対象カテゴリーが指定される。この解析対象カテゴリーの指定は、オブジェクト抽出部20が録画済画像2中において個別に分類抽出することが可能な任意のカテゴリーを選択することにより行われる。この解析対象カテゴリーの指定は、上述の通り、作業者がマーケティング活動支援装置1を用いる度毎に、都度、手動操作で任意の対象を指定することによって行うこともできるし、或いは、予め、特定の解析対象カテゴリーをデフォルトで設定しておき、必要な場合だけ当該設定を手動で変更して指定することによって行うこともできる。 (Category specification step)
In the category designation step, the
(オブジェクト抽出ステップ)
オブジェクト抽出ステップにおいては、録画済画像2から、カテゴリー指定ステップにおいて指定された解析対象カテゴリーに属する個々の解析対象オブジェクトが、オブジェクト抽出部20によって抽出される。オブジェクト抽出ステップは、上述の通り、ニューラルネットワークを有する機械学習型の画像認識手段によって実行される。 (Object extraction step)
In the object extraction step, theobject extraction unit 20 extracts individual analysis target objects belonging to the analysis target category specified in the category designation step from the recorded image 2. As described above, the object extraction step is executed by a machine learning type image recognition means having a neural network.
オブジェクト抽出ステップにおいては、録画済画像2から、カテゴリー指定ステップにおいて指定された解析対象カテゴリーに属する個々の解析対象オブジェクトが、オブジェクト抽出部20によって抽出される。オブジェクト抽出ステップは、上述の通り、ニューラルネットワークを有する機械学習型の画像認識手段によって実行される。 (Object extraction step)
In the object extraction step, the
(オブジェクト分析ステップ)
オブジェクト分析ステップにおいては、オブジェクト抽出ステップにおいて抽出された個々の解析対象オブジェクトの属性及び/又は動きが、オブジェクト分析部30によって分析される。オブジェクト分析ステップも、ニューラルネットワークを有する機械学習型の画像認識手段によって実行される。 (Object analysis step)
In the object analysis step, the attributes and / or movements of the individual analysis target objects extracted in the object extraction step are analyzed by theobject analysis unit 30. The object analysis step is also performed by a machine learning type image recognition means having a neural network.
オブジェクト分析ステップにおいては、オブジェクト抽出ステップにおいて抽出された個々の解析対象オブジェクトの属性及び/又は動きが、オブジェクト分析部30によって分析される。オブジェクト分析ステップも、ニューラルネットワークを有する機械学習型の画像認識手段によって実行される。 (Object analysis step)
In the object analysis step, the attributes and / or movements of the individual analysis target objects extracted in the object extraction step are analyzed by the
尚、オブジェクト分析ステップにおいては、解析対象オブジェクトの分析に先行して、予め座標設定部32による座標設定処理が行われることが好ましい。但し、距離センサー等の測距手段や3Dカメラ等によって録画済画像2に予め3次元情報が付与されている場合であれば、座標設定部32による座標設定処理は、本発明の監視方法において必ずしも必須の処理ではない。
In the object analysis step, it is preferable that the coordinate setting process by the coordinate setting unit 32 is performed in advance prior to the analysis of the object to be analyzed. However, if the recorded image 2 is given three-dimensional information in advance by a distance measuring means such as a distance sensor or a 3D camera, the coordinate setting process by the coordinate setting unit 32 is not always performed in the monitoring method of the present invention. This is not a required process.
(解析ステップ)
解析ステップにおいては、解析部40が、オブジェクト抽出ステップにおいて抽出された解析対象オブジェクトについて、オブジェクト分析ステップにおいて分析された属性及び/又は動きの統計量を解析する。 (Analysis step)
In the analysis step, theanalysis unit 40 analyzes the attribute and / or motion statistics analyzed in the object analysis step for the object to be analyzed extracted in the object extraction step.
解析ステップにおいては、解析部40が、オブジェクト抽出ステップにおいて抽出された解析対象オブジェクトについて、オブジェクト分析ステップにおいて分析された属性及び/又は動きの統計量を解析する。 (Analysis step)
In the analysis step, the
(統計データ表示ステップ)
統計データ表示ステップにおいては、ダッシュボード50に、解析部40によって解析された統計量の解析結果を含んで構成される統計データが表示される。 (Statistical data display step)
In the statistical data display step, statistical data including the analysis result of the statistic analyzed by theanalysis unit 40 is displayed on the dashboard 50.
統計データ表示ステップにおいては、ダッシュボード50に、解析部40によって解析された統計量の解析結果を含んで構成される統計データが表示される。 (Statistical data display step)
In the statistical data display step, statistical data including the analysis result of the statistic analyzed by the
本発明の情報処理方法(マーケティング活動支援方法)においては、最終的にダッシュボード50に表示させたい統計データの内容に応じて、適宜、適切な解析対象カテゴリーを解析対象カテゴリー指定ステップにおいて指定すればよい。
In the information processing method (marketing activity support method) of the present invention, an appropriate analysis target category may be appropriately specified in the analysis target category designation step according to the content of the statistical data to be finally displayed on the dashboard 50. Good.
例えば、店舗の店員の動きについての解析結果を得たい場合であれば、解析対象カテゴリーとして「人」を指定し、予め店員の顔認証情報等の固有の生体情報をオブジェクト分析部に登録しておくことにより、抽出された「人」の中から店員だけを特定して、その動きを分析し、分析された動きを統計的に解析することで、録画済画像から、店舗の店員の動きについての解析結果を得て、この結果を、ダッシュボード50に使用者が理解し易いグラフ等の任意の形式で表示することができる。或いは、特定の物品(商品)と、その商品の近くに位置する「人」の属性と動きを解析することにより、当該商品の近辺での人の流れに係る統計データ(特定場所における特定の属性の人の通過率、平均滞在時間等)を上記同様に理解容易なグラフや表の形式で表示することができる。
For example, if you want to obtain the analysis result of the movement of the clerk of the store, specify "person" as the analysis target category and register the unique biometric information such as the face authentication information of the clerk in the object analysis department in advance. By setting, only the clerk is identified from the extracted "people", the movement is analyzed, and the analyzed movement is statistically analyzed, so that the movement of the clerk of the store can be obtained from the recorded image. The analysis result of the above can be obtained, and this result can be displayed on the dashboard 50 in an arbitrary format such as a graph that is easy for the user to understand. Alternatively, by analyzing the attributes and movements of a specific item (product) and a "person" located near the item, statistical data related to the flow of people in the vicinity of the item (specific attribute at a specific place). The passing rate of people, average staying time, etc.) can be displayed in the same easy-to-understand graph or table format as above.
1 情報処理装置(マーケティング活動支援装置)
10 カテゴリー指定部
20 オブジェクト抽出部
30 オブジェクト分析部
31 顔認証情報取得部
32 座標設定部
33 骨格抽出部
40 解析部
50 ダッシュボード
2 録画済画像
3、3a、3b、3c 解析結果(マーケティングデータ) 1 Information processing device (marketing activity support device)
10Category designation unit 20 Object extraction unit 30 Object analysis unit 31 Face recognition information acquisition unit 32 Coordinate setting unit 33 Skeleton extraction unit 40 Analysis unit 50 Dashboard 2 Recorded images 3, 3a, 3b, 3c Analysis results (marketing data)
10 カテゴリー指定部
20 オブジェクト抽出部
30 オブジェクト分析部
31 顔認証情報取得部
32 座標設定部
33 骨格抽出部
40 解析部
50 ダッシュボード
2 録画済画像
3、3a、3b、3c 解析結果(マーケティングデータ) 1 Information processing device (marketing activity support device)
10
Claims (14)
- 特定の解析対象カテゴリーを指定することができる、カテゴリー指定部と、
前記カテゴリー指定部によって指定されている前記解析対象カテゴリーに属する解析対象オブジェクトを録画済画像から抽出する、オブジェクト抽出部と、
抽出された前記解析対象オブジェクトの属性及び/又は動きを分析する、オブジェクト分析部と、
分析された前記解析対象オブジェクトの属性及び/又は動きの統計量を解析する、解析部と、
前記統計量の解析結果を含んで構成される統計データを表示する、ダッシュボードと、
を備え、
前記オブジェクト抽出部による前記解析対象オブジェクトの抽出、及び、前記オブジェクト分析部による前記解析対象オブジェクトの属性及び/又は動きの分析が、何れも、ニューラルネットワークを有する機械学習型の画像認識手段により実行され、
前記オブジェクト分析部は、2次元画像である前記録画済画像中における位置と、録画対象とされている3次元空間内における実際の位置とを関連づける座標を、前記録画済画像中に設定する座標設定部を含んで構成されている、
情報処理装置。 A category specification section that allows you to specify a specific analysis target category,
An object extraction unit that extracts an analysis target object belonging to the analysis target category designated by the category designation unit from the recorded image, and an object extraction unit.
An object analysis unit that analyzes the attributes and / or movements of the extracted object to be analyzed.
An analysis unit that analyzes the analyzed attributes and / or motion statistics of the analyzed object,
A dashboard and a dashboard that displays statistical data composed of the analysis results of the statistics.
With
The extraction of the analysis target object by the object extraction unit and the analysis of the attributes and / or movements of the analysis target object by the object analysis unit are both executed by a machine learning type image recognition means having a neural network. ,
The object analysis unit sets coordinates in the recorded image that associate the position in the recorded image, which is a two-dimensional image, with the actual position in the three-dimensional space to be recorded. It is composed of parts,
Information processing device. - 前記オブジェクト抽出部には、前記録画済画像がデジタルデータとして入力され、人間が視認可能な二次元画像への変換処理を経由せずに、該デジタルデータから前記解析対象オブジェクトが直接抽出される、
請求項1に記載の情報処理装置。 The recorded image is input to the object extraction unit as digital data, and the object to be analyzed is directly extracted from the digital data without going through a conversion process into a two-dimensional image that can be seen by humans.
The information processing device according to claim 1. - 前記オブジェクト分析部は、人の顔に係る画像情報から当該人の年齢及び性別を分析することができる顔認証情報取得部を含んで構成されている、
請求項1又は2に記載の情報処理装置。 The object analysis unit includes a face recognition information acquisition unit that can analyze the age and gender of the person from image information related to the person's face.
The information processing device according to claim 1 or 2. - 前記オブジェクト分析部は、複数の特徴点を連接する骨格線で構成される前記解析対象オブジェクトの骨格を抽出する骨格抽出部を含んで構成されていて、前記特徴点の位置変動から個々の前記解析対象オブジェクトの動きを認識する、
請求項1から3の何れかに記載の情報処理装置。 The object analysis unit is configured to include a skeleton extraction unit that extracts the skeleton of the object to be analyzed, which is composed of skeleton lines connecting a plurality of feature points, and the individual analysis is performed from the position variation of the feature points. Recognize the movement of the target object,
The information processing device according to any one of claims 1 to 3. - 請求項1から4の何れかに記載の情報処理装置であって、前記統計データがマーケティングデータである、マーケティング活動支援装置。 A marketing activity support device according to any one of claims 1 to 4, wherein the statistical data is marketing data.
- 特定の解析対象カテゴリーを指定することができる、カテゴリー指定部と、
前記カテゴリー指定部によって指定されている前記解析対象カテゴリーに属する解析対象オブジェクトを録画済画像から抽出する、オブジェクト抽出部と、
抽出された個々の前記解析対象オブジェクトの属性及び/又は動きを分析する、オブジェクト分析部と、
分析された前記解析対象オブジェクトの属性及び/又は動きの統計量を解析する、解析部と、
前記統計量の解析結果を含んで構成される統計データを表示する、ダッシュボードと、
を備え、
前記オブジェクト抽出部による前記抽出、及び前記オブジェクト分析部による前記分析が、何れも、ニューラルネットワークを有する機械学習型の画像認識手段により実行され、
前記オブジェクト分析部は、2次元画像である前記録画済画像中における位置と、録画対象とされている3次元空間内における実際の位置とを関連づける座標を、前記録画済画像中に設定する座標設定部を含んで構成されている、
情報処理システム。 A category specification section that allows you to specify a specific analysis target category,
An object extraction unit that extracts an analysis target object belonging to the analysis target category designated by the category designation unit from the recorded image, and an object extraction unit.
An object analysis unit that analyzes the attributes and / or movements of each of the extracted objects to be analyzed.
An analysis unit that analyzes the analyzed attributes and / or motion statistics of the analyzed object,
A dashboard and a dashboard that displays statistical data composed of the analysis results of the statistics.
With
The extraction by the object extraction unit and the analysis by the object analysis unit are both executed by a machine learning type image recognition means having a neural network.
The object analysis unit sets coordinates in the recorded image that associate the position in the recorded image, which is a two-dimensional image, with the actual position in the three-dimensional space to be recorded. It is composed of parts,
Information processing system. - 請求項6に記載の情報処理システムであって、前記統計データがマーケティングデータである、マーケティング活動支援システム。 The information processing system according to claim 6, wherein the statistical data is marketing data, a marketing activity support system.
- カテゴリー指定部において、特定の解析対象カテゴリーを指定するカテゴリー指定ステップと、
オブジェクト抽出部が、録画済画像から、前記カテゴリー指定ステップにおいて指定された解析対象カテゴリーに属する解析対象オブジェクトを抽出する、オブジェクト抽出ステップと、
オブジェクト分析部が、抽出された個々の前記解析対象オブジェクトの属性及び/又は動きを分析する、オブジェクト分析ステップと、
解析部が、分析された前記属性及び/又は動きの統計量を解析する、解析ステップと、
ダッシュボードが、前記統計量の解析結果を含んで構成される統計データを表示する、統計データ表示ステップと、
を備え、
前記オブジェクト抽出ステップによる前記解析対象オブジェクトの抽出、及び、前記オブジェクト分析ステップによる前記解析対象オブジェクトの属性及び/又は動きの分析が、何れも、ニューラルネットワークを有する機械学習型の画像認識手段により実行され、
前記オブジェクト分析ステップにおいて、座標設定部が、2次元画像である前記録画済画像中における位置と、録画対象とされている3次元空間内における実際の位置とを関連づける座標を、前記録画済画像中に設定する、
情報処理方法。 In the category specification section, the category specification step that specifies a specific analysis target category and
An object extraction step in which the object extraction unit extracts an analysis target object belonging to the analysis target category specified in the category designation step from the recorded image, and an object extraction step.
An object analysis step in which the object analysis unit analyzes the attributes and / or movements of the extracted individual objects to be analyzed.
An analysis step in which the analysis unit analyzes the analyzed attribute and / or motion statistics.
A statistical data display step and a statistical data display step in which the dashboard displays statistical data composed of the analysis results of the statistic.
With
The extraction of the analysis target object by the object extraction step and the analysis of the attributes and / or movements of the analysis target object by the object analysis step are both executed by a machine learning type image recognition means having a neural network. ,
In the object analysis step, the coordinate setting unit sets coordinates in the recorded image that associate the position in the recorded image, which is a two-dimensional image, with the actual position in the three-dimensional space to be recorded. Set to,
Information processing method. - 前記オブジェクト抽出ステップにおいて、前記オブジェクト抽出部には、前記録画済画像がデジタルデータとして入力され、人間が視認可能な二次元画像への変換処理を経由せずに、該デジタルデータから前記解析対象オブジェクトが直接抽出される、
請求項8に記載の情報処理方法。 In the object extraction step, the recorded image is input to the object extraction unit as digital data, and the object to be analyzed is analyzed from the digital data without going through a conversion process into a two-dimensional image that can be seen by humans. Is extracted directly,
The information processing method according to claim 8. - 前記オブジェクト分析ステップにおいて、顔認証情報取得部が、人の顔に係る画像情報から当該人の年齢及び性別を分析する、
請求項8又は9に記載の情報処理方法。 In the object analysis step, the face recognition information acquisition unit analyzes the age and gender of the person from the image information related to the person's face.
The information processing method according to claim 8 or 9. - 前記オブジェクト分析ステップにおいて、骨格抽出部が、複数の特徴点を連接する骨格線で構成される前記解析対象オブジェクトの骨格を抽出し、前記特徴点の位置変動から個々の前記解析対象オブジェクトの動きが認識される、
請求項8から10の何れかに記載の情報処理方法。 In the object analysis step, the skeleton extraction unit extracts the skeleton of the analysis target object composed of skeleton lines connecting a plurality of feature points, and the movement of each of the analysis target objects is generated from the position change of the feature points. Recognized,
The information processing method according to any one of claims 8 to 10. - 請求項8から11の何れかに記載の情報処理方法であって、前記統計データがマーケティングデータである、マーケティング活動支援方法。 A marketing activity support method according to any one of claims 8 to 11, wherein the statistical data is marketing data.
- 特定の解析対象カテゴリーを指定することができる、カテゴリー指定部と、
前記カテゴリー指定部によって指定されている前記解析対象カテゴリーに属する解析対象オブジェクトを録画済画像から抽出する、オブジェクト抽出部と、
抽出された前記解析対象オブジェクトの属性及び/又は動きを分析する、オブジェクト分析部と、
分析された前記解析対象オブジェクトの属性及び/又は動きの統計量を解析する、解析部と、
前記統計量の解析結果を含んで構成される統計データを表示する、ダッシュボードと、
を備え、
前記オブジェクト分析部は、2次元画像である前記録画済画像中における位置と、録画対象とされている3次元空間内における実際の位置とを関連づける座標を、前記録画済画像中に設定する座標設定部を含んで構成されている、
情報処理装置において、
録画済画像から、特定の前記解析対象カテゴリーに属する前記解析対象オブジェクトを、ニューラルネットワークを有する機械学習型の画像認識手段によって抽出する、オブジェクト抽出ステップと、
抽出された個々の前記解析対象オブジェクトの属性及び/又は動きを、ニューラルネットワークを有する機械学習型の画像認識手段によって分析する、オブジェクト分析ステップと、
分析された前記属性及び/又は動きの統計量を解析する、解析ステップと、
前記統計量の解析結果を含んで構成される統計データをダッシュボードに表示する、統計データ表示ステップと、
を、前記情報処理装置に実行させるプログラム。 A category specification section that allows you to specify a specific analysis target category,
An object extraction unit that extracts an analysis target object belonging to the analysis target category designated by the category designation unit from the recorded image, and an object extraction unit.
An object analysis unit that analyzes the attributes and / or movements of the extracted object to be analyzed.
An analysis unit that analyzes the analyzed attributes and / or motion statistics of the analyzed object,
A dashboard and a dashboard that displays statistical data composed of the analysis results of the statistics.
With
The object analysis unit sets coordinates in the recorded image that associate the position in the recorded image, which is a two-dimensional image, with the actual position in the three-dimensional space to be recorded. It is composed of parts,
In information processing equipment
An object extraction step of extracting the analysis target object belonging to the analysis target category from the recorded image by a machine learning type image recognition means having a neural network.
An object analysis step that analyzes the attributes and / or movements of each of the extracted objects to be analyzed by a machine learning type image recognition means having a neural network.
An analysis step and an analysis step that analyzes the analyzed attribute and / or motion statistics.
A statistical data display step that displays statistical data including the analysis result of the statistic on a dashboard, and
Is executed by the information processing apparatus. - 請求項13に記載のプログラムであって、前記統計データがマーケティングデータである、マーケティング活動支援用のプログラム。 The program according to claim 13, for supporting marketing activities, wherein the statistical data is marketing data.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-141629 | 2019-07-31 | ||
JP2019141629A JP6593949B1 (en) | 2019-07-31 | 2019-07-31 | Information processing apparatus and marketing activity support apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021020500A1 true WO2021020500A1 (en) | 2021-02-04 |
Family
ID=68314106
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/029208 WO2021020500A1 (en) | 2019-07-31 | 2020-07-30 | Information processing device and marketing activity assistance device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6593949B1 (en) |
WO (1) | WO2021020500A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021255846A1 (en) * | 2020-06-17 | 2021-12-23 | 日本電気株式会社 | Image processing device, image processing method, and program |
WO2023182692A1 (en) * | 2022-03-24 | 2023-09-28 | 메이즈 주식회사 | Cafe monitoring apparatus and cafe monitoring method |
WO2023228810A1 (en) * | 2022-05-24 | 2023-11-30 | 村田機械株式会社 | Article recognition system and article recognition device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017102573A (en) * | 2015-11-30 | 2017-06-08 | 富士通株式会社 | Purchase behavior analysis program, purchase behavior analysis method, and purchase behavior analysis device |
JP2017162432A (en) * | 2016-03-07 | 2017-09-14 | 株式会社リコー | Image processing system, information processing apparatus, information terminal, and program |
JP2019075083A (en) * | 2017-10-18 | 2019-05-16 | 株式会社TanaーX | Information collection system |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5915960B1 (en) * | 2015-04-17 | 2016-05-11 | パナソニックIpマネジメント株式会社 | Flow line analysis system and flow line analysis method |
JP6831769B2 (en) * | 2017-11-13 | 2021-02-17 | 株式会社日立製作所 | Image search device, image search method, and setting screen used for it |
JP6534499B1 (en) * | 2019-03-20 | 2019-06-26 | アースアイズ株式会社 | MONITORING DEVICE, MONITORING SYSTEM, AND MONITORING METHOD |
-
2019
- 2019-07-31 JP JP2019141629A patent/JP6593949B1/en active Active
-
2020
- 2020-07-30 WO PCT/JP2020/029208 patent/WO2021020500A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017102573A (en) * | 2015-11-30 | 2017-06-08 | 富士通株式会社 | Purchase behavior analysis program, purchase behavior analysis method, and purchase behavior analysis device |
JP2017162432A (en) * | 2016-03-07 | 2017-09-14 | 株式会社リコー | Image processing system, information processing apparatus, information terminal, and program |
JP2019075083A (en) * | 2017-10-18 | 2019-05-16 | 株式会社TanaーX | Information collection system |
Also Published As
Publication number | Publication date |
---|---|
JP2021026336A (en) | 2021-02-22 |
JP6593949B1 (en) | 2019-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Liu et al. | Detecting and tracking people in real time with RGB-D camera | |
JP4876687B2 (en) | Attention level measuring device and attention level measuring system | |
US8577087B2 (en) | Adjusting a consumer experience based on a 3D captured image stream of a consumer response | |
WO2021020500A1 (en) | Information processing device and marketing activity assistance device | |
Poppe et al. | AMAB: Automated measurement and analysis of body motion | |
Lu et al. | A Delaunay-based temporal coding model for micro-expression recognition | |
JP6590609B2 (en) | Image analysis apparatus and image analysis method | |
WO2014093209A1 (en) | Security video system using customer regions for monitoring point of sale areas | |
WO2020114138A1 (en) | Information associated analysis method and apparatus, and storage medium and electronic device | |
JP2019020986A (en) | Human flow analysis method, human flow analysis device, and human flow analysis system | |
EP2790140A1 (en) | Queue analysis | |
US11657548B2 (en) | Information processing device, display method, and program storage medium for monitoring object movement | |
CN112820071A (en) | Behavior identification method and device | |
JP2017083980A (en) | Behavior automatic analyzer and system and method | |
US9710708B1 (en) | Method and apparatus for autonomously recognizing at least one object in an image | |
US20210327160A1 (en) | Authoring device, authoring method, and storage medium storing authoring program | |
JP2017130061A (en) | Image processing system, image processing method and program | |
KR20160011804A (en) | The method for providing marketing information for the customers of the stores based on the information about a customers' genders and ages detected by using face recognition technology | |
JP2022046210A (en) | Learning device, processing device, learning method, posture detection model, program and storage medium | |
WO2019207875A1 (en) | Information processing device, information processing method, and program | |
US20220276705A1 (en) | Information processing method, information processing device, and non-transitory computer readable storage medium | |
JP7229698B2 (en) | Information processing device, information processing method and program | |
JP7109520B2 (en) | Purchased product estimation device | |
Singh et al. | Robust & accurate face recognition using histograms | |
Sanjeewa et al. | Understanding the hand gesture command to visual attention model for mobile robot navigation: service robots in domestic environment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20847435 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20847435 Country of ref document: EP Kind code of ref document: A1 |