[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021020367A1 - 被覆工具およびそれを備えた切削工具 - Google Patents

被覆工具およびそれを備えた切削工具 Download PDF

Info

Publication number
WO2021020367A1
WO2021020367A1 PCT/JP2020/028795 JP2020028795W WO2021020367A1 WO 2021020367 A1 WO2021020367 A1 WO 2021020367A1 JP 2020028795 W JP2020028795 W JP 2020028795W WO 2021020367 A1 WO2021020367 A1 WO 2021020367A1
Authority
WO
WIPO (PCT)
Prior art keywords
protrusion
layer
protrusions
intermediate layer
gas
Prior art date
Application number
PCT/JP2020/028795
Other languages
English (en)
French (fr)
Inventor
優作 洲河
博俊 伊藤
健二 熊井
貴悟 杉山
忠 勝間
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to US17/630,582 priority Critical patent/US20220250162A1/en
Priority to CN202080052594.4A priority patent/CN114173967A/zh
Priority to KR1020227001768A priority patent/KR20220024686A/ko
Priority to JP2021535345A priority patent/JP7301970B2/ja
Priority to EP20846825.6A priority patent/EP4005710A4/en
Publication of WO2021020367A1 publication Critical patent/WO2021020367A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/148Composition of the cutting inserts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/36Carbonitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23B2228/10Coatings

Definitions

  • the present disclosure relates to a coating tool having a coating layer on the surface of a substrate and a cutting tool provided with the coating tool.
  • Cemented carbide or cermet the substrate surface such as ceramics, coating tool such as a cutting tool to form a coated layer formed by laminating the Al 2 O 3 layer via the coupling film is known.
  • Cutting tools are increasingly used for heavy intermittent cutting where a large impact is applied to the cutting edge with the recent increase in efficiency of cutting. Under such harsh cutting conditions, a large impact is applied to the coating layer, and chipping or peeling of the coating layer is likely to occur. Therefore, the coating layer is required to have improved fracture resistance in addition to wear resistance.
  • Patent Document 1 describes that a protrusion having a hook-shaped tip is arranged at an interface in contact with the Al 2 O 3 layer.
  • Patent Document 2 and Patent Document 3 at the interface in contact with the Al 2 O 3 layer, a composite protrusion having a large number of second protrusions is arranged on the side surface of the first protrusion extending in the stacking direction of the coating layer. It is stated that it should be done.
  • the tips of the protrusions and composite protrusions described in Patent Document 1 and Patent Document 2 have an obtuse angle, and have a shape inferior in film formation property.
  • the composite protrusions described in Patent Document 2 and Patent Document 3 do not have the first protrusion, but have only the composite protrusion, and also have a shape in which the film forming property is inferior.
  • the coating tool of the present disclosure includes a substrate and a coating layer located on the surface of the substrate.
  • the coating layer has a Ti-containing intermediate layer and an Al 2 O 3 layer.
  • the Al 2 O 3 layer is located in contact with the intermediate layer at a position farther from the substrate than the intermediate layer.
  • the intermediate layer has a plurality of first protrusions protruding toward the Al 2 O 3 layer. At least one of the plurality of first protrusions is a composite protrusion having a second protrusion protruding in a direction intersecting the protrusion direction of the first protrusion.
  • the ratio of the composite protrusion to the plurality of first protrusions is 30% or less.
  • the cutting tool of the present disclosure includes a holder extending from the first end toward the second end and having a pocket on the first end side, and the above-mentioned covering tool located in the pocket.
  • the covering tool of the present disclosure has a plate shape having a substantially square main surface.
  • the covering tool 1 has a first surface 2 and a second surface 3, and has a cutting edge 4 at least a part of a portion where the first surface 2 and the second surface 3 intersect.
  • the first surface 2 is a surface called a rake surface
  • the second surface 3 is a surface called a flank surface. Therefore, it can be said that the cutting edge 4 is provided at least a part of the portion where the rake face 2 and the flank surface 3 intersect.
  • the covering tool 1 includes a base 5 and a coating layer 7 located on the surface of the base 5. ing.
  • Examples of the material constituting the base 5 of the covering tool 1 include cemented carbide, ceramics, and metal.
  • the hard alloy may be a cemented carbide containing tungsten carbide (WC) and an iron metal such as cobalt (Co) or nickel (Ni).
  • a Ti-based cermet containing titanium carbonitride (TiCN) and an iron group metal such as cobalt (Co) or nickel (Ni) may be used.
  • the ceramics may be Si 3 N 4 , Al 2 O 3 , diamond, cubic boron nitride (cBN).
  • the metal may be carbon steel, high speed steel, or alloy steel.
  • the substrate 5 when used as the covering tool 1, the substrate 5 may be made of cemented carbide or cermet in terms of fracture resistance and wear resistance.
  • the coating layer 7 has an intermediate layer 9 containing Ti and an Al 2 O 3 layer 11.
  • the Al 2 O 3 layer 11 is in contact with the intermediate layer 9 at a position far from the substrate 5 of the intermediate layer 9.
  • the intermediate layer 9 in the covering tool 1 of the present disclosure is a layer having Ti, and may contain, for example, TiN, TiC, TiNO, and the like. Further, for example, Ti, C and N may be contained. In other words, the intermediate layer 9 may contain TiCN crystals. Further, the intermediate layer 9 may contain, for example, Ti, C, N and O. In other words, the intermediate layer 9 may contain TiCNO crystals. With such a configuration, the adhesion between the Al 2 O 3 layer 11 and the intermediate layer 9 is excellent.
  • the covering tool 1 of the present disclosure has a plurality of first protrusions 13 projecting toward the Al 2 O 3 layer 11.
  • the first protrusion 13 has a foot 13a which is a starting point of the protrusion of the first protrusion 13. Further, the first protrusion 13 has a tip 13b at a position farthest from the substrate 5. In other words, the first protrusion 13 extends from the base 13a toward the tip 13b.
  • the first protrusion 13 typically has a triangular shape.
  • the foot 13a refers to a position of the first protrusion 13 near the base 5.
  • the foot 13a may be rephrased as the base of the triangle formed by the first protrusion 13.
  • the first protrusion 13 has an acute angle at the tip 13b, a height of 10 nm or more, and the foot 13a of the plurality of first protrusions 13. It means that the ratio of the average heights of the plurality of first protrusions 13 to the average width is 0.6 or more.
  • At least one of the plurality of first protrusions 13 is a composite protrusion 17 having a second protrusion 15 protruding in a direction intersecting the protrusion direction of the first protrusion 13. Is.
  • all of the first protrusions 13 may be composite protrusions 17.
  • those having the second protrusion 15 will be referred to as a composite protrusion 17.
  • the compound protrusion 17 in the covering tool 1 of the present application means that the foot of the second protrusion 15 is separated from the foot of the first protrusion 13 as shown in FIG. In other words, a stack of a plurality of first protrusions 13 is not treated as a composite protrusion 17.
  • the second protrusion 15 in the covering tool 1 of the present disclosure means that the height from the central portion of the base 15a of the second protrusion 15 which is the starting point of the protrusion of the second protrusion 15 to the tip 15b of the second protrusion 15 is defined as the height. It is 10 nm or more. That is, in other words, the minute unevenness existing on the side surface of the first protrusion 13 is not treated as the second protrusion 15 in the covering tool 1 of the present disclosure.
  • the ratio of the composite protrusion 17 to the plurality of first protrusions 13 is 30% or less.
  • the ratio of the composite protrusion 17 to the plurality of first protrusions 13 is 28.6%.
  • the ratio of the composite protrusion 17 to the plurality of first protrusions 13 may be 5% or more. Further, the ratio of the composite protrusion 17 to the plurality of first protrusions 13 may be 20% or less.
  • the number of the first protrusion 13 and the composite protrusion 17 may be measured by taking a 30,000-fold photograph using, for example, a scanning electron microscope or a transmission electron microscope.
  • the ratio of the composite protrusion 17 to the plurality of first protrusions 13 may be measured by measuring about 50 to 100 first protrusions 13.
  • the number of photographs to be taken may be appropriately determined according to the number of existing composite protrusions 17.
  • other constituent requirements in the covering tool of the present disclosure may be measured in the same manner.
  • the average number of the second protrusions 15 included in the composite protrusions 17 is 1.2 or less.
  • the average number of the second protrusions 15 included in the composite protrusions 17 may be an average value of 50 composite protrusions 17.
  • the ratio of the average height of the second protrusion 15 to the average width of the foot 15a of the second protrusion 15 in the covering tool 1 of the present disclosure is the ratio of the plurality of first protrusions 13 to the average width of the foot 13a of the plurality of first protrusions 13. It may be larger than the average height ratio.
  • the ratio of the average height of the second protrusion 15 to the average width of the foot 15a of the second protrusion 15 is the average height from the central portion of the foot 15a of the second protrusion 15 to the tip 15b of the second protrusion 15. , The value divided by the average width of the foot 15a of the second protrusion 15. With such a configuration, the adhesion between the intermediate layer 9 and the Al 2 O 3 layer 11 is further excellent.
  • the ratio of the average height of the plurality of first protrusions 13 to the average width of the foot 13a of the plurality of first protrusions 13 may be 1.2 or less. With such a configuration, the adhesion between the intermediate layer 9 and the Al 2 O 3 layer 11 is excellent.
  • the ratio of the average height of the plurality of first protrusions 13 to the average width of the foot 13a of the plurality of first protrusions 13 may be 1.0 or less.
  • the average width of the foot 13a of the first protrusion 13 may be 10 nm or more and 50 nm or less, and the average height of the first protrusion 13 may be 10 nm or more and 60 nm or less. With such a configuration, the adhesion between the intermediate layer 9 and the Al 2 O 3 layer 11 is excellent.
  • the average width of the foot 13a may be 25 nm or more and 45 nm or less.
  • the average height of the first protrusion 13 may be 10 nm or more and 50 nm or less.
  • the average angle of the tip 13b of the first protrusion 13 may be 50 ° or more and 90 ° or less.
  • excellent film forming property of the Al 2 O 3 layer 11 excellent adhesion of the intermediate layer 9 and the Al 2 O 3 layer 11.
  • the average angle of the tip 13b of the first protrusion 13 may be 55 ° or more.
  • the average angle of the tip 13b of the first protrusion 13 may be 80 ° or less.
  • the composite protrusion 17 in the covering tool 1 of the present disclosure may have a third protrusion 19 protruding in a direction intersecting the protrusion direction of the second protrusion 15.
  • the height of the third protrusion 19 is 10 nm or more.
  • the minute unevenness existing on the side surface of the second protrusion 15 is not treated as the third protrusion 19 in the covering tool 1 of the present disclosure.
  • Such minute irregularities do not substantially contribute to the adhesion between the intermediate layer 9 and the Al 2 O 3 layer 11.
  • the coating layer 7 has the TiN layer 10a, the first TiCN layer 10b, the second TiCN layer 10c, the intermediate layer 9, and the Al 2 O 3 layer 11 in this order from the substrate 5. May have. With such a configuration, the covering tool 1 has a long life.
  • the first TiCN layer 10b may be an MT-TiCN layer described later.
  • the second TiCN layer 10c may be an HT-TiCN layer described later.
  • a TiN layer or the like may be provided as a surface layer (not shown).
  • the surface layer may be made of other materials other than titanium nitride, such as titanium carbonitride, titanium carbonate, and chromium nitride.
  • the surface layer may be made of a colored material and may have a function of easily determining whether or not a cutting edge is used.
  • the surface layer may be provided with a thickness of 0.1 ⁇ m to 3.0 ⁇ m.
  • the first protrusion 13, the second protrusion 15, and the third protrusion 19 in the covering tool 1 of the present disclosure all contain Ti, C, and N, and may have the same composition. Further, the first protrusion 13, the second protrusion 15, and the third protrusion 19 all contain Ti, C, N, and O, and may have the same composition. If the compositions of the first protrusion 13, the second protrusion 15, and the third protrusion 19 are the same, cracks and breakage are less likely to occur between the first protrusion 13, the second protrusion 15, and the third protrusion 19, respectively.
  • the adhesion between the intermediate layer 9 and the Al 2 O 3 layer 11 is higher than that in the case where the compositions of the above are different.
  • compositions of the first protrusion 13, the second protrusion 15, and the third protrusion 19 are homogeneous means that the difference between the constituent components of each is 5% or less.
  • each composition may be 3% or less. Further, it may be 1% or less.
  • Such first protrusion 13, second protrusion 15 and third protrusion 19 can be obtained by using the same gas when forming the first protrusion 13, the second protrusion 15 and the third protrusion 19.
  • compositions of the first protrusion 13 and the second protrusion 15 may be different, and the compositions of the second protrusion 15 and the third protrusion 19 may be different.
  • the first protrusion 13 In order to form the first protrusion 13, the second protrusion 15, and the third protrusion 19 having different compositions, it is preferable to use gases having different compositions at the time of film formation.
  • first protrusion 13 may not be formed perpendicular to the first surface 2 of the substrate 5, or may be inclined with respect to the first surface 2 of the substrate 5.
  • the thickness of the intermediate layer 9 is 10 nm ⁇ 35 nm, without hardness of the intermediate layer 9 is decreased, and the Al 2 O 3 layer 11 is ⁇ -type crystal structure.
  • the thickness of the intermediate layer 9 excludes the first protrusion 13, the second protrusion 15, and the third protrusion 19.
  • the intermediate layer 9 may contain, for example, titanium in an amount of 30 to 70 atomic%, carbon in an amount of 1 to 70 atomic%, nitrogen in an amount of 1 to 35 atomic%, and oxygen in an amount of 3 to 20 atomic%. Further, aluminum may be further contained in an amount of 10 atomic% or less. Further, it may contain 1 to 10 atomic% of components such as chlorine and chromium. Further, the intermediate layer 9 may contain other trace components.
  • the first protrusion 13, the second protrusion 15, and the third protrusion 19 may all have the same composition or may have the above-mentioned composition range.
  • the intermediate layer having the first protrusion can be formed, for example, by forming a film on the surface of the substrate by a chemical vapor deposition (CVD) method under the following conditions.
  • CVD chemical vapor deposition
  • the substrate is set in the chamber of the film forming apparatus, for example, the film forming temperature is 900 ° C. to 990 ° C., the gas pressure is 15 kPa to 40 kPa, and the reaction gas composition is 3% by volume of titanium tetrachloride (TiCl 4 ) gas. ⁇ 15% by volume, methane (CH 4 ) gas 3% by volume to 10% by volume, nitrogen (N 2 ) gas 3% by volume to 50% by volume, carbon monoxide (CO) gas 0.2% by volume to 1 It is preferable to form a film with 0.0% by volume and the rest as hydrogen (H 2 ) gas. For the sake of convenience, this process is referred to as the first step of the film formation process of the intermediate layer.
  • the film forming temperature is 900 ° C. to 990 ° C.
  • the gas pressure is 15 kPa to 40 kPa
  • the reaction gas composition is 3% by volume of titanium tetrachloride (TiCl 4 )
  • the film formation time in this first step may be 20 minutes or more and 40 minutes or less.
  • the nitrogen (N 2 ) gas having this reaction gas composition is 30% by volume to 50% by volume, the average width of the foot of the first protrusion tends to be wide, and the average height of the first protrusion tends to be short. In other words, under such conditions, it is easy to obtain a first protrusion that is thick, short, and hard to break.
  • the film formation time in the previous step is preferably 20 minutes or more and 40 minutes or less. Under such film forming conditions, it is easy to form the first protrusions having an average foot spacing of 70 nm or more and 120 nm or less.
  • the second protrusion is formed when the film formation temperature is lowered and the film formation temperature is in the range of 900 to 940 ° C. without changing the composition of the raw material gas.
  • the film formation time may be 30 to 90 minutes in total with the previous step.
  • the film formation time is extended in the latter stage of film formation of the intermediate layer, that is, in the process of forming the second protrusion, the number of the second protrusions increases, and the width and height tend to increase.
  • a second protrusion whose protrusion direction extends toward the substrate is likely to be formed.
  • a third protrusion protruding from the second protrusion is formed.
  • the formation temperature of the Al 2 O 3 layer is 900 ° C. to 990 ° C.
  • the gas pressure is 5 kPa to 20 kPa
  • the composition of the reaction gas is 3.5 aluminum trichloride (AlCl 3 ) gas.
  • AlCl 3 aluminum trichloride
  • HCl hydrogen sulfide
  • CO 2 carbon dioxide
  • H hydrogen sulfide
  • the gas may be formed as 0% by volume to 1.0% by volume, and the rest may be hydrogen (H 2 ) gas.
  • the Al 2 O 3 layer may be made of ⁇ -alumina.
  • the coating layer may have a TiN layer, a first TiCN layer, and a second TiCN layer in this order from the substrate. Then, an intermediate layer and an Al 2 O 3 layer may be provided on the second TiCN layer in this order. Further, a surface layer containing Ti and N may be further provided on the Al 2 O 3 layer.
  • the film formation temperature is 800 ° C. to 940 ° C.
  • the gas pressure is 8 kPa to 50 kPa
  • the composition of the reaction gas is 0.5% by volume of titanium tetrachloride (TiCl 4 ) gas.
  • the film may be formed with 10% by volume, nitrogen (N 2 ) gas at 10% by volume to 60% by volume, and the rest as hydrogen (H 2 ) gas.
  • a first TiCN layer and a second TiCN layer may be provided on the TiN layer.
  • the first TiCN layer may be a so-called MT (moderate temperature) -TiCN layer.
  • MT-TiCN layer for example, a raw material containing titanium tetrachloride (TiCl 4 ) gas, nitrogen (N 2 ) gas, acetonitrile (CH 3 CN) gas and the like is used, and the film formation temperature is set to 780 ° C to 880 ° C.
  • the thickness of the first TiCN layer formed by forming a film at a relatively low temperature is 2 ⁇ m to 15 ⁇ m, the wear resistance and fracture resistance of the first TiCN layer are high.
  • the titanium nitride crystal contained in the first TiCN layer may be a columnar crystal elongated in the thickness direction of the coating layer.
  • the second TiCN layer may be a so-called HT (high temperature) -TiCN layer.
  • the HT-TiCN layer is formed by using, for example, titanium tetrachloride (TiCl 4 ) gas, nitrogen (N 2 ) gas, methane (CH 4 ) gas or the like as a raw material gas, and does not contain acetonitrile (CH 3 CN) gas.
  • the film may be formed in a film temperature range of 900 ° C. to 1050 ° C. Further, the film may be formed at a temperature higher than that of the first TiCN layer.
  • the thickness of the second TiCN layer may be 10 nm to 900 nm.
  • titanium is 30 to 70 atomic%
  • carbon is 15 to 35 atomic%
  • nitrogen is 15 to 35 atomic%
  • oxygen is 2 to 10 atomic%.
  • the containing interface layer (not shown) may be arranged.
  • the thickness of the interface layer may be 5 nm to 50 nm.
  • the film formation temperature was 780 ° C to 880 ° C
  • the gas pressure was 5 kPa to 25 kPa
  • the reaction gas composition was 0.5% by volume to 10% by volume of titanium tetrachloride (TiCl 4 ) gas and nitrogen (N 2 ).
  • the gas may be formed as 5% by volume to 60% by volume
  • acetonitrile (CH 3 CN) gas may be formed as 0.1% by volume to 3.0% by volume
  • the rest may be formed as hydrogen (H 2 ) gas.
  • the average crystal width of the titanium nitride columnar crystals constituting the first TiCN layer is set on the surface side of the substrate side rather than the substrate side.
  • the larger configuration can be used.
  • the film formation temperature was 900 ° C to 990 ° C
  • the gas pressure was 5 kPa to 40 kPa
  • the composition of the reaction gas was 1% to 4% by volume of titanium tetrachloride (TiCl 4 ) gas and 5 volumes of nitrogen (N 2 ) gas.
  • TiCl 4 titanium tetrachloride
  • N 2 nitrogen
  • methane (CH 4 ) gas may be 0.1% by volume to 10% by volume, and the rest may be hydrogen (H 2 ) gas.
  • At least the cutting edge portion on the surface of the film-formed coating layer is polished.
  • the cutting edge portion is smoothly processed, welding of the work material is suppressed, and the tool has further excellent fracture resistance.
  • the cutting tool 101 of the present disclosure is, for example, a rod-shaped body extending from the first end (upper end in FIG. 5) to the second end (lower end in FIG. 5).
  • the cutting tool 101 includes a holder 105 having a pocket 103 on the first end side (tip side) and the above-mentioned covering tool 1 located in the pocket 103. Since the cutting tool 101 includes the covering tool 1, stable cutting can be performed for a long period of time.
  • the pocket 103 is a portion on which the covering tool 1 is mounted, and has a seating surface parallel to the lower surface of the holder 105 and a restraining side surface inclined with respect to the seating surface. Further, the pocket 103 is open on the first end side of the holder 105.
  • the covering tool 1 is located in the pocket 103. At this time, the lower surface of the covering tool 1 may be in direct contact with the pocket 103, or a sheet (not shown) may be sandwiched between the covering tool 1 and the pocket 103.
  • the covering tool 1 is attached to the holder 105 so that at least a part of the portion used as the cutting edge 7 at the ridge line where the first surface 3 and the second surface 5 intersect protrudes outward from the holder 105.
  • the covering tool 1 is attached to the holder 105 by the fixing screw 107. That is, by inserting the fixing screw 107 into the through hole 17 of the covering tool 1, inserting the tip of the fixing screw 107 into the screw hole (not shown) formed in the pocket 103, and screwing the screw portions together.
  • the covering tool 1 is attached to the holder 105.
  • Steel, cast iron, etc. can be used as the material of the holder 105.
  • steel having high toughness may be used.
  • the cutting tool 101 used for so-called turning is illustrated.
  • Examples of the turning process include inner diameter processing, outer diameter processing, and grooving processing.
  • the cutting tool 101 is not limited to the one used for turning.
  • the covering tool 1 of the above embodiment may be used as the cutting tool used for the milling process.
  • a coating layer was formed on the above-mentioned cemented carbide substrate by a chemical vapor deposition (CVD) method.
  • CVD chemical vapor deposition
  • an intermediate layer and an Al 2 O 3 layer were directly formed on the substrate.
  • a TiN layer was provided on the surface of the above-mentioned cemented carbide substrate, and a first TiCN layer, a second TiCN layer, an intermediate layer, and an Al 2 O 3 layer were provided on the TiN layer in this order.
  • the film forming conditions for the intermediate layer of each sample are shown in Tables 1 and 2. In the film formation of the intermediate layer, TiCl 4 gas, N 2 gas, CO gas and H 2 gas were used.
  • Tables 1 and 2 The values listed in the raw material gas column shown in Tables 1 and 2 are the volume% of each gas. In Tables 1 and 2, under the film forming conditions shown as the first half and the second half, the first half and the second half were formed in this order. For samples in which only the first half was described and the second half was not described, the film was formed only under the first half of the film formation conditions without changing the film formation conditions.
  • the film formation temperature of the Al 2 O 3 layer was 950 ° C.
  • the gas pressure was 7.5 kPa.
  • the composition of the reaction gas is 3.7% by volume of aluminum trichloride (AlCl 3 ) gas, 0.7% by volume of hydrogen chloride (HCl) gas, 4.3% by volume of carbon dioxide (CO 2 ) gas, and hydrogen sulfide.
  • the (H 2 S) gas was 0.3% by volume, and the rest was hydrogen (H 2 ) gas.
  • the film formation time of the Al 2 O 3 layer was 380 minutes.
  • the film formation conditions of the TiN layer in the example of Table 2 are shown below.
  • the film formation temperature of the TiN layer was 850 degrees.
  • the gas pressure was 16 kPa.
  • the composition of the reaction gas was 1.0% by volume of titanium tetrachloride (TiCl 4 ) gas, 38% by volume of nitrogen (N 2 ) gas, and the rest was hydrogen (H 2 ) gas.
  • the film formation time was 180 minutes.
  • the film formation conditions of the first TiCN layer in the example of Table 2 are shown below.
  • the film formation temperature was 850 ° C. and the gas pressure was 9.0 kPa.
  • the reaction gas composition was 4.0% by volume of titanium tetrachloride (TiCl 4 ) gas, 23% by volume of nitrogen (N 2 ) gas, 0.4% by volume of acetonitrile (CH 3 CN) gas, and the rest. It was a hydrogen (H 2 ) gas.
  • the film formation time was 400 minutes.
  • the film forming conditions of the second TiCN layer in Table 2 are shown below.
  • the film formation temperature was 950 ° C.
  • the gas pressure was 13 kPa.
  • the composition of the reaction gas is 4% by volume of titanium tetrachloride (TiCl 4 ) gas, 20% by volume of nitrogen (N 2 ) gas, 8% by volume of methane (CH 4 ) gas, and the rest is hydrogen (H 2 ) gas. did.
  • the film formation time was 80 minutes.
  • the proportion of the composite protrusion among the plurality of first protrusions is 30% or less, and the sample No. which is an example of the present disclosure. All of the covering tools 3, 5 to 9 had excellent fracture resistance. Sample No. in which the ratio of the composite protrusions to the plurality of first protrusions exceeds 30%. 1 and 2 are sample Nos. The fracture resistance was inferior to that of 3, 5 to 9. In addition, sample No. which does not have a compound protrusion. 4 and 10 are sample Nos. The fracture resistance was inferior to that of 3, 5 to 9.
  • the proportion of the composite protrusion among the plurality of first protrusions is 30% or less, and the sample No. which is an example of the present disclosure. All of the covering tools 13 and 15 to 19 had excellent fracture resistance. Sample No. in which the ratio of the composite protrusions to the plurality of first protrusions exceeds 30%. 11 and 12 are sample Nos. The fracture resistance was inferior to that of 13, 15-19. In addition, sample No. which does not have a compound protrusion. 14 and 20 are sample Nos. The fracture resistance was inferior to that of 13, 15-19.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本開示の被覆工具は、基体と、該基体の表面に位置する被覆層とを備える。前記被覆層は、Tiを含有する中間層と、Al層とを有する。該Al層は、前記中間層よりも前記基体から遠い位置において前記中間層に接して位置している。前記中間層は、前記Al層に向かって突出した複数の第1突起を有する。該複数の第1突起の少なくとも一つは、前記第1突起の突出方向に交わる方向に突出した第2突起を有する複合突起である。前記複数の第1突起のうち、前記複合突起が占める割合は、30%以下である。本開示の切削工具は、第1端から第2端に向かって延び、前記第1端側にポケットを有するホルダと、前記ポケットに位置する上述の被覆工具と、を備える。

Description

被覆工具およびそれを備えた切削工具
 本開示は、基体の表面に被覆層を有する被覆工具およびそれを備えた切削工具に関する。
 超硬合金やサーメット、セラミックス等の基体表面に、結合膜を介してAl層を積層した被覆層を形成した切削工具等の被覆工具が知られている。
 切削工具は、最近の切削加工の高能率化に伴って、大きな衝撃が切刃にかかる重断続切削等に用いられる機会が増えている。このような過酷な切削条件においては、被覆層に大きな衝撃がかかり、被覆層のチッピングや剥離が発生しやすくなる。そのため被覆層には、耐摩耗性に加えて耐欠損性の向上が求められている。
 このような課題を解決するため、特許文献1では、Al層と接する界面において、先端が鉤型に屈曲した突起を配置することが記載されている。
 また、特許文献2および特許文献3には、Al層と接する界面において、被覆層の積層方向に延びた第1の突起の側面に、多数の第2の突起を有する複合突起を配置することが記載されている。
 これらのうち、特許文献1と特許文献2に記載された突起および複合突起の先端は鈍角になっており、成膜性が劣る形状をしている。また、特許文献2および特許文献3に記載された複合突起は、第1突起を有さず、複合突起のみを有しており、やはり成膜性が劣る形状をしている。
特開2004-74324号公報 米国公開2013/0149527号公報 特開2009-166216号公報
 耐欠損性に優れた被覆工具を提供する。
 本開示の被覆工具は、基体と、該基体の表面に位置する被覆層とを備える。前記被覆層は、Tiを含有する中間層と、Al層とを有する。該Al層は、前記中間層よりも前記基体から遠い位置において前記中間層に接して位置している。前記中間層は、前記Al層に向かって突出した複数の第1突起を有する。該複数の第1突起の少なくとも一つは、前記第1突起の突出方向に交わる方向に突出した第2突起を有する複合突起である。前記複数の第1突起のうち、前記複合突起が占める割合は、30%以下である。本開示の切削工具は、第1端から第2端に向かって延び、前記第1端側にポケットを有するホルダと、前記ポケットに位置する上述の被覆工具と、を備える。
本開示の被覆工具の一例を示す概略斜視図である。 図1の被覆工具における被覆層の断面の構成を説明するための模式図である。 本開示の被覆工具の中間層およびAl層付近の構成を説明するための要部拡大図である。 本開示の被覆工具の中間層およびAl層付近の構成を説明するための要部拡大図である。 本開示の切削工具の一例を示す平面図である。
 <被覆工具>
 本開示の被覆工具は、図1に示す例においては、主面が概略四角形状の板状である。ただし、この形状に限定されるものではない。被覆工具1は、第1面2と、第2面3とを有し、第1面2と第2面3とが交わる部分の少なくとも一部に切刃4を有している。第1面2は、すくい面と呼ばれる面であり、第2面3は逃げ面と呼ばれる面である。そのため、すくい面2と逃げ面3とが交わる部分の少なくとも一部に切刃4を有しているともいえるものである。
 また、図2の被覆工具1における被覆層7の断面の構成を説明するための模式図に示すように、被覆工具1は、基体5と、この基体5の表面に位置する被覆層7を備えている。
 被覆工具1の基体5を構成する材質は、硬質合金、セラミックスまたは金属が挙げられる。硬質合金としては、炭化タングステン(WC)と、コバルト(Co)やニッケル(Ni)等の鉄属金属を含有する超硬合金であってもよい。他の硬質合金として、炭窒化チタン(TiCN)と、コバルト(Co)やニッケル(Ni)等の鉄属金属を含有するTi基サーメットであってもよい。セラミックスが、Si、Al、ダイヤモンド、立方晶窒化ホウ素(cBN)であってもよい。金属としては、炭素鋼、高速度鋼、合金鋼であってもよい。上記材質の中でも、被覆工具1として用いる場合には、基体5は、超硬合金またはサーメットからなることが耐欠損性および耐摩耗性の点でよい。
 被覆層7は、Tiを含有する中間層9と、Al層11とを有している。Al層11は、中間層9の基体5から遠い位置において中間層9に接している。
 本開示の被覆工具1における中間層9は、Tiを有する層であり、例えば、TiN、TiC、TiNOなどを含有していてもよい。また、例えば、TiとCとNとを含有していてもよい。言い換えると、中間層9は、TiCN結晶を含有していてもよい。また、中間層9は、例えば、TiとCとNとOとを含有していてもよい。言い換えると、中間層9は、TiCNO結晶を含有していてもよい。このような構成を有すると、Al層11と中間層9の密着性に優れる。
 本開示の被覆工具1は、図3に示すように、Al層11に向かって突出した複数の第1突起13を有している。
 第1突起13は、第1突起13の突出の起点となる麓13aを有している。また、第1突起13は、基体5から最も離れた位置に先端13bを有している。言い換えると、第1突起13は、麓13aから先端13bに向けて伸びている。第1突起13は、代表的には三角形状を有する。
 麓13aとは、第1突起13の基体5に近い位置を指す。麓13aとは、第1突起13が形成する三角形の底辺と言い換えてもよい。
 なお、本開示の被覆工具1において、第1突起13は、図3、4に示すように、先端13bが鋭角であり、高さが10nm以上であり、複数の第1突起13の麓13aの平均幅に対する複数の第1突起13の平均高さの比が、0.6以上のものを意味する。
 図3に示すように、本開示の被覆工具1においては、複数の第1突起13の少なくとも一つは、第1突起13の突出方向に交わる方向に突出した第2突起15を有する複合突起17である。本開示の被覆工具1においては、第1突起13の全てが、複合突起17であってもよい。以後、第1突起13のうち、第2突起15を有するものを複合突起17という。
 本願の被覆工具1における複合突起17とは、図3に示すように第2突起15の麓が、第1突起13の麓から離れているものを意味する。言い換えると、複数の第1突起13が重なり合ったものは、複合突起17とは取り扱わない。
 なお、本開示の被覆工具1における第2突起15とは、第2突起15の突出の起点である第2突起15の麓15aの中央部から第2突起15の先端15bまでの高さが、10nm以上のものである。すなわち、言い換えると、第1突起13の側面に存在する微小な凹凸は本開示の被覆工具1においては、第2突起15とは取り扱わない。
 本願の被覆工具1は、複数の第1突起13のうち、複合突起17が占める割合は、30%以下である。例えば、図3においては、7つの第1突起があり、そのうち2つが複合突起17である。この場合、複数の第1突起13のうち、複合突起17が占める割合は、28.6%である。このような構成を有すると中間層9とAl層11の密着性に優れる。
 複数の第1突起13のうち、複合突起17が占める割合は、5%以上であってもよい。また、複数の第1突起13のうち、複合突起17が占める割合は、20%以下であってもよい。
 第1突起13および複合突起17の数の測定は、例えば、走査型電子顕微鏡や透過型電子顕微鏡を用いて、30,000倍の写真を撮影して行うとよい。複数の第1突起13のうち、複合突起17が占める割合は、第1突起13を50~100個程度測定するとよい。撮影する写真の数は、存在する複合突起17の数に応じて適宜、定めるとよい。なお、本開示の被覆工具における他の構成要件も同様に測定するとよい。
 本開示の被覆工具1は、複合突起17が有する第2突起15の平均数は、1.2以下である。なお、複合突起17が有する第2突起15の平均数は、50個の複合突起17の平均値とするとよい。このような構成を有すると、Al層11の成膜性に優れ、中間層9とAl層11の密着性に優れる。なお、複合突起17は第2突起15を含むものであるため平均数の下限値に1は含まれない。
 本開示の被覆工具1における第2突起15の麓15aの平均幅に対する第2突起15の平均高さの比は、複数の第1突起13の麓13aの平均幅に対する複数の第1突起13の平均高さの比よりも大きくてもよい。なお、第2突起15の麓15aの平均幅に対する第2突起15の平均高さの比とは、第2突起15の麓15aの中央部から第2突起15の先端15bまでの平均高さを、第2突起15の麓15aの平均幅で割った値である。このような構成を有すると、さらに中間層9とAl層11の密着性に優れる。
 本開示の被覆工具1は、複数の第1突起13の麓13aの平均幅に対する複数の第1突起13の平均高さの比は、1.2以下であってもよい。このような構成を有すると中間層9とAl層11の密着性に優れる。
 複数の第1突起13の麓13aの平均幅に対する複数の第1突起13の平均高さの比は、1.0以下であってもよい。
 本開示の被覆工具1は、第1突起13の麓13aの平均幅が10nm以上、50nm以下であり、第1突起13の平均高さが10nm以上、60nm以下であってもよい。このような構成を有すると中間層9とAl層11の密着性に優れる。また、麓13aの平均幅は、25nm以上、45nm以下であってもよい。第1突起13の平均高さは、10nm以上、50nm以下であってもよい。
 本開示の被覆工具1は、第1突起13の先端13bの平均角度が、50°以上、90°以下であってもよい。このような構成を有すると、Al層11の成膜性に優れ、中間層9とAl層11の密着性に優れる。また、第1突起13の先端13bの平均角度は、55°以上であってもよい。また、第1突起13の先端13bの平均角度は、80°以下であってもよい。このような構成を有すると、Al層11の成膜性に優れ、さらに中間層9とAl層11の密着性に優れる。
 また、図4に示すように、本開示の被覆工具1における複合突起17は、第2突起15の突出方向に交わる方向に突出した第3突起19を有していてもよい。このような構成を有すると、さらに中間層9とAl層11の密着性に優れる。なお、第3突起19の高さは、10nm以上である。言い換えると、第2突起15の側面に存在する微小な凹凸は本開示の被覆工具1においては、第3突起19とは取り扱わない。そのような微小な凹凸は中間層9とAl層11の密着性に実質的に寄与しない。
 本開示の被覆工具1においては、図5に示すように、被覆層7が、基体5から順に、TiN層10a、第1TiCN層10b、第2TiCN層10c、中間層9、Al層11を有していてもよい。このような構成を有すると、寿命の長い被覆工具1となる。第1TiCN層10bは、後述するMT-TiCN層であってもよい。第2TiCN層10cは、後述するHT-TiCN層であってもよい。また、表層(図示せず)として、TiN層などを設けてもよい。表層は、窒化チタン以外の炭窒化チタン、炭酸窒化チタン、窒化クロム等の他の材質であってもよい。表層は有色の材質からなり、切刃の使用の有無を容易に判別する機能を有していてもよい。表層は0.1μm~3.0μmの厚みで設けてもよい。
 本開示の被覆工具1における第1突起13、第2突起15および第3突起19は、いずれもTi、C、Nを含有しており、組成が同質であってもよい。また、第1突起13、第2突起15および第3突起19は、いずれもTi、C、NおよびOを含有しており、組成が同質であってもよい。この第1突起13、第2突起15および第3突起19の組成が同質であると、第1突起13と第2突起15と第3突起19との間で、亀裂や破壊が起こりにくく、それぞれの組成が異なる場合に比べ、中間層9とAl層11との密着性が高くなる。
 なお、第1突起13、第2突起15および第3突起19の組成が同質であるとは、それぞれの構成成分の差が5%以下のことをいう。
 また、それぞれの組成のずれが3%以下であってもよい。さらに、1%以下であってもよい。
 このような第1突起13、第2突起15および第3突起19は、第1突起13、第2突起15および第3突起19の成膜時に、同じガスを使うことで得ることができる。
 また、第1突起13と第2突起15の組成が異なっていてもよく、第2突起15と第3突起19の組成が異なっていてもよい。
 組成の異なる第1突起13、第2突起15および第3突起19を形成するには、成膜時に組成の異なるガスを用いるとよい。
 また、第1突起13は、基体5の第1面2に対して、垂直に形成されていなくてもよく、基体5の第1面2に対して傾斜していてもよい。
 また、中間層9の厚みが10nm~35nmである場合には、中間層9の硬度が低下することなく、かつAl層11がα型結晶構造となる。ここで、中間層9の厚みとは、第1突起13、第2突起15、第3突起19を除くものである。
 中間層9は、例えば、チタンを30~70原子%、炭素を1~70原子%、窒素を1~35原子%、酸素を3~20原子%の割合で含有していてもよい。また、さらにアルミニウムを10原子%以下、含有していてもよい。また、塩素やクロム等の成分を1~10原子%含有していてもよい。また、中間層9は、他の微量成分を含有していてもよい。
 本開示の被覆工具1においては、第1突起13、第2突起15、第3突起19はいずれも、同じ組成であってもよく、上述の組成範囲であってもよい。
 <製造方法>
 第1突起を有する中間層は、例えば、基体の表面に、化学気相蒸着(CVD)法によって下記の条件で成膜することで、形成することができる。
 まず、基体を成膜装置のチャンバにセットし、例えば、成膜温度を900℃~990℃、ガス圧を15kPa~40kPaとし、反応ガス組成が、四塩化チタン(TiCl)ガスを3体積%~15体積%、メタン(CH)ガスを3体積%~10体積%、窒素(N)ガスを3体積%~50体積%、一酸化炭素(CO)ガスを0.2体積%~1.0体積%、残りが水素(H)ガスとして成膜するとよい。この工程を便宜的に中間層の成膜工程の前期工程という。この前期工程の成膜時間は、20分以上、40分以下としてもよい。この反応ガス組成の窒素(N)ガスを30体積%~50体積%とすると、第1突起の麓の平均幅は広くなりやすく、第1突起の平均高さが短くなりやすい。言い換えると、このような条件では、太く、短く、破損しにくい第1突起が得られやすい。また、前期工程の成膜時間を20分以上、40分以下とするとよい。このような成膜条件にすると、麓の平均間隔が70nm以上、120nm以下の第1突起を形成しやすい。
 また、上記の中間層の成膜の後期において、原料ガスの配合を変えずに、成膜温度を下げて成膜温度を900~940℃の範囲とすると第2突起が形成される。この成膜時間は、前期工程との合計で30~90分としてもよい。
 中間層の成膜の後期、すなわち、第2突起を形成する工程において、成膜時間を延ばすと、第2突起の数が増え、幅や高さが増加しやすい。また、突出方向が基体に向かって延びている第2突起が形成されやすい。さらに、成膜時間を延ばすと、第2突起から突出した第3突起が形成される。
 Al層は、中間層の成膜後に、成膜温度を900℃~990℃、ガス圧を5kPa~20kPaとし、反応ガスの組成が、三塩化アルミニウム(AlCl)ガスを3.5体積%~15体積%、塩化水素(HCl)ガスを0.5体積%~2.5体積%、二酸化炭素(CO)ガスを0.5体積%~5.0体積%、硫化水素(HS)ガスを0体積%~1.0体積%、残りが水素(H)ガスとして成膜してもよい。Al層は、α-アルミナからなるものであってもよい。
 以上、基体の上に中間層とAl層が順に形成された例を説明した。被覆層は、基体から順に、TiN層、第1TiCN層、第2TiCN層を有していてもよい。そして、この第2TiCN層の上に、順に、中間層、Al層を有していてもよい。また、Al層の上に、さらに、TiとNを含有する表層を有していてもよい。
 基体の表面にTiN層を設ける場合には、成膜温度を800℃~940℃、ガス圧を8kPa~50kPaとし、反応ガスの組成を、四塩化チタン(TiCl)ガスを0.5体積%~10体積%、窒素(N)ガスを10体積%~60体積%とし、残りを水素(H)ガスとして成膜してもよい。
 TiN層の上に第1TiCN層、第2TiCN層を設けてもよい。第1TiCN層は、いわゆるMT(moderate temperature)-TiCN層であってもよい。このMT-TiCN層は、例えば、四塩化チタン(TiCl)ガス、窒素(N)ガスおよびアセトニトリル(CHCN)ガス等を含む原料を用い、成膜温度を780℃~880℃として、比較的低温で成膜することによって形成される、第1TiCN層の厚みが2μm~15μmであると、第1TiCN層の耐摩耗性と耐欠損性が高い。第1TiCN層中に含まれる炭窒化チタン結晶は、被覆層の厚み方向に細長い柱状結晶としてもよい。
 第2TiCN層は、いわゆるHT(high temperature)-TiCN層であってもよい。HT-TiCN層は、例えば、原料ガスとして四塩化チタン(TiCl)ガス、窒素(N)ガス、メタン(CH)ガス等を用いて、アセトニトリル(CHCN)ガスを含まず、成膜温度が900℃~1050℃の範囲で成膜してもよい。また、第1TiCN層よりも高温で成膜してもよい。第2TiCN層の厚みは10nm~900nmとしてもよい。
 ここで、第1TiCN層と第2TiCN層との間には、チタンを30~70原子%、炭素を15~35原子%、窒素を15~35原子%、酸素を2~10原子%の割合で含有する界面層(図示せず)が配置されていてもよい。界面層の厚みは5nm~50nmとしてもよい。
 以下に第1TiCN層の成膜条件の例を説明する。成膜温度を780℃~880℃、ガス圧を5kPa~25kPaとし、反応ガス組成として、体積%で四塩化チタン(TiCl)ガスを0.5体積%~10体積%、窒素(N)ガスを5体積%~60体積%、アセトニトリル(CHCN)ガスを0.1体積%~3.0体積%、残りを水素(H)ガスとして成膜してもよい。このとき、アセトニトリル(CHCN)ガスの含有比率を成膜初期よりも成膜後期で増すことによって、第1TiCN層を構成する炭窒化チタン柱状結晶の平均結晶幅を基体側よりも表面側の方が大きい構成とすることができる。
 次に、第2TiCN層の成膜条件について説明する。成膜温度を900℃~990℃、ガス圧を5kPa~40kPaとし、反応ガスの組成を、四塩化チタン(TiCl)ガスを1体積%~4体積%、窒素(N)ガスを5体積%~20体積%、メタン(CH)ガスを0.1体積%~10体積%、残りを水素(H)ガスとして成膜してもよい。
 その後、所望により、成膜した被覆層表面の少なくとも切刃部を研磨加工する。この研磨加工により、切刃部が平滑に加工され、被削材の溶着を抑制して、さらに耐欠損性に優れた工具となる。
 以上、本開示の被覆工具について説明したが、本開示は上述の実施形態に限定されず、本開示の要旨を逸脱しない範囲において、各種の改良および変更を行なってもよい。
 <切削工具>
 次に、本開示の切削工具について図面を用いて説明する。
 本開示の切削工具101は、図5に示すように、例えば、第1端(図5における上端)から第2端(図5における下端)に向かって延びる棒状体である。切削工具101は、図5に示すように、第1端側(先端側)にポケット103を有するホルダ105と、ポケット103に位置する上記の被覆工具1とを備えている。切削工具101は、被覆工具1を備えているため、長期に渡り安定した切削加工を行うことができる。
 ポケット103は、被覆工具1が装着される部分であり、ホルダ105の下面に対して平行な着座面と、着座面に対して傾斜する拘束側面とを有している。また、ポケット103は、ホルダ105の第1端側において開口している。
 ポケット103には被覆工具1が位置している。このとき、被覆工具1の下面がポケット103に直接に接していてもよく、また、被覆工具1とポケット103との間にシート(図示しない)が挟まれていてもよい。
 被覆工具1は、第1面3及び第2面5が交わる稜線における切刃7として用いられる部分の少なくとも一部がホルダ105から外方に突出するようにホルダ105に装着される。本実施形態においては、被覆工具1は、固定ネジ107によって、ホルダ105に装着されている。すなわち、被覆工具1の貫通孔17に固定ネジ107を挿入し、この固定ネジ107の先端をポケット103に形成されたネジ孔(図示しない)に挿入してネジ部同士を螺合させることによって、被覆工具1がホルダ105に装着されている。
 ホルダ105の材質としては、鋼、鋳鉄などを用いることができる。これらの部材の中で靱性の高い鋼を用いてもよい。
 本実施形態においては、いわゆる旋削加工に用いられる切削工具101を例示している。旋削加工としては、例えば、内径加工、外径加工及び溝入れ加工などが挙げられる。なお、切削工具101としては旋削加工に用いられるものに限定されない。例えば、転削加工に用いられる切削工具に上記の実施形態の被覆工具1を用いてもよい。
 まず、平均粒径1.2μmの金属コバルト粉末を6質量%、平均粒径2.0μmの炭化チタン粉末を0.5質量%、平均粒径2.0μmの炭化ニオブ粉末を5質量%、残部が平均粒径1.5μmのタングステンカーバイト粉末の割合で添加、混合し、プレス成形により工具形状(CNMG120408)に成形した。その後、脱バインダ処理を施し、アルゴン雰囲気および窒素雰囲気等の非酸化性雰囲気中で、1450℃~1600℃の温度で、1時間焼成して超硬合金からなる基体を作製した。その後、作製した基体にブラシ加工をし、切刃となる部分にRホーニングを施した。
 次に、上記の超硬合金の基体に対して、化学気相蒸着(CVD)法により被覆層を成膜した。表1の例では、基体に直接、中間層、Al層を成膜した。また、表2の例では、上記の超硬合金の基体の表面にTiN層を設け、TiN層の上に順に第1TiCN層、第2TiCN層、中間層、Al層を設けた。それぞれ試料の中間層の成膜条件は、表1、2に記載した。なお、中間層の成膜においては、TiClガス、Nガス、COガスおよびHガスを用いた。表1、2に示す原料ガスの欄に記載したのは、それぞれのガスの体積%である。表1、2において、前期、後期と示した成膜条件で、前期、後期の順で成膜した。なお、前期のみ記載し、後期の記載がない試料では、成膜条件を変えずに前期の成膜条件のみで成膜した。
 Al層の成膜温度は、950℃とした。ガス圧は、7.5kPaとした。反応ガスの組成は、三塩化アルミニウム(AlCl)ガスを3.7体積%、塩化水素(HCl)ガスを0.7体積%、二酸化炭素(CO)ガスを4.3体積%、硫化水素(HS)ガスを0.3体積%、残りを水素(H)ガスとした。Al層の成膜時間は、380分とした。
 表2の例におけるTiN層の成膜条件を以下に示す。TiN層の成膜温度は、850度とした。ガス圧は、16kPaとした。反応ガスの組成は、四塩化チタン(TiCl)ガスを1.0体積%、窒素(N)ガスを38体積%、残りを水素(H)ガスとした。成膜時間は180分とした。
 表2の例における第1TiCN層の成膜条件を以下に示す。成膜温度を850℃、ガス圧を9.0kPaとした。反応ガス組成は、体積%で四塩化チタン(TiCl)ガスを4.0体積%、窒素(N)ガスを23体積%、アセトニトリル(CHCN)ガスを0.4体積%、残りを水素(H)ガスとした。成膜時間は400分とした。
 表2における第2TiCN層の成膜条件を以下に示す。成膜温度は、950℃とした。ガス圧は、13kPaとした。反応ガスの組成が、四塩化チタン(TiCl)ガスを4体積%、窒素(N)ガスを20体積%、メタン(CH)ガスを8体積%、残りを水素(H)ガスとした。成膜時間は、80分とした。
 表1、2の試料について、被覆層を含む断面において、SEM観察を行い、複数の第1突起のうち、複合突起が占める割合を測定した。また、第1突起および複合突起の形態を観察した。その結果を、表1、2に示す。
 得られた試料を用いて、下記の条件において、断続切削試験を行い、耐欠損性を評価した。試験結果は表1、2に示す。表1、2に示す衝撃回数(比率)は、試料No.1における衝撃回数に対する、それぞれの試料の衝撃回数の比率である。衝撃回数(比率)が大きいほど、耐欠損性に優れるということである。
<断続切削条件>
被削材 :クロムモリブデン鋼 4本溝入り鋼材(SCM440)
工具形状:CNMG120408
切削速度:300m/分
送り速度:0.3mm/rev
切り込み:1.5mm
その他 :水溶性切削液使用
評価項目:Al層剥離に至る衝撃回数を測定。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1において、複数の第1突起のうち複合突起が占める割合が、30%以下であり、本開示の実施例である試料No.3、5~9の被覆工具はいずれも耐欠損性が優れていた。複数の第1突起のうち複合突起が占める割合が、30%を超える試料No.1、2は、試料No.3、5~9よりも耐欠損性が劣っていた。また、複合突起を有さない試料No.4、10は、試料No.3、5~9よりも耐欠損性が劣っていた。
 表2において、複数の第1突起のうち複合突起が占める割合が、30%以下であり、本開示の実施例である試料No.13、15~19の被覆工具はいずれも耐欠損性が優れていた。複数の第1突起のうち複合突起が占める割合が、30%を超える試料No.11、12は、試料No.13、15~19よりも耐欠損性が劣っていた。また、複合突起を有さない試料No.14、20は、試料No.13、15~19よりも耐欠損性が劣っていた。
1   被覆工具
2   第1面、すくい面
3   第2面、逃げ面
4   切刃
5   基体
7   被覆層
9   中間層
10a TiN層
10b 第1TiCN層
10c 第2TiCN層
11  Al
13  第1突起
13a 第1突起の麓
13b 第1突起の先端
15  第2突起
15a 第2突起の麓
15b 第2突起の先端
17  複合突起
19  第3突起
101 切削工具
103 ポケット
105 ホルダ
107 固定ネジ
 
 

Claims (11)

  1.  基体と、該基体の表面に位置する被覆層とを備えた被覆工具であって、
     前記被覆層は、Tiを含有する中間層と、Al層とを有し、
     該Al層は、前記中間層よりも前記基体から遠い位置において前記中間層に接して位置しており、
     前記中間層は、前記Al層に向かって突出した複数の第1突起を有し、
     該複数の第1突起の少なくとも一つは、前記第1突起の突出方向に交わる方向に突出した第2突起を有する複合突起であり、
     前記複数の第1突起のうち、前記複合突起が占める割合は、30%以下である、被覆工具。
  2.  前記複合突起が有する前記第2突起の平均数は、1.2以下である、請求項1に記載の被覆工具。
  3.  前記第2突起の麓の平均幅に対する前記第2突起の平均高さの比は、前記複数の第1突起の麓の平均幅に対する前記複数の第1突起の平均高さの比よりも大きい、請求項1または2に記載の被覆工具。
  4.  前記複数の第1突起の麓の平均幅に対する前記複数の第1突起の平均高さの比が1.2以下である、請求項1~3のいずれかに記載の被覆工具。
  5.  前記複数の第1突起の麓の平均幅は10nm以上、50nm未満であり、前記第1突起の平均高さは10nm以上、60nm未満である、請求項1~4のいずれかに記載の被覆工具。
  6.  前記複数の第1突起の先端の角度は、50°以上、90°以下である、請求項1~5のいずれかに記載の被覆工具。
  7.  前記複合突起は、前記第2突起の突出方向に突出した第3突起を有する、請求項1~6のいずれかに記載の被覆工具。
  8.  前記被覆層は、前記基体から順に、第1TiCN層、第2TiCN層、前記中間層、前記Al層を有する、請求項1~7のいずれかに記載の被覆工具。
  9.  前記中間層は、CとNとを含有する、請求項1~8のいずれかに記載の被覆工具。
  10.  前記中間層は、さらにOを含有する、請求項9に記載の被覆工具。
  11.  第1端から第2端に向かって延び、前記第1端側にポケットを有するホルダと、
     前記ポケットに位置する請求項1~10のいずれかに記載の被覆工具と、を備えた切削工具。
     
PCT/JP2020/028795 2019-07-29 2020-07-28 被覆工具およびそれを備えた切削工具 WO2021020367A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/630,582 US20220250162A1 (en) 2019-07-29 2020-07-28 Coated tool and cutting tool including the same
CN202080052594.4A CN114173967A (zh) 2019-07-29 2020-07-28 覆盖工具以及具备该覆盖工具的切削工具
KR1020227001768A KR20220024686A (ko) 2019-07-29 2020-07-28 피복공구 및 그것을 구비한 절삭공구
JP2021535345A JP7301970B2 (ja) 2019-07-29 2020-07-28 被覆工具およびそれを備えた切削工具
EP20846825.6A EP4005710A4 (en) 2019-07-29 2020-07-28 COATED TOOL AND THIS COMPREHENSIVE CUTTING TOOL

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-138993 2019-07-29
JP2019138993 2019-07-29

Publications (1)

Publication Number Publication Date
WO2021020367A1 true WO2021020367A1 (ja) 2021-02-04

Family

ID=74229167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/028795 WO2021020367A1 (ja) 2019-07-29 2020-07-28 被覆工具およびそれを備えた切削工具

Country Status (6)

Country Link
US (1) US20220250162A1 (ja)
EP (1) EP4005710A4 (ja)
JP (1) JP7301970B2 (ja)
KR (1) KR20220024686A (ja)
CN (1) CN114173967A (ja)
WO (1) WO2021020367A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5958569A (en) * 1995-10-27 1999-09-28 Teledyne Industries, Inc. Anchored oxide coatings on hard metal cutting tools
JP2004074324A (ja) 2002-08-13 2004-03-11 Hitachi Tool Engineering Ltd 酸化アルミニウム被覆工具
JP2009166216A (ja) 2008-01-21 2009-07-30 Hitachi Tool Engineering Ltd 被覆工具
JP2010173025A (ja) * 2009-01-30 2010-08-12 Mitsubishi Materials Corp 表面被覆切削工具
JP2010253594A (ja) * 2009-04-23 2010-11-11 Kyocera Corp 表面被覆工具
KR20100135641A (ko) * 2009-06-17 2010-12-27 한국야금 주식회사 절삭공구 또는 내마모성 공구용 표면 피복 박막
JP2012071396A (ja) * 2010-09-29 2012-04-12 Kyocera Corp 表面被覆部材
US20130149527A1 (en) 2011-06-03 2013-06-13 Korloy Inc. Coating layer for cutting tools
WO2017090765A1 (ja) * 2015-11-28 2017-06-01 京セラ株式会社 切削工具
WO2019146785A1 (ja) * 2018-01-29 2019-08-01 京セラ株式会社 被覆工具およびそれを備えた切削工具

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6447890B1 (en) * 1997-06-16 2002-09-10 Ati Properties, Inc. Coatings for cutting tools
JP4936761B2 (ja) * 2006-03-28 2012-05-23 京セラ株式会社 切削工具
JP5317722B2 (ja) * 2009-01-28 2013-10-16 京セラ株式会社 表面被覆切削工具
WO2013081047A1 (ja) * 2011-11-29 2013-06-06 京セラ株式会社 被覆工具
JP5563607B2 (ja) 2012-01-20 2014-07-30 東洋アルミニウム株式会社 フレーク状導電フィラー
WO2017057456A1 (ja) * 2015-09-28 2017-04-06 京セラ株式会社 被覆工具
DE112017000972B4 (de) * 2016-02-24 2024-02-22 Kyocera Corporation Beschichtetes werkzeug

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5958569A (en) * 1995-10-27 1999-09-28 Teledyne Industries, Inc. Anchored oxide coatings on hard metal cutting tools
JP2004074324A (ja) 2002-08-13 2004-03-11 Hitachi Tool Engineering Ltd 酸化アルミニウム被覆工具
JP2009166216A (ja) 2008-01-21 2009-07-30 Hitachi Tool Engineering Ltd 被覆工具
JP2010173025A (ja) * 2009-01-30 2010-08-12 Mitsubishi Materials Corp 表面被覆切削工具
JP2010253594A (ja) * 2009-04-23 2010-11-11 Kyocera Corp 表面被覆工具
KR20100135641A (ko) * 2009-06-17 2010-12-27 한국야금 주식회사 절삭공구 또는 내마모성 공구용 표면 피복 박막
JP2012071396A (ja) * 2010-09-29 2012-04-12 Kyocera Corp 表面被覆部材
US20130149527A1 (en) 2011-06-03 2013-06-13 Korloy Inc. Coating layer for cutting tools
WO2017090765A1 (ja) * 2015-11-28 2017-06-01 京セラ株式会社 切削工具
WO2019146785A1 (ja) * 2018-01-29 2019-08-01 京セラ株式会社 被覆工具およびそれを備えた切削工具

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4005710A4

Also Published As

Publication number Publication date
US20220250162A1 (en) 2022-08-11
EP4005710A1 (en) 2022-06-01
KR20220024686A (ko) 2022-03-03
JPWO2021020367A1 (ja) 2021-02-04
EP4005710A4 (en) 2022-11-30
CN114173967A (zh) 2022-03-11
JP7301970B2 (ja) 2023-07-03

Similar Documents

Publication Publication Date Title
JP4994367B2 (ja) 切削工具及びその製造方法、並びに切削方法
JP7037581B2 (ja) 被覆工具およびそれを備えた切削工具
WO2012144088A1 (ja) 表面被覆切削工具およびその製造方法
WO2021020366A1 (ja) 被覆工具およびそれを備えた切削工具
JP6143158B2 (ja) 表面被覆部材およびその製造方法
JP7037580B2 (ja) 被覆工具およびこれを備えた切削工具
WO2017057456A1 (ja) 被覆工具
WO2021020367A1 (ja) 被覆工具およびそれを備えた切削工具
WO2021020368A1 (ja) 被覆工具およびそれを備えた切削工具
WO2021020365A1 (ja) 被覆工具およびそれを備えた切削工具
WO2019181793A1 (ja) インサート及びこれを備えた切削工具
JP7037582B2 (ja) 被覆工具およびこれを備えた切削工具
WO2024095655A1 (ja) 被覆工具および切削工具
JP7441177B2 (ja) 被覆工具およびそれを備えた切削工具
WO2019181791A1 (ja) 工具及びこれを備えた切削工具
JP5822780B2 (ja) 切削工具
JP2014188661A (ja) 切削インサートおよび切削工具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20846825

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227001768

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021535345

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020846825

Country of ref document: EP

Effective date: 20220228