WO2021015145A1 - Chip for generating thermal convection and reaction method - Google Patents
Chip for generating thermal convection and reaction method Download PDFInfo
- Publication number
- WO2021015145A1 WO2021015145A1 PCT/JP2020/027955 JP2020027955W WO2021015145A1 WO 2021015145 A1 WO2021015145 A1 WO 2021015145A1 JP 2020027955 W JP2020027955 W JP 2020027955W WO 2021015145 A1 WO2021015145 A1 WO 2021015145A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- liquid
- heat convection
- flow path
- rotating body
- receiving portion
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M1/00—Apparatus for enzymology or microbiology
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M1/00—Apparatus for enzymology or microbiology
- C12M1/34—Measuring or testing with condition measuring or sensing means, e.g. colony counters
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6844—Nucleic acid amplification reactions
- C12Q1/686—Polymerase chain reaction [PCR]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N37/00—Details not covered by any other group of this subclass
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/04—Moving fluids with specific forces or mechanical means
- B01L2400/0403—Moving fluids with specific forces or mechanical means specific forces
- B01L2400/0442—Moving fluids with specific forces or mechanical means specific forces thermal energy, e.g. vaporisation, bubble jet
- B01L2400/0445—Natural or forced convection
Definitions
- the present invention relates to a chip for generating heat convection and a reaction method.
- PCR polymerase chain reaction
- PCR is a method that can amplify a large amount of a specific DNA fragment from an extremely small amount of DNA sample in a short time, and is used not only in basic research but also in a wide range of fields from clinical genetic diagnosis to food hygiene inspection and criminal investigation. ing.
- Thermal convection PCR has been proposed as a method of promoting PCR.
- Patent Document 1 discloses a disk-shaped microchannel chip having an annular channel for performing centrifugally accelerated thermal convection PCR.
- the thermal convection generation chip described in the same document has three solution inlets (“accepting part 121” in the same document), one is a sample liquid, one is a PCR liquid, and one is an evaporation suppressing liquid ( Mineral oil) is introduced.
- a micro flow path (“pull passage 122” in the same document) extends from there to form a V-shaped flow path, and a space region for weighing (“first region 122a” in the same document) for storing a solution on the downstream side. ).
- first region 122a space region for weighing
- Each liquid introduced from the introduction port (“reception section 121” in the same document) enters the microchannel by capillarity and fills the weighing space area. At this time, by centrifuging, the liquid in the weighing region is transferred to the annular flow path starting from the valley of the V-shaped structure, and the surplus is returned to the introduction port side so that the liquid of the required capacity for the annular flow path is released. Be supplied. Further, by arranging a plurality of V-shaped channels for weighing and arranging an annular channel downstream of each branch, it is possible to detect a plurality of types of genes in one sample.
- the present invention has been made in view of the above problems in the prior art, and an object of the present invention is to improve the accuracy of the amount of liquid supplied to the heat convection flow path.
- the first aspect of the present invention includes a rotating body in which a heat convection flow path, an introduction port and a supply path are formed, and the liquid introduced into the introduction port is supplied to the heat convection flow path by the supply path.
- a liquid receiving portion communicating with the introduction port is formed on the rotating body, and the inner side surface and the inner bottom surface of the liquid receiving portion have sharp angles.
- the supply path has a liquid inflow port that is open on the inner side surface by arranging the bottom surface on the inner bottom surface of the liquid receiving portion.
- a second aspect of the present invention includes a rotating body in which a heat convection flow path, an introduction port, and a supply path are formed, and supplies the liquid introduced into the introduction port to the heat convection flow path by the supply path.
- a chip for generating heat convection in which heat is convected in the heat convection flow path, and a liquid receiving portion communicating with the introduction port is formed in the rotating body, and the supply path allows the liquid in the liquid receiving portion to be formed.
- the suction passage has a suction passage for sucking by a capillary phenomenon, the suction passage has a weighing space, and the suction passage has a liquid in the weighing space in another region due to the centrifugal force when the rotating body is rotated.
- a third aspect of the present invention includes a rotating body in which a heat convection flow path, an introduction port, and a supply path are formed, and a liquid introduced into the introduction port is introduced into the heat convection flow path by the supply path.
- a liquid receiving portion communicating with the introduction port is formed in the rotating body, and the supply path is a liquid in the liquid receiving portion.
- the suction passage has a weighing space, and the suction passage has a liquid in the weighing space due to the centrifugal force when the rotating body is rotated.
- a surplus liquid storage portion is formed in the rotating body so as to be separated from the liquid in the region and supplied to the heat convection flow path, and the liquid separated from the liquid in the weighing space is stored by the centrifugal force. Has been done.
- a fourth aspect of the present invention includes a rotating body in which a heat convection flow path, an introduction port, and a supply path are formed, and a liquid introduced into the introduction port is introduced into the heat convection flow path by the supply path.
- a heat convection generating chip that is supplied and heat convected in the heat convection flow path, and communicates with the rotating body to a connection portion of the supply path with the heat convection flow path separately from the supply path.
- the sealant space is formed, the sealant space holds the solid sealant at room temperature, and the sealant is closed in order to block the heat convection flow path to which the liquid is supplied by the supply path.
- the sealing agent in the space for stopping agent is heated and melted, and is transferred to the connecting portion by the centrifugal force when the rotating body is rotated so that it can be filled.
- the liquid can be reliably introduced into the supply path and the supply shortage can be prevented, so that the accuracy of the liquid supply amount to the heat convection flow path can be improved.
- the unintended leakage of the liquid from the weighing space for weighing the supply amount to the heat convection flow path side can be prevented, so that the accuracy of the liquid supply amount to the heat convection flow path can be improved.
- the third aspect of the present invention since the surplus liquid is held in the surplus liquid storage portion, the accuracy of the amount of liquid supplied to the heat convection flow path can be improved.
- the heat convection flow path can be blocked by the existing sealant in the heat convection generation chip by heating and rotating at an appropriate timing. The accuracy of the liquid supply to the can be maintained.
- the heat convection generation chip 1 of the present embodiment is a disk-shaped microchannel chip, and has a rotating body 1c having a structure in which a disk 1a and an upper cylinder 1b are connected by a coaxial A as a main body. ..
- the disk 1a includes a core substrate 2, a ring-shaped top lid 3 into which an upper cylinder 1b can be inserted, and a bottom lid 4.
- the core substrate 2 has an upper surface 2A and a lower surface 2B.
- a groove forming a flow path or the like is formed in the core substrate 2, the upper surface opening of the groove is closed by the upper lid 3, and the lower surface opening is closed by the bottom lid 4, so that the flow path and the air passage are formed.
- the air port 100 provided on the upper surface is open.
- a notch 99 that is held during rotation or the like is formed on the outer edge of the disk 1a.
- the heat convection generation chip 1 is a 12-channel PCR microchannel chip, and 12 sets of heat convection channels 5 and a supply path 10 for supplying a solution to the disk 1a are central angles. Is divided into 12 equal parts and arranged in a divided range.
- the heat convection flow path 5 is a flow path formed in an annular shape.
- the upper end opening of the upper cylinder 1b is an introduction port 50.
- the space below the introduction port 50 is a liquid receiving unit 51 communicating with the introduction port 50.
- the bottom surface of the liquid receiving portion 51 is composed of the upper surface of the bottom lid 4.
- the liquid introduced into the introduction port 50 is distributed and supplied to the heat convection flow paths 5 of 12 through the supply passages 10 of 12, and heat convection is performed in each heat convection flow path 5.
- the configuration of the supply path 10 is as follows in the order from the most upstream liquid receiving portion 51 to the most downstream heat convection flow path 5. That is, the supply passage 10 has a configuration in which the first passage 11 whose upstream end is connected to the liquid receiving portion 51, then the second passage 12, the weighing space 13, and finally the introduction chamber 14 are connected to each other. The downstream end is connected to the heat convection flow path 5.
- the liquid receiving portion 51, the first passage 11, the second passage 12, the weighing space 13, the introduction chamber 14, and the heat convection flow path 5 are continuous in this order.
- the first passage 11, the second passage 12, and the weighing space 13 correspond to a suction passage that sucks the liquid in the liquid receiving portion 51 by a capillary phenomenon.
- the liquid in the liquid receiving portion 51 passes through the first passage 11 and the second passage 12 due to the capillary phenomenon, and is filled in the weighing space 13.
- the first passage 11 is a flow path that transitions outward in the radial direction.
- the second passage 12 is a flow path that transitions inward in the radial direction.
- the weighing space 13 is a flow path that transitions outward in the radial direction.
- the term "diameter direction" refers to the radial direction centered on the rotation center axis A of the rotating body 1c.
- the introduction chamber 14 is arranged radially outward from the weighing space 13.
- the heat convection flow path 5 is arranged radially outward from the introduction chamber 14.
- An air introduction port 13a is opened on the upper surface of the upstream end of the weighing space 13.
- the outlet 13b is open on the upper surface of the downstream end of the weighing space 13.
- the downstream end of the first passage 11 and the upstream end of the second passage 12 are connected to the upstream end of the surplus liquid storage portion 15.
- a dam portion 15a is formed at the upstream end of the surplus liquid storage portion 15.
- the surplus liquid storage portion 15 bypasses the radial outer side of the heat convection flow path 5 and extends in an arc shape so as to straddle the outermost radial end 15e of the surplus liquid storage portion 15.
- the downstream end of the surplus liquid storage portion 15 is connected to the air passage 16a in the radial direction from the outermost radial end 15e.
- the air passage 16a, the filter installation chamber 17, and the air passage 18 are continuous in this order.
- the sealant space 20 communicates with the introduction chamber 14 via the sealant supply path 19.
- the sealing agent space 20 is arranged inward in the radial direction from the introduction chamber 14 in order to enable the supply of the sealing agent by centrifugal force.
- the air introduction port 13a of the weighing space 13 and the radial inner end of the sealing agent space 20 are connected to the air passage 16b.
- the air passage 16b, the filter installation chamber 17, and the air passage 18 are continuous in this order.
- the portion of the air passage 18 that is not blocked by the upper lid 3 is the air port 100.
- the air port 100 is installed at a position radially inward from the weighing space 13 and the sealing agent space 20.
- a filter having a property of allowing air to pass through and not allowing liquid to pass through is installed.
- the liquid in the weighing space 13 is separated from the liquid in the other regions (11, 12) and supplied to the heat convection flow path 5 by the centrifugal force when the rotating body 1c is rotated. ..
- the introduction of air from the air passage 16b promotes the separation of the liquid in the weighing space 13 and the liquid in the second passage 12.
- the supply path 10 has a liquid inflow port 11a having a bottom surface arranged on the inner bottom surface 51b of the liquid receiving portion 51 and opening to the inner side surface 51a.
- the inner bottom surface 51b is composed of the upper surface of the bottom lid 4.
- the liquid inflow port 11a is an upstream end opening of the first passage 11. Since the inner bottom surface of the first passage 11 is also composed of the upper surface of the bottom lid 4, the inner bottom surface 51b of the liquid receiving portion 51 and the inner bottom surface of the first passage 11 are at the same height level.
- the bottom of the liquid inlet 11a is arranged on the inner bottom surface 51b of the liquid receiving portion 51.
- the surface (inner side surface 51a) through which the liquid inflow port 11a opens is continuous in contact with the inner bottom surface 51b of the liquid receiving portion 51 at an acute angle, and adjacent surfaces are in front of the liquid inflow port 11a.
- a capillary phenomenon is generated there, and the liquid in the liquid receiving portion 51 can be quickly flowed into the liquid inlet 11a.
- the introduction of the liquid into the supply path 10 is quick and reliable, and the supply shortage can be prevented, so that the accuracy of the liquid supply amount to the heat convection flow path 5 can be improved.
- the liquid inlets 11a of the plurality of sets of supply passages 10 are similarly opened to the inner side surface 51a of one liquid receiving portion 51.
- the central axis A of the introduction port 50 and the liquid receiving portion 51 is arranged on the rotating central axis A of the rotating body 1c, and the inner side surface 51a of the liquid receiving portion 51 is arranged equidistant from the rotating central axis A. ..
- at least the lower portion of the inner side surface 51a of the liquid receiving portion 51 is formed by a tapered surface that expands toward a lower position, and the liquid inflow port 11a opens in the tapered surface.
- the outlet 13b on the heat convection flow path 5 side of the weighing space 13 opens in the plane 13d with the edge of the outlet 13b separated from the edge of the plane 13d formed by the rotating body 1c. ..
- the surrounding surface surrounding the outlet 13b is arranged on a plane including the opening surface of the outlet 13b. Therefore, the liquid that has reached the outlet 13b is prevented from coming into contact with the outer surface of the outlet 13b, and the liquid is prevented from leaking from the outlet 13b. If there is a liquid leaking from the outlet 13b, the liquid will be introduced into the heat convection flow path 5, so that the weighing accuracy will drop. Therefore, the weighing accuracy is improved by preventing the liquid from leaking from the outlet 13b.
- the air introduction port 13a of the weighing space 13 also opens to the plane 13c with the edge of the air introduction port 13a separated from the edge of the plane 13c formed by the rotating body 1c. Therefore, it is possible to prevent the liquid from leaking from the air inlet 13a, and the weighing accuracy is improved.
- the plane 13d where the outlet 13b opens and the plane 13c where the air introduction port 13a opens are both upward horizontal planes, but in order to obtain the effect of preventing the liquid from leaking out.
- the angle of the opening surface of the outlet 13b and the air introduction port 13a may be any angle. For example, the same effect can be obtained by opening the outlet 13b and the air inlet 13a in a vertical plane or a downward horizontal plane.
- the surplus liquid storage unit 15 is a space in which the liquid separated from the liquid in the weighing space 13 (the liquid in the passages 11 and 12) is stored by the centrifugal force generated by the rotation of the rotating body 1c. Exhaust through the air passage 16a promotes the inflow of liquid into the surplus liquid storage unit 15. Since the excess liquid storage portion 15 extends from the same position in the radial direction to the outside as the heat convection flow path 5, the centrifugal force due to the rotation of the rotating body 1c acts equal to or more than the heat convection flow path 5.
- the dam portion 15a is formed so as to project upward from the bottom surface of the excess liquid storage portion and cross between both side surfaces.
- the dam portion 15a has an action of blocking the liquid that is about to flow out from the excess liquid storage portion 15.
- the dam portion 15a is provided inward in the radial direction from the outermost end 15e in the radial direction.
- the dam portions 15a may be provided in duplicate or more.
- the cross section of the flow path of the excess liquid storage portion 15 has rounded corner portions 15R.
- the rounded corner portion 15R is a corner portion formed by the dam portion 15a and both side surfaces in the dam portion 15a. Other than that, the corners formed by the top surface and both side surfaces of the surplus liquid storage portion 15 are rounded corners 15R.
- the dam portion 15a By providing the dam portion 15a, it is possible to provide a rounded corner portion 15R not only on the top surface side but also on the bottom surface side, so that the liquid to flow back along the corner portion is rounded. It is blocked by either corner 15R.
- the radius of curvature of the corner portion 15R is preferably 0.1 mm or more.
- the contents of the experiment for investigating the relationship between the radius of curvature of the corner portion (15R) of the cross section of the flow path and the flow distance following the corner portion are disclosed below.
- a required number of grooves having a depth of 0.5 mm, a width of 2.5 mm, and a length of 30.0 mm were formed on the upper surface of the resin plate, and these grooves were used as an experimental flow path. Therefore, the experimental flow path has a corner formed by the bottom surface and one side surface, and a corner portion formed by the bottom surface and the other side surface, and the upper surface is open.
- Five types of flow paths for experiments were prepared in which the radius of curvature R of the two corners was 0.0, 0.05, 0.1, 0.2, and 0.3.
- the resin plate was kept horizontal, and the same amount (5 ⁇ liter) of the colored solution was injected into the longitudinal end of each experimental flow path and observed. Then, the colored solution moved so as to extend along the corners on both sides of the flow path.
- the width of the flow path of the dam portion 15a, the front portion 15b, and the rear portion 15c thereof is widened with respect to the storage portion 15d further downstream in the inflow direction from the rear portion 15c.
- the backflow path that follows the corners becomes longer, so that it becomes difficult for the liquid in the surplus liquid storage portion 15 to flow back and flow out toward the first passage 11 and the second passage 12.
- the rounded corner portions 15R are not provided.
- the vertical corners 15U in the front 15b and the rear 15c are rounded.
- the axis of the radius of curvature of the corner portion 15U is parallel to the rotation center axis A of the rotating body 1c.
- the presence of the rounded corners 15U further suppresses the flow due to the capillary phenomenon in the excess liquid storage portion 15, and prevents unintended inflow and backflow. ..
- the dam portion 15a and the storage portion 15d are provided with rounded corner portions 15R.
- a connecting portion of the supply path 10 with the heat convection flow path 5, that is, a sealing agent space 20 communicating with the introduction chamber 14 is formed.
- Paraffin or the like is pre-loaded in the sealing agent space 20 as a solid sealing agent at room temperature, and then the top lid 3 and the bottom lid 4 are attached to the core substrate 2.
- the sealant in the sealant space 20 is heated, melted, and transferred to the connection portion (introduction chamber 14) by the centrifugal force when the rotating body 1c is rotated and filled.
- the introduction of air from the air passage 16b promotes the outflow of the sealant from the sealant space 20.
- the introduction chamber 14 is filled with the sealant, and the heat convection flow path 5 is closed. Therefore, the introduction chamber 14 is adjacent to the heat convection flow path 5 downstream of the weighing space 13 and is also a space for closing the inlet of the heat convection flow path 5 by filling with a sealing agent.
- the heat convection flow path 5 Since the heat convection flow path 5 is blocked, leakage due to evaporation of the liquid in the heat convection flow path 5 can be prevented. As described above, by heating and rotating at an appropriate timing, the heat convection flow path 5 can be blocked by the existing sealant in the heat convection generation chip 1, so that the liquid to the heat convection flow path 5 can be closed. The accuracy of the supply amount can be maintained.
- Primer DNA and probe DNA are arranged in advance in each heat convection flow path 5 in a dried state. This corresponds to various DNAs (bacterial species).
- a sample which is a collected biological substance is mixed in a sample container containing a predetermined reaction reagent solution to prepare a solution containing the sample and the reaction reagent.
- a container in which the lower end opening is laminated with aluminum foil or the like is used as the sample container.
- an opening protrusion 52 having a sharp upper portion is provided.
- the sample container is inserted into the liquid receiving portion 51 from the introduction port 50, the laminate is broken by the opening protrusion 52 to open the sample container, and the solution containing the sample and the reaction reagent in the sample container is received as a liquid. Introduce to section 51.
- the solution is introduced up to the weighing space 13 due to the weight of the solution and the capillary phenomenon.
- the rotating body 1c is rotated to supply only the solution in the weighing space 13 to the heat convection flow path 5. Since the same flow occurs in the supply passage 10 and the heat convection flow path 5 of each set, the solution is distributed and supplied to the heat convection flow paths 5 of a plurality of sets.
- the solution is thermally convected in each heat convection flow path 5 under each predetermined condition to carry out a polymerase chain reaction or a reverse transcription polymerase chain reaction. I do.
- the accuracy of the amount of liquid supplied to the heat convection flow path 5 can be improved. Further, it is easy to automate the work from loading the sample container into the introduction port 50 to the heat convection reaction, and the reactions in the plurality of heat convection flow paths 5 can be carried out at the same time, so that the workability is improved. Can be done.
- the sample container may be manually loaded into the introduction port 50, but by letting the machine perform the loading, more stable control of the work operation and a wider range of automation can be realized.
- the heat convection generation chip 1 already has a solid sealant, and the sample container has one loading part (introduction port 50), and after the sample container is loaded into the introduction port 50, it rotates. Since it can be carried out by rotating the body 1c and controlling the temperature of each part, workability is improved, and the work load of the machine due to automation is small and automation is easy.
- the number of channels (the number of heat convection channels) is set to 12, but the number of channels is not limited and may be more than 12 channels or less than 12 channels. It can be implemented by selecting the number of channels. This makes it possible to support a wide range of required channels.
- the present invention can be used for a chip for generating heat convection and a reaction method.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- General Health & Medical Sciences (AREA)
- Biotechnology (AREA)
- Biochemistry (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Immunology (AREA)
- Microbiology (AREA)
- Genetics & Genomics (AREA)
- Sustainable Development (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Medicinal Chemistry (AREA)
- Biomedical Technology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
Abstract
This chip 1 for generating thermal convection is provided with a rotating body 1c having formed therein a flow path 5 for thermal convection, an introduction port 50, and a supply path 10. A liquid-receiving section 51 communicating with the introduction port is formed in the rotating body, an inner surface 51a and an inner bottom surface 51b of the liquid-receiving section abut each other at an acute angle, and the supply path comprises a liquid inflow port 11a that has the base thereof arranged on the inner bottom surface of the liquid-receiving section and that opens on the inner surface. In addition, a suction passage in the supply path has a weighing space 13 and is configured so that liquid within the weighing space is separated from other liquid and supplied to the flow path for thermal convection by the centrifugal force of the rotating body. The edge of the outlet 13b of the weighing space on the flow path for thermal convection side is separated from the edge of a planar surface formed by the rotating body and opens on the planar surface. A surplus liquid storage section 15 in which liquid separated from the liquid within the weighing space by centrifugal force is stored is formed in the rotating body. A sealing agent that is a solid at room temperature is held in a sealing agent space 20.
Description
本発明は、熱対流生成用チップ及び反応方法に関する。
The present invention relates to a chip for generating heat convection and a reaction method.
遺伝子増幅方法として、ポリメラーゼ連鎖反応(Polymerase Chain Reaction、以下「PCR」と略す。)が知られている。PCRは、極めて微量のDNAサンプルから特定のDNA断片を短時間に大量に増幅できる方法であり、基礎研究のみならず、臨床遺伝子診断から食品衛生検査、犯罪捜査に至るまで、幅広い分野で利用されている。
PCRを促進する方法として、熱対流PCRが提案されている。特許文献1には、遠心促進型熱対流PCRを行うための円環流路を有するディスク状マイクロ流路チップが開示されている。
同文献に記載の熱対流生成用チップにあっては、溶液導入口(同文献中「受入部121」)が3つあり、ひとつは検体液、ひとつはPCR液、ひとつは蒸発抑制用液体(ミネラルオイル)が導入される。そこからマイクロ流路(同文献中「引通路122」)が伸長してV字型流路形状をしていて、下流側に溶液を貯える秤量用空間領域(同文献中「第1領域122a」)がある。検体液用領域とPCR液用領域の容量を合わせると円環流路(同文献中「熱対流用流路11」)と同容量になる。導入口(同文献中「受入部121」)から導入された各液体は、マイクロ流路内を毛細管現象によって進入して秤量用空間領域を満たす。このとき遠心することによってV字構造の谷部を起点に、秤量用領域の液体が円環流路に移送され、また余剰分は導入口側にもどることで円環流路に必要な容量の液体が供給される。また、秤量用V字型流路が複数配置され、それぞれ分岐した下流に円環流路を配置させることで、一つの検体に対して複数種の遺伝子を検出することができる。 As a gene amplification method, a polymerase chain reaction (hereinafter abbreviated as "PCR") is known. PCR is a method that can amplify a large amount of a specific DNA fragment from an extremely small amount of DNA sample in a short time, and is used not only in basic research but also in a wide range of fields from clinical genetic diagnosis to food hygiene inspection and criminal investigation. ing.
Thermal convection PCR has been proposed as a method of promoting PCR.Patent Document 1 discloses a disk-shaped microchannel chip having an annular channel for performing centrifugally accelerated thermal convection PCR.
The thermal convection generation chip described in the same document has three solution inlets (“accepting part 121” in the same document), one is a sample liquid, one is a PCR liquid, and one is an evaporation suppressing liquid ( Mineral oil) is introduced. A micro flow path (“pull passage 122” in the same document) extends from there to form a V-shaped flow path, and a space region for weighing (“first region 122a” in the same document) for storing a solution on the downstream side. ). When the volumes of the sample solution region and the PCR solution region are combined, the volume becomes the same as that of the annular flow path (“heatconvection flow path 11” in the same document). Each liquid introduced from the introduction port (“reception section 121” in the same document) enters the microchannel by capillarity and fills the weighing space area. At this time, by centrifuging, the liquid in the weighing region is transferred to the annular flow path starting from the valley of the V-shaped structure, and the surplus is returned to the introduction port side so that the liquid of the required capacity for the annular flow path is released. Be supplied. Further, by arranging a plurality of V-shaped channels for weighing and arranging an annular channel downstream of each branch, it is possible to detect a plurality of types of genes in one sample.
PCRを促進する方法として、熱対流PCRが提案されている。特許文献1には、遠心促進型熱対流PCRを行うための円環流路を有するディスク状マイクロ流路チップが開示されている。
同文献に記載の熱対流生成用チップにあっては、溶液導入口(同文献中「受入部121」)が3つあり、ひとつは検体液、ひとつはPCR液、ひとつは蒸発抑制用液体(ミネラルオイル)が導入される。そこからマイクロ流路(同文献中「引通路122」)が伸長してV字型流路形状をしていて、下流側に溶液を貯える秤量用空間領域(同文献中「第1領域122a」)がある。検体液用領域とPCR液用領域の容量を合わせると円環流路(同文献中「熱対流用流路11」)と同容量になる。導入口(同文献中「受入部121」)から導入された各液体は、マイクロ流路内を毛細管現象によって進入して秤量用空間領域を満たす。このとき遠心することによってV字構造の谷部を起点に、秤量用領域の液体が円環流路に移送され、また余剰分は導入口側にもどることで円環流路に必要な容量の液体が供給される。また、秤量用V字型流路が複数配置され、それぞれ分岐した下流に円環流路を配置させることで、一つの検体に対して複数種の遺伝子を検出することができる。 As a gene amplification method, a polymerase chain reaction (hereinafter abbreviated as "PCR") is known. PCR is a method that can amplify a large amount of a specific DNA fragment from an extremely small amount of DNA sample in a short time, and is used not only in basic research but also in a wide range of fields from clinical genetic diagnosis to food hygiene inspection and criminal investigation. ing.
Thermal convection PCR has been proposed as a method of promoting PCR.
The thermal convection generation chip described in the same document has three solution inlets (“accepting part 121” in the same document), one is a sample liquid, one is a PCR liquid, and one is an evaporation suppressing liquid ( Mineral oil) is introduced. A micro flow path (“pull passage 122” in the same document) extends from there to form a V-shaped flow path, and a space region for weighing (“first region 122a” in the same document) for storing a solution on the downstream side. ). When the volumes of the sample solution region and the PCR solution region are combined, the volume becomes the same as that of the annular flow path (“heat
しかし以上の従来技術にあっては、溶液導入から遠心促進型熱対流PCRを行うまでの各段階において、マイクロ流路中の液体を予定した領域に流動、安定させて制御するにはさらなる改良の余地があり、熱対流用流路への液体供給量に過不足が生じる恐れがあった。
However, in the above-mentioned prior art, it is further improved to control the liquid in the microchannel in a planned region by flowing and stabilizing it at each stage from the introduction of the solution to the execution of the centrifugally accelerated thermal convection PCR. There was room, and there was a risk of excess or deficiency in the amount of liquid supplied to the heat convection flow path.
本発明は以上の従来技術における問題に鑑みてなされたものであって、熱対流用流路への液体供給量の精度を向上することを課題とする。
The present invention has been made in view of the above problems in the prior art, and an object of the present invention is to improve the accuracy of the amount of liquid supplied to the heat convection flow path.
本発明の第1態様は、熱対流用流路、導入口及び供給路が形成された回転体を備え、前記導入口に導入された液体を前記供給路により前記熱対流用流路に供給し前記熱対流用流路で熱対流させる熱対流生成用チップであって、前記回転体に、前記導入口に連通する液体受容部が形成され、前記液体受容部の内側面と内底面とが鋭角を成して接し、前記供給路は、前記液体受容部の前記内底面上に底辺を配置して前記内側面に開口した液体流入口を有する。
The first aspect of the present invention includes a rotating body in which a heat convection flow path, an introduction port and a supply path are formed, and the liquid introduced into the introduction port is supplied to the heat convection flow path by the supply path. A chip for generating heat convection in which heat is convected in the flow path for heat convection. A liquid receiving portion communicating with the introduction port is formed on the rotating body, and the inner side surface and the inner bottom surface of the liquid receiving portion have sharp angles. The supply path has a liquid inflow port that is open on the inner side surface by arranging the bottom surface on the inner bottom surface of the liquid receiving portion.
また本発明の第2態様は、熱対流用流路、導入口及び供給路が形成された回転体を備え、前記導入口に導入された液体を前記供給路により前記熱対流用流路に供給し前記熱対流用流路で熱対流させる熱対流生成用チップであって、前記回転体に、前記導入口に連通する液体受容部が形成され、前記供給路は、前記液体受容部内の液体を毛細管現象により吸引する吸引通路を有し、前記吸引通路は、秤量空間を有し、前記吸引通路は、前記回転体を回転させたときの遠心力により、前記秤量空間内の液体が他の領域内の液体から分離して前記熱対流用流路に供給されよう構成され、前記秤量空間の前記熱対流用流路側の出口は、当該出口の縁を前記回転体が形成する平面の縁から離間して当該平面に開口している。
A second aspect of the present invention includes a rotating body in which a heat convection flow path, an introduction port, and a supply path are formed, and supplies the liquid introduced into the introduction port to the heat convection flow path by the supply path. A chip for generating heat convection in which heat is convected in the heat convection flow path, and a liquid receiving portion communicating with the introduction port is formed in the rotating body, and the supply path allows the liquid in the liquid receiving portion to be formed. The suction passage has a suction passage for sucking by a capillary phenomenon, the suction passage has a weighing space, and the suction passage has a liquid in the weighing space in another region due to the centrifugal force when the rotating body is rotated. It is configured to be separated from the liquid inside and supplied to the heat convection flow path, and the outlet of the weighing space on the heat convection flow path side is separated from the edge of the plane formed by the rotating body at the edge of the outlet. And it is open to the plane.
また本発明の第3の態様は、熱対流用流路、導入口及び供給路が形成された回転体を備え、前記導入口に導入された液体を前記供給路により前記熱対流用流路に供給し前記熱対流用流路で熱対流させる熱対流生成用チップであって、前記回転体に、前記導入口に連通する液体受容部が形成され、前記供給路は、前記液体受容部内の液体を毛細管現象により吸引する吸引通路を有し、前記吸引通路は、秤量空間を有し、前記吸引通路は、前記回転体を回転させたときの遠心力により、前記秤量空間内の液体が他の領域内の液体から分離して前記熱対流用流路に供給されよう構成され、前記遠心力により前記秤量空間内の液体から分離した液体が貯留される余剰液貯留部が、前記回転体に形成されている。
A third aspect of the present invention includes a rotating body in which a heat convection flow path, an introduction port, and a supply path are formed, and a liquid introduced into the introduction port is introduced into the heat convection flow path by the supply path. A chip for generating heat convection that is supplied and heat convected in the flow path for heat convection. A liquid receiving portion communicating with the introduction port is formed in the rotating body, and the supply path is a liquid in the liquid receiving portion. The suction passage has a weighing space, and the suction passage has a liquid in the weighing space due to the centrifugal force when the rotating body is rotated. A surplus liquid storage portion is formed in the rotating body so as to be separated from the liquid in the region and supplied to the heat convection flow path, and the liquid separated from the liquid in the weighing space is stored by the centrifugal force. Has been done.
また本発明の第4の態様は、熱対流用流路、導入口及び供給路が形成された回転体を備え、前記導入口に導入された液体を前記供給路により前記熱対流用流路に供給し前記熱対流用流路で熱対流させる熱対流生成用チップであって、前記回転体に、前記供給路とは別に、前記供給路の前記熱対流用流路との接続部に連通した封止剤用空間が形成され、前記封止剤用空間に常温で固形の封止剤が保持され、前記供給路により液体が供給された前記熱対流用流路を閉塞するために、前記封止剤用空間の前記封止剤を加温し、溶融させて、前記回転体を回転させたときの遠心力により、前記接続部に移送し充填可能にされている。
A fourth aspect of the present invention includes a rotating body in which a heat convection flow path, an introduction port, and a supply path are formed, and a liquid introduced into the introduction port is introduced into the heat convection flow path by the supply path. A heat convection generating chip that is supplied and heat convected in the heat convection flow path, and communicates with the rotating body to a connection portion of the supply path with the heat convection flow path separately from the supply path. The sealant space is formed, the sealant space holds the solid sealant at room temperature, and the sealant is closed in order to block the heat convection flow path to which the liquid is supplied by the supply path. The sealing agent in the space for stopping agent is heated and melted, and is transferred to the connecting portion by the centrifugal force when the rotating body is rotated so that it can be filled.
本発明の第1の態様によれば、供給路への液体の導入が確実になり、供給不足を防げるから、熱対流用流路への液体供給量の精度を向上することができる。
本発明の第2の態様によれば、供給量を秤量する秤量空間から熱対流用流路側への液体の意図しない漏出が防がれるから、熱対流用流路への液体供給量の精度を向上することができる。
本発明の第3の態様によれば、余剰液が余剰液貯留部に保持されるから、熱対流用流路への液体供給量の精度を向上することができる。
本発明の第4の態様によれば、適切なタイミングでの加温と回転により、熱対流生成用チップ内に既設の封止剤で熱対流用流路を閉塞できるから、熱対流用流路への液体供給量の精度を維持することができる。 According to the first aspect of the present invention, the liquid can be reliably introduced into the supply path and the supply shortage can be prevented, so that the accuracy of the liquid supply amount to the heat convection flow path can be improved.
According to the second aspect of the present invention, the unintended leakage of the liquid from the weighing space for weighing the supply amount to the heat convection flow path side can be prevented, so that the accuracy of the liquid supply amount to the heat convection flow path can be improved. Can be improved.
According to the third aspect of the present invention, since the surplus liquid is held in the surplus liquid storage portion, the accuracy of the amount of liquid supplied to the heat convection flow path can be improved.
According to the fourth aspect of the present invention, the heat convection flow path can be blocked by the existing sealant in the heat convection generation chip by heating and rotating at an appropriate timing. The accuracy of the liquid supply to the can be maintained.
本発明の第2の態様によれば、供給量を秤量する秤量空間から熱対流用流路側への液体の意図しない漏出が防がれるから、熱対流用流路への液体供給量の精度を向上することができる。
本発明の第3の態様によれば、余剰液が余剰液貯留部に保持されるから、熱対流用流路への液体供給量の精度を向上することができる。
本発明の第4の態様によれば、適切なタイミングでの加温と回転により、熱対流生成用チップ内に既設の封止剤で熱対流用流路を閉塞できるから、熱対流用流路への液体供給量の精度を維持することができる。 According to the first aspect of the present invention, the liquid can be reliably introduced into the supply path and the supply shortage can be prevented, so that the accuracy of the liquid supply amount to the heat convection flow path can be improved.
According to the second aspect of the present invention, the unintended leakage of the liquid from the weighing space for weighing the supply amount to the heat convection flow path side can be prevented, so that the accuracy of the liquid supply amount to the heat convection flow path can be improved. Can be improved.
According to the third aspect of the present invention, since the surplus liquid is held in the surplus liquid storage portion, the accuracy of the amount of liquid supplied to the heat convection flow path can be improved.
According to the fourth aspect of the present invention, the heat convection flow path can be blocked by the existing sealant in the heat convection generation chip by heating and rotating at an appropriate timing. The accuracy of the liquid supply to the can be maintained.
以下に本発明の一実施形態につき図1から図11を参照して説明する。以下は本発明の一実施形態であって本発明を限定するものではない。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 11. The following is an embodiment of the present invention and does not limit the present invention.
図1等に示すように本実施形態の熱対流生成用チップ1は、ディスク状マイクロ流路チップであり、ディスク1aと上部円筒1bとを同軸Aで連接した構造の回転体1cを本体とする。
ディスク1aは、コア基板2と、上部円筒1bを挿入できるリング状の上蓋3と、底蓋4と備える。コア基板2は、上面2Aと下面2Bとを有する。コア基板2に流路等を構成する溝が形成され、その溝の上面開口が上蓋3で閉じられ、下面開口が底蓋4で閉じられることで流路と空気路が形成される。但し、上面に設けられた空気口100は、開放されている。
ディスク1aの外縁部には、回転時等に保持される切り欠き99が形成されている。 As shown in FIG. 1 and the like, the heatconvection generation chip 1 of the present embodiment is a disk-shaped microchannel chip, and has a rotating body 1c having a structure in which a disk 1a and an upper cylinder 1b are connected by a coaxial A as a main body. ..
The disk 1a includes acore substrate 2, a ring-shaped top lid 3 into which an upper cylinder 1b can be inserted, and a bottom lid 4. The core substrate 2 has an upper surface 2A and a lower surface 2B. A groove forming a flow path or the like is formed in the core substrate 2, the upper surface opening of the groove is closed by the upper lid 3, and the lower surface opening is closed by the bottom lid 4, so that the flow path and the air passage are formed. However, the air port 100 provided on the upper surface is open.
Anotch 99 that is held during rotation or the like is formed on the outer edge of the disk 1a.
ディスク1aは、コア基板2と、上部円筒1bを挿入できるリング状の上蓋3と、底蓋4と備える。コア基板2は、上面2Aと下面2Bとを有する。コア基板2に流路等を構成する溝が形成され、その溝の上面開口が上蓋3で閉じられ、下面開口が底蓋4で閉じられることで流路と空気路が形成される。但し、上面に設けられた空気口100は、開放されている。
ディスク1aの外縁部には、回転時等に保持される切り欠き99が形成されている。 As shown in FIG. 1 and the like, the heat
The disk 1a includes a
A
また、熱対流生成用チップ1は、12チャンネルのPCR用のマイクロ流路チップであり、ディスク1aに、12組の熱対流用流路5と、これに溶液を供給する供給路10が中心角を12等分して分割した範囲に配設されている。熱対流用流路5は、円環状に形成された流路である。
上部円筒1bの上端開口は導入口50である。導入口50の下の空間は、導入口50に連通する液体受容部51である。液体受容部51の底面は、底蓋4の上面により構成されている。
導入口50に導入された液体を、12の供給路10により12の熱対流用流路5に分配供給し、各熱対流用流路5で熱対流させる。 Further, the heatconvection generation chip 1 is a 12-channel PCR microchannel chip, and 12 sets of heat convection channels 5 and a supply path 10 for supplying a solution to the disk 1a are central angles. Is divided into 12 equal parts and arranged in a divided range. The heat convection flow path 5 is a flow path formed in an annular shape.
The upper end opening of theupper cylinder 1b is an introduction port 50. The space below the introduction port 50 is a liquid receiving unit 51 communicating with the introduction port 50. The bottom surface of the liquid receiving portion 51 is composed of the upper surface of the bottom lid 4.
The liquid introduced into theintroduction port 50 is distributed and supplied to the heat convection flow paths 5 of 12 through the supply passages 10 of 12, and heat convection is performed in each heat convection flow path 5.
上部円筒1bの上端開口は導入口50である。導入口50の下の空間は、導入口50に連通する液体受容部51である。液体受容部51の底面は、底蓋4の上面により構成されている。
導入口50に導入された液体を、12の供給路10により12の熱対流用流路5に分配供給し、各熱対流用流路5で熱対流させる。 Further, the heat
The upper end opening of the
The liquid introduced into the
供給路10の構成を、最上流の液体受容部51から最下流の熱対流用流路5までの順番で挙げると次の通りである。
すなわち、供給路10は、上流端が液体受容部51に接続した第1通路11、次に第2通路12、さらに秤量空間13、最後に導入室14と連なった構成であり、導入室14の下流端が熱対流用流路5に接続する。
液体受容部51、第1通路11、第2通路12、秤量空間13、導入室14、熱対流用流路5の順で直列に連続している。
第1通路11、第2通路12及び秤量空間13は、液体受容部51内の液体を毛細管現象により吸引する吸引通路に相当する。したがって、液体受容部51内の液体は、毛細管現象により第1通路11、第2通路12と通って、秤量空間13に充填される。
第1通路11は、径方向外方に遷移する流路である。第2通路12は、径方向内方に遷移する流路である。秤量空間13は、径方向外方に遷移する流路である。なお、「径方向」というときは、回転体1cの回転中心軸Aを中心とした径方向を指す。
さらに、秤量空間13より径方向外方に導入室14が配置される。導入室14より径方向外方に熱対流用流路5が配置される。 The configuration of thesupply path 10 is as follows in the order from the most upstream liquid receiving portion 51 to the most downstream heat convection flow path 5.
That is, thesupply passage 10 has a configuration in which the first passage 11 whose upstream end is connected to the liquid receiving portion 51, then the second passage 12, the weighing space 13, and finally the introduction chamber 14 are connected to each other. The downstream end is connected to the heat convection flow path 5.
Theliquid receiving portion 51, the first passage 11, the second passage 12, the weighing space 13, the introduction chamber 14, and the heat convection flow path 5 are continuous in this order.
Thefirst passage 11, the second passage 12, and the weighing space 13 correspond to a suction passage that sucks the liquid in the liquid receiving portion 51 by a capillary phenomenon. Therefore, the liquid in the liquid receiving portion 51 passes through the first passage 11 and the second passage 12 due to the capillary phenomenon, and is filled in the weighing space 13.
Thefirst passage 11 is a flow path that transitions outward in the radial direction. The second passage 12 is a flow path that transitions inward in the radial direction. The weighing space 13 is a flow path that transitions outward in the radial direction. The term "diameter direction" refers to the radial direction centered on the rotation center axis A of the rotating body 1c.
Further, theintroduction chamber 14 is arranged radially outward from the weighing space 13. The heat convection flow path 5 is arranged radially outward from the introduction chamber 14.
すなわち、供給路10は、上流端が液体受容部51に接続した第1通路11、次に第2通路12、さらに秤量空間13、最後に導入室14と連なった構成であり、導入室14の下流端が熱対流用流路5に接続する。
液体受容部51、第1通路11、第2通路12、秤量空間13、導入室14、熱対流用流路5の順で直列に連続している。
第1通路11、第2通路12及び秤量空間13は、液体受容部51内の液体を毛細管現象により吸引する吸引通路に相当する。したがって、液体受容部51内の液体は、毛細管現象により第1通路11、第2通路12と通って、秤量空間13に充填される。
第1通路11は、径方向外方に遷移する流路である。第2通路12は、径方向内方に遷移する流路である。秤量空間13は、径方向外方に遷移する流路である。なお、「径方向」というときは、回転体1cの回転中心軸Aを中心とした径方向を指す。
さらに、秤量空間13より径方向外方に導入室14が配置される。導入室14より径方向外方に熱対流用流路5が配置される。 The configuration of the
That is, the
The
The
The
Further, the
秤量空間13の上流端部の上面に空気導入口13aが開口している。秤量空間13の下流端部の上面に出口13bが開口している。
回転体1cの静止状態においては、毛細管現象により秤量空間13を満たす液体は、空気導入口13a及び出口13bに表面を張る形で止まる。 Anair introduction port 13a is opened on the upper surface of the upstream end of the weighing space 13. The outlet 13b is open on the upper surface of the downstream end of the weighing space 13.
In the stationary state of the rotating body 1c, the liquid that fills the weighingspace 13 due to the capillary phenomenon stops in the form of stretching the surfaces at the air introduction port 13a and the outlet 13b.
回転体1cの静止状態においては、毛細管現象により秤量空間13を満たす液体は、空気導入口13a及び出口13bに表面を張る形で止まる。 An
In the stationary state of the rotating body 1c, the liquid that fills the weighing
次に、液体受容部51から熱対流用流路5までの直列系統以外の流路、空間について説明する。
第1通路11の下流端及び第2通路12の上流端は、余剰液貯留部15の上流端に接続している。
余剰液貯留部15の上流端部には、ダム部15aが形成されている。
余剰液貯留部15は、熱対流用流路5の径方向外側を迂回して、自身の径方向最外端15eを跨るように円弧状に延在している。余剰液貯留部15の下流端部は、径方向最外端15eより径方向内方で、空気路16aに接続する。空気路16a、フィルター設置室17、空気路18の順で連続する。
導入室14には、封止剤供給路19を介して封止剤用空間20が連通する。封止剤用空間20は、遠心力での封止剤の供給を可能にするため、導入室14より径方向内方に配置されている。
また、秤量空間13の空気導入口13a及び封止剤用空間20の径方向内端は、空気路16bに接続する。空気路16b、フィルター設置室17、空気路18の順で連続する。
空気路18の上蓋3で塞がれない部分が空気口100である。空気口100からの液体漏洩を防ぐため、空気口100は秤量空間13及び封止剤用空間20から径方向内方に離れた位置に設置されている。フィルター設置室17には、空気を通し、液体を通さない性質のフィルターが設置される。 Next, a flow path and a space other than the series system from theliquid receiving portion 51 to the heat convection flow path 5 will be described.
The downstream end of thefirst passage 11 and the upstream end of the second passage 12 are connected to the upstream end of the surplus liquid storage portion 15.
Adam portion 15a is formed at the upstream end of the surplus liquid storage portion 15.
The surplusliquid storage portion 15 bypasses the radial outer side of the heat convection flow path 5 and extends in an arc shape so as to straddle the outermost radial end 15e of the surplus liquid storage portion 15. The downstream end of the surplus liquid storage portion 15 is connected to the air passage 16a in the radial direction from the outermost radial end 15e. The air passage 16a, the filter installation chamber 17, and the air passage 18 are continuous in this order.
Thesealant space 20 communicates with the introduction chamber 14 via the sealant supply path 19. The sealing agent space 20 is arranged inward in the radial direction from the introduction chamber 14 in order to enable the supply of the sealing agent by centrifugal force.
Further, theair introduction port 13a of the weighing space 13 and the radial inner end of the sealing agent space 20 are connected to the air passage 16b. The air passage 16b, the filter installation chamber 17, and the air passage 18 are continuous in this order.
The portion of theair passage 18 that is not blocked by the upper lid 3 is the air port 100. In order to prevent liquid leakage from the air port 100, the air port 100 is installed at a position radially inward from the weighing space 13 and the sealing agent space 20. In the filter installation chamber 17, a filter having a property of allowing air to pass through and not allowing liquid to pass through is installed.
第1通路11の下流端及び第2通路12の上流端は、余剰液貯留部15の上流端に接続している。
余剰液貯留部15の上流端部には、ダム部15aが形成されている。
余剰液貯留部15は、熱対流用流路5の径方向外側を迂回して、自身の径方向最外端15eを跨るように円弧状に延在している。余剰液貯留部15の下流端部は、径方向最外端15eより径方向内方で、空気路16aに接続する。空気路16a、フィルター設置室17、空気路18の順で連続する。
導入室14には、封止剤供給路19を介して封止剤用空間20が連通する。封止剤用空間20は、遠心力での封止剤の供給を可能にするため、導入室14より径方向内方に配置されている。
また、秤量空間13の空気導入口13a及び封止剤用空間20の径方向内端は、空気路16bに接続する。空気路16b、フィルター設置室17、空気路18の順で連続する。
空気路18の上蓋3で塞がれない部分が空気口100である。空気口100からの液体漏洩を防ぐため、空気口100は秤量空間13及び封止剤用空間20から径方向内方に離れた位置に設置されている。フィルター設置室17には、空気を通し、液体を通さない性質のフィルターが設置される。 Next, a flow path and a space other than the series system from the
The downstream end of the
A
The surplus
The
Further, the
The portion of the
以上の構成により、回転体1cを回転させたときの遠心力により、秤量空間13内の液体が他の領域(11、12)内の液体から分離して熱対流用流路5に供給される。このとき、空気路16bからの空気導入により、秤量空間13内の液体と第2通路12内の液体との分離が促進される。
With the above configuration, the liquid in the weighing space 13 is separated from the liquid in the other regions (11, 12) and supplied to the heat convection flow path 5 by the centrifugal force when the rotating body 1c is rotated. .. At this time, the introduction of air from the air passage 16b promotes the separation of the liquid in the weighing space 13 and the liquid in the second passage 12.
図7に示すように液体受容部51の内側面51aと内底面51bとが鋭角を成して接している。
供給路10は、液体受容部51の内底面51b上に底辺を配置して内側面51aに開口した液体流入口11aを有する。内底面51bは、底蓋4の上面で構成されている。液体流入口11aは、第1通路11の上流端開口である。第1通路11の内底面も底蓋4の上面で構成されているから、液体受容部51の内底面51bと、第1通路11の内底面とは同じ高さレベルである。したがって、液体流入口11aの底辺は液体受容部51の内底面51b上に配置されている。
以上のように、液体流入口11aが開口する面(内側面51a)が、液体受容部51の内底面51bに対して鋭角に接して連続し、液体流入口11aの手前に、隣り合う面が鋭角をつくる狭小空間を形成することで、そこに毛細管現象を生じさせ、液体受容部51内の液体を素早く液体流入口11aに流入させることができる。
これにより供給路10への液体の導入が迅速、確実になり、供給不足を防げるから、熱対流用流路5への液体供給量の精度を向上することができる。 As shown in FIG. 7, theinner side surface 51a and the inner bottom surface 51b of the liquid receiving portion 51 are in contact with each other at an acute angle.
Thesupply path 10 has a liquid inflow port 11a having a bottom surface arranged on the inner bottom surface 51b of the liquid receiving portion 51 and opening to the inner side surface 51a. The inner bottom surface 51b is composed of the upper surface of the bottom lid 4. The liquid inflow port 11a is an upstream end opening of the first passage 11. Since the inner bottom surface of the first passage 11 is also composed of the upper surface of the bottom lid 4, the inner bottom surface 51b of the liquid receiving portion 51 and the inner bottom surface of the first passage 11 are at the same height level. Therefore, the bottom of the liquid inlet 11a is arranged on the inner bottom surface 51b of the liquid receiving portion 51.
As described above, the surface (inner side surface 51a) through which the liquid inflow port 11a opens is continuous in contact with the inner bottom surface 51b of the liquid receiving portion 51 at an acute angle, and adjacent surfaces are in front of the liquid inflow port 11a. By forming a narrow space that creates an acute angle, a capillary phenomenon is generated there, and the liquid in the liquid receiving portion 51 can be quickly flowed into the liquid inlet 11a.
As a result, the introduction of the liquid into thesupply path 10 is quick and reliable, and the supply shortage can be prevented, so that the accuracy of the liquid supply amount to the heat convection flow path 5 can be improved.
供給路10は、液体受容部51の内底面51b上に底辺を配置して内側面51aに開口した液体流入口11aを有する。内底面51bは、底蓋4の上面で構成されている。液体流入口11aは、第1通路11の上流端開口である。第1通路11の内底面も底蓋4の上面で構成されているから、液体受容部51の内底面51bと、第1通路11の内底面とは同じ高さレベルである。したがって、液体流入口11aの底辺は液体受容部51の内底面51b上に配置されている。
以上のように、液体流入口11aが開口する面(内側面51a)が、液体受容部51の内底面51bに対して鋭角に接して連続し、液体流入口11aの手前に、隣り合う面が鋭角をつくる狭小空間を形成することで、そこに毛細管現象を生じさせ、液体受容部51内の液体を素早く液体流入口11aに流入させることができる。
これにより供給路10への液体の導入が迅速、確実になり、供給不足を防げるから、熱対流用流路5への液体供給量の精度を向上することができる。 As shown in FIG. 7, the
The
As described above, the surface (
As a result, the introduction of the liquid into the
本実施形態にあっては、複数組の供給路10の液体流入口11aが、一つの液体受容部51の内側面51aに同様に開口して設けられている。これにより、一つの液体受容部51から溶液を分配することが可能である。
また、導入口50及び液体受容部51の中心軸Aが回転体1cの回転中心軸A上に配置され、液体受容部51の内側面51aは、回転中心軸Aから等距離に配置されている。さらに、液体受容部51の内側面51aの少なくとも下部は、低位置ほど広がるテーパー面で形成され、当該テーパー面に液体流入口11aが開口している。これにより、液体を一つの液体受容部51から複数組の供給路10に均等かつ同時に分配することが容易である。 In the present embodiment, theliquid inlets 11a of the plurality of sets of supply passages 10 are similarly opened to the inner side surface 51a of one liquid receiving portion 51. This makes it possible to distribute the solution from one liquid receiving unit 51.
Further, the central axis A of theintroduction port 50 and the liquid receiving portion 51 is arranged on the rotating central axis A of the rotating body 1c, and the inner side surface 51a of the liquid receiving portion 51 is arranged equidistant from the rotating central axis A. .. Further, at least the lower portion of the inner side surface 51a of the liquid receiving portion 51 is formed by a tapered surface that expands toward a lower position, and the liquid inflow port 11a opens in the tapered surface. As a result, it is easy to distribute the liquid from one liquid receiving unit 51 to a plurality of sets of supply paths 10 evenly and simultaneously.
また、導入口50及び液体受容部51の中心軸Aが回転体1cの回転中心軸A上に配置され、液体受容部51の内側面51aは、回転中心軸Aから等距離に配置されている。さらに、液体受容部51の内側面51aの少なくとも下部は、低位置ほど広がるテーパー面で形成され、当該テーパー面に液体流入口11aが開口している。これにより、液体を一つの液体受容部51から複数組の供給路10に均等かつ同時に分配することが容易である。 In the present embodiment, the
Further, the central axis A of the
図10に示すように秤量空間13の熱対流用流路5側の出口13bは、当該出口13bの縁を回転体1cが形成する平面13dの縁から離間して当該平面13dに開口している。これにより、出口13bを取り囲む周囲の面は、当該出口13bの開口面を含む平面上に配置される。そのため、出口13bまで到達した液体が、出口13bの外側の面に接触することが防がれ、出口13bから液体が漏れ出すことが防がれる。仮に出口13bから漏れ出した液体がある場合、同液体は熱対流用流路5に導入されてしまうから、秤量精度が落ちる。したがって、出口13bから液体が漏れ出すことが防がれることで、秤量精度が向上する。
秤量空間13の空気導入口13aも、同様に当該空気導入口13aの縁を回転体1cが形成する平面13cの縁から離間して当該平面13cに開口している。
したがって、空気導入口13aから液体が漏れ出すことも防がれ、秤量精度が向上する。
以上のようにして、秤量空間13を満たす容量の液体のみが熱対流用流路5に供給されるので、熱対流用流路5への液体供給量の精度を向上することができる。
なお、本実施形態においては、出口13bが開口する平面13d及び空気導入口13aが開口する平面13cは、いずれも上向きの水平面とされているが、上記の液体の漏れ出しを防ぐ効果を得るためには、出口13bや空気導入口13aの開口面の角度は、どのような角度でもよい。例えば、出口13bや空気導入口13aを垂直面や下向きの水平面に開口するようにしても同様の効果が得られる。 As shown in FIG. 10, theoutlet 13b on the heat convection flow path 5 side of the weighing space 13 opens in the plane 13d with the edge of the outlet 13b separated from the edge of the plane 13d formed by the rotating body 1c. .. As a result, the surrounding surface surrounding the outlet 13b is arranged on a plane including the opening surface of the outlet 13b. Therefore, the liquid that has reached the outlet 13b is prevented from coming into contact with the outer surface of the outlet 13b, and the liquid is prevented from leaking from the outlet 13b. If there is a liquid leaking from the outlet 13b, the liquid will be introduced into the heat convection flow path 5, so that the weighing accuracy will drop. Therefore, the weighing accuracy is improved by preventing the liquid from leaking from the outlet 13b.
Similarly, theair introduction port 13a of the weighing space 13 also opens to the plane 13c with the edge of the air introduction port 13a separated from the edge of the plane 13c formed by the rotating body 1c.
Therefore, it is possible to prevent the liquid from leaking from theair inlet 13a, and the weighing accuracy is improved.
As described above, since only the liquid having a capacity that fills the weighingspace 13 is supplied to the heat convection flow path 5, the accuracy of the liquid supply amount to the heat convection flow path 5 can be improved.
In the present embodiment, theplane 13d where the outlet 13b opens and the plane 13c where the air introduction port 13a opens are both upward horizontal planes, but in order to obtain the effect of preventing the liquid from leaking out. The angle of the opening surface of the outlet 13b and the air introduction port 13a may be any angle. For example, the same effect can be obtained by opening the outlet 13b and the air inlet 13a in a vertical plane or a downward horizontal plane.
秤量空間13の空気導入口13aも、同様に当該空気導入口13aの縁を回転体1cが形成する平面13cの縁から離間して当該平面13cに開口している。
したがって、空気導入口13aから液体が漏れ出すことも防がれ、秤量精度が向上する。
以上のようにして、秤量空間13を満たす容量の液体のみが熱対流用流路5に供給されるので、熱対流用流路5への液体供給量の精度を向上することができる。
なお、本実施形態においては、出口13bが開口する平面13d及び空気導入口13aが開口する平面13cは、いずれも上向きの水平面とされているが、上記の液体の漏れ出しを防ぐ効果を得るためには、出口13bや空気導入口13aの開口面の角度は、どのような角度でもよい。例えば、出口13bや空気導入口13aを垂直面や下向きの水平面に開口するようにしても同様の効果が得られる。 As shown in FIG. 10, the
Similarly, the
Therefore, it is possible to prevent the liquid from leaking from the
As described above, since only the liquid having a capacity that fills the weighing
In the present embodiment, the
余剰液貯留部15は、回転体1cの回転による遠心力により秤量空間13内の液体から分離した液体(通路11,12内の液体)が貯留される空間である。空気路16aを介した排気により、余剰液貯留部15への液体の流入が促進される。余剰液貯留部15は、熱対流用流路5と径方向同位置から外側に及んでいるので、回転体1cの回転による遠心力が、熱対流用流路5と同等以上に作用する。回転体1cの回転による遠心力が働いているとき、余剰液貯留部15の径方向最外端15eを中心に液体が保持されやすくされており、余剰液貯留部15の下流端部の空気路16bまでには液体が移動し難くされている。
The surplus liquid storage unit 15 is a space in which the liquid separated from the liquid in the weighing space 13 (the liquid in the passages 11 and 12) is stored by the centrifugal force generated by the rotation of the rotating body 1c. Exhaust through the air passage 16a promotes the inflow of liquid into the surplus liquid storage unit 15. Since the excess liquid storage portion 15 extends from the same position in the radial direction to the outside as the heat convection flow path 5, the centrifugal force due to the rotation of the rotating body 1c acts equal to or more than the heat convection flow path 5. When the centrifugal force due to the rotation of the rotating body 1c is working, the liquid is easily held around the outermost radial end 15e of the surplus liquid storage portion 15, and the air passage at the downstream end of the surplus liquid storage portion 15. By 16b, it is difficult for the liquid to move.
ダム部15aは、余剰液貯留部の底面から上に突出し両側側面間を横断するように形成されている。ダム部15aは、余剰液貯留部15から流出しようとする液体を堰き止める作用がある。ダム部15aは、径方向最外端15eより径方向内方に設けられる。ダム部15aを2重以上に設けてもよい。
余剰液貯留部15の流路断面は、丸みがつけられた角部15Rを有する。丸みがつけられた角部15Rは、ダム部15aにおいては、ダム部15aと両側側面とでつくる角部である。それ以外では、余剰液貯留部15の天面と両側側面とでつくる角部は丸みがつけられた角部15Rである。上蓋3又は底蓋4と、コア基板2とでつくる角部は、成形の都合上、丸みをつけることができないためである。
シャープな角部は毛細管現象を生じさせる。角部15Rに丸みがつけられていることで、毛細管現象による逆流を抑えることができる。そのため、余剰液貯留部15に一旦流入した余剰液が、再び第1通路11や第2通路12の方へ逆流することが防がれる。また、余剰液貯留部15は毛細管現象による流動が抑えられているので、回転体1cの静止状態において液体受容部51の液体が毛細管現象により第1通路11、第2通路12を通って秤量空間13に導入される際、余剰液貯留部15への当該液体の流入も抑えられる。そのため、12チャンネルあるうちの一部の余剰液貯留部15に液体が偏って多く流入することにより、12チャンネルに対し不均等に液体が分配される事態を防ぐ効果がある。
ダム部15aが設けられることにより、天面側のみならず底面側にも丸みをつけた角部15Rを設けることができるので、角部に沿って逆流しようとする液体は、丸みがつけられたいずれかの角部15Rに阻まれる。角部15Rの曲率半径は0.1mm以上が好ましい。
以上により、余剰液が余剰液貯留部15に確実に保持されるから、熱対流用流路5への液体供給量の精度を向上することができる。 Thedam portion 15a is formed so as to project upward from the bottom surface of the excess liquid storage portion and cross between both side surfaces. The dam portion 15a has an action of blocking the liquid that is about to flow out from the excess liquid storage portion 15. The dam portion 15a is provided inward in the radial direction from the outermost end 15e in the radial direction. The dam portions 15a may be provided in duplicate or more.
The cross section of the flow path of the excessliquid storage portion 15 has rounded corner portions 15R. The rounded corner portion 15R is a corner portion formed by the dam portion 15a and both side surfaces in the dam portion 15a. Other than that, the corners formed by the top surface and both side surfaces of the surplus liquid storage portion 15 are rounded corners 15R. This is because the corners formed by the top lid 3 or the bottom lid 4 and the core substrate 2 cannot be rounded due to molding reasons.
Sharp corners cause capillarity. Since thecorner portion 15R is rounded, it is possible to suppress backflow due to the capillary phenomenon. Therefore, it is possible to prevent the surplus liquid that has once flowed into the surplus liquid storage unit 15 from flowing back toward the first passage 11 and the second passage 12. Further, since the excess liquid storage portion 15 is suppressed from flowing due to the capillary phenomenon, the liquid of the liquid receiving portion 51 passes through the first passage 11 and the second passage 12 due to the capillary phenomenon in the stationary state of the rotating body 1c, and is a weighing space. When introduced into 13, the inflow of the liquid into the surplus liquid storage unit 15 is also suppressed. Therefore, there is an effect of preventing a situation in which the liquid is unevenly distributed to the 12 channels due to the uneven inflow of a large amount of the liquid into a part of the surplus liquid storage portion 15 out of the 12 channels.
By providing thedam portion 15a, it is possible to provide a rounded corner portion 15R not only on the top surface side but also on the bottom surface side, so that the liquid to flow back along the corner portion is rounded. It is blocked by either corner 15R. The radius of curvature of the corner portion 15R is preferably 0.1 mm or more.
As described above, since the surplus liquid is reliably held in the surplusliquid storage unit 15, the accuracy of the amount of liquid supplied to the heat convection flow path 5 can be improved.
余剰液貯留部15の流路断面は、丸みがつけられた角部15Rを有する。丸みがつけられた角部15Rは、ダム部15aにおいては、ダム部15aと両側側面とでつくる角部である。それ以外では、余剰液貯留部15の天面と両側側面とでつくる角部は丸みがつけられた角部15Rである。上蓋3又は底蓋4と、コア基板2とでつくる角部は、成形の都合上、丸みをつけることができないためである。
シャープな角部は毛細管現象を生じさせる。角部15Rに丸みがつけられていることで、毛細管現象による逆流を抑えることができる。そのため、余剰液貯留部15に一旦流入した余剰液が、再び第1通路11や第2通路12の方へ逆流することが防がれる。また、余剰液貯留部15は毛細管現象による流動が抑えられているので、回転体1cの静止状態において液体受容部51の液体が毛細管現象により第1通路11、第2通路12を通って秤量空間13に導入される際、余剰液貯留部15への当該液体の流入も抑えられる。そのため、12チャンネルあるうちの一部の余剰液貯留部15に液体が偏って多く流入することにより、12チャンネルに対し不均等に液体が分配される事態を防ぐ効果がある。
ダム部15aが設けられることにより、天面側のみならず底面側にも丸みをつけた角部15Rを設けることができるので、角部に沿って逆流しようとする液体は、丸みがつけられたいずれかの角部15Rに阻まれる。角部15Rの曲率半径は0.1mm以上が好ましい。
以上により、余剰液が余剰液貯留部15に確実に保持されるから、熱対流用流路5への液体供給量の精度を向上することができる。 The
The cross section of the flow path of the excess
Sharp corners cause capillarity. Since the
By providing the
As described above, since the surplus liquid is reliably held in the surplus
流路断面の角部(15R)の曲率半径と、当該角部を辿った流動距離との関係を調べた実験内容を以下に開示する。
樹脂板の上面に深さ0.5mm、幅2.5mm、長さ30.0mmの溝を必要本数形成し、この溝を実験用の流路とした。したがって、実験用の流路は、底面と一方の側面とでつくる角部、底面と他方の側面とでつくる角部があり、上面は開放されている。
実験用の流路として、その2つの角部の曲率半径Rを、0.0、0.05、0.1、0.2、0.3とした5種を用意した。
樹脂板を水平に保ち、各実験用の流路の長手方向の端部に色付き溶液を同量(5μリットル)注入し、観察した。すると、色付き溶液が、流路の両側角部に沿って延びるように移動した。注入から90秒後の移動距離は以下の通りとなった。
R=0.0の流路では、22.3mm
R=0.05の流路では、14.1mm
R=0.1の流路では、7.0mm
R=0.2の流路では、3.2mm
R=0.3の流路では、2.8mm The contents of the experiment for investigating the relationship between the radius of curvature of the corner portion (15R) of the cross section of the flow path and the flow distance following the corner portion are disclosed below.
A required number of grooves having a depth of 0.5 mm, a width of 2.5 mm, and a length of 30.0 mm were formed on the upper surface of the resin plate, and these grooves were used as an experimental flow path. Therefore, the experimental flow path has a corner formed by the bottom surface and one side surface, and a corner portion formed by the bottom surface and the other side surface, and the upper surface is open.
Five types of flow paths for experiments were prepared in which the radius of curvature R of the two corners was 0.0, 0.05, 0.1, 0.2, and 0.3.
The resin plate was kept horizontal, and the same amount (5 μliter) of the colored solution was injected into the longitudinal end of each experimental flow path and observed. Then, the colored solution moved so as to extend along the corners on both sides of the flow path. The moving distance 90 seconds after the injection was as follows.
22.3 mm in the flow path of R = 0.0
In the flow path of R = 0.05, 14.1 mm
In the flow path of R = 0.1, 7.0 mm
In the flow path of R = 0.2, 3.2 mm
2.8 mm in the flow path of R = 0.3
樹脂板の上面に深さ0.5mm、幅2.5mm、長さ30.0mmの溝を必要本数形成し、この溝を実験用の流路とした。したがって、実験用の流路は、底面と一方の側面とでつくる角部、底面と他方の側面とでつくる角部があり、上面は開放されている。
実験用の流路として、その2つの角部の曲率半径Rを、0.0、0.05、0.1、0.2、0.3とした5種を用意した。
樹脂板を水平に保ち、各実験用の流路の長手方向の端部に色付き溶液を同量(5μリットル)注入し、観察した。すると、色付き溶液が、流路の両側角部に沿って延びるように移動した。注入から90秒後の移動距離は以下の通りとなった。
R=0.0の流路では、22.3mm
R=0.05の流路では、14.1mm
R=0.1の流路では、7.0mm
R=0.2の流路では、3.2mm
R=0.3の流路では、2.8mm The contents of the experiment for investigating the relationship between the radius of curvature of the corner portion (15R) of the cross section of the flow path and the flow distance following the corner portion are disclosed below.
A required number of grooves having a depth of 0.5 mm, a width of 2.5 mm, and a length of 30.0 mm were formed on the upper surface of the resin plate, and these grooves were used as an experimental flow path. Therefore, the experimental flow path has a corner formed by the bottom surface and one side surface, and a corner portion formed by the bottom surface and the other side surface, and the upper surface is open.
Five types of flow paths for experiments were prepared in which the radius of curvature R of the two corners was 0.0, 0.05, 0.1, 0.2, and 0.3.
The resin plate was kept horizontal, and the same amount (5 μliter) of the colored solution was injected into the longitudinal end of each experimental flow path and observed. Then, the colored solution moved so as to extend along the corners on both sides of the flow path. The moving distance 90 seconds after the injection was as follows.
22.3 mm in the flow path of R = 0.0
In the flow path of R = 0.05, 14.1 mm
In the flow path of R = 0.1, 7.0 mm
In the flow path of R = 0.2, 3.2 mm
2.8 mm in the flow path of R = 0.3
また、ダム部15a及びその前部15b、後部15cは、後部15cよりさらに流入方向下流の貯留部15dに対して流路幅が拡幅している。これにより、角部を辿った逆流経路は長くなるから、さらに余剰液貯留部15内の液体が逆流して第1通路11や第2通路12の方へ流出することは難しくなる。
なお、前部15b及び後部15cの流路断面には、コア基板2を上下に貫通するので、丸みをつけた角部15Rは設けられていない。しかし、前部15b及び後部15c内の縦方向の角部15Uは丸みがつけられている。角部15Uの曲率半径の軸が回転体1cの回転中心軸Aに平行である。丸みがつけられた角部15Rに加え、丸みがつけられた角部15Uがあることによって、さらに余剰液貯留部15における毛細管現象による流動が抑えられており、意図しない流入や逆流が防がれる。
ダム部15a及び貯留部15dには丸みをつけた角部15Rが設けられている。 Further, the width of the flow path of thedam portion 15a, the front portion 15b, and the rear portion 15c thereof is widened with respect to the storage portion 15d further downstream in the inflow direction from the rear portion 15c. As a result, the backflow path that follows the corners becomes longer, so that it becomes difficult for the liquid in the surplus liquid storage portion 15 to flow back and flow out toward the first passage 11 and the second passage 12.
Since thecore substrate 2 penetrates vertically in the flow path cross sections of the front portion 15b and the rear portion 15c, the rounded corner portions 15R are not provided. However, the vertical corners 15U in the front 15b and the rear 15c are rounded. The axis of the radius of curvature of the corner portion 15U is parallel to the rotation center axis A of the rotating body 1c. In addition to the rounded corners 15R, the presence of the rounded corners 15U further suppresses the flow due to the capillary phenomenon in the excess liquid storage portion 15, and prevents unintended inflow and backflow. ..
Thedam portion 15a and the storage portion 15d are provided with rounded corner portions 15R.
なお、前部15b及び後部15cの流路断面には、コア基板2を上下に貫通するので、丸みをつけた角部15Rは設けられていない。しかし、前部15b及び後部15c内の縦方向の角部15Uは丸みがつけられている。角部15Uの曲率半径の軸が回転体1cの回転中心軸Aに平行である。丸みがつけられた角部15Rに加え、丸みがつけられた角部15Uがあることによって、さらに余剰液貯留部15における毛細管現象による流動が抑えられており、意図しない流入や逆流が防がれる。
ダム部15a及び貯留部15dには丸みをつけた角部15Rが設けられている。 Further, the width of the flow path of the
Since the
The
上述したように、回転体1cに、供給路10とは別に、供給路10の熱対流用流路5との接続部、すなわち、導入室14に連通した封止剤用空間20が形成されている。
封止剤用空間20に常温で固形の封止剤としてパラフィン等が予め装填され、その後に上蓋3及び底蓋4がコア基板2に付けられる。
上述したように、毛細管現象による秤量空間13への液体導入と、その後の回転体1cの回転により、熱対流用流路5に液体受容部51からの液体が導入された後、次のようにして熱対流用流路5を閉塞する。
すなわち、封止剤用空間20の封止剤を加温し、溶融させて、回転体1cを回転させたときの遠心力により、接続部(導入室14)に移送し充填する。このとき、空気路16bからの空気導入により、封止剤用空間20からの封止剤の流出が促進される。
これにより、導入室14が封止剤で満たされ、熱対流用流路5が閉塞される。したがって、導入室14は、秤量空間13より下流で熱対流用流路5に隣接し、封止剤の充填により熱対流用流路5の入口を閉じるための空間でもある。熱対流用流路5が閉塞されるため、熱対流用流路5内の液体の蒸発等による漏出が防がれる。
以上のように、適切なタイミングでの加温と回転により、熱対流生成用チップ1内に既設の封止剤で熱対流用流路5を閉塞できるから、熱対流用流路5への液体供給量の精度を維持することができる。 As described above, in the rotating body 1c, apart from thesupply path 10, a connecting portion of the supply path 10 with the heat convection flow path 5, that is, a sealing agent space 20 communicating with the introduction chamber 14 is formed. There is.
Paraffin or the like is pre-loaded in the sealingagent space 20 as a solid sealing agent at room temperature, and then the top lid 3 and the bottom lid 4 are attached to the core substrate 2.
As described above, after the liquid from theliquid receiving portion 51 is introduced into the heat convection flow path 5 by the introduction of the liquid into the weighing space 13 by the capillary phenomenon and the subsequent rotation of the rotating body 1c, the following is performed. The heat convection flow path 5 is closed.
That is, the sealant in thesealant space 20 is heated, melted, and transferred to the connection portion (introduction chamber 14) by the centrifugal force when the rotating body 1c is rotated and filled. At this time, the introduction of air from the air passage 16b promotes the outflow of the sealant from the sealant space 20.
As a result, theintroduction chamber 14 is filled with the sealant, and the heat convection flow path 5 is closed. Therefore, the introduction chamber 14 is adjacent to the heat convection flow path 5 downstream of the weighing space 13 and is also a space for closing the inlet of the heat convection flow path 5 by filling with a sealing agent. Since the heat convection flow path 5 is blocked, leakage due to evaporation of the liquid in the heat convection flow path 5 can be prevented.
As described above, by heating and rotating at an appropriate timing, the heatconvection flow path 5 can be blocked by the existing sealant in the heat convection generation chip 1, so that the liquid to the heat convection flow path 5 can be closed. The accuracy of the supply amount can be maintained.
封止剤用空間20に常温で固形の封止剤としてパラフィン等が予め装填され、その後に上蓋3及び底蓋4がコア基板2に付けられる。
上述したように、毛細管現象による秤量空間13への液体導入と、その後の回転体1cの回転により、熱対流用流路5に液体受容部51からの液体が導入された後、次のようにして熱対流用流路5を閉塞する。
すなわち、封止剤用空間20の封止剤を加温し、溶融させて、回転体1cを回転させたときの遠心力により、接続部(導入室14)に移送し充填する。このとき、空気路16bからの空気導入により、封止剤用空間20からの封止剤の流出が促進される。
これにより、導入室14が封止剤で満たされ、熱対流用流路5が閉塞される。したがって、導入室14は、秤量空間13より下流で熱対流用流路5に隣接し、封止剤の充填により熱対流用流路5の入口を閉じるための空間でもある。熱対流用流路5が閉塞されるため、熱対流用流路5内の液体の蒸発等による漏出が防がれる。
以上のように、適切なタイミングでの加温と回転により、熱対流生成用チップ1内に既設の封止剤で熱対流用流路5を閉塞できるから、熱対流用流路5への液体供給量の精度を維持することができる。 As described above, in the rotating body 1c, apart from the
Paraffin or the like is pre-loaded in the sealing
As described above, after the liquid from the
That is, the sealant in the
As a result, the
As described above, by heating and rotating at an appropriate timing, the heat
改めて、液体導入から熱対流反応までの手順を説明すると次の通りである。
予め、各熱対流用流路5には、プライマーDNAやプローブDNAが乾燥した状態で配置されている。これにより多種のDNA(菌種)に対応する。
まず、所定の反応試薬溶液を収容した検体容器に、採取した生体物質である検体を混入して、検体及び反応試薬を含有した溶液とする。同検体容器としては、下端開口がアルミ箔等でラミネートされているものを用いる。
液体受容部51の中央には、上に尖った開封用突起52が設けられている。
同検体容器を導入口50から液体受容部51に挿入し、開封用突起52によりラミネートを破って同検体容器を開封して、同検体容器内の検体及び反応試薬を含有した溶液を、液体受容部51に導入する。 The procedure from liquid introduction to thermal convection reaction will be explained again as follows.
Primer DNA and probe DNA are arranged in advance in each heatconvection flow path 5 in a dried state. This corresponds to various DNAs (bacterial species).
First, a sample which is a collected biological substance is mixed in a sample container containing a predetermined reaction reagent solution to prepare a solution containing the sample and the reaction reagent. As the sample container, a container in which the lower end opening is laminated with aluminum foil or the like is used.
In the center of theliquid receiving portion 51, an opening protrusion 52 having a sharp upper portion is provided.
The sample container is inserted into theliquid receiving portion 51 from the introduction port 50, the laminate is broken by the opening protrusion 52 to open the sample container, and the solution containing the sample and the reaction reagent in the sample container is received as a liquid. Introduce to section 51.
予め、各熱対流用流路5には、プライマーDNAやプローブDNAが乾燥した状態で配置されている。これにより多種のDNA(菌種)に対応する。
まず、所定の反応試薬溶液を収容した検体容器に、採取した生体物質である検体を混入して、検体及び反応試薬を含有した溶液とする。同検体容器としては、下端開口がアルミ箔等でラミネートされているものを用いる。
液体受容部51の中央には、上に尖った開封用突起52が設けられている。
同検体容器を導入口50から液体受容部51に挿入し、開封用突起52によりラミネートを破って同検体容器を開封して、同検体容器内の検体及び反応試薬を含有した溶液を、液体受容部51に導入する。 The procedure from liquid introduction to thermal convection reaction will be explained again as follows.
Primer DNA and probe DNA are arranged in advance in each heat
First, a sample which is a collected biological substance is mixed in a sample container containing a predetermined reaction reagent solution to prepare a solution containing the sample and the reaction reagent. As the sample container, a container in which the lower end opening is laminated with aluminum foil or the like is used.
In the center of the
The sample container is inserted into the
すると、上述したように秤量空間13までは溶液の自重と毛細管現象により同溶液が導入される。
秤量空間13が同溶液で満たされた後、回転体1cを回転させて、秤量空間13内の溶液のみ熱対流用流路5に供給する。
各組の供給路10及び熱対流用流路5で同様の流動が起こるので、溶液を複数組の熱対流用流路5に分配供給したことになる。
次に、上述した封止剤による熱対流用流路5の閉塞を行った後、当該各熱対流用流路5で溶液を各所定条件で熱対流させてポリメラーゼ連鎖反応又は逆転写ポリメラーゼ連鎖反応を行う。 Then, as described above, the solution is introduced up to the weighingspace 13 due to the weight of the solution and the capillary phenomenon.
After the weighingspace 13 is filled with the same solution, the rotating body 1c is rotated to supply only the solution in the weighing space 13 to the heat convection flow path 5.
Since the same flow occurs in thesupply passage 10 and the heat convection flow path 5 of each set, the solution is distributed and supplied to the heat convection flow paths 5 of a plurality of sets.
Next, after closing the heatconvection flow path 5 with the above-mentioned encapsulant, the solution is thermally convected in each heat convection flow path 5 under each predetermined condition to carry out a polymerase chain reaction or a reverse transcription polymerase chain reaction. I do.
秤量空間13が同溶液で満たされた後、回転体1cを回転させて、秤量空間13内の溶液のみ熱対流用流路5に供給する。
各組の供給路10及び熱対流用流路5で同様の流動が起こるので、溶液を複数組の熱対流用流路5に分配供給したことになる。
次に、上述した封止剤による熱対流用流路5の閉塞を行った後、当該各熱対流用流路5で溶液を各所定条件で熱対流させてポリメラーゼ連鎖反応又は逆転写ポリメラーゼ連鎖反応を行う。 Then, as described above, the solution is introduced up to the weighing
After the weighing
Since the same flow occurs in the
Next, after closing the heat
以上説明したように本実施形態の熱対流生成用チップによれば、熱対流用流路5への液体供給量の精度を向上することができる。
さらに、導入口50への検体容器の装填から熱対流反応までの作業を自動化することが容易であり、複数の熱対流用流路5での反応を同時に実施できるから、作業性を向上することができる。なお、導入口50への検体容器の装填は人手作業で実施してもよいが、機械に行わせることで、より安定した作業動作の制御と、より広範囲の自動化を実現することができる。特に、熱対流生成用チップ1には固形の封止剤が既設であり、検体容器の装填部が一か所(導入口50)であり、導入口50へ検体容器を装填した後は、回転体1cの回転と各部の温度の制御で実施可能であるので、作業性が向上し、自動化した場合による機械の作業負担も少なく自動化が容易である。
以上の実施形態の熱対流生成用チップでは、チャンネル数(熱対流用流路の数)を12チャンネルとしたが、チャンネル数に制限はなく、12チャンネルより多くする、12チャンネルより少なくするなど任意にチャンネル数を選択して実施し得る。これにより、必要チャンネル数に幅広く対応することが可能である。 As described above, according to the heat convection generation chip of the present embodiment, the accuracy of the amount of liquid supplied to the heatconvection flow path 5 can be improved.
Further, it is easy to automate the work from loading the sample container into theintroduction port 50 to the heat convection reaction, and the reactions in the plurality of heat convection flow paths 5 can be carried out at the same time, so that the workability is improved. Can be done. The sample container may be manually loaded into the introduction port 50, but by letting the machine perform the loading, more stable control of the work operation and a wider range of automation can be realized. In particular, the heat convection generation chip 1 already has a solid sealant, and the sample container has one loading part (introduction port 50), and after the sample container is loaded into the introduction port 50, it rotates. Since it can be carried out by rotating the body 1c and controlling the temperature of each part, workability is improved, and the work load of the machine due to automation is small and automation is easy.
In the heat convection generation chip of the above embodiment, the number of channels (the number of heat convection channels) is set to 12, but the number of channels is not limited and may be more than 12 channels or less than 12 channels. It can be implemented by selecting the number of channels. This makes it possible to support a wide range of required channels.
さらに、導入口50への検体容器の装填から熱対流反応までの作業を自動化することが容易であり、複数の熱対流用流路5での反応を同時に実施できるから、作業性を向上することができる。なお、導入口50への検体容器の装填は人手作業で実施してもよいが、機械に行わせることで、より安定した作業動作の制御と、より広範囲の自動化を実現することができる。特に、熱対流生成用チップ1には固形の封止剤が既設であり、検体容器の装填部が一か所(導入口50)であり、導入口50へ検体容器を装填した後は、回転体1cの回転と各部の温度の制御で実施可能であるので、作業性が向上し、自動化した場合による機械の作業負担も少なく自動化が容易である。
以上の実施形態の熱対流生成用チップでは、チャンネル数(熱対流用流路の数)を12チャンネルとしたが、チャンネル数に制限はなく、12チャンネルより多くする、12チャンネルより少なくするなど任意にチャンネル数を選択して実施し得る。これにより、必要チャンネル数に幅広く対応することが可能である。 As described above, according to the heat convection generation chip of the present embodiment, the accuracy of the amount of liquid supplied to the heat
Further, it is easy to automate the work from loading the sample container into the
In the heat convection generation chip of the above embodiment, the number of channels (the number of heat convection channels) is set to 12, but the number of channels is not limited and may be more than 12 channels or less than 12 channels. It can be implemented by selecting the number of channels. This makes it possible to support a wide range of required channels.
本発明は、熱対流生成用チップ及び反応方法に利用することができる。
The present invention can be used for a chip for generating heat convection and a reaction method.
1 熱対流生成用チップ
1a ディスク
1b 上部円筒
1c 回転体
2 コア基板
2A コア基板の上面
2B コア基板の下面
3 上蓋
4 底蓋
5 熱対流用流路
10 供給路
11 第1通路
11a 液体流入口
12 第2通路
13 秤量空間
13a 空気導入口
13b 出口
13c 平面
13d 平面
14 導入室
15 余剰液貯留部
15R 角部
15a ダム部
15b ダム部の前部
15c ダム部の後部
15d 貯留部
15e 余剰液貯留部の径方向最外端
16a 空気路
16b 空気路
17 フィルター設置室
18 空気路
19 封止剤供給路
20 封止剤用空間
50 導入口
51 液体受容部
51a 内側面
51b 内底面
52 開封用突起
99 切り欠き
100 空気口
A 回転中心軸 1 Chip for heat convectiongeneration 1a Disk 1b Upper cylinder 1c Rotating body 2 Core substrate 2A Upper surface of core substrate 2B Lower surface of core substrate 3 Top lid 4 Bottom lid 5 Heat convection flow path 10 Supply path 11 First passage 11a Liquid inlet 12 2nd passage 13 Weighing space 13a Air introduction port 13b Outlet 13c Flat surface 13d Flat surface 14 Introduction chamber 15 Surplus liquid storage part 15R Square part 15a Dam part 15b Front part of dam part 15c Rear part of dam part 15d Storage part 15e Surplus liquid storage part Radial outermost end 16a Air passage 16b Air passage 17 Filter installation chamber 18 Air passage 19 Sealant supply path 20 Sealing agent space 50 Inlet port 51 Liquid receiving part 51a Inner side surface 51b Inner bottom surface 52 Opening protrusion 99 Notch 100 Air port A Rotation center axis
1a ディスク
1b 上部円筒
1c 回転体
2 コア基板
2A コア基板の上面
2B コア基板の下面
3 上蓋
4 底蓋
5 熱対流用流路
10 供給路
11 第1通路
11a 液体流入口
12 第2通路
13 秤量空間
13a 空気導入口
13b 出口
13c 平面
13d 平面
14 導入室
15 余剰液貯留部
15R 角部
15a ダム部
15b ダム部の前部
15c ダム部の後部
15d 貯留部
15e 余剰液貯留部の径方向最外端
16a 空気路
16b 空気路
17 フィルター設置室
18 空気路
19 封止剤供給路
20 封止剤用空間
50 導入口
51 液体受容部
51a 内側面
51b 内底面
52 開封用突起
99 切り欠き
100 空気口
A 回転中心軸 1 Chip for heat convection
Claims (10)
- 熱対流用流路、導入口及び供給路が形成された回転体を備え、前記導入口に導入された液体を前記供給路により前記熱対流用流路に供給し前記熱対流用流路で熱対流させる熱対流生成用チップであって、
前記回転体に、前記導入口に連通する液体受容部が形成され、
前記液体受容部の内側面と内底面とが鋭角を成して接し、
前記供給路は、前記液体受容部の前記内底面上に底辺を配置して前記内側面に開口した液体流入口を有する熱対流生成用チップ。 A rotating body having a heat convection flow path, an introduction port, and a supply path is provided, and the liquid introduced into the introduction port is supplied to the heat convection flow path by the supply path, and heat is generated in the heat convection flow path. A chip for generating heat convection to be convected,
A liquid receiving portion communicating with the introduction port is formed on the rotating body, and the liquid receiving portion is formed.
The inner side surface and the inner bottom surface of the liquid receiving portion are in contact with each other at an acute angle.
The supply path is a heat convection generation chip having a liquid inlet having a bottom arranged on the inner bottom surface of the liquid receiving portion and opened on the inner side surface. - 前記回転体に、前記熱対流用流路とこれに液体を供給する前記供給路とが複数組形成され、
複数組の前記供給路の前記液体流入口が、一つの前記液体受容部の前記内側面に開口して設けられている請求項1に記載の熱対流生成用チップ。 A plurality of sets of the heat convection flow path and the supply path for supplying the liquid to the heat convection flow path are formed in the rotating body.
The heat convection generation chip according to claim 1, wherein the liquid inlets of a plurality of sets of the supply passages are provided by opening on the inner side surface of one liquid receiving portion. - 前記導入口及び前記液体受容部の中心軸が前記回転体の回転中心軸上に配置され、
前記液体受容部の内側面は、前記回転中心軸から等距離に配置され、
前記液体受容部の内側面の少なくとも下部は、低位置ほど広がるテーパー面で形成され、
前記テーパー面に前記液体流入口が開口している請求項2に記載の熱対流生成用チップ。 The central axis of the introduction port and the liquid receiving portion is arranged on the rotation central axis of the rotating body.
The inner surface of the liquid receiving portion is arranged equidistant from the rotation center axis.
At least the lower portion of the inner surface of the liquid receiving portion is formed by a tapered surface that expands toward a lower position.
The heat convection generation chip according to claim 2, wherein the liquid inlet is opened on the tapered surface. - 熱対流用流路、導入口及び供給路が形成された回転体を備え、前記導入口に導入された液体を前記供給路により前記熱対流用流路に供給し前記熱対流用流路で熱対流させる熱対流生成用チップであって、
前記回転体に、前記導入口に連通する液体受容部が形成され、
前記供給路は、前記液体受容部内の液体を毛細管現象により吸引する吸引通路を有し、
前記吸引通路は、秤量空間を有し、
前記吸引通路は、前記回転体を回転させたときの遠心力により、前記秤量空間内の液体が他の領域内の液体から分離して前記熱対流用流路に供給されよう構成され、
前記秤量空間の前記熱対流用流路側の出口は、当該出口の縁を前記回転体が形成する平面の縁から離間して当該平面に開口している熱対流生成用チップ。 A rotating body having a heat convection flow path, an introduction port, and a supply path is provided, and the liquid introduced into the introduction port is supplied to the heat convection flow path by the supply path, and heat is generated in the heat convection flow path. A chip for generating heat convection to be convected,
A liquid receiving portion communicating with the introduction port is formed on the rotating body, and the liquid receiving portion is formed.
The supply path has a suction passage for sucking the liquid in the liquid receiving portion by a capillary phenomenon.
The suction passage has a weighing space and has a weighing space.
The suction passage is configured so that the liquid in the weighing space is separated from the liquid in the other region and supplied to the heat convection flow path by the centrifugal force when the rotating body is rotated.
The outlet on the heat convection flow path side of the weighing space is a heat convection generation chip that opens to the plane with the edge of the outlet separated from the edge of the plane formed by the rotating body. - 熱対流用流路、導入口及び供給路が形成された回転体を備え、前記導入口に導入された液体を前記供給路により前記熱対流用流路に供給し前記熱対流用流路で熱対流させる熱対流生成用チップであって、
前記回転体に、前記導入口に連通する液体受容部が形成され、
前記供給路は、前記液体受容部内の液体を毛細管現象により吸引する吸引通路を有し、
前記吸引通路は、秤量空間を有し、
前記吸引通路は、前記回転体を回転させたときの遠心力により、前記秤量空間内の液体が他の領域内の液体から分離して前記熱対流用流路に供給されよう構成され、
前記遠心力により前記秤量空間内の液体から分離した液体が貯留される余剰液貯留部が、前記回転体に形成されている熱対流生成用チップ。 A rotating body having a heat convection flow path, an introduction port, and a supply path is provided, and the liquid introduced into the introduction port is supplied to the heat convection flow path by the supply path, and heat is generated in the heat convection flow path. A chip for generating heat convection to be convected,
A liquid receiving portion communicating with the introduction port is formed on the rotating body, and the liquid receiving portion is formed.
The supply path has a suction passage for sucking the liquid in the liquid receiving portion by a capillary phenomenon.
The suction passage has a weighing space and has a weighing space.
The suction passage is configured so that the liquid in the weighing space is separated from the liquid in the other region and supplied to the heat convection flow path by the centrifugal force when the rotating body is rotated.
A chip for generating heat convection in which a surplus liquid storage portion for storing a liquid separated from the liquid in the weighing space by the centrifugal force is formed on the rotating body. - 前記余剰液貯留部の流路断面は、丸みがつけられた角部を有する請求項5に記載の熱対流生成用チップ。 The heat convection generation chip according to claim 5, wherein the cross section of the flow path of the excess liquid storage portion has rounded corners.
- 前記余剰液貯留部は、底面から上に突出し両側側面間を横断するダム部を有する請求項5又は請求項6に記載の熱対流生成用チップ。 The heat convection generation chip according to claim 5 or 6, wherein the excess liquid storage portion has a dam portion that projects upward from the bottom surface and crosses between both side surfaces.
- 前記ダム部と前記両側側面とでつくる角部は、丸みがつけられている請求項7に記載の熱対流生成用チップ。 The heat convection generation chip according to claim 7, wherein the corners formed by the dam portion and the side surfaces on both sides are rounded.
- 熱対流用流路、導入口及び供給路が形成された回転体を備え、前記導入口に導入された液体を前記供給路により前記熱対流用流路に供給し前記熱対流用流路で熱対流させる熱対流生成用チップであって、
前記回転体に、前記供給路とは別に、前記供給路の前記熱対流用流路との接続部に連通した封止剤用空間が形成され、
前記封止剤用空間に常温で固形の封止剤が保持され、
前記供給路により液体が供給された前記熱対流用流路を閉塞するために、前記封止剤用空間の前記封止剤を加温し、溶融させて、前記回転体を回転させたときの遠心力により、前記接続部に移送し充填可能にされている熱対流生成用チップ。 A rotating body having a heat convection flow path, an introduction port, and a supply path is provided, and the liquid introduced into the introduction port is supplied to the heat convection flow path by the supply path, and heat is generated in the heat convection flow path. A chip for generating heat convection to be convected,
In the rotating body, a space for a sealing agent is formed in addition to the supply path, which communicates with the connection portion of the supply path with the heat convection flow path.
A solid sealant is held at room temperature in the sealant space,
When the rotating body is rotated by heating and melting the sealing agent in the sealing agent space in order to block the heat convection flow path to which the liquid is supplied by the supply path. A chip for generating heat convection that is transferred to the connection portion and can be filled by centrifugal force. - 請求項3に記載の熱対流生成用チップを用い、
一つの前記導入口を通して前記液体受容部に、検体及び反応試薬を含有した溶液を導入し、同溶液を複数組の前記熱対流用流路に分配供給し、当該各熱対流用流路で熱対流させてポリメラーゼ連鎖反応又は逆転写ポリメラーゼ連鎖反応を行う反応方法。 Using the heat convection generation chip according to claim 3,
A solution containing a sample and a reaction reagent is introduced into the liquid receiving portion through one of the inlets, the solution is distributed and supplied to a plurality of sets of the heat convection channels, and heat is generated in each of the heat convection channels. A reaction method in which a polymerase chain reaction or a reverse transcription polymerase chain reaction is carried out by convection.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021534010A JP7549358B2 (en) | 2019-07-25 | 2020-07-17 | Chip for generating thermal convection and reaction method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019136539 | 2019-07-25 | ||
JP2019-136539 | 2019-07-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021015145A1 true WO2021015145A1 (en) | 2021-01-28 |
Family
ID=74192981
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/027955 WO2021015145A1 (en) | 2019-07-25 | 2020-07-17 | Chip for generating thermal convection and reaction method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7549358B2 (en) |
WO (1) | WO2021015145A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2020246294A1 (en) * | 2019-06-03 | 2020-12-10 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015037255A1 (en) * | 2013-09-11 | 2015-03-19 | 国立大学法人大阪大学 | Thermal convection generating chip, thermal convection generating device, and thermal convection generating method |
WO2015170753A1 (en) * | 2014-05-08 | 2015-11-12 | 国立大学法人大阪大学 | Heat convection-generating chip and liquid-weighing instrument |
WO2015174429A1 (en) * | 2014-05-15 | 2015-11-19 | タカノ株式会社 | Analysis chip and sample analysis apparatus |
WO2016043196A1 (en) * | 2014-09-16 | 2016-03-24 | 凸版印刷株式会社 | Sample analysis chip |
WO2016158831A1 (en) * | 2015-03-30 | 2016-10-06 | コニカミノルタ株式会社 | Heat-convection-generating device and heat-convection-generating system |
JP2017215288A (en) * | 2016-06-02 | 2017-12-07 | 株式会社フコク | Micro flow channel chip |
JP2018014966A (en) * | 2016-07-29 | 2018-02-01 | コニカミノルタ株式会社 | Thermal convection generation chip, thermal convection generation unit |
-
2020
- 2020-07-17 WO PCT/JP2020/027955 patent/WO2021015145A1/en active Application Filing
- 2020-07-17 JP JP2021534010A patent/JP7549358B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015037255A1 (en) * | 2013-09-11 | 2015-03-19 | 国立大学法人大阪大学 | Thermal convection generating chip, thermal convection generating device, and thermal convection generating method |
WO2015170753A1 (en) * | 2014-05-08 | 2015-11-12 | 国立大学法人大阪大学 | Heat convection-generating chip and liquid-weighing instrument |
WO2015174429A1 (en) * | 2014-05-15 | 2015-11-19 | タカノ株式会社 | Analysis chip and sample analysis apparatus |
WO2016043196A1 (en) * | 2014-09-16 | 2016-03-24 | 凸版印刷株式会社 | Sample analysis chip |
WO2016158831A1 (en) * | 2015-03-30 | 2016-10-06 | コニカミノルタ株式会社 | Heat-convection-generating device and heat-convection-generating system |
JP2017215288A (en) * | 2016-06-02 | 2017-12-07 | 株式会社フコク | Micro flow channel chip |
JP2018014966A (en) * | 2016-07-29 | 2018-02-01 | コニカミノルタ株式会社 | Thermal convection generation chip, thermal convection generation unit |
Non-Patent Citations (1)
Title |
---|
SAITO M. ET AL.: "Centrifugation-Controlled Thermal Convection and Its Application to Rapid Microfluidic Polymerase Chain Reaction Devices", ANAL. CHEM., vol. 89, no. 23, 5 December 2017 (2017-12-05), pages 12797 - 12804, XP055786165 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2020246294A1 (en) * | 2019-06-03 | 2020-12-10 | ||
JP7287461B2 (en) | 2019-06-03 | 2023-06-06 | 株式会社島津製作所 | Microfluidic device, test method using microfluidic device, and test apparatus using microfluidic device |
Also Published As
Publication number | Publication date |
---|---|
JP7549358B2 (en) | 2024-09-11 |
JPWO2021015145A1 (en) | 2021-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8057757B2 (en) | Sample mixing on a microfluidic device | |
JP6323274B2 (en) | Sample analysis chip | |
US20220410143A1 (en) | Genome extraction device including flow cover | |
KR20090105934A (en) | Enhanced sample processing devices, systems and methods | |
US12036545B2 (en) | Amplification module with gas moving passage and extract moving passage | |
US20230052107A1 (en) | Genome extraction device including safety clip combined with inner chamber | |
WO2021015145A1 (en) | Chip for generating thermal convection and reaction method | |
US9555409B2 (en) | Rotatable sample disk and method of loading a sample disk | |
CN113528295A (en) | Microfluidic chip capable of carrying out multi-step time sequence reaction, microfluidic method and application thereof | |
JP2023537142A (en) | Cartridges for rotation-based analytical methods with one-sided heat input, rotation-based analytical methods, and methods of using cartridges | |
JP5521454B2 (en) | Sample analysis chip, sample analysis apparatus and sample analysis method using the same | |
JP2015121493A (en) | Sample analysis chip | |
US20220410150A1 (en) | Genome extraction device of dual chamber structure in which outer chamber and inner chamber are combined with each other | |
US10166541B2 (en) | Centrifugal microfluidic platform for automated media exchange | |
EP1585593B1 (en) | Sample processing device having process chambers with bypass slots | |
JP2004525339A (en) | Enhanced sample processing device, system and method | |
JP5707683B2 (en) | Sample analysis chip, sample analysis device and sample analysis device using the same, and gene analysis method | |
US11938478B2 (en) | Genome extraction device of dual chamber structure in which outer chamber and bead chamber are combined with each other | |
CN217490918U (en) | Micro-fluidic chip applying phase change valve and in-vitro diagnostic device | |
JP2023537143A (en) | Analysis device operation method, cartridge usage method, and analysis device | |
KR20240044103A (en) | Genome Amplification Module having a branch space adjacent to the extract inlet | |
JP6714277B2 (en) | Chip for heat convection | |
CN116194216A (en) | Sample carrier and slewing device | |
JP2024130544A (en) | Centrifugal liquid delivery device, centrifugal dispensing device, microfluidic device and test chip |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20844114 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021534010 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20844114 Country of ref document: EP Kind code of ref document: A1 |