[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021005688A1 - リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極、リチウムイオン二次電池、及びリチウムイオン二次電池用負極活物質の製造方法 - Google Patents

リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極、リチウムイオン二次電池、及びリチウムイオン二次電池用負極活物質の製造方法 Download PDF

Info

Publication number
WO2021005688A1
WO2021005688A1 PCT/JP2019/027010 JP2019027010W WO2021005688A1 WO 2021005688 A1 WO2021005688 A1 WO 2021005688A1 JP 2019027010 W JP2019027010 W JP 2019027010W WO 2021005688 A1 WO2021005688 A1 WO 2021005688A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
particles
active material
electrode active
lithium ion
Prior art date
Application number
PCT/JP2019/027010
Other languages
English (en)
French (fr)
Inventor
陽 安田
英介 羽場
望 陳
達也 西田
Original Assignee
昭和電工マテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工マテリアルズ株式会社 filed Critical 昭和電工マテリアルズ株式会社
Priority to JP2021530379A priority Critical patent/JPWO2021005688A1/ja
Priority to PCT/JP2019/027010 priority patent/WO2021005688A1/ja
Publication of WO2021005688A1 publication Critical patent/WO2021005688A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing a negative electrode active material for a lithium ion secondary battery, a negative electrode for a lithium ion secondary battery, a lithium ion secondary battery, and a negative electrode active material for a secondary battery.
  • graphite is mainly used as the negative electrode active material of lithium ion secondary batteries, but it is known that graphite has a theoretical capacity limit of 372 mAh / g in discharge capacity.
  • negative electrode active materials that can achieve even higher capacities for lithium-ion secondary batteries. Development is desired.
  • Patent Document 1 a peak derived from Si (111) is observed in X-ray diffraction, and the size of a silicon crystal obtained by the Scheller method based on the half-value width of the diffraction line is 1 to 500 nm.
  • a negative electrode active material in which the surface of particles having a structure in which fine crystals of silicon are dispersed in a silicon-based compound is coated with carbon.
  • silicon microcrystals or fine particles are dispersed in an inert and strong substance such as silicon dioxide, and carbon for imparting conductivity to at least a part of the surface is fused. It is said that by allowing the surface to be conductive, the structure becomes stable against changes in the volume of silicon due to occlusion and release of lithium, and as a result, long-term stability is obtained and the initial efficiency is improved. ing.
  • the surface of the silicon oxide particles is coated with a graphite film, the graphite coating amount is 3 to 40% by weight, the BET specific surface area is 2 to 30 m 2 / g, and the graphite film is Raman.
  • Negative electrode active materials having a spectrum peculiar to the graphite structure are disclosed in which Raman shifts in the spectral spectrum are around 1330 cm -1 and 1580 cm -1 .
  • the lithium ion secondary that can reach the characteristic level required by the market by controlling the physical properties of the graphite film that coats the surface of the material that can occlude and release lithium ions within a specific range. It is said that the negative electrode of the battery can be obtained.
  • Patent Document 3 discloses a negative electrode active material in which the surface of silicon oxide particles represented by the general formula SiO x is coated with a carbon film treated with thermal plasma. According to the technique of Patent Document 3, it is said that a negative electrode active material having excellent cycle characteristics can be obtained by solving the expansion of an electrode and the expansion of a battery due to gas generation, which are drawbacks of silicon oxide.
  • the present invention has been made in view of the above requirements, and is a negative electrode active material for a lithium ion secondary battery capable of improving the initial charge / discharge efficiency and quick chargeability of the lithium ion secondary battery, and a lithium ion using the negative electrode active material.
  • An object of the present invention is to provide a negative electrode for a secondary battery and a lithium ion secondary battery.
  • Lithium comprising silicon oxide particles in which the proportion of particles having a particle diameter of 1.0 ⁇ m or less is 50% or more on a number basis, and carbon present on a part or all of the surface of the silicon oxide particles.
  • Negative electrode active material for ion secondary batteries ⁇ 2> The negative electrode active material for a lithium ion secondary battery according to ⁇ 1>, wherein the silicon oxide particles have a proportion of particles having a particle diameter of 3.0 ⁇ m or more of 50% or more on a volume basis.
  • ⁇ 3> The negative electrode active material for a lithium ion secondary battery according to ⁇ 1> or ⁇ 2>, wherein at least a part of the silicon oxide particles forms secondary particles.
  • ⁇ 4> Lithium ion having silicon oxide particles and carbon present on a part or all of the surface of the silicon oxide particles, and at least a part of the silicon oxide particles forming secondary particles.
  • ⁇ 6> The negative electrode active material for a lithium ion secondary battery according to any one of ⁇ 3> to ⁇ 5>, wherein the ratio of the secondary particles is 5% by mass or more of the total amount of the silicon oxide particles.
  • ⁇ 7> The item according to any one of ⁇ 1> to ⁇ 6>, wherein the carbon content is 0.5% by mass to 10.0% by mass of the total of the silicon oxide particles and the carbon.
  • ⁇ 8> The negative electrode active material for a lithium ion secondary battery according to any one of ⁇ 1> to ⁇ 7>, which has a BET specific surface area of 0.1 m 2 / g to 15 m 2 / g.
  • the ratio (PS i / P SiO2 ) to the X-ray diffraction peak intensity ( PSi ) of ° to 29 ° is in the range of 1.0 to 2.6.
  • Negative electrode for lithium-ion secondary batteries A lithium ion secondary battery comprising a positive electrode ⁇ 11>, a negative electrode for a lithium ion secondary battery according to ⁇ 10>, and an electrolyte.
  • Negative electrode for lithium ion secondary battery which comprises a step of adhering carbon to a part or all of the surface of silicon oxide particles in which the proportion of particles having a particle size of 1.0 ⁇ m or less is 50% or more on a number basis.
  • Method of manufacturing active material ⁇ 13> Production of the negative electrode active material for a lithium ion secondary battery according to ⁇ 12> for producing the negative electrode active material for a lithium ion secondary battery according to any one of ⁇ 1> to ⁇ 9>.
  • a negative electrode active material for a lithium ion secondary battery that can improve the initial charge / discharge efficiency and quick chargeability of a lithium ion secondary battery, a negative electrode for a lithium ion secondary battery and a lithium ion secondary material using the negative electrode active material.
  • a method for producing a secondary battery and a negative electrode active material for a lithium ion secondary battery is provided.
  • the term "process” includes not only a process independent of other processes but also the process if the purpose of the process is achieved even if the process cannot be clearly distinguished from the other process. ..
  • the numerical range indicated by using "-" includes the numerical values before and after "-" as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical range described stepwise. ..
  • the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
  • each component may contain a plurality of applicable substances.
  • the content rate or content of each component is the total content rate or content of the plurality of substances present in the composition unless otherwise specified.
  • a plurality of types of particles corresponding to each component may be contained.
  • the particle size of each component means a value for a mixture of the plurality of particles present in the composition unless otherwise specified.
  • the term "layer” or “membrane” is used only in a part of the region in addition to the case where the layer or the membrane is formed in the entire region when the region in which the layer or the membrane exists is observed. The case where it is formed is also included.
  • laminated refers to stacking layers, and two or more layers may be bonded or the two or more layers may be removable.
  • Negative electrode active material for lithium ion secondary battery (first embodiment)>
  • the proportion of particles having a particle size of 1.0 ⁇ m or less is 50% or more on a number basis. It includes certain silicon oxide particles and carbon present on a part or all of the surface of the silicon oxide particles.
  • the initial charge / discharge efficiency and quick chargeability of the lithium ion secondary battery can be improved by using the silicon oxide particles satisfying the above-mentioned particle size distribution conditions as the negative electrode active material. ..
  • the reason is not always clear, but in addition to improving the initial charge / discharge efficiency by including silicon oxide particles with a small particle size as the negative electrode active material, particles with a small particle size are compared among the silicon oxide particles. It is considered that the increase in the specific surface area of the entire particle, which is contained in a large amount, contributes to the improvement of the quick chargeability.
  • the particle size distribution and particle size of silicon oxide particles are the particle size distribution and particle size of primary particles (when a plurality of particles are aggregated to form secondary particles, the particle size distribution and particle size are secondary. It means the particle size of each particle forming the particle).
  • the particle size distribution and particle size when the silicon oxide particles include secondary particles are measured, for example, in a state before the silicon oxide particles form secondary particles, or a process of decomposing secondary particles into primary particles. It is possible to measure in the state where.
  • the particle size distribution and particle size of the silicon oxide particles can be obtained from the particle size distribution curve obtained by the laser diffraction / scattering method. For example, whether or not the proportion of particles having a particle size of 1.0 ⁇ m or less in the silicon oxide particles is 50% or more on a number basis can be determined from the particle size distribution curve obtained by the laser diffraction / scattering method.
  • the particle size (nD50, hereinafter also referred to as the number average particle size) when the accumulation from the small diameter side is 50% on the number basis in the particle size distribution curve obtained by the laser diffraction / scattering method is 1.0 ⁇ m or less. It can be determined that the proportion of particles having a particle size of 1.0 ⁇ m or less is 50% or more on a number basis.
  • the proportion of particles having a particle diameter of 1.0 ⁇ m or less in the silicon oxide particles may be 80% or more or 90% or more on a number basis.
  • the upper limit of the proportion of particles having a particle diameter of 1.0 ⁇ m or less is not particularly limited, but is preferably 99% or less on a number basis.
  • gas generation due to the reaction between the silicon oxide particles and the electrolytic solution tends to be suppressed.
  • the proportion of particles having a particle diameter of 0.8 ⁇ m or less may be 50% or more based on the number of particles, and the proportion of particles having a particle diameter of 0.5 ⁇ m or less may be 50% or more based on the number of particles.
  • the ratio of particles having a particle diameter of 0.2 ⁇ m or less may be 50% or more based on the number of particles. That is, in the particle size distribution curve obtained by the laser diffraction / scattering method, the particle size (nD50) when the accumulation from the small diameter side is 50% on the basis of the number may be 0.8 ⁇ m or less, and 0.5 ⁇ m or less. It may be present, and may be 0.2 ⁇ m or less.
  • the proportion of particles having a particle diameter of 0.5 ⁇ m or less may be 10% or more based on the number of particles, and the proportion of particles having a particle diameter of 0.2 ⁇ m or less may be 10% or more based on the number of particles.
  • the ratio of particles having a particle diameter of 0.1 ⁇ m or less may be 10% or more based on the number of particles. That is, in the particle size distribution curve obtained by the laser diffraction / scattering method, the particle size (nD10) when the accumulation from the small diameter side is 10% on the basis of the number may be 0.5 ⁇ m or less, and 0.2 ⁇ m or less. It may be present, and may be 0.1 ⁇ m or less.
  • the proportion of particles having a particle diameter of 3.0 ⁇ m or more is preferably 50% or more on a volume basis, and the proportion of particles having a particle diameter of 4.0 ⁇ m or more is 50% or more on a volume basis. More preferably, the proportion of particles having a particle diameter of 5.0 ⁇ m or more is 50% or more on a volume basis. That is, in the particle size distribution curve obtained by the laser diffraction / scattering method, the particle size (vD50, hereinafter also referred to as volume average particle size) when the accumulation from the small diameter side is 50% on a volume basis is 3.0 ⁇ m or more. It is preferably 4.0 ⁇ m or more, and even more preferably 5.0 ⁇ m or more.
  • the upper limit of the volume average particle diameter of the silicon oxide particles is not particularly limited, but is preferably 20.0 ⁇ m or less, more preferably 15.0 ⁇ m or less, and further preferably 10.0 ⁇ m or less.
  • At least a part of the silicon oxide particles may form secondary particles.
  • Secondary particles made of silicon oxide particles are considered to be formed, for example, by synthesizing some of the particles when carbon is attached to the surface of the silicon oxide particles.
  • the degree of formation of secondary particles can be controlled by, for example, the particle size distribution of silicon oxide particles before carbon is attached (ratio of small-diameter particles, etc.) and the method of attaching carbon (type of device, etc.).
  • the “secondary particles” mean particles formed by fixing a plurality of particles to such an extent that they are not easily separated under normal use conditions of the negative electrode active material.
  • Whether or not at least a part of the silicon oxide particles form secondary particles can be determined by, for example, observation with an electron microscope.
  • the ratio is not particularly limited. For example, 5% by mass or more of the total silicon oxide particles may be in the state of secondary particles, 10% by mass or more may be in the state of secondary particles, and 20% by mass or more may be in the state of secondary particles. It may be.
  • the state of each secondary particle is not particularly limited.
  • secondary particles in a state in which particles having a particle diameter of 1.0 ⁇ m or less are fixed to particles having a particle diameter of 5.0 ⁇ m or more may be included.
  • the silicon oxide particles include secondary particles in which particles having a particle diameter of 1.0 ⁇ m or less are fixed to particles having a particle diameter of 5.0 ⁇ m or more
  • the ratio is not particularly limited. For example, 5% by mass or more of all the silicon oxide particles may be in the state of secondary particles in the above state, or 10% by mass or more may be in the state of secondary particles in the above state, and 20% by mass or more. May be the state of the secondary particles in the above state.
  • the particle size distribution when the particle size is measured in the state of the secondary particles is not particularly limited.
  • the volume average particle diameter may be in the range of 3.0 ⁇ m to 20.0 ⁇ m.
  • the silicon oxide particles may have a volume average particle diameter of 5.0 ⁇ m or more and a BET specific surface area of 4.5 m 2 / g or more, and a volume average particle diameter of 5.0 ⁇ m or more and a BET specific surface area. May be 5.0 m 2 / g or more.
  • the BET specific surface area tends to be larger than that of the silicon oxide particles having the same volume average particle diameter and not containing the secondary particles.
  • the method of adjusting the particle size so that the silicon oxide particles satisfy the above-mentioned particle size distribution condition is not particularly limited.
  • it can be adjusted by sieving or the like as necessary.
  • silicon oxide particles having different particle diameters can be mixed and adjusted.
  • the silicon oxide particles of the present embodiment occupy a relatively large proportion of small-diameter particles, it can be expected to realize, for example, a reduction in the amount of fine powder generated during production and omission of a step of removing fine powder. Therefore, it is also advantageous from the viewpoint of manufacturing efficiency.
  • the silicon oxide constituting the silicon oxide particles may be an oxide containing a silicon element, and examples thereof include silicon oxide, silicon dioxide, and silicon sulfite.
  • the silicon oxide contained in the silicon oxide particles may be only one type or a combination of two or more types.
  • silicon oxide and silicon dioxide are generally represented as silicon monoxide (SiO) and silicon dioxide (SiO 2 ), respectively, but in a surface state (eg, presence of oxide film) or
  • the actual measurement value (or conversion value) of the contained element may be represented by the composition formula SiO x (x is 0 ⁇ x ⁇ 2), and in this case as well, the silicon oxide according to the present disclosure is used.
  • the value of x in the composition formula can be calculated, for example, by quantifying the oxygen contained in the silicon oxide by the inert gas melting-non-dispersion infrared absorption method.
  • SiO-C particles silicon oxide particles in which carbon is present on a part or all of the surface may be referred to as "SiO-C particles".
  • examples of carbon present on a part or all of the surface of the silicon oxide particles include graphite, amorphous carbon and the like.
  • the organic substances and conductive particles described later do not correspond to "carbon" in the present disclosure.
  • the mode in which carbon is present on a part or all of the surface of the silicon oxide particles is not particularly limited. For example, continuous or discontinuous coating and the like can be mentioned.
  • the presence or absence of carbon in the negative electrode active material for the lithium ion secondary battery can be confirmed by, for example, laser Raman spectroscopy with an excitation wavelength of 532 nm.
  • the carbon content is preferably 0.5% by mass to 10.0% by mass of the total of the silicon oxide particles and carbon. With such a configuration, the initial discharge capacity and the initial charge / discharge efficiency tend to be further improved.
  • the carbon content is more preferably 1.0% by mass to 9.0% by mass, further preferably 1.5% by mass to 8.0% by mass, and particularly preferably 1.5% by mass to 5.0% by mass. ..
  • the carbon content can be determined, for example, by high-frequency firing-infrared analysis.
  • a carbon-sulfur simultaneous analyzer LECO Japan GK, CSLS600
  • the carbon content is reduced by heating the negative electrode active material to a temperature higher than the decomposition temperature (for example, 300 ° C.) to remove the mass loss derived from the organic substance in advance. Can be measured.
  • Carbon preferably has low crystallinity.
  • "low crystallinity" of carbon means that the R value of the negative electrode active material obtained by the method shown below is 0.5 or more.
  • the peak appearing in the vicinity of 1360 cm -1 is usually a peak identified to correspond to an amorphous structure, and means, for example, a peak observed in 1300 cm -1 to 1400 cm -1 .
  • the peak appearing near 1580 cm -1 generally a peak identified as corresponding to the graphite crystal structure, for example, refers to peaks observed at 1530cm -1 ⁇ 1630cm -1.
  • R value Raman spectrum measuring apparatus e.g., NSR-1000 type, manufactured by JASCO Corporation
  • the R value of the negative electrode active material is preferably 0.5 to 2.5, more preferably 0.7 to 2.3, and even more preferably 0.8 to 2.0.
  • the surface of the silicon oxide particles is sufficiently covered with low crystalline carbon in which carbon crystallites are diffusely oriented, so that the reactivity with the electrolytic solution can be reduced. Cycle characteristics tend to improve.
  • the method of imparting carbon to the surface of the silicon oxide particles is not particularly limited. Specific examples thereof include a wet mixing method, a dry mixing method, and a chemical vapor deposition method.
  • carbon When carbon is added by a wet mixing method, for example, a silicon oxide particle and a carbon raw material (carbon source) dissolved or dispersed in a solvent are mixed, and the carbon source is the surface of the silicon oxide particle.
  • carbon raw material carbon source
  • silicon oxide particles and a carbon source are mixed in a solid state to form a mixture, and the mixture is heat-treated in an inert atmosphere to obtain carbon as the carbon source.
  • a treatment for applying mechanical energy for example, a mechanochemical treatment
  • carbon When carbon is added by the chemical vapor deposition method, a known method can be applied. For example, carbon can be imparted to the surface of the silicon oxide particles by heat-treating the silicon oxide particles in an atmosphere containing a gas in which the carbon source is vaporized.
  • the carbon source used is not particularly limited as long as it is a substance that can be converted to carbon by heat treatment.
  • polymer compounds such as phenol resin, styrene resin, polyvinyl alcohol, polyvinyl chloride (PVC), polyvinyl acetate, and polybutyral; ethylene heavy end pitch, coal pitch, petroleum pitch, coal tar pitch, asphalt Decomposition pitches, PVC pitches produced by thermal decomposition of polyvinyl chloride and the like, pitches such as naphthalene pitches produced by polymerizing naphthalene and the like in the presence of super-strong acids; polysaccharides such as starch and cellulose can be mentioned.
  • PVC polyvinyl chloride
  • pitches such as naphthalene pitches produced by polymerizing naphthalene and the like in the presence of super-strong acids
  • polysaccharides such as starch and cellulose can be mentioned.
  • the carbon source used is an aliphatic hydrocarbon, an aromatic hydrocarbon, an alicyclic hydrocarbon, or the like, which is gaseous or easily gasified. It is preferable to use a possible substance. Specific examples thereof include methane, ethane, propane, toluene, benzene, xylene, styrene, naphthalene, cresol, anthracene, and derivatives thereof. These carbon sources may be used alone or in combination of two or more.
  • the heat treatment temperature at the time of carbonizing the carbon source is not particularly limited as long as the temperature at which the carbon source is carbonized, and is preferably 700 ° C. or higher, more preferably 800 ° C. or higher, and more preferably 900 ° C. or higher. It is more preferable to have.
  • the heat treatment temperature is preferably 1300 ° C. or lower, preferably 1200 ° C. or lower, from the viewpoint of obtaining low crystallinity carbon and producing silicon crystals in a desired size by a disproportionation reaction described later. It is more preferable that the temperature is 1100 ° C. or lower.
  • the heat treatment time for carbonizing the carbon source can be selected depending on the type and amount of the carbon source used. For example, 1 hour to 10 hours is preferable, and 2 hours to 7 hours is more preferable.
  • the heat treatment for carbonizing the carbon source is preferably carried out in an inert atmosphere such as nitrogen or argon.
  • the heat treatment apparatus is not particularly limited, and examples thereof include a heating apparatus capable of processing by a continuous method, a batch method, or the like. Specifically, it can be selected from a fluidized bed reactor, a rotary furnace, a vertical mobile bed reactor, a tunnel furnace, a batch furnace, and the like.
  • heat-treated product obtained by the heat treatment is in a state where a plurality of particles are agglomerated, further crushing treatment may be performed. Further, if adjustment to a desired average particle size is required, further pulverization treatment may be performed.
  • the ratio of the X-ray diffraction peak intensity ( PSi / PSiO2 ) of the negative electrode active material is a value measured with carbon, organic matter, conductive particles, etc. attached to the silicon oxide particles, but these adhere to the silicon oxide particles. It may be a value measured in a state where it is not.
  • Negative electrode active material containing particles As a negative electrode active material having an X-ray diffraction peak intensity ratio ( PSi / PSiO2 ) in the range of 1.0 to 2.6, a silicon oxide having a structure in which silicon crystallites are present in the silicon oxide. Negative electrode active material containing particles can be mentioned.
  • Silicon oxide particles having a structure in which silicon crystallites are dispersed in silicon oxide cause, for example, a disproportionation reaction (2SiO ⁇ Si + SiO 2 ) of silicon oxide to cause silicon in the silicon oxide particles. It can be produced by generating crystallites. By controlling the degree to which silicon crystallites are formed in the silicon oxide particles, the ratio of the X-ray diffraction peak intensities can be controlled to a desired value.
  • the advantage of having silicon crystallites present in the silicon oxide particles by the disproportionation reaction of the silicon oxide can be considered as follows.
  • the above-mentioned SiO x (x is 0 ⁇ x ⁇ 2) tends to be inferior in the initial charge / discharge characteristics because lithium ions are trapped during the initial charge. This is because the lithium ions are trapped by the dangling bonds (unpaired electron pairs) of oxygen existing in the amorphous SiO 2 phase. Therefore, it is considered preferable from the viewpoint of improving charge / discharge characteristics to suppress the generation of dangling bonds of active oxygen atoms by reconstructing the amorphous SiO 2 phase by heat treatment.
  • the ratio of the X-ray diffraction peak intensity ( PSi / PSiO2 ) of the negative electrode active material is 1.0 or more, the silicon crystallites in the silicon oxide particles are sufficiently grown and the ratio of SiO 2 is large. It does not become too much, a sufficient initial discharge capacity can be obtained, and a decrease in charge / discharge efficiency due to an irreversible reaction tends to be suppressed.
  • the ratio of the X-ray diffraction peak intensity ( PSi / PSiO2 ) is 2.6 or less, the crystallites of the produced silicon do not become too large and the expansion and contraction are easily relaxed, and the initial discharge capacity is lowered. Tends to be suppressed.
  • the ratio of X-ray diffraction peak intensities ( PSi / PSiO2 ) is preferably in the range of 1.5 to 2.0.
  • the ratio of the X-ray diffraction peak intensities of the negative electrode active material can be controlled, for example, by the conditions of the heat treatment that causes the disproportionation reaction of the silicon oxide. For example, by raising the heat treatment temperature or lengthening the heat treatment time, the formation and enlargement of silicon crystallites can be promoted, and the ratio of the X-ray diffraction peak intensity can be increased. On the other hand, by lowering the heat treatment temperature or shortening the heat treatment time, the formation of silicon crystallites can be suppressed, and the ratio of the X-ray diffraction peak intensities can be reduced.
  • the silicon oxide used as a raw material is, for example, a mixture of silicon dioxide and metallic silicon is heated to cool the gas of silicon monoxide produced. It can be obtained by a known sublimation method for precipitating. It can also be obtained from the market as silicon oxide, silicon monoxide and the like.
  • silicon crystallites are present in the silicon oxide particles.
  • XRD powder X-ray diffraction
  • the size of the silicon crystallites is preferably 8.0 nm or less, more preferably 6.0 nm or less.
  • the silicon crystallites are difficult to localize in the silicon oxide particles and tend to be dispersed throughout the particles. Therefore, in the silicon oxide particles. Lithium ions are easily diffused, and a good charging capacity is easily obtained.
  • the size of silicon crystallites is preferably 2.0 nm or more, more preferably 3.0 nm or more. When the size of the silicon crystallite is 2.0 nm or more, the reaction between the lithium ion and the silicon oxide is well controlled, and good charge / discharge efficiency can be easily obtained.
  • the method for forming silicon crystallites in the silicon oxide particles is not particularly limited.
  • it can be produced by heat-treating silicon oxide particles in a temperature range of 700 ° C. to 1300 ° C. in an inert atmosphere to cause a disproportionation reaction (2SiO ⁇ Si + SiO 2 ).
  • the heat treatment for causing the disproportionation reaction may be performed in the same step as the heat treatment for imparting carbon to the surface of the silicon oxide particles.
  • the heat treatment conditions for causing the disproportionation reaction of the silicon oxide are, for example, to carry out the silicon oxide in a temperature range of 700 ° C. to 1300 ° C., preferably 800 ° C. to 1200 ° C. in an inert atmosphere. Can be done.
  • the heat treatment temperature is preferably more than 900 ° C, more preferably 950 ° C or higher.
  • the heat treatment temperature is preferably less than 1150 ° C., more preferably 1100 ° C. or lower.
  • the particle size distribution may be adjusted by performing a classification treatment after pulverization.
  • the classification method is not particularly limited, and can be selected from dry classification, wet classification, sieving and the like. From the viewpoint of productivity, it is preferable to perform crushing and classification at once.
  • a jet mill and cyclone coupling system can classify particles before they reaggregate, making it easy to obtain the desired particle size distribution shape.
  • the negative electrode active material after pulverization is further subjected to surface modification treatment to adjust the aspect ratio.
  • the apparatus for performing the surface modification treatment is not particularly limited. For example, a mechanofusion system, a novirta, a hybridization system and the like can be mentioned.
  • the BET specific surface area of the negative electrode active material is preferably 0.1 m 2 / g to 15 m 2 / g, more preferably 0.5 m 2 / g to 10 m 2 / g, and 1.0 m 2 / g. more preferably from ⁇ 7.0m 2 / g, particularly preferably 3.0m 2 /g ⁇ 6.0m 2 / g.
  • the BET specific surface area of the negative electrode active material is 15 m 2 / g or less, the increase in the initial irreversible capacity of the obtained lithium ion secondary battery tends to be suppressed.
  • the amount of binder used when producing the negative electrode can be reduced.
  • the specific surface area of the negative electrode active material is 0.1 m 2 / g or more, a sufficient contact area between the negative electrode active material and the electrolytic solution is sufficiently secured, and good charge / discharge efficiency tends to be obtained.
  • the BET specific surface area of the negative electrode active material is measured by the BET method (nitrogen gas adsorption method).
  • the powder electrical resistance of the negative electrode active material is preferably 100 ⁇ ⁇ cm or less, more preferably 80 ⁇ ⁇ cm or less, and further preferably 50 ⁇ ⁇ cm or less at a pressure of 10 MPa.
  • the powder electrical resistance of the negative electrode active material can be measured using, for example, a powder electrical resistance device (MSP-PD51 type 4 probe probe, Mitsubishi Chemical Analytech Co., Ltd.).
  • the powder electrical resistance of the negative electrode active material may be 0.1 ⁇ ⁇ cm or more, preferably 1 ⁇ ⁇ cm or more, and more preferably 10 ⁇ ⁇ cm or more at a pressure of 10 MPa.
  • the negative electrode active material preferably contains conductive particles described later. By adhering the conductive particles to the surface of the SiO—C particles to form a protrusion structure, the resistance value of the entire negative electrode active material can be reduced.
  • the negative electrode active material may contain an organic substance.
  • the initial discharge capacity, the initial charge / discharge efficiency, and the recovery rate after charge / discharge tend to be further improved. It is considered that this is because the specific surface area of the negative electrode active material is lowered by containing an organic substance, and the reaction with the electrolytic solution is suppressed.
  • the organic substance contained in the negative electrode active material may be only one type or two or more types.
  • the content of organic matter is preferably 0.1% by mass to 5.0% by mass of the entire negative electrode active material.
  • the content of the organic substance in the entire negative electrode active material is more preferably 0.2% by mass to 3.0% by mass, and further preferably 0.3% by mass to 1.0% by mass.
  • the negative electrode active material contains an organic substance is determined by, for example, heating a sufficiently dried negative electrode active material to a temperature higher than the temperature at which the organic substance decomposes and lower than the temperature at which the carbon decomposes (for example, 300 ° C.). It can be confirmed by measuring the mass of the negative electrode active material after the organic matter is decomposed. Specifically, when the mass of the negative electrode active material before heating is A (g) and the mass of the negative electrode active material after heating is B (g), it is represented by ⁇ (AB) / A ⁇ ⁇ 100. When the rate of change of the mass is 0.1% or more, it can be determined that the negative electrode active material contains an organic substance.
  • the rate of change in the mass is preferably 0.1% to 5.0%, more preferably 0.3% to 1.0%.
  • the rate of change is 0.1% or more, a sufficient amount of organic matter is present on the surface of the SiO—C particles, so that the effect of containing the organic matter tends to be sufficiently obtained.
  • the type of organic matter is not particularly limited.
  • water-soluble cellulose derivative to a derivative of starch of C 6 H 10 O 5 as a basic structure C 6 H 10 O 5 a basic structure to viscous polysaccharide, a C 6 H 10 O 5 as a basic structure, polyuronide and At least one selected from the group consisting of water-soluble synthetic resins can be mentioned.
  • starch derivative having C 6 H 10 O 5 as a basic structure examples include hydroxyalkyl starches such as acetate starch, phosphoric acid starch, carboxymethyl starch and hydroxyethyl starch.
  • specific examples of the viscous polysaccharide having C 6 H 10 O 5 as a basic structure include pullulan and dextrin.
  • examples of the water-soluble cellulose derivative having C 6 H 10 O 5 as a basic structure include carboxymethyl cellulose, methyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose and the like.
  • polyuronide examples include pectic acid, alginic acid and the like.
  • water-soluble synthetic resin examples include water-soluble acrylic resin, water-soluble epoxy resin, water-soluble polyester resin, water-soluble polyamide resin, and more specifically, polyvinyl alcohol, polyacrylic acid, polyacrylic acid salt, and polyvinyl.
  • examples thereof include sulfonic acid, polyvinyl sulfonate, poly4-vinylphenol, poly4-vinylphenol salt, polystyrene sulfonic acid, polystyrene sulfonate, polyaniline sulfonic acid and the like.
  • the organic substance may be used in the state of a metal salt, an alkylene glycol ester or the like.
  • the organic substance is a part or all of the SiO-C particles (when the conductive particles described later are present on the surface of the SiO-C particles, the surface thereof). It is preferable that the state is covered with.
  • the method for allowing the organic substance to be present on a part or all of the surface of the SiO—C particles is not particularly limited.
  • the organic substance can be attached to the SiO-C particles by putting the SiO-C particles in a liquid in which the organic substance is dissolved or dispersed and stirring the mixture as necessary. After that, the SiO-C particles to which the organic substance is attached are taken out from the liquid and dried if necessary, so that the SiO-C particles to which the organic substance is attached to the surface can be obtained.
  • the temperature of the liquid during stirring is not particularly limited and can be selected from, for example, 5 ° C to 95 ° C.
  • the temperature at the time of drying is not particularly limited and can be selected from, for example, 50 ° C to 200 ° C.
  • the content of the organic substance in the solution is not particularly limited and can be selected from, for example, 0.1% by mass to 20% by mass.
  • the negative electrode active material may contain conductive particles. Since the negative electrode active material contains the conductive particles, even if the silicon oxide particles expand and contract, the conductive particles come into contact with each other, so that conduction can be easily ensured. In addition, the resistance value of the entire negative electrode active material tends to decrease. As a result, the decrease in capacity due to repeated charging and discharging is suppressed, and the cycle characteristics tend to be maintained well.
  • the conductive particles are present on the surface of the SiO—C particles.
  • the particles in which the conductive particles are present on the surface of the SiO-C particles may be referred to as "CP / SiO-C particles”.
  • the type of conductive particles is not particularly limited.
  • at least one selected from the group consisting of granular graphite and carbon black is preferable, and granular graphite is preferable from the viewpoint of improving cycle characteristics.
  • granular graphite include particles such as artificial graphite, natural graphite, and MC (mesophase carbon).
  • Examples of carbon black include acetylene black, ketjene black, thermal black, furnace black and the like, and acetylene black is preferable from the viewpoint of conductivity.
  • Granular graphite is preferably more crystalline than carbon present on the surface of silicon oxide particles from the viewpoint of improving both battery capacity and charge / discharge efficiency.
  • the average interplanar spacing (d 002 ) obtained by measuring based on the Gakushin method is preferably 0.335 nm to 0.347 nm, and 0.335 nm to 0.345 nm. It is more preferably 0.335 nm to 0.340 nm, and particularly preferably 0.335 nm to 0.337 nm.
  • the shape of the granular graphite is not particularly limited, and may be flat graphite or spheroidal graphite. From the viewpoint of improving cycle characteristics, flat graphite is preferable. Examples of flat graphite include graphite having a scale-like, scaly-like, and lump-like shape.
  • the aspect ratio of the conductive particles is not particularly limited, but from the viewpoint of ensuring continuity between the conductive particles and improving the cycle characteristics, the average value of the aspect ratio is preferably 0.3 or less. It is more preferably 2 or less.
  • the average value of the aspect ratios of the conductive particles is preferably 0.001 or more, and more preferably 0.01 or more.
  • the aspect ratio of the conductive particles is a value measured by observation by SEM. Specifically, for each of the 100 conductive particles arbitrarily selected in the SEM image, the length in the major axis direction is A, and the length in the minor axis direction (in the case of flat graphite, the length in the thickness direction) is set. It is a value calculated as B / A when B is set.
  • the average value of the aspect ratio is the arithmetic mean value of the aspect ratio of 100 conductive particles.
  • the conductive particles may be either primary particles (singular particles) or secondary particles (granulated particles) formed from a plurality of primary particles.
  • the flat graphite may be porous graphite particles.
  • the content of the conductive particles is preferably 1.0% by mass to 10.0% by mass, preferably 2.0% by mass to 9.0% by mass, based on the entire negative electrode active material from the viewpoint of improving the cycle characteristics. More preferably, it is more preferably 3.0% by mass to 8.0% by mass.
  • the content of conductive particles can be determined, for example, by high-frequency firing-infrared analysis.
  • a carbon-sulfur simultaneous analyzer CSLS600, LECO Japan GK
  • this measurement also includes the carbon content of the SiO—C particles, it may be subtracted from the separately measured carbon content obtained.
  • the method for producing the negative electrode active material containing the conductive particles is not particularly limited, and examples thereof include a wet method and a dry method.
  • a method for producing a negative electrode active material containing conductive particles by a wet method for example, SiO-C particles are added to a particle dispersion liquid in which conductive particles are dispersed in a dispersion medium, and after stirring, a dryer or the like is used. Then, a method of producing by removing the dispersion medium can be mentioned.
  • the dispersion medium used is not particularly limited, and water, an organic solvent, or the like can be used.
  • the organic solvent may be a water-soluble organic solvent such as alcohol or a water-insoluble organic solvent.
  • the dispersion medium may contain a dispersant from the viewpoint of increasing the dispersibility of the conductive particles and making the adhesion of the SiO—C particles to the surface more uniform.
  • the dispersant can be selected according to the type of dispersion medium used. For example, when the dispersion medium is an aqueous system, carboxymethyl cellulose is preferable from the viewpoint of dispersion stability.
  • Examples of the method for producing the negative electrode active material containing the conductive particles by the dry method include a method in which the conductive particles are added together with the carbon source when the carbon source of carbon is applied to the surface of the silicon oxide particles. .. Specifically, for example, a method of mixing a carbon source and conductive particles with silicon oxide particles and applying mechanical energy (for example, mechanochemical treatment) can be mentioned.
  • the obtained negative electrode active material may be further classified.
  • the classification process can be performed using a sieving machine or the like.
  • the negative electrode active material (SiO-based negative electrode active material) of the present embodiment may be used in combination with another negative electrode active material, if necessary.
  • it may be used in combination with a carbon-based negative electrode active material conventionally known as an active material for the negative electrode of a lithium ion secondary battery.
  • a carbon-based negative electrode active material conventionally known as an active material for the negative electrode of a lithium ion secondary battery.
  • improvement of charge / discharge efficiency, improvement of cycle characteristics, effect of suppressing expansion of electrodes, etc. can be obtained.
  • the carbon-based negative electrode active material used in combination with the negative electrode active material of the present embodiment may be only one type or two or more types.
  • Examples of the carbon-based negative electrode active material include natural graphite such as scaly natural graphite and spherical natural graphite obtained by spheroidizing scaly natural graphite, and a negative electrode active material made of a carbon material such as artificial graphite and amorphous carbon. Further, these carbon-based negative electrode active materials may have carbon (carbon or the like described above) on a part or all of the surface thereof.
  • the ratio (A: B) of the negative electrode active material (A) and the carbon-based negative electrode active material (B) of the present embodiment is determined. It can be adjusted as appropriate according to the purpose. For example, from the viewpoint of the effect of suppressing the expansion of the electrode, it is preferably 0.1: 99.9 to 20:80, and 0.5: 99.5 to 15:85 on a mass basis. More preferably, it is more preferably 1:99 to 10:90.
  • the negative electrode active material for a lithium ion secondary battery of the second embodiment includes silicon oxide particles and carbon present on a part or all of the surface of the silicon oxide particles, and at least one of the silicon oxide particles. The part forms a secondary particle.
  • the initial charge / discharge efficiency and quick chargeability of the lithium ion secondary battery can be improved by using the silicon oxide particles satisfying the above conditions as the negative electrode active material.
  • the reason is not always clear, but in addition to improving the initial charge / discharge efficiency by using silicon oxide particles as the negative electrode active material, at least a part of the silicon oxide particles forms secondary particles. Therefore, it is considered that the increase in the specific surface area of the entire particle contributes to the improvement of the quick chargeability.
  • the ratio of silicon oxide particles forming secondary particles to the total silicon oxide particles is not particularly limited. For example, 5% by mass or more of the total silicon oxide particles may be in the state of secondary particles, 10% by mass or more may be in the state of secondary particles, and 20% by mass or more may be in the state of secondary particles. It may be.
  • each secondary particle contained in the silicon oxide particles is not particularly limited.
  • secondary particles in a state in which particles having a particle diameter of 1.0 ⁇ m or less are attached to particles having a particle diameter of 5.0 ⁇ m or more may be included.
  • the silicon oxide particles include secondary particles in which particles having a particle diameter of 1.0 ⁇ m or less are fixed to particles having a particle diameter of 5.0 ⁇ m or more
  • the ratio is not particularly limited. For example, 5% by mass or more of all the silicon oxide particles may be in the state of secondary particles in the above state, or 10% by mass or more may be in the state of secondary particles in the above state, and 20% by mass or more. May be the state of secondary particles in the above state.
  • the particle size distribution of the silicon oxide particles including the secondary particles is not particularly limited.
  • the volume average particle diameter when the particle diameter is measured in the state of the secondary particles may be in the range of 3.0 ⁇ m to 20.0 ⁇ m.
  • the silicon oxide particles containing the secondary particles may have a volume average particle diameter of 5.0 ⁇ m or more and a BET specific surface area of 4.5 m 2 / g or more, and have a volume average particle diameter of 5.0 ⁇ m or more.
  • the BET specific surface area may be 5.0 m 2 / g or more.
  • the method of adjusting the particle size so that the silicon oxide particles satisfy the above-mentioned particle size distribution condition is not particularly limited.
  • it can be adjusted by sieving or the like as necessary.
  • silicon oxide particles having different particle diameters can be mixed and adjusted.
  • the negative electrode active material of the present embodiment may satisfy the conditions of the particle size distribution described for the negative electrode active material of the first embodiment.
  • the details and preferred embodiments of the negative electrode active material and its constituent elements of the second embodiment are the same as the details and preferred embodiments of the negative electrode active material and its constituent elements of the first embodiment.
  • the method for producing the negative electrode active material for a lithium ion secondary battery of the present embodiment covers a part or all of the surface of silicon oxide particles in which the proportion of particles having a particle diameter of 1.0 ⁇ m or less is 50% or more on a number basis. Includes the step of adhering carbon.
  • the above method may be for producing the negative electrode active material of the first embodiment and the second embodiment described above. That is, the negative electrode active material produced by the above method may be the negative electrode active material of the first embodiment and the second embodiment described above.
  • the method of carrying out the step of adhering carbon to a part or all of the surface of the silicon oxide particles is not particularly limited.
  • carbon can be added to the surface of the silicon oxide particles by the method described above.
  • the above method may include a step other than the step of adhering carbon to a part or all of the surface of the silicon oxide particles, if necessary.
  • pulverization of silicon oxide particles, particle size adjustment, heat treatment for disproportionation reaction, adhesion of organic substances or conductive particles, and the like may be carried out.
  • the above method may be carried out in a state where a part of the silicon oxide particles after carbon is attached to a part or the whole of the surface of the silicon oxide particles forms secondary particles.
  • the step of adhering carbon to the surface of the silicon oxide particles may be performed in a state where the plurality of particles are easily fixed.
  • the degree of formation of secondary particles can be controlled by the particle size distribution of silicon oxide particles before carbon is attached (ratio of small-diameter particles, etc.), the method of adhering carbon (type of device, etc.), and the like.
  • the negative electrode for a lithium ion secondary battery of the present embodiment (hereinafter, may be abbreviated as "negative electrode”) includes a current collector and a negative electrode material layer containing the above-mentioned negative electrode active material provided on the current collector. , Have.
  • the negative electrode can be produced, for example, by forming a negative electrode material layer on the current collector using the above-mentioned composition containing the negative electrode active material.
  • the composition containing the negative electrode active material include a mixture of the negative electrode active material with an organic binder, a solvent, a thickener, a conductive auxiliary agent, a carbon-based negative electrode active material, and the like.
  • organic binder examples include styrene-butadiene copolymers; ethylenic properties such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, (meth) acrylonitrile, and hydroxyethyl (meth) acrylate.
  • “(meth) acrylate” means “acrylate” and the corresponding "methacrylate”. The same applies to other similar expressions such as "(meth) acrylic copolymer”.
  • the organic binder may be one dispersed or dissolved in water, or one dissolved in an organic solvent such as N-methyl-2-pyrrolidone (NMP).
  • NMP N-methyl-2-pyrrolidone
  • One type of organic binder may be used alone, or two or more types may be used in combination.
  • the organic binder having a main skeleton of polyacrylonitrile, polyimide or polyamide-imide is preferable among the organic binders, the heat treatment temperature at the time of producing the negative electrode is low, and the flexibility of the electrode is excellent.
  • An organic binder having a main skeleton of polyacrylonitrile is more preferable.
  • Examples of the organic binder having polyacrylonitrile as a main skeleton include those obtained by adding acrylic acid that imparts adhesiveness and a linear ether group that imparts flexibility to a polyacrylonitrile skeleton.
  • the content of the organic binder in the negative electrode material layer is preferably 0.1% by mass to 20% by mass, more preferably 0.2% by mass to 20% by mass, and 0.3% by mass. It is more preferably to 15% by mass.
  • the content of the organic binder in the negative electrode material layer is 0.1% by mass or more, good adhesion is obtained, and the negative electrode is suppressed from being destroyed by expansion and contraction during charging and discharging. ..
  • the content of the organic binder in the negative electrode material layer is 20% by mass or less, an increase in electrode resistance can be suppressed.
  • thickener examples include carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, polyacrylic acid (salt), oxidized starch, phosphorylated starch, casein and the like.
  • One type of thickener may be used alone, or two or more types may be used in combination.
  • the solvent examples include N-methylpyrrolidone, dimethylacetamide, dimethylformamide, ⁇ -butyrolactone and the like.
  • One type of solvent may be used alone, or two or more types may be used in combination.
  • the conductive auxiliary agent examples include carbon black, acetylene black, oxides showing conductivity, and nitrides showing conductivity.
  • One type of conductive auxiliary agent may be used alone, or two or more types may be used in combination.
  • the content of the conductive auxiliary agent in the negative electrode material layer is preferably 0.1% by mass to 20% by mass.
  • Examples of the material of the current collector include aluminum, copper, nickel, titanium, stainless steel, porous metal (foam metal), carbon paper, and the like.
  • Examples of the shape of the current collector include a foil shape, a perforated foil shape, and a mesh shape.
  • a coating liquid containing a negative electrode active material is applied onto the current collector to remove volatile substances such as a solvent.
  • Examples of the method of applying the coating liquid to the current collector include a metal mask printing method, an electrostatic coating method, a dip coating method, a spray coating method, a roll coating method, a doctor blade method, a gravure coating method, and a screen printing method. ..
  • the pressurization treatment after coating can be performed by a flat plate press, a calendar roll, or the like.
  • the integration of the negative electrode material layer and the current collector can be, for example, integration by a roll, integration by a press, or a combination thereof.
  • the negative electrode material layer formed on the current collector or the negative electrode material layer integrated with the current collector may be heat-treated according to the type of the organic binder used. For example, when using an organic binder having polyacrylonitrile as the main skeleton, it is preferable to heat-treat at 100 ° C. to 180 ° C., and when using an organic binder having polyimide or polyamide-imide as the main skeleton, 150 ° C. It is preferable to heat-treat at ° C to 450 ° C. By this heat treatment, the solvent is removed and the strength is increased by curing the organic binder, and the adhesion between the negative electrode active materials and the adhesion between the negative electrode active material and the current collector can be improved. In addition, these heat treatments are preferably carried out in an inert atmosphere such as helium, argon or nitrogen or in a vacuum atmosphere in order to prevent oxidation of the current collector during the treatment.
  • an inert atmosphere such as helium, argon or nitrogen or in a vacuum
  • the negative electrode material layer is pressed (pressurized) before the heat treatment.
  • the electrode density can be adjusted by pressurizing. Electrode density may, for example, more preferably is preferably 1.4g / cm 3 ⁇ 1.9g / cm 3, a 1.5g / cm 3 ⁇ 1.85g / cm 3, 1.6g / cm It is more preferably 3 to 1.8 g / cm 3 . Regarding the electrode density, the higher the value, the more the volume capacity of the negative electrode tends to improve, and the adhesion between the negative electrode active materials and the adhesion between the negative electrode active material and the current collector tend to improve. ..
  • the lithium ion secondary battery of the present embodiment includes a positive electrode, the above-mentioned negative electrode, and an electrolyte.
  • a lithium ion secondary battery is manufactured, for example, by arranging a negative electrode and a positive electrode in a battery container so as to face each other via a separator, and injecting an electrolytic solution obtained by dissolving an electrolyte in an organic solvent into the battery container. can do.
  • the positive electrode can be obtained by forming a positive electrode material layer on the surface of the current collector in the same manner as the negative electrode.
  • the same current collector as at the negative electrode can be used as the current collector at the positive electrode.
  • the material used for the positive electrode may be a compound capable of doping or intercalating lithium ions, and may be lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), or lithium manganate (LiMnO). 2 ) and the like.
  • a positive electrode material for example, a positive electrode material, an organic binder such as polyvinylidene fluoride, and a solvent such as N-methyl-2-pyrrolidone and ⁇ -butyrolactone are mixed to prepare a positive electrode coating solution, and this positive electrode coating solution is prepared.
  • a current collector such as an aluminum foil
  • a conductive auxiliary agent may be added to the positive electrode coating liquid.
  • the conductive auxiliary agent include carbon black, acetylene black, oxides exhibiting conductivity, nitrides exhibiting conductivity, and the like. These conductive auxiliaries may be used alone or in combination of two or more.
  • LiPF 6, LiClO 4, LiBF 4, LiClF 4, LiAsF 6, LiSbF 6, LiAlO 4, LiAlCl 4, LiN (CF 3 SO 2) 2, LiN (C 2 F 5 SO 2) 2, LiC ( CF 3 SO 2 ) 3 , LiCl, LiI and the like can be mentioned.
  • organic solvent that dissolves the electrolyte examples include propylene carbonate, ethylene carbonate, diethyl carbonate, ethylmethyl carbonate, vinylene carbonate, ⁇ -butyrolactone, 1,2-dimethoxyethane and 2-methyltetrahydrofuran.
  • separator examples include a paper separator, a polypropylene separator, a polyethylene separator, a glass fiber separator, and the like.
  • the manufacturing method of the lithium ion secondary battery is not particularly limited.
  • a cylindrical lithium ion secondary battery can be manufactured by the following steps. First, the two electrodes, the positive electrode and the negative electrode, are wound around the separator. The obtained spiral winding group is inserted into the battery can, and the tab terminal previously welded to the current collector of the negative electrode is welded to the bottom of the battery can. The electrolytic solution is injected into the obtained battery can. Further, the tab terminal welded to the current collector of the positive electrode in advance is welded to the lid of the battery, and the lid is arranged on the upper part of the battery can via the insulating gasket.
  • a lithium ion secondary battery can be obtained by crimping and sealing the portion where the lid and the battery can are in contact with each other.
  • the form of the lithium ion secondary battery is not particularly limited, and examples thereof include lithium ion secondary batteries such as paper type batteries, button type batteries, coin type batteries, laminated batteries, cylindrical batteries, and square batteries.
  • the negative electrode active material of the present embodiment is not limited to the lithium ion secondary battery, and can be applied to all electrochemical devices having a charging / discharging mechanism of inserting and removing lithium ions.
  • the particle size distribution of the obtained silicon oxide particles was measured. Specifically, the measurement sample (5 mg) was placed in a 0.01 mass% aqueous solution of a surfactant (Esomin T / 15, Lion Corporation) and dispersed with a vibration stirrer. The obtained dispersion was placed in a sample water tank of a laser diffraction type particle size distribution measuring device (SALD3000J, Shimadzu Corporation), circulated by a pump while applying ultrasonic waves, and measured by a laser diffraction type. The measurement conditions were as follows. Hereinafter, in the examples, the particle distribution was measured in the same manner. -Light source: Red semiconductor laser (690 nm) ⁇ Absorbance: 0.10 to 0.15 -Refractive index: 2.00 to 0.20
  • the results are shown in Table 1. When the silicon oxide particles to be measured were observed with an electron microscope, no secondary particles were contained.
  • the obtained chemically vapor-deposited product was crushed in a mortar to obtain a negative electrode active material in which carbon was attached to the surface of silicon oxide particles.
  • the particle size distribution of the silicon oxide particles after CVD is measured in the same manner as the particle size distribution of the silicon oxide particles before CVD, and when the cumulative volume-based from the small diameter side is 10%, 50%, 90%.
  • the results are shown in Table 1. When the silicon oxide particles after CVD were observed with an electron microscope, the secondary particles were not contained.
  • Comparative Example 2 Silicon oxide particles with carbon attached in the same manner as in Comparative Example 1 except that fine particles were removed by sizing with a 300M (300 mesh) test sieve so that the volume average particle diameter (vD50) was around 10 ⁇ m. (Negative electrode active material) was prepared, and the particle size distribution before and after CVD was measured. The results are shown in Table 1. When the silicon oxide particles after CVD were observed with an electron microscope, the secondary particles were not contained.
  • Example 1 Silicon oxidation with carbon attached in the same manner as in Comparative Example 1 except that the silicon oxide particles (before CVD) used in Comparative Example 1 were blended with fine powder removed after pulverization in an amount of 5% by mass of the whole. Material particles (negative electrode active material) were prepared, and the particle size distribution before and after CVD was measured. The results are shown in Table 1. When the silicon oxide particles before and after CVD were observed with an electron microscope, the secondary particles were not contained before CVD, whereas some of the particles formed secondary particles after CVD.
  • Example 2 Silicon oxidation with carbon attached in the same manner as in Comparative Example 1 except that the silicon oxide particles (before CVD) used in Comparative Example 1 were blended with fine powder removed after pulverization in an amount of 10% by mass of the whole. Material particles (negative electrode active material) were prepared, and the particle size distribution before and after CVD was measured. The results are shown in Table 1. When the silicon oxide particles before and after CVD were observed with an electron microscope, secondary particles were not contained before CVD, whereas some of the particles formed secondary particles after CVD. An electron micrograph of the silicon oxide particles after CVD is shown in FIG.
  • Example 3 Silicon oxidation with carbon attached in the same manner as in Comparative Example 2 except that the silicon oxide particles (before CVD) used in Comparative Example 2 were blended with fine powder removed after pulverization in an amount of 5% by mass of the whole. Material particles (negative electrode active material) were prepared, and the particle size distribution before and after CVD was measured. The results are shown in Table 1. When the silicon oxide particles before and after CVD were observed with an electron microscope, the secondary particles were not contained before CVD, whereas some of the particles formed secondary particles after CVD.
  • the negative electrode active material was analyzed using a powder X-ray diffraction measuring device (MultiFlex (2 kW), Rigaku Co., Ltd.) in the same manner as described above.
  • the carbon content (mass%) of the negative electrode active material was measured by a high-frequency firing-infrared analysis method.
  • the high-frequency firing-infrared analysis method is an analysis method in which a sample is heated and burned in an oxygen stream in a high-frequency furnace, carbon and sulfur in the sample are converted into CO 2 and SO 2 , respectively, and quantified by an infrared absorption method.
  • the measuring device, measuring conditions, etc. are as follows.
  • ⁇ Battery capacity (initial discharge capacity and initial charge / discharge efficiency)>
  • the prepared battery is placed in a constant temperature bath held at 25 ° C., charged at a constant current of 0.45 mA / cm 2 until it reaches 0 V, and then a value corresponding to a current of 0.09 mA / cm 2 at a constant voltage of 0 V.
  • the battery was further charged until it decayed to, and the initial charge capacity was measured.
  • the battery was discharged after a 30-minute rest period. The discharge was performed at 0.45 mA / cm 2 until it reached 1.5 V, and the initial discharge capacity was measured. At this time, the capacity was converted to the mass of the negative electrode active material used.
  • the value obtained by multiplying the value obtained by dividing the initial discharge capacity by the initial charge capacity by 100 was calculated as the initial charge / discharge efficiency (%).
  • the battery was placed in a constant temperature bath kept at 25 ° C., and discharged at 0.45 mA / cm 2 for the third time until it reached 1.5 V. Then, the fourth charge and the fourth discharge were performed under the same conditions as above.
  • the ratio of the discharge capacity at the time of the third discharge to the discharge capacity at the time of the second discharge (third discharge capacity / second discharge capacity) ⁇ 100) is calculated and used as the maintenance rate (%). did.
  • the ratio of the discharge capacity at the time of the fourth discharge (fourth discharge capacity / second discharge capacity) ⁇ 100) to the discharge capacity at the time of the second discharge is calculated, and the recovery rate (%) is calculated. did.
  • the proportion of particles having a particle size of 1.0 ⁇ m or less is 50% or more (nD50 measured in the state before CVD in which no secondary particles are formed is 1.0 ⁇ m or less).
  • the battery of the example in which the oxide particles are used as the negative electrode active material is charged at -5 ° C, which is an index of quick chargeability, as compared with the battery of the comparative example in which the silicon oxide particles that do not satisfy this condition are used as the negative electrode active material. It was highly receptive and had good initial charge / discharge efficiency. The maintenance rate and recovery rate after high-temperature storage were slightly lower than those of the comparative example, but they satisfied the sufficient level of battery characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

下記(1)又は(2)の少なくともいずれかを満たすケイ素酸化物粒子と、前記ケイ素酸化物粒子の表面の一部又は全部に存在する炭素と、を備えるリチウムイオン二次電池用負極活物質。 (1)粒子径が1.0μm以下の粒子の割合が個数基準で50%以上である (2)少なくとも一部が二次粒子を形成している

Description

リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極、リチウムイオン二次電池、及びリチウムイオン二次電池用負極活物質の製造方法
 本発明は、リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極、リチウムイオン二次電池、及び二次電池用負極活物質の製造方法に関する。
 現在、リチウムイオン二次電池の負極活物質には主に黒鉛が用いられているが、黒鉛は放電容量に372mAh/gという理論的な容量限界があることが知られている。近年、携帯電話、ノートパソコン、タブレット端末等のモバイル機器の高性能化、電気自動車の電源としての利用の拡大などに伴い、リチウムイオン二次電池の更なる高容量化を達成可能な負極活物質の開発が望まれている。
 上記事情を背景として、理論容量が黒鉛よりも高い物質を負極活物質として利用するための検討がなされている。中でもケイ素酸化物は容量が大きく、安価で加工性が良好であるため、負極活物質としての利用に関する研究が特に盛んである。
 例えば、特許文献1には、X線回折においてSi(111)に由来するピークが観察され、その回折線の半価幅をもとにシェーラー法により求めたケイ素の結晶の大きさが1~500nmである、ケイ素の微結晶がケイ素系化合物に分散した構造を有する粒子の表面が炭素で被覆された負極活物質が開示されている。
 特許文献1の技術によれば、ケイ素微結晶又は微粒子を不活性で強固な物質、例えば、二酸化ケイ素に分散し、さらに、この表面の少なくとも一部に導電性を付与するための炭素を融着させることによって、表面の導電性を確保するとともに、リチウムの吸蔵及び放出に伴うケイ素の体積変化に対して安定な構造となり、結果として、長期安定性が得られ、初期効率が改善されるとされている。
 また、特許文献2には、ケイ素酸化物粒子の表面が黒鉛皮膜で被覆され、黒鉛被覆量が3~40重量%、BET比表面積が2~30m/gであって、黒鉛皮膜が、ラマン分光スペクトルにおけるラマンシフトが1330cm-1と1580cm-1付近にグラファイト構造特有のスペクトルを有する負極活物質が開示されている。
 特許文献2の技術によれば、リチウムイオンを吸蔵、放出しうる材料の表面に被覆する黒鉛皮膜の物性を特定範囲に制御することで、市場の要求する特性レベルに到達しうるリチウムイオン二次電池の負極が得られるとされている。
 また、特許文献3には、一般式SiOで表されるケイ素酸化物粒子の表面が熱プラズマ処理された炭素皮膜で被覆された負極活物質が開示されている。
 特許文献3の技術によれば、ケイ素酸化物の欠点である電極の膨張と、ガス発生による電池の膨張を解決し、サイクル特性に優れた負極活物質が得られるとされている。
特許第3952180号公報 特許第4171897号公報 特開2011-90869号公報
 今後、モバイル機器等の高性能化に適したリチウムイオン二次電池へ適用するための負極活物質としては、単に多くのリチウムイオンを貯蔵できる(すなわち、充電容量が高い)ことに加え、貯蔵したリチウムイオンをより多く放出できる(すなわち、充放電効率が高い)ことが必要となる。さらに、リチウムイオン二次電池の充電速度の向上も重要な課題である。
 本発明は、上記要求に鑑みなされたものであり、リチウムイオン二次電池の初期の充放電効率と急速充電性を向上しうるリチウムイオン二次電池用負極活物質、並びにこれを用いたリチウムイオン二次電池用負極及びリチウムイオン二次電池を提供することを課題とする。
 前記課題を解決するための具体的手段は以下の通りである。
<1>粒子径が1.0μm以下の粒子の割合が個数基準で50%以上であるケイ素酸化物粒子と、前記ケイ素酸化物粒子の表面の一部又は全部に存在する炭素と、を備えるリチウムイオン二次電池用負極活物質。
<2>前記ケイ素酸化物粒子は、粒子径が3.0μm以上の粒子の割合が体積基準で50%以上である、<1>に記載のリチウムイオン二次電池用負極活物質。
<3>前記ケイ素酸化物粒子の少なくとも一部が二次粒子を形成している、<1>又は<2>に記載のリチウムイオン二次電池用負極活物質。
<4>ケイ素酸化物粒子と、前記ケイ素酸化物粒子の表面の一部又は全部に存在する炭素とを備え、前記ケイ素酸化物粒子の少なくとも一部は二次粒子を形成している、リチウムイオン二次電池用負極活物質。
<5>前記二次粒子は、粒子径が5.0μm以上の粒子に粒子径が1.0μm以下の粒子が付着した状態の二次粒子を含む、<3>又は<4>に記載のリチウムイオン二次電池用負極活物質。
<6>前記二次粒子の割合は、前記ケイ素酸化物粒子全体の5質量%以上である、<3>~<5>のいずれか1項に記載のリチウムイオン二次電池用負極活物質。
<7>前記炭素の含有率が、前記ケイ素酸化物粒子と前記炭素の合計の0.5質量%~10.0質量%である、<1>~<6>のいずれか1項に記載のリチウムイオン二次電池用負極活物質。
<8>BET比表面積が0.1m/g~15m/gである、<1>~<7>のいずれか1項に記載のリチウムイオン二次電池用負極活物質。
<9>線源として波長0.15406nmのCuKα線を使用したときの、SiOに由来する2θ=20°~25°のX線回折ピーク強度(PSiO2)と、Siに由来する2θ=27°~29°のX線回折ピーク強度(PSi)との比(PSi/PSiO2)が1.0~2.6の範囲である、<1>~<8>のいずれか1項に記載のリチウムイオン二次電池用負極活物質。
<10>集電体と、前記集電体上に設けられている<1>~<9>のいずれか1項に記載のリチウムイオン二次電池用負極活物質を含む負極材層と、を有するリチウムイオン二次電池用負極。
<11>正極と、<10>に記載のリチウムイオン二次電池用負極と、電解質と、を備えるリチウムイオン二次電池。
<12>粒子径が1.0μm以下の粒子の割合が個数基準で50%以上であるケイ素酸化物粒子の表面の一部又は全部に炭素を付着させる工程を含む、リチウムイオン二次電池用負極活物質の製造方法。
<13><1>~<9>のいずれか1項に記載のリチウムイオン二次電池用負極活物質を製造するための、<12>に記載のリチウムイオン二次電池用負極活物質の製造方法。
 本発明によれば、リチウムイオン二次電池の初期の充放電効率と急速充電性を向上しうるリチウムイオン二次電池用負極活物質、これを用いたリチウムイオン二次電池用負極及びリチウムイオン二次電池、並びにリチウムイオン二次電池用負極活物質の製造方法が提供される。
実施例2で作製した負極活物質(CVD後のケイ素酸化物粒子)の電子顕微鏡写真である。
 以下、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。
 本開示において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
 本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において各成分は該当する物質を複数種含んでいてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
 本開示において各成分に該当する粒子は複数種含んでいてもよい。組成物中に各成分に該当する粒子が複数種存在する場合、各成分の粒子径は、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
 本開示において「層」又は「膜」との語には、当該層又は膜が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
 本開示において「積層」との語は、層を積み重ねることを示し、二以上の層が結合されていてもよく、二以上の層が着脱可能であってもよい。
<リチウムイオン二次電池用負極活物質(第1実施形態)>
 第1実施形態のリチウムイオン二次電池用負極活物質(以下、単に「負極活物質」と称する場合がある)は、粒子径が1.0μm以下の粒子の割合が個数基準で50%以上であるケイ素酸化物粒子と、前記ケイ素酸化物粒子の表面の一部又は全部に存在する炭素と、を備える。
 本発明者らの検討の結果、上述した粒度分布の条件を満たすケイ素酸化物粒子を負極活物質として用いると、リチウムイオン二次電池の初期の充放電効率と急速充電性を向上できることがわかった。その理由は必ずしも明らかではないが、負極活物質として粒子径の小さいケイ素酸化物粒子を含むことで初期の充放電効率が向上することに加え、ケイ素酸化物粒子中に粒子径の小さい粒子が比較的多く含まれて粒子全体の比表面積が増大することが急速充電性の向上に寄与していることが考えられる。
 本開示では特に断りのない限り、ケイ素酸化物粒子の粒度分布及び粒子径は、一次粒子の粒度分布及び粒子径(複数の粒子が集合して二次粒子を形成している場合は、二次粒子を形成している個々の粒子の粒子径)を意味する。
 ケイ素酸化物粒子が二次粒子を含む場合の粒度分布及び粒子径は、例えば、ケイ素酸化物粒子が二次粒子を形成する前の状態で測定したり、二次粒子を一次粒子に分解する処理を施した状態で測定したりすることができる。
(ケイ素酸化物粒子)
 ケイ素酸化物粒子の粒度分布及び粒子径は、レーザー回折・散乱法により得られる粒度分布曲線から求められる。例えば、ケイ素酸化物粒子における粒子径が1.0μm以下の粒子の割合が個数基準で50%以上であるか否かは、レーザー回折・散乱法により得られる粒度分布曲線から求めることができる。レーザー回折・散乱法により得られる粒度分布曲線において小径側からの累積が個数基準で50%となるときの粒子径(nD50、以下、個数平均粒子径ともいう)が1.0μm以下である場合、粒子径が1.0μm以下の粒子の割合が個数基準で50%以上であると判断できる。
 ケイ素酸化物粒子中の粒子径が1.0μm以下の粒子の割合は、個数基準で80%以上であっても、90%以上であってもよい。粒子径が1.0μm以下の粒子の割合の上限は特に制限されないが、個数基準で99%以下であることが好ましい。粒子径が1.0μm以下の粒子の割合が個数基準で99%以下であると、ケイ素酸化物粒子と電解液との反応によるガス発生が抑制される傾向にある。
 ケイ素酸化物粒子は、粒子径が0.8μm以下の粒子の割合が個数基準で50%以上であってもよく、粒子径が0.5μm以下の粒子の割合が個数基準で50%以上であってもよく、粒子径が0.2μm以下の粒子の割合が個数基準で50%以上であってもよい。すなわち、レーザー回折・散乱法により得られる粒度分布曲線において小径側からの累積が個数基準で50%となるときの粒子径(nD50)が0.8μm以下であってもよく、0.5μm以下であってもよく、0.2μm以下であってもよい。
 ケイ素酸化物粒子は、粒子径が0.5μm以下の粒子の割合が個数基準で10%以上であってもよく、粒子径が0.2μm以下の粒子の割合が個数基準で10%以上であってもよく、粒子径が0.1μm以下の粒子の割合が個数基準で10%以上であってもよい。すなわち、レーザー回折・散乱法により得られる粒度分布曲線において小径側からの累積が個数基準で10%となるときの粒子径(nD10)が0.5μm以下であってもよく、0.2μm以下であってもよく、0.1μm以下であってもよい。
 ケイ素酸化物粒子は、粒子径が3.0μm以上の粒子の割合が体積基準で50%以上であることが好ましく、粒子径が4.0μm以上の粒子の割合が体積基準で50%以上であることがより好ましく、粒子径が5.0μm以上の粒子の割合が体積基準で50%以上であることがさらに好ましい。
 すなわち、レーザー回折・散乱法により得られる粒度分布曲線において小径側からの累積が体積基準で50%となるときの粒子径(vD50、以下、体積平均粒子径ともいう)が3.0μm以上であることが好ましく、4.0μm以上であることがより好ましく、5.0μm以上であることがさらに好ましい。
 ケイ素酸化物粒子の体積平均粒子径の上限値は特に制限されないが、20.0μm以下であることが好ましく、15.0μm以下であることがより好ましく、10.0μm以下であることがさらに好ましい。
 ケイ素酸化物粒子は、その少なくとも一部が二次粒子を形成していてもよい。ケイ素酸化物粒子による二次粒子は、例えば、ケイ素酸化物粒子の表面に炭素を付着させる際に一部の粒子が複合化して形成されると考えられる。二次粒子の形成の度合いは、例えば、炭素を付着させる前のケイ素酸化物粒子の粒度分布(小径粒子の割合等)、炭素を付着させる方法(装置の種類等)によって制御することができる。
 本開示において「二次粒子」とは、負極活物質の通常の使用条件下で容易に分離しない程度に複数の粒子が固着して形成された粒子を意味する。
 ケイ素酸化物粒子の少なくとも一部が二次粒子を形成しているか否かは、例えば、電子顕微鏡による観察により判断することができる。
 ケイ素酸化物粒子が二次粒子を含む場合、その割合は特に制限されない。例えば、ケイ素酸化物粒子全体の5質量%以上が二次粒子の状態であってもよく、10質量%以上が二次粒子の状態であってもよく、20質量%以上が二次粒子の状態であってもよい。
 ケイ素酸化物粒子が二次粒子を含む場合、個々の二次粒子の状態は特に制限されない。例えば、粒子径が5.0μm以上の粒子に粒子径が1.0μm以下の粒子が固着した状態の二次粒子を含んでいてもよい。
 ケイ素酸化物粒子が、粒子径が5.0μm以上の粒子に粒子径が1.0μm以下の粒子が固着した状態の二次粒子を含む場合、その割合は特に制限されない。例えば、ケイ素酸化物粒子全体の5質量%以上が上記状態の二次粒子の状態であってもよく、10質量%以上が上記状態の二次粒子の状態であってもよく、20質量%以上が上記状態の二次粒子の状態であってもよい。
 ケイ素酸化物粒子が二次粒子を含む場合、二次粒子の状態で(一次粒子の粒子径ではなく)粒子径を測定したときの粒度分布は、特に制限されない。例えば、体積平均粒子径が3.0μm~20.0μmの範囲であってもよい。
 ケイ素酸化物粒子は、体積平均粒子径が5.0μm以上であってBET比表面積が4.5m/g以上であってもよく、体積平均粒子径が5.0μm以上であってBET比表面積が5.0m/g以上であってもよい。ケイ素酸化物粒子が二次粒子を含む場合、体積平均粒子径が同等であって二次粒子を含まないケイ素酸化物粒子に比べるとBET比表面積が大きい傾向にある。
 ケイ素酸化物粒子が上述した粒度分布の条件を満たすように粒度を調整する方法は、特に制限されない。例えば、後述する実施例に記載したように塊状の酸化ケイ素を粉砕した後、必要に応じて篩分け等を行って調整することができる。あるいは、粒子径の異なるケイ素酸化物粒子を混合して調整することができる。
 本実施形態のケイ素酸化物粒子は、小径粒子の占める割合が比較的大きいため、例えば、製造時に生じる微粉を除去する量の低減、微粉を除去する工程の省略等の実現が期待できる。このため、製造効率の観点からも有利である。
 ケイ素酸化物粒子を構成するケイ素酸化物は、ケイ素元素を含む酸化物であればよく、酸化ケイ素、二酸化ケイ素、亜酸化ケイ素等が挙げられる。ケイ素酸化物粒子に含まれるケイ素酸化物は1種のみでも2種以上の組み合わせであってもよい。
 ケイ素酸化物の中で、酸化ケイ素及び二酸化ケイ素は、一般的には、それぞれ一酸化ケイ素(SiO)及び二酸化ケイ素(SiO)として表されるが、表面状態(例えば、酸化皮膜の存在)又は化合物の生成状況によって、含まれる元素の実測値(又は換算値)として組成式SiO(xは0<x≦2)で表される場合があり、この場合も本開示に係るケイ素酸化物とする。組成式中のxの値は、例えば、不活性ガス融解-非分散型赤外線吸収法にてケイ素酸化物中に含まれる酸素を定量することにより算出することができる。また、負極活物質の製造工程中に、ケイ素酸化物の不均化反応(2SiO→Si+SiO)を伴う場合は、化学反応上、ケイ素及び二酸化ケイ素(場合によっては酸化ケイ素)を含む状態で表される場合があり、この場合も本開示に係るケイ素酸化物とする。
(炭素)
 ケイ素酸化物粒子の表面の一部又は全部には、炭素が存在している。ケイ素酸化物粒子の表面の一部又は全部に炭素が存在することにより、絶縁体であるケイ素酸化物粒子に導電性が付与され、充放電反応の効率が向上する。このため、初期の放電容量及び初期の充放電効率が向上すると考えられる。以下、炭素が表面の一部又は全部に存在するケイ素酸化物粒子を「SiO-C粒子」と称することがある。
 本開示においてケイ素酸化物粒子の表面の一部又は全部に存在する炭素としては、例えば、黒鉛、無定形炭素等が挙げられる。なお、後述する有機物及び導電性粒子は、本開示でいう「炭素」には該当しないものとする。
 炭素がケイ素酸化物粒子の表面の一部又は全部に存在する態様は特に制限されない。例えば、連続又は非連続の被覆等が挙げられる。
 リチウムイオン二次電池用負極活物質の炭素の有無は、例えば、励起波長532nmのレーザーラマン分光測定等により確認することができる。
 炭素の含有率は、ケイ素酸化物粒子と炭素との合計の0.5質量%~10.0質量%であることが好ましい。このような構成とすることで、初期の放電容量及び初期の充放電効率がより向上する傾向にある。炭素の含有率は、1.0質量%~9.0質量%がより好ましく、1.5質量%~8.0質量%がさらに好ましく、1.5質量%~5.0質量%が特に好ましい。
 炭素の含有率(質量基準)は、例えば、高周波焼成-赤外分析法によって求めることができる。高周波焼成-赤外分析法においては、例えば、炭素硫黄同時分析装置(LECOジャパン合同会社、CSLS600)を適用することができる。負極活物質が後述する有機物を含む場合は、前記有機物が分解する温度以上(例えば、300℃)に加熱して、有機物に由来する質量低下分をあらかじめ除いておくことで、炭素の含有率を測定することができる。
 炭素は、低結晶性であることが好ましい。本開示において炭素が「低結晶性である」とは、下記に示す方法で得られる負極活物質のR値が0.5以上であることを意味する。
 負極活物質のR値は、励起波長532nmのレーザーラマン分光測定により求めたプロファイルの中で、1360cm-1付近に現れるピークの強度をId、1580cm-1付近に現れるピークの強度をIgとしたとき、その両ピークの強度比Id/Ig(D/Gとも表記する)を意味する。
 ここで、1360cm-1付近に現れるピークとは、通常、非晶質構造に対応すると同定されるピークであり、例えば、1300cm-1~1400cm-1に観測されるピークを意味する。また、1580cm-1付近に現れるピークとは、通常、黒鉛結晶構造に対応すると同定されるピークであり、例えば、1530cm-1~1630cm-1に観測されるピークを意味する。
 なお、R値はラマンスペクトル測定装置(例えば、NSR-1000型、日本分光株式会社)を用い、測定範囲(830cm-1~1940cm-1)に対して1050cm-1~1750cm-1の範囲でベースライン補正を行って求めることができる。
 負極活物質のR値は、0.5~2.5であることが好ましく、0.7~2.3であることがより好ましく、0.8~2.0であることがさらに好ましい。R値が0.5~2.5であると、炭素結晶子が乱配向した低結晶性炭素でケイ素酸化物粒子の表面が充分に被覆されるため、電解液との反応性が低減でき、サイクル特性が改善する傾向にある。
 ケイ素酸化物粒子の表面に炭素を付与する方法は、特に制限されない。具体的には、湿式混合法、乾式混合法、化学蒸着法等が挙げられる。
 炭素の付与を湿式混合法により行う場合は、例えば、ケイ素酸化物粒子と、炭素の原料(炭素源)を溶媒に溶解又は分散させたものとを混合し、炭素源をケイ素酸化物粒子の表面に付着させ、必要に応じて溶媒を除去し、その後、不活性雰囲気下で熱処理することにより炭素源を炭素化させる方法が挙げられる。
 炭素の付与を乾式混合法により行う場合は、例えば、ケイ素酸化物粒子と炭素源とをそれぞれ固体の状態で混合して混合物とし、この混合物を不活性雰囲気下で熱処理することにより炭素源を炭素化させる方法が挙げられる。ケイ素酸化物粒子と炭素源とを混合する際、力学的エネルギーを加える処理(例えば、メカノケミカル処理)を施してもよい。
 炭素の付与を化学蒸着法により行う場合は、公知の方法が適用できる。例えば、炭素源を気化させたガスを含む雰囲気中でケイ素酸化物粒子を熱処理することで、ケイ素酸化物粒子の表面に炭素を付与することができる。
 湿式混合法又は乾式混合法によってケイ素酸化物粒子の表面に炭素を付与する場合、使用する炭素源は熱処理により炭素に変化しうる物質であれば特に制限されない。具体的には、フェノール樹脂、スチレン樹脂、ポリビニルアルコール、ポリ塩化ビニル(PVC)、ポリ酢酸ビニル、ポリブチラール等の高分子化合物;エチレンヘビーエンドピッチ、石炭系ピッチ、石油ピッチ、コールタールピッチ、アスファルト分解ピッチ、ポリ塩化ビニル等を熱分解して生成するPVCピッチ、ナフタレン等を超強酸存在下で重合させて作製されるナフタレンピッチ等のピッチ類;澱粉、セルロース等の多糖類などが挙げられる。これら炭素源は、1種を単独で又は2種以上を組み合わせて使用してもよい。
 化学蒸着法によってケイ素酸化物粒子の表面に炭素を付与する場合、使用する炭素源としては、脂肪族炭化水素、芳香族炭化水素、脂環族炭化水素等のうち、気体状又は容易に気体化可能な物質を用いることが好ましい。具体的には、メタン、エタン、プロパン、トルエン、ベンゼン、キシレン、スチレン、ナフタレン、クレゾール、アントラセン、これらの誘導体等が挙げられる。これら炭素源は、1種を単独で又は2種以上を組み合わせて使用してもよい。
 炭素源を炭素化する際の熱処理温度は、炭素源が炭素化する温度であれば特に制限されず、700℃以上であることが好ましく、800℃以上であることがより好ましく、900℃以上であることがさらに好ましい。また、低結晶性の炭素を得る観点及び後述する不均化反応によりケイ素の結晶子を所望の大きさで生成させる観点からは、熱処理温度は1300℃以下であることが好ましく、1200℃以下であることがより好ましく、1100℃以下であることがさらに好ましい。
 炭素源を炭素化する際の熱処理時間は、用いる炭素源の種類、量等によって選択されうる。例えば、1時間~10時間が好ましく、2時間~7時間がより好ましい。
 炭素源を炭素化する際の熱処理は、窒素、アルゴン等の不活性雰囲気下で行うことが好ましい。熱処理装置は特に制限されず、連続法、回分法等での処理が可能な加熱装置などが挙げられる。具体的には、流動層反応炉、回転炉、竪型移動層反応炉、トンネル炉、バッチ炉等から選択することができる。
 熱処理により得られた熱処理物が複数の粒子が凝集した状態である場合は、さらに解砕処理を行ってもよい。また、所望の平均粒子径への調整が必要な場合はさらに粉砕処理を行ってもよい。
(X線回折ピーク強度比)
 負極活物質は、線源として波長0.15406nmのCuKα線を使用したときの、SiOに由来する2θ=20°~25°のX線回折ピーク強度(PSiO2)と、Siに由来する2θ=27°~29°のX線回折ピーク強度(PSi)との比(PSi/PSiO2)が1.0~2.6の範囲であることが好ましい。
 負極活物質のX線回折ピーク強度の比(PSi/PSiO2)は、ケイ素酸化物粒子に炭素、有機物、導電性粒子等が付着した状態で測定した値であっても、これらが付着していない状態で測定した値であってもよい。
 X線回折ピーク強度の比(PSi/PSiO2)が1.0~2.6の範囲である負極活物質としては、ケイ素酸化物中にケイ素の結晶子が存在する構造を有するケイ素酸化物粒子を含む負極活物質が挙げられる。
 ケイ素酸化物中にケイ素の結晶子が分散した構造を有するケイ素酸化物粒子は、例えば、ケイ素酸化物の不均化反応(2SiO→Si+SiO)を生じさせて、ケイ素酸化物粒子中にケイ素の結晶子を生成させることで作製することができる。ケイ素酸化物粒子中にケイ素の結晶子が生成する度合いを制御することで、X線回折ピーク強度の比を所望の値に制御することができる。
 ケイ素酸化物の不均化反応によりケイ素酸化物粒子中にケイ素の結晶子が存在した状態にすることの利点は、以下のように考えることができる。上述したSiO(xは0<x≦2)は、初期の充電時にリチウムイオンがトラップされ、初期の充放電特性に劣る傾向にある。これは非晶質SiO相に存在する酸素のダングリングボンド(非共有電子対)によって、リチウムイオンがトラップされることにより引き起こされるためである。そこで、熱処理により非晶質SiO相を再構成することにより活性な酸素原子のダングリングボンドの発生を抑制することが充放電特性向上の観点から好ましいと考えられる。
 負極活物質のX線回折ピーク強度の比(PSi/PSiO2)が1.0以上であると、ケイ素酸化物粒子中のケイ素の結晶子が充分に成長して、SiOの割合が大きくなりすぎず、充分な初期放電容量が得られ、不可逆反応による充放電効率の低下が抑えられる傾向にある。一方、X線回折ピーク強度の比(PSi/PSiO2)が2.6以下であると、生成したケイ素の結晶子が大きくなりすぎずに膨張収縮が緩和されやすく、初期の放電容量の低下が抑えられる傾向にある。充放電特性により優れる負極活物質を得る観点からは、X線回折ピーク強度の比(PSi/PSiO2)は1.5~2.0の範囲であることが好ましい。
 負極活物質のX線回折ピーク強度の比(PSi/PSiO2)は、例えば、ケイ素酸化物の不均化反応を生じさせる熱処理の条件によって制御することができる。例えば、熱処理の温度を高く、又は熱処理時間を長くすることでケイ素の結晶子の生成及び肥大化が促進され、X線回折ピーク強度の比を大きくすることができる。一方、熱処理の温度を低く、又は熱処理時間を短くすることでケイ素の結晶子の生成が抑制され、X線回折ピーク強度の比を小さくすることができる。
 ケイ素酸化物の不均化反応によりケイ素酸化物粒子を作製する場合、原料となるケイ素酸化物は、例えば、二酸化ケイ素と金属ケイ素との混合物を加熱して生成した一酸化ケイ素の気体を冷却及び析出させる公知の昇華法にて得ることができる。また、酸化ケイ素、一酸化ケイ素等として市場から入手することができる。
 ケイ素酸化物粒子中にケイ素の結晶子が存在しているか否かは、例えば、粉末X線回折(XRD)測定により確認することができる。ケイ素酸化物粒子中にケイ素の結晶子が存在している場合は、波長0.15406nmのCuKα線を線源とする粉末X線回折(XRD)測定を行ったとき、2θ=28.4°付近にSi(111)に由来する回折ピークが観察される。
 ケイ素酸化物粒子中にケイ素の結晶子が存在している場合、ケイ素の結晶子の大きさは8.0nm以下であることが好ましく、6.0nm以下であることがより好ましい。ケイ素の結晶子の大きさが8.0nm以下である場合には、ケイ素酸化物粒子中でケイ素の結晶子が局在化しにくく、粒子全体に分散した状態となりやすいため、ケイ素酸化物粒子内でリチウムイオンが拡散しやすく、良好な充電容量が得られやすい。また、ケイ素の結晶子の大きさは2.0nm以上であることが好ましく、3.0nm以上であることがより好ましい。ケイ素の結晶子の大きさが2.0nm以上の場合には、リチウムイオンとケイ素酸化物との反応が良好に制御され、良好な充放電効率が得られやすい。
 ケイ素の結晶子の大きさは、ケイ素酸化物粒子に含まれるケイ素単結晶の大きさであり、波長0.15406nmのCuKα線を線源とする粉末X線回折分析で得られるSi(111)に由来する2θ=28.4°付近の回折ピークの半値幅から、Scherrerの式を用いて求めることができる。
 ケイ素酸化物粒子中にケイ素の結晶子を生成する方法は、特に制限されない。例えば、ケイ素酸化物粒子を不活性雰囲気下で700℃~1300℃の温度域で熱処理して不均化反応(2SiO→Si+SiO)を生じさせることにより作製することができる。不均化反応を生じさせるための熱処理は、炭素をケイ素酸化物粒子の表面に付与するために行う熱処理と同じ工程として行ってもよい。
 ケイ素酸化物の不均化反応を生じさせるための熱処理条件は、例えば、ケイ素酸化物を不活性雰囲気下で700℃~1300℃の温度域、好ましくは800℃~1200℃の温度域で行うことができる。所望の大きさのケイ素の結晶子を生成させる観点からは、熱処理温度は900℃を超えることが好ましく、950℃以上であることがより好ましい。また、熱処理温度は1150℃未満であることが好ましく、1100℃以下であることがより好ましい。
 負極活物質を粉砕工程を経て得る場合、粉砕後に分級処理を行ってその粒度分布を整えてもよい。分級の方法は特に制限されず、乾式分級、湿式分級、篩い分け等から選択できる。生産性の観点からは、粉砕と分級を一括して行うことが好ましい。例えば、ジェットミルとサイクロンのカップリングシステムにより、粒子が再凝集する前に分級することができ、簡便に所望する粒度分布形状を得ることができる。
 必要な場合(例えば、負極活物質のアスペクト比を粉砕処理のみでは所望の範囲に調節できない場合)には、粉砕後の負極活物質に対してさらに表面改質処理を行ってそのアスペクト比を調節してもよい。表面改質処理を行うための装置は特に制限されない。例えば、メカノフュージョンシステム、ノビルタ、ハイブリダイゼーションシステム等が挙げられる。
(BET比表面積)
 負極活物質のBET比表面積は、0.1m/g~15m/gであることが好ましく、0.5m/g~10m/gであることがより好ましく、1.0m/g~7.0m/gであることがさらに好ましく、3.0m/g~6.0m/gであることが特に好ましい。負極活物質のBET比表面積が15m/g以下であると、得られるリチウムイオン二次電池の初期の不可逆容量の増加が抑えられる傾向にある。また、負極を作製する際に用いる結着剤の量を低減できる。負極活物質の比表面積が0.1m/g以上であると、負極活物質と電解液との接触面積が充分確保され、良好な充放電効率が得られる傾向にある。負極活物質のBET比表面積は、BET法(窒素ガス吸着法)により測定される。
(粉体電気抵抗)
 負極活物質の粉体電気抵抗は、圧力10MPaにおいて、100Ω・cm以下であることが好ましく、80Ω・cm以下であることがより好ましく、50Ω・cm以下であることがさらに好ましい。粉体電気抵抗が100Ω・cm以下であると、充放電時の電子の移動が阻害されにくく、リチウムの吸蔵及び放出が起こりやすくなり、サイクル特性により優れる。負極活物質の粉体電気抵抗は、例えば、粉体電気抵抗装置(MSP-PD51型 4探針プローブ、株式会社三菱化学アナリテック)を用いて測定できる。負極活物質の粉体電気抵抗は、圧力10MPaにおいて、0.1Ω・cm以上であってよく、1Ω・cm以上であることが好ましく、10Ω・cm以上であることがより好ましい。
 負極活物質の粉体電気抵抗値を低減する観点からは、負極活物質は、後述する導電性粒子を含むことが好ましい。SiO-C粒子の表面に導電性粒子が付着して突起構造を形成することで、負極活物質全体の抵抗値の低減化が図られる。
(有機物)
 負極活物質は、有機物を含んでいてもよい。負極活物質が有機物を含むことで、初期の放電容量、初期の充放電効率、及び充放電後の回復率がより向上する傾向にある。これは、有機物を含むことで負極活物質の比表面積が低下し、電解液との反応が抑制されるためと考えられる。負極活物質に含まれる有機物は、1種のみでも2種以上であってもよい。
 有機物の含有率は、負極活物質全体の0.1質量%~5.0質量%であることが好ましい。有機物の含有率が上記範囲内であると、導電性の低下を抑制しつつ充放電後の回復率の向上の効果が充分得られる傾向にある。負極活物質全体中の有機物の含有率は、0.2質量%~3.0質量%であることがより好ましく、0.3質量%~1.0質量%であることがさらに好ましい。
 負極活物質が有機物を含んでいるか否かは、例えば、充分に乾燥させた負極活物質を有機物が分解する温度以上でありかつ炭素が分解する温度よりも低い温度(例えば300℃)に加熱して、有機物が分解した後の負極活物質の質量を測定することで確認することができる。具体的には、加熱前の負極活物質の質量をA(g)、加熱後の負極活物質の質量をB(g)とした場合に{(A-B)/A}×100で表される質量の変化率が0.1%以上であると、負極活物質が有機物を含んでいると判断することができる。
 上記質量の変化率は0.1%~5.0%であることが好ましく、0.3%~1.0%であることがより好ましい。変化率が0.1%以上である場合は充分な量の有機物がSiO-C粒子の表面に存在するため、有機物を含むことによる効果が充分得られる傾向にある。
 有機物の種類は、特に制限されない。例えば、C10を基本構造とする澱粉の誘導体、C10を基本構造とする粘性多糖類、C10を基本構造とする水溶性セルロース誘導体、ポリウロニド及び水溶性合成樹脂からなる群から選ばれる少なくとも1種が挙げられる。
 C10を基本構造とする澱粉の誘導体として具体的には、酢酸澱粉、リン酸澱粉、カルボキシメチル澱粉、ヒドロキシエチル澱粉等のヒドロキシアルキル澱粉類が挙げられる。C10を基本構造とする粘性多糖類として具体的には、プルラン、デキストリン等が挙げられる。C10を基本構造とする水溶性セルロース誘導体としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース等が挙げられる。ポリウロニドとしては、ペクチン酸、アルギン酸等が挙げられる。水溶性合成樹脂としては、水溶性アクリル樹脂、水溶性エポキシ樹脂、水溶性ポリエステル樹脂、水溶性ポリアミド樹脂等が挙げられ、より具体的には、ポリビニルアルコール、ポリアクリル酸、ポリアクリル酸塩、ポリビニルスルホン酸、ポリビニルスルホン酸塩、ポリ4-ビニルフェノール、ポリ4-ビニルフェノール塩、ポリスチレンスルホン酸、ポリスチレンスルホン酸塩、ポリアニリンスルホン酸等が挙げられる。有機物は金属塩、アルキレングリコールエステル等の状態で使用してもよい。
 負極活物質の比表面積を低下させる観点からは、有機物は、SiO-C粒子(後述する導電性粒子がSiO-C粒子の表面に存在した状態である場合は、その表面)の一部又は全部を被覆した状態であることが好ましい。
 有機物をSiO-C粒子の表面の一部又は全部に存在させる方法は、特に制限されない。例えば、有機物を溶解又は分散させた液体にSiO-C粒子を入れ、必要に応じて撹拌することにより、有機物をSiO-C粒子に付着させることができる。その後、有機物が付着したSiO-C粒子を液体から取り出し、必要に応じて乾燥することで、有機物が表面に付着したSiO-C粒子を得ることができる。
 上記方法において、撹拌時の液体の温度は特に制限されず、例えば5℃~95℃から選択することができる。乾燥時の温度は特に制限されず、例えば50℃~200℃から選択することができる。溶液中の有機物の含有率は特に制限されず、例えば0.1質量%~20質量%から選択することができる。
(導電性粒子)
 負極活物質は、導電性粒子を含んでいてもよい。負極活物質が導電性粒子を含むことで、ケイ素酸化物粒子の膨張及び収縮が生じても、導電性粒子同士が接触することによって導通を確保し易くなる。また、負極活物質全体の抵抗値も低減する傾向にある。その結果、充放電の繰り返しによる容量の低下が抑えられ、サイクル特性も良好に維持される傾向にある。
 負極活物質同士の接触によって導通を確保する観点からは、導電性粒子はSiO-C粒子の表面に存在していることが好ましい。以下、導電性粒子がSiO-C粒子の表面に存在している状態の粒子を「CP/SiO-C粒子」と称する場合がある。
 導電性粒子の種類は、特に制限されない。例えば、粒状黒鉛及びカーボンブラックよりなる群から選択される少なくとも1種が好ましく、サイクル特性向上の観点からは粒状黒鉛が好ましい。粒状黒鉛としては、人造黒鉛、天然黒鉛、MC(メソフェーズカーボン)等の粒子が挙げられる。カーボンブラックとしては、アセチレンブラック、ケッチェンブラック、サーマルブラック、ファーネスブラック等が挙げられ、導電性の観点からはアセチレンブラックが好ましい。
 粒状黒鉛は、電池容量及び充放電効率がともに向上する点から、ケイ素酸化物粒子の表面に存在する炭素よりも結晶性が高いことが好ましい。具体的には、粒状黒鉛は、学振法に基づいて測定して得られる平均面間隔(d002)の値が0.335nm~0.347nmであることが好ましく、0.335nm~0.345nmであることがより好ましく、0.335nm~0.340nmであることがさらに好ましく、0.335nm~0.337nmであることが特に好ましい。粒状黒鉛の平均面間隔を0.347nm以下とすると、粒状黒鉛の結晶性が高く、電池容量及び充放電効率がともに向上する傾向がある。一方、黒鉛結晶の理論値は0.335nmであることから、粒状黒鉛の平均面間隔がこの値に近いと、電池容量及び充放電効率がともに向上する傾向がある。
 粒状黒鉛の形状は特に制限されず、扁平状黒鉛であっても球状黒鉛であってもよい。サイクル特性向上の観点からは、扁平状黒鉛が好ましい。扁平状黒鉛としては、鱗状、鱗片状、塊状等の形状を有する黒鉛が挙げられる。
 導電性粒子のアスペクト比は特に制限されないが、導電性粒子間の導通の確保しやすさ及びサイクル特性向上の観点からは、アスペクト比の平均値が0.3以下であることが好ましく、0.2以下であることがより好ましい。導電性粒子のアスペクト比の平均値は、0.001以上であることが好ましく、0.01以上であることがより好ましい。
 導電性粒子のアスペクト比は、SEMによる観察により測定される値である。具体的には、SEM画像において任意に選択した100個の導電性粒子のそれぞれについて長軸方向の長さをA、短軸方向の長さ(扁平状黒鉛の場合は厚み方向の長さ)をBとしたときにB/Aとして計算される値である。アスペクト比の平均値は、100個の導電性粒子のアスペクト比の算術平均値である。
 導電性粒子は、一次粒子(単数粒子)であっても、複数の一次粒子から形成された二次粒子(造粒粒子)のいずれであってもよい。また、扁平状黒鉛は、多孔質状の黒鉛粒子であってもよい。
 導電性粒子の含有率は、サイクル特性を向上させる点から、負極活物質全体の1.0質量%~10.0質量%であることが好ましく、2.0質量%~9.0質量%であることがより好ましく、3.0質量%~8.0質量%であることがさらに好ましい。
 導電性粒子の含有率は、例えば、高周波焼成-赤外分析法によって求めることができる。高周波焼成-赤外分析法においては、例えば、炭素硫黄同時分析装置(CSLS600、LECOジャパン合同会社)を用いることができる。この測定ではSiO-C粒子の炭素の含有率も含まれるため、別途測定した炭素の含有率を得られた含有率から差し引いてもよい。
 導電性粒子を含む負極活物質を作製する方法は特に制限されないが、湿式法及び乾式法が挙げられる。
 湿式法により導電性粒子を含む負極活物質を作製する方法としては、例えば、導電性粒子を分散媒に分散させた粒子分散液にSiO-C粒子を添加し、撹拌した後に乾燥機等を利用して分散媒を除去することで作製する方法が挙げられる。使用する分散媒は特に制限されず、水、有機溶剤等を用いることができる。有機溶剤はアルコール等の水溶性有機溶剤であっても、非水溶性有機溶剤であってもよい。分散媒は、導電性粒子の分散性を高め、SiO-C粒子の表面への付着をより均一にする観点から分散剤を含んでいてもよい。分散剤は、使用する分散媒の種類に応じて選択できる。例えば、分散媒が水系である場合はカルボキシメチルセルロースが分散安定性の観点から好ましい。
 乾式法により導電性粒子を含む負極活物質を作製する方法としては、例えば、ケイ素酸化物粒子の表面に炭素の炭素源を付与する際に、炭素源とともに導電性粒子を添加する方法が挙げられる。具体的には、例えば、ケイ素酸化物粒子に炭素源と導電性粒子を混合し、力学的エネルギーを加える処理(例えば、メカノケミカル処理)を施す方法が挙げられる。
 必要に応じ、得られた負極活物質の分級処理をさらに行ってもよい。分級処理は、篩機等を利用して行うことができる。
 本実施形態の負極活物質(SiO系負極活物質)は、必要に応じて、他の負極活物質と併用してもよい。例えば、リチウムイオン二次電池の負極の活物質として従来知られている炭素系負極活物質と併用してもよい。併用する炭素系負極活物質の種類に応じて、充放電効率の向上、サイクル特性の向上、電極の膨張抑制効果等が得られる。本実施形態の負極活物質と併用する炭素系負極活物質は、1種のみでも2種以上であってもよい。
 炭素系負極活物質としては、鱗片状天然黒鉛、鱗片状天然黒鉛を球形化した球状天然黒鉛等の天然黒鉛類、人造黒鉛、非晶質炭素などの炭素材料からなる負極活物質が挙げられる。また、これらの炭素系負極活物質は、その表面の一部又は全部に炭素(上述した炭素等)を有していてもよい。
 本実施形態の負極活物質を炭素系負極活物質と併用して使用する場合、本実施形態の負極活物質(A)と炭素系負極活物質(B)との比率(A:B)は、目的に応じて適宜調整することが可能である。例えば、電極の膨張を抑制する効果の観点からは、質量基準で、0.1:99.9~20:80であることが好ましく、0.5:99.5~15:85であることがより好ましく、1:99~10:90であることがさらに好ましい。
<リチウムイオン二次電池用負極活物質(第2実施形態)>
 第2実施形態のリチウムイオン二次電池用負極活物質は、ケイ素酸化物粒子と、前記ケイ素酸化物粒子の表面の一部又は全部に存在する炭素とを備え、前記ケイ素酸化物粒子の少なくとも一部は二次粒子を形成している。
 本発明者らの検討の結果、上述した条件を満たすケイ素酸化物粒子を負極活物質として用いると、リチウムイオン二次電池の初期の充放電効率と急速充電性を向上できることがわかった。その理由は必ずしも明らかではないが、負極活物質としてケイ素酸化物粒子を用いることで初期の充放電効率が向上することに加え、ケイ素酸化物粒子の少なくとも一部が二次粒子を形成していることで粒子全体の比表面積が増大することが急速充電性の向上に寄与していることが考えられる。
 ケイ素酸化物粒子全体に占める二次粒子を形成しているケイ素酸化物粒子の割合は特に制限されない。例えば、ケイ素酸化物粒子全体の5質量%以上が二次粒子の状態であってもよく、10質量%以上が二次粒子の状態であってもよく、20質量%以上が二次粒子の状態であってもよい。
 ケイ素酸化物粒子に含まれている個々の二次粒子の状態は特に制限されない。例えば、粒子径が5.0μm以上の粒子に粒子径が1.0μm以下の粒子が付着した状態の二次粒子を含んでいてもよい。
 ケイ素酸化物粒子が粒子径が5.0μm以上の粒子に粒子径が1.0μm以下の粒子が固着した状態の二次粒子を含む場合、その割合は特に制限されない。例えば、ケイ素酸化物粒子全体の5質量%以上が上記状態の二次粒子の状態であってもよく、10質量%以上が上記状態の二次粒子の状態であってもよく、20質量%以上が上記状態の二次粒子の状態であってもよい。
 二次粒子を含むケイ素酸化物粒子の粒度分布は、特に制限されない。例えば、二次粒子の状態で(一次粒子の粒子径ではなく)粒子径を測定したときの体積平均粒子径が3.0μm~20.0μmの範囲であってもよい。
 二次粒子を含むケイ素酸化物粒子は、体積平均粒子径が5.0μm以上であってBET比表面積が4.5m/g以上であってもよく、体積平均粒子径が5.0μm以上であってBET比表面積が5.0m/g以上であってもよい。ケイ素酸化物粒子が二次粒子を含む場合、体積平均粒子径が同等であって二次粒子を含まないケイ素酸化物粒子に比べるとBET比表面積が大きい傾向にある。
 ケイ素酸化物粒子が上述した粒度分布の条件を満たすように粒度を調整する方法は、特に制限されない。例えば、後述する実施例に記載したように塊状の酸化ケイ素を粉砕した後、必要に応じて篩分け等を行って調整することができる。あるいは、粒子径の異なるケイ素酸化物粒子を混合して調整することができる。
 本実施形態の負極活物質は、第1実施形態の負極活物質に関して記載した粒度分布の条件を満たすものであってもよい。また、第2実施形態の負極活物質及びその構成要素の詳細及び好ましい態様は、第1実施形態の負極活物質及びその構成要素の詳細及び好ましい態様と同様である。
<リチウムイオン二次電池用負極活物質の製造方法>
 本実施形態のリチウムイオン二次電池用負極活物質の製造方法は、粒子径が1.0μm以下の粒子の割合が個数基準で50%以上であるケイ素酸化物粒子の表面の一部又は全部に炭素を付着させる工程を含む。
 上記方法によれば、リチウムイオン二次電池の初期の充放電効率と急速充電性を向上できる負極活物質を製造することができる。
 上記方法は、上述した第1実施形態及び第2実施形態の負極活物質を製造するためのものであってもよい。すなわち、上記方法による製造される負極活物質は、上述した第1実施形態及び第2実施形態の負極活物質であってもよい。
 上記方法において、ケイ素酸化物粒子の表面の一部又は全部に炭素を付着させる工程を実施する方法は、特に制限されない。例えば、上述した方法によってケイ素酸化物粒子の表面に炭素を付与することができる。
 上記方法は、必要に応じてケイ素酸化物粒子の表面の一部又は全部に炭素を付着させる工程以外の工程を含んでもよい。例えば、ケイ素酸化物粒子の粉砕、粒度調整、不均化反応のための熱処理、有機物又は導電性粒子の付着等を実施してもよい。
 上記方法は、ケイ素酸化物粒子の表面の一部又は全部に炭素を付着させた後のケイ素酸化物粒子の一部が二次粒子を形成する状態で実施してもよい。例えば、ケイ素酸化物粒子の表面に炭素を付着させる工程を、複数の粒子が固着しやすい状態で行ってもよい。二次粒子の形成の度合いは、炭素を付着させる前のケイ素酸化物粒子の粒度分布(小径粒子の割合等)、炭素を付着させる方法(装置の種類等)などによって制御することができる。
<リチウムイオン二次電池用負極>
 本実施形態のリチウムイオン二次電池用負極(以下「負極」と略称する場合がある)は、集電体と、集電体上に設けられている上述の負極活物質を含む負極材層と、を有する。
 負極としては、例えば、上述の負極活物質を含む組成物を用いて集電体上に負極材層を形成することで作製できる。
 負極活物質を含む組成物としては、負極活物質に有機結着剤、溶剤、増粘剤、導電助剤、炭素系負極活物質等を混合したものが挙げられる。
 有機結着剤として具体的には、スチレン-ブタジエン共重合体;メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、(メタ)アクリロニトリル、ヒドロキシエチル(メタ)アクリレート等のエチレン性不飽和カルボン酸エステルと、アクリル酸、メタクリル酸、イタコン酸、フマル酸、マレイン酸等のエチレン性不飽和カルボン酸と、を共重合して得られる(メタ)アクリル共重合体;ポリフッ化ビニリデン、ポリエチレンオキサイド、ポリエピクロルヒドリン、ポリホスファゼン、ポリアクリロニトリル、ポリイミド、ポリアミドイミド等の高分子化合物;などが挙げられる。なお、「(メタ)アクリレート」とは、「アクリレート」及びそれに対応する「メタクリレート」を意味する。「(メタ)アクリル共重合体」等の他の類似の表現においても同様である。有機結着剤は、水に分散若しくは溶解したもの、又は、N-メチル-2-ピロリドン(NMP)等の有機溶剤に溶解したものであってもよい。有機結着剤は1種を単独で用いても、2種以上を組み合わせて使用してもよい。
 密着性の観点からは、有機結着剤の中でも主骨格がポリアクリロニトリル、ポリイミド又はポリアミドイミドである有機結着剤が好ましく、負極作製時の熱処理温度が低く、電極の柔軟性に優れることから、主骨格がポリアクリロニトリルである有機結着剤がより好ましい。ポリアクリロニトリルを主骨格とする有機結着剤としては、例えば、ポリアクリロニトリル骨格に、接着性を付与するアクリル酸及び柔軟性を付与する直鎖エーテル基を付加したものが挙げられる。
 負極材層中の有機結着剤の含有率は、0.1質量%~20質量%であることが好ましく、0.2質量%~20質量%であることがより好ましく、0.3質量%~15質量%であることがさらに好ましい。負極材層中の有機結着剤の含有率が0.1質量%以上であることで、良好な密着性が得られ、充放電時の膨張及び収縮によって負極が破壊されることが抑制される。一方、負極材層中の有機結着剤の含有率が20質量%以下であることで、電極抵抗の増大を抑制できる。
 増粘剤として具体的には、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、ポリアクリル酸(塩)、酸化スターチ、リン酸化スターチ、カゼイン等が挙げられる。増粘剤は1種を単独で用いても、2種以上を組み合わせて使用してもよい。
 溶剤として具体的には、N-メチルピロリドン、ジメチルアセトアミド、ジメチルホルムアミド、γ-ブチロラクトン等が挙げられる。溶剤は1種を単独で用いても、2種以上を組み合わせて使用してもよい。
 導電助剤として具体的には、カーボンブラック、アセチレンブラック、導電性を示す酸化物、導電性を示す窒化物等が挙げられる。導電助剤は1種を単独で用いても、2種類以上を組み合わせて使用してもよい。負極材層中の導電助剤の含有率は、0.1質量%~20質量%であることが好ましい。
 集電体の材質としては、アルミニウム、銅、ニッケル、チタン、ステンレス鋼、ポーラスメタル(発泡メタル)、カーボンペーパー等が挙げられる。集電体の形状としては、箔状、穴開け箔状、メッシュ状等が挙げられる。
 負極活物質を含む組成物を用いて集電体上に負極材層を形成する方法としては、負極活物質を含む塗布液を集電体上に塗布し、溶媒等の揮発性物質を除去し、加圧成形する方法、シート状、ペレット状等の形状に成形された負極材層と集電体とを一体化する方法等が挙げられる。
 塗布液を集電体に塗布する方法としては、メタルマスク印刷法、静電塗装法、ディップコート法、スプレーコート法、ロールコート法、ドクターブレード法、グラビアコート法、スクリーン印刷法等が挙げられる。塗布後の加圧処理は、平板プレス、カレンダーロール等により行うことができる。
 負極材層と集電体との一体化は、例えば、ロールによる一体化、プレスによる一体化又はこれらを組み合わせることができる。
 集電体上に形成された負極材層又は集電体と一体化した負極材層は、用いた有機結着剤の種類に応じた熱処理を行ってもよい。例えば、ポリアクリロニトリルを主骨格とした有機結着剤を用いる場合は、100℃~180℃で熱処理することが好ましく、ポリイミド又はポリアミドイミドを主骨格とした有機結着剤を用いる場合には、150℃~450℃で熱処理することが好ましい。
 この熱処理により溶媒の除去及び有機結着剤の硬化による高強度化が進み、負極活物質間の密着性及び負極活物質と集電体との間の密着性が向上できる。なお、これらの熱処理は、処理中の集電体の酸化を防ぐため、ヘリウム、アルゴン、窒素等の不活性雰囲気又は真空雰囲気で行うことが好ましい。
 また、熱処理する前に、負極材層はプレス(加圧処理)しておくことが好ましい。加圧処理することで電極密度を調整することができる。電極密度は、例えば、1.4g/cm~1.9g/cmであることが好ましく、1.5g/cm~1.85g/cmであることがより好ましく、1.6g/cm~1.8g/cmであることがさらに好ましい。電極密度については、その値が高いほど負極の体積容量が向上する傾向にあり、また、負極活物質間の密着性及び負極活物質と集電体との間の密着性が向上する傾向にある。
<リチウムイオン二次電池>
 本実施形態のリチウムイオン二次電池は、正極と、上述した負極と、電解質と、を備える。
 リチウムイオン二次電池は、例えば、セパレータを介して負極と正極とが対向するように電池容器内に配置し、電解質を有機溶剤に溶解して得た電解液を電池容器に注入することにより作製することができる。
 正極は、負極と同様にして、集電体表面上に正極材層を形成することで得ることができる。正極における集電体としては、負極における集電体と同様のものを用いることができる。
 正極に用いられる材料(正極材料ともいう)は、リチウムイオンをドーピング又はインターカレーション可能な化合物であればよく、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO)等が挙げられる。
 正極は、例えば、正極材料と、ポリフッ化ビニリデン等の有機結着剤と、N-メチル-2-ピロリドン、γ-ブチロラクトン等の溶媒とを混合して正極塗布液を調製し、この正極塗布液をアルミニウム箔等の集電体の少なくとも一方の面に塗布し、次いで溶媒を乾燥除去し、必要に応じて加圧処理して作製することができる。
 なお、正極塗布液には導電助剤を添加してもよい。導電助剤としては、カーボンブラック、アセチレンブラック、導電性を示す酸化物、導電性を示す窒化物等が挙げられる。これらの導電助剤は1種を単独で又は2種以上を組み合わせて使用してもよい。
 電解質としては、LiPF、LiClO、LiBF、LiClF、LiAsF、LiSbF、LiAlO、LiAlCl、LiN(CFSO、LiN(CSO、LiC(CFSO、LiCl、LiI等が挙げられる。
 電解質を溶解する有機溶剤としては、例えば、プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、エチルメチルカーボネート、ビニレンカーボネート、γ-ブチロラクトン、1,2-ジメトキシエタン及び2-メチルテトラヒドロフランが挙げられる。
 セパレータとしては、紙製セパレータ、ポリプロピレン製セパレータ、ポリエチレン製セパレータ、ガラス繊維製セパレータ等が挙げられる。
 リチウムイオン二次電池の製造方法は、特に制限されない。例えば、円筒型のリチウムイオン二次電池は以下の工程により製造することができる。まず正極と負極の2つの電極を、セパレータを介して捲回する。得られたスパイラル状の捲回群を電池缶に挿入し、予め負極の集電体に溶接しておいたタブ端子を電池缶底に溶接する。得られた電池缶に電解液を注入する。さらに予め正極の集電体に溶接しておいたタブ端子を電池の蓋に溶接し、蓋を絶縁性のガスケットを介して電池缶の上部に配置する。蓋と電池缶とが接した部分をかしめて密閉することによってリチウムイオン二次電池を得ることができる。
 リチウムイオン二次電池の形態は、特に限定されず、ペーパー型電池、ボタン型電池、コイン型電池、積層型電池、円筒型電池、角型電池等のリチウムイオン二次電池が挙げられる。
 本実施形態の負極活物質は、リチウムイオン二次電池用に限られず、リチウムイオンを挿入脱離することを充放電機構とする電気化学装置全般に適用することが可能である。
 以下、実施例に基づき上記実施形態をより具体的に説明するが、上記実施形態は下記の実施例に制限されるものではない。なお、特に断りのない限り、「%」は質量基準である。
[比較例1]
(負極活物質の作製)
 塊状の酸化ケイ素(株式会社高純度化学研究所、規格10mm~30mm角)を乳鉢により粗粉砕した。その後ジェットミル(ラボタイプ、日本ニューマチック工業株式会社)によってさらに粉砕した後、体積平均粒子径(vD50)が5μm付近となるように300M(300メッシュ)の試験篩で整粒して微粉を除去し、ケイ素酸化物粒子を得た。
 次いで、得られたケイ素酸化物粒子の粒度分布を測定した。具体的には、測定試料(5mg)を界面活性剤(エソミンT/15、ライオン株式会社)0.01質量%水溶液中に入れ、振動撹拌機で分散した。得られた分散液をレーザー回折式粒度分布測定装置(SALD3000J、株式会社島津製作所)の試料水槽に入れ、超音波をかけながらポンプで循環させ、レーザー回折式で測定した。測定条件は下記の通りとした。以下、実施例において、粒子分布の測定は同様にして行った。
 ・光源:赤色半導体レーザー(690nm)
 ・吸光度:0.10~0.15
 ・屈折率:2.00~0.20
 得られた粒度分布より、小径側からの体積基準の累積が10%、50%、90%となるときの粒子径(vD10、vD50、vD90)と、小径側からの個数基準の累積が10%、50%、90%となるときの粒子径(nD10、nD50、nD90)をそれぞれ得た。結果を表1に示す。なお、測定対象のケイ素酸化物粒子を電子顕微鏡で観察したところ、二次粒子は含まれていなかった。
 得られたケイ素酸化物粒子1000gをバッチ式加熱炉(ロータリーキルン炉)内に仕込んだ。次に、300℃/時間の昇温条件で950℃まで昇温させ、保持した後、アセチレンガス(炭素源)/窒素ガスの混合ガスを10L/min流入し(アセチレンガスの分圧:10%)、2時間の条件にて化学蒸着処理(CVD)を実施した。処理後は降温し、化学蒸着処理物を得た。上記熱処理は、ケイ素酸化物の不均化反応が生じる条件で行った。
 得られた化学蒸着処理物を乳鉢により解砕して、ケイ素酸化物粒子の表面に炭素が付着した状態の負極活物質を得た。
 CVD後のケイ素酸化物粒子の粒度分布を、CVD前のケイ素酸化物粒子の粒度分布と同様にして測定し、小径側からの体積基準の累積が10%、50%、90%となるときの粒子径(vD10、vD50、vD90)と、小径側からの個数基準の累積が10%、50%、90%となるときの粒子径(nD10、nD50、nD90)をそれぞれ得た。結果を表1に示す。なお、CVD後のケイ素酸化物粒子を電子顕微鏡で観察したところ、二次粒子は含まれていなかった。
[比較例2]
 体積平均粒子径(vD50)が10μm付近となるように300M(300メッシュ)の試験篩で整粒して微粉を除去したこと以外は比較例1と同様にして、炭素が付着したケイ素酸化物粒子(負極活物質)を作製し、CVD前後の粒度分布を測定した。結果を表1に示す。なお、CVD後のケイ素酸化物粒子を電子顕微鏡で観察したところ、二次粒子は含まれていなかった。
[実施例1]
 比較例1で使用したケイ素酸化物粒子(CVD前)に、粉砕後に除去した微粉を全体の5質量%となる量で配合したこと以外は比較例1と同様にして、炭素を付着したケイ素酸化物粒子(負極活物質)を作製し、CVD前後の粒度分布を測定した。結果を表1に示す。CVD前後のケイ素酸化物粒子を電子顕微鏡で観察したところ、CVD前は二次粒子は含まれていなかったのに対し、CVD後は粒子の一部が二次粒子を形成していた。
[実施例2]
 比較例1で使用したケイ素酸化物粒子(CVD前)に、粉砕後に除去した微粉を全体の10質量%となる量で配合したこと以外は比較例1と同様にして、炭素が付着したケイ素酸化物粒子(負極活物質)を作製し、CVD前後の粒度分布を測定した。結果を表1に示す。CVD前後のケイ素酸化物粒子を電子顕微鏡で観察したところ、CVD前は二次粒子は含まれていなかったのに対し、CVD後は粒子の一部が二次粒子を形成していた。CVD後のケイ素酸化物粒子の電子顕微鏡写真を図1に示す。
[実施例3]
 比較例2で使用したケイ素酸化物粒子(CVD前)に、粉砕後に除去した微粉を全体の5質量%となる量で配合したこと以外は比較例2と同様にして、炭素が付着したケイ素酸化物粒子(負極活物質)を作製し、CVD前後の粒度分布を測定した。結果を表1に示す。CVD前後のケイ素酸化物粒子を電子顕微鏡で観察したところ、CVD前は二次粒子は含まれていなかったのに対し、CVD後は粒子の一部が二次粒子を形成していた。
<BET比表面積の測定>
 高速比表面積/細孔分布測定装置(ASAP2020、マイクロメリティックスジャパン合同会社)を用い、液体窒素温度(77K)での窒素吸着を5点法で測定し、BET法(相対圧範囲:0.05~0.2)より負極活物質の比表面積(m/g)を算出した。
<X線回折ピーク強度比の測定>
 上記した方法と同様の方法で、粉末X線回折測定装置(MultiFlex(2kW)、株式会社リガク)を用いて負極活物質の分析を行った。負極活物質において、SiOに由来する2θ=20°~25°のX線回折ピーク強度に対するSiに由来する2θ=27°~29°のX線回折ピーク強度比(PSi/PSiO2)を算出した。
<炭素含有率の測定>
 負極活物質の炭素含有率(質量%)を、高周波焼成-赤外分析法にて測定した。高周波焼成-赤外分析法は、高周波炉にて酸素気流で試料を加熱燃焼させ、試料中の炭素及び硫黄をそれぞれCO及びSOに変換し、赤外線吸収法によって定量する分析方法である。測定装置及び測定条件等は下記の通りである。
 ・装置:炭素硫黄同時分析装置(CSLS600、LECOジャパン合同会社)
 ・周波数:18MHz
 ・高周波出力:1600W
 ・試料質量:約0.05g
 ・分析時間:装置の設定モードで自動モードを使用
 ・助燃材:Fe+W/Sn
 ・標準試料:Leco501-024(C:3.03%±0.04 S:0.055%±0.002)97
 ・測定回数:2回(表中の含有率の値は2回の測定値の平均値である)
<電池性能の評価>
 実施例及び比較例で作製した負極活物質を用いて、下記の方法で評価用のリチウムイオン二次電池を作製し、電池性能の評価を行った。結果を表に示す。
 実施例及び比較例で作製した負極活物質5質量部と炭素系負極活物質として日立化成株式会社製の人造黒鉛95質量部を混合し、この混合物98質量部に対してカルボキシメチルセルロース(CMC)1質量部とスチレン-ブタジエンゴム(SBR)1質量部を加えて混練し、負極用組成物を調製した。この負極用組成物を、電解銅箔の光沢面に塗布量が10mg/cmとなるように塗布し、90℃で2時間の予備乾燥を行い、ロールプレスで密度が1.65g/cmになるように調整した。その後、真空雰囲気下で、120℃で4時間乾燥させることによって、負極を作製した。
 作製した負極、対極として金属リチウム、電解液として1MのLiPFを含むエチレンカーボネート(EC)、ジエチルカーボネート(DEC)及びエチルメチルカーボネート(EMC)(体積比1:1:1)とビニレンカーボネート(VC)(1.0質量%)の混合液、セパレータとして厚さ25μmのポリエチレン製微孔膜、スペーサーとして厚さ250μmの銅板を用いて、2016型コインセルを作製した。
<電池容量(初期放電容量及び初期充放電効率)>
 作製した電池を25℃に保持した恒温槽に入れ、0.45mA/cmで0Vになるまで定電流充電を行った後、0Vの定電圧で電流が0.09mA/cmに相当する値に減衰するまでさらに充電し、初期充電容量を測定した。充電後、30分間の休止を入れたのちに放電を行った。放電は0.45mA/cmで1.5Vになるまで行い、初期放電容量を測定した。このとき、容量は用いた負極活物質の質量あたりに換算した。初期放電容量を初期充電容量で割った値に100を乗じた値を初期の充放電効率(%)として算出した。
<-5℃充電受容性>
 上記と同じ条件で充放電を2サイクル行った後の電池を、-5℃に保持した恒温槽に入れた。この状態で、0.45mA/cmで0Vになるまで定電流充電を行い、充電容量Aを測定した。その後、0Vの定電圧で電流が0.09mA/cmに相当する値に減衰するまでさらに充電し、充電容量Bを測定した。充電容量Bに対する充電容量Aの割合((充電容量A/充電容量B)×100)を計算し、-5℃充電受容性(%)とした。
<貯蔵特性(寿命:維持率及び回復率)>
 作製した電池を25℃に保持した恒温槽に入れ、0.45mA/cmで0Vになるまで定電流充電を行った後、0Vの定電圧で電流が0.09mA/cmに相当する値に減衰するまでさらに充電した。充電後、30分間の休止を入れ、その後放電を行った。放電は0.45mA/cmで1.5Vになるまで行った。さらに同じ条件で2度目の充電、2度目の放電及び3度目の充電を行い、充電状態の電池を60℃に保持した恒温槽に入れ、72時間保管した。その後、電池を25℃に保持した恒温槽に入れ、0.45mA/cmで1.5Vになるまで3度目の放電を行った。次いで、上記と同条件で4度目の充電及び4度目の放電を行った。
 上記充放電試験において、2度目の放電時の放電容量に対する3度目の放電時の放電容量の割合(3度目放電容量/2度目の放電容量)×100)を計算し、維持率(%)とした。
 上記充放電試験において、2度目の放電時の放電容量に対する4度目の放電時の放電容量の割合(4度目放電容量/2度目の放電容量)×100)を計算し、回復率(%)とした。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、粒子径が1.0μm以下の粒子の割合が50%以上である(二次粒子が形成されていないCVD前の状態で測定したnD50が1.0μm以下である)ケイ素酸化物粒子を負極活物質として用いた実施例の電池は、この条件を満たさないケイ素酸化物粒子を負極活物質として用いた比較例の電池に比べ、急速充電性の指標となる-5℃充電受容性が高く、初期の充放電効率も良好であった。高温貯蔵後の維持率及び回復率は比較例に比べてやや低下したが、電池特性として充分な水準を満たしていた。
 なお、実施例で作製したケイ素酸化物粒子の粒度分布をCVD前とCVD後とで比較すると、CVD後の方が小径粒子の割合が小さい傾向にある。これは、CVD工程においてケイ素酸化物粒子の一部が二次粒子を形成することで、単独で存在する小径粒子の数が減少するためと考えられる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (13)

  1.  粒子径が1.0μm以下の粒子の割合が個数基準で50%以上であるケイ素酸化物粒子と、前記ケイ素酸化物粒子の表面の一部又は全部に存在する炭素と、を備えるリチウムイオン二次電池用負極活物質。
  2.  粒子径が3.0μm以上の粒子の割合が体積基準で50%以上である、請求項1に記載のリチウムイオン二次電池用負極活物質。
  3.  前記ケイ素酸化物粒子の少なくとも一部が二次粒子を形成している、請求項1又は請求項2に記載のリチウムイオン二次電池用負極活物質。
  4.  ケイ素酸化物粒子と、前記ケイ素酸化物粒子の表面の一部又は全部に存在する炭素とを備え、前記ケイ素酸化物粒子の少なくとも一部は二次粒子を形成している、リチウムイオン二次電池用負極活物質。
  5.  前記二次粒子は、粒子径が5.0μm以上の粒子に粒子径が1.0μm以下の粒子が付着した状態の二次粒子を含む、請求項3又は請求項4に記載のリチウムイオン二次電池用負極活物質。
  6.  前記二次粒子の割合は、前記ケイ素酸化物粒子全体の5質量%以上である、請求項3~請求項5のいずれか1項に記載のリチウムイオン二次電池用負極活物質。
  7.  前記炭素の含有率が、前記ケイ素酸化物粒子と前記炭素の合計の0.5質量%~10.0質量%である、請求項1~請求項6のいずれか1項に記載のリチウムイオン二次電池用負極活物質。
  8.  BET比表面積が0.1m/g~15m/gである、請求項1~請求項7のいずれか1項に記載のリチウムイオン二次電池用負極活物質。
  9.  線源として波長0.15406nmのCuKα線を使用したときの、SiOに由来する2θ=20°~25°のX線回折ピーク強度(PSiO2)と、Siに由来する2θ=27°~29°のX線回折ピーク強度(PSi)との比(PSi/PSiO2)が1.0~2.6の範囲である、請求項1~請求項8のいずれか1項に記載のリチウムイオン二次電池用負極活物質。
  10.  集電体と、前記集電体上に設けられている請求項1~請求項9のいずれか1項に記載のリチウムイオン二次電池用負極活物質を含む負極材層と、を有するリチウムイオン二次電池用負極。
  11.  正極と、請求項10に記載のリチウムイオン二次電池用負極と、電解質と、を備えるリチウムイオン二次電池。
  12.  粒子径が1.0μm以下の粒子の割合が個数基準で50%以上であるケイ素酸化物粒子の表面の一部又は全部に炭素を付着させる工程を含む、リチウムイオン二次電池用負極活物質の製造方法。
  13.  請求項1~請求項9のいずれか1項に記載のリチウムイオン二次電池用負極活物質を製造するための、請求項12に記載のリチウムイオン二次電池用負極活物質の製造方法。
PCT/JP2019/027010 2019-07-08 2019-07-08 リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極、リチウムイオン二次電池、及びリチウムイオン二次電池用負極活物質の製造方法 WO2021005688A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021530379A JPWO2021005688A1 (ja) 2019-07-08 2019-07-08
PCT/JP2019/027010 WO2021005688A1 (ja) 2019-07-08 2019-07-08 リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極、リチウムイオン二次電池、及びリチウムイオン二次電池用負極活物質の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/027010 WO2021005688A1 (ja) 2019-07-08 2019-07-08 リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極、リチウムイオン二次電池、及びリチウムイオン二次電池用負極活物質の製造方法

Publications (1)

Publication Number Publication Date
WO2021005688A1 true WO2021005688A1 (ja) 2021-01-14

Family

ID=74114439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027010 WO2021005688A1 (ja) 2019-07-08 2019-07-08 リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極、リチウムイオン二次電池、及びリチウムイオン二次電池用負極活物質の製造方法

Country Status (2)

Country Link
JP (1) JPWO2021005688A1 (ja)
WO (1) WO2021005688A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023124846A1 (zh) * 2021-12-28 2023-07-06 贝特瑞新材料集团股份有限公司 负极材料及其制备方法、锂离子电池

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0151915B2 (ja) * 1983-05-27 1989-11-07 Hitachi Ltd
JPH0151916B2 (ja) * 1984-04-20 1989-11-07 Matsushita Electric Ind Co Ltd
JP2004146292A (ja) * 2002-10-28 2004-05-20 Japan Storage Battery Co Ltd 非水電解質二次電池
JP2005149957A (ja) * 2003-11-17 2005-06-09 Japan Storage Battery Co Ltd 非水電解質二次電池
JP2013041826A (ja) * 2011-08-15 2013-02-28 Samsung Sdi Co Ltd 2次電池用負極活物質、これを含むリチウム2次電池、およびこれを含むリチウム2次電池用負極の製造方法
JP2014123561A (ja) * 2012-11-21 2014-07-03 Showa Denko Kk リチウムイオン電池用負極材の製造方法
JP2016219410A (ja) * 2015-05-21 2016-12-22 日立化成株式会社 二次電池用負極活物質、二次電池用負極活物質の製造方法、リチウムイオン二次電池用負極、及びリチウムイオン二次電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0151915B2 (ja) * 1983-05-27 1989-11-07 Hitachi Ltd
JPH0151916B2 (ja) * 1984-04-20 1989-11-07 Matsushita Electric Ind Co Ltd
JP2004146292A (ja) * 2002-10-28 2004-05-20 Japan Storage Battery Co Ltd 非水電解質二次電池
JP2005149957A (ja) * 2003-11-17 2005-06-09 Japan Storage Battery Co Ltd 非水電解質二次電池
JP2013041826A (ja) * 2011-08-15 2013-02-28 Samsung Sdi Co Ltd 2次電池用負極活物質、これを含むリチウム2次電池、およびこれを含むリチウム2次電池用負極の製造方法
JP2014123561A (ja) * 2012-11-21 2014-07-03 Showa Denko Kk リチウムイオン電池用負極材の製造方法
JP2016219410A (ja) * 2015-05-21 2016-12-22 日立化成株式会社 二次電池用負極活物質、二次電池用負極活物質の製造方法、リチウムイオン二次電池用負極、及びリチウムイオン二次電池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023124846A1 (zh) * 2021-12-28 2023-07-06 贝特瑞新材料集团股份有限公司 负极材料及其制备方法、锂离子电池

Also Published As

Publication number Publication date
JPWO2021005688A1 (ja) 2021-01-14

Similar Documents

Publication Publication Date Title
JP6683213B2 (ja) リチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP6256346B2 (ja) リチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP6451915B1 (ja) リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極及びリチウムイオン二次電池
WO2018179813A1 (ja) リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP6511726B2 (ja) リチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP6615431B2 (ja) リチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP6451914B1 (ja) リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP6451916B1 (ja) リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP7159840B2 (ja) リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP2018195586A (ja) リチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極及びリチウムイオン二次電池
WO2021005689A1 (ja) リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極、リチウムイオン二次電池、及びリチウムイオン二次電池用負極活物質の製造方法
JP7159839B2 (ja) リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極及びリチウムイオン二次電池
WO2019064547A1 (ja) リチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極及びリチウムイオン二次電池
WO2021005688A1 (ja) リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極、リチウムイオン二次電池、及びリチウムイオン二次電池用負極活物質の製造方法
JP6409319B2 (ja) リチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP7159838B2 (ja) リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極及びリチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19937128

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021530379

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19937128

Country of ref document: EP

Kind code of ref document: A1