[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021095739A1 - Method for producing polymer fine particles, and dispersion stabilizer - Google Patents

Method for producing polymer fine particles, and dispersion stabilizer Download PDF

Info

Publication number
WO2021095739A1
WO2021095739A1 PCT/JP2020/041965 JP2020041965W WO2021095739A1 WO 2021095739 A1 WO2021095739 A1 WO 2021095739A1 JP 2020041965 W JP2020041965 W JP 2020041965W WO 2021095739 A1 WO2021095739 A1 WO 2021095739A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
polymer
polymerization
less
fine particles
Prior art date
Application number
PCT/JP2020/041965
Other languages
French (fr)
Japanese (ja)
Inventor
篤史 西脇
河合 道弘
直彦 斎藤
智文 近藤
Original Assignee
東亞合成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東亞合成株式会社 filed Critical 東亞合成株式会社
Priority to JP2021556108A priority Critical patent/JPWO2021095739A1/ja
Publication of WO2021095739A1 publication Critical patent/WO2021095739A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F293/00Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents

Definitions

  • This specification relates to a method for producing polymer fine particles and the like.
  • Polymer fine particles are used in a wide range of fields such as electrical and electronic materials such as conductive fine particles, spacers (for LCD cells, touch panel seals, etc.), resin film modifiers, thickeners (for paints, cosmetics, etc.), etc. It is used in.
  • Conventionally used methods for producing micron-sized or smaller polymer fine particles include an emulsion polymerization method, a suspension polymerization method, a precipitation polymerization method, and a dispersion polymerization method.
  • a solvent, a polymerizable monomer sparingly soluble in the solvent, and an emulsifier (surfactant) are mixed, and polymerization is carried out using a polymerization initiator soluble in the solvent to obtain nano-order polymer fine particles.
  • a polymerization initiator soluble in the solvent to obtain nano-order polymer fine particles.
  • the final product may be adversely affected (turbidity, water resistance, etc.).
  • droplets are formed by mechanically stirring the polymerizable monomer in water in the presence of a dispersion stabilizer, and polymerization is carried out using an appropriate oil-soluble polymerization initiator.
  • the precipitation polymerization method is a method for obtaining polymer particles in a system in which a polymerizable monomer is dissolved in a solvent, but the obtained polymer is insoluble in a solvent and precipitates.
  • the suspension polymerization method generally obtains polymer particles having a particle size of several tens of ⁇ m or more
  • the precipitation polymerization method generally obtains polymer particles having a particle size of several ⁇ m to several hundred ⁇ m, but all of these methods are smaller particles.
  • the dispersion polymerization method is a method in which precipitation polymerization is carried out in the presence of a dispersion stabilizer, and the particle size of the produced fine particles can be controlled by the type and amount of the polymerizable monomer, solvent, and dispersion stabilizer. Moreover, the fine particles are characterized by having a narrow particle size distribution.
  • Patent Document 1 describes acrylamide and its derivatives, p-styrene sulfonic acid and its salts, (meth) acrylic acid and their salts, etc. as homopolymers of these monomers or the co-weight of these monomers.
  • a water-miscible organic solvent such as ethanol is used as a polymerization solvent, and a water-miscible organic solvent or a water-miscible organic solvent is used in advance at the time of polymerization.
  • a method of producing hydrophilic polymer fine particles by allowing a soluble polymer to exist in a miscible solvent with water and polymerizing the above-mentioned monomers is disclosed.
  • the range of the average particle size of the polymer fine particles specifically disclosed in the examples is 0.34 to 2.40 ⁇ m.
  • Patent Document 2 describes the polymerization of acrylamide or acrylic acid neutralized products alone or as a mixture in a mixed solvent of water and a water-miscible organic solvent, using polyvinylpyrrolidone or a polyvinylpyrrolidone copolymer having a weight average molecular weight of 10,000 or more.
  • a method for producing polymer fine particles by performing in the presence of the above is disclosed, and the range of the average particle size of the polymer fine particles specifically disclosed in the examples is 0.7 to 1.30 ⁇ m. is there.
  • Patent Document 3 states that in the presence of a polymer (dispersion stabilizer) obtained by polymerizing a specific monomer in an alcoholic medium, the weight is soluble in the alcoholic medium but is produced.
  • a method for producing monodisperse polymer fine particles by polymerizing one or more kinds of vinyl-based monomers that are insoluble or hardly soluble in the alcohol medium is disclosed, and the coalescence is specifically described in Examples.
  • the range of the average particle size of the polymer fine particles disclosed in the above is 0.19 to 9.0 ⁇ m. More specifically, in this dispersion polymerization method, when acrylamide is used as the vinyl-based monomer, polymer fine particles having an average particle diameter of 0.19 ⁇ m and 0.20 ⁇ m can be obtained, and the vinyl-based simple particle is used. It is disclosed that when ammonium acrylate is used as the metric, polymer fine particles having an average particle diameter of 0.21 ⁇ m can be obtained.
  • Patent Document 4 a raw material monomer containing a monomer having two or more unsaturated double bonds and an unsaturated monomer having a hydrophilic functional group or an active hydrogen group is dissolved in the raw material monomer.
  • the produced polymer is subjected to solution polymerization, preferably dispersion polymerization or similar precipitation polymerization using a polymerization initiator in an insoluble medium, so that the particle size distribution is narrow even without using seed particles, and comparison is made.
  • solution polymerization preferably dispersion polymerization or similar precipitation polymerization using a polymerization initiator in an insoluble medium, so that the particle size distribution is narrow even without using seed particles, and comparison is made.
  • the range of the average particle size of the polymer fine particles specifically disclosed in the examples is 2.5 ⁇ m to 5.2 ⁇ m.
  • Japanese Unexamined Patent Publication No. 04-132705 Japanese Unexamined Patent Publication No. 04-279604 Japanese Unexamined Patent Publication No. 09-316106 Japanese Unexamined Patent Publication No. 2006-282772
  • Patent Documents 1, 2 and 4 could not produce polymer fine particles having a small particle size (for example, 0.20 ⁇ m or less). Further, according to Patent Document 3, when ammonium acrylate was used as a monomer, the particle size was 0.21 ⁇ m.
  • the present specification provides a production method capable of obtaining polymer fine particles having a small particle size (for example, an average particle size of 0.20 ⁇ m or less) while having excellent polymerization stability, and a dispersion stabilizer therefor.
  • a small particle size for example, an average particle size of 0.20 ⁇ m or less
  • the present inventors have focused on a polymer having a polymerizable group, which is used as a dispersion stabilizer, for example. Then, a polymer having a specific living radical polymerization activity unit is used as a dispersion stabilizer, and by using living radical polymerization utilizing the specific living radical polymerization activity and performing dispersion polymerization, secondary in the polymerization step is performed. It was found that polymer fine particles having a small particle size can be stably obtained while suppressing aggregation and the like. According to the present specification, the following means are provided based on such findings.
  • one or more second vinyl-based monomers A step of producing polymer fine particles by polymerizing a monomer by dispersion polymerization using living radical polymerization based on the living radical polymerization activity.
  • the living radical polymerization active unit is an active unit in living radical polymerization by an exchange chain mechanism or a bond-dissociation mechanism.
  • the living radical polymerization active unit is living radical polymerization by the exchange chain mechanism.
  • the step of producing the polymer fine particles 0.3 parts by mass or more and 20 parts by mass of the first polymer are used with respect to 100 parts by mass of the second vinyl-based monomer of one or more kinds.
  • the second vinyl-based monomer of one kind or two or more kinds contains acrylic acid or a salt thereof, and the polymerization solvent in the step of producing the polymer fine particles contains acetonitrile, according to [1] to [6]. The method described in either.
  • the one or more first vinyl-based monomers are selected from the group consisting of styrenes, (meth) acrylonitrile compounds, maleimide compounds, unsaturated acid anhydrides and unsaturated carboxylic acid compounds.
  • the second vinyl-based monomer of one or more kinds is one of [1] to [8] containing acrylic acid of 50% by mass or more and 100% by mass or less of the total mass thereof. The method described.
  • the method according to [9] wherein the one or more first vinyl-based monomers contain 20% by mass or more of styrenes based on the total mass thereof.
  • the one or more first vinyl-based monomers contain 20% by mass or more of styrenes based on the total mass of the first vinyl-based monomer, and the one or more second vinyl-based monomers.
  • the body contains acrylic acid or a salt thereof in an amount of 50% by mass or more and 100% by mass or less of the total mass thereof.
  • the first polymer comprises a living radical polymerization active unit by reversible addition-cleavage chain transfer polymerization.
  • the method according to [1] wherein 0.3 parts by mass or more and 20 parts by mass or less of the first polymer is used with respect to 100 parts by mass of the first type or two or more kinds of second vinyl-based monomers.
  • a polymer fine particle comprising a polymer comprising a polymer chain of one or more first vinyl-based monomers and a living polymerization active unit provided in at least a part of the polymer chain. Dispersion stabilizer for use in manufacturing.
  • the disclosure of the present specification relates to a method for producing polymer fine particles, a dispersion stabilizer, and the like.
  • a polymer chain containing a unit derived from a first vinyl-based monomer hereinafter, also referred to as a first polymer chain
  • a living polymerization active unit By polymerizing the second vinyl-based monomer in the presence of the first polymer having and, the second vinyl-based monomer is polymerized with the first polymerized chain as a base point, and the polymerized chain is polymerized.
  • a second polymerized chain is extended from the living polymerization active unit.
  • the extension of the second polymerized chain forms nuclei of the polymer fine particles, and then the extension of the second polymerized chain and the interaction between the second polymerized chains form particles, and the particle size of the particles increases.
  • the molecular weight distribution is generally narrow, and the polymer fine particles have a narrow molecular weight distribution. During growth, it acts to stabilize the dispersion of the polymer fine particles. Further, due to the living polymerization activity derived from the first polymer, the polymer fine particles are provided with a first polymer chain and a second polymer chain, and the molecular weight of these polymer chains and the entire polymer chain is excellent. Is obtained.
  • the monomer, the initiator, etc. are all dissolved in the medium at the start of the polymerization, and the polymer produced by the start of the polymerization is precipitated and aggregated to form particles, which are non-uniform.
  • the above method can be applied to the dispersion polymerization method of forming a solution. At this time, these polymer chains are organized so that the first polymer chain is arranged on the surface layer side of the polymer fine particles and the second polymer chain is arranged inside the polymer fine particles, so that the polymer fine particles are arranged. Is generated and grown.
  • the average particle size is 0.2 ⁇ m or less. Even the polymer fine particles of the above can be easily obtained.
  • (meth) acrylic means acrylic and / or methacrylic
  • (meth) acrylate means acrylate and / or methacrylate
  • (meth) acryloyl group means an acryloyl group and / or a methacryloyl group.
  • the method for producing polymer fine particles disclosed in the present specification is one or more first vinyl-based monomers (hereinafter, simply referred to as the first method).
  • first method is one or more first vinyl-based monomers (hereinafter, simply referred to as the first method).
  • first method In the presence of a first polymer chain containing a monomer unit derived from (also referred to as a monomer) and a first polymer having a living polymerization active unit, one or more second vinyl-based single particles.
  • a step of polymerizing a dimer hereinafter, also simply referred to as a second monomer
  • the first polymer can be used.
  • the first polymer can include a first polymer chain containing units derived from one or more first monomers and a living polymerization active unit.
  • As the first monomer various vinyl-based monomers can be used without particular limitation, which varies depending on the function and use of the polymer fine particles to be obtained.
  • the first polymerized chain is obtained by polymerizing a monomer composition containing the first monomer.
  • the first monomer include styrenes, (meth) acrylonitrile compounds, maleimide compounds, unsaturated acid anhydrides and unsaturated carboxylic acid compounds. One or a combination of two or more of these can be used.
  • Styrenes include styrene and its derivatives. Specific compounds include styrene, ⁇ -methylstyrene, ⁇ -methylstyrene, vinylxylene, vinylnaphthalene, o-methylstyrene, m-methylstyrene, p-methylstyrene, o-ethylstyrene, m-ethylstyrene, p-ethylstyrene, pn-butylstyrene, p-isobutylstyrene, pt-butylstyrene, o-methoxystyrene, m-methoxystyrene, p-methoxystyrene, o-chloromethylstyrene, p-chloromethylstyrene , O-Chlorostyrene, p-chlorostyrene, o-hydroxys
  • styrene, o-methoxystyrene, m-methoxystyrene, p-methoxystyrene, o-hydroxystyrene, m-hydroxystyrene, and p-hydroxystyrene are preferable from the viewpoint of polymerizable property.
  • Examples of the (meth) acrylonitrile compound include (meth) acrylonitrile and ⁇ -methylacrylonitrile.
  • acrylonitrile is used.
  • Maleimide compounds include maleimide and N-substituted maleimide compounds.
  • Specific examples of the N-substituted maleimide compound include N-methylmaleimide, N-ethylmaleimide, Nn-propylmaleimide, N-isopropylmaleimide, Nn-butylmaleimide, N-isobutylmaleimide, and N-tert-butyl.
  • N-alkyl-substituted maleimide compounds such as maleimide, N-pentylmaleimide, N-hexylmaleimide, N-heptylmaleimide, N-octylmaleimide, N-laurylmaleimide, N-stearylmaleimide; N-cyclopentylmaleimide, N-cyclohexylmaleimide, etc.
  • N-Cycloalkyl-substituted maleimide compounds N-phenylmaleimide, N- (4-hydroxyphenyl) maleimide, N- (4-acetylphenyl) maleimide, N- (4-methoxyphenyl) maleimide, N- (4-ethoxy)
  • N-aryl-substituted maleimide compounds such as phenyl) maleimide, N- (4-chlorophenyl) maleimide, and N- (4-bromophenyl) maleimide, and N-aralkyl-substituted maleimide compounds such as N-benzylmaleimide.
  • N-phenylmaleimide is used.
  • examples of the unsaturated acid anhydride include maleic anhydride, itaconic anhydride, citraconic anhydride and the like, and one or more of these can be used.
  • unsaturated carboxylic acid compounds include (meth) acrylic acid, silicic acid, crotonic acid, and unsaturated dicarboxylic acids such as maleic acid, fumaric acid, itaconic acid, crotonic acid, and citraconic acid, and unsaturated dicarboxylic acids.
  • unsaturated carboxylic acid compounds include alkyl esters, and one or more of them can be used.
  • the first monomer preferably contains, for example, at least styrenes.
  • styrenes are easy to carry out in the living room and can impart appropriate hydrophobicity and affinity to organic solvents. It is possible to impart hydrophobicity or affinity to an organic solvent to the first polymerized chain.
  • the first polymer tends to be present on the surface layer of the polymer fine particles, and the polymer fine particles are produced. Dispersion stability is improved.
  • Styrene is, for example, 20% by mass or more of the total mass of the first monomer (first monomer unit of the first polymerized chain) for polymerizing the first polymerized chain. This is because if the content is 20% by mass or more, the living polymerization is facilitated, and an appropriate hydrophobicity and an affinity for an organic solvent can be appropriately imparted. Further, for example, it is 30% by mass or more, and for example, 35% by mass or more, and for example, 40% by mass or more, and for example, 50% by mass or more, and for example, 60% by mass or more. Further, for example, it is 65% by mass or more, for example, 70% by mass or more, and for example, 75% by mass or more.
  • the styrenes are 100% by mass or less of the total mass, and are, for example, 95% by mass or less, and are, for example, 90% by mass or less, and are, for example, 85% by mass or less, and are, for example,. It is 80% by mass or less, and for example, 75% by mass or less.
  • the range of the styrenes with respect to the total mass can be set by appropriately combining the above-mentioned lower limit and upper limit, and is, for example, 20% by mass or more and 95% by mass or less, and for example, 30% by mass or more and 75% by mass or more. And, for example, 35% by mass or more and 85% by mass or less.
  • the (meth) acrylonitrile compound, maleimide compound, acid anhydride and unsaturated carboxylic acid compound can be used alone, and it is preferable to use one or more of these four types in combination with styrenes. This is because all of these four types can maintain, regulate or impart the hydrophobicity or organic solvent affinity of the first polymerized chain.
  • one or more of (meth) acrylonitrile compounds such as acrylonitrile, maleimide compounds such as N-phenylmaleimide and acid anhydrides are preferable, and combinations of styrene and acrylonitrile, styrene and N-phenylmaleimide and the like are preferable.
  • the unsaturated carboxylic acid compound is preferable in that the polarity of the first polymer can be easily changed.
  • the total amount of these one or more first monomers other than styrenes is the first monomer for polymerizing the first polymerized chain (first). It is, for example, 20% by mass or more of the total mass of the first monomer unit of the polymerized chain). Further, for example, it is 25% by mass or more, and for example, 30% by mass or more, and for example, 35% by mass or more, and for example, 40% by mass or more, and for example, 50% by mass or more. Further, for example, it is 60% by mass or more.
  • the (meth) acrylonitrile compound is 80% by mass or less of the total mass, and is, for example, 75% by mass or less, and is, for example, 70% by mass or less, and is, for example, 65% by mass or less. Further, for example, it is 60% by mass or less, for example, 55% by mass or less, and for example, 50% by mass or less.
  • the total amount of these one or more first monomers other than styrenes can be set by appropriately combining the above lower limit and upper limit, and is, for example, 20% by mass or more and 65% by mass or less. Yes, and for example, it is 25% by mass or more and 50% by mass or less.
  • the first polymerized chain may be a polymerized chain containing only the first monomer described above, but if necessary, other vinyl-based monomers other than the above may be used as the first monomer. be able to.
  • known vinyl-based monomers such as (meth) acrylic acid ester such as alkyl (meth) acrylic acid can be used.
  • these other monomers are, for example, 10% by mass or less, for example, 5% by mass or less, for example, 3% by mass or less, or, for example, the total mass of the monomers constituting the first polymerized chain. 1, 1% by mass or less, and for example, 0.5% by mass or less.
  • the first polymer may include a polymerized chain as another block in addition to the above-mentioned first polymerized chain.
  • the vinyl-based monomer constituting such a polymerized chain include (meth) acrylic acid, known (meth) acrylic acid alkyl esters, and known (meth) acrylic acid hydroxyalkyl esters.
  • Such a vinyl-based monomer may be a second monomer described later.
  • Such other polymerized chains may be added, for example, in another synthetic step after the formation of the first polymerized chain.
  • the first polymer can comprise a living radical polymerization active unit.
  • Living radical polymerization generally consists of only a start reaction and a growth reaction in the polymerization step, and is not accompanied by a side reaction such as a chain transfer reaction or a stop reaction that inactivates the growth end, and the growth end is always during polymerization. It is said to be a polymerization reaction that maintains the growth activity (living radical polymerization activity) based on radical species.
  • the living radical polymerization active unit is a growth active unit in living radical polymerization.
  • the living radical polymerization active unit is a unit derived from a control agent of the living radical polymerization method.
  • the living radical polymerization active unit can be an active unit in living radical polymerization by an exchange chain mechanism or a bond-dissociation mechanism.
  • the first polymer having a narrow molecular weight distribution can be easily obtained, and in the dispersion polymerization of the polymer fine particles, the first polymer is soluble or dispersed in the polymerization solvent.
  • Various monomers can be selected for their function as stabilizers.
  • Living radical polymerization by the exchange chain mechanism includes a reversible addition-cleavage chain transfer polymerization method (RAFT method), an iodine transfer polymerization method, a polymerization method using an organic tellurium compound (TERP method), and a polymerization method using an organic antimony compound (SBRP). Method), a polymerization method using an organic bismuth compound (BIRP method), and the like.
  • Living radical polymerization by an exchange chain mechanism is preferable in that the average particle size of the polymer fine particles can be reduced.
  • the RAFT method and the iodine transfer polymerization method are preferable in that the molecular weight distribution of the first polymer can be narrowed. Further, the RAFT method is preferably used.
  • Examples of the living radical polymerization by the bond-dissociation mechanism include the nitroxy radical method (NMP method). Living radical polymerization by a bond-dissociation mechanism is preferable in that the average particle size of the polymer fine particles can be reduced. Among these, the NMP method is preferable in that the molecular weight distribution of the first polymer can be narrowed.
  • NMP method nitroxy radical method
  • the polymerization conditions by these various living radical polymerizations are well known to those skilled in the art, and if necessary, the synthesis of the first polymer by the RAFT method, the iodine transfer polymerization method and the NMP method will be exemplified.
  • the living radical polymerization process includes various processes such as bulk polymerization, solution polymerization, suspension polymerization and emulsion polymerization. Considering this, in the production of the first polymer, for example, solution polymerization can be used.
  • the first polymer can be synthesized by the RAFT method using, for example, a control agent of the RAFT method.
  • the RAFT method is a living radical polymerization method suitable for obtaining a first polymer having a molecular weight distribution of 2.0 or less.
  • a control agent (RAFT agent) for living radical polymerization in the RAFT method a known RAFT agent can be used without particular limitation.
  • a dithioester compound, a xanthate compound, a trithiocarbonate compound, a dithiocarbamate compound and the like can be mentioned.
  • the RAFT agent may be a monofunctional agent having one active site, or a bifunctional or more agent having two or more active sites.
  • a RAFT agent having more than two functionalities has a polymer chain extending in more than two directions. From the viewpoint of producing polymer fine particles, it may be preferable to use a RAFT agent having bifunctionality or trifunctionality or higher.
  • the substituent in the RAFT agent can be appropriately determined in consideration of the first monomer and the second monomer.
  • the amount of the RAFT agent used is appropriately adjusted according to the target Mn, and is, for example, 0.1 part by mass or more and 10 parts by mass or less, for example, with respect to 100 parts by mass of the first monomer. , 0.5 parts by mass or more and 5 parts by mass or less, for example, 1 part by mass or more and 4 parts by mass or less, and for example, 1 part by mass or more and 3 parts by mass or less can be used.
  • RAFT agent various known RAFT agents such as a dithioester compound, a xanthate compound, a trithiocarbonate compound and a dithiocarbamate compound can be used. More specifically, for example, dibenzyltrithiocarbonate, dithiobenzoate / 2-cyano-2-propylbenzodithioate, 2-phenyl-2-propylbenzodithioate, trithiocarbonate, 2-cyano-2-propyl.
  • radical polymerization initiator used in the polymerization by the RAFT method
  • known radical polymerization initiators such as azo compounds, organic peroxides and persulfates can be used, but they are handled for safety.
  • An azo compound is preferable because it is easy to carry out and side reactions during radical polymerization are unlikely to occur.
  • Specific examples of the above azo compounds include 2,2'-azobisisobutyronitrile, 2,2'-azobis (2,4-dimethylvaleronitrile), and 2,2'-azobis (4-methoxy-2, 4-Dimethylvaleronitrile), dimethyl-2,2'-azobis (2-methylpropionate), 2,2'-azobis (2-methylbutyronitrile) and the like.
  • the radical polymerization initiator one kind or two or more kinds can be used.
  • the proportion of such radical polymerization initiator used is not particularly limited, but the proportion of the radical polymerization initiator used is not particularly limited from the viewpoint of obtaining a polymer having a narrower molecular weight distribution, but from the viewpoint of obtaining a polymer having a narrower molecular weight distribution.
  • the proportion of the radical polymerization initiator used is not particularly limited from the viewpoint of obtaining a polymer having a narrower molecular weight distribution, but from the viewpoint of obtaining a polymer having a narrower molecular weight distribution.
  • 100 parts by mass of the total mass of the first monomer for example, 0.005% by mass or more and 2% by mass or less, for example, 0.005% by mass or more and 1% by mass or less, and for example, 0.005. It can be used in an amount of% by mass or more and 0.5% by mass or less.
  • the RAFT method may be carried out in the presence of a chain transfer agent, if necessary.
  • a chain transfer agent one or more known ones can be used.
  • a known polymerization solvent can be used, and examples thereof include a nitrile solvent, an aromatic solvent, a ketone solvent, an ester solvent, an orthoester solvent, dimethylformamide, dimethyl sulfoxide, alcohol and water.
  • a nitrile solvent include acetonitrile, isobutyronitrile, benzonitrile and the like.
  • the aromatic solvent include benzene, toluene, xylene, anisole and the like.
  • Specific examples of the ketone solvent include acetone, methyl ethyl ketone, methyl isobutyl ketone and the like.
  • ester solvent examples include methyl acetate, ethyl acetate, propyl acetate, butyl acetate and the like.
  • orthoester solvent examples include trimethyl orthoacetate, triethyl orthoate, triethyl orthoate (n-propyl), tri (isopropyl) orthoatete, trimethyl orthoacetate, triethyl orthoacetate, triethyl orthopropionate, ortho n-. Examples thereof include trimethyl butyrate and trimethyl orthoisobutyrate.
  • a nitrile solvent such as acetonitrile and / or an aromatic solvent such as anisole can be used.
  • the concentration of the first monomer when the first polymer is polymerized by living radical polymerization is not particularly limited with respect to the total mass of the polymerization solvent and the first monomer, but for example. It can be 10% by mass or more and 80% by mass or less, for example, 15% by mass or more and 70% by mass or less, 20% by mass or more and 70% by mass or less.
  • the reaction temperature during the polymerization reaction by the RAFT method is preferably 40 ° C. or higher and 100 ° C. or lower, more preferably 45 ° C. or higher and 90 ° C. or lower, and further preferably 50 ° C. or higher and 80 ° C. or lower.
  • the reaction temperature is 40 ° C. or higher, the polymerization reaction can proceed smoothly.
  • the reaction temperature is 100 ° C. or lower, side reactions can be suppressed and restrictions on the initiators and solvents that can be used are relaxed.
  • the first polymer can also be synthesized by the iodine transfer polymerization method using, for example, a control agent of the iodine transfer polymerization method.
  • the control agent in the iodine transfer polymerization method is not particularly limited, and known control agents can be used, for example, methyl iodide, methylene iodide, iodoform, carbon tetraiodide, 1-phenylethyl iodide, benzyl.
  • the amount of the iodine transfer control agent used is appropriately adjusted according to the target Mn, and is, for example, 0.1 part by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the first monomer. Further, for example, 0.5 parts by mass or more and 5 parts by mass or less, and for example, 1 part by mass or more and 4 parts by mass or less can be used. For example, 0.1 part by mass or more and 10 parts by mass or less, for example, 0.5 part by mass or more and 5 parts by mass or less, and for example, 1 part by mass or more and 4 parts by mass with respect to 100 parts by mass of the first monomer. It can be used below.
  • radical polymerization initiator radio generator
  • the reaction temperature, the polymerization solvent, and the first monomer concentration in the iodine transfer polymerization method can be appropriately selected and applied from the same embodiments as in the RAFT method.
  • the first polymer can also be synthesized by the NMP method using, for example, a control agent of the NMP method.
  • a control agent of the NMP method a known control agent can be used without particular limitation, for example, 2,2,6,6-tetramethylpiperidinyl-1-oxyl (TEMPO), N-tert-.
  • TEMPO 2,2,6,6-tetramethylpiperidinyl-1-oxyl
  • the amount of the control agent used by the NMP method is appropriately adjusted according to the target Mn, and is, for example, 0.1 part by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the first monomer.
  • 0.5 parts by mass or more and 5 parts by mass or less, and for example, 1 part by mass or more and 4 parts by mass or less can be used.
  • the radical polymerization initiator (radical generator) used in the polymerization by the NMP method is a known radical polymerization initiator such as an azo compound, an organic peroxide, and a persulfate in the same manner and amount as in the RAFT method. Can be used.
  • the reaction temperature, the polymerization solvent, and the first monomer concentration in the NMP method can be appropriately selected and applied from the same aspects as in the RAFT method.
  • a first polymer having a first polymer chain containing the first monomer and a living polymerization active unit can be obtained.
  • the first polymer may also include two or more first polymerized chains. For example, after performing living radical polymerization or the like using one or more first monomers of a certain composition, one or more first monomers of another composition are used.
  • living radical polymerization or the like a first polymer having a first polymerization chain (block) having a unit derived from the first monomer having a different composition can be obtained.
  • a first polymer in which the number average molecular weight (Mn) and the weight average molecular weight (Mw) are controlled can be obtained.
  • the Mn of the first polymer is not particularly limited, but is, for example, 3,000 or more, for example, 5,000 or more, and for example, 7,000 or more, and for example, 8. It is 000 or more, and for example, 10,000 or more. Further, the Mn is 50,000 or less, for example, 30,000 or less, and for example, 25,000 or less, and for example, 20,000 or less, and for example, 15,000 or less. And, for example, 14,000 or less, and for example, 12,000 or less.
  • the range of Mn can be set by appropriately combining the above-mentioned lower limit and upper limit, and is, for example, 5,000 or more and 25,000 or less, and for example, 10,000 or more and 25,000 or less, and also. For example, 10,000 or more and 15,000 or less, and for example, 10,000 or more and 14,000 or less.
  • the Mw of the first polymer is not particularly limited, but is, for example, 5,000 or more, for example, 7,000 or more, and for example, 9,000 or more, and for example, 10. It is 000 or more, and is, for example, 13,000 or more, and is, for example, 15,000 or more. Further, the Mw is 60,000 or less, for example, 55,000 or less, and for example, 50,000 or less, and for example, 45,000 or less, and for example, 40,000 or less. And, for example, 36,000 or less, and for example, 35,000 or less, and for example, 30,000 or less, and for example, 25,000 or less.
  • the range of Mw can be set by appropriately combining the above-mentioned lower limit and upper limit, and is, for example, 1,000 or more and 40,000 or less, and for example, 10,000 or more and 35,000 or less. For example, it is 10,000 or more and 30,000 or less, and for example, 15,000 or more and 25,000 or less.
  • Both Mw and Mn of the first polymer can be measured by gel permeation chromatography using polystyrene as a standard substance.
  • the details of the chromatography conditions the conditions disclosed in the subsequent examples can be adopted.
  • the molecular weight distribution (Mw / Mn) of the first polymer is not particularly limited, but is, for example, 2.5 or less, for example, 2.4 or less, and for example, 2.3 or less. Yes, for example 2.0 or less, and for example 1.6 or less, and for example 1.5 or less, and for example 1.4 or less, and for example 1.3 or less. is there. Further, the molecular weight distribution is, for example, 1.1 or more, for example, 1.2 or more, and for example, 1.3 or more, and for example, 1.4 or more, and for example, 1.5 or more. Is.
  • the range of the molecular weight distribution can be set by appropriately combining the above-mentioned lower limit and upper limit. For example, 1.1 or more and 2.5 or less, for example, 1.1 or more and 2.4 or less, and for example, 1 It can be 1. or more and 2.3 or less, and for example, 1.1 or more and 2.0 or less.
  • the molecular weight distribution is 2.4 or less in order to obtain polymer fine particles having an average particle size of 0.2 ⁇ m or less, and 1.7 in order to obtain polymer fine particles having a smaller average particle size.
  • the following is preferable, more preferably 1.6 or less, and even more preferably 1.4 or less.
  • the first polymer can include a first polymer chain and a living polymerization active unit, but typically, when a monofunctional control agent is used, the living polymerization active unit is the first.
  • a control agent having bifunctionality or higher it is branched in two or more directions with the living polymerization active unit as a base point, and each of them is provided with a first polymerized chain. ..
  • the other polymerized chain is directly bonded to the living polymerization active unit, and the first polymerization is carried out more distally to the living polymerization active unit.
  • the first polymerized chain is bonded to the distal end of the other polymerized chain so that the chain is provided.
  • This method can produce polymer fine particles by dispersion-polymerizing one kind or two or more kinds of second monomers in the presence of the first polymer.
  • the first polymer can be used as a starting point for the polymerization of the second monomer in the production of the polymer fine particles, and can also be used as a dispersion stabilizer in the polymerization solvent of the polymer fine particles.
  • the polymerization stability that is, the aggregation of the polymer fine particles during the polymerization step is suppressed, the generation of coarse agglomerated particles is suppressed, the average particle size is small, and the particle size distribution is narrow. Can be obtained.
  • the second vinyl-based monomer is not particularly limited, and may be appropriately selected from known vinyl-based monomers depending on the use of the polymer fine particles and the like. Can be done.
  • the first polymer effectively exerts its function as a dispersion stabilizer so that it is present on the surface layer side of the polymer fine particles, and the second polymer chain is present on the core side as the main component of the polymer fine particles.
  • the second monomer can be a vinyl-based monomer having a hydrophilic group.
  • examples of the second monomer include a carboxyl group-containing vinyl-based monomer and a hydroxy group-containing vinyl-based monomer.
  • carboxy group-containing vinyl-based monomer examples include unsaturated carboxylic acids such as (meth) acrylic acid and crotonic acid, unsaturated dicarboxylic acids such as itaconic acid, maleic acid, and fumaric acid, and unsaturated dicarboxylic acids. Examples thereof include monoalkyl esters. Of these, (meth) acrylic acid is preferable.
  • (Meta) acrylic acid may be in the form of a salt.
  • the (meth) acrylic acid (salt) includes (meth) acrylic acid and (meth) acrylic acid salt.
  • the salt in the (meth) acrylate is an alkali metal salt, an alkaline earth metal salt, an ammonium salt or an organic amine salt.
  • alkali metal salts such as sodium salt, lithium salt, potassium salt, rubidium salt, and cesium salt
  • alkaline earth metal salts such as magnesium salt, calcium salt, strontium salt, and barium salt
  • alkanolamine salts such as monoethanolamine salt, diethanolamine salt and triethanolamine salt
  • alkylamine salts such as monoethylamine salt, diethylamine salt and triethylamine salt
  • organic amine salts such as polyamine such as ethylenediamine salt and triethylenediamine salt. Be done.
  • hydroxy group-containing vinyl monomer examples include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, and 2-hydroxybutyl (meth) acrylate. , 3-Hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, and mono (meth) acrylic acid esters of polyalkylene glycols such as polyethylene glycol and polypropylene glycol. These compounds may be used alone or in combination of two or more.
  • Such a second monomer can be used alone or in combination of two or more.
  • the carboxyl group-containing vinyl-based monomer can be, for example, 40% by mass or more, and can be, for example, 50% by mass or more, based on the total mass of the second monomer. It can be 60% by mass or more, for example, 70% by mass or more, and can be, for example, 80% by mass or more, and can be, for example, 90% by mass or more. For example, it can be 95% by mass or more, and can be, for example, 100% by mass.
  • the range of use of the carboxyl group-containing vinyl-based monomer with respect to the total mass of the second monomer can be set by appropriately combining the above lower and upper limits, and is, for example, 60% by mass or more and 100% by mass or less. Further, for example, it is 80% by mass or more and 100% by mass or less, and for example, 90% by mass or more and 100% by mass or less.
  • the hydroxy group-containing vinyl-based monomer is, for example, 5% by mass or more, for example, 10% by mass or more, and for example, 20% by mass or more, based on the total mass of the second monomer. Yes, for example, 30% by mass or more, and for example, 40% by mass or more. Further, it is 50% by mass or less, and is, for example, 40% by mass or less, and is, for example, 30% by mass or less, and is, for example, 20% by mass or less, and is, for example, 10% by mass or less. For example, it is 5% by mass or less.
  • the range of use of the hydroxy group-containing vinyl-based monomer with respect to the total mass of the second monomer can be set by appropriately combining the above lower and upper limits, and is, for example, 0% by mass or more and 40% by mass or less. Further, for example, it is 0% by mass or more and 20% by mass or less, and for example, 0% by mass or more and 10% by mass or less.
  • the second monomer other vinyl-based monomers can be included as long as the intended function of the second polymer chain in the polymer fine particles is not impaired.
  • the vinyl-based monomer is not particularly limited, and examples thereof include (meth) acrylic acid alkyl ester and (meth) acrylic acid alkoxyalkyl ester.
  • Such a second monomer is, for example, 20% by mass or less, for example, 10% by mass or less, and for example, 5% by mass or less, or, for example, 3% by mass, based on the total mass of the second monomer. % Or less, for example, 1% by mass or less can be contained.
  • Examples of the (meth) acrylic acid alkyl ester include methyl (meth) acrylic acid, ethyl (meth) acrylic acid, isopropyl (meth) acrylic acid, n-propyl (meth) acrylic acid, n-butyl (meth) acrylic acid, and ( Isobutyl acrylate, tert-butyl (meth) acrylate, hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, isooctyl (meth) acrylate, (meth) Linear or branched alkyl ester compounds of (meth) acrylic acid such as n-nonyl acrylate, isononyl (meth) acrylate, decyl (meth) acrylate and dodecyl (meth) acrylate; cyclohexyl (meth) acrylate.
  • Examples of the (meth) acrylate alkoxyalkyl ester include methoxymethyl (meth) acrylate, ethoxymethyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, 2-ethoxyethyl (meth) acrylate, and (meth).
  • a crosslinked structure can be introduced into the second polymerized chain.
  • the method for introducing the crosslinked structure is not particularly limited, and examples thereof include the following methods. 1) Copolymerization of crosslinkable monomers 2) Utilizing chain transfer to polymer chains during radical polymerization 3) After synthesizing a polymer having a reactive functional group, post-crosslinking is performed by adding a crosslinking agent as necessary. Among these, the method by copolymerization of crosslinkable monomers is preferable because the operation is simple and the degree of crosslinking can be easily controlled.
  • the crosslinkable monomer examples include a polyfunctional polymerizable monomer having two or more polymerizable unsaturated groups, a monomer having a self-crosslinkable crosslinkable functional group such as a hydrolyzable silyl group, and the like. Can be mentioned.
  • the polyfunctional polymerizable monomer is a compound having two or more polymerizable functional groups such as a (meth) acryloyl group and an alkenyl group in the molecule, and is a polyfunctional (meth) acrylate compound, a polyfunctional alkenyl compound, ( Meta) Examples thereof include compounds having both an acryloyl group and an alkenyl group. These compounds may be used alone or in combination of two or more.
  • a polyfunctional alkenyl compound is preferable because a uniform crosslinked structure can be easily obtained, and a polyfunctional allyl ether compound having a plurality of allyl ether groups in the molecule is particularly preferable.
  • polyfunctional (meth) acrylate compound examples include ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, polyethylene glycol di (meth) acrylate, and polypropylene glycol di (meth) acrylate.
  • Di (meth) acrylates of dihydric alcohols such as meta) acrylate; trimethylol propantri (meth) acrylate, tri (meth) acrylate of trimethyl propanethylene oxide modified product, glycerin tri (meth) acrylate, pentaerythritol tri (meth) Tri (meth) acrylates of trivalent or higher polyhydric alcohols such as meta) acrylates and pentaerythritol tetra (meth) acrylates, poly (meth) acrylates such as tetra (meth) acrylates; Bisamides and the like can be mentioned.
  • polyfunctional alkenyl compound examples include polyfunctional allyl ether compounds such as trimethylolpropanediallyl ether, trimethylolpropanetriallyl ether, pentaerythritol diallyl ether, pentaerythritol triallyl ether, tetraallyloxyethane, and polyallyl saccharose; Polyfunctional allyl compound; Polyfunctional vinyl compounds such as divinylbenzene and the like can be mentioned.
  • Compounds having both (meth) acryloyl group and alkenyl group include allyl (meth) acrylate, isopropenyl (meth) acrylate, butenyl (meth) acrylate, pentenyl (meth) acrylate, and (meth) acrylate. 2- (2-Vinyloxyethoxy) ethyl and the like can be mentioned.
  • the monomer having a self-crosslinkable crosslinkable functional group include a hydrolyzable silyl group-containing vinyl monomer, N-methylol (meth) acrylamide, N-methoxyalkyl (meth) acrylamide and the like. Can be mentioned. These compounds can be used alone or in combination of two or more.
  • the hydrolyzable silyl group-containing vinyl monomer is not particularly limited as long as it is a vinyl monomer having at least one hydrolyzable silyl group.
  • vinyl silanes such as vinyl trimethoxysilane, vinyl triethoxysilane, vinyl methyl dimethoxysilane, vinyl dimethyl methoxysilanen; silyl such as trimethoxysilylpropyl acrylate, triethoxysilylpropyl acrylate, methyldimethoxysilylpropyl acrylate and the like.
  • Group-containing acrylic acid esters silyl group-containing methacrylate esters such as trimethoxysilylpropyl methacrylate, triethoxysilylpropyl methacrylate, methyldimethoxysilylpropyl methacrylate, dimethylmethoxysilylpropyl methacrylate; trimethoxysilylpropyl vinyl ether and the like.
  • Cyril group-containing vinyl ethers; silyl group-containing vinyl esters such as trimethoxysilyl undecanoate vinyl and the like can be mentioned.
  • the amount of the crosslinkable monomer used is, for example, 0.1% by mass or more and 5% by mass or less with respect to the total mass of the monomers other than the crosslinkable monomer (non-crosslinkable monomer). For example, it is 0.5% by mass or more and 3% by mass or less.
  • the amount of the crosslinkable monomer used is, for example, 0.01 mol% or more and 2 mol% or less, and for example, 0.03 mol% or more, based on the total molar amount of the non-crosslinkable monomer. It is 2 mol% or less, and for example, 0.5 mol% or more and 1 mol% or less.
  • the second monomer has a living polymerization activity.
  • the radical polymerization initiator can be appropriately selected from the various aspects described for the RAFT agent.
  • the proportion of the radical polymerization initiator used is not particularly limited, but from the viewpoint of obtaining a polymer having a narrower molecular weight distribution, for example, 0.01% by mass or more is 5 with respect to 100 parts by mass of the total mass of the second monomer. By mass% or less, for example, 0.02% by mass or more and 3% by mass or less, and for example, 0.03% by mass or more and 3% by mass or less can be used.
  • the polymer fine particles having a small average particle size can be easily obtained.
  • the polymerization solvent used in the production of the polymer fine particles can be appropriately set according to the polymerization method to be adopted and the types of the first monomer, the second monomer and the like.
  • various solvents used in the synthesis of the first polymer can be appropriately used.
  • a nitrile solvent such as acetonitrile can be used.
  • the first polymer By using the polymerization solvent at the time of synthesizing the first polymer, the first polymer can be dissolved, and the first polymer chain and the control agent for living radical polymerization can be easily dissolved.
  • the first polymerized chain is present on the surface layer side of the polymer fine particles, and the second polymerized chain side made of acrylic acid or the like as an extension end can be polymerized while being organized so as to be present inside the polymer fine particles. it can. Therefore, it becomes easy to form a fine particle structure having excellent dispersion stability.
  • the polymerization solvent at the time of producing the polymer fine particles needs to be a poor solvent in which the second monomer and the like are dissolved but the polymer fine particles containing the polymer chains are not dissolved. Can be determined in consideration of.
  • a nitrile solvent such as acetonitrile
  • an alcohol solvent such as methanol and t-butyl alcohol
  • a ketone solvent such as acetone
  • a furan solvent such as tetrahydrofuran ether such as tetrahydrofuran.
  • benzene, ethyl acetate, dichloroethane, n-hexane, cyclohexane, n-heptane and the like can be mentioned, and one of these can be used alone or in combination of two or more.
  • the polymerization solvent of the polymer fine particles contains a highly polar solvent such as water
  • the (meth) acrylic acid can be rapidly neutralized in the polymerization step.
  • the amount of the highly polar solvent used is preferably 0.05 to 10.0% by mass, more preferably 0.1 to 5.0% by mass, and further preferably 0.1 to 1 by mass with respect to the total mass of the medium. It is 0.0% by mass.
  • the proportion of the highly polar solvent is 0.05% by mass or more, the effect on the neutralization reaction is recognized, and when it is 10.0% by mass or less, no adverse effect on the polymerization reaction is observed.
  • the concentration of the second monomer in the polymerization solvent is not particularly limited, but can be appropriately set, but can be, for example, 5% by mass or more and 30% by mass or less, and for example, 10% by mass or more. It can be 20% by mass or less.
  • the reaction temperature during the polymerization reaction during the production of the polymer fine particles is not particularly limited, but is, for example, 40 ° C. or higher and 100 ° C. or lower. Further, for example, it is 45 ° C. or higher and 90 ° C. or lower, and for example, 50 ° C. or higher and 80 ° C. or lower.
  • the reaction temperature is 40 ° C. or higher, the polymerization reaction can proceed smoothly.
  • the reaction temperature is 100 ° C. or lower, side reactions can be suppressed and restrictions on the initiators and solvents that can be used are relaxed.
  • the first polymer can be used in an amount of 0.3 parts by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the total mass of the second monomer. By using it in such a range, it is possible to produce polymer fine particles mainly containing the second monomer while allowing the first polymer to function as a dispersion stabilizer.
  • the amount of the first polymer is less than 0.3 parts by mass, it is difficult to obtain a sufficient dispersion stabilizing effect, and the average particle size of the polymer fine particles tends to exceed 0.2 ⁇ m, even if it exceeds 50 parts by mass. This is because it is difficult to improve the functionality as a dispersion stabilizer, and the effect of reducing the average particle size of the polymer fine particles is also reduced.
  • the first polymer can be used with respect to 100 parts by mass of the total mass of the second monomer, for example, 0.5 parts by mass or more, and for example, 1 part by mass or more. Further, the first polymer can be used, for example, 50 parts by mass or less, for example, 40 parts by mass or less, for example, 30 parts by mass or less, and for example, 20 parts by mass or less.
  • the range of the amount of the first polymer used with respect to 100 parts by mass of the total mass of the second monomer can be set by appropriately combining the above upper limit and lower limit, and is, for example, 0.3 parts by mass or more and 30 parts by mass or less. Yes, for example, 0.3 parts by mass or more and 20 parts by mass or less, for example, 0.5 parts by mass or more and 20 parts by mass or less, and for example, 1 part by mass or more and 20 parts by mass or less.
  • Polymer fine particles can be produced by the above method. According to this method, polymer fine particles having an average particle size of 0.2 ⁇ m or less can be easily obtained. In addition, since it is excellent in polymerization stability, it is possible to suppress the generation of agglomerates during the polymerization step and suppress the formation of coarse particles.
  • the average particle size of the polymer fine particles is obtained by measuring the particle size of the polymer fine particles observed under a microscope using image analysis software or the like and obtaining the average value thereof. be able to. The average value of the particle sizes of 400 particles in the image observed by the electrolytic radiation scanning electron microscope can be used as the average particle size of the fine particles. More specifically, the following method can be adopted.
  • FE-SEM electric field radiation scanning electron microscope
  • JSM-6330F manufactured by JEOL Ltd.
  • a microscope with the same resolution as the electron microscope a photographed image in which 50 to 100 particles can be observed on one sheet is captured.
  • image analysis software "WinROOF” manufactured by Mitani Shoji Co., Ltd. or software that can count the number of particles and particle size with the same accuracy and accuracy as the software.
  • the total number of particles is 200, and the particle diameter (diameter equivalent to a circle) is measured for 200 particles. Further, this operation is performed to measure the particle size of 200 particles in the same manner for another captured image.
  • the average value of the total particle diameters of 400 particles can be used as the average particle diameter.
  • the number of coarse particles can be obtained by counting the number of coarse particles in 100 particles, using the particles having twice or more the average particle diameter thus obtained as coarse particles.
  • the residual agglomerates in the polymerization stability test disclosed in the Examples are, for example, 200 ppm or less, for example 150 ppm or less, and for example 100 ppm or less, for example 60 ppm or less, and for example 40 ppm or less, and for example.
  • Polymer fine particles of 20 ppm or less, for example, 10 ppm or less can be obtained.
  • polymer fine particles in which the number of coarse particles per 100 particles disclosed in the examples is 2 or less, for example, 1 or less.
  • the first polymer disclosed in the present specification is useful as a dispersion stabilizer for the production of polymer fine particles.
  • a starting point for the polymerization of the polymer fine particles that can be dissolved in the polymerization solvent with a uniform number average molecular weight is provided, and in the polymerization solvent.
  • it can be easily manufactured.
  • the molecular weight of the polymer was measured by gel permeation chromatography (GPC). That is, a polystyrene-equivalent number average molecular weight (Mn) and a weight average molecular weight (Mw) were obtained by THF-based GPC. Moreover, the molecular weight distribution (Mw / Mn) was calculated from the obtained values.
  • GPC gel permeation chromatography
  • Methylbutyronitrile (manufactured by Nippon Finechem Co., Ltd., trade name "ABN-E”: hereinafter also referred to as “ABN-E”) 0.014 parts, styrene (hereinafter also referred to as "St") 38 parts, N -62 parts of phenylmaleimide (hereinafter, also referred to as "PhMI”) and 222 parts of acetonitrile were charged, sufficiently degassed by nitrogen bubbling, and polymerization was started in a constant temperature bath at 70 ° C. After 4 hours, the reaction was stopped by cooling to room temperature.
  • the reaction rates of the obtained polymer 1 were St75% and PhMI75%.
  • the molecular weight of the polymer 1 was Mn10,200, Mw15,300, and Mw / Mn was 1.51.
  • St and PhMI correspond to the first monomer.
  • the composition, molecular weight distribution, etc. of the polymer are shown in Table 1 (the same applies hereinafter).
  • the reaction rates of the polymer 2 were St73% and AN72%.
  • the molecular weight of the polymer 2 was Mn11,900, Mw15,500, and Mw / Mn was 1.30.
  • St and AN correspond to the first monomer.
  • the reaction rate of the obtained polymer 3 was St 71% and maleic anhydride 71%.
  • the molecular weight of the polymer 3 was Mn13,800, Mw22,200, and Mw / Mn was 1.61.
  • St and maleic anhydride correspond to the first monomer.
  • the reaction rates of the polymer 4 were St74% and PhMI74%.
  • the molecular weight of the polymer 4 was Mn13,100, Mw31,100, and Mw / Mn was 2.37.
  • St and PhMI correspond to the first monomer.
  • Polymer 5 P (St / AN) -b-PAA
  • 70 parts of polymer 2 0.019 parts of ABN-E, 100 parts of acrylic acid (hereinafter, also referred to as "AA") and 255 parts of acetonitrile in a 1 L flask equipped with a stirrer, a thermometer, a reflux condenser and a nitrogen introduction tube.
  • AA acrylic acid
  • the part was charged, sufficiently degassed by nitrogen bubbling, and polymerization was started in a constant temperature bath at 70 ° C. After 4 hours, the reaction was stopped by cooling to room temperature.
  • the above polymerization solution was reprecipitated and purified from hexane and vacuum dried to obtain a polymer 5.
  • the reaction rate of AA was 74%.
  • the molecular weight of the polymer 5 after methyl esterification was Mn24,800, Mw35,500, and Mw / Mn was 1.43.
  • St and AN correspond to the first monomer.
  • Example 1 ⁇ Production example of polymer fine particles> (Example 1)
  • polymer fine particles were produced using the polymer 1.
  • 567 parts of acetonitrile, 2.20 parts of ion-exchanged water, 100.0 parts of AA, 0.90 parts of trimethylolpropane diallyl ether (manufactured by Daiso, trade name "Neoallyl T-20”) 1 part of polymer 1 in the reactor.
  • 0.0 parts and 1.0 mol% of triethylamine with respect to the above AA were charged.
  • the internal temperature was maintained at 65 ° C., and 12 hours after the reaction start point, the reaction rate of AA was 97%, and a reaction solution of a slurry-like polymer in which particles were dispersed in a medium was obtained.
  • the obtained reaction solution was centrifuged to settle the polymer fine particles, and then the supernatant was removed. Then, after redispersing the precipitate in acetonitrile having the same mass as the polymerization reaction solution, the washing operation of precipitating the polymer fine particles by centrifugation to remove the supernatant was repeated twice.
  • the precipitate was collected and dried under reduced pressure at 80 ° C. for 3 hours to remove volatile matter, thereby obtaining the polymer fine particles described in Example 1.
  • Example 2 Comparative Examples 1 and 2
  • Example 2 Comparative Examples 1 and 2
  • the same operation as in Example 1 was carried out except that the preparation was changed as shown in Table 2, and polymer fine particles were obtained.
  • AA HEA acrylate: 2-Hydroxyethyl acrylate
  • T-20 Trimethylolpropane diallyl ether, manufactured by Daiso Corporation, trade name "Neoallyl T-20”
  • TEA Triethylamine AcN: Acetonitrile
  • V-65 2,2'-azobis (2,4-dimethylvaleronitrile), manufactured by Wako Pure Chemical Industries, Ltd., trade name "V-65”
  • polymers 1 to 3 and 5 having active units in living radical polymerization by an exchange chain mechanism obtained by using RAFT polymerization, and iodine transfer polymerization were used.
  • the polymerization stability of the polymer fine particles at the time of polymerization was excellent, and as a result, the number of coarse particles was small.
  • the average particle size of the polymer fine particles was 0.20 ⁇ m or less.
  • Comparative Example 1 in which such a dispersion stabilizer was not used and Comparative Example 2 in which a polymer having no living polymerization activity was used as the dispersion stabilizer were inferior in polymerization stability and therefore had a large number of coarse particles.
  • the average particle size of the obtained polymer fine particles was more than 0.50 ⁇ m.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Provided is a production method by which polymer fine particles having excellent polymerization stability and a small particle diameter (for example, the average particle diameter is at most 0.20 μm) can be obtained. The production method comprises a step for producing polymer fine particles by polymerizing one or more second vinyl monomers, in the presence of a first polymer having a polymer chain of one or more first vinyl monomers and a unit of living radical polymerization activity, through dispersion polymerization using living radical polymerization based on the living radical polymerization activity. The unit of living radical polymerization activity can be used as an active unit in living radical polymerization through an exchange chain mechanism or a bond-dissociation mechanism.

Description

重合体微粒子の製造方法及び分散安定剤Method for producing polymer fine particles and dispersion stabilizer
 本明細書は、重合体微粒子の製造方法等に関する。 This specification relates to a method for producing polymer fine particles and the like.
(関連出願の相互参照) 本出願は、2019年11月15日に出願された日本国特許出願である特願2019-207465の関連出願であり、この出願に基づく優先権を主張するものであり、この出願に記載された全ての内容を援用するものである。 (Cross-reference to related applications) This application is a related application of Japanese Patent Application No. 2019-207465 filed on November 15, 2019, and claims priority based on this application. , All the contents described in this application are incorporated.
 重合体微粒子は、導電性微粒子等の電気・電子材料、スペーサー(LCDセル用、タッチパネルシール部用など)、樹脂フィルムの改質剤、増粘剤(塗料用、化粧品用など)等、幅広い分野で用いられている。従来から用いられているミクロンサイズ以下の重合体微粒子の製造方法としては、乳化重合法、懸濁重合法、沈殿重合法、及び分散重合法が挙げられる。 Polymer fine particles are used in a wide range of fields such as electrical and electronic materials such as conductive fine particles, spacers (for LCD cells, touch panel seals, etc.), resin film modifiers, thickeners (for paints, cosmetics, etc.), etc. It is used in. Conventionally used methods for producing micron-sized or smaller polymer fine particles include an emulsion polymerization method, a suspension polymerization method, a precipitation polymerization method, and a dispersion polymerization method.
 乳化重合法は、溶媒と、溶媒に難溶な重合性単量体と乳化剤(界面活性剤)を混合し、溶媒に可溶な重合開始剤を用いて重合を行い、ナノオーダーの重合体微粒子を得る手法であるが、低分子量の乳化剤を多量使用する必要があるため、最終製品への悪影響(濁りや耐水性等)が懸念される。また、懸濁重合法は、分散安定剤の存在下、水中で重合性単量体を機械的に攪拌することで液滴を形成させ、適当な油溶性重合開始剤を用いて重合を行い、重合体粒子を得る手法である。沈殿重合法は、重合性単量体は溶媒に溶解するが、得られる重合体は溶媒に不溶で析出する系で重合体粒子を得る手法である。ここで、懸濁重合法では粒子径が数10μm以上の重合体粒子、沈殿重合法では数μm~数100μmの重合体粒子が一般的に得られるが、これらの方法はいずれも、より小さい粒子径が要求される用途においては適用できない重合法である。 In the emulsion polymerization method, a solvent, a polymerizable monomer sparingly soluble in the solvent, and an emulsifier (surfactant) are mixed, and polymerization is carried out using a polymerization initiator soluble in the solvent to obtain nano-order polymer fine particles. However, since it is necessary to use a large amount of a low-molecular-weight emulsifier, there is a concern that the final product may be adversely affected (turbidity, water resistance, etc.). In the suspension polymerization method, droplets are formed by mechanically stirring the polymerizable monomer in water in the presence of a dispersion stabilizer, and polymerization is carried out using an appropriate oil-soluble polymerization initiator. This is a method for obtaining polymer particles. The precipitation polymerization method is a method for obtaining polymer particles in a system in which a polymerizable monomer is dissolved in a solvent, but the obtained polymer is insoluble in a solvent and precipitates. Here, the suspension polymerization method generally obtains polymer particles having a particle size of several tens of μm or more, and the precipitation polymerization method generally obtains polymer particles having a particle size of several μm to several hundred μm, but all of these methods are smaller particles. This is a polymerization method that cannot be applied to applications that require a diameter.
 これらに対し、分散重合法は、沈殿重合を分散安定剤存在下にて行う方法であり、重合性単量体、溶媒、分散安定剤の種類・添加量により、生成微粒子の粒子径制御が可能であり、またその微粒子は狭い粒子径分布を持つという特徴を有している。 On the other hand, the dispersion polymerization method is a method in which precipitation polymerization is carried out in the presence of a dispersion stabilizer, and the particle size of the produced fine particles can be controlled by the type and amount of the polymerizable monomer, solvent, and dispersion stabilizer. Moreover, the fine particles are characterized by having a narrow particle size distribution.
 分散重合による重合体微粒子の製造方法としては、種々の方法が知られている。特許文献1には、アクリルアミド及びその誘導体、p-スチレンスルホン酸及びその塩、(メタ)アクリル酸及びそれらの塩等を、これらの単量体の単独重合体若しくはこれらの単量体の共重合体、あるいは他の単量体との共重合体を微粒子状に形成する方法として、重合の溶媒としてエタノール等の水混和性有機溶媒を使用し、かつ重合の際にあらかじめ水混和性有機溶媒又は水との混和溶媒に可溶性の重合体を存在させておき、上記単量体類を重合することで親水性の重合体微粒子を製造する方法が開示されている。実施例において具体的に開示されている重合体微粒子の平均粒子径の範囲は、0.34~2.40μmである。 Various methods are known as methods for producing polymer fine particles by dispersion polymerization. Patent Document 1 describes acrylamide and its derivatives, p-styrene sulfonic acid and its salts, (meth) acrylic acid and their salts, etc. as homopolymers of these monomers or the co-weight of these monomers. As a method of forming a copolymer with a coalescence or a copolymer with another monomer into fine particles, a water-miscible organic solvent such as ethanol is used as a polymerization solvent, and a water-miscible organic solvent or a water-miscible organic solvent is used in advance at the time of polymerization. A method of producing hydrophilic polymer fine particles by allowing a soluble polymer to exist in a miscible solvent with water and polymerizing the above-mentioned monomers is disclosed. The range of the average particle size of the polymer fine particles specifically disclosed in the examples is 0.34 to 2.40 μm.
 特許文献2には、水と水混和性有機溶媒の混合溶媒中で、アクリルアミド若しくはアクリル酸中和物の各々単独若しくは混合物の重合を、重量平均分子量1万以上のポリビニルピロリドン若しくはポリビニルピロリドン共重合体の存在下で行うことにより、重合体微粒子を製造する方法が開示されており、実施例において具体的に開示されている重合体微粒子の平均粒子径の範囲は、0.7~1.30μmである。 Patent Document 2 describes the polymerization of acrylamide or acrylic acid neutralized products alone or as a mixture in a mixed solvent of water and a water-miscible organic solvent, using polyvinylpyrrolidone or a polyvinylpyrrolidone copolymer having a weight average molecular weight of 10,000 or more. A method for producing polymer fine particles by performing in the presence of the above is disclosed, and the range of the average particle size of the polymer fine particles specifically disclosed in the examples is 0.7 to 1.30 μm. is there.
 特許文献3には、アルコール性媒体中において、特定の単量体を重合して得られる重合体(分散安定剤)の存在下で、該アルコール性媒体には可溶であるが、生成する重合体は該アルコール媒体に不溶又はほとんど溶解しない1種又は2種以上のビニル系モノマー類の重合を行うことにより単分散性の重合体微粒子を製造する方法が開示されており、実施例において具体的に開示されている重合体微粒子の平均粒子径の範囲は、0.19~9.0μmである。より具体的には、この分散重合法では、ビニル系単量体としてアクリルアミドを用いた場合には、平均粒子径0.19μm及び0.20μmの重合体微粒子を得られること、及び、ビニル系単量体としてアクリル酸アンモニウムを用いた場合には、平均粒子径0.21μmの重合体微粒子が得られることが開示されている。 Patent Document 3 states that in the presence of a polymer (dispersion stabilizer) obtained by polymerizing a specific monomer in an alcoholic medium, the weight is soluble in the alcoholic medium but is produced. A method for producing monodisperse polymer fine particles by polymerizing one or more kinds of vinyl-based monomers that are insoluble or hardly soluble in the alcohol medium is disclosed, and the coalescence is specifically described in Examples. The range of the average particle size of the polymer fine particles disclosed in the above is 0.19 to 9.0 μm. More specifically, in this dispersion polymerization method, when acrylamide is used as the vinyl-based monomer, polymer fine particles having an average particle diameter of 0.19 μm and 0.20 μm can be obtained, and the vinyl-based simple particle is used. It is disclosed that when ammonium acrylate is used as the metric, polymer fine particles having an average particle diameter of 0.21 μm can be obtained.
 特許文献4には、2個以上の不飽和二重結合を有する単量体及び親水性官能基又は活性水素基を有する不飽和単量体を含む原料単量体を、原料単量体は溶解するが生成する重合体は溶解しない媒体中で重合開始剤を用いて溶液重合、好ましくは分散重合又はこれに準ずる沈殿重合を行うことで、シード粒子を用いなくとも、粒子径分布が狭く、比較的均一な粒子径を有する架橋型重合体微粒子が効率的に得られること、さらにこの際、反応系中に、炭素原子5個以上、かつ、融点80℃以下の有機化合物を添加することで、粒子の分散性が向上し、粒子径分布をより均一に制制御できる上、単分散性の重合体微粒子を効率よく得ることができることが開示されている。実施例において具体的に開示されている重合体微粒子の平均粒子径の範囲は、2.5μm~5.2μmである。 In Patent Document 4, a raw material monomer containing a monomer having two or more unsaturated double bonds and an unsaturated monomer having a hydrophilic functional group or an active hydrogen group is dissolved in the raw material monomer. However, the produced polymer is subjected to solution polymerization, preferably dispersion polymerization or similar precipitation polymerization using a polymerization initiator in an insoluble medium, so that the particle size distribution is narrow even without using seed particles, and comparison is made. By efficiently obtaining crosslinked polymer fine particles having a uniformly uniform particle size, and at this time, by adding an organic compound having 5 or more carbon atoms and a melting point of 80 ° C. or less to the reaction system, It is disclosed that the dispersibility of particles is improved, the particle size distribution can be controlled more uniformly, and monodisperse polymer fine particles can be efficiently obtained. The range of the average particle size of the polymer fine particles specifically disclosed in the examples is 2.5 μm to 5.2 μm.
特開平04-132705号公報Japanese Unexamined Patent Publication No. 04-132705 特開平04-279604号公報Japanese Unexamined Patent Publication No. 04-279604 特開平09-316106号公報Japanese Unexamined Patent Publication No. 09-316106 特開2006-282772号公報Japanese Unexamined Patent Publication No. 2006-282772
 しかしながら、特許文献1、2及び4記載の分散重合法では、小粒子径(例えば、0.20μm以下)の重合体微粒子を製造することができなかった。また、特許文献3によれば、アクリル酸アンモニウムを単量体として用いた場合には、粒子径は0.21μmであった。 However, the dispersion polymerization methods described in Patent Documents 1, 2 and 4 could not produce polymer fine particles having a small particle size (for example, 0.20 μm or less). Further, according to Patent Document 3, when ammonium acrylate was used as a monomer, the particle size was 0.21 μm.
 また、本発明者らによれば、特許文献3に具体的に開示されるビニル重合体以外のその他のビニル系単量体を用いた場合には、重合反応中に微粒子の分散性が低下して凝集してしまうなど、重合安定性が問題となることがあった。また、ビニル系単量体の選択自由度に問題があった。 Further, according to the present inventors, when a vinyl-based monomer other than the vinyl polymer specifically disclosed in Patent Document 3 is used, the dispersibility of the fine particles is lowered during the polymerization reaction. There was a problem of polymerization stability, such as agglomeration. In addition, there is a problem in the degree of freedom in selecting the vinyl-based monomer.
 本明細書は、重合安定性に優れるとともに、小粒子径(例えば、平均粒子径0.20μm以下)の重合体微粒子を得ることができる製造方法及びそのための分散安定剤を提供する。 The present specification provides a production method capable of obtaining polymer fine particles having a small particle size (for example, an average particle size of 0.20 μm or less) while having excellent polymerization stability, and a dispersion stabilizer therefor.
 本発明者らは、例えば、分散安定剤として用いられる、重合性基を有する重合体に着目した。そして、特定のリビングラジカル重合活性単位を有する重合体を分散安定剤として利用し、前記特定のリビングラジカル重合活性を利用したリビングラジカル重合を用いてかつ分散重合させることで、重合工程中における二次凝集等を抑制しつつ、安定的に小粒子径の重合体微粒子を得られるという知見を得た。本明細書によれば、かかる知見に基づき以下の手段が提供される。 The present inventors have focused on a polymer having a polymerizable group, which is used as a dispersion stabilizer, for example. Then, a polymer having a specific living radical polymerization activity unit is used as a dispersion stabilizer, and by using living radical polymerization utilizing the specific living radical polymerization activity and performing dispersion polymerization, secondary in the polymerization step is performed. It was found that polymer fine particles having a small particle size can be stably obtained while suppressing aggregation and the like. According to the present specification, the following means are provided based on such findings.
[1]1種又は2種以上の第1のビニル系単量体の重合鎖とリビングラジカル重合活性単位を有する第1の重合体の存在下、1種又は2種以上の第2のビニル系単量体を、前記リビングラジカル重合活性に基づくリビングラジカル重合を用いて分散重合により重合させることにより、重合体微粒子を製造する工程、
を備え、
 前記リビングラジカル重合活性単位は、交換連鎖機構又は結合-解離機構によるリビングラジカル重合における活性単位である、方法。
[2]前記リビングラジカル重合活性単位は、前記交換連鎖機構によるリビングラジカル重合である、[1]に記載の方法。
[3]前記リビングラジカル重合活性単位は、可逆的付加-解裂連鎖移動重合法又はヨウ素移動重合法によるリビングラジカル重合における活性単位である、[1]又は[2]に記載の方法。
[4]前記第1の重合体の分子量分布が2.0以下であることを特徴とする、[1]~[3]のいずれかに記載の方法。
[5]前記重合体微粒子の製造工程は、前記1種又は2種以上の第2のビニル系単量体100質量部に対し、前記第1の重合体を0.3質量部以上50質量部以下用いる、[1]~[4]のいずれかに記載の方法。
[6]前記重合体微粒子の製造工程は、前記1種又は2種以上の第2のビニル系単量体100質量部に対し、前記第1の重合体を0.3質量部以上20質量部以下用いる、[5]に記載の方法。
[7]前記1種又は2種以上の第2のビニル系単量体はアクリル酸又はその塩を含み、重合体微粒子の製造工程における重合溶媒はアセトニトリルを含む、[1]~[6]のいずれかに記載の方法。
[8]前記1種又は2種以上の第1のビニル系単量体は、スチレン類、(メタ)アクリロニトリル化合物、マレイミド化合物、不飽和酸無水物及び不飽和カルボン酸化合物からなる群より選択されるスチレン類を含む2種以上である、[7]に記載の方法。
[9]前記1種又は2種以上の第2のビニル系単量体は、その総質量の50質量%以上100質量%以下のアクリル酸を含む、[1]~[8]のいずれかに記載の方法。
[10]前記1種又は2種以上の第1のビニル系単量体は、その総質量の20質量%以上のスチレン類を含む、[9]に記載の方法。
[11]前記1種又は2種以上の第1のビニル系単量体は、その総質量の20質量%以上のスチレン類を含み、前記1種又は2種以上の第2のビニル系単量体は、その総質量の50質量%以上100質量%以下のアクリル酸又はその塩を含み、
 前記第1の重合体は、可逆的付加-開裂連鎖移動重合によるリビングラジカル重合活性単位を備えており、
 前記1種又は2種以上の第2のビニル系単量体100質量部に対し、前記第1の重合体を0.3質量部以上20質量部以下用いる、[1]に記載の方法。
[12]1種又は2種以上の第1のビニル系単量体の重合鎖と、前記重合鎖の少なくとも一部に備えられるリビング重合活性単位と、を備える重合体を含む、重合体微粒子の製造に用いるための分散安定剤。
[1] In the presence of a polymer chain of one or more first vinyl-based monomers and a first polymer having a living radical polymerization active unit, one or more second vinyl-based monomers A step of producing polymer fine particles by polymerizing a monomer by dispersion polymerization using living radical polymerization based on the living radical polymerization activity.
With
The method, wherein the living radical polymerization active unit is an active unit in living radical polymerization by an exchange chain mechanism or a bond-dissociation mechanism.
[2] The method according to [1], wherein the living radical polymerization active unit is living radical polymerization by the exchange chain mechanism.
[3] The method according to [1] or [2], wherein the living radical polymerization active unit is an active unit in living radical polymerization by a reversible addition-cracking chain transfer polymerization method or an iodine transfer polymerization method.
[4] The method according to any one of [1] to [3], wherein the first polymer has a molecular weight distribution of 2.0 or less.
[5] In the step of producing the polymer fine particles, 0.3 parts by mass or more and 50 parts by mass of the first polymer are used with respect to 100 parts by mass of the second vinyl-based monomer of one or more kinds. The method according to any one of [1] to [4], which is used below.
[6] In the step of producing the polymer fine particles, 0.3 parts by mass or more and 20 parts by mass of the first polymer are used with respect to 100 parts by mass of the second vinyl-based monomer of one or more kinds. The method according to [5], which is used below.
[7] The second vinyl-based monomer of one kind or two or more kinds contains acrylic acid or a salt thereof, and the polymerization solvent in the step of producing the polymer fine particles contains acetonitrile, according to [1] to [6]. The method described in either.
[8] The one or more first vinyl-based monomers are selected from the group consisting of styrenes, (meth) acrylonitrile compounds, maleimide compounds, unsaturated acid anhydrides and unsaturated carboxylic acid compounds. The method according to [7], wherein there are two or more kinds of compounds containing styrenes.
[9] The second vinyl-based monomer of one or more kinds is one of [1] to [8] containing acrylic acid of 50% by mass or more and 100% by mass or less of the total mass thereof. The method described.
[10] The method according to [9], wherein the one or more first vinyl-based monomers contain 20% by mass or more of styrenes based on the total mass thereof.
[11] The one or more first vinyl-based monomers contain 20% by mass or more of styrenes based on the total mass of the first vinyl-based monomer, and the one or more second vinyl-based monomers. The body contains acrylic acid or a salt thereof in an amount of 50% by mass or more and 100% by mass or less of the total mass thereof.
The first polymer comprises a living radical polymerization active unit by reversible addition-cleavage chain transfer polymerization.
The method according to [1], wherein 0.3 parts by mass or more and 20 parts by mass or less of the first polymer is used with respect to 100 parts by mass of the first type or two or more kinds of second vinyl-based monomers.
[12] A polymer fine particle comprising a polymer comprising a polymer chain of one or more first vinyl-based monomers and a living polymerization active unit provided in at least a part of the polymer chain. Dispersion stabilizer for use in manufacturing.
 本明細書の開示は、重合体微粒子の製造方法及び分散安定剤等に関する。本明細書に開示される重合体微粒子の製造方法によれば、第1のビニル系単量体に由来する単位を含む重合鎖(以下、第1の重合鎖ともいう。)とリビング重合活性単位とを有する第1の重合体の存在下で、第2のビニル系単量体を重合させることで、第1の重合鎖を基点として第2のビニル系単量体が重合されてその重合鎖(以下、第2の重合鎖ともいう。)が、リビング重合活性単位から伸長される。第2の重合鎖の伸長により重合体微粒子の核が形成され、その後、第2の重合鎖の伸長と第2の重合鎖間の相互作用により粒子が形成され、粒子の粒子径が増大する。 The disclosure of the present specification relates to a method for producing polymer fine particles, a dispersion stabilizer, and the like. According to the method for producing polymer fine particles disclosed in the present specification, a polymer chain containing a unit derived from a first vinyl-based monomer (hereinafter, also referred to as a first polymer chain) and a living polymerization active unit. By polymerizing the second vinyl-based monomer in the presence of the first polymer having and, the second vinyl-based monomer is polymerized with the first polymerized chain as a base point, and the polymerized chain is polymerized. (Hereinafter, also referred to as a second polymerized chain) is extended from the living polymerization active unit. The extension of the second polymerized chain forms nuclei of the polymer fine particles, and then the extension of the second polymerized chain and the interaction between the second polymerized chains form particles, and the particle size of the particles increases.
 第1の重合体ないし第2の重合鎖は、交換連鎖機構又は結合-解離機構によるリビングラジカル重合における活性単位に基づくリビングラジカル重合により重合されるため、概して、分子量分布が狭く、重合体微粒子の成長に際し、重合体微粒子の分散を安定化するように作用する。また、第1の重合体に由来する上記リビング重合活性により、第1の重合鎖と第2の重合鎖とを備え、これらの重合鎖及び全体の重合鎖の分子量の均一性に優れる重合体微粒子が得られる。 Since the first polymer or the second polymer chain is polymerized by the living radical polymerization based on the active unit in the living radical polymerization by the exchange chain mechanism or the bond-dissociation mechanism, the molecular weight distribution is generally narrow, and the polymer fine particles have a narrow molecular weight distribution. During growth, it acts to stabilize the dispersion of the polymer fine particles. Further, due to the living polymerization activity derived from the first polymer, the polymer fine particles are provided with a first polymer chain and a second polymer chain, and the molecular weight of these polymer chains and the entire polymer chain is excellent. Is obtained.
 第1の重合鎖と第2の重合鎖の種類の選択等により、第1の重合体の第1の重合鎖を重合体微粒子の表層に有し、第2の重合鎖をコアとして備える重合体微粒子などを製造することができる。 A polymer having the first polymer chain of the first polymer on the surface layer of the polymer fine particles and the second polymer chain as a core by selecting the type of the first polymer chain and the second polymer chain. Fine particles and the like can be produced.
 重合体微粒子の製造工程において、重合開始時には単量体、開始剤等がすべて媒体に溶解した均一溶液であり、重合の開始により生成した重合体が析出、凝集して粒子が形成されて不均一溶液になるという分散重合法に、上記方法を適用することができる。このとき、第1の重合鎖が、重合体微粒子の表層側に配置され、第2の重合鎖が重合体微粒子の内側に配置されるようにこれらの重合鎖が組織化されて、重合体微粒子が生成、成長される。第1の重合体ないし第1の重合鎖が優れた分散安定剤として機能して、重合体微粒子製造工程において、重合体微粒子の分散安定性が確保されるため、平均粒子径が0.2μm以下の重合体微粒子であっても容易に得ることができる。 In the process of producing the polymer fine particles, the monomer, the initiator, etc. are all dissolved in the medium at the start of the polymerization, and the polymer produced by the start of the polymerization is precipitated and aggregated to form particles, which are non-uniform. The above method can be applied to the dispersion polymerization method of forming a solution. At this time, these polymer chains are organized so that the first polymer chain is arranged on the surface layer side of the polymer fine particles and the second polymer chain is arranged inside the polymer fine particles, so that the polymer fine particles are arranged. Is generated and grown. Since the first polymer or the first polymer chain functions as an excellent dispersion stabilizer and the dispersion stability of the polymer fine particles is ensured in the polymer fine particle production step, the average particle size is 0.2 μm or less. Even the polymer fine particles of the above can be easily obtained.
 以下、本開示の代表的かつ非限定的な具体例について、詳細に説明する。この詳細な説明は、本開示の好ましい例を実施するための詳細を当業者に示すことを単純に意図しており、本開示の範囲を限定することを意図したものではない。また、以下に開示される追加的な特徴ならびに発明は、さらに改善された「重合体微粒子の製造方法及び分散安定剤」を提供するために、他の特徴や発明とは別に、又は共に用いることができる。 Hereinafter, typical and non-limiting specific examples of the present disclosure will be described in detail. This detailed description is intended to provide those skilled in the art with details for implementing the preferred examples of the present disclosure and is not intended to limit the scope of the present disclosure. In addition, the additional features and inventions disclosed below may be used separately or in combination with other features and inventions in order to provide a further improved "method for producing polymer fine particles and dispersion stabilizer". Can be done.
 また、以下の詳細な説明で開示される特徴や工程の組み合わせは、最も広い意味において本開示を実施する際に必須のものではなく、特に本開示の代表的な具体例を説明するためにのみ記載されるものである。さらに、上記及び下記の代表的な具体例の様々な特徴、ならびに、独立及び従属クレームに記載されるものの様々な特徴は、本開示の追加的かつ有用な実施形態を提供するにあたって、ここに記載される具体例のとおりに、あるいは列挙された順番のとおりに組合せなければならないものではない。 In addition, the combination of features and processes disclosed in the following detailed description is not essential in carrying out the present disclosure in the broadest sense, and is particularly for explaining typical specific examples of the present disclosure. It is to be described. In addition, the various features of the above and below representative examples, as well as the various features of those described in the independent and dependent claims, are described herein in providing additional and useful embodiments of the present disclosure. It does not have to be combined according to the specific examples given or in the order listed.
 本明細書及び/又はクレームに記載された全ての特徴は、実施例及び/又はクレームに記載された特徴の構成とは別に、出願当初の開示ならびにクレームされた特定事項に対する限定として、個別に、かつ互いに独立して開示されることを意図するものである。さらに、全ての数値範囲及びグループ又は集団に関する記載は、出願当初の開示ならびにクレームされた特定事項に対する限定として、それらの中間の構成を開示する意図を持ってなされている。 All features described herein and / or claims are, separately, as a limitation to the disclosure at the time of filing and the specific matters claimed, apart from the composition of the features described in the examples and / or claims. And it is intended to be disclosed independently of each other. In addition, all numerical ranges and statements relating to groups or groups are made with the intention of disclosing their intermediate composition as a limitation to the disclosure at the time of filing and the specific matters claimed.
 以下、本明細書に開示される各種実施形態を詳細に説明する。尚、本明細書において、「(メタ)アクリル」とは、アクリル及び/又はメタクリルを意味し、「(メタ)アクリレート」とは、アクリレート及び/又はメタクリレートを意味する。また、「(メタ)アクリロイル基」とは、アクリロイル基及び/又はメタクリロイル基を意味する。 Hereinafter, various embodiments disclosed in the present specification will be described in detail. In the present specification, "(meth) acrylic" means acrylic and / or methacrylic, and "(meth) acrylate" means acrylate and / or methacrylate. Further, the “(meth) acryloyl group” means an acryloyl group and / or a methacryloyl group.
(重合体微粒子の製造方法)
 本明細書に開示される重合体微粒子の製造方法(以下、単に,本製造方法ともいう。)は、1種又は2種以上の第1のビニル系単量体(以下、単に、第1の単量体ともいう。)に由来する単量体単位を含む第1の重合鎖とリビング重合活性単位を有する第1の重合体の存在下、1種又は2種以上の第2のビニル系単量体(以下、単に、第2の単量体ともいう。)を重合して重合体微粒子を製造する工程を備えることができる。
(Method for producing polymer fine particles)
The method for producing polymer fine particles disclosed in the present specification (hereinafter, also simply referred to as the present production method) is one or more first vinyl-based monomers (hereinafter, simply referred to as the first method). In the presence of a first polymer chain containing a monomer unit derived from (also referred to as a monomer) and a first polymer having a living polymerization active unit, one or more second vinyl-based single particles. A step of polymerizing a dimer (hereinafter, also simply referred to as a second monomer) to produce polymer fine particles can be provided.
(第1の重合体) 本方法においては、第1の重合体を用いることができる。第1の重合体は、1種又は2種以上の第1の単量体に由来する単位を含む第1の重合鎖とリビング重合活性単位とを備えることができる。第1の単量体としては、得ようとする重合体微粒子の機能や用途によっても異なり、特に限定することなく、種々のビニル系単量体を用いることができる。 (First polymer) In this method, the first polymer can be used. The first polymer can include a first polymer chain containing units derived from one or more first monomers and a living polymerization active unit. As the first monomer, various vinyl-based monomers can be used without particular limitation, which varies depending on the function and use of the polymer fine particles to be obtained.
(第1の重合鎖) 第1の重合鎖は第1の単量体を含む単量体組成物を重合して得られる。第1の単量体としては、例えば、スチレン類、(メタ)アクリロニトリル化合物、マレイミド化合物、不飽和酸無水物及び不飽和カルボン酸化合物が挙げられる。これらのうち1種又は2種以上を組み合わせて用いることができる。 (First Polymerized Chain) The first polymerized chain is obtained by polymerizing a monomer composition containing the first monomer. Examples of the first monomer include styrenes, (meth) acrylonitrile compounds, maleimide compounds, unsaturated acid anhydrides and unsaturated carboxylic acid compounds. One or a combination of two or more of these can be used.
 スチレン類としては、スチレン及びその誘導体が含まれる。具体的な化合物としては、スチレン、α-メチルスチレン、β-メチルスチレン、ビニルキシレン、ビニルナフタレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、o-エチルスチレン、m-エチルスチレン、p-エチルスチレン、p-n-ブチルスチレン、p-イソブチルスチレン、p-t-ブチルスチレン、o-メトキシスチレン、m-メトキシスチレン、p-メトキシスチレン、o-クロロメチルスチレン、p-クロロメチルスチレン、o-クロロスチレン、p-クロロスチレン、o-ヒドロキシスチレン、m-ヒドロキシスチレン、p-ヒドロキシスチレン、ジビニルベンゼン等が例示され、これらの内の1種又は2種以上を用いることができる。これらのなかでも、重合性の観点から、スチレン、o-メトキシスチレン、m-メトキシスチレン、p-メトキシスチレン、o-ヒドロキシスチレン、m-ヒドロキシスチレン、p-ヒドロキシスチレンが好ましい。 Styrenes include styrene and its derivatives. Specific compounds include styrene, α-methylstyrene, β-methylstyrene, vinylxylene, vinylnaphthalene, o-methylstyrene, m-methylstyrene, p-methylstyrene, o-ethylstyrene, m-ethylstyrene, p-ethylstyrene, pn-butylstyrene, p-isobutylstyrene, pt-butylstyrene, o-methoxystyrene, m-methoxystyrene, p-methoxystyrene, o-chloromethylstyrene, p-chloromethylstyrene , O-Chlorostyrene, p-chlorostyrene, o-hydroxystyrene, m-hydroxystyrene, p-hydroxystyrene, divinylbenzene and the like are exemplified, and one or more of these can be used. Among these, styrene, o-methoxystyrene, m-methoxystyrene, p-methoxystyrene, o-hydroxystyrene, m-hydroxystyrene, and p-hydroxystyrene are preferable from the viewpoint of polymerizable property.
 (メタ)アクリロニトリル化合物としては、(メタ)アクリロニトリル、α-メチルアクリロニトリル等が挙げられる。例えば、アクリロニトリルが用いられる。 Examples of the (meth) acrylonitrile compound include (meth) acrylonitrile and α-methylacrylonitrile. For example, acrylonitrile is used.
 マレイミド化合物としては、マレイミド及びN-置換マレイミド化合物が含まれる。N-置換マレイミド化合物の具体例としては、N-メチルマレイミド、N-エチルマレイミド、N-n-プロピルマレイミド、N-イソプロピルマレイミド、N-n-ブチルマレイミド、N-イソブチルマレイミド、N-tert-ブチルマレイミド、N-ペンチルマレイミド、N-ヘキシルマレイミド、N-ヘプチルマレイミド、N-オクチルマレイミド、N-ラウリルマレイミド、N-ステアリルマレイミド等のN-アルキル置換マレイミド化合物;N-シクロペンチルマレイミド、N-シクロヘキシルマレイミド等のN-シクロアルキル置換マレイミド化合物;N-フェニルマレイミド、N-(4-ヒドロキシフェニル)マレイミド、N-(4-アセチルフェニル)マレイミド、N-(4-メトキシフェニル)マレイミド、N-(4-エトキシフェニル)マレイミド、N-(4-クロロフェニル)マレイミド、N-(4-ブロモフェニル)マレイミド等のN-アリール置換マレイミド化合物、N-ベンジルマレイミド等のN-アラルキル置換マレイミド化合物などが挙げられ、これらの内の1種又は2種以上を用いることができる。例えば、N-フェニルマレイミドが用いられる。 Maleimide compounds include maleimide and N-substituted maleimide compounds. Specific examples of the N-substituted maleimide compound include N-methylmaleimide, N-ethylmaleimide, Nn-propylmaleimide, N-isopropylmaleimide, Nn-butylmaleimide, N-isobutylmaleimide, and N-tert-butyl. N-alkyl-substituted maleimide compounds such as maleimide, N-pentylmaleimide, N-hexylmaleimide, N-heptylmaleimide, N-octylmaleimide, N-laurylmaleimide, N-stearylmaleimide; N-cyclopentylmaleimide, N-cyclohexylmaleimide, etc. N-Cycloalkyl-substituted maleimide compounds; N-phenylmaleimide, N- (4-hydroxyphenyl) maleimide, N- (4-acetylphenyl) maleimide, N- (4-methoxyphenyl) maleimide, N- (4-ethoxy) Examples thereof include N-aryl-substituted maleimide compounds such as phenyl) maleimide, N- (4-chlorophenyl) maleimide, and N- (4-bromophenyl) maleimide, and N-aralkyl-substituted maleimide compounds such as N-benzylmaleimide. One or two or more of them can be used. For example, N-phenylmaleimide is used.
 また、不飽和酸無水物としては、無水マレイン酸、無水イタコン酸、無水シトラコン酸等が挙げられ、これらのうち1種又は2種以上を用いることができる。 Further, examples of the unsaturated acid anhydride include maleic anhydride, itaconic anhydride, citraconic anhydride and the like, and one or more of these can be used.
 不飽和カルボン酸化合物としては、(メタ)アクリル酸、ケイ皮酸、クロトン酸、並びに、マレイン酸、フマル酸、イタコン酸、クロトン酸、シトラコン酸等の不飽和ジカルボン酸及び不飽和ジカルボン酸のモノアルキルエステル等が挙げられ、これのうち、1種又は2種以上を用いることができる。 Examples of unsaturated carboxylic acid compounds include (meth) acrylic acid, silicic acid, crotonic acid, and unsaturated dicarboxylic acids such as maleic acid, fumaric acid, itaconic acid, crotonic acid, and citraconic acid, and unsaturated dicarboxylic acids. Examples thereof include alkyl esters, and one or more of them can be used.
 第1の単量体としては、これらのなかでも、例えば、少なくともスチレン類を含むことが好ましい。スチレン類は、リビング重合が容易で、適度な疎水性と有機溶媒に対する親和性を付与できるからである。第1の重合鎖に疎水性ないし有機溶媒に対する親和性を付与することができる。こうすることで、例えば、極性有機溶媒中での分散重合法により重合体微粒子を製造する場合には、第1の重合体が、重合体微粒子の表層に存在する傾向が生じて、重合体微粒子の分散安定性が向上する。 Among these, the first monomer preferably contains, for example, at least styrenes. This is because styrenes are easy to carry out in the living room and can impart appropriate hydrophobicity and affinity to organic solvents. It is possible to impart hydrophobicity or affinity to an organic solvent to the first polymerized chain. By doing so, for example, when the polymer fine particles are produced by the dispersion polymerization method in a polar organic solvent, the first polymer tends to be present on the surface layer of the polymer fine particles, and the polymer fine particles are produced. Dispersion stability is improved.
 スチレン類は、第1の重合鎖を重合するための第1の単量体(第1の重合鎖の第1の単量体単位)の総質量のうち、例えば、20質量%以上である。20質量%以上であるとリビング重合が容易となり、適度な疎水性と有機溶媒に対する親和性を適切に付与できるからである。また例えば、30質量%以上であり、また例えば、35質量%以上であり、また例えば、40質量%以上であり、また例えば、50質量%以上であり、また例えば、60質量%以上であり、また例えば、65質量%以上であり、また例えば、70質量%以上であり、また例えば、75質量%以上である。また、スチレン類は、前記総質量の100質量%以下であり、また例えば、95質量%以下であり、また例えば、90質量%以下であり、また例えば、85質量%以下であり、また例えば、80質量%以下であり、また例えば、75質量%以下である。スチレン類の前記総質量に対する範囲としては、上記した下限及び上限を適宜組み合わせて設定することができるが、例えば、20質量%以上95質量%以下であり、また例えば、30質量%以上75質量%以下であり、また例えば、35質量%以上85質量%以下である。 Styrene is, for example, 20% by mass or more of the total mass of the first monomer (first monomer unit of the first polymerized chain) for polymerizing the first polymerized chain. This is because if the content is 20% by mass or more, the living polymerization is facilitated, and an appropriate hydrophobicity and an affinity for an organic solvent can be appropriately imparted. Further, for example, it is 30% by mass or more, and for example, 35% by mass or more, and for example, 40% by mass or more, and for example, 50% by mass or more, and for example, 60% by mass or more. Further, for example, it is 65% by mass or more, for example, 70% by mass or more, and for example, 75% by mass or more. Further, the styrenes are 100% by mass or less of the total mass, and are, for example, 95% by mass or less, and are, for example, 90% by mass or less, and are, for example, 85% by mass or less, and are, for example,. It is 80% by mass or less, and for example, 75% by mass or less. The range of the styrenes with respect to the total mass can be set by appropriately combining the above-mentioned lower limit and upper limit, and is, for example, 20% by mass or more and 95% by mass or less, and for example, 30% by mass or more and 75% by mass or more. And, for example, 35% by mass or more and 85% by mass or less.
 (メタ)アクリロニトリル化合物、マレイミド化合物、酸無水物及び不飽和カルボン酸化合物は、それぞれ、単独でも使用できるほか、これら4種のうち1種又は2種以上をスチレン類と組み合わせて用いることが好ましい。これら4種は、いずれも、第1の重合鎖の疎水性又は有機溶媒親和性を維持、調節又は付与することができるからである。なかでも、アクリロニトリルなどの(メタ)アクリロニトリル化合物、N-フェニルマレイミドなどのマレイミド化合物及び酸無水物のうちの1種又は2種以上が好ましく、スチレンとアクリロニトリル、スチレンとN-フェニルマレイミドなどの組み合わせが好適である。なお、不飽和カルボン酸化合物は、第1の重合体の極性を容易に変化させることができる点等において好ましい。 The (meth) acrylonitrile compound, maleimide compound, acid anhydride and unsaturated carboxylic acid compound can be used alone, and it is preferable to use one or more of these four types in combination with styrenes. This is because all of these four types can maintain, regulate or impart the hydrophobicity or organic solvent affinity of the first polymerized chain. Among them, one or more of (meth) acrylonitrile compounds such as acrylonitrile, maleimide compounds such as N-phenylmaleimide and acid anhydrides are preferable, and combinations of styrene and acrylonitrile, styrene and N-phenylmaleimide and the like are preferable. Suitable. The unsaturated carboxylic acid compound is preferable in that the polarity of the first polymer can be easily changed.
 スチレン類と組み合わせて用いる場合、スチレン類以外のこれら1種又は2種以上の第1の単量体の総量は、第1の重合鎖を重合するための第1の単量体(第1の重合鎖の第1の単量体単位)の総質量のうち、例えば、20質量%以上である。また例えば、25質量%以上であり、また例えば、30質量%以上であり、また例えば、35質量%以上であり、また例えば、40質量%以上であり、また例えば、50質量%以上であり、また例えば、60質量%以上である。また、(メタ)アクリロニトリル化合物は、前記総質量の80質量%以下であり、また例えば、75質量%以下であり、また例えば、70質量%以下であり、また例えば、65質量%以下であり、また例えば、60質量%以下であり、また例えば、55質量%以下であり、また例えば、50質量%以下である。スチレン類以外のこれら1種又は2種以上の第1の単量体の総量としては、上記した下限及び上限を適宜組み合わせて設定することができるが、例えば、20質量%以上65質量%以下であり、また例えば、25質量%以上50質量%以下である。 When used in combination with styrenes, the total amount of these one or more first monomers other than styrenes is the first monomer for polymerizing the first polymerized chain (first). It is, for example, 20% by mass or more of the total mass of the first monomer unit of the polymerized chain). Further, for example, it is 25% by mass or more, and for example, 30% by mass or more, and for example, 35% by mass or more, and for example, 40% by mass or more, and for example, 50% by mass or more. Further, for example, it is 60% by mass or more. The (meth) acrylonitrile compound is 80% by mass or less of the total mass, and is, for example, 75% by mass or less, and is, for example, 70% by mass or less, and is, for example, 65% by mass or less. Further, for example, it is 60% by mass or less, for example, 55% by mass or less, and for example, 50% by mass or less. The total amount of these one or more first monomers other than styrenes can be set by appropriately combining the above lower limit and upper limit, and is, for example, 20% by mass or more and 65% by mass or less. Yes, and for example, it is 25% by mass or more and 50% by mass or less.
 第1の重合鎖は、上記した第1の単量体のみの重合鎖であってもよいが、必要に応じて、上記以外の他のビニル系単量体を第1の単量体として用いることができる。例えば、(メタ)アクリル酸アルキルなどの(メタ)アクリル酸エステル等公知のビニル系単量体を用いることができる。なお、こうした他の単量体は、第1の重合鎖を構成する単量体の総質量の、例えば10質量%以下、また例えば、5質量%以下、また例えば、3質量%以下、また例えば、1質量%以下であり、また例えば、0.5質量%以下である。 The first polymerized chain may be a polymerized chain containing only the first monomer described above, but if necessary, other vinyl-based monomers other than the above may be used as the first monomer. be able to. For example, known vinyl-based monomers such as (meth) acrylic acid ester such as alkyl (meth) acrylic acid can be used. It should be noted that these other monomers are, for example, 10% by mass or less, for example, 5% by mass or less, for example, 3% by mass or less, or, for example, the total mass of the monomers constituting the first polymerized chain. 1, 1% by mass or less, and for example, 0.5% by mass or less.
 また、第1の重合体は、上記第1の重合鎖のほかに、他のブロックとしての重合鎖を備えていてもよい。かかる重合鎖を構成するビニル系単量体としては、例えば、(メタ)アクリル酸、公知の(メタ)アクリル酸アルキルエステルや、公知の(メタ)アクリル酸ヒドロキシアルキルエステル等が挙げられる。こうしたビニル系単量体は、後述する第2の単量体であってもよい。かかる他の重合鎖は、例えば、第1の重合鎖の形成後に、別の合成工程で付加されてもよい。後述するリビングラジカル活性単位に直接連結され、かつ第1の重合鎖に連結されるように備えられることで、重合体微粒子に用いる第2の単量体と共通する単量体の一部を予め、第1の重合体中に備えることができる。 Further, the first polymer may include a polymerized chain as another block in addition to the above-mentioned first polymerized chain. Examples of the vinyl-based monomer constituting such a polymerized chain include (meth) acrylic acid, known (meth) acrylic acid alkyl esters, and known (meth) acrylic acid hydroxyalkyl esters. Such a vinyl-based monomer may be a second monomer described later. Such other polymerized chains may be added, for example, in another synthetic step after the formation of the first polymerized chain. By being provided so as to be directly linked to the living radical active unit described later and to be linked to the first polymerized chain, a part of the monomer common to the second monomer used for the polymer fine particles is previously provided. , Can be provided in the first polymer.
(リビングラジカル重合活性単位)
 第1の重合体は、リビングラジカル重合活性単位を備えることができる。リビングラジカル重合とは、一般に、重合工程において開始反応と成長反応のみからなり、連鎖移動反応又は停止反応などの成長末端を失活される副反応を伴うことがなく、成長末端が重合中は常にラジカル種に基づく成長活性(リビングラジカル重合活性)を保ち続けている重合反応とされている。リビングラジカル重合活性単位とは、リビングラジカル重合における成長活性単位である。また、リビングラジカル重合活性単位は、リビングラジカル重合法の制御剤に由来する単位である。
(Living radical polymerization active unit)
The first polymer can comprise a living radical polymerization active unit. Living radical polymerization generally consists of only a start reaction and a growth reaction in the polymerization step, and is not accompanied by a side reaction such as a chain transfer reaction or a stop reaction that inactivates the growth end, and the growth end is always during polymerization. It is said to be a polymerization reaction that maintains the growth activity (living radical polymerization activity) based on radical species. The living radical polymerization active unit is a growth active unit in living radical polymerization. The living radical polymerization active unit is a unit derived from a control agent of the living radical polymerization method.
 リビングラジカル重合には、その反応機構から、種々知られているが、リビングラジカル重合活性単位は、交換連鎖機構又は結合-解離機構によるリビングラジカル重合における活性単位とすることができる。これらのリビングラジカル重合であると、容易に、狭い分子量分布の第1の重合体を得ることができるし、重合体微粒子の分散重合にあたって、第1の重合体の重合溶媒への溶解性や分散安定剤としての機能のために種々の単量体を選択することができる。 Variously known for living radical polymerization from its reaction mechanism, the living radical polymerization active unit can be an active unit in living radical polymerization by an exchange chain mechanism or a bond-dissociation mechanism. With these living radical polymerizations, the first polymer having a narrow molecular weight distribution can be easily obtained, and in the dispersion polymerization of the polymer fine particles, the first polymer is soluble or dispersed in the polymerization solvent. Various monomers can be selected for their function as stabilizers.
 交換連鎖機構によるリビングラジカル重合としては、可逆的付加-開裂連鎖移動重合法(RAFT法)、ヨウ素移動重合法、有機テルル化合物を用いる重合法(TERP法)、有機アンチモン化合物を用いる重合法(SBRP法)、有機ビスマス化合物を用いる重合法(BIRP法)等が挙げられる。交換連鎖機構によるリビングラジカル重合は、重合体微粒子の平均粒子径を小さくできる点において好ましい。これらのなかでも、RAFT法が及びヨウ素移動重合法が第1の重合体の分子量分布を狭くできる点において好ましい。さらに、RAFT法が好ましく用いられる。 Living radical polymerization by the exchange chain mechanism includes a reversible addition-cleavage chain transfer polymerization method (RAFT method), an iodine transfer polymerization method, a polymerization method using an organic tellurium compound (TERP method), and a polymerization method using an organic antimony compound (SBRP). Method), a polymerization method using an organic bismuth compound (BIRP method), and the like. Living radical polymerization by an exchange chain mechanism is preferable in that the average particle size of the polymer fine particles can be reduced. Among these, the RAFT method and the iodine transfer polymerization method are preferable in that the molecular weight distribution of the first polymer can be narrowed. Further, the RAFT method is preferably used.
 結合-解離機構によるリビングラジカル重合としては、例えば、ニトロキシラジカル法(NMP法)が挙げられる。結合-解離機構によるリビングラジカル重合は、重合体微粒子の平均粒子径を小さくできる点において好ましい。これらのなかでも、NMP法が第1の重合体の分子量分布を狭くできる点において好ましい。 Examples of the living radical polymerization by the bond-dissociation mechanism include the nitroxy radical method (NMP method). Living radical polymerization by a bond-dissociation mechanism is preferable in that the average particle size of the polymer fine particles can be reduced. Among these, the NMP method is preferable in that the molecular weight distribution of the first polymer can be narrowed.
 これらの各種のリビングラジカル重合による重合条件は、当業者において周知であり、必要に応じて、RAFT法、ヨウ素移動重合法及びNMP法による第1の重合体の合成について例示する。なお、リビングラジカル重合プロセスには、塊状重合、溶液重合、懸濁重合及び乳化重合等の各種プロセスがあるが、重合体微粒子の製造における重合基点であることや分散安定剤的に機能することを考慮すると、第1の重合体の製造においては、例えば、溶液重合を用いることができる。 The polymerization conditions by these various living radical polymerizations are well known to those skilled in the art, and if necessary, the synthesis of the first polymer by the RAFT method, the iodine transfer polymerization method and the NMP method will be exemplified. The living radical polymerization process includes various processes such as bulk polymerization, solution polymerization, suspension polymerization and emulsion polymerization. Considering this, in the production of the first polymer, for example, solution polymerization can be used.
 第1の重合体は、例えばRAFT法の制御剤を用いてRAFT法にて合成することができる。RAFT法は、分子量分布が2.0以下の第1の重合体を得るのに好適なリビングラジカル重合法である。RAFT法におけるリビングラジカル重合の制御剤(RAFT剤)は、特に限定することなく、公知のRAFT剤を用いることができる。例えば、ジチオエステル化合物、キサンテート化合物、トリチオカーボネート化合物及びジチオカーバメート化合物等が挙げられる。RAFT剤は、活性点を1個所備える1官能性のものであってもよいし、2個所以上備える2官能性以上のものを用いることもできる。2官能性以上のRAFT剤は、2方向性以上に重合鎖が伸長するものである。重合体微粒子の製造の観点からは、2官能性又は3官能性以上のRAFT剤を用いることが好適な場合がある。 The first polymer can be synthesized by the RAFT method using, for example, a control agent of the RAFT method. The RAFT method is a living radical polymerization method suitable for obtaining a first polymer having a molecular weight distribution of 2.0 or less. As the control agent (RAFT agent) for living radical polymerization in the RAFT method, a known RAFT agent can be used without particular limitation. For example, a dithioester compound, a xanthate compound, a trithiocarbonate compound, a dithiocarbamate compound and the like can be mentioned. The RAFT agent may be a monofunctional agent having one active site, or a bifunctional or more agent having two or more active sites. A RAFT agent having more than two functionalities has a polymer chain extending in more than two directions. From the viewpoint of producing polymer fine particles, it may be preferable to use a RAFT agent having bifunctionality or trifunctionality or higher.
 RAFT剤における置換基は、第1の単量体や第2の単量体を考慮して適宜決定することができる。また、RAFT剤の使用量は、目標とするMnに応じて適宜調整されるが、第1の単量体100質量部に対して、例えば、0.1質量部以上10質量部以下、また例えば、0.5質量部以上5質量部以下、また例えば、1質量部以上4質量部以下、また例えば、1質量部以上3質量部以下用いることができる。 The substituent in the RAFT agent can be appropriately determined in consideration of the first monomer and the second monomer. The amount of the RAFT agent used is appropriately adjusted according to the target Mn, and is, for example, 0.1 part by mass or more and 10 parts by mass or less, for example, with respect to 100 parts by mass of the first monomer. , 0.5 parts by mass or more and 5 parts by mass or less, for example, 1 part by mass or more and 4 parts by mass or less, and for example, 1 part by mass or more and 3 parts by mass or less can be used.
 RAFT剤としては、ジチオエステル化合物、キサンテート化合物、トリチオカーボネート化合物及びジチオカーバメート化合物等、公知の各種RAFT剤を使用することができる。より具体的には、例えば、ジベンジルトリチオカーボネート、ジチオベンゾエート・2-シアノ-2-プロピルベンゾジチオエート、2-フェニル-2-プロピルベンゾジチオエート、トリチオカーボネート、2-シアノ-2-プロピルドデシルトリチオカーボネート、2-(ドデシルチオカルボノチオイルチオ)-2-メチルプロパン酸メチル、ジスチリルトリチオカーボネート、ジクミルトリチオカーボネート、ジチオカーバメート、シアノメチルN-メチル-N-フェニルジチオカーバメート等が挙げられる。 As the RAFT agent, various known RAFT agents such as a dithioester compound, a xanthate compound, a trithiocarbonate compound and a dithiocarbamate compound can be used. More specifically, for example, dibenzyltrithiocarbonate, dithiobenzoate / 2-cyano-2-propylbenzodithioate, 2-phenyl-2-propylbenzodithioate, trithiocarbonate, 2-cyano-2-propyl. Dodecyltrithiocarbonate, 2- (dodecylthiocarbonothio oilthio) -2-methylpropanoate, distyryltrithiocarbonate, dicumyltrithiocarbonate, dithiocarbamate, cyanomethyl N-methyl-N-phenyldithiocarbamate, etc. Be done.
 RAFT法による重合の際に用いるラジカル重合開始剤(ラジカル発生剤)としては、アゾ化合物、有機過酸化物及び過硫酸塩等の公知のラジカル重合開始剤を使用することができるが、安全上取り扱い易く、ラジカル重合時の副反応が起こりにくい点からアゾ化合物が好ましい。上記アゾ化合物の具体例としては、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、ジメチル-2,2’-アゾビス(2-メチルプロピオネート)、2,2’-アゾビス(2-メチルブチロニトリル)等が挙げられる。上記ラジカル重合開始剤は1種又は2種以上を用いることができる。 As the radical polymerization initiator (radical generator) used in the polymerization by the RAFT method, known radical polymerization initiators such as azo compounds, organic peroxides and persulfates can be used, but they are handled for safety. An azo compound is preferable because it is easy to carry out and side reactions during radical polymerization are unlikely to occur. Specific examples of the above azo compounds include 2,2'-azobisisobutyronitrile, 2,2'-azobis (2,4-dimethylvaleronitrile), and 2,2'-azobis (4-methoxy-2, 4-Dimethylvaleronitrile), dimethyl-2,2'-azobis (2-methylpropionate), 2,2'-azobis (2-methylbutyronitrile) and the like. As the radical polymerization initiator, one kind or two or more kinds can be used.
 こうしたラジカル重合開始剤の使用割合は特に制限されないが、分子量分布がより狭い重合体を得る点から、ラジカル重合開始剤の使用割合は特に制限されないが、分子量分布がより狭い重合体を得る点から、第1の単量体の総質量100質量部に対して、例えば、0.005質量%以上2質量%以下、また例えば、0.005質量%以上1質量%以下、また例えば、0.005質量%以上0.5質量%以下用いることができる。 The proportion of such radical polymerization initiator used is not particularly limited, but the proportion of the radical polymerization initiator used is not particularly limited from the viewpoint of obtaining a polymer having a narrower molecular weight distribution, but from the viewpoint of obtaining a polymer having a narrower molecular weight distribution. With respect to 100 parts by mass of the total mass of the first monomer, for example, 0.005% by mass or more and 2% by mass or less, for example, 0.005% by mass or more and 1% by mass or less, and for example, 0.005. It can be used in an amount of% by mass or more and 0.5% by mass or less.
 RAFT法では、必要に応じて連鎖移動剤の存在下で実施しても良い。連鎖移動剤は公知のものを1種又は2種以上を用いることができる。 The RAFT method may be carried out in the presence of a chain transfer agent, if necessary. As the chain transfer agent, one or more known ones can be used.
 また、RAFT法では、公知の重合溶媒を用いることができ、ニトリル系溶剤、芳香族系溶剤、ケトン系溶剤、エステル系溶剤、オルトエステル系溶剤、ジメチルホルムアミド、ジメチルスルホキシド、アルコール及び水等が挙げられる。ニトリル系溶剤の具体例としては、アセトニトリル、イソブチロニトリル及びベンゾニトリル等が挙げられる。芳香族系溶剤の具体例としては、ベンゼン、トルエン、キシレン及びアニソール等が挙げられる。ケトン系溶剤の具体例としては、アセトン、メチルエチルケトン及びメチルイソブチルケトン等が挙げられる。エステル系溶剤の具体例としては、酢酸メチル、酢酸エチル、酢酸プロピル及び酢酸ブチル等が挙げられる。オルトエステル系溶剤の具体例としては、オルト蟻酸トリメチル、オルト蟻酸トリエチル、オルト蟻酸トリ(n-プロピル)、オルト蟻酸トリ(イソプロピル)、オルト酢酸トリメチル、オルト酢酸トリエチル、オルトプロピオン酸トリエチル、オルトn-酪酸トリメチル、及びオルトイソ酪酸トリメチル等が挙げられる。好ましくは、アセトニトリルなどのニトリル系溶剤及び/又はアニソールなどの芳香族系溶剤を用いることができる。 Further, in the RAFT method, a known polymerization solvent can be used, and examples thereof include a nitrile solvent, an aromatic solvent, a ketone solvent, an ester solvent, an orthoester solvent, dimethylformamide, dimethyl sulfoxide, alcohol and water. Be done. Specific examples of the nitrile solvent include acetonitrile, isobutyronitrile, benzonitrile and the like. Specific examples of the aromatic solvent include benzene, toluene, xylene, anisole and the like. Specific examples of the ketone solvent include acetone, methyl ethyl ketone, methyl isobutyl ketone and the like. Specific examples of the ester solvent include methyl acetate, ethyl acetate, propyl acetate, butyl acetate and the like. Specific examples of the orthoester solvent include trimethyl orthoacetate, triethyl orthoate, triethyl orthoate (n-propyl), tri (isopropyl) orthoatete, trimethyl orthoacetate, triethyl orthoacetate, triethyl orthopropionate, ortho n-. Examples thereof include trimethyl butyrate and trimethyl orthoisobutyrate. Preferably, a nitrile solvent such as acetonitrile and / or an aromatic solvent such as anisole can be used.
 第1の重合体をリビングラジカル重合で重合する際の第1の単量体の濃度は、重合溶媒と第1の単量体との総質量に対して、特に限定するものではないが、例えば、10質量%以上80質量%以下、また例えば、15質量%以上70質量%以下、20質量%以上70質量%以下などとすることができる。 The concentration of the first monomer when the first polymer is polymerized by living radical polymerization is not particularly limited with respect to the total mass of the polymerization solvent and the first monomer, but for example. It can be 10% by mass or more and 80% by mass or less, for example, 15% by mass or more and 70% by mass or less, 20% by mass or more and 70% by mass or less.
 RAFT法による重合反応の際の反応温度は、好ましくは40℃以上100℃以下であり、より好ましくは45℃以上90℃以下であり、さらに好ましくは50℃以上80℃以下である。反応温度が40℃以上であれば、重合反応を円滑に進めることができる。一方、反応温度が100℃以下であれば、副反応が抑制できるとともに、使用できる開始剤や溶剤に関する制限が緩和される。 The reaction temperature during the polymerization reaction by the RAFT method is preferably 40 ° C. or higher and 100 ° C. or lower, more preferably 45 ° C. or higher and 90 ° C. or lower, and further preferably 50 ° C. or higher and 80 ° C. or lower. When the reaction temperature is 40 ° C. or higher, the polymerization reaction can proceed smoothly. On the other hand, when the reaction temperature is 100 ° C. or lower, side reactions can be suppressed and restrictions on the initiators and solvents that can be used are relaxed.
 第1の重合体は、また例えば、ヨウ素移動重合法の制御剤を用いてヨウ素移動重合法にて合成することができる。ヨウ素移動重合法における制御剤は、特に限定することなく、公知の制御剤を用いることができる、例えば、ヨウ化メチル、ヨウ化メチレン、ヨードホルム、四ヨウ化炭素、1-フェニルエチルヨージド、ベンジルヨージド、2-ヨードイソ酪酸メチル、2-ヨードイソ酪酸エチル、2-ヨード-2-フェニル酢酸エチル、ビス(2-ヨード-2-フェニル酢酸)エチレングリコール、ビス(2-ヨードイソ酪酸)エチレングリコール等が挙げられる。 The first polymer can also be synthesized by the iodine transfer polymerization method using, for example, a control agent of the iodine transfer polymerization method. The control agent in the iodine transfer polymerization method is not particularly limited, and known control agents can be used, for example, methyl iodide, methylene iodide, iodoform, carbon tetraiodide, 1-phenylethyl iodide, benzyl. Iodine, methyl 2-iodoisobutyrate, ethyl 2-iodoisobutyrate, ethyl 2-iodo-2-phenylacetate, bis (2-iodo-2-phenylacetate) ethylene glycol, bis (2-iodoisobutyric acid) ethylene glycol, etc. Can be mentioned.
 ヨウ素移動反応の制御剤の使用量は、目標とするMnに応じて適宜調整されるが、第1の単量体100質量部に対して、例えば、0.1質量部以上10質量部以下、また例えば、0.5質量部以上5質量部以下、また例えば、1質量部以上4質量部以下用いることができる。第1の単量体100質量部に対して、例えば、0.1質量部以上10質量部以下、また例えば、0.5質量部以上5質量部以下、また例えば、1質量部以上4質量部以下用いることができる。 The amount of the iodine transfer control agent used is appropriately adjusted according to the target Mn, and is, for example, 0.1 part by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the first monomer. Further, for example, 0.5 parts by mass or more and 5 parts by mass or less, and for example, 1 part by mass or more and 4 parts by mass or less can be used. For example, 0.1 part by mass or more and 10 parts by mass or less, for example, 0.5 part by mass or more and 5 parts by mass or less, and for example, 1 part by mass or more and 4 parts by mass with respect to 100 parts by mass of the first monomer. It can be used below.
 ヨウ素移動重合法による重合の際に用いるラジカル重合開始剤(ラジカル発生剤)としては、RAFT法と同様の態様及び使用量で、アゾ化合物、有機過酸化物及び過硫酸塩等の公知のラジカル重合開始剤を使用することができる。ヨウ素移動重合法における反応温度及び重合溶媒、第1の単量体濃度については、RAFT法と同様の態様から適宜選択して適用することができる。 As the radical polymerization initiator (radical generator) used in the polymerization by the iodine transfer polymerization method, known radical polymerization of azo compounds, organic peroxides, persulfates and the like in the same manner and amount as in the RAFT method. Initiators can be used. The reaction temperature, the polymerization solvent, and the first monomer concentration in the iodine transfer polymerization method can be appropriately selected and applied from the same embodiments as in the RAFT method.
 第1の重合体は、また例えば、NMP法の制御剤を用いてNMP法にて合成することができる。NMP法における制御剤は、特に限定することなく、公知の制御剤を用いることができる、例えば、2,2,6,6-テトラメチルピペリジニル-1-オキシル(TEMPO)、N-tert-ブチル-N-[1-ジエチルフォスフォノ-(2,2-ジメチルプロピル)]ニトロキシド(DEPN)、2,2,5-トリメチル-4-フェニル-3-アザヘキサン-3-ニトロキシド(TIPNO)、N-tert-ブチル-N-(1-tert-ブチル-2-エチルスルフィニル)プロピル-N-オキシル(BESN)等が挙げられる。 The first polymer can also be synthesized by the NMP method using, for example, a control agent of the NMP method. As the control agent in the NMP method, a known control agent can be used without particular limitation, for example, 2,2,6,6-tetramethylpiperidinyl-1-oxyl (TEMPO), N-tert-. Butyl-N- [1-diethylphosphono- (2,2-dimethylpropyl)] nitroxide (DEPN), 2,2,5-trimethyl-4-phenyl-3-azahexane-3-nitroxide (TIPNO), N- Examples thereof include tert-butyl-N- (1-tert-butyl-2-ethylsulfinyl) propyl-N-oxyl (BESN).
 NMP法による制御剤の使用量は、目標とするMnに応じて適宜調整されるが、第1の単量体100質量部に対して、例えば、0.1質量部以上10質量部以下、また例えば、0.5質量部以上5質量部以下、また例えば、1質量部以上4質量部以下用いることができる。第1の単量体100質量部に対して、例えば、0.1質量部以上10質量部以下、また例えば、0.5質量部以上5質量部以下、また例えば、1質量部以上4質量部以下用いることができる。 The amount of the control agent used by the NMP method is appropriately adjusted according to the target Mn, and is, for example, 0.1 part by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the first monomer. For example, 0.5 parts by mass or more and 5 parts by mass or less, and for example, 1 part by mass or more and 4 parts by mass or less can be used. For example, 0.1 part by mass or more and 10 parts by mass or less, for example, 0.5 part by mass or more and 5 parts by mass or less, and for example, 1 part by mass or more and 4 parts by mass with respect to 100 parts by mass of the first monomer. It can be used below.
 NMP法による重合の際に用いるラジカル重合開始剤(ラジカル発生剤)としては、RAFT法と同様の態様及び使用量で、アゾ化合物、有機過酸化物及び過硫酸塩等の公知のラジカル重合開始剤を使用することができる。NMP法における反応温度及び重合溶媒、第1の単量体濃度については、RAFT法と同様の態様から適宜選択して適用することができる。 The radical polymerization initiator (radical generator) used in the polymerization by the NMP method is a known radical polymerization initiator such as an azo compound, an organic peroxide, and a persulfate in the same manner and amount as in the RAFT method. Can be used. The reaction temperature, the polymerization solvent, and the first monomer concentration in the NMP method can be appropriately selected and applied from the same aspects as in the RAFT method.
 所定のリビングラジカル重合により第1の重合体を合成することで、第1の単量体を含む第1の重合鎖とリビング重合活性単位を備える第1の重合体を得ることができる。第1の重合体は、2種以上の第1の重合鎖を備えることもできる。例えば、ある種の組成の1種又は2種以上の第1の単量体を用いてリビングラジカル重合等を実施後に、他の組成で1種又は2種以上の第1の単量体を用いてリビングラジカル重合等を実施することで、異なる組成の第1の単量体由来の単位を有する第1の重合鎖(ブロック)を備える第1の重合体を得ることができる。 By synthesizing the first polymer by a predetermined living radical polymerization, a first polymer having a first polymer chain containing the first monomer and a living polymerization active unit can be obtained. The first polymer may also include two or more first polymerized chains. For example, after performing living radical polymerization or the like using one or more first monomers of a certain composition, one or more first monomers of another composition are used. By carrying out living radical polymerization or the like, a first polymer having a first polymerization chain (block) having a unit derived from the first monomer having a different composition can be obtained.
 所定のリビングラジカル重合によれば、数平均分子量(Mn)及び重量平均分子量(Mw)が制御された第1の重合体を得ることができる。第1の重合体のMnは、特に限定するものではないが、例えば、3,000以上であり、また例えば、5,000以上であり、また例えば、7,000以上であり、また例えば、8,000以上であり、また例えば、10,000以上である。また、同Mnは、50,000以下であり、また例えば、30,000以下であり、また例えば、25,000以下であり、また例えば、20,000以下であり、また例えば、15,000以下であり、また例えば、14,000以下であり、また例えば、12,000以下である。Mnの範囲としては、上記した下限及び上限を適宜組み合わせて設定することができるが、例えば、5,000以上25,000以下であり、また例えば、10,000以上25,000以下であり、また例えば、10,000以上15,000以下であり、また例えば、10,000以上14,000以下である。 According to the predetermined living radical polymerization, a first polymer in which the number average molecular weight (Mn) and the weight average molecular weight (Mw) are controlled can be obtained. The Mn of the first polymer is not particularly limited, but is, for example, 3,000 or more, for example, 5,000 or more, and for example, 7,000 or more, and for example, 8. It is 000 or more, and for example, 10,000 or more. Further, the Mn is 50,000 or less, for example, 30,000 or less, and for example, 25,000 or less, and for example, 20,000 or less, and for example, 15,000 or less. And, for example, 14,000 or less, and for example, 12,000 or less. The range of Mn can be set by appropriately combining the above-mentioned lower limit and upper limit, and is, for example, 5,000 or more and 25,000 or less, and for example, 10,000 or more and 25,000 or less, and also. For example, 10,000 or more and 15,000 or less, and for example, 10,000 or more and 14,000 or less.
 第1の重合体のMwは、特に限定するものではないが、例えば、5,000以上であり、また例えば、7,000以上であり、また例えば、9,000以上であり、また例えば、10,000以上であり、また例えば、13,000以上であり、また例えば、15,000以上である。また、同Mwは、60,000以下であり、また例えば、55,000以下であり、また例えば、50,000以下であり、また例えば、45,000以下であり、また例えば、40,000以下であり、また例えば、36,000以下であり、また例えば、35,000以下であり、また例えば、30,000以下であり、また例えば、25、000以下である。Mwの範囲としては、上記した下限及び上限を適宜組み合わせて設定することができるが、例えば、1,000以上40,000以下であり、また例えば、10,000以上35,000以下であり、また例えば、10,000以上30,000以下であり、また例えば、15,000以上25,000以下である。 The Mw of the first polymer is not particularly limited, but is, for example, 5,000 or more, for example, 7,000 or more, and for example, 9,000 or more, and for example, 10. It is 000 or more, and is, for example, 13,000 or more, and is, for example, 15,000 or more. Further, the Mw is 60,000 or less, for example, 55,000 or less, and for example, 50,000 or less, and for example, 45,000 or less, and for example, 40,000 or less. And, for example, 36,000 or less, and for example, 35,000 or less, and for example, 30,000 or less, and for example, 25,000 or less. The range of Mw can be set by appropriately combining the above-mentioned lower limit and upper limit, and is, for example, 1,000 or more and 40,000 or less, and for example, 10,000 or more and 35,000 or less. For example, it is 10,000 or more and 30,000 or less, and for example, 15,000 or more and 25,000 or less.
 なお、第1の重合体のMw及びMnは、いずれも、ポリスチレンを標準物質として用いたゲルパーミエーションクロマトグラフィーにて測定することができる。クロマトグラフィー条件の詳細は、後段の実施例に開示する条件を採用することができる。 Both Mw and Mn of the first polymer can be measured by gel permeation chromatography using polystyrene as a standard substance. As for the details of the chromatography conditions, the conditions disclosed in the subsequent examples can be adopted.
 第1の重合体の分子量分布(Mw/Mn)は、特に限定するものではないが、例えば、2.5以下であり、また例えば、2.4以下であり、また例えば、2.3以下であり、また例えば、2.0以下であり、また例えば、1.6以下であり、また例えば、1.5以下であり、また例えば、1.4以下であり、また例えば、1.3以下である。また、分子量分布は、例えば、1.1以上であり、また例えば、1.2以上であり、また例えば、1.3以上であり、また例えば、1.4以上、また例えば、1.5以上である。分子量分布の範囲としては、上記した下限及び上限を適宜組み合わせて設定することができるが、例えば、1.1以上2.5以下、また例えば、1.1以上2.4以下、また例えば、1.1以上2.3以下、また例えば、1.1以上2.0以下などとすることができる。 The molecular weight distribution (Mw / Mn) of the first polymer is not particularly limited, but is, for example, 2.5 or less, for example, 2.4 or less, and for example, 2.3 or less. Yes, for example 2.0 or less, and for example 1.6 or less, and for example 1.5 or less, and for example 1.4 or less, and for example 1.3 or less. is there. Further, the molecular weight distribution is, for example, 1.1 or more, for example, 1.2 or more, and for example, 1.3 or more, and for example, 1.4 or more, and for example, 1.5 or more. Is. The range of the molecular weight distribution can be set by appropriately combining the above-mentioned lower limit and upper limit. For example, 1.1 or more and 2.5 or less, for example, 1.1 or more and 2.4 or less, and for example, 1 It can be 1. or more and 2.3 or less, and for example, 1.1 or more and 2.0 or less.
 分子量分布は狭いほど、得られる重合体微粒子の平均粒子径が小さくなる傾向がある。平均粒子径が0.2μm以下の重合体微粒子を得るには、分子量分布が2.4以下であることが好適であり、より小さい平均粒子径の重合体微粒子を得るには、同1.7以下であることが好適であり、さらに好適には、同1.6以下であり、一層好適には、1.4以下である。 The narrower the molecular weight distribution, the smaller the average particle size of the obtained polymer fine particles tends to be. It is preferable that the molecular weight distribution is 2.4 or less in order to obtain polymer fine particles having an average particle size of 0.2 μm or less, and 1.7 in order to obtain polymer fine particles having a smaller average particle size. The following is preferable, more preferably 1.6 or less, and even more preferably 1.4 or less.
 第1の重合体は、第1の重合鎖とリビング重合活性単位とを備えることができるが、典型的には、1官能性の制御剤を用いた場合には、リビング重合活性単位を第1の重合鎖の末端に備える態様となり、2官能性以上の制御剤を用いた場合には、リビング重合活性単位を基点として2方向以上に分岐してそれぞれに第1の重合鎖を備える態様となる。なお、いずれの態様においても、別の重合鎖を備える場合には、この別の重合鎖が、リビング重合活性単位に直接結合され、リビング重合活性単位に対してより遠位側に第1の重合鎖が備えられるように、当該別の重合鎖の遠位末端に第1の重合鎖が結合された態様となっている。 The first polymer can include a first polymer chain and a living polymerization active unit, but typically, when a monofunctional control agent is used, the living polymerization active unit is the first. When a control agent having bifunctionality or higher is used, it is branched in two or more directions with the living polymerization active unit as a base point, and each of them is provided with a first polymerized chain. .. In any of the embodiments, when another polymerized chain is provided, the other polymerized chain is directly bonded to the living polymerization active unit, and the first polymerization is carried out more distally to the living polymerization active unit. The first polymerized chain is bonded to the distal end of the other polymerized chain so that the chain is provided.
(重合体微粒子の製造) 本方法は、第1の重合体の存在下、1種又は2種以上の第2の単量体を分散重合して重合体微粒子を製造することができる。本方法では、第1の重合体を、重合体微粒子の製造時において第2の単量体の重合の基点として用いるとともに、重合体微粒子の重合溶媒中における分散安定剤として用いることができる。こうすることで、重合安定性、すなわち、重合工程中の重合体微粒子の凝集を抑制して、粗大な凝集粒子の発生を抑制し、平均粒子径が小さく、かつ粒子径分布の狭い重合体微粒子を得ることができる。 (Production of Polymer Fine Particles) This method can produce polymer fine particles by dispersion-polymerizing one kind or two or more kinds of second monomers in the presence of the first polymer. In this method, the first polymer can be used as a starting point for the polymerization of the second monomer in the production of the polymer fine particles, and can also be used as a dispersion stabilizer in the polymerization solvent of the polymer fine particles. By doing so, the polymerization stability, that is, the aggregation of the polymer fine particles during the polymerization step is suppressed, the generation of coarse agglomerated particles is suppressed, the average particle size is small, and the particle size distribution is narrow. Can be obtained.
(第2のビニル系単量体) 第2のビニル系単量体としては、特に限定するものではなく、重合体微粒子の用途等に応じて、公知のビニル系単量体から適宜選択することができる。例えば、第1の重合体に分散安定剤としての機能を効果的に発揮させ、重合体微粒子の表層側に存在させるようにし、第2の重合鎖を重合体微粒子の主成分としてコア側に存在させるためには、第2の単量体は、親水性基を有するビニル系単量体とすることができる。当該観点を考慮すると、第2の単量体としては、例えば、カルボキシル基含有ビニル系単量体、ヒドロキシ基含有ビニル系単量体等が挙げられる。 (Second vinyl-based monomer) The second vinyl-based monomer is not particularly limited, and may be appropriately selected from known vinyl-based monomers depending on the use of the polymer fine particles and the like. Can be done. For example, the first polymer effectively exerts its function as a dispersion stabilizer so that it is present on the surface layer side of the polymer fine particles, and the second polymer chain is present on the core side as the main component of the polymer fine particles. The second monomer can be a vinyl-based monomer having a hydrophilic group. Considering this viewpoint, examples of the second monomer include a carboxyl group-containing vinyl-based monomer and a hydroxy group-containing vinyl-based monomer.
 カルボキシ基含有ビニル系単量体としては、例えば、(メタ)アクリル酸、クロトン酸などの不飽和カルボン酸のほか、イタコン酸、マレイン酸、フマル酸などの不飽和ジカルボン酸、不飽和ジカルボン酸のモノアルキルエステル等が挙げられる。なかでも、(メタ)アクリル酸が好ましい。 Examples of the carboxy group-containing vinyl-based monomer include unsaturated carboxylic acids such as (meth) acrylic acid and crotonic acid, unsaturated dicarboxylic acids such as itaconic acid, maleic acid, and fumaric acid, and unsaturated dicarboxylic acids. Examples thereof include monoalkyl esters. Of these, (meth) acrylic acid is preferable.
 (メタ)アクリル酸は塩の形態であってもよい。ここで、(メタ)アクリル酸(塩)とは、(メタ)アクリル酸及び(メタ)アクリル酸塩を包含している。(メタ)アクリル酸塩における塩とは、アルカリ金属塩、アルカリ土類金属塩、アンモニウム塩又は有機アミン塩である。具体的には、ナトリウム塩、リチウム塩、カリウム塩、ルビジウム塩、セシウム塩等のアルカリ金属塩;マグネシウム塩、カルシウム塩、ストロンチウム塩、バリウム塩等のアルカリ土類金属塩;有機アミン塩としては、モノエタノールアミン塩、ジエタノールアミン塩、トリエタノールアミン塩等のアルカノールアミン塩、モノエチルアミン塩、ジエチルアミン塩、トリエチルアミン塩等のアルキルアミン塩、エチレンジアミン塩、トリエチレンジアミン塩等のポリアミン等の有機アミンの塩が挙げられる。 (Meta) acrylic acid may be in the form of a salt. Here, the (meth) acrylic acid (salt) includes (meth) acrylic acid and (meth) acrylic acid salt. The salt in the (meth) acrylate is an alkali metal salt, an alkaline earth metal salt, an ammonium salt or an organic amine salt. Specifically, alkali metal salts such as sodium salt, lithium salt, potassium salt, rubidium salt, and cesium salt; alkaline earth metal salts such as magnesium salt, calcium salt, strontium salt, and barium salt; Examples include alkanolamine salts such as monoethanolamine salt, diethanolamine salt and triethanolamine salt, alkylamine salts such as monoethylamine salt, diethylamine salt and triethylamine salt, and organic amine salts such as polyamine such as ethylenediamine salt and triethylenediamine salt. Be done.
 ヒドロキシ基含有ビニル系単量体としては、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシブチル、(メタ)アクリル酸3-ヒドロキシブチル、(メタ)アクリル酸4-ヒドロキシブチル、並びに、ポリエチレングリコール及びポリプロピレングリコール等のポリアルキレングリコールのモノ(メタ)アクリル酸エステル等が挙げられる。これらの化合物は単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Examples of the hydroxy group-containing vinyl monomer include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, and 2-hydroxybutyl (meth) acrylate. , 3-Hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, and mono (meth) acrylic acid esters of polyalkylene glycols such as polyethylene glycol and polypropylene glycol. These compounds may be used alone or in combination of two or more.
 こうした第2単量体は、1種又は2種以上を組み合わせて用いることができる。第2の単量体の総質量に対してカルボキシル基含有ビニル系単量体は、例えば、40質量%以上とすることができ、また例えば、50質量%以上とすることができ、また例えば、60質量%以上とすることができ、また例えば、70質量%以上とすることができ、また例えば、80質量%以上とすることができ、また例えば、90質量%以上とすることができ、また例えば、95質量%以上とすることができ、また例えば、100質量%とすることができる。第2の単量体の総質量に対するカルボキシル基含有ビニル系単量体の使用範囲は、上記した各下限及び上限を適宜組み合わせて設定できるが、例えば、60質量%以上100質量%以下であり、また例えば、80質量%以上100質量%以下であり、また例えば、90質量%以上100質量%以下である。 Such a second monomer can be used alone or in combination of two or more. The carboxyl group-containing vinyl-based monomer can be, for example, 40% by mass or more, and can be, for example, 50% by mass or more, based on the total mass of the second monomer. It can be 60% by mass or more, for example, 70% by mass or more, and can be, for example, 80% by mass or more, and can be, for example, 90% by mass or more. For example, it can be 95% by mass or more, and can be, for example, 100% by mass. The range of use of the carboxyl group-containing vinyl-based monomer with respect to the total mass of the second monomer can be set by appropriately combining the above lower and upper limits, and is, for example, 60% by mass or more and 100% by mass or less. Further, for example, it is 80% by mass or more and 100% by mass or less, and for example, 90% by mass or more and 100% by mass or less.
 また、第2の単量体の総質量に対してヒドロキシ基含有ビニル系単量体は、例えば、5質量%以上であり、また例えば、10質量%以上であり、例えば、20質量%以上であり、また例えば、30質量%以上であり、また例えば、40質量%以上である。また、50質量%以下であり、また例えば、40質量%以下であり、また例えば、30質量%以下であり、また例えば、20質量%以下であり、また例えば、10質量%以下であり、また例えば、5質量%以下である。第2の単量体の総質量に対するヒドロキシ基含有ビニル系単量体の使用範囲は、上記した各下限及び上限を適宜組み合わせて設定できるが、例えば、0質量%以上40質量%以下であり、また例えば、0質量%以上20質量%以下であり、また例えば、0質量%以上10質量%以下である。 Further, the hydroxy group-containing vinyl-based monomer is, for example, 5% by mass or more, for example, 10% by mass or more, and for example, 20% by mass or more, based on the total mass of the second monomer. Yes, for example, 30% by mass or more, and for example, 40% by mass or more. Further, it is 50% by mass or less, and is, for example, 40% by mass or less, and is, for example, 30% by mass or less, and is, for example, 20% by mass or less, and is, for example, 10% by mass or less. For example, it is 5% by mass or less. The range of use of the hydroxy group-containing vinyl-based monomer with respect to the total mass of the second monomer can be set by appropriately combining the above lower and upper limits, and is, for example, 0% by mass or more and 40% by mass or less. Further, for example, it is 0% by mass or more and 20% by mass or less, and for example, 0% by mass or more and 10% by mass or less.
 第2の単量体としては、重合体微粒子における第2の重合鎖の意図した機能を損なわない限り、他のビニル系単量体を含めることができる。かかるビニル系単量体としては、特に限定するものではないが、例えば、(メタ)アクリル酸アルキルエステル、(メタ)アクリル酸アルコキシアルキルエステル等が挙げられる。こうした第2の単量体は、第2の単量体の総質量に対して、例えば、20質量%以下、また例えば、10質量%以下、また例えば、5質量%以下、また例えば、3質量%以下、また例えば、1質量%以下含有することができる。 As the second monomer, other vinyl-based monomers can be included as long as the intended function of the second polymer chain in the polymer fine particles is not impaired. The vinyl-based monomer is not particularly limited, and examples thereof include (meth) acrylic acid alkyl ester and (meth) acrylic acid alkoxyalkyl ester. Such a second monomer is, for example, 20% by mass or less, for example, 10% by mass or less, and for example, 5% by mass or less, or, for example, 3% by mass, based on the total mass of the second monomer. % Or less, for example, 1% by mass or less can be contained.
 (メタ)アクリル酸アルキルエステルとしては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸n-ノニル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸デシル及び(メタ)アクリル酸ドデシル等の(メタ)アクリル酸の直鎖状又は分岐状アルキルエステル化合物;(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸メチルシクロヘキシル、(メタ)アクリル酸tert-ブチルシクロヘキシル、(メタ)アクリル酸シクロドデシル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸アダマンチル、(メタ)アクリル酸ジシクロペンテニル、(メタ)アクリル酸ジシクロペンタニル等の(メタ)アクリル酸の脂肪族環式エステル化合物などが挙げられる。 Examples of the (meth) acrylic acid alkyl ester include methyl (meth) acrylic acid, ethyl (meth) acrylic acid, isopropyl (meth) acrylic acid, n-propyl (meth) acrylic acid, n-butyl (meth) acrylic acid, and ( Isobutyl acrylate, tert-butyl (meth) acrylate, hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, isooctyl (meth) acrylate, (meth) Linear or branched alkyl ester compounds of (meth) acrylic acid such as n-nonyl acrylate, isononyl (meth) acrylate, decyl (meth) acrylate and dodecyl (meth) acrylate; cyclohexyl (meth) acrylate. , (Meta) methylcyclohexyl acrylate, (meth) tert-butylcyclohexyl acrylate, (meth) cyclododecyl acrylate, isobornyl (meth) acrylate, adamantyl (meth) acrylate, dicyclopentenyl (meth) acrylate, Examples thereof include aliphatic cyclic ester compounds of (meth) acrylic acid such as dicyclopentanyl (meth) acrylic acid.
 (メタ)アクリル酸アルコキシアルキルエステルとしては、(メタ)アクリル酸メトキシメチル、(メタ)アクリル酸エトキシメチル、(メタ)アクリル酸2-メトキシエチル、(メタ)アクリル酸2-エトキシエチル、(メタ)アクリル酸2-プロポキシエチル、(メタ)アクリル酸2-ブトキシエチル、(メタ)アクリル酸3-メトキシプロピル、(メタ)アクリル酸3-エトキシプロピル、(メタ)アクリル酸3-プロポキシプロピル、(メタ)アクリル酸3-ブトキシプロピル、(メタ)アクリル酸3-メトキシブチル、(メタ)アクリル酸3-エトキシブチル、(メタ)アクリル酸3-プロポキシブチル、(メタ)アクリル酸3-ブトキシブチルなどが挙げられる。 Examples of the (meth) acrylate alkoxyalkyl ester include methoxymethyl (meth) acrylate, ethoxymethyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, 2-ethoxyethyl (meth) acrylate, and (meth). 2-propoxyethyl acrylate, 2-butoxyethyl (meth) acrylate, 3-methoxypropyl (meth) acrylate, 3-ethoxypropyl (meth) acrylate, 3-propoxypropyl (meth) acrylate, (meth) Examples thereof include 3-butoxypropyl acrylate, 3-methoxybutyl (meth) acrylate, 3-ethoxybutyl (meth) acrylate, 3-propoxybutyl (meth) acrylate, and 3-butoxybutyl (meth) acrylate. ..
 重合体微粒子の製造工程においては、第2の重合鎖に架橋構造を導入することができる。 In the process of producing the polymer fine particles, a crosslinked structure can be introduced into the second polymerized chain.
 架橋構造の導入方法は特に制限されるものではなく、例えば以下の方法による態様が例示される。
1)架橋性単量体の共重合
2)ラジカル重合時のポリマー鎖への連鎖移動を利用
3)反応性官能基を有する重合体を合成後、必要に応じて架橋剤を添加して後架橋
 これらのなかでも、操作が簡便であり、架橋の程度を制御し易い点から架橋性単量体の共重合による方法が好ましい。
The method for introducing the crosslinked structure is not particularly limited, and examples thereof include the following methods.
1) Copolymerization of crosslinkable monomers 2) Utilizing chain transfer to polymer chains during radical polymerization 3) After synthesizing a polymer having a reactive functional group, post-crosslinking is performed by adding a crosslinking agent as necessary. Among these, the method by copolymerization of crosslinkable monomers is preferable because the operation is simple and the degree of crosslinking can be easily controlled.
 架橋性単量体としては、2個以上の重合性不飽和基を有する多官能重合性単量体、及び加水分解性シリル基等の自己架橋可能な架橋性官能基を有する単量体等が挙げられる。上記多官能重合性単量体は、(メタ)アクリロイル基、アルケニル基等の重合性官能基を分子内に2つ以上有する化合物であり、多官能(メタ)アクリレート化合物、多官能アルケニル化合物、(メタ)アクリロイル基及びアルケニル基の両方を有する化合物等が挙げられる。これらの化合物は、1種のみを単独で用いてもよいし、2種以上を組み合わせて用いてもよい。これらの内でも、均一な架橋構造を得やすい点で多官能アルケニル化合物が好ましく、分子内に複数のアリルエーテル基を有する多官能アリルエーテル化合物が特に好ましい。 Examples of the crosslinkable monomer include a polyfunctional polymerizable monomer having two or more polymerizable unsaturated groups, a monomer having a self-crosslinkable crosslinkable functional group such as a hydrolyzable silyl group, and the like. Can be mentioned. The polyfunctional polymerizable monomer is a compound having two or more polymerizable functional groups such as a (meth) acryloyl group and an alkenyl group in the molecule, and is a polyfunctional (meth) acrylate compound, a polyfunctional alkenyl compound, ( Meta) Examples thereof include compounds having both an acryloyl group and an alkenyl group. These compounds may be used alone or in combination of two or more. Among these, a polyfunctional alkenyl compound is preferable because a uniform crosslinked structure can be easily obtained, and a polyfunctional allyl ether compound having a plurality of allyl ether groups in the molecule is particularly preferable.
 多官能(メタ)アクリレート化合物としては、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート等の2価アルコールのジ(メタ)アクリレート類;トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンエチレンオキサイド変性体のトリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート等の3価以上の多価アルコールのトリ(メタ)アクリレート、テトラ(メタ)アクリレート等のポリ(メタ)アクリレート;メチレンビスアクリルアミド、ヒドロキシエチレンビスアクリルアミド等のビスアミド類等を挙げることができる。 Examples of the polyfunctional (meth) acrylate compound include ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, polyethylene glycol di (meth) acrylate, and polypropylene glycol di (meth) acrylate. Di (meth) acrylates of dihydric alcohols such as meta) acrylate; trimethylol propantri (meth) acrylate, tri (meth) acrylate of trimethyl propanethylene oxide modified product, glycerin tri (meth) acrylate, pentaerythritol tri (meth) Tri (meth) acrylates of trivalent or higher polyhydric alcohols such as meta) acrylates and pentaerythritol tetra (meth) acrylates, poly (meth) acrylates such as tetra (meth) acrylates; Bisamides and the like can be mentioned.
 多官能アルケニル化合物としては、トリメチロールプロパンジアリルエーテル、トリメチロールプロパントリアリルエーテル、ペンタエリスリトールジアリルエーテル、ペンタエリスリトールトリアリルエーテル、テトラアリルオキシエタン、ポリアリルサッカロース等の多官能アリルエーテル化合物;ジアリルフタレート等の多官能アリル化合物;ジビニルベンゼン等の多官能ビニル化合物等を挙げることができる。 Examples of the polyfunctional alkenyl compound include polyfunctional allyl ether compounds such as trimethylolpropanediallyl ether, trimethylolpropanetriallyl ether, pentaerythritol diallyl ether, pentaerythritol triallyl ether, tetraallyloxyethane, and polyallyl saccharose; Polyfunctional allyl compound; Polyfunctional vinyl compounds such as divinylbenzene and the like can be mentioned.
 (メタ)アクリロイル基及びアルケニル基の両方を有する化合物としては、(メタ)アクリル酸アリル、(メタ)アクリル酸イソプロペニル、(メタ)アクリル酸ブテニル、(メタ)アクリル酸ペンテニル、(メタ)アクリル酸2-(2-ビニロキシエトキシ)エチル等を挙げることができる。 Compounds having both (meth) acryloyl group and alkenyl group include allyl (meth) acrylate, isopropenyl (meth) acrylate, butenyl (meth) acrylate, pentenyl (meth) acrylate, and (meth) acrylate. 2- (2-Vinyloxyethoxy) ethyl and the like can be mentioned.
 上記自己架橋可能な架橋性官能基を有する単量体の具体的な例としては、加水分解性シリル基含有ビニル単量体、N-メチロール(メタ)アクリルアミド、N-メトキシアルキル(メタ)アクリルアミド等が挙げられる。これらの化合物は、1種単独であるいは2種以上を組み合わせて用いることができる。 Specific examples of the monomer having a self-crosslinkable crosslinkable functional group include a hydrolyzable silyl group-containing vinyl monomer, N-methylol (meth) acrylamide, N-methoxyalkyl (meth) acrylamide and the like. Can be mentioned. These compounds can be used alone or in combination of two or more.
 加水分解性シリル基含有ビニル単量体としては、加水分解性シリル基を少なくとも1個有するビニル単量体であれば、特に限定されない。例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルメチルジメトキシシラン、ビニルジメチルメトキシシランン等のビニルシラン類;アクリル酸トリメトキシシリルプロピル、アクリル酸トリエトキシシリルプロピル、アクリル酸メチルジメトキシシリルプロピル等のシリル基含有アクリル酸エステル類;メタクリル酸トリメトキシシリルプロピル、メタクリル酸トリエトキシシリルプロピル、メタクリル酸メチルジメトキシシリルプロピル、メタクリル酸ジメチルメトキシシリルプロピル等のシリル基含有メタクリル酸エステル類;トリメトキシシリルプロピルビニルエーテル等のシリル基含有ビニルエーテル類;トリメトキシシリルウンデカン酸ビニル等のシリル基含有ビニルエステル類等を挙げることができる。 The hydrolyzable silyl group-containing vinyl monomer is not particularly limited as long as it is a vinyl monomer having at least one hydrolyzable silyl group. For example, vinyl silanes such as vinyl trimethoxysilane, vinyl triethoxysilane, vinyl methyl dimethoxysilane, vinyl dimethyl methoxysilanen; silyl such as trimethoxysilylpropyl acrylate, triethoxysilylpropyl acrylate, methyldimethoxysilylpropyl acrylate and the like. Group-containing acrylic acid esters; silyl group-containing methacrylate esters such as trimethoxysilylpropyl methacrylate, triethoxysilylpropyl methacrylate, methyldimethoxysilylpropyl methacrylate, dimethylmethoxysilylpropyl methacrylate; trimethoxysilylpropyl vinyl ether and the like. Cyril group-containing vinyl ethers; silyl group-containing vinyl esters such as trimethoxysilyl undecanoate vinyl and the like can be mentioned.
 架橋性単量体の使用量は、架橋性単量体以外の単量体(非架橋性単量体)の総質量に対して、例えば、0.1質量%以上5質量%以下であり、例えば、0.5質量%以上3質量%以下である。また、架橋性単量体の使用量は、非架橋性単量体の総モル量に対して、例えば、0.01モル%以上2モル%以下であり、また例えば、0.03モル%以上2モル%以下であり、また例えば、0.5モル%以上1モル%以下である。 The amount of the crosslinkable monomer used is, for example, 0.1% by mass or more and 5% by mass or less with respect to the total mass of the monomers other than the crosslinkable monomer (non-crosslinkable monomer). For example, it is 0.5% by mass or more and 3% by mass or less. The amount of the crosslinkable monomer used is, for example, 0.01 mol% or more and 2 mol% or less, and for example, 0.03 mol% or more, based on the total molar amount of the non-crosslinkable monomer. It is 2 mol% or less, and for example, 0.5 mol% or more and 1 mol% or less.
 重合体微粒子の製造に際して、第1の重合体がリビング重合活性単位を備えているため、適切なラジカル重合開始剤(ラジカル発生剤)を添加することで、第2の単量体がリビング重合活性単位に対して重合される。ラジカル重合開始剤としては、RAFT剤について述べた各種の態様から適宜選択することができる。ラジカル重合開始剤の使用割合は特に制限されないが、分子量分布がより狭い重合体を得る点から、第2の単量体の総質量100質量部に対して、例えば、0.01質量%以上5質量%以下、また例えば、0.02質量%以上3質量%以下、また例えば、0.03質量%以上3質量%以下用いることができる。 In the production of the polymer fine particles, since the first polymer has a living polymerization activity unit, by adding an appropriate radical polymerization initiator (radical generator), the second monomer has a living polymerization activity. Polymerized with respect to the unit. The radical polymerization initiator can be appropriately selected from the various aspects described for the RAFT agent. The proportion of the radical polymerization initiator used is not particularly limited, but from the viewpoint of obtaining a polymer having a narrower molecular weight distribution, for example, 0.01% by mass or more is 5 with respect to 100 parts by mass of the total mass of the second monomer. By mass% or less, for example, 0.02% by mass or more and 3% by mass or less, and for example, 0.03% by mass or more and 3% by mass or less can be used.
 重合体微粒子の製造は、分散重合法を採用することで、平均粒子径が小さい重合体微粒子を容易に得ることができる。重合体微粒子の製造に際して用いる重合溶媒は、採用する重合法や第1の単量体、第2の単量体等の種類に応じて適宜設定することができる。分散重合法を採用する場合には、例えば、第1の重合体の合成時に用いた各種溶剤を適宜用いることができる。例えば、アセトニトリルなどのニトリル系溶剤を用いることができる。 By adopting the dispersion polymerization method for the production of the polymer fine particles, the polymer fine particles having a small average particle size can be easily obtained. The polymerization solvent used in the production of the polymer fine particles can be appropriately set according to the polymerization method to be adopted and the types of the first monomer, the second monomer and the like. When the dispersion polymerization method is adopted, for example, various solvents used in the synthesis of the first polymer can be appropriately used. For example, a nitrile solvent such as acetonitrile can be used.
 第1の重合体の合成時の重合溶媒を用いることで、第1の重合体を溶解することができるとともに、第1の重合鎖やリビングラジカル重合の制御剤を溶解しやすい良溶媒であるため、第1の重合鎖が重合体微粒子の表層側に存在し、伸長末端となるアクリル酸などからなる第2の重合鎖側を重合体微粒子の内部に存在するように組織化しつつ重合させることができる。このため、分散安定性に優れた微粒子構造を形成しやすくなる。 By using the polymerization solvent at the time of synthesizing the first polymer, the first polymer can be dissolved, and the first polymer chain and the control agent for living radical polymerization can be easily dissolved. , The first polymerized chain is present on the surface layer side of the polymer fine particles, and the second polymerized chain side made of acrylic acid or the like as an extension end can be polymerized while being organized so as to be present inside the polymer fine particles. it can. Therefore, it becomes easy to form a fine particle structure having excellent dispersion stability.
 重合体微粒子の製造時の重合溶媒は、さらに、分散重合を考慮して、第2の単量体等が溶解するがその重合鎖を含む重合体微粒子が溶解しない貧溶媒である必要があることを考慮して決定することができる。 Further, in consideration of dispersion polymerization, the polymerization solvent at the time of producing the polymer fine particles needs to be a poor solvent in which the second monomer and the like are dissolved but the polymer fine particles containing the polymer chains are not dissolved. Can be determined in consideration of.
 例えば、重合体微粒子の製造時の重合溶媒としては、アセトニトリルなどのニトリル系溶剤、メタノール、t-ブチルアルコールなどのアルコール系溶剤、アセトンなどのケトン系溶剤、テトラヒドロフランなどのフラン系溶剤テトラヒドロフラン等のエーテル系溶剤のほか、ベンゼン、酢酸エチル、ジクロロエタン、n-ヘキサン、シクロヘキサン及びn-ヘプタン等が挙げられ、これらの1種を単独であるいは2種以上を組み合わせて用いることができる。さらに、こうした溶剤と水などの高極性溶剤との混合溶媒として用いることもできる。重合体微粒子の重合溶媒に、水などの高極性溶剤を含む場合、(メタ)アクリル酸を重合工程において速やかに中和できる。高極性溶剤の使用量は、媒体の全質量に対して好ましくは0.05~10.0質量%であり、より好ましくは0.1~5.0質量%、さらに好ましくは0.1~1.0質量%である。高極性溶媒の割合が0.05質量%以上であれば、上記中和反応への効果が認められ、10.0質量%以下であれば重合反応への悪影響も見られない。 For example, as the polymerization solvent at the time of producing the polymer fine particles, a nitrile solvent such as acetonitrile, an alcohol solvent such as methanol and t-butyl alcohol, a ketone solvent such as acetone, and a furan solvent such as tetrahydrofuran ether such as tetrahydrofuran. In addition to the system solvent, benzene, ethyl acetate, dichloroethane, n-hexane, cyclohexane, n-heptane and the like can be mentioned, and one of these can be used alone or in combination of two or more. Further, it can be used as a mixed solvent of such a solvent and a highly polar solvent such as water. When the polymerization solvent of the polymer fine particles contains a highly polar solvent such as water, the (meth) acrylic acid can be rapidly neutralized in the polymerization step. The amount of the highly polar solvent used is preferably 0.05 to 10.0% by mass, more preferably 0.1 to 5.0% by mass, and further preferably 0.1 to 1 by mass with respect to the total mass of the medium. It is 0.0% by mass. When the proportion of the highly polar solvent is 0.05% by mass or more, the effect on the neutralization reaction is recognized, and when it is 10.0% by mass or less, no adverse effect on the polymerization reaction is observed.
 重合溶媒中における第2の単量体の濃度は、特に限定するものではないが、適宜設定できるが、例えば、5質量%以上30質量%以下とすることができ、また例えば、10質量%以上20質量%以下とすることができる。 The concentration of the second monomer in the polymerization solvent is not particularly limited, but can be appropriately set, but can be, for example, 5% by mass or more and 30% by mass or less, and for example, 10% by mass or more. It can be 20% by mass or less.
 重合体微粒子の製造時の重合反応の際の反応温度は、特に限定するものではないが、例えば、40℃以上100℃以下である。また例えば、45℃以上90℃以下であり、また例えば、50℃以上80℃以下である。反応温度が40℃以上であれば、重合反応を円滑に進めることができる。一方、反応温度が100℃以下であれば、副反応が抑制できるとともに、使用できる開始剤や溶剤に関する制限が緩和される。 The reaction temperature during the polymerization reaction during the production of the polymer fine particles is not particularly limited, but is, for example, 40 ° C. or higher and 100 ° C. or lower. Further, for example, it is 45 ° C. or higher and 90 ° C. or lower, and for example, 50 ° C. or higher and 80 ° C. or lower. When the reaction temperature is 40 ° C. or higher, the polymerization reaction can proceed smoothly. On the other hand, when the reaction temperature is 100 ° C. or lower, side reactions can be suppressed and restrictions on the initiators and solvents that can be used are relaxed.
 第2の単量体については後段で詳述するが、第1の重合体の存在下、第2の単量体を重合して重合体微粒子を製造するのにあたって、第1の重合体を分散安定剤として機能させるためには、例えば、第1の重合体を、第2の単量体の総質量100質量部に対して、0.3質量部以上50質量部以下用いることができる。かかる範囲で用いることで、第1の重合体を分散安定剤として機能させつつ、第2の単量体を主として含有する重合体微粒子を製造することができる。また、第1の重合体が0.3質量部未満であると、十分な分散安定効果が出にくく、重合体微粒子の平均粒子径が0.2μmを超えやすくなり、50質量部を超えても、分散安定剤としての機能性も向上しにくく、かつ重合体微粒子の平均粒子径の低下効果も小さくなってしまうからである。 The second monomer will be described in detail later, but in the presence of the first polymer, when the second monomer is polymerized to produce polymer fine particles, the first polymer is dispersed. In order to function as a stabilizer, for example, the first polymer can be used in an amount of 0.3 parts by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the total mass of the second monomer. By using it in such a range, it is possible to produce polymer fine particles mainly containing the second monomer while allowing the first polymer to function as a dispersion stabilizer. Further, when the amount of the first polymer is less than 0.3 parts by mass, it is difficult to obtain a sufficient dispersion stabilizing effect, and the average particle size of the polymer fine particles tends to exceed 0.2 μm, even if it exceeds 50 parts by mass. This is because it is difficult to improve the functionality as a dispersion stabilizer, and the effect of reducing the average particle size of the polymer fine particles is also reduced.
 第1の重合体は、第2の単量体の総質量100質量部に対して、また例えば、0.5質量部以上、また例えば、1質量部以上用いることができる。また、第1の重合体は、例えば、50質量部以下、また例えば、40質量部以下、また例えば、30質量部以下、また例えば、20質量部以下用いることができる。第1の重合体の第2の単量体の総質量100質量部に対する使用量の範囲は、上記上限と下限を適宜組み合わせて設定できるが、例えば、0.3質量部以上30質量部以下であり、また例えば、0.3質量部以上20質量部以下であり、また例えば、0.5質量部以上20質量部以下であり、また例えば、1質量部以上20質量部以下である。 The first polymer can be used with respect to 100 parts by mass of the total mass of the second monomer, for example, 0.5 parts by mass or more, and for example, 1 part by mass or more. Further, the first polymer can be used, for example, 50 parts by mass or less, for example, 40 parts by mass or less, for example, 30 parts by mass or less, and for example, 20 parts by mass or less. The range of the amount of the first polymer used with respect to 100 parts by mass of the total mass of the second monomer can be set by appropriately combining the above upper limit and lower limit, and is, for example, 0.3 parts by mass or more and 30 parts by mass or less. Yes, for example, 0.3 parts by mass or more and 20 parts by mass or less, for example, 0.5 parts by mass or more and 20 parts by mass or less, and for example, 1 part by mass or more and 20 parts by mass or less.
上記方法によって、重合体微粒子を製造することができる。本方法によれば、0.2μm以下の平均粒子径を備える重合体微粒子を容易に得ることができる。また、重合安定性に優れるため、重合工程中において凝集物の発生を抑制し、粗大粒子の生成を抑制することができる。なお、本明細書において、重合体微粒子の平均粒子径は、顕微鏡下に観察された重合体微粒子の粒子径を、画像解析ソフトなどを用いて測定して、これらの平均値を求めることにより得ることができる。電解放射走査型電子顕微鏡で観察した画像中の400個の粒子の粒子径の平均値を本微粒子の平均粒子径とすることができる。より具体的には、以下の方法を採用できる。電界放射走査型電子顕微鏡(FE-SEM、日本電子(株)製JSM-6330F)または当該電子顕微鏡と解像度において同等の顕微鏡を用いて、1枚に50~100個の粒子が観察できる撮影画像を複数枚取得し、得られた画像につき、三谷商事株式会社製の画像解析ソフト「WinROOF」又は当該ソフトと同様の精度及び正確性で粒子数及び粒子径をカウントできるソフトウエアを使用し、粒子数としてトータル200個となるまでカウントし、200個の粒子について粒子径(円相当直径)を測定する。さらに、この操作を、別の撮影画像についても同様に200個の粒子について粒子径を測定する。これら合計400個の粒子径の平均値を、平均粒子径とすることができる。また、こうして得られた平均粒子径の2倍以上の粒子を粗大粒子として、粒子100個中の粗大粒子数をカウントして粗大粒子数を取得することができる。
Polymer fine particles can be produced by the above method. According to this method, polymer fine particles having an average particle size of 0.2 μm or less can be easily obtained. In addition, since it is excellent in polymerization stability, it is possible to suppress the generation of agglomerates during the polymerization step and suppress the formation of coarse particles. In the present specification, the average particle size of the polymer fine particles is obtained by measuring the particle size of the polymer fine particles observed under a microscope using image analysis software or the like and obtaining the average value thereof. be able to. The average value of the particle sizes of 400 particles in the image observed by the electrolytic radiation scanning electron microscope can be used as the average particle size of the fine particles. More specifically, the following method can be adopted. Using an electric field radiation scanning electron microscope (FE-SEM, JSM-6330F manufactured by JEOL Ltd.) or a microscope with the same resolution as the electron microscope, a photographed image in which 50 to 100 particles can be observed on one sheet is captured. For the obtained images, use the image analysis software "WinROOF" manufactured by Mitani Shoji Co., Ltd. or software that can count the number of particles and particle size with the same accuracy and accuracy as the software. The total number of particles is 200, and the particle diameter (diameter equivalent to a circle) is measured for 200 particles. Further, this operation is performed to measure the particle size of 200 particles in the same manner for another captured image. The average value of the total particle diameters of 400 particles can be used as the average particle diameter. Further, the number of coarse particles can be obtained by counting the number of coarse particles in 100 particles, using the particles having twice or more the average particle diameter thus obtained as coarse particles.
 特に、実施例において開示される重合安定性試験における残留凝集物が、例えば、200ppm以下、また例えば、150ppm以下、また例えば、100ppm以下、また例えば、60ppm以下、また例えば、40ppm以下、また例えば、20ppm以下、また例えば、10ppm以下の重合体微粒子を得ることができる。 In particular, the residual agglomerates in the polymerization stability test disclosed in the Examples are, for example, 200 ppm or less, for example 150 ppm or less, and for example 100 ppm or less, for example 60 ppm or less, and for example 40 ppm or less, and for example. Polymer fine particles of 20 ppm or less, for example, 10 ppm or less can be obtained.
 また、実施例において開示される粒子100個当たりの粗大粒子数が2個以下、また例えば1個以下の重合体微粒子を得ることができる。 Further, it is possible to obtain polymer fine particles in which the number of coarse particles per 100 particles disclosed in the examples is 2 or less, for example, 1 or less.
 以上説明したように、本明細書に開示される第1の重合体は、重合体微粒子の製造のための分散安定剤として有用である。第1の重合体を分散安定剤として用いて重合体微粒子を製造することで、重合溶媒中に、均一な数平均分子量で溶解できる重合体微粒子の重合の基点を提供するとともに、重合溶媒中において第2の単量体による粒子核及び粒子成長に好適な第1の重合鎖及び第2の重合鎖の自己組織化を促進して平均粒子径の小さい重合体微粒子を良好な重合安定性を維持しつつ容易に製造することができる。 As described above, the first polymer disclosed in the present specification is useful as a dispersion stabilizer for the production of polymer fine particles. By producing the polymer fine particles using the first polymer as a dispersion stabilizer, a starting point for the polymerization of the polymer fine particles that can be dissolved in the polymerization solvent with a uniform number average molecular weight is provided, and in the polymerization solvent. Promotes self-assembly of the first polymerized chain and the second polymerized chain, which are suitable for particle nuclei and particle growth by the second monomer, and maintains good polymerization stability of polymer fine particles having a small average particle size. However, it can be easily manufactured.
 以下、本明細書の開示をより具体的に説明するために具体例としての実施例を記載する。以下の実施例は、本明細書の開示を説明するためのものであって、その範囲を限定するものではない。以下の実施例において、特に断りのない限り、%は質量%を表し、部は、質量部を表すものとする。 Hereinafter, examples as specific examples will be described in order to explain the disclosure of the present specification more concretely. The following examples are intended to illustrate the disclosure herein and are not intended to limit its scope. In the following examples, unless otherwise specified,% represents mass% and parts represent mass parts.
(重合体の分子量の測定方法)
 以下の実施例において、重合体についての分子量の測定をゲルパーミエーションクロマトグラフィー(GPC)にて行った。すなわち、THF系GPCにより、ポリスチレン換算による数平均分子量(Mn)及び重量平均分子量(Mw)を得た。また、得られた値から分子量分布(Mw/Mn)を算出した。なお、GPCは以下の条件で行った。
(Method for measuring the molecular weight of polymer)
In the following examples, the molecular weight of the polymer was measured by gel permeation chromatography (GPC). That is, a polystyrene-equivalent number average molecular weight (Mn) and a weight average molecular weight (Mw) were obtained by THF-based GPC. Moreover, the molecular weight distribution (Mw / Mn) was calculated from the obtained values. The GPC was performed under the following conditions.
カラム:東ソー製TSKgel SuperMultiporeHZ-M×4本溶媒:テトラヒドロフラン温度:40℃検出器:RI流速:600μL/min  Column: Tosoh TSKgel Super Multipore HZ-M x 4 Solvent: Tetrahydrofuran Temperature: 40 ° C. Detector: RI flow velocity: 600 μL / min
(リビング重合活性を有する重合体の合成)
(重合体1:P(St/PhMI))
 攪拌機、温度計、還流冷却器及び窒素導入管を装着した1LフラスコにRAFT剤(ジベンジルトリチオカーボネート:以下、「DBTTC」ともいう。)2.0部、2,2’-アゾビス(2-メチルブチロニトリル)(日本ファインケム社製、商品名「ABN-E」:以下、「ABN-E」ともいう。)0.014部、スチレン(以下、「St」ともいう。)38部、N-フェニルマレイミド(以下、「PhMI」ともいう。)62部、及びアセトニトリル222部を仕込み、窒素バブリングで十分脱気し、70℃の恒温槽で重合を開始した。4時間後、室温まで冷却し反応を停止した。上記重合溶液を、メタノール/水=90/10(vоl%)から再沈殿精製、真空乾燥することで重合体1を得た。ガスクロマトグラフィーによる分析の結果、得られた重合体1の反応率はSt75%、PhMI75%であった。重合体1の分子量は、Mn10,200、Mw15,300、Mw/Mnは1.51であった。なお、St及びPhMIが、第1の単量体に対応している。重合体の組成及び分子量分布等を表1に示す(以下、同様である。)。
(Synthesis of polymer with living polymerization activity)
(Polymer 1: P (St / PhMI))
2.0 parts of RAFT agent (dibenzyltrithiocarbonate: hereinafter also referred to as "DBTTC"), 2,2'-azobis (2-) in a 1 L flask equipped with a stirrer, a thermometer, a reflux condenser and a nitrogen introduction tube. Methylbutyronitrile) (manufactured by Nippon Finechem Co., Ltd., trade name "ABN-E": hereinafter also referred to as "ABN-E") 0.014 parts, styrene (hereinafter also referred to as "St") 38 parts, N -62 parts of phenylmaleimide (hereinafter, also referred to as "PhMI") and 222 parts of acetonitrile were charged, sufficiently degassed by nitrogen bubbling, and polymerization was started in a constant temperature bath at 70 ° C. After 4 hours, the reaction was stopped by cooling to room temperature. The above polymerization solution was reprecipitated and purified from methanol / water = 90/10 (vоl%) and vacuum dried to obtain a polymer 1. As a result of analysis by gas chromatography, the reaction rates of the obtained polymer 1 were St75% and PhMI75%. The molecular weight of the polymer 1 was Mn10,200, Mw15,300, and Mw / Mn was 1.51. In addition, St and PhMI correspond to the first monomer. The composition, molecular weight distribution, etc. of the polymer are shown in Table 1 (the same applies hereinafter).
(重合体2:P(St/AN))
 攪拌機、温度計、還流冷却器及び窒素導入管を装着した1LフラスコにRAFT剤(DBTTC)2.0部、ABN-E0.41部、St75部、アクリロニトリル(以下、「AN」ともいう。)25部、及びアニソール67部を仕込み、窒素バブリングで十分脱気し、80℃の恒温槽で重合を開始した。4時間後、室温まで冷却し反応を停止した。上記重合溶液を、メタノール/水=90/10(vоl%)から再沈殿精製、真空乾燥することで重合体2を得た。ガスクロマトグラフィーによる分析の結果、重合体2の反応率はSt73%、AN72%であった。重合体2の分子量は、Mn11,900、Mw15,500、Mw/Mnは1.30であった。なお、St及びANが、第1の単量体に対応している。
(Polymer 2: P (St / AN))
RAFT agent (DBTTC) 2.0 parts, ABN-E 0.41 parts, St75 parts, acrylonitrile (hereinafter, also referred to as "AN") 25 in a 1 L flask equipped with a stirrer, a thermometer, a reflux condenser and a nitrogen introduction tube. 67 parts and 67 parts of anisole were charged, sufficiently degassed by nitrogen bubbling, and polymerization was started in a constant temperature bath at 80 ° C. After 4 hours, the reaction was stopped by cooling to room temperature. The polymer solution was reprecipitated and purified from methanol / water = 90/10 (vоl%) and vacuum dried to obtain a polymer 2. As a result of analysis by gas chromatography, the reaction rates of the polymer 2 were St73% and AN72%. The molecular weight of the polymer 2 was Mn11,900, Mw15,500, and Mw / Mn was 1.30. In addition, St and AN correspond to the first monomer.
(重合体3:P(St/無水マレイン酸))
 攪拌機、温度計、還流冷却器及び窒素導入管を装着した1LフラスコにRAFT剤(DBTTC)2.0部、ABN-E0.070部、St52部、無水マレイン酸48部、及びアセトニトリル207部を仕込み、窒素バブリングで十分脱気し、70℃の恒温槽で重合を開始した。4時間後、
室温まで冷却し反応を停止した。上記重合溶液を、トルエンから再沈殿精製、真空乾燥することで重合体3を得た。ガスクロマトグラフィーによる分析の結果、得られた重合体3の反応率はSt71%、無水マレイン酸71%であった。重合体3の分子量は、Mn13,800、Mw22,200、Mw/Mnは1.61であった。なお、St及び無水マレイン酸が、第1の単量体に対応している。
(Polymer 3: P (St / maleic anhydride))
A 1 L flask equipped with a stirrer, a thermometer, a reflux condenser and a nitrogen introduction tube is charged with 2.0 parts of RAFT agent (DBTTC), 0.070 parts of ABN-E, 52 parts of St, 48 parts of maleic anhydride, and 207 parts of acetonitrile. , Nitrogen bubbling was sufficiently degassed, and polymerization was started in a constant temperature bath at 70 ° C. 4 hours later
The reaction was stopped by cooling to room temperature. The above polymerization solution was reprecipitated and purified from toluene and vacuum dried to obtain a polymer 3. As a result of analysis by gas chromatography, the reaction rate of the obtained polymer 3 was St 71% and maleic anhydride 71%. The molecular weight of the polymer 3 was Mn13,800, Mw22,200, and Mw / Mn was 1.61. In addition, St and maleic anhydride correspond to the first monomer.
(重合体4:P(St/PhMI))
 攪拌機、温度計、還流冷却器及び窒素導入管を装着した1Lフラスコに、1-フェニルエチルヨージド(1-PEI)3.24部、ABN-E0.019部、St38部、PhMI62部、及びアセトニトリル221部を仕込み、窒素バブリングで十分脱気し、70℃の恒温槽で重合を開始した。4時間後、室温まで冷却し反応を停止した。上記重合溶液を、メタノール/水=90/10(vоl%)から再沈殿精製、真空乾燥することで重合体4を得た。ガスクロマトグラフィーによる分析の結果、重合体4の反応率はSt74%、PhMI74%であった。重合体4の分子量は、Mn13,100、Mw31,100、Mw/Mnは2.37であった。なお、St及びPhMIが、第1の単量体に対応している。
(Polymer 4: P (St / PhMI))
3.24 parts of 1-phenylethyl iodide (1-PEI), 0.019 parts of ABN-E, 0.01 parts of St, 62 parts of PhMI, and acetonitrile in a 1 L flask equipped with a stirrer, a thermometer, a reflux condenser and a nitrogen introduction tube. 221 parts were charged, sufficiently degassed by nitrogen bubbling, and polymerization was started in a constant temperature bath at 70 ° C. After 4 hours, the reaction was stopped by cooling to room temperature. The polymer solution was reprecipitated and purified from methanol / water = 90/10 (vоl%) and vacuum dried to obtain a polymer 4. As a result of analysis by gas chromatography, the reaction rates of the polymer 4 were St74% and PhMI74%. The molecular weight of the polymer 4 was Mn13,100, Mw31,100, and Mw / Mn was 2.37. In addition, St and PhMI correspond to the first monomer.
(重合体5:P(St/AN)-b-PAA)
 攪拌機、温度計、還流冷却器及び窒素導入管を装着した1Lフラスコに、重合体2を70部、ABN-E0.019部、アクリル酸(以下、「AA」ともいう。)100部及びアセトニトリル255部を仕込み、窒素バブリングで十分脱気し、70℃の恒温槽で重合を開始した。4時間後、室温まで冷却し反応を停止した。上記重合溶液を、ヘキサンから再沈殿精製、真空乾燥することで重合体5を得た。ガスクロマトグラフィーによる分析の結果、AAの反応率は74%であった。重合体5のメチルエステル化後の分子量は、Mn24,800、Mw35,500、Mw/Mnは1.43であった。なお、St及びANが、第1の単量体に対応している。
(Polymer 5: P (St / AN) -b-PAA)
70 parts of polymer 2, 0.019 parts of ABN-E, 100 parts of acrylic acid (hereinafter, also referred to as "AA") and 255 parts of acetonitrile in a 1 L flask equipped with a stirrer, a thermometer, a reflux condenser and a nitrogen introduction tube. The part was charged, sufficiently degassed by nitrogen bubbling, and polymerization was started in a constant temperature bath at 70 ° C. After 4 hours, the reaction was stopped by cooling to room temperature. The above polymerization solution was reprecipitated and purified from hexane and vacuum dried to obtain a polymer 5. As a result of analysis by gas chromatography, the reaction rate of AA was 74%. The molecular weight of the polymer 5 after methyl esterification was Mn24,800, Mw35,500, and Mw / Mn was 1.43. In addition, St and AN correspond to the first monomer.
(リビング重合活性を有しない重合体の合成)
(重合体1’:P(St/AN))
 攪拌機、温度計、還流冷却器及び窒素導入管を装着した1LフラスコにRAFT剤(DBTTC)1.0部、ABN-E0.38部、St75部、AN25部、及びアニソール66部を仕込み、窒素バブリングで十分脱気し、80℃の恒温槽で重合を開始した。4時間後、重合液の一部を採取し、ガスクロマトグラフィーで測定した得られた単量体反応率はSt73%、AN72%であった。次いで、反応液を40℃まで冷却した後、窒素バブリングで十分脱気したn-プロピルアミン4.14部を仕込み、RAFT基の分解反応を行った。さらに4時間後、窒素バブリングで十分脱気したアクリル酸メチル(MA)9.04部を仕込み、40℃、4時間で末端不活性化反応を行った。上記重合溶液を、メタノール/水=90/10(vоl%)から再沈殿精製、真空乾燥することで重合体1’を得た。重合体1’の分子量は、Mn11,200、Mw15,100、Mw/Mnは1.35であった。
(Synthesis of polymer having no living polymerization activity)
(Polymer 1': P (St / AN))
A 1 L flask equipped with a stirrer, a thermometer, a reflux condenser and a nitrogen introduction tube is charged with 1.0 part of RAFT agent (DBTTC), 0.38 part of ABN-E, 75 parts of St, 25 parts of AN, and 66 parts of anisole, and nitrogen bubbling. Was sufficiently degassed, and polymerization was started in a constant temperature bath at 80 ° C. After 4 hours, a part of the polymerization solution was collected and the obtained monomer reaction rate measured by gas chromatography was St73% and AN72%. Next, after cooling the reaction solution to 40 ° C., 4.14 parts of n-propylamine sufficiently degassed by nitrogen bubbling was charged, and a decomposition reaction of RAFT groups was carried out. After another 4 hours, 9.04 parts of methyl acrylate (MA) sufficiently degassed by nitrogen bubbling was charged, and the terminal inactivation reaction was carried out at 40 ° C. for 4 hours. The above polymerization solution was reprecipitated and purified from methanol / water = 90/10 (vоl%) and vacuum dried to obtain a polymer 1'. The molecular weight of the polymer 1'was Mn11,200, Mw15,100, and Mw / Mn was 1.35.
 ここで、重合体1’について、以下の測定方法に従い、RAFT基(チオカルボニルチオ基)の分解率を算出した結果、100%であったことから、重合体1’がリビング重合活性を有しないことを確認した。 Here, as a result of calculating the decomposition rate of the RAFT group (thiocarbonylthio group) for the polymer 1'according to the following measurement method, it was 100%, so that the polymer 1'has no living polymerization activity. It was confirmed.
<チオカルボニルチオ基の分解率の測定方法>
 重合体1’5gをアセトン15gに溶解した後、ポリプロピレン製ディスポトレー(100mm×70mm×13mm、アズワン製)にキャストし、室温、16時間自然乾燥した後、70℃、4.5Torr、16時間乾燥させることでシート状サンプルを作製した。次いで、得られたシート状サンプルを用いて、以下の測定条件で蛍光X線分析を行い、サンプル中の硫黄含有率(%)を定量した。得られた硫黄含有率を用い、次式に従って、n-プロピルアミンによるチオカルボニルチオ基の分解率(%)を算出した。それらの結果を表1に示す。
チオカルボニルチオ基の分解率={(B-A)/B}×{N/(N-1)}×100
  B:n-プロピルアミンによる反応前のサンプル中の硫黄含有率(%)
  A:n-プロピルアミンによる反応後のサンプル中の硫黄含有率(%)
  N:チオカルボニルチオ基1分子中の硫黄原子数
○測定条件
 測定機器:(株)リガク製 ZSX PrimusII X線:Rh(50kV、50mA)
 測定元素:C~U(C、N、O、Sを定角測定)
 分析径:20mm
 解析:ファンダメンタルパラメータ法(FP法)による、検出元素の半定量分析
<Measurement method of decomposition rate of thiocarbonylthio group>
After dissolving 1'5 g of the polymer in 15 g of acetone, it was cast on a polypropylene disposable tray (100 mm × 70 mm × 13 mm, manufactured by AS ONE), air-dried at room temperature for 16 hours, and then dried at 70 ° C., 4.5 Torr for 16 hours. A sheet-shaped sample was prepared by allowing the sample to be prepared. Next, using the obtained sheet-shaped sample, fluorescent X-ray analysis was performed under the following measurement conditions to quantify the sulfur content (%) in the sample. Using the obtained sulfur content, the decomposition rate (%) of the thiocarbonylthio group by n-propylamine was calculated according to the following formula. The results are shown in Table 1.
Decomposition rate of thiocarbonylthio groups = {(BA) / B} × {N / (N-1)} × 100
B: Sulfur content (%) in the sample before reaction with n-propylamine
A: Sulfur content (%) in the sample after the reaction with n-propylamine
N: Number of sulfur atoms in one thiocarbonylthio group ○ Measuring conditions Measuring equipment: ZSX PrimusII X-ray manufactured by Rigaku Co., Ltd .: Rh (50 kV, 50 mA)
Measurement element: C to U (C, N, O, S are measured at a fixed angle)
Analytical diameter: 20 mm
Analysis: Semi-quantitative analysis of detected elements by fundamental parameter method (FP method)
Figure JPOXMLDOC01-appb-T000001
St:スチレン
PhMI:N-フェニルマレイミド
AN:アクリロニトリル
AA:アクリル酸
DBTTC:ジベンジルトリチオカーボネート
1-PEI:1-フェニルエチルヨージド
ABN-E:2,2-アゾビス(2-メチルブチロニトリル)、日本ファインケム製、商品名「ABN-E」
MA:アクリル酸メチル
Figure JPOXMLDOC01-appb-T000001
St: Styrene PhMI: N-Phenylmaleimide AN: Acrylonitrile AA: Acrylic acid DBTTC: Dibenzyltrithiocarbonate 1-PEI: 1-Phenylethyliodide ABN-E: 2,2-azobis (2-methylbutyronitrile) , Made by Japan Finechem, product name "ABN-E"
MA: Methyl acrylate
<重合体微粒子の製造例>
(実施例1)
 実施例1では、重合体1を用いて重合体微粒子を製造した。重合には、攪拌翼、温度計、還流冷却器及び窒素導入管を備えた反応器を用いた。反応器内にアセトニトリル567部、イオン交換水2.20部、AA100.0部、トリメチロールプロパンジアリルエーテル(ダイソー社製、商品名「ネオアリルT-20」)0.90部、重合体1を1.0部、及び上記AAに対して1.0モル%に相当するトリエチルアミンを仕込んだ。反応器内を十分に窒素置換した後、加温して内温を55℃まで昇温した。内温が55℃で安定したことを確認した後、重合開始剤として2,2’-アゾビス(2,4-ジメチルバレロニトリル)(和光純薬工業社製、商品名「V-65」)0.040部を添加したところ、反応液に白濁が認められたため、この点を重合開始点とした。外温(水バス温度)を調整して内温を55℃に維持しながら重合反応を継続し、重合開始点から6時間経過した時点で内温を65℃まで昇温した。内温を65℃で維持し、反応開始点から12時間経過した時点でAAの反応率は97%であり、粒子が媒体に分散したスラリー状の重合体の反応液を得た。得られた反応液を遠心分離して重合体微粒子を沈降させた後、上澄みを除去した。その後、重合反応液と同質量のアセトニトリルに沈降物を再分散させた後、遠心分離により重合体微粒子を沈降させて上澄みを除去する洗浄操作を2回繰り返した。沈降物を回収し、減圧条件下、80℃で3時間乾燥処理を行い、揮発分を除去することにより、実施例1記載の重合体微粒子を得た。
<Production example of polymer fine particles>
(Example 1)
In Example 1, polymer fine particles were produced using the polymer 1. A reactor equipped with a stirring blade, a thermometer, a reflux condenser and a nitrogen introduction tube was used for the polymerization. 567 parts of acetonitrile, 2.20 parts of ion-exchanged water, 100.0 parts of AA, 0.90 parts of trimethylolpropane diallyl ether (manufactured by Daiso, trade name "Neoallyl T-20"), 1 part of polymer 1 in the reactor. 0.0 parts and 1.0 mol% of triethylamine with respect to the above AA were charged. After sufficiently replacing the inside of the reactor with nitrogen, the inside temperature was raised to 55 ° C. by heating. After confirming that the internal temperature was stable at 55 ° C., 2,2'-azobis (2,4-dimethylvaleronitrile) (manufactured by Wako Pure Chemical Industries, Ltd., trade name "V-65") 0 as a polymerization initiator. When .040 parts were added, white turbidity was observed in the reaction solution, and this point was set as the polymerization initiation point. The polymerization reaction was continued while maintaining the internal temperature at 55 ° C. by adjusting the external temperature (water bath temperature), and the internal temperature was raised to 65 ° C. when 6 hours had passed from the polymerization initiation point. The internal temperature was maintained at 65 ° C., and 12 hours after the reaction start point, the reaction rate of AA was 97%, and a reaction solution of a slurry-like polymer in which particles were dispersed in a medium was obtained. The obtained reaction solution was centrifuged to settle the polymer fine particles, and then the supernatant was removed. Then, after redispersing the precipitate in acetonitrile having the same mass as the polymerization reaction solution, the washing operation of precipitating the polymer fine particles by centrifugation to remove the supernatant was repeated twice. The precipitate was collected and dried under reduced pressure at 80 ° C. for 3 hours to remove volatile matter, thereby obtaining the polymer fine particles described in Example 1.
(実施例2~12、比較例1及び2)
 仕込みを表2に示す通り変更する以外は、実施例1と同様の操作を行い、重合体微粒子を得た。
(Examples 2 to 12, Comparative Examples 1 and 2)
The same operation as in Example 1 was carried out except that the preparation was changed as shown in Table 2, and polymer fine particles were obtained.
<重合安定性の評価>
 各実施例及び比較例で得られたスラリー状の重合体の反応液を、200目ポリネット(目開き:114μm)で濾過し、ポリネット上に残留している凝集物について、乾燥後の質量を測定し、仕込み全量に対する凝集物量を測定した。結果を表2に示す。
<Evaluation of polymerization stability>
The reaction solution of the slurry-like polymer obtained in each Example and Comparative Example was filtered through a 200-mesh polynet (opening: 114 μm), and the mass of the agglomerates remaining on the polynet after drying was obtained. Was measured, and the amount of agglomerates with respect to the total amount charged was measured. The results are shown in Table 2.
<平均粒子径及び粗大粒子数の測定>
 各実施例及び比較例で得られた重合体微粒子について、電界放射走査型電子顕微鏡(FE-SEM、日本電子(株)製JSM-6330F)を用いて、1枚に50~100個の粒子が観察できる撮影画像を複数枚取得し、得られた画像につき、三谷商事株式会社製の画像解析ソフト「WinROOF」を使用し、粒子数としてトータル200個となるまでカウントし、200個の粒子について粒子径(円相当直径)を測定した。この操作を、別の撮影画像についても同様に200個の粒子について粒子径を測定した。これら合計400個の粒子径の平均値を、平均粒子径とした。また、こうして得られた平均粒子径の2倍以上の粒子を粗大粒子とし、粒子100個中の粗大粒子数をカウントした。結果を表2に示す。
<Measurement of average particle size and number of coarse particles>
For the polymer fine particles obtained in each Example and Comparative Example, 50 to 100 particles were formed per particle using an electric field radiation scanning electron microscope (FE-SEM, JSM-6330F manufactured by JEOL Ltd.). We acquired multiple observable captured images, and used the image analysis software "WinROOF" manufactured by Mitani Shoji Co., Ltd. to count the obtained images until the total number of particles reached 200, and about 200 particles were particles. The diameter (diameter equivalent to a circle) was measured. In this operation, the particle size of 200 particles was measured in the same manner for another captured image. The average value of the total particle diameters of 400 particles was taken as the average particle diameter. Further, particles having twice or more the average particle diameter thus obtained were regarded as coarse particles, and the number of coarse particles in 100 particles was counted. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
AA:アクリル酸
HEA:アクリル酸2-ヒドロキシエチル
T-20:トリメチロールプロパンジアリルエーテル、ダイソー株式会社製、商品名「ネオアリルT-20」
TEA:トリエチルアミン
AcN:アセトニトリル
V-65:2,2’-アゾビス(2,4-ジメチルバレロニトリル)、和光純薬工業社製、商品名「V-65」
Figure JPOXMLDOC01-appb-T000002
AA: HEA acrylate: 2-Hydroxyethyl acrylate T-20: Trimethylolpropane diallyl ether, manufactured by Daiso Corporation, trade name "Neoallyl T-20"
TEA: Triethylamine AcN: Acetonitrile V-65: 2,2'-azobis (2,4-dimethylvaleronitrile), manufactured by Wako Pure Chemical Industries, Ltd., trade name "V-65"
 表2に示すように、実施例1~12では、RAFT重合を用いて得た、交換連鎖機構によるリビングラジカル重合における活性単位を有する重合体1~3及び5、並びに、ヨウ素移動重合を用いて得た、結合-解離機構によるリビングラジカル重合における活性単位を有する重合体4を用いたことにより、重合体微粒子の重合時の重合安定性が優れた結果、粗大粒子数の数が少なく、得られた重合体微粒子の平均粒子径が0.20μm以下であった。これらに対して、こうした分散安定剤を用いなかった比較例1や、分散安定剤としてリビング重合活性を有しない重合体を用いた比較例2は、重合安定性に劣るために粗大粒子数の数が多く、得られた重合体微粒子の平均粒子径が0.50μm超であった。 As shown in Table 2, in Examples 1 to 12, polymers 1 to 3 and 5 having active units in living radical polymerization by an exchange chain mechanism obtained by using RAFT polymerization, and iodine transfer polymerization were used. By using the obtained polymer 4 having an active unit in living radical polymerization by a bond-dissociation mechanism, the polymerization stability of the polymer fine particles at the time of polymerization was excellent, and as a result, the number of coarse particles was small. The average particle size of the polymer fine particles was 0.20 μm or less. On the other hand, Comparative Example 1 in which such a dispersion stabilizer was not used and Comparative Example 2 in which a polymer having no living polymerization activity was used as the dispersion stabilizer were inferior in polymerization stability and therefore had a large number of coarse particles. The average particle size of the obtained polymer fine particles was more than 0.50 μm.
 また、表2からは、所定のリビングラジカル重合活性単位を有する重合体1~5(分散安定剤)の分子量分布が狭いほど、重合体微粒子の平均粒子径が小さいことがわかった。また、実施例2~6の結果から、リビング重合活性単位を有する重合体(分散安定剤)の使用量が多いと、重合体微粒子の平均粒子径がより小さくなることがわかった。  Further, from Table 2, it was found that the narrower the molecular weight distribution of the polymers 1 to 5 (dispersion stabilizer) having a predetermined living radical polymerization active unit, the smaller the average particle size of the polymer fine particles. Further, from the results of Examples 2 to 6, it was found that the average particle size of the polymer fine particles became smaller when the amount of the polymer (dispersion stabilizer) having a living polymerization active unit was large.

Claims (12)

  1.  1種又は2種以上の第1のビニル系単量体の重合鎖とリビングラジカル重合活性単位を有する第1の重合体の存在下、1種又は2種以上の第2のビニル系単量体を、前記リビングラジカル重合活性に基づくリビングラジカル重合を用いて分散重合により重合させることにより、重合体微粒子を製造する工程を備え、
     前記リビングラジカル重合活性単位は、交換連鎖機構又は結合-解離機構によるリビングラジカル重合における活性単位である、方法。
    In the presence of a polymer chain of one or more first vinyl-based monomers and a first polymer having a living radical polymerization active unit, one or more second vinyl-based monomers Is provided with a step of producing polymer fine particles by polymerizing by dispersion polymerization using living radical polymerization based on the living radical polymerization activity.
    The method, wherein the living radical polymerization active unit is an active unit in living radical polymerization by an exchange chain mechanism or a bond-dissociation mechanism.
  2.  前記リビングラジカル重合活性単位は、前記交換連鎖機構によるリビングラジカル重合である、請求項1に記載の方法。 The method according to claim 1, wherein the living radical polymerization active unit is living radical polymerization by the exchange chain mechanism.
  3.  前記リビングラジカル重合活性単位は、可逆的付加-解裂連鎖移動重合法又はヨウ素移動重合法によるリビングラジカル重合における活性単位である、請求項1又は2に記載の方法。 The method according to claim 1 or 2, wherein the living radical polymerization active unit is an active unit in living radical polymerization by a reversible addition-cracking chain transfer polymerization method or an iodine transfer polymerization method.
  4.  前記第1の重合体の分子量分布が2.0以下であることを特徴とする、請求項1~3のいずれか1項に記載の方法。 The method according to any one of claims 1 to 3, wherein the molecular weight distribution of the first polymer is 2.0 or less.
  5.  前記重合体微粒子の製造工程は、前記1種又は2種以上の第2のビニル系単量体100質量部に対し、前記第1の重合体を0.3質量部以上50質量部以下用いる、請求項1~4のいずれか1項に記載の方法。 In the step of producing the polymer fine particles, 0.3 parts by mass or more and 50 parts by mass or less of the first polymer is used with respect to 100 parts by mass of the second vinyl-based monomer of one or more kinds. The method according to any one of claims 1 to 4.
  6.  前記重合体微粒子の製造工程は、前記1種又は2種以上の第2のビニル系単量体100質量部に対し、前記第1の重合体を0.3質量部以上20質量部以下用いる、請求項5に記載の方法。 In the step of producing the polymer fine particles, 0.3 parts by mass or more and 20 parts by mass or less of the first polymer is used with respect to 100 parts by mass of the second vinyl-based monomer of one or more kinds. The method according to claim 5.
  7.  前記1種又は2種以上の第2のビニル系単量体はアクリル酸又はその塩を含み、重合体微粒子の製造工程における重合溶媒はアセトニトリルを含む、請求項1~6のいずれか1項に記載の方法。 The second vinyl-based monomer of one kind or two or more kinds contains acrylic acid or a salt thereof, and the polymerization solvent in the step of producing the polymer fine particles contains acetonitrile, according to any one of claims 1 to 6. The method described.
  8.  前記1種又は2種以上の第1のビニル系単量体は、スチレン類、(メタ)アクリロニトリル化合物、マレイミド化合物、不飽和酸無水物及び不飽和カルボン酸化合物からなる群より選択されるスチレン類を含む2種以上である、請求項7に記載の方法。 The one or more first vinyl-based monomers are styrenes selected from the group consisting of styrenes, (meth) acrylonitrile compounds, maleimide compounds, unsaturated acid anhydrides and unsaturated carboxylic acid compounds. The method according to claim 7, wherein there are two or more kinds including.
  9.  前記1種又は2種以上の第2のビニル系単量体は、その総質量の50質量%以上100質量%以下のアクリル酸を含む、請求項1~8のいずれか1項に記載の方法。 The method according to any one of claims 1 to 8, wherein the one or more kinds of second vinyl-based monomers contain acrylic acid of 50% by mass or more and 100% by mass or less of the total mass thereof. ..
  10.  前記1種又は2種以上の第1のビニル系単量体は、その総質量の20質量%以上のスチレン類を含む、請求項9に記載の方法。 The method according to claim 9, wherein the one type or two or more types of the first vinyl-based monomer contains styrenes in an amount of 20% by mass or more based on the total mass thereof.
  11.  前記1種又は2種以上の第1のビニル系単量体は、その総質量の20質量%以上のスチレン類を含み、前記1種又は2種以上の第2のビニル系単量体は、その総質量の50質量%以上100質量%以下のアクリル酸又はその塩を含み、
     前記第1の重合体は、可逆的付加-開裂連鎖移動重合によるリビングラジカル重合活性単位を備えており、
     前記1種又は2種以上の第2のビニル系単量体100質量部に対し、前記第1の重合体を0.3質量部以上20質量部以下用いる、請求項1に記載の方法。
    The one or more first vinyl-based monomers contain 20% by mass or more of styrenes based on the total mass of the first vinyl-based monomer, and the one or more second vinyl-based monomers contain 20% by mass or more of the total mass. Contains acrylic acid or a salt thereof in an amount of 50% by mass or more and 100% by mass or less of the total mass.
    The first polymer comprises a living radical polymerization active unit by reversible addition-cleavage chain transfer polymerization.
    The method according to claim 1, wherein the first polymer is used in an amount of 0.3 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the one or more second vinyl-based monomers.
  12.  1種又は2種以上の第1のビニル系単量体の重合鎖と、前記重合鎖の少なくとも一部に備えられるリビング重合活性単位と、を備える重合体を含む、重合体微粒子の製造に用いるための分散安定剤。  Used for producing polymer fine particles, which comprises a polymer comprising a polymer chain of one or more kinds of first vinyl-based monomers and a living polymerization active unit provided in at least a part of the polymer chain. Dispersion stabilizer for.
PCT/JP2020/041965 2019-11-15 2020-11-10 Method for producing polymer fine particles, and dispersion stabilizer WO2021095739A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021556108A JPWO2021095739A1 (en) 2019-11-15 2020-11-10

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-207465 2019-11-15
JP2019207465 2019-11-15

Publications (1)

Publication Number Publication Date
WO2021095739A1 true WO2021095739A1 (en) 2021-05-20

Family

ID=75912661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/041965 WO2021095739A1 (en) 2019-11-15 2020-11-10 Method for producing polymer fine particles, and dispersion stabilizer

Country Status (2)

Country Link
JP (1) JPWO2021095739A1 (en)
WO (1) WO2021095739A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021215381A1 (en) * 2020-04-23 2021-10-28 東亞合成株式会社 Method for producing carboxyl group-containing crosslinked polymer or salt thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005120233A (en) * 2003-10-16 2005-05-12 Showa Highpolymer Co Ltd Thermoplastic block copolymer and unsaturated polyester resin composition, and molded product
JP2019167446A (en) * 2018-03-23 2019-10-03 東亞合成株式会社 Polymer composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005120233A (en) * 2003-10-16 2005-05-12 Showa Highpolymer Co Ltd Thermoplastic block copolymer and unsaturated polyester resin composition, and molded product
JP2019167446A (en) * 2018-03-23 2019-10-03 東亞合成株式会社 Polymer composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021215381A1 (en) * 2020-04-23 2021-10-28 東亞合成株式会社 Method for producing carboxyl group-containing crosslinked polymer or salt thereof

Also Published As

Publication number Publication date
JPWO2021095739A1 (en) 2021-05-20

Similar Documents

Publication Publication Date Title
JP5404222B2 (en) Method for producing vinyl polymer
WO2021095739A1 (en) Method for producing polymer fine particles, and dispersion stabilizer
JP2007065155A5 (en)
JP5703567B2 (en) Method for producing crosslinked polymer fine particles
WO2015163321A1 (en) Block polymer
JP5578080B2 (en) Method for producing polymer fine particles
WO2010047287A1 (en) Process for producing polymer microparticles
JP2008504411A (en) Monodisperse polymer containing (alkyl) acrylic acid moiety, precursor, method for producing the same, and application thereof
JP6465275B2 (en) Polymer fine particles and method for producing the same
WO2021095740A1 (en) Polyacrylate-based fine particles
JP5552726B2 (en) Method for producing polymer fine particles
WO2017022423A1 (en) (meth)acrylic crosslinked particles and method for producing same
JP7035327B2 (en) Method for producing macromonomer copolymer
JP4165152B2 (en) Method for producing cross-linked fine particles
JP2015214614A (en) Block polymer and production method thereof
WO2016043225A1 (en) Polymer microparticles and method for producing same
JP2019023319A (en) Block polymer and method for producing the same
JP7276315B2 (en) Method for producing polymer microparticles
JP2022100112A (en) Method for producing vinyl polymer
JP6394785B2 (en) Method for producing water-soluble polymer
JP6137493B2 (en) Crosslinked fine particles, method for producing aqueous solution containing crosslinked fine particles, method for producing crosslinked fine particles, and crosslinked fine particle composition
JP4513600B2 (en) Method for producing water-dispersible acrylic polymer
JP6484927B2 (en) Block polymer and method for producing the same
JP6484928B2 (en) Block polymer and method for producing the same
JP5043486B2 (en) Method for producing polymer fine particles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20887480

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021556108

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20887480

Country of ref document: EP

Kind code of ref document: A1