[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021095220A1 - Bulk feeder - Google Patents

Bulk feeder Download PDF

Info

Publication number
WO2021095220A1
WO2021095220A1 PCT/JP2019/044791 JP2019044791W WO2021095220A1 WO 2021095220 A1 WO2021095220 A1 WO 2021095220A1 JP 2019044791 W JP2019044791 W JP 2019044791W WO 2021095220 A1 WO2021095220 A1 WO 2021095220A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
transport path
feeder
component
bulk
Prior art date
Application number
PCT/JP2019/044791
Other languages
French (fr)
Japanese (ja)
Inventor
祐輔 山▲崎▼
裕司 川崎
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to JP2021555737A priority Critical patent/JP7303898B2/en
Priority to PCT/JP2019/044791 priority patent/WO2021095220A1/en
Publication of WO2021095220A1 publication Critical patent/WO2021095220A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/02Feeding of components

Definitions

  • the present invention relates to a bulk feeder.
  • the bulk feeder is installed in a parts mounting machine that mounts parts on a board, and is used to supply parts housed in a bulk state.
  • a type of bulk feeder that supplies parts in a state where a plurality of parts are aligned in a row by, for example, an alignment mechanism provided on a transport path.
  • Patent Document 1 there is a type in which the bulk feeder omits the alignment mechanism as described above and supplies the parts in a bulk state in which the parts are scattered in the supply region where the parts can be collected by the suction nozzle.
  • the bulk feeder In the case of a bulk feeder of the type that supplies a plurality of parts to the supply area in a bulk state as described above, if the parts are close to each other in the supply area, the suction nozzle cannot target those parts. Therefore, the bulk feeder is required to be supplied with the parts existing in the supply region in a preferably dispersed state.
  • the present specification describes the feeder body, a receiving region provided on the feeder body and receiving the parts discharged from a component case for accommodating a plurality of parts in a bulk state, a supply region for supplying the parts, and the receiving region.
  • a track member having a transport path for the component from the region to the supply region, a vibrating device provided on the feeder body and applying vibration to the track member so that the component on the transport path is transported.
  • a bulk feeder including, among the track members, a dispersion member provided in the transport path and dispersed in the width direction of the transport path by contacting a plurality of the components transported by vibration of the track member.
  • FIG. 7 is an enlarged view showing a VIII-VIII cross section and some parts in FIG. 7. It is a top view which shows the dispersion member of the 2nd deformation mode of a dispersion member. It is a conceptual diagram which shows the structure which can selectively attach a track member or a dispersion member to a bulk feeder.
  • the bulk feeder 20 is mounted on the component mounting machine 10 for mounting the component 92 on the substrate 91, and is used for supplying the component 92 housed in the bulk state.
  • the component mounting machine 10 constitutes a production line for producing board products together with a plurality of types of board-to-board working machines including, for example, another component mounting machine 10.
  • the board-to-board working machine constituting the above production line may include a printing machine, an inspection device, a reflow furnace, and the like.
  • Board transfer control unit The component mounting machine 10 includes a substrate transfer control unit 11 as shown in FIG. The board transfer control unit 11 sequentially transfers the board 91 in the transfer direction, and positions the board 91 at a predetermined position in the machine.
  • the component mounting machine 10 includes a component supply device 12.
  • the component supply device 12 supplies components to be mounted on the substrate 91.
  • the component supply device 12 is equipped with a feeder 122 in each of the plurality of slots 121.
  • a tape feeder in which a carrier tape containing a large number of parts is fed and moved so that the parts can be collected is applied.
  • a bulk feeder 20 is applied to the feeder 122 so that parts housed in a bulk state (in a loose state in which each posture is irregular) can be collected and supplied. Details of the bulk feeder 20 will be described later.
  • the component mounting machine 10 includes a component transfer device 13.
  • the component transfer device 13 transfers the components supplied by the component supply device 12 to a predetermined mounting position on the substrate 91.
  • the component transfer device 13 includes a head drive device 131, a moving table 132, a mounting head 133, and a suction nozzle 134.
  • the head driving device 131 moves the moving table 132 in the horizontal direction (X direction and Y direction) by a linear motion mechanism.
  • the mounting head 133 is detachably fixed to the moving table 132 by a clamp member (not shown), and is provided so as to be movable in the horizontal direction in the machine.
  • the mounting head 133 supports a plurality of suction nozzles 134 so as to be rotatable and elevating.
  • the suction nozzle 134 is a holding member that collects and holds the component 92 supplied by the feeder 122.
  • the suction nozzle 134 sucks the parts supplied by the feeder 122 by the supplied negative pressure air.
  • a chuck or the like that holds the component by gripping it may be adopted.
  • the mounting head 133 has a type in which a plurality of holding members are supported by a rotary head rotatably provided around an R axis parallel to the vertical axis (Z axis).
  • the mounting head 133 supports 24 suction nozzles 134 by the rotary head.
  • the mounting head 133 includes a type that supports a plurality of holding members arranged in a straight line or a matrix, a type that supports one holding member, and the like.
  • the type of these mounting heads 133 can be appropriately selected depending on, for example, the type of substrate product to be produced.
  • the component mounting machine 10 includes a component camera 14 and a board camera 15.
  • the component camera 14 and the substrate camera 15 are digital image pickup devices having an image pickup element such as CMOS.
  • the component camera 14 and the substrate camera 15 take an image based on the control signal and send out the image data acquired by the image pickup.
  • the component camera 14 is configured so that the component held by the suction nozzle 134 can be imaged from below.
  • the board camera 15 is provided on the moving table 132 so as to be movable in the horizontal direction integrally with the mounting head 133.
  • the substrate camera 15 is configured so that the substrate 91 can be imaged from above.
  • the substrate camera 15 can target various devices and the like as long as it is within the movable range of the moving table 132.
  • the substrate camera 15 can image the supply region As (see FIG. 4) to which the bulk feeder 20 supplies the component 92 in the present embodiment.
  • the substrate camera 15 can be used for imaging different imaging targets in order to acquire image data used for various image processing.
  • Control device 16 The component mounting machine 10 includes a control device 16.
  • the control device 16 is mainly composed of a CPU, various memories, and a control circuit.
  • the control device 16 includes a storage device (not shown).
  • the storage device is composed of an optical drive device such as a hard disk device, a flash memory, or the like.
  • the storage device of the control device 16 stores various data such as a control program used for controlling the mounting process.
  • the control program indicates the mounting position and mounting order of the components mounted on the substrate 91 in the mounting process.
  • the control device 16 executes a process of recognizing the holding state of the parts held by each of the plurality of holding members (suction nozzles 134). Specifically, the control device 16 performs image processing on the image data acquired by the imaging of the component camera 14 and recognizes the position and angle of each component with respect to the reference position of the mounting head 133. In addition to the component camera 14, the control device 16 performs image processing on image data acquired by, for example, a head camera unit integrally provided on the mounting head 133, which images the component from the side, the lower side, or the upper side. You may try to do it.
  • the control device 16 controls the mounting operation of the component by the mounting head 133 based on the control program to execute the mounting process.
  • the mounting process includes a process of repeating a pick-and-place cycle (hereinafter, referred to as “PP cycle”) including a collecting operation and a mounting operation over a plurality of times.
  • PP cycle a pick-and-place cycle
  • the above-mentioned “collecting operation” is an operation of collecting the parts supplied by the parts supply device 12 by the suction nozzle 134.
  • the control device 16 controls the operation of the component supply device 12 including the bulk feeder 20 and recognizes the supply state of the component 92 in the supply area As of the bulk feeder 20 when the collection operation is executed. To execute.
  • the above-mentioned "supply state recognition process” includes a process of recognizing whether or not there is a part 92 that can be collected in the supply area As, and if necessary, recognizing the position of the part 92. Then, the control device 16 controls the operation of the mounting head 133 in the collection operation based on the result of the supply state recognition process.
  • the above-mentioned “mounting operation” is an operation of mounting the collected parts at a predetermined mounting position on the board 91.
  • the control device 16 controls the operation of the mounting head 133 based on the information output from various sensors, the result of image processing, the control program, and the like in the mounting process. As a result, the positions and angles of the plurality of suction nozzles 134 supported by the mounting head 133 are controlled.
  • the bulk feeder 20 is mounted on the component mounting machine 10 and functions as at least a part of the component supply device 12. Unlike the tape feeder, the bulk feeder 20 does not use a carrier tape, and therefore has an advantage in that loading of the carrier tape and collection of the used tape can be omitted. On the other hand, since the bulk feeder 20 supplies the parts 92 housed in the bulk state which is not aligned like the carrier tape, the supply state of the parts 92 may affect the sampling operation by the holding member such as the suction nozzle 134. ..
  • the parts 92 are close enough to come into contact with each other or are piled up (overlapping in the vertical direction) in the supply area As, they cannot be collected. Further, when the parts 92 are supplied to the supply area As in an irregular posture, image processing for recognizing the supply state (whether or not the parts 92 can be collected and the posture of the parts 92 that can be collected) is required. Therefore, it is desired that the bulk feeder 20 is supplied with a plurality of parts 92 that can be collected in the supply region As without being insufficient in the required number, and is further dispersed as appropriate.
  • the bulk feeder 20 adopts a configuration in which a plurality of parts 92 are aligned in a row by, for example, an alignment mechanism provided on a transport path before the parts 92 reach the supply area As.
  • the bulk feeder 20 of the present embodiment adopts a configuration in which the parts 92 are conveyed by using vibration and the parts 92 are aligned by using vibration in the supply region As.
  • the bulk feeder 20 includes a feeder main body 21.
  • the feeder body 21 is formed in a flat box shape.
  • the feeder main body 21 is set in the slot 121 of the component supply device 12.
  • a connector 211 and two pins 212 are formed on the front portion of the feeder main body 21.
  • the connector 211 is communicably connected to the main body side of the component mounting machine 10. Further, the bulk feeder 20 is supplied with power via the connector 211.
  • the two pins 212 are used for positioning when the feeder body 21 is set in the slot 121.
  • a component case 22 for accommodating a plurality of components 92 in a bulk state is detachably attached to the feeder main body 21.
  • the component case 22 is configured so that the component 92 can be discharged to the outside.
  • the component case 22 is an external device of the bulk feeder 20, for example, one of various types suitable for the mounting process is selected and mounted on the feeder main body 21.
  • the bulk feeder 20 includes a discharge device 23.
  • the discharge device 23 adjusts the quantity of the parts 92 to be discharged from the parts case 22.
  • the discharge device 23 supplies the plurality of parts 92 discharged from the part case 22 to the receiving region Ar of the track member 30, which will be described later.
  • the bulk feeder 20 includes a cover 24.
  • the cover 24 is detachably attached to the upper part of the front side of the feeder main body 21. The cover 24 prevents the component 92 transported along the transport path R of the track member 30, which will be described later, from scattering to the outside.
  • the bulk feeder 20 includes a track member 30.
  • the track member 30 is provided on the front upper portion of the feeder main body 21. As shown in FIGS. 3 and 4, the track member 30 is formed so as to extend in the front-rear direction (horizontal direction of FIGS. 3 and 4) of the feeder main body 21.
  • a pair of side walls 31 protruding upward are formed on both edges of the track member 30 in the width direction (vertical direction in FIG. 4).
  • the pair of side walls 31 surround the peripheral edge of the transport path R together with the tip end portion 32 of the track member 30 to prevent leakage of the component 92 transported through the transport path R.
  • a circular reference mark 33 indicating the reference position of the bulk feeder 20 is attached to the upper surface of the tip portion 32.
  • the track member 30 having the above configuration has a receiving region Ar, a supply region As, and a transport path R.
  • the “reception region Ar” is a region that receives the bulk component 92 discharged from the component case 22.
  • the receiving region Ar of the present embodiment is located below the discharge port of the component case 22.
  • the "supply area As” is an area for supplying the component 92. In other words, it is an area where the component 92 can be collected by the suction nozzle 134 supported by the mounting head 133, and is included in the movable range of the mounting head 133.
  • the "transport path R" of the track member 30 is a path of the component 92 from the receiving region Ar to the supply region As.
  • the transport path R is formed in a groove shape in which the bottom surface of the groove is horizontal.
  • the groove side surface of the transport path R is formed by a pair of side walls 31.
  • the groove opening on the upper side of the transport path R is largely closed by the cover 24.
  • the track member 30 is supported so as to be slightly displaceable (that is, vibrable) with respect to the feeder body 21 in a virtual vertical plane formed in the front-rear direction and the up-down direction.
  • the bulk feeder 20 includes a vibration exciter 40.
  • the vibration exciter 40 is provided on the feeder main body 21.
  • the vibration exciter 40 applies vibration to the track member 30 so that the component 92 on the transport path R is transported.
  • the vibration exciter 40 has a plurality of first support portions 41, a plurality of first piezoelectric elements 42, a plurality of second support portions 43, a plurality of second piezoelectric elements 44, and a drive portion 45.
  • the first support portion 41 and the second support portion 43 are connecting members that connect the feeder main body 21 and the track member 30.
  • the first support portion 41 is formed in a shape that is inclined forward and extended with respect to the vertical direction.
  • the second support portion 43 is formed in a shape that is inclined rearward with respect to the vertical direction and stretched.
  • the first piezoelectric element 42 and the second piezoelectric element 44 vibrate at a frequency corresponding to the electric power supplied from the drive unit 45.
  • the first piezoelectric element 42 is attached to the first support portion 41.
  • the second piezoelectric element 44 is attached to the second support portion 43.
  • the amplitude of the orbital member 30 fluctuates according to the voltage applied to the first piezoelectric element 42 or the second piezoelectric element 44.
  • the vibration exciter 40 applies vibration to the track member 30 by vibrating the first piezoelectric element 42 attached to the first support portion 41 that is inclined forward.
  • the vibration exciter 40 causes the track member 30 to make a clockwise elliptical motion in the horizontal direction (the front-rear direction in FIG. 3) orthogonal to the transport direction of the component 92 in the transport path R.
  • the vibration exciter 40 vibrates the track member 30 so that an external force is applied forward and upward to the component 92 on the transport path R.
  • the vibration exciter 40 applies vibration to the track member 30 by vibrating the second piezoelectric element 44 attached to the second support portion 43 that is inclined rearward.
  • the vibration exciter 40 causes the track member 30 to make a counterclockwise elliptical motion in the horizontal direction (the front-rear direction in FIG. 3) orthogonal to the transport direction of the component 92 in the transport path R.
  • the vibration exciter 40 vibrates the track member 30 so that an external force is applied rearward and upward to the component 92 on the transport path R.
  • the drive unit 45 changes the frequency of the power supplied to the first piezoelectric element 42 and the second piezoelectric element 44 and the applied voltage based on the command of the feeder control device 70 described later. As a result, the frequency and amplitude of the vibration applied to the track member 30 are adjusted, and the rotation direction of the elliptical motion of the track member 30 is determined.
  • the frequency and amplitude of the vibration of the track member 30 and the rotation direction of the elliptical motion due to the vibration fluctuate, the transport speed of the component 92 to be transported, the degree of dispersion of the component 92, the transport direction, and the like change.
  • the vibration exciter 40 applies a predetermined vibration to the track member 30, and a plurality of parts 92 discharged from the component case 22 to the receiving region Ar of the track member 30 are passed through the transport path R. Can be transported to the supply area As.
  • the operation of the vibration exciter 40 for transporting the component 92 on the transport path R in the direction toward the supply region As is referred to as a “feed operation”.
  • the operation of the vibration exciter 40 that conveys the component 92 on the transport path R in the direction toward the receiving region Ar is referred to as a “return operation”.
  • the bulk feeder 20 includes an alignment member 50.
  • the alignment member 50 is provided in the supply region As of the track member 30.
  • the aligning member 50 guides a plurality of parts 92 conveyed by the vibration of the track member 30 and aligns them with the feeder main body 21.
  • the alignment member 50 has a plurality of cavities 51 that individually accommodate the plurality of parts 92, as shown in FIG.
  • the plurality of cavities 51 are arranged in a matrix in the supply region As.
  • the alignment member 50 has a total of 120 cavities 51 in which 10 are regularly arranged in the transport direction and 12 are regularly arranged in the width direction of the transport path R.
  • each of the plurality of cavities 51 opens on the upper surface of the transport path R, and accommodates the component 92 in a posture in which the thickness direction of the component 92 is the vertical direction.
  • the opening of the cavity 51 is set to a size slightly larger than the outer shape of the component 92 in the upward view.
  • the depth of the cavity 51 can be appropriately set according to the type (shape, mass, etc.) of the component 92. When the depth of the cavity 51 is set shallow and the component 92 protrudes from the upper surface of the transport path R, interference between the suction nozzle 134 and the alignment member 50 in the sampling operation can be reliably prevented.
  • the depth of each of the plurality of cavities 51 in the alignment member 50 is set to be equal to or greater than the thickness Tp of the component 92.
  • the depth of the cavity 51 is too deep, there is a possibility that another component 92 may be prevented from moving in the transport direction on the upper side of the cavity 51 in which the component 92 is housed.
  • the depth of the cavity 51 is set so that the upper end of the component 92 housed in the cavity 51 is slightly lower than the upper surface of the transport path R.
  • the shape (opening, depth, etc.) of the cavity 51 is appropriately set.
  • the shape of the cavity 51 of the alignment member 50 is similar to the shape of the cavity formed in the carrier tape, assuming that the component 92 is housed in the carrier tape and supplied by the tape feeder.
  • the shape of the cavity 51 is appropriately set according to the shape of the component 92 and the posture for accommodating the cavity 51.
  • the cavity 51 may be formed in a shape that accommodates the component 92 in a posture in which the longitudinal direction of the component 92 is in the vertical direction. Further, when the shape of the cavity 51 is set, the occupied area of one cavity 51 in the supply region As is determined. Further, the number of cavities 51 in the alignment member 50 is appropriately set in consideration of the shape of the cavities 51, the required number, and the degree of density that may affect the transportability.
  • the number of cavities 51 in the alignment member 50 is set to be larger than the maximum number of parts 92 to be sampled by the sampling operation in one PP cycle.
  • the above “maximum number” corresponds to the number of suction nozzles 134 supported by the mounting head 133.
  • the number of cavities 51 is set to be at least 24 or more.
  • the bulk feeder 20 includes a dispersion member 60.
  • the dispersion member 60 is provided in the transport path R of the track members 30.
  • the dispersion member 60 is dispersed in the width direction of the transport path R by coming into contact with a plurality of parts 92 that are conveyed by the vibration of the track member 30.
  • the dispersion member 60 of the present embodiment has a plurality of ridges 61 (three in this embodiment).
  • the plurality of ridges 61 are formed so as to extend in the transport direction of the component 92 in the transport path R and project upward from the transport path R.
  • the length, width, and upward protrusion amount of the ridge portion 61 in the transport direction can be appropriately set according to, for example, the type of the component 92 (shape, mass, etc.), the quantity of the component 92 on the transport path R, and the like. ..
  • each of the plurality of ridge portions 61 forms a first inclined surface 62 whose end portion on the receiving region Ar side is inclined with respect to the width direction of the transport path R in upward view. Further, each of the plurality of ridge portions 61 forms a second inclined surface 63 whose end portion on the supply region As side is inclined with respect to the width direction of the transport path R in upward view.
  • the first inclined surface 62 and the second inclined surface 63 are formed so as to have an arc convex shape when viewed upward.
  • the first inclined surface 62 and the second inclined surface 63 may be formed in an arc concave shape or a straight line in an upward view.
  • the shapes of the first inclined surface 62 and the second inclined surface 63 can be appropriately set according to the type of the component 92 and the like, as well as the length of the ridge portion 61 and the like.
  • various aspects can be applied to the dispersion member 60. Various aspects of the dispersion member and the action of the dispersion member 60 on the plurality of parts 92 will be described later.
  • Feeder control device 70 The bulk feeder 20 includes a feeder control device 70.
  • the feeder control device 70 is mainly composed of a CPU, various memories, and a control circuit.
  • the feeder control device 70 is in a state where the bulk feeder 20 is set in the slot 121, power is supplied via the connector 211, and communication with the control device 16 of the component mounting machine 10 is possible.
  • the feeder control device 70 has a storage unit 71.
  • the storage unit 71 is composed of a flash memory or the like.
  • the storage unit 71 stores various data such as a program used for controlling the component supply process and the transport parameter F1.
  • the above-mentioned "transport parameter F1" is a parameter for controlling the operation of the vibration exciter 40 so that the vibration applied to the track member 30 becomes appropriate when the component 92 is transported in the component supply process, for example. It is set in advance in association with each type of the component 92.
  • the feeder control device 70 has a transport control unit 72.
  • the transport control unit 72 controls the operation of the vibration exciter 40 to execute the feed operation and the return operation described above. Specifically, the transport control unit 72 sends a command to the drive unit 45 of the vibration exciter 40 when executing the feed operation.
  • the drive unit 45 supplies a predetermined electric power to the first piezoelectric element 42, so that vibration is applied to the track member 30 via the first support unit 41.
  • the component 92 on the transport path R is transported by receiving an external force so as to move to the front side in the transport direction.
  • the transport control unit 72 realizes various transport modes by combining the execution time of the feed operation and the return operation of the vibration exciter 40.
  • the transfer control unit 72 may execute the following accommodating step and retracting step.
  • accommodation step the feeding operation is executed until at least a part of the plurality of parts 92 on the transport path R reaches the supply area As, and the component 92 is accommodated in at least a part of the plurality of cavities 51. It is a process to make it.
  • the transport control unit 72 repeatedly executes the feed operation and the return operation after at least a part of the plurality of parts 92 on the transport path R reaches the supply region As, and the track member 30 receives the track member 30.
  • a plurality of parts 92 may be retained in the supply region As in a vibrating state.
  • the above-mentioned "evacuation step” means that after the accommodating step is executed, at least a part of the plurality of parts 92 on the transport path R is accommodated in the plurality of cavities 51, and the return operation is executed, and the rest. This is a step of retracting the component 92 from the supply region As to the receiving region Ar side.
  • the transport control unit 72 can appropriately set the execution time of the feed operation and the return operation in each process, the time of the retention operation in the accommodating process, and the number of executions of the repetitive operation. Further, depending on the number of remaining parts 92 on the transport path R, the retention operation or the retracting step in the accommodating process may be omitted. Further, the transport control unit 72 may adjust at least one of the frequency and the amplitude of the vibration applied to the track member 30 by the vibration exciter 40 according to the type of the component 92 housed in the component case 22. ..
  • the transfer control unit 72 acquires parameters according to the type of the component 92 from the transfer parameter F1. As a result, the transport control unit 72 adjusts the command to be sent to the drive unit 45 of the vibration exciter 40.
  • the transport parameter F1 may be appropriately switched depending on various modes adopted for each of the alignment member 50 and the dispersion member 60, in addition to the type of the component 92. As a result, the accommodating step, the staying operation, and the retracting step are preferably executed. Further, the transport parameter F1 may be updated by the administrator based on the result (including the success rate) of the component supply process executed in the past.
  • the bulk feeder 20 executes the component supply process of supplying a plurality of components 92 so as to be collectable in the supply area As.
  • the bulk feeder 20 is configured to include an aligning member 50 in which a plurality of cavities 51 are formed in a matrix as described above.
  • the control device 16 of the component mounting machine 10 executes the calibration process after the bulk feeder 20 is set in the slot, and recognizes the position of the alignment member 50 in the machine.
  • the control device 16 first moves the board camera 15 above the reference mark 33 of the bulk feeder 20 and acquires image data by imaging the board camera 15. Then, the control device 16 recognizes the position of the alignment member 50 in the machine based on the position of the reference mark 33 included in the image data by image processing and the position of the substrate camera 15 at the time of imaging. The control device 16 recognizes the position of the alignment member 50, specifically the position of each cavity 51, based on the arrangement information indicating the shape of the alignment member 50 and the result of the calibration process.
  • the control device 16 instructs the bulk feeder 20 to execute the component supply process at a predetermined timing. Specifically, the control device commands the execution of the component supply process in the period after the execution of the collection operation of the current PP cycle and before the execution of the collection operation of the next PP cycle, for example.
  • the transfer control unit 72 of the bulk feeder 20 executes the above-mentioned accommodating step and retracting step so as to align the components 92 in the supply area As.
  • control device 16 executes the process of recognizing the supply state of the component 92 in the supply area As after the component supply process is executed. Specifically, the control device 16 first moves the substrate camera 15 above the alignment member 50 in the supply region As of the bulk feeder 20, and acquires image data by imaging the substrate camera 15. Then, the control device 16 executes a predetermined image processing on the image data, and recognizes the parts 92 housed in the plurality of cavities 51, respectively.
  • control device 16 when the number of parts 92 (number of supplies) that can be collected as a result of the supply state recognition process is less than the number (necessary number) of parts 92 that are scheduled to be collected in this PP cycle. , Instruct the bulk feeder 20 to execute the component supply process again. As described above, the control device 16 repeatedly executes the component supply process if the required number of components 92 in the current PP cycle cannot be collected in the current supply state of the components 92 in the supply area As.
  • the transfer control unit 72 discharges a predetermined amount of the component 92 from the component case 22 to the receiving region Ar when the component 92 on the transport path R is not an appropriate amount and is insufficient.
  • the transfer control unit 72 executes an accommodating step of accommodating the component 92 in the alignment member 50. Specifically, the transport control unit 72 first starts the feed operation of the vibration exciter 40. As a result, the parts 92 on the receiving region Ar and the transport path R are transported to the supply region As side.
  • a component group Gp which is a set of components 92, may be generated on the transport path R. If such a component group Gp is located in the center of the transport path R in the width direction, for example, a bias may occur when a plurality of components 92 reach the supply region As. Parts 92 that are close enough to deposit or contact in the supply area As are not subject to sampling during the sampling operation.
  • the transport control unit 72 continues the feed operation of the vibration exciter 40 and transports the component group Gp so as to pass through the dispersion member 60, the component group Gp becomes as shown in the middle part of FIG. It is divided. As a result, the plurality of parts 92 are dispersed in the width direction of the transport path R, as shown in the lower part of FIG.
  • the component group Gp is divided by the first inclined surface 62 of the ridge portion 61 of the dispersion member 60.
  • the transport width in the range where the dispersion member 60 exists in the transport path R is reduced. That is, the parts group Gp passing between the ridge portion 61 and the side wall 31 or between the ridge portion 61 and the ridge portion 61 is stretched in the transport direction and is a component in the width direction of the transport path R. The amount of 92 is reduced. As a result, after passing through the dispersion member 60, the plurality of parts 92 are dispersed in the width direction of the transport path R.
  • the transport control unit 72 continues the feed operation of the vibration exciter 40 until at least a part of the plurality of parts 92 on the transport path R reaches the supply area As. Based on the transport parameter F1, the transport control unit 72 continues the subsequent feed operation by the vibration exciter 40 for a predetermined time, and appropriately executes the retention operation. As a result, the parts 92 are housed in the plurality of cavities 51 of the alignment member 50, respectively.
  • the transport control unit 72 executes an evacuation step as needed.
  • the transport control unit 72 determines whether or not the return operation of the vibration apparatus 40 is necessary in the evacuation step based on, for example, the transport parameter F1, and executes the return operation when it is required to be executed.
  • the transport control unit 72 retracts the plurality of parts 92 that are not housed in the cavity 51 of the alignment member 50 from the supply region As to the receiving region Ar side.
  • the plurality of parts 92 are transported from the supply region As to the reception region Ar side, and are in a retracted state so as not to affect the collection operation executed later.
  • the transport control unit 72 ends the component supply process after executing the specified return operation.
  • the bulk feeder 20 can disperse a plurality of parts 92 in the supply area As.
  • the bulk feeder 20 can efficiently supply the parts 92 in the supply area As without expanding the supply area As in order to secure the number of supplies that can be collected.
  • the required time can be shortened by improving the efficiency of the component supply process, the efficiency of the mounting process using the bulk feeder 20 can be improved.
  • the dispersion member 60 has a configuration having a plurality of ridges 61.
  • the dispersion member 60 may adopt various aspects. Specifically, the dispersion member 60 may adopt, for example, the following first and second deformation modes.
  • the dispersion member 160 of the first deformation mode is inclined with respect to the horizontal plane, and the normal line is on the supply region As side and in the width direction of the transport path R. It has an inclined surface 64 facing outward. As shown in FIG. 7, the inclined surface 64 of this embodiment forms three wavy patterns having different curvatures centered on the central portion in the width direction of the transport path R. As shown in FIG. 8, one of the three inclined surfaces 64 is located on the outer surface in the radial direction of the outer surface of the protruding portion protruding from the transport path R.
  • the normal direction 641 of the inclined surface 64 is composed of a component facing the supply region As side and a component facing outward in the width direction of the transport path R.
  • the component 92 that is subjected to an external force that is applied forward and upward from the orbital member 30 that has been subjected to vibration and is conveyed, collides with or protrudes from the inclined surface 64 after jumping upward. It gets over the portion and comes into contact with the inclined surface 64.
  • the component 92 receives an external force from the dispersion member 160 in a different direction (direction corresponding to the normal direction 641 of the inclined surface 64) according to the position in the width direction of the transport path R.
  • the plurality of parts 92 are dispersed in the width direction of the transport path R. Therefore, by passing through the dispersion member 160, the plurality of parts 92 reach the supply region As in a dispersed state. As a result, the bulk feeder 20 can secure the number of supplies that can be collected, so that the parts 92 can be efficiently supplied.
  • an inclined surface 64 having a convex arcuate cross section is illustrated, but the component 92 in contact with the inclined surface 64 may be guided to the supply region As side and outward in the width direction of the transport path R.
  • the inclined surface 64 is formed in an arc concave shape or a flat shape may be adopted.
  • the dispersion member 160 may have at least one inclined surface 64, and may have four or more inclined surfaces 64.
  • the inclined surface 64 extends linearly from one of the pair of side walls 31 to the center side in the width direction and the supply region As side of the transport path R, and is folded back at the center in the width direction of the transport path R to form a pair. It may be formed in a V shape extending linearly to the other side of the side wall 31 and the receiving region Ar side.
  • the dispersion member 260 of the second deformation mode has a collision plate 65 and a support member 66, as shown in FIG.
  • the collision plate 65 collides with a plurality of parts 92 that are conveyed by the vibration of the track member 30 in the feeding operation of the vibration device 40.
  • the collision plate 65 is scattered in different directions by colliding with the plurality of parts 92.
  • the support member 66 adjustably supports the posture of the collision plate 65 with respect to the track member 30. Specifically, the angle of the collision plate 65 is adjusted around the support member 66 by, for example, an adjustment work by an operator. As a result, the plurality of parts 92 that come into contact with the collision plate 65 during transportation collide with the collision plate 65 and scatter.
  • the plurality of parts 92 are dispersed in the width direction of the transport path R. Therefore, by passing through the dispersion member 260, the plurality of parts 92 reach the supply region As in a dispersed state. As a result, the bulk feeder 20 can secure the number of supplies that can be collected, so that the parts 92 can be efficiently supplied.
  • the shape of the collision plate 65 is set in consideration of the shape of the parts to be transported, the degree of dispersion, and the like, and the posture is appropriately adjusted by using the support member 66.
  • the dispersion member 60 of the bulk feeder 20 may be configured to be interchangeably attached to the track member 30.
  • a plurality of types of dispersion members 60, 160, 260 corresponding to various aspects are interchangeably prepared.
  • the bulk feeder 20 is attached to the track member 30 with one selected from a plurality of types of dispersion members 60, 160, 260 having different shapes depending on the type of the component 92 to be supplied.
  • the bulk feeder 20 shares the feeder main body 21, the track member 30, and the vibration device 40, and can correspond to the type and supply mode of the parts 92 by exchanging the dispersion member 60. As a result, the range of use of the bulk feeder 20 can be expanded.
  • the track member 30 of the bulk feeder 20 may be interchangeably attached to the feeder main body 21.
  • the dispersion member 60 may be formed integrally with the track member 30, or may be replaceable. Specifically, when setting up the bulk feeder 20, as shown in FIG. 10, for example, a plurality of types of track members 30A-30C in which a plurality of types of dispersion members 60, 160, 260 corresponding to various modes are formed are replaced. Be prepared to be possible.
  • the bulk feeder 20 was selected from a plurality of types of track members 30A-30C formed or attached to one of a plurality of types of dispersion members 60 having different configurations depending on the parts to be supplied 92 and the supply mode.
  • One can be attached to the feeder body 21.
  • the bulk feeder 20 shares the feeder main body 21 and the vibration exciter 40, and can correspond to the type and supply mode of the parts 92 by exchanging the dispersion member 60 and the track member 30.
  • the range of use of the bulk feeder 20 can be expanded, and the production cost of the substrate product can be reduced.
  • the bulk feeder 20 is configured to include an aligning member 50 in which a plurality of cavities 51 are formed.
  • the alignment member 50 may be omitted. That is, in the supply region As of the track member 30, a concave portion in which the component 92 is dispersed at a position lower than the upper surface of the transport path R and a flat portion uniform with the upper surface of the transport path R are formed, and the component is in a bulk state. 92 may be supplied.
  • the configuration illustrated in the embodiment is preferable. That is, the bulk feeder 20 includes the alignment member 50 in which a plurality of cavities 51 are formed, and moves the component group Gp, which is a set of the components 92 secured in a certain quantity in the component supply process, to the upper side of the alignment member 50. As a result, the component 92 is accommodated in the plurality of cavities 51. As a result, the parts 92 in a state of being aligned by the number of cavities 51 at the maximum can be supplied. In such a configuration, it is useful to apply the dispersion member 60 in order to make the sparse density of the parts 92 in the parts group Gp uniform.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Feeding Of Articles To Conveyors (AREA)
  • Supply And Installment Of Electrical Components (AREA)

Abstract

This bulk feeder is provided with: a feeder body; a track member having a reception region for receiving components discharged from a component case which stores a plurality of components in a bulk state, a supply region for supplying the components, and a conveyance path for the components from the reception region to the supply region; a vibration device which applies vibration to the track member so that the components are conveyed on the conveyance path; and a dispersion member which comes into contact with the components being conveyed in association with the vibration of the track member to disperse the components in the width direction of the conveyance path.

Description

バルクフィーダBulk feeder
 本発明は、バルクフィーダに関するものである。 The present invention relates to a bulk feeder.
 バルクフィーダは、基板に部品を装着する部品装着機に装備され、バルク状態で収容された部品の供給に用いられる。バルクフィーダには、例えば搬送路上に設けられた整列機構によって複数の部品を一列に整列させた状態で部品を供給するタイプがある。また、バルクフィーダには、特許文献1に示すように、上記のような整列機構を省略し、吸着ノズルが部品を採取可能な供給領域において部品を散在させたバルク状態で供給するタイプがある。 The bulk feeder is installed in a parts mounting machine that mounts parts on a board, and is used to supply parts housed in a bulk state. There is a type of bulk feeder that supplies parts in a state where a plurality of parts are aligned in a row by, for example, an alignment mechanism provided on a transport path. Further, as shown in Patent Document 1, there is a type in which the bulk feeder omits the alignment mechanism as described above and supplies the parts in a bulk state in which the parts are scattered in the supply region where the parts can be collected by the suction nozzle.
特開2011-114084号公報Japanese Unexamined Patent Publication No. 2011-114084
 上記のように供給領域に複数の部品をバルク状態で供給するタイプのバルクフィーダの場合に、供給領域において部品同士が近接しているとそれらの部品を吸着ノズルが採取対象にすることができない。そのため、そのため、バルクフィーダには、供給領域に存在する部品が好適に分散した状態で供給されることが求められる。 In the case of a bulk feeder of the type that supplies a plurality of parts to the supply area in a bulk state as described above, if the parts are close to each other in the supply area, the suction nozzle cannot target those parts. Therefore, the bulk feeder is required to be supplied with the parts existing in the supply region in a preferably dispersed state.
 本明細書は、供給領域における複数の部品を分散することが可能なバルクフィーダを提供することを目的とする。 It is an object of the present specification to provide a bulk feeder capable of dispersing a plurality of parts in a supply area.
 本明細書は、フィーダ本体と、前記フィーダ本体に設けられ、複数の部品をバルク状態で収容する部品ケースから排出される前記部品を受容する受容領域、前記部品を供給する供給領域、および前記受容領域から前記供給領域への前記部品の搬送路を有する軌道部材と、前記フィーダ本体に設けられ、前記搬送路上の前記部品が搬送されるように前記軌道部材に振動を付与する加振装置と、前記軌道部材のうち前記搬送路に設けられ、前記軌道部材の振動に伴って搬送される複数の前記部品に接触することにより前記搬送路の幅方向に分散させる分散部材と、を備えるバルクフィーダを開示する。 The present specification describes the feeder body, a receiving region provided on the feeder body and receiving the parts discharged from a component case for accommodating a plurality of parts in a bulk state, a supply region for supplying the parts, and the receiving region. A track member having a transport path for the component from the region to the supply region, a vibrating device provided on the feeder body and applying vibration to the track member so that the component on the transport path is transported. A bulk feeder including, among the track members, a dispersion member provided in the transport path and dispersed in the width direction of the transport path by contacting a plurality of the components transported by vibration of the track member. Disclose.
 このような構成によると、供給領域における複数の部品を分散することが可能となる。これにより、バルクフィーダの幅方向の小型化を図りつつ好適に複数の部品を採取可能に供給することができる。また、部品供給処理の効率化により所要時間を短縮できるので、バルクフィーダを用いた装着処理の効率化を図ることができる。 With such a configuration, it is possible to disperse a plurality of parts in the supply area. As a result, it is possible to suitably supply a plurality of parts so that they can be collected while reducing the size of the bulk feeder in the width direction. Further, since the required time can be shortened by improving the efficiency of the parts supply process, the efficiency of the mounting process using the bulk feeder can be improved.
部品装着機の構成を示す模式図である。It is a schematic diagram which shows the structure of the component mounting machine. バルクフィーダの外観を示す斜視図である。It is a perspective view which shows the appearance of a bulk feeder. バルクフィーダの要部を模式的に示す側面図である。It is a side view which shows the main part of a bulk feeder schematically. 図3のIV方向から見た平面図である。It is a top view seen from the IV direction of FIG. 分散部材を示す平面図である。It is a top view which shows the dispersion member. 搬送処理における部品の分散状態の遷移を示す図である。It is a figure which shows the transition of the distributed state of the component in the transport process. 分散部材の第一変形態様の分散部材を示す平面図である。It is a top view which shows the dispersion member of the 1st deformation mode of a dispersion member. 図7におけるVIII-VIII断面および一部の部品を拡大して示す図である。FIG. 7 is an enlarged view showing a VIII-VIII cross section and some parts in FIG. 7. 分散部材の第二変形態様の分散部材を示す平面図である。It is a top view which shows the dispersion member of the 2nd deformation mode of a dispersion member. バルクフィーダに軌道部材または分散部材が選択的に取り付け可能な構成を示す概念図である。It is a conceptual diagram which shows the structure which can selectively attach a track member or a dispersion member to a bulk feeder.
 1.部品装着機10の構成
 バルクフィーダ20は、基板91に部品92を装着する部品装着機10に装備され、バルク状態で収容された部品92の供給に用いられる。部品装着機10は、例えば他の部品装着機10を含む複数種類の対基板作業機とともに、基板製品を生産する生産ラインを構成する。上記の生産ラインを構成する対基板作業機には、印刷機や検査装置、リフロー炉などが含まれ得る。
 1-1.基板搬送制御部
 部品装着機10は、図1に示すように、基板搬送制御部11を備える。基板搬送制御部11は、基板91を搬送方向へと順次搬送するとともに、基板91を機内の所定位置に位置決めする。
1. 1. Configuration of the component mounting machine 10 The bulk feeder 20 is mounted on the component mounting machine 10 for mounting the component 92 on the substrate 91, and is used for supplying the component 92 housed in the bulk state. The component mounting machine 10 constitutes a production line for producing board products together with a plurality of types of board-to-board working machines including, for example, another component mounting machine 10. The board-to-board working machine constituting the above production line may include a printing machine, an inspection device, a reflow furnace, and the like.
1-1. Board transfer control unit The component mounting machine 10 includes a substrate transfer control unit 11 as shown in FIG. The board transfer control unit 11 sequentially transfers the board 91 in the transfer direction, and positions the board 91 at a predetermined position in the machine.
 1-2.部品供給装置12
 部品装着機10は、部品供給装置12を備える。部品供給装置12は、基板91に装着される部品を供給する。部品供給装置12は、複数のスロット121にフィーダ122をそれぞれ装備される。フィーダ122には、例えば多数の部品が収納されたキャリアテープを送り移動させて、部品を採取可能に供給するテープフィーダが適用される。また、フィーダ122には、バルク状態(それぞれの姿勢が不規則なばら状態)で収容された部品を採取可能に供給するバルクフィーダ20が適用される。バルクフィーダ20の詳細については後述する。
1-2. Parts supply device 12
The component mounting machine 10 includes a component supply device 12. The component supply device 12 supplies components to be mounted on the substrate 91. The component supply device 12 is equipped with a feeder 122 in each of the plurality of slots 121. To the feeder 122, for example, a tape feeder in which a carrier tape containing a large number of parts is fed and moved so that the parts can be collected is applied. Further, a bulk feeder 20 is applied to the feeder 122 so that parts housed in a bulk state (in a loose state in which each posture is irregular) can be collected and supplied. Details of the bulk feeder 20 will be described later.
 1-3.部品移載装置13
 部品装着機10は、部品移載装置13を備える。部品移載装置13は、部品供給装置12により供給された部品を基板91上の所定の装着位置に移載する。部品移載装置13は、ヘッド駆動装置131、移動台132、装着ヘッド133、および吸着ノズル134を備える。ヘッド駆動装置131は、直動機構により移動台132を水平方向(X方向およびY方向)に移動させる。装着ヘッド133は、図示しないクランプ部材により移動台132に着脱可能に固定され、機内において水平方向に移動可能に設けられる。
1-3. Parts transfer device 13
The component mounting machine 10 includes a component transfer device 13. The component transfer device 13 transfers the components supplied by the component supply device 12 to a predetermined mounting position on the substrate 91. The component transfer device 13 includes a head drive device 131, a moving table 132, a mounting head 133, and a suction nozzle 134. The head driving device 131 moves the moving table 132 in the horizontal direction (X direction and Y direction) by a linear motion mechanism. The mounting head 133 is detachably fixed to the moving table 132 by a clamp member (not shown), and is provided so as to be movable in the horizontal direction in the machine.
 装着ヘッド133は、回転可能に且つ昇降可能に複数の吸着ノズル134を支持する。吸着ノズル134は、フィーダ122により供給される部品92を採取して保持する保持部材である。吸着ノズル134は、供給される負圧エアにより、フィーダ122により供給される部品を吸着する。装着ヘッド133に取り付けられる保持部材としては、部品を把持することにより保持するチャックなどが採用され得る。 The mounting head 133 supports a plurality of suction nozzles 134 so as to be rotatable and elevating. The suction nozzle 134 is a holding member that collects and holds the component 92 supplied by the feeder 122. The suction nozzle 134 sucks the parts supplied by the feeder 122 by the supplied negative pressure air. As the holding member attached to the mounting head 133, a chuck or the like that holds the component by gripping it may be adopted.
 ここで、上記の装着ヘッド133には、種々のタイプが採用され得る。具体的には、複数の保持部材を、鉛直軸(Z軸)に平行なR軸周りに回転可能に設けられたロータリヘッドにより支持するタイプが装着ヘッド133にはある。本実施形態では、装着ヘッド133は、ロータリヘッドにより24本の吸着ノズル134を支持する。その他に、直線状またはマトリックス状に配列された複数の保持部材を支持するタイプ、1つの保持部材を支持するタイプなどが装着ヘッド133にはある。これらの装着ヘッド133のタイプは、例えば生産する基板製品の種類などに応じて適宜選択され得る。 Here, various types can be adopted for the above-mentioned mounting head 133. Specifically, the mounting head 133 has a type in which a plurality of holding members are supported by a rotary head rotatably provided around an R axis parallel to the vertical axis (Z axis). In the present embodiment, the mounting head 133 supports 24 suction nozzles 134 by the rotary head. In addition, the mounting head 133 includes a type that supports a plurality of holding members arranged in a straight line or a matrix, a type that supports one holding member, and the like. The type of these mounting heads 133 can be appropriately selected depending on, for example, the type of substrate product to be produced.
 1-4.部品カメラ14、基板カメラ15
 部品装着機10は、部品カメラ14、および基板カメラ15を備える。部品カメラ14、および基板カメラ15は、CMOSなどの撮像素子を有するデジタル式の撮像装置である。部品カメラ14、および基板カメラ15は、制御信号に基づいて撮像を行い、当該撮像により取得した画像データを送出する。部品カメラ14は、吸着ノズル134に保持された部品を下方から撮像可能に構成される。基板カメラ15は、装着ヘッド133と一体的に水平方向に移動可能に移動台132に設けられる。基板カメラ15は、基板91を上方から撮像可能に構成される。
1-4. Parts camera 14, board camera 15
The component mounting machine 10 includes a component camera 14 and a board camera 15. The component camera 14 and the substrate camera 15 are digital image pickup devices having an image pickup element such as CMOS. The component camera 14 and the substrate camera 15 take an image based on the control signal and send out the image data acquired by the image pickup. The component camera 14 is configured so that the component held by the suction nozzle 134 can be imaged from below. The board camera 15 is provided on the moving table 132 so as to be movable in the horizontal direction integrally with the mounting head 133. The substrate camera 15 is configured so that the substrate 91 can be imaged from above.
 また、基板カメラ15は、基板91の表面を撮像対象とする他に、移動台132の可動範囲であれば種々の機器などを撮像対象にできる。例えば、基板カメラ15は、本実施形態において、バルクフィーダ20が部品92を供給する供給領域As(図4を参照)を撮像することができる。このように、基板カメラ15は、種々の画像処理に用いられる画像データを取得するために、異なる撮像対象の撮像に兼用され得る。 In addition to targeting the surface of the substrate 91 for imaging, the substrate camera 15 can target various devices and the like as long as it is within the movable range of the moving table 132. For example, the substrate camera 15 can image the supply region As (see FIG. 4) to which the bulk feeder 20 supplies the component 92 in the present embodiment. As described above, the substrate camera 15 can be used for imaging different imaging targets in order to acquire image data used for various image processing.
 1-5.制御装置16
 部品装着機10は、制御装置16を備える。制御装置16は、主として、CPUや各種メモリ、制御回路により構成される。制御装置16は、図略の記憶装置を備える。記憶装置は、ハードディスク装置などの光学ドライブ装置、またはフラッシュメモリなどにより構成される。制御装置16の記憶装置には、装着処理の制御に用いられる制御プログラムなどの各種データが記憶される。制御プログラムは、装着処理において基板91に装着される部品の装着位置および装着順序を示す。
1-5. Control device 16
The component mounting machine 10 includes a control device 16. The control device 16 is mainly composed of a CPU, various memories, and a control circuit. The control device 16 includes a storage device (not shown). The storage device is composed of an optical drive device such as a hard disk device, a flash memory, or the like. The storage device of the control device 16 stores various data such as a control program used for controlling the mounting process. The control program indicates the mounting position and mounting order of the components mounted on the substrate 91 in the mounting process.
 制御装置16は、複数の保持部材(吸着ノズル134)のそれぞれに保持された部品の保持状態の認識処理を実行する。具体的には、制御装置16は、部品カメラ14の撮像により取得された画像データを画像処理し、装着ヘッド133の基準位置に対する各部品の位置および角度を認識する。なお、制御装置16は、部品カメラ14の他に、例えば装着ヘッド133に一体的に設けられるヘッドカメラユニットなどが部品を側方、下方、または上方から撮像して取得された画像データを画像処理するようにしてもよい。 The control device 16 executes a process of recognizing the holding state of the parts held by each of the plurality of holding members (suction nozzles 134). Specifically, the control device 16 performs image processing on the image data acquired by the imaging of the component camera 14 and recognizes the position and angle of each component with respect to the reference position of the mounting head 133. In addition to the component camera 14, the control device 16 performs image processing on image data acquired by, for example, a head camera unit integrally provided on the mounting head 133, which images the component from the side, the lower side, or the upper side. You may try to do it.
 制御装置16は、制御プログラムに基づいて、装着ヘッド133による部品の装着動作を制御して装着処理を実行する。ここで、装着処理には、採取動作と装着動作とが含まれるピックアンドプレースサイクル(以下、「PPサイクル」と称する)を複数回に亘って繰り返す処理が含まれる。上記の「採取動作」とは、部品供給装置12により供給された部品を吸着ノズル134により採取する動作である。 The control device 16 controls the mounting operation of the component by the mounting head 133 based on the control program to execute the mounting process. Here, the mounting process includes a process of repeating a pick-and-place cycle (hereinafter, referred to as “PP cycle”) including a collecting operation and a mounting operation over a plurality of times. The above-mentioned "collecting operation" is an operation of collecting the parts supplied by the parts supply device 12 by the suction nozzle 134.
 本実施形態において、制御装置16は、上記の採取動作の実行に際して、バルクフィーダ20を含む部品供給装置12の動作を制御するとともに、バルクフィーダ20の供給領域Asにおける部品92の供給状態の認識処理を実行する。上記の「供給状態の認識処理」には、供給領域Asに採取可能な部品92があるか否かを認識し、ある場合には必要に応じて部品92の位置を認識する処理が含まれる。そして、制御装置16は、供給状態の認識処理の結果に基づいて、採取動作における装着ヘッド133の動作を制御する。 In the present embodiment, the control device 16 controls the operation of the component supply device 12 including the bulk feeder 20 and recognizes the supply state of the component 92 in the supply area As of the bulk feeder 20 when the collection operation is executed. To execute. The above-mentioned "supply state recognition process" includes a process of recognizing whether or not there is a part 92 that can be collected in the supply area As, and if necessary, recognizing the position of the part 92. Then, the control device 16 controls the operation of the mounting head 133 in the collection operation based on the result of the supply state recognition process.
 また、上記の「装着動作」とは、採取した部品を基板91における所定の装着位置に装着する動作である。制御装置16は、装着処理において、各種センサから出力される情報や画像処理の結果、制御プログラムなどに基づき、装着ヘッド133の動作を制御する。これにより、装着ヘッド133に支持された複数の吸着ノズル134の位置および角度が制御される。 Further, the above-mentioned "mounting operation" is an operation of mounting the collected parts at a predetermined mounting position on the board 91. The control device 16 controls the operation of the mounting head 133 based on the information output from various sensors, the result of image processing, the control program, and the like in the mounting process. As a result, the positions and angles of the plurality of suction nozzles 134 supported by the mounting head 133 are controlled.
 2.バルクフィーダ20の構成
 バルクフィーダ20は、部品装着機10に装備されて部品供給装置12の少なくとも一部として機能する。バルクフィーダ20は、テープフィーダと異なりキャリアテープを用いないため、キャリアテープの装填や使用済みテープの回収などを省略できる点でメリットがある。一方で、バルクフィーダ20は、キャリアテープのように整列されていないバルク状態で収容された部品92を供給するため、部品92の供給状態が吸着ノズル134などの保持部材による採取動作に影響し得る。
2. Configuration of Bulk Feeder 20 The bulk feeder 20 is mounted on the component mounting machine 10 and functions as at least a part of the component supply device 12. Unlike the tape feeder, the bulk feeder 20 does not use a carrier tape, and therefore has an advantage in that loading of the carrier tape and collection of the used tape can be omitted. On the other hand, since the bulk feeder 20 supplies the parts 92 housed in the bulk state which is not aligned like the carrier tape, the supply state of the parts 92 may affect the sampling operation by the holding member such as the suction nozzle 134. ..
 詳細には、供給領域Asにおいて部品92同士が接触するほど接近していたり堆積(上下方向に重なり合っている状態)していたりすると、採取対象にすることができない。また、供給領域Asに不規則な姿勢で部品92が供給されると、供給状態(部品92の採取可否、および採取可能な部品92の姿勢)を認識するための画像処理が必要となる。そのため、バルクフィーダ20には、供給領域Asにおいて採取可能な複数の部品92が必要数に不足することなく供給され、さらには適宜分散した状態にあることが望まれる。 Specifically, if the parts 92 are close enough to come into contact with each other or are piled up (overlapping in the vertical direction) in the supply area As, they cannot be collected. Further, when the parts 92 are supplied to the supply area As in an irregular posture, image processing for recognizing the supply state (whether or not the parts 92 can be collected and the posture of the parts 92 that can be collected) is required. Therefore, it is desired that the bulk feeder 20 is supplied with a plurality of parts 92 that can be collected in the supply region As without being insufficient in the required number, and is further dispersed as appropriate.
 これに対して、バルクフィーダ20には、供給領域Asに部品92が到達する前に、例えば搬送路上に設けられた整列機構によって複数の部品92を一列に整列させる構成を採用することが想定される。しかしながら、上記のような構成では、搬送路上の整列機構を設ける必要があるとともに、さらに整列された状態を維持して部品92を供給領域Asまで搬送する必要がある。そこで、本実施形態のバルクフィーダ20は、振動を用いた部品92の搬送を行うとともに、供給領域Asにおいて振動を用いて部品92を整列させる構成を採用する。 On the other hand, it is assumed that the bulk feeder 20 adopts a configuration in which a plurality of parts 92 are aligned in a row by, for example, an alignment mechanism provided on a transport path before the parts 92 reach the supply area As. To. However, in the above configuration, it is necessary to provide an alignment mechanism on the transport path, and it is necessary to maintain the aligned state and transport the parts 92 to the supply region As. Therefore, the bulk feeder 20 of the present embodiment adopts a configuration in which the parts 92 are conveyed by using vibration and the parts 92 are aligned by using vibration in the supply region As.
 2-1.フィーダ本体21
 バルクフィーダ20は、図2に示すように、フィーダ本体21を備える。フィーダ本体21は、扁平な箱状に形成される。フィーダ本体21は、部品供給装置12のスロット121にセットされる。フィーダ本体21の前部には、コネクタ211および2つのピン212が形成される。コネクタ211は、バルクフィーダ20がスロット121にセットされると、部品装着機10の本体側と通信可能に接続する。また、バルクフィーダ20は、コネクタ211を介して給電される。2つのピン212は、フィーダ本体21がスロット121にセットされる際の位置決めに用いられる。
2-1. Feeder body 21
As shown in FIG. 2, the bulk feeder 20 includes a feeder main body 21. The feeder body 21 is formed in a flat box shape. The feeder main body 21 is set in the slot 121 of the component supply device 12. A connector 211 and two pins 212 are formed on the front portion of the feeder main body 21. When the bulk feeder 20 is set in the slot 121, the connector 211 is communicably connected to the main body side of the component mounting machine 10. Further, the bulk feeder 20 is supplied with power via the connector 211. The two pins 212 are used for positioning when the feeder body 21 is set in the slot 121.
 2-2.部品ケース22、排出装置23、カバー24
 本実施形態においてフィーダ本体21には、複数の部品92をバルク状態で収容する部品ケース22が着脱可能に取り付けられる。部品ケース22は、外部へ部品92を排出可能に構成される。本実施形態において、部品ケース22は、バルクフィーダ20の外部装置であって、例えば種々のタイプのものから装着処理に適合する一つが選択されて、フィーダ本体21に取り付けられる。
2-2. Parts case 22, discharge device 23, cover 24
In the present embodiment, a component case 22 for accommodating a plurality of components 92 in a bulk state is detachably attached to the feeder main body 21. The component case 22 is configured so that the component 92 can be discharged to the outside. In the present embodiment, the component case 22 is an external device of the bulk feeder 20, for example, one of various types suitable for the mounting process is selected and mounted on the feeder main body 21.
 バルクフィーダ20は、排出装置23を備える。排出装置23は、部品ケース22から排出させる部品92の数量を調整する。排出装置23は、部品ケース22から排出された複数の部品92を後述する軌道部材30の受容領域Arに供給する。バルクフィーダ20は、カバー24を備える。カバー24は、フィーダ本体21の前側上部に着脱可能に取り付けられる。カバー24は、後述する軌道部材30の搬送路Rを搬送される部品92の外部への飛散を防止する。 The bulk feeder 20 includes a discharge device 23. The discharge device 23 adjusts the quantity of the parts 92 to be discharged from the parts case 22. The discharge device 23 supplies the plurality of parts 92 discharged from the part case 22 to the receiving region Ar of the track member 30, which will be described later. The bulk feeder 20 includes a cover 24. The cover 24 is detachably attached to the upper part of the front side of the feeder main body 21. The cover 24 prevents the component 92 transported along the transport path R of the track member 30, which will be described later, from scattering to the outside.
 2-3.軌道部材30
 バルクフィーダ20は、軌道部材30を備える。軌道部材30は、フィーダ本体21の前側上部に設けられる。軌道部材30は、図3および図4に示すように、フィーダ本体21の前後方向(図3および図4の左右方向)に延伸するように形成される。軌道部材30の幅方向(図4の上下方向)の両縁には、上方に突出する一対の側壁31が形成される。一対の側壁31は、軌道部材30の先端部32とともに搬送路Rの周縁を囲い、搬送路Rを搬送される部品92の漏出を防止する。先端部32の上面には、バルクフィーダ20の基準位置を示す円形の基準マーク33が付される。
2-3. Orbit member 30
The bulk feeder 20 includes a track member 30. The track member 30 is provided on the front upper portion of the feeder main body 21. As shown in FIGS. 3 and 4, the track member 30 is formed so as to extend in the front-rear direction (horizontal direction of FIGS. 3 and 4) of the feeder main body 21. A pair of side walls 31 protruding upward are formed on both edges of the track member 30 in the width direction (vertical direction in FIG. 4). The pair of side walls 31 surround the peripheral edge of the transport path R together with the tip end portion 32 of the track member 30 to prevent leakage of the component 92 transported through the transport path R. A circular reference mark 33 indicating the reference position of the bulk feeder 20 is attached to the upper surface of the tip portion 32.
 上記のような構成からなる軌道部材30は、受容領域Ar、供給領域As、および搬送路Rを有する。ここで、「受容領域Ar」とは、部品ケース22から排出されるバルク状態の部品92を受容する領域である。本実施形態の受容領域Arは、部品ケース22の排出口の下方に位置する。また、「供給領域As」とは、部品92を供給する領域である。換言すると、装着ヘッド133に支持された吸着ノズル134により部品92を採取可能な領域であり、装着ヘッド133の可動範囲に含まれる。 The track member 30 having the above configuration has a receiving region Ar, a supply region As, and a transport path R. Here, the “reception region Ar” is a region that receives the bulk component 92 discharged from the component case 22. The receiving region Ar of the present embodiment is located below the discharge port of the component case 22. Further, the "supply area As" is an area for supplying the component 92. In other words, it is an area where the component 92 can be collected by the suction nozzle 134 supported by the mounting head 133, and is included in the movable range of the mounting head 133.
 また、軌道部材30の「搬送路R」とは、受容領域Arから供給領域Asへの部品92の通り道である。本実施形態において、搬送路Rは、溝底面が水平となる溝形状に形成される。搬送路Rの溝側面は、一対の側壁31により形成される。搬送路Rの上側の溝開口は、カバー24により概ね閉塞される。軌道部材30は、前後方向および上下方向により形成される仮想的な垂直面において、フィーダ本体21に対して僅かに変位可能(即ち、振動可能)に支持される。 Further, the "transport path R" of the track member 30 is a path of the component 92 from the receiving region Ar to the supply region As. In the present embodiment, the transport path R is formed in a groove shape in which the bottom surface of the groove is horizontal. The groove side surface of the transport path R is formed by a pair of side walls 31. The groove opening on the upper side of the transport path R is largely closed by the cover 24. The track member 30 is supported so as to be slightly displaceable (that is, vibrable) with respect to the feeder body 21 in a virtual vertical plane formed in the front-rear direction and the up-down direction.
 2-4.加振装置40
 バルクフィーダ20は、加振装置40を備える。加振装置40は、フィーダ本体21に設けられる。加振装置40は、搬送路R上の部品92が搬送されるように軌道部材30に振動を付与する。具体的には、加振装置40は、複数の第一支持部41、複数の第一圧電素子42、複数の第二支持部43、複数の第二圧電素子44、および駆動部45を有する。第一支持部41および第二支持部43は、フィーダ本体21と軌道部材30とを連結する連結部材である。
2-4. Vibration device 40
The bulk feeder 20 includes a vibration exciter 40. The vibration exciter 40 is provided on the feeder main body 21. The vibration exciter 40 applies vibration to the track member 30 so that the component 92 on the transport path R is transported. Specifically, the vibration exciter 40 has a plurality of first support portions 41, a plurality of first piezoelectric elements 42, a plurality of second support portions 43, a plurality of second piezoelectric elements 44, and a drive portion 45. The first support portion 41 and the second support portion 43 are connecting members that connect the feeder main body 21 and the track member 30.
 第一支持部41は、鉛直方向に対して前方に傾斜して延伸した形状に形成される。第二支持部43は、鉛直方向に対して後方に傾斜して延伸した形状に形成される。第一圧電素子42および第二圧電素子44は、駆動部45から給電される電力に応じた周波数で振動する。第一圧電素子42は、第一支持部41に貼付されている。第二圧電素子44は、第二支持部43に貼付されている。第一圧電素子42が振動すると、第一支持部41を介して軌道部材30に振動が付与される。同様に、第二圧電素子44が振動すると、第二支持部43を介して軌道部材30に振動が付与される。 The first support portion 41 is formed in a shape that is inclined forward and extended with respect to the vertical direction. The second support portion 43 is formed in a shape that is inclined rearward with respect to the vertical direction and stretched. The first piezoelectric element 42 and the second piezoelectric element 44 vibrate at a frequency corresponding to the electric power supplied from the drive unit 45. The first piezoelectric element 42 is attached to the first support portion 41. The second piezoelectric element 44 is attached to the second support portion 43. When the first piezoelectric element 42 vibrates, the orbital member 30 is vibrated via the first support portion 41. Similarly, when the second piezoelectric element 44 vibrates, the orbital member 30 is vibrated via the second support portion 43.
 また、第一圧電素子42または第二圧電素子44に印加する電圧に応じて、軌道部材30の振幅が変動する。加振装置40は、前方に傾斜する第一支持部41に貼付された第一圧電素子42を振動させることによって軌道部材30に振動を付与する。これにより、加振装置40は、搬送路Rにおける部品92の搬送方向に直交する水平方向(図3の前後方向)において軌道部材30に時計回りの楕円運動をさせる。このとき、加振装置40は、搬送路R上の部品92に対して前方且つ上方に向かう外力が加えられるように軌道部材30を振動させる。 Further, the amplitude of the orbital member 30 fluctuates according to the voltage applied to the first piezoelectric element 42 or the second piezoelectric element 44. The vibration exciter 40 applies vibration to the track member 30 by vibrating the first piezoelectric element 42 attached to the first support portion 41 that is inclined forward. As a result, the vibration exciter 40 causes the track member 30 to make a clockwise elliptical motion in the horizontal direction (the front-rear direction in FIG. 3) orthogonal to the transport direction of the component 92 in the transport path R. At this time, the vibration exciter 40 vibrates the track member 30 so that an external force is applied forward and upward to the component 92 on the transport path R.
 また、加振装置40は、後方に傾斜する第二支持部43に貼付された第二圧電素子44を振動させることによって軌道部材30に振動を付与する。これにより、加振装置40は、搬送路Rにおける部品92の搬送方向に直交する水平方向(図3の前後方向)において軌道部材30に反時計回りの楕円運動をさせる。このとき、加振装置40は、搬送路R上の部品92に対して後方且つ上方に向かう外力が加えられるように軌道部材30に振動させる。 Further, the vibration exciter 40 applies vibration to the track member 30 by vibrating the second piezoelectric element 44 attached to the second support portion 43 that is inclined rearward. As a result, the vibration exciter 40 causes the track member 30 to make a counterclockwise elliptical motion in the horizontal direction (the front-rear direction in FIG. 3) orthogonal to the transport direction of the component 92 in the transport path R. At this time, the vibration exciter 40 vibrates the track member 30 so that an external force is applied rearward and upward to the component 92 on the transport path R.
 駆動部45は、後述するフィーダ制御装置70の指令に基づいて、第一圧電素子42および第二圧電素子44に供給する電力の周波数、および印加電圧を変動させる。これにより、軌道部材30に付与される振動の周波数および振幅が調整され、軌道部材30の楕円運動の回転方向が定まる。軌道部材30の振動の周波数や振幅、振動による楕円運動の回転方向が変動すると、搬送される部品92の搬送速度、部品92の分散度合い、および搬送方向などが変動する。 The drive unit 45 changes the frequency of the power supplied to the first piezoelectric element 42 and the second piezoelectric element 44 and the applied voltage based on the command of the feeder control device 70 described later. As a result, the frequency and amplitude of the vibration applied to the track member 30 are adjusted, and the rotation direction of the elliptical motion of the track member 30 is determined. When the frequency and amplitude of the vibration of the track member 30 and the rotation direction of the elliptical motion due to the vibration fluctuate, the transport speed of the component 92 to be transported, the degree of dispersion of the component 92, the transport direction, and the like change.
 上記のような構成により、加振装置40は、軌道部材30に所定の振動を付与し、部品ケース22から軌道部材30の受容領域Arに排出された複数の部品92を、搬送路Rを介して供給領域Asへと搬送可能とする。以下では、搬送路R上の部品92を供給領域Asへ向かう方向に搬送する加振装置40の動作を「送り動作」とする。また、搬送路R上の部品92を受容領域Arへ向かう方向に搬送する加振装置40の動作を「戻し動作」とする。なお、加振装置40の送り動作および戻し動作の切り換えによって、軌道部材の楕円運動は、逆回転となる。 With the above configuration, the vibration exciter 40 applies a predetermined vibration to the track member 30, and a plurality of parts 92 discharged from the component case 22 to the receiving region Ar of the track member 30 are passed through the transport path R. Can be transported to the supply area As. In the following, the operation of the vibration exciter 40 for transporting the component 92 on the transport path R in the direction toward the supply region As is referred to as a “feed operation”. Further, the operation of the vibration exciter 40 that conveys the component 92 on the transport path R in the direction toward the receiving region Ar is referred to as a “return operation”. By switching between the feed operation and the return operation of the vibration device 40, the elliptical motion of the orbital member becomes reverse rotation.
 2-5.整列部材50
 バルクフィーダ20は、整列部材50を備える。整列部材50は、軌道部材30のうち供給領域Asに設けられる。整列部材50は、軌道部材30の振動に伴って搬送される複数の部品92を案内してフィーダ本体21に対して整列させる。例えば、整列部材50は、図4に示すように、複数の部品92を個々に収容する複数のキャビティ51を有する。詳細には、複数のキャビティ51は、供給領域Asにおいてマトリックス状に配列される。例えば、整列部材50は、規則的に搬送方向に10個、搬送路Rの幅方向に12個それぞれ配列された計120個のキャビティ51を有する。
2-5. Alignment member 50
The bulk feeder 20 includes an alignment member 50. The alignment member 50 is provided in the supply region As of the track member 30. The aligning member 50 guides a plurality of parts 92 conveyed by the vibration of the track member 30 and aligns them with the feeder main body 21. For example, the alignment member 50 has a plurality of cavities 51 that individually accommodate the plurality of parts 92, as shown in FIG. Specifically, the plurality of cavities 51 are arranged in a matrix in the supply region As. For example, the alignment member 50 has a total of 120 cavities 51 in which 10 are regularly arranged in the transport direction and 12 are regularly arranged in the width direction of the transport path R.
 また、複数のキャビティ51のそれぞれは、搬送路Rの上面において開口し、部品92の厚み方向が上下方向となる姿勢で部品92を収容する。キャビティ51の開口は、上方視における部品92の外形状よりも僅かに大きくなる寸法に設定される。キャビティ51の深さは、部品92の種類(形状、質量など)に応じて適宜設定することが可能である。キャビティ51の深さを浅く設定し、部品92が搬送路Rの上面より突出する状態では、採取動作における吸着ノズル134と整列部材50の干渉を確実に防止できる。 Further, each of the plurality of cavities 51 opens on the upper surface of the transport path R, and accommodates the component 92 in a posture in which the thickness direction of the component 92 is the vertical direction. The opening of the cavity 51 is set to a size slightly larger than the outer shape of the component 92 in the upward view. The depth of the cavity 51 can be appropriately set according to the type (shape, mass, etc.) of the component 92. When the depth of the cavity 51 is set shallow and the component 92 protrudes from the upper surface of the transport path R, interference between the suction nozzle 134 and the alignment member 50 in the sampling operation can be reliably prevented.
 一方で、キャビティ51の深さを深く設定し、部品92が搬送路Rの上面より低い状態では、キャビティ51に一旦収容された部品92が再び抜け出すことが低減される。そこで、整列部材50における複数のキャビティ51のそれぞれの深さは、部品92の厚みTp以上に設定される。但し、キャビティ51の深さが深すぎると、部品92を収容した状態のキャビティ51の上側を別の部品92が搬送方向に移動することを妨げるおそれがある。 On the other hand, when the depth of the cavity 51 is set deep and the component 92 is lower than the upper surface of the transport path R, it is reduced that the component 92 once housed in the cavity 51 comes out again. Therefore, the depth of each of the plurality of cavities 51 in the alignment member 50 is set to be equal to or greater than the thickness Tp of the component 92. However, if the depth of the cavity 51 is too deep, there is a possibility that another component 92 may be prevented from moving in the transport direction on the upper side of the cavity 51 in which the component 92 is housed.
 そのため、キャビティ51の深さは、キャビティ51に収容された状態の部品92の上端が搬送路Rの上面より僅かに低くなるように設定されると好適である。上記のように、キャビティ51の形状(開口、深さなど)は、適宜設定される。整列部材50のキャビティ51の形状は、当該部品92がキャリアテープに収納されてテープフィーダにより供給されると仮定したときに、そのキャリアテープに形成されるキャビティの形状に類似する。 Therefore, it is preferable that the depth of the cavity 51 is set so that the upper end of the component 92 housed in the cavity 51 is slightly lower than the upper surface of the transport path R. As described above, the shape (opening, depth, etc.) of the cavity 51 is appropriately set. The shape of the cavity 51 of the alignment member 50 is similar to the shape of the cavity formed in the carrier tape, assuming that the component 92 is housed in the carrier tape and supplied by the tape feeder.
 キャビティ51の形状は、部品92の形状および収容する姿勢によって適宜設定される。具体的には、キャビティ51は、部品92の長手方向が上下方向となる姿勢で部品92を収容する形状に形成されてもよい。また、キャビティ51の形状が設定されると、供給領域Asにおける1個辺りのキャビティ51の占有面積が定まる。さらに、キャビティ51の形状、必要数、搬送性に影響し得る密集度を加味して、整列部材50におけるキャビティ51の数が適宜設定される。 The shape of the cavity 51 is appropriately set according to the shape of the component 92 and the posture for accommodating the cavity 51. Specifically, the cavity 51 may be formed in a shape that accommodates the component 92 in a posture in which the longitudinal direction of the component 92 is in the vertical direction. Further, when the shape of the cavity 51 is set, the occupied area of one cavity 51 in the supply region As is determined. Further, the number of cavities 51 in the alignment member 50 is appropriately set in consideration of the shape of the cavities 51, the required number, and the degree of density that may affect the transportability.
 また、整列部材50におけるキャビティ51の数は、1回のPPサイクルにおける採取動作によって採取される部品92の最大数よりも多く設定されると好適である。なお、上記の「最大数」は、装着ヘッド133が支持する吸着ノズル134の数に相当する。本実施形態において、装着ヘッド133は、24本の吸着ノズル134を支持することから、キャビティ51の数は、少なくとも24個より多くなるように設定されている。 Further, it is preferable that the number of cavities 51 in the alignment member 50 is set to be larger than the maximum number of parts 92 to be sampled by the sampling operation in one PP cycle. The above "maximum number" corresponds to the number of suction nozzles 134 supported by the mounting head 133. In the present embodiment, since the mounting head 133 supports 24 suction nozzles 134, the number of cavities 51 is set to be at least 24 or more.
 2-6.分散部材60
 バルクフィーダ20は、分散部材60を備える。分散部材60は、軌道部材30のうち搬送路Rに設けられる。分散部材60は、軌道部材30の振動に伴って搬送される複数の部品92に接触することにより搬送路Rの幅方向に分散させる。本実施形態の分散部材60は、図4に示すように、複数の突条部61を有する(本態様において3つ)。複数の突条部61は、搬送路Rにおける部品92の搬送方向に延伸し、且つ搬送路Rから上方に突出するように形成される。突条部61の搬送方向の長さ、幅、および上方への突出量は、例えば部品92の種類(形状、質量など)や搬送路R上の部品92の数量などに応じて適宜設定され得る。
2-6. Dispersing member 60
The bulk feeder 20 includes a dispersion member 60. The dispersion member 60 is provided in the transport path R of the track members 30. The dispersion member 60 is dispersed in the width direction of the transport path R by coming into contact with a plurality of parts 92 that are conveyed by the vibration of the track member 30. As shown in FIG. 4, the dispersion member 60 of the present embodiment has a plurality of ridges 61 (three in this embodiment). The plurality of ridges 61 are formed so as to extend in the transport direction of the component 92 in the transport path R and project upward from the transport path R. The length, width, and upward protrusion amount of the ridge portion 61 in the transport direction can be appropriately set according to, for example, the type of the component 92 (shape, mass, etc.), the quantity of the component 92 on the transport path R, and the like. ..
 また、複数の突条部61は、搬送路Rの幅方向に互いに所定の間隔をあけて配置される。本態様において、3つの突条部61は、搬送路Rの幅方向に等間隔で配置される。これにより、搬送路Rは、4つの部分的な搬送経路に分割される。また、本態様において、複数の突条部61のそれぞれは、上方視において受容領域Ar側の端部が搬送路Rの幅方向に対して傾斜した第一傾斜面62を形成される。さらに、複数の突条部61のそれぞれは、上方視において供給領域As側の端部が搬送路Rの幅方向に対して傾斜した第二傾斜面63を形成される。 Further, the plurality of ridges 61 are arranged at predetermined intervals in the width direction of the transport path R. In this embodiment, the three ridges 61 are arranged at equal intervals in the width direction of the transport path R. As a result, the transport path R is divided into four partial transport paths. Further, in this embodiment, each of the plurality of ridge portions 61 forms a first inclined surface 62 whose end portion on the receiving region Ar side is inclined with respect to the width direction of the transport path R in upward view. Further, each of the plurality of ridge portions 61 forms a second inclined surface 63 whose end portion on the supply region As side is inclined with respect to the width direction of the transport path R in upward view.
 上記の第一傾斜面62および第二傾斜面63は、上方視において円弧凸状となるように形成される。これに対して、第一傾斜面62および第二傾斜面63は、上方視において円弧凹状、または直線状に形成されてもよい。第一傾斜面62および第二傾斜面63の形状は、突条部61の長さなどと同様に、部品92の種類などに応じて適宜設定され得る。このように、分散部材60には、種々の態様が適用され得る。分散部材の種々の態様、および分散部材60による複数の部品92への作用については後述する。 The first inclined surface 62 and the second inclined surface 63 are formed so as to have an arc convex shape when viewed upward. On the other hand, the first inclined surface 62 and the second inclined surface 63 may be formed in an arc concave shape or a straight line in an upward view. The shapes of the first inclined surface 62 and the second inclined surface 63 can be appropriately set according to the type of the component 92 and the like, as well as the length of the ridge portion 61 and the like. As described above, various aspects can be applied to the dispersion member 60. Various aspects of the dispersion member and the action of the dispersion member 60 on the plurality of parts 92 will be described later.
 2-7.フィーダ制御装置70
 バルクフィーダ20は、フィーダ制御装置70を備える。フィーダ制御装置70は、主として、CPUや各種メモリ、制御回路により構成される。フィーダ制御装置70は、バルクフィーダ20がスロット121にセットされた状態において、コネクタ211を介して給電され、また部品装着機10の制御装置16と通信可能な状態となる。
2-7. Feeder control device 70
The bulk feeder 20 includes a feeder control device 70. The feeder control device 70 is mainly composed of a CPU, various memories, and a control circuit. The feeder control device 70 is in a state where the bulk feeder 20 is set in the slot 121, power is supplied via the connector 211, and communication with the control device 16 of the component mounting machine 10 is possible.
 フィーダ制御装置70は、図3に示すように、記憶部71を有する。記憶部71は、フラッシュメモリなどにより構成される。記憶部71には、部品供給処理の制御に用いられるプログラムや搬送パラメータF1などの各種データが記憶される。上記の「搬送パラメータF1」は、部品供給処理において部品92を搬送する際に、軌道部材30に付与する振動が適正となるように加振装置40の動作を制御するためのパラメータであり、例えば部品92の種類ごとに関連付けて予め設定される。 As shown in FIG. 3, the feeder control device 70 has a storage unit 71. The storage unit 71 is composed of a flash memory or the like. The storage unit 71 stores various data such as a program used for controlling the component supply process and the transport parameter F1. The above-mentioned "transport parameter F1" is a parameter for controlling the operation of the vibration exciter 40 so that the vibration applied to the track member 30 becomes appropriate when the component 92 is transported in the component supply process, for example. It is set in advance in association with each type of the component 92.
 フィーダ制御装置70は、搬送制御部72を有する。搬送制御部72は、加振装置40の動作を制御して、上記の送り動作、および戻し動作を実行する。詳細には、搬送制御部72は、送り動作を実行する場合に、加振装置40の駆動部45に対して指令を送出する。これにより、駆動部45が第一圧電素子42に所定の電力を供給することにより、第一支持部41を介して軌道部材30に振動が付与される。結果として、搬送路R上の部品92が搬送方向の前側に移動するように外力を受けて搬送される。 The feeder control device 70 has a transport control unit 72. The transport control unit 72 controls the operation of the vibration exciter 40 to execute the feed operation and the return operation described above. Specifically, the transport control unit 72 sends a command to the drive unit 45 of the vibration exciter 40 when executing the feed operation. As a result, the drive unit 45 supplies a predetermined electric power to the first piezoelectric element 42, so that vibration is applied to the track member 30 via the first support unit 41. As a result, the component 92 on the transport path R is transported by receiving an external force so as to move to the front side in the transport direction.
 また、搬送制御部72は、加振装置40の送り動作および戻し動作の実行時間などを組み合わせることにより種々の搬送態様を実現する。例えば、整列部材50が複数のキャビティ51を有する場合に、搬送制御部72は、以下のような収容工程および退避工程を実行してもよい。上記の「収容工程」とは、搬送路R上の複数の部品92の少なくとも一部が供給領域Asに到達するまで送り動作を実行して、複数のキャビティ51の少なくとも一部に部品92を収容させる工程である。 Further, the transport control unit 72 realizes various transport modes by combining the execution time of the feed operation and the return operation of the vibration exciter 40. For example, when the alignment member 50 has a plurality of cavities 51, the transfer control unit 72 may execute the following accommodating step and retracting step. In the above-mentioned "accommodation step", the feeding operation is executed until at least a part of the plurality of parts 92 on the transport path R reaches the supply area As, and the component 92 is accommodated in at least a part of the plurality of cavities 51. It is a process to make it.
 このとき、搬送制御部72は、収容工程において、搬送路R上の複数の部品92の少なくとも一部が供給領域Asに到達した後に、送り動作および戻し動作を繰り返し実行して、軌道部材30が振動した状態で供給領域Asに複数の部品92を滞留させるようにしてもよい。また、上記の「退避工程」とは、収容工程を実行した後に、搬送路R上の複数の部品92の少なくとも一部が複数のキャビティ51に収容された状態で戻し動作を実行して、残りの部品92を供給領域Asから受容領域Ar側に退避させる工程である。 At this time, in the accommodation process, the transport control unit 72 repeatedly executes the feed operation and the return operation after at least a part of the plurality of parts 92 on the transport path R reaches the supply region As, and the track member 30 receives the track member 30. A plurality of parts 92 may be retained in the supply region As in a vibrating state. Further, the above-mentioned "evacuation step" means that after the accommodating step is executed, at least a part of the plurality of parts 92 on the transport path R is accommodated in the plurality of cavities 51, and the return operation is executed, and the rest. This is a step of retracting the component 92 from the supply region As to the receiving region Ar side.
 搬送制御部72は、各工程における送り動作や戻し動作の実行時間、収容工程における滞留の動作の時間や繰り返し動作の実行回数を適宜設定することができる。また、搬送路R上の部品92の残数によっては、収容工程における滞留の動作や、退避工程を省略してもよい。さらに、搬送制御部72は、部品ケース22に収容された部品92の種類に応じて、加振装置40により軌道部材30に付与される振動の周波数、および振幅の少なくとも一方を調整してもよい。 The transport control unit 72 can appropriately set the execution time of the feed operation and the return operation in each process, the time of the retention operation in the accommodating process, and the number of executions of the repetitive operation. Further, depending on the number of remaining parts 92 on the transport path R, the retention operation or the retracting step in the accommodating process may be omitted. Further, the transport control unit 72 may adjust at least one of the frequency and the amplitude of the vibration applied to the track member 30 by the vibration exciter 40 according to the type of the component 92 housed in the component case 22. ..
 詳細には、バルクフィーダ20に部品ケース22が取り付けられる際に、部品ケース22に補充された部品92の種類と、バルクフィーダ20の識別情報とが照合される。そして、バルクフィーダ20がスロット121にセットされると、搬送制御部72は、搬送パラメータF1から部品92の種類に応じたパラメータを取得する。これにより、搬送制御部72は、加振装置40の駆動部45に送出する指令を調整する。 Specifically, when the component case 22 is attached to the bulk feeder 20, the type of the component 92 replenished in the component case 22 and the identification information of the bulk feeder 20 are collated. Then, when the bulk feeder 20 is set in the slot 121, the transfer control unit 72 acquires parameters according to the type of the component 92 from the transfer parameter F1. As a result, the transport control unit 72 adjusts the command to be sent to the drive unit 45 of the vibration exciter 40.
 結果として、加振装置40により軌道部材30に付与される振動の周波数などが部品の種類に応じて調整される。上記の搬送パラメータF1は、部品92の種類に加えて、整列部材50および分散部材60のそれぞれに採用される各種態様によっても適宜切り換えられる構成としてもよい。これにより、収容工程や滞留の動作、退避工程が好適に実行される。さらに、搬送パラメータF1は、過去に実行された部品供給処理の結果(成功率などを含む)に基づいて、管理者によりアップデートされてもよい。 As a result, the frequency of vibration applied to the track member 30 by the vibration exciter 40 is adjusted according to the type of parts. The transport parameter F1 may be appropriately switched depending on various modes adopted for each of the alignment member 50 and the dispersion member 60, in addition to the type of the component 92. As a result, the accommodating step, the staying operation, and the retracting step are preferably executed. Further, the transport parameter F1 may be updated by the administrator based on the result (including the success rate) of the component supply process executed in the past.
 3.バルクフィーダ20による部品供給処理
 バルクフィーダ20による部品供給処理について説明する。部品装着機10による装着処理の実行中において、バルクフィーダ20は、供給領域Asにおいて複数の部品92を採取可能に供給する部品供給処理を実行する。ここで、バルクフィーダ20が上記のように複数のキャビティ51をマトリックス状に形成された整列部材50を備える構成とする。このような場合に、部品装着機10の制御装置16は、バルクフィーダ20がスロットにセットされた後に、キャリブレーション処理を実行し、機内における整列部材50の位置を認識する。
3. 3. Parts supply processing by the bulk feeder 20 The parts supply processing by the bulk feeder 20 will be described. During the execution of the mounting process by the component mounting machine 10, the bulk feeder 20 executes the component supply process of supplying a plurality of components 92 so as to be collectable in the supply area As. Here, the bulk feeder 20 is configured to include an aligning member 50 in which a plurality of cavities 51 are formed in a matrix as described above. In such a case, the control device 16 of the component mounting machine 10 executes the calibration process after the bulk feeder 20 is set in the slot, and recognizes the position of the alignment member 50 in the machine.
 上記のキャリブレーション処理において、制御装置16は、先ず基板カメラ15をバルクフィーダ20の基準マーク33の上方に移動させて、基板カメラ15の撮像により画像データを取得する。そして、制御装置16は、画像処理により画像データに含まれる基準マーク33の位置、および撮像した際の基板カメラ15の位置に基づいて、機内における整列部材50の位置を認識する。制御装置16は、整列部材50の形状を示す配列情報とキャリブレーション処理の結果によって、整列部材50の位置、詳細には個々のキャビティ51の位置を認識する。 In the above calibration process, the control device 16 first moves the board camera 15 above the reference mark 33 of the bulk feeder 20 and acquires image data by imaging the board camera 15. Then, the control device 16 recognizes the position of the alignment member 50 in the machine based on the position of the reference mark 33 included in the image data by image processing and the position of the substrate camera 15 at the time of imaging. The control device 16 recognizes the position of the alignment member 50, specifically the position of each cavity 51, based on the arrangement information indicating the shape of the alignment member 50 and the result of the calibration process.
 装着処理において、制御装置16は、所定のタイミングでバルクフィーダ20に部品供給処理の実行を指令する。具体的には、制御装置は、例えば今回のPPサイクルの採取動作の実行後、次回のPPサイクルの採取動作の実行前までの期間に部品供給処理の実行を指令する。部品供給処理において、バルクフィーダ20の搬送制御部72は、供給領域Asにおいて部品92を整列させるように、上記の収容工程や退避工程を実行する。 In the mounting process, the control device 16 instructs the bulk feeder 20 to execute the component supply process at a predetermined timing. Specifically, the control device commands the execution of the component supply process in the period after the execution of the collection operation of the current PP cycle and before the execution of the collection operation of the next PP cycle, for example. In the component supply process, the transfer control unit 72 of the bulk feeder 20 executes the above-mentioned accommodating step and retracting step so as to align the components 92 in the supply area As.
 次に、制御装置16は、部品供給処理が実行された後に、供給領域Asにおける部品92の供給状態の認識処理を実行する。具体的には、制御装置16は、先ず基板カメラ15をバルクフィーダ20の供給領域Asにおける整列部材50の上方に移動させて、基板カメラ15の撮像により画像データを取得する。そして、制御装置16は、画像データに所定の画像処理を実行し、複数のキャビティ51にそれぞれ収容された部品92を認識する。 Next, the control device 16 executes the process of recognizing the supply state of the component 92 in the supply area As after the component supply process is executed. Specifically, the control device 16 first moves the substrate camera 15 above the alignment member 50 in the supply region As of the bulk feeder 20, and acquires image data by imaging the substrate camera 15. Then, the control device 16 executes a predetermined image processing on the image data, and recognizes the parts 92 housed in the plurality of cavities 51, respectively.
 また、制御装置16は、供給状態の認識処理の結果において採取可能な部品92の数(供給数)が、今回のPPサイクルにおいて採取予定である部品92の数(必要数)未満である場合に、バルクフィーダ20に再度の部品供給処理の実行を指令する。このように、制御装置16は、現在の供給領域Asにおける部品92の供給状態で、今回のPPサイクルにおける必要数の部品92が採取可能でないと、部品供給処理を繰り返し実行させる。 Further, in the control device 16, when the number of parts 92 (number of supplies) that can be collected as a result of the supply state recognition process is less than the number (necessary number) of parts 92 that are scheduled to be collected in this PP cycle. , Instruct the bulk feeder 20 to execute the component supply process again. As described above, the control device 16 repeatedly executes the component supply process if the required number of components 92 in the current PP cycle cannot be collected in the current supply state of the components 92 in the supply area As.
 上記の部品供給処理において、搬送制御部72は、搬送路R上の部品92が適量でなく不足する場合に、部品ケース22から受容領域Arに所定量の部品92を排出させる。次に、搬送制御部72は、整列部材50に部品92を収容する収容工程を実行する。詳細には、搬送制御部72は、先ず加振装置40の送り動作を開始する。これにより、受容領域Arおよび搬送路R上の部品92が供給領域As側に搬送される。 In the above component supply process, the transfer control unit 72 discharges a predetermined amount of the component 92 from the component case 22 to the receiving region Ar when the component 92 on the transport path R is not an appropriate amount and is insufficient. Next, the transfer control unit 72 executes an accommodating step of accommodating the component 92 in the alignment member 50. Specifically, the transport control unit 72 first starts the feed operation of the vibration exciter 40. As a result, the parts 92 on the receiving region Ar and the transport path R are transported to the supply region As side.
 このとき、図6の上段に示すように、搬送路R上に部品92の集合である部品群Gpが発生することがある。このような部品群Gpが例えば搬送路Rの幅方向の中央にあると、複数の部品92が供給領域Asに到達したときに偏りが生じ得る。供給領域Asにおいて堆積または接触するほどに接近した部品92は、採取動作において採取対象とされない。これに対して、搬送制御部72が加振装置40の送り動作を継続させて、部品群Gpが分散部材60を通過するように搬送すると、図6の中段に示すように、部品群Gpが分割される。結果として、複数の部品92は、図6の下段に示すように、搬送路Rの幅方向に分散する。 At this time, as shown in the upper part of FIG. 6, a component group Gp, which is a set of components 92, may be generated on the transport path R. If such a component group Gp is located in the center of the transport path R in the width direction, for example, a bias may occur when a plurality of components 92 reach the supply region As. Parts 92 that are close enough to deposit or contact in the supply area As are not subject to sampling during the sampling operation. On the other hand, when the transport control unit 72 continues the feed operation of the vibration exciter 40 and transports the component group Gp so as to pass through the dispersion member 60, the component group Gp becomes as shown in the middle part of FIG. It is divided. As a result, the plurality of parts 92 are dispersed in the width direction of the transport path R, as shown in the lower part of FIG.
 上記のように複数の部品92が分散するのは、部品群Gpが分散部材60における突条部61の第一傾斜面62によって分割されることを要因の一つとする。その他の要因としては、複数の突条部61が配列されることによって、搬送路Rのうち分散部材60が存在する範囲における搬送幅が縮小されることが想定される。つまり、突条部61と側壁31との間、または突条部61と突条部61の間を通過する部品群Gpは、搬送方向に引き延ばされて、搬送路Rの幅方向における部品92の量が減少する。結果として、分散部材60を通過した後において、複数の部品92が搬送路Rの幅方向に分散することになる。 One of the reasons why the plurality of parts 92 are dispersed as described above is that the component group Gp is divided by the first inclined surface 62 of the ridge portion 61 of the dispersion member 60. As another factor, it is assumed that by arranging the plurality of ridge portions 61, the transport width in the range where the dispersion member 60 exists in the transport path R is reduced. That is, the parts group Gp passing between the ridge portion 61 and the side wall 31 or between the ridge portion 61 and the ridge portion 61 is stretched in the transport direction and is a component in the width direction of the transport path R. The amount of 92 is reduced. As a result, after passing through the dispersion member 60, the plurality of parts 92 are dispersed in the width direction of the transport path R.
 搬送制御部72は、搬送路R上の複数の部品92の少なくとも一部が供給領域Asに到達するまで加振装置40の送り動作を継続する。搬送制御部72は、搬送パラメータF1に基づいて、その後の加振装置40による送り動作を所定時間だけ継続し、また滞留の動作を適宜実行する。これにより、整列部材50の複数のキャビティ51に部品92がそれぞれ収容される。 The transport control unit 72 continues the feed operation of the vibration exciter 40 until at least a part of the plurality of parts 92 on the transport path R reaches the supply area As. Based on the transport parameter F1, the transport control unit 72 continues the subsequent feed operation by the vibration exciter 40 for a predetermined time, and appropriately executes the retention operation. As a result, the parts 92 are housed in the plurality of cavities 51 of the alignment member 50, respectively.
 搬送制御部72は、その後に、必要に応じて退避工程を実行する。搬送制御部72は、例えば搬送パラメータF1に基づいて、退避工程における加振装置40の戻し動作の要否を判定し、実行を要する場合には戻し動作を実行する。搬送制御部72は、戻し動作を実行することによって、整列部材50のキャビティ51に収容されなかった複数の部品92を供給領域Asから受容領域Ar側に退避させる。これにより、複数の部品92は、供給領域Asから受容領域Ar側へと搬送され、後に実行される採取動作に影響しないように退避した状態となる。 After that, the transport control unit 72 executes an evacuation step as needed. The transport control unit 72 determines whether or not the return operation of the vibration apparatus 40 is necessary in the evacuation step based on, for example, the transport parameter F1, and executes the return operation when it is required to be executed. By executing the return operation, the transport control unit 72 retracts the plurality of parts 92 that are not housed in the cavity 51 of the alignment member 50 from the supply region As to the receiving region Ar side. As a result, the plurality of parts 92 are transported from the supply region As to the reception region Ar side, and are in a retracted state so as not to affect the collection operation executed later.
 このとき、複数の部品92は、分散部材60に到達すると、第二傾斜面63に案内されることにより滞留することなく、突条部61と側壁31との間、または突条部61と突条部61の間に搬送される。これにより、余りの複数の部品92が退避され、その後の供給領域Asにおける供給状態の認識処理や採取動作に影響することが低減される。搬送制御部72は、規定の戻し動作を実行した後に、部品供給処理を終了する。 At this time, when the plurality of parts 92 reach the dispersion member 60, they are guided by the second inclined surface 63 and do not stay, and are between the ridge portion 61 and the side wall 31, or the ridge portion 61 and the protrusion. It is transported between the strips 61. As a result, the remaining plurality of parts 92 are retracted, and it is possible to reduce the influence on the subsequent recognition process of the supply state and the collection operation in the supply area As. The transport control unit 72 ends the component supply process after executing the specified return operation.
 上記のような構成によると、バルクフィーダ20は、供給領域Asにおける複数の部品92を分散することが可能となる。これにより、バルクフィーダ20は、採取可能な供給数を確保するために供給領域Asを拡大することなく、効率的に供給領域Asにおいて部品92を供給することが可能となる。結果として、バルクフィーダ20の幅方向の小型化を図りつつ好適に複数の部品92を採取可能に供給することができる。また、部品供給処理の効率化により所要時間を短縮できるので、バルクフィーダ20を用いた装着処理の効率化を図ることができる。 According to the above configuration, the bulk feeder 20 can disperse a plurality of parts 92 in the supply area As. As a result, the bulk feeder 20 can efficiently supply the parts 92 in the supply area As without expanding the supply area As in order to secure the number of supplies that can be collected. As a result, it is possible to suitably supply a plurality of parts 92 so as to be collectable while reducing the size of the bulk feeder 20 in the width direction. Further, since the required time can be shortened by improving the efficiency of the component supply process, the efficiency of the mounting process using the bulk feeder 20 can be improved.
 4.実施形態の変形態様
 4-1.分散部材60について
 実施形態において、分散部材60は、複数の突条部61を有する構成とした。これに対して、分散部材60は、種々の態様を採用し得る。具体的には、分散部材60は、例えば以下の第一変形態様および第二変形態様を採用し得る。
4. Modifications of the Embodiment 4-1. Dispersion member 60 In the embodiment, the dispersion member 60 has a configuration having a plurality of ridges 61. On the other hand, the dispersion member 60 may adopt various aspects. Specifically, the dispersion member 60 may adopt, for example, the following first and second deformation modes.
 4-1-1.分散部材60の第一変形態様
 第一変形態様の分散部材160は、図7および図8に示すように、水平面に対して傾斜し、且つ法線が供給領域As側および搬送路Rの幅方向外方を向く傾斜面64を有する。本態様の傾斜面64は、図7に示すように、搬送路Rの幅方向の中央部を中心とし、曲率の異なる3つの波状模様を形成する。3つの傾斜面64の一つは、図8に示すように、搬送路Rから突出する突出部の外面のうち径方向外側の部分に位置する。
4-1-1. First Deformation Mode of Dispersion Member 60 As shown in FIGS. 7 and 8, the dispersion member 160 of the first deformation mode is inclined with respect to the horizontal plane, and the normal line is on the supply region As side and in the width direction of the transport path R. It has an inclined surface 64 facing outward. As shown in FIG. 7, the inclined surface 64 of this embodiment forms three wavy patterns having different curvatures centered on the central portion in the width direction of the transport path R. As shown in FIG. 8, one of the three inclined surfaces 64 is located on the outer surface in the radial direction of the outer surface of the protruding portion protruding from the transport path R.
 傾斜面64の法線方向641は、供給領域As側を向く成分と、搬送路Rの幅方向外方を向く成分とにより構成される。このような分散部材160の構成によると、振動を付与された軌道部材30から前方且つ上方に向かう外力を付与されて搬送する部品92は、上方に跳ね上がった後に傾斜面64に衝突したり、突出部を乗り越えて傾斜面64に接触したりする。このとき、部品92には、搬送路Rの幅方向の位置に応じて異なる方向(傾斜面64の法線方向641に応じた方向)の外力を分散部材160から受ける。 The normal direction 641 of the inclined surface 64 is composed of a component facing the supply region As side and a component facing outward in the width direction of the transport path R. According to such a configuration of the dispersion member 160, the component 92 that is subjected to an external force that is applied forward and upward from the orbital member 30 that has been subjected to vibration and is conveyed, collides with or protrudes from the inclined surface 64 after jumping upward. It gets over the portion and comes into contact with the inclined surface 64. At this time, the component 92 receives an external force from the dispersion member 160 in a different direction (direction corresponding to the normal direction 641 of the inclined surface 64) according to the position in the width direction of the transport path R.
 これにより、複数の部品92が搬送路Rの幅方向に分散される。よって、分散部材160を通過することにより、複数の部品92は、分散した状態で供給領域Asに到達することになる。結果として、バルクフィーダ20は、採取可能な供給数を確保することができるので、効率的な部品92の供給が可能となる。なお、本態様では、断面が円弧凸状の傾斜面64を例示したが、当該傾斜面64に接触した部品92が供給領域As側および搬送路Rの幅方向外方に案内される構成であれば、傾斜面64が円弧凹状や平面状に形成される態様を採用してもよい。 As a result, the plurality of parts 92 are dispersed in the width direction of the transport path R. Therefore, by passing through the dispersion member 160, the plurality of parts 92 reach the supply region As in a dispersed state. As a result, the bulk feeder 20 can secure the number of supplies that can be collected, so that the parts 92 can be efficiently supplied. In this embodiment, an inclined surface 64 having a convex arcuate cross section is illustrated, but the component 92 in contact with the inclined surface 64 may be guided to the supply region As side and outward in the width direction of the transport path R. For example, an embodiment in which the inclined surface 64 is formed in an arc concave shape or a flat shape may be adopted.
 また、本態様では、3つの傾斜面64によって、上方視で波状模様が形成される構成を例示した。これに対して、分散部材160は、少なくとも一つの傾斜面64を有していればよく、4以上の傾斜面64を有する構成としてもよい。また、傾斜面64は、上方視において、一対の側壁31の一方から搬送路Rの幅方向中央側および供給領域As側に直線的に延伸し、搬送路Rの幅方向中央で折り返されて一対の側壁31の他方側および受容領域Ar側に直線的に延伸するV字状に形成されてもよい。 Further, in this embodiment, a configuration in which a wavy pattern is formed in an upward view by three inclined surfaces 64 is illustrated. On the other hand, the dispersion member 160 may have at least one inclined surface 64, and may have four or more inclined surfaces 64. Further, the inclined surface 64 extends linearly from one of the pair of side walls 31 to the center side in the width direction and the supply region As side of the transport path R, and is folded back at the center in the width direction of the transport path R to form a pair. It may be formed in a V shape extending linearly to the other side of the side wall 31 and the receiving region Ar side.
 4-1-2.分散部材60の第二変形態様
 第二変形態様の分散部材260は、図9に示すように、衝突板65および支持部材66を有する。衝突板65は、加振装置40の送り動作において、軌道部材30の振動に伴って搬送される複数の部品92とそれぞれ衝突する。衝突板65は、複数の部品92と衝突することにより別々の方向に飛散させる。支持部材66は、軌道部材30に対する衝突板65の姿勢を調整可能に支持する。詳細には、衝突板65は、例えば作業者による調整作業によって、支持部材66を中心とする角度を調整される。これにより、搬送時に衝突板65と接触する複数の部品92は、衝突板65と衝突して飛散する。
4-1-2. Second Deformation Mode of Dispersion Member 60 The dispersion member 260 of the second deformation mode has a collision plate 65 and a support member 66, as shown in FIG. The collision plate 65 collides with a plurality of parts 92 that are conveyed by the vibration of the track member 30 in the feeding operation of the vibration device 40. The collision plate 65 is scattered in different directions by colliding with the plurality of parts 92. The support member 66 adjustably supports the posture of the collision plate 65 with respect to the track member 30. Specifically, the angle of the collision plate 65 is adjusted around the support member 66 by, for example, an adjustment work by an operator. As a result, the plurality of parts 92 that come into contact with the collision plate 65 during transportation collide with the collision plate 65 and scatter.
これにより、複数の部品92が搬送路Rの幅方向に分散される。よって、分散部材260を通過することにより、複数の部品92は、分散した状態で供給領域Asに到達することになる。結果として、バルクフィーダ20は、採取可能な供給数を確保することができるので、効率的な部品92の供給が可能となる。なお、搬送対象の部品の形状や分散の度合いなどを勘案して衝突板65の形状が設定され、また支持部材66を用いた姿勢の調整が適宜なされる。 As a result, the plurality of parts 92 are dispersed in the width direction of the transport path R. Therefore, by passing through the dispersion member 260, the plurality of parts 92 reach the supply region As in a dispersed state. As a result, the bulk feeder 20 can secure the number of supplies that can be collected, so that the parts 92 can be efficiently supplied. The shape of the collision plate 65 is set in consideration of the shape of the parts to be transported, the degree of dispersion, and the like, and the posture is appropriately adjusted by using the support member 66.
 4-2.分散部材60、軌道部材30の交換性
 ここで、バルクフィーダ20の分散部材60は、軌道部材30に対して交換可能に取り付けられる構成としてもよい。具体的には、バルクフィーダ20のセットアップに際して、図10に示すように、例えば種々の態様に対応した複数種類の分散部材60,160,260が交換可能に準備される。そして、バルクフィーダ20は、供給する部品92の種類に対応して互いの形状が異なる複数種類の分散部材60,160,260から選択された1つを軌道部材30に取り付けられる。
4-2. Exchangeability of Dispersion Member 60 and Track Member 30 Here, the dispersion member 60 of the bulk feeder 20 may be configured to be interchangeably attached to the track member 30. Specifically, when setting up the bulk feeder 20, as shown in FIG. 10, for example, a plurality of types of dispersion members 60, 160, 260 corresponding to various aspects are interchangeably prepared. Then, the bulk feeder 20 is attached to the track member 30 with one selected from a plurality of types of dispersion members 60, 160, 260 having different shapes depending on the type of the component 92 to be supplied.
 このような構成によると、バルクフィーダ20は、フィーダ本体21や軌道部材30、加振装置40を共通にし、分散部材60の交換によって部品92の種類や供給態様に対応することができる。これにより、バルクフィーダ20の利用範囲を拡大することができる。 According to such a configuration, the bulk feeder 20 shares the feeder main body 21, the track member 30, and the vibration device 40, and can correspond to the type and supply mode of the parts 92 by exchanging the dispersion member 60. As a result, the range of use of the bulk feeder 20 can be expanded.
 さらに、バルクフィーダ20の軌道部材30は、フィーダ本体21に対して交換可能に取り付けられる構成としてもよい。このとき、分散部材60は、軌道部材30に対して一体的に形成されるようにしてもよいし、交換可能としてもよい。具体的には、バルクフィーダ20のセットアップに際して、図10に示すように、例えば種々の態様に対応した複数種類の分散部材60,160,260が形成された複数種類の軌道部材30A-30Cが交換可能に準備される。 Further, the track member 30 of the bulk feeder 20 may be interchangeably attached to the feeder main body 21. At this time, the dispersion member 60 may be formed integrally with the track member 30, or may be replaceable. Specifically, when setting up the bulk feeder 20, as shown in FIG. 10, for example, a plurality of types of track members 30A-30C in which a plurality of types of dispersion members 60, 160, 260 corresponding to various modes are formed are replaced. Be prepared to be possible.
 そして、バルクフィーダ20は、供給する部品92や供給態様に対応して互いの構成が異なる複数種類の分散部材60の一つを形成または取り付けられた複数種類の軌道部材30A-30Cから選択された1つをフィーダ本体21に取り付けられる。このような構成によると、バルクフィーダ20は、フィーダ本体21や加振装置40を共通にし、分散部材60や軌道部材30の交換によって部品92の種類や供給態様に対応することが可能となる。これにより、バルクフィーダ20の利用範囲を拡大することができ、基板製品の生産コストを低減できる。 The bulk feeder 20 was selected from a plurality of types of track members 30A-30C formed or attached to one of a plurality of types of dispersion members 60 having different configurations depending on the parts to be supplied 92 and the supply mode. One can be attached to the feeder body 21. According to such a configuration, the bulk feeder 20 shares the feeder main body 21 and the vibration exciter 40, and can correspond to the type and supply mode of the parts 92 by exchanging the dispersion member 60 and the track member 30. As a result, the range of use of the bulk feeder 20 can be expanded, and the production cost of the substrate product can be reduced.
 4-3.その他
 実施形態において、バルクフィーダ20は、複数のキャビティ51を形成された整列部材50を備える構成とした。これに対して、整列部材50を省略した構成としてもよい。つまり、軌道部材30の供給領域Asには、搬送路Rの上面より低い位置で部品92が分散される凹状部や、搬送路Rの上面と均一な平面状部が形成され、バルク状態で部品92が供給されるようにしてもよい。
4-3. In another embodiment, the bulk feeder 20 is configured to include an aligning member 50 in which a plurality of cavities 51 are formed. On the other hand, the alignment member 50 may be omitted. That is, in the supply region As of the track member 30, a concave portion in which the component 92 is dispersed at a position lower than the upper surface of the transport path R and a flat portion uniform with the upper surface of the transport path R are formed, and the component is in a bulk state. 92 may be supplied.
 但し、部品供給処理の効率化や、供給領域Asにおける供給状態の認識処理における画像処理の負荷を軽減する観点からは、実施形態にて例示した構成が好適である。つまり、バルクフィーダ20は、複数のキャビティ51を形成された整列部材50を備え、部品供給処理においてある程度の数量を確保された部品92の集合である部品群Gpを整列部材50の上側を移動させることによって複数のキャビティ51に部品92を収容させる。これにより、最大でキャビティ51の数だけ整列した状態の部品92を供給することができる。このような構成において、部品群Gpにおける部品92の疎密度合いを均一化するために、分散部材60を適用することは有用である。 However, from the viewpoint of improving the efficiency of the parts supply processing and reducing the load of the image processing in the supply state recognition processing in the supply area As, the configuration illustrated in the embodiment is preferable. That is, the bulk feeder 20 includes the alignment member 50 in which a plurality of cavities 51 are formed, and moves the component group Gp, which is a set of the components 92 secured in a certain quantity in the component supply process, to the upper side of the alignment member 50. As a result, the component 92 is accommodated in the plurality of cavities 51. As a result, the parts 92 in a state of being aligned by the number of cavities 51 at the maximum can be supplied. In such a configuration, it is useful to apply the dispersion member 60 in order to make the sparse density of the parts 92 in the parts group Gp uniform.
 20:バルクフィーダ、 21:フィーダ本体、 22:部品ケース、 30、30A-30C:軌道部材、 40:加振装置、 50:整列部材、 51:キャビティ、 60,160,260:分散部材、 61:突条部、 62:第一傾斜面、 63:第二傾斜面、 64:傾斜面、 641:法線方向、 65:衝突板、 66:支持部材、 70:フィーダ制御装置、 72:搬送制御部、 91:基板、 92:部品、 Ar:受容領域、 As:供給領域、 R:搬送路、 F1:搬送パラメータ、 Gp:部品群 20: Bulk feeder, 21: Feeder body, 22: Parts case, 30, 30A-30C: Track member, 40: Vibration device, 50: Alignment member, 51: Cavity, 60, 160, 260: Dispersion member, 61: Protrusion part, 62: 1st inclined surface, 63: 2nd inclined surface, 64: inclined surface, 641: normal direction, 65: collision plate, 66: support member, 70: feeder control device, 72: transfer control unit , 91: Substrate, 92: Parts, Ar: Receiving area, As: Supply area, R: Transport path, F1: Transport parameters, Gp: Parts group

Claims (9)

  1.  フィーダ本体と、
     前記フィーダ本体に設けられ、複数の部品をバルク状態で収容する部品ケースから排出される前記部品を受容する受容領域、前記部品を供給する供給領域、および前記受容領域から前記供給領域への前記部品の搬送路を有する軌道部材と、
     前記フィーダ本体に設けられ、前記搬送路上の前記部品が搬送されるように前記軌道部材に振動を付与する加振装置と、
     前記軌道部材のうち前記搬送路に設けられ、前記軌道部材の振動に伴って搬送される複数の前記部品に接触することにより前記搬送路の幅方向に分散させる分散部材と、
     を備えるバルクフィーダ。
    With the feeder body
    A receiving region provided on the feeder body and receiving the parts discharged from a parts case for accommodating a plurality of parts in a bulk state, a supply region for supplying the parts, and the parts from the receiving region to the supply region. A track member having a transport path of
    A vibration exciting device provided on the feeder body and applying vibration to the track member so that the parts on the transport path are transported.
    Among the track members, a dispersion member provided in the transport path and dispersed in the width direction of the transport path by contacting a plurality of the components transported by the vibration of the track member.
    Bulk feeder with.
  2.  前記分散部材は、前記搬送路における前記部品の搬送方向に延伸し、且つ前記搬送路から上方に突出し、前記搬送路の幅方向に互いに所定の間隔をあけて配置される複数の突条部を有する、請求項1に記載のバルクフィーダ。 The dispersion member extends in the transport direction of the component in the transport path, projects upward from the transport path, and has a plurality of ridges arranged at predetermined intervals in the width direction of the transport path. The bulk feeder according to claim 1.
  3.  複数の前記突条部のそれぞれは、上方視において前記受容領域側の端部が前記搬送路の幅方向に対して傾斜した傾斜面を形成される、請求項2に記載のバルクフィーダ。 The bulk feeder according to claim 2, wherein each of the plurality of the ridge portions forms an inclined surface whose end portion on the receiving region side is inclined with respect to the width direction of the transport path when viewed upward.
  4.  前記バルクフィーダは、前記加振装置の動作を制御して、前記搬送路上の前記部品を前記供給領域へ向かう方向に搬送する送り動作、および前記搬送路上の前記部品を前記受容領域へ向かう方向に搬送する戻し動作を実行する搬送制御部をさらに備え、
     複数の前記突条部のそれぞれは、上方視において前記供給領域側の端部が前記搬送路の幅方向に対して傾斜した傾斜面を形成される、請求項2または3に記載のバルクフィーダ。
    The bulk feeder controls the operation of the vibration exciter to carry the component on the transport path in the direction toward the supply region, and the component on the transport path in the direction toward the receiving region. It is further equipped with a transport control unit that executes the transport return operation.
    The bulk feeder according to claim 2 or 3, wherein each of the plurality of ridges forms an inclined surface whose end on the supply region side is inclined with respect to the width direction of the transport path when viewed upward.
  5.  前記分散部材は、水平面に対して傾斜し、且つ法線が前記供給領域側および前記搬送路の幅方向外方を向く傾斜面を有する、請求項1-4の何れか一項に記載のバルクフィーダ。 The bulk according to any one of claims 1-4, wherein the dispersion member has an inclined surface that is inclined with respect to a horizontal plane and whose normal line faces the supply region side and the width direction outward of the transport path. feeder.
  6.  前記分散部材は、
     前記軌道部材の振動に伴って搬送される複数の前記部品とそれぞれ衝突することにより別々の方向に飛散させる衝突板と、
     前記軌道部材に対する前記衝突板の姿勢を調整可能に支持する支持部材と、
     を有する請求項1-5の何れか一項に記載のバルクフィーダ。
    The dispersion member is
    A collision plate that scatters in different directions by colliding with each of the plurality of the parts conveyed by the vibration of the track member.
    A support member that adjustably supports the posture of the collision plate with respect to the track member, and
    The bulk feeder according to any one of claims 1-5.
  7.  前記分散部材は、前記軌道部材に対して交換可能に取り付けられ、
     前記バルクフィーダは、供給する前記部品の種類に対応して互いの形状が異なる複数種類の前記分散部材から選択された1つを前記軌道部材に取り付けられる、請求項1-6の何れか一項に記載のバルクフィーダ。
    The dispersion member is interchangeably attached to the track member and is attached.
    Any one of claims 1-6, wherein the bulk feeder is attached to the track member by attaching one selected from a plurality of types of the dispersion members having different shapes to each other according to the type of the parts to be supplied. Bulk feeder described in.
  8.  前記分散部材は、前記軌道部材に対して一体的に形成され、
     前記軌道部材は、前記フィーダ本体に対して交換可能に取り付けられ、
     前記バルクフィーダは、供給する前記部品の種類に対応して互いの形状が異なる複数種類の前記分散部材の一つを形成された複数種類の前記軌道部材から選択された1つを前記フィーダ本体に取り付けられる、請求項1-6の何れか一項に記載のバルクフィーダ。
    The dispersion member is integrally formed with the track member and is formed.
    The track member is interchangeably attached to the feeder body and is
    The bulk feeder is provided with one selected from a plurality of types of track members formed of one of a plurality of types of the dispersion members having different shapes depending on the types of the parts to be supplied to the feeder main body. The bulk feeder according to any one of claims 1-6, which is attached.
  9.  前記バルクフィーダは、前記軌道部材のうち前記供給領域に設けられ、複数の前記部品を個々に収容する複数のキャビティを有し、前記軌道部材の振動に伴って搬送される複数の前記部品を案内して前記フィーダ本体に対して整列させる整列部材をさらに備える、請求項1-8の何れか一項に記載のバルクフィーダ。 The bulk feeder is provided in the supply region of the track member, has a plurality of cavities for individually accommodating the plurality of the parts, and guides the plurality of the parts to be conveyed by vibration of the track member. The bulk feeder according to any one of claims 1 to 8, further comprising an aligning member for aligning with the feeder body.
PCT/JP2019/044791 2019-11-14 2019-11-14 Bulk feeder WO2021095220A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021555737A JP7303898B2 (en) 2019-11-14 2019-11-14 bulk feeder
PCT/JP2019/044791 WO2021095220A1 (en) 2019-11-14 2019-11-14 Bulk feeder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/044791 WO2021095220A1 (en) 2019-11-14 2019-11-14 Bulk feeder

Publications (1)

Publication Number Publication Date
WO2021095220A1 true WO2021095220A1 (en) 2021-05-20

Family

ID=75911484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/044791 WO2021095220A1 (en) 2019-11-14 2019-11-14 Bulk feeder

Country Status (2)

Country Link
JP (1) JP7303898B2 (en)
WO (1) WO2021095220A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023095455A1 (en) * 2021-11-26 2023-06-01 太陽誘電株式会社 Component storage case, component supply system, and component extraction method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5743488B2 (en) * 1978-01-06 1982-09-14
JPS6014741B2 (en) * 1980-07-21 1985-04-15 株式会社荏原製作所 Powder dispersion feeding device
JPH05277447A (en) * 1992-03-31 1993-10-26 Kubota Corp Apparatus for sorting waste container
US5579951A (en) * 1994-06-23 1996-12-03 Bayer Corporated Apparatus for orienting and loading solid compact medicaments
JP2005112553A (en) * 2003-10-08 2005-04-28 Seiko Epson Corp Aligning method and device for objects
JP2011066222A (en) * 2009-09-17 2011-03-31 Nitto Kogyo Co Ltd Component feeder
JP2016199371A (en) * 2015-04-13 2016-12-01 株式会社京都製作所 Alignment apparatus, and alignment and transportation apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5743488A (en) * 1981-01-12 1982-03-11 Meidensha Electric Mfg Co Ltd Method of producing hybrid integrated circuit

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5743488B2 (en) * 1978-01-06 1982-09-14
JPS6014741B2 (en) * 1980-07-21 1985-04-15 株式会社荏原製作所 Powder dispersion feeding device
JPH05277447A (en) * 1992-03-31 1993-10-26 Kubota Corp Apparatus for sorting waste container
US5579951A (en) * 1994-06-23 1996-12-03 Bayer Corporated Apparatus for orienting and loading solid compact medicaments
JP2005112553A (en) * 2003-10-08 2005-04-28 Seiko Epson Corp Aligning method and device for objects
JP2011066222A (en) * 2009-09-17 2011-03-31 Nitto Kogyo Co Ltd Component feeder
JP2016199371A (en) * 2015-04-13 2016-12-01 株式会社京都製作所 Alignment apparatus, and alignment and transportation apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023095455A1 (en) * 2021-11-26 2023-06-01 太陽誘電株式会社 Component storage case, component supply system, and component extraction method

Also Published As

Publication number Publication date
JPWO2021095220A1 (en) 2021-05-20
JP7303898B2 (en) 2023-07-05

Similar Documents

Publication Publication Date Title
WO2021095218A1 (en) Bulk feeder and component mounting machine
WO2022230158A1 (en) Bulk feeder
WO2022249405A1 (en) Bulk feeder
JP6442039B2 (en) Parts supply device and mounting machine
WO2017208324A1 (en) Component supply apparatus
WO2017208323A1 (en) Component supply device
WO2021095220A1 (en) Bulk feeder
WO2021095219A1 (en) Bulk feeder and component mounting machine
JP7510521B2 (en) Parts supply control system
WO2018146740A1 (en) Work machine
JP7221387B2 (en) Parts feeder
WO2022230157A1 (en) Bulk feeder and parts supply control system
JP7487350B2 (en) Parts supply control system
CN111096098A (en) Component supply device
WO2022162915A1 (en) Bulk feeder and component mounting machine
WO2023238407A1 (en) Bulk feeder and bulk feeder alignment member
WO2023181342A1 (en) Component mounting machine and component mounting method
WO2022201355A1 (en) Solder ball supply device and solder ball supply method
JP7260286B2 (en) Work machine and placement method
WO2023188107A1 (en) Component mounting machine and component mounting method
WO2022190201A1 (en) Maintenance device
CN112753292B (en) Component supply device
JP2024081909A (en) Bulk Feeder

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19952871

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021555737

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19952871

Country of ref document: EP

Kind code of ref document: A1