[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021094635A1 - System for righting and reducing movements in floating platforms - Google Patents

System for righting and reducing movements in floating platforms Download PDF

Info

Publication number
WO2021094635A1
WO2021094635A1 PCT/ES2020/070694 ES2020070694W WO2021094635A1 WO 2021094635 A1 WO2021094635 A1 WO 2021094635A1 ES 2020070694 W ES2020070694 W ES 2020070694W WO 2021094635 A1 WO2021094635 A1 WO 2021094635A1
Authority
WO
WIPO (PCT)
Prior art keywords
tanks
platform
ballast
wind
procedure
Prior art date
Application number
PCT/ES2020/070694
Other languages
Spanish (es)
French (fr)
Inventor
Manuel MOREU MUNAIZ
Jaime MOREU GAMAZO
Miguel Jesús TABOADA GOSÁLVEZ
Santiago DE GUZMÁN MONTÓN
Mirian TERCEÑO HERNÁNDEZ
Pedro BUENO ENCISO
Albino POMBO SILVA
Rafael AGÜI MARTÍN
Original Assignee
Seaplace S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seaplace S.L. filed Critical Seaplace S.L.
Publication of WO2021094635A1 publication Critical patent/WO2021094635A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B39/00Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude
    • B63B39/02Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude to decrease vessel movements by displacement of masses
    • B63B39/03Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude to decrease vessel movements by displacement of masses by transferring liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B39/00Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude
    • B63B39/14Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude for indicating inclination or duration of roll
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • F03D13/25Arrangements for mounting or supporting wind motors; Masts or towers for wind motors specially adapted for offshore installation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/727Offshore wind turbines

Definitions

  • the main technical field of application of the present invention is that of floating marine structures of the wind sector industry, such as those for supporting wind generators, substations and the like, in addition to the application for floating marine structures of the hydrocarbon sector industry or any type of marine floating device or unit.
  • Procedure and system that allows a floating wind turbine platform made up of at least one floating body, the reduction of pitch-roll movements and the reduction / cancellation of the average inclination of the platform, combining during the operation of the wind turbine, simultaneously, a active and passive ballast system in which only the height of the water in the ballast tanks is acted upon.
  • SUBSTITUTE SHEET (RULE 26) that decreases the performance of the wind generator, increases the fatigue of certain components of the unit, possibility of resonances, etc.
  • Spars are traditionally slender structures that are characterized in that the center of gravity is below the center of the submerged volume or center of the hull, thus ensuring stability.
  • Spar-type structures are traditionally slender structures that are characterized in that the center of gravity is below the center of the submerged volume or center of the hull, thus ensuring stability.
  • These structures generally have a better performance than semi-submersible structures to vertical movements (arfada) due to their great draft and have a reduced response to the vertical excitation forces of the waves.
  • TLPs these are structures that have excess buoyancy thanks to submerged bodies, obtaining stability through a pre-tensioned tendon mooring.
  • This structure is very rigid in the face of vertical and angular movements (the tendons act almost as if the structure were fixed).
  • the constructive complexity, high installation cost and possible frequency couplings mean that this solution remains far from the market for the moment.
  • semi-submersibles are stabilized structures thanks to the buoyancy area, obtained by several columns separated from each other, which in general present very good behavior in pitch and roll, although not so much in vertical movements, having to have damping means.
  • These platforms are very stable and the transport and installation operations are greatly simplified compared to the other typologies.
  • barges are solutions that achieve stability thanks to the area in the flotation of a single body (instead of several columns like semi-submersibles). This results in a more compact structure than semi-submersibles but with a large area in the flotation and therefore subject to great accelerations, which affects the different components.
  • SUBSTITUTE SHEET (RULE 26) mechanical thanks to the rotation of the blades, and produces a moment that tends to tilt the tower in the same direction of the wind with respect to the vertical.
  • This inclination means that the area swept by the blades is no longer perpendicular to the wind direction, and therefore, the power produced decreases.
  • the so-called active ballast systems or active heel compensating systems which are common on ships, can be installed. Your goal is the cancellation of the average lean angle. In the case of ships, the list is usually mainly due to asymmetric loading situations or flooding.
  • the heel In the case of a wind platform, the heel is due to the action of the wind. To cancel the heel (or set it at a zero degree angle) the heel compensator system transfers ballast water between tanks, thus generating a torque that opposes the heeling.
  • These systems mostly installed on semi-submersible platforms, barges, or hybrid solutions, are also used to minimize transportation and installation costs since they help reduce the external auxiliary means necessary for transporting and installing the platform.
  • the complexity of these systems varies from one platform to another, as well as the means to carry out the ballasting and the ways of transferring water between tanks.
  • the correction of the mean heel with ballast tanks is considered by the industry as an active correction. That is, if the average heel is non-zero, and we want to cancel it, it is necessary to transfer water from one tank to another, which requires a contribution of energy, which gives it the connotation of active correction.
  • the platforms are not only subjected to the action of the wind. There is also the swell, which, together with the variability of the wind and currents, causes the movement of the units around the average inclination of the unit.
  • the designs are optimized to have the best possible behavior at sea, the existence of means on the platform that improve the behavior at sea during operation will allow an additional decrease in Operation and Maintenance Costs due to the increase in life to fatigue, the lengthening of the times between maintenance and the increase in the useful life in general, increasing the operational availability times and making the solution more competitive.
  • active means such as gyrostabilizers
  • passive such as anti-balance tanks
  • SUBSTITUTE SHEET (RULE 26) which can be either free surface, or in a "U" arrangement).
  • the natural frequency of the tank can be adjusted to a certain value thanks to the variation of the water level, so that the tank, when excited near its resonance, opposes passively, that is, without requiring the external contribution of energy, a moment that reduces high-frequency pitch or roll motion.
  • an initial energy input is required to adjust the height of the tank for it to work effectively, the operation of free-surface tanks is considered passive in the marine industry.
  • a tank with a “U” shape (FIG 4B), consists of two vertical columns communicated by its lower part. This tank achieves damping through the oscillating movement of the mass of water contained in them.
  • the solution presented in ES2681271T3 refers to a procedure to control an inclination of a floating wind turbine platform of at least three stabilizing columns on which the tower is mounted, each one having an internal volume to contain the ballast. Based on the measurements received by the sensor system, the control system adjusts the turbine pitch and torque to maximize energy production, and in turn acts on the ballast tanks in order to reduce movements. low frequency roll and pitch due to swell and / or wind.
  • This solution is applicable to platforms with at least three independent stabilizing columns, each one acting as a ballast tank. This fact limits the field of application of the invention ES2681271T3 to other platforms, where the present invention of this document does
  • SUBSTITUTE SHEET (RULE 26) it is applicable, for example, to platforms with a single floating body, subdivided inside into different ballast tanks.
  • the ballast system described in the patent is an active ballast system, focused on compensating for low frequency movements due to waves and / or wind through the transfer of ballast water by means of pumps between the stabilizing columns. .
  • the low frequency movements on the platform are mainly due to the action of the wind and to a lesser extent to the waves, being able to give some swell with sufficiently high wave periods that can be mitigated with the active ballast system.
  • the waves generally on floating offshore platforms produce high-frequency pitching and rolling movements, which lead to strong accelerations in the turbine and great stresses in the tower that supports it.
  • Patent ES2681271T3 lacks means to mitigate these high-frequency movements in its procedure, since the response times that active ballast systems have by means of pumping are high, and are outside the range of the wave frequency.
  • the present invention improves the ballast system in this aspect by adding passive compensation means, which have lower periods of action, that is to say, higher frequencies, which makes it possible to compensate for the pitch and roll movements of the platform.
  • passive means of the present invention are based on anti-balance tanks that can be free-surface or with a “U” arrangement.
  • SUBSTITUTE SHEET (RULE 26) applying the principle of free surface anti-roll tanks for the correction of roll / pitch movements.
  • These damping systems, arfada plates, are applicable to semi-submersible type floating structures while the present invention is applicable to any floating unit that has ballast tanks.
  • the active system of this solution only corrects the inclination of the platform whereas in the present invention the tanks that act in the correction of the inclination thanks to the active system can also act simultaneously correcting the movements of roll and pitch by adjusting their appropriate way. filling height without affecting the correction of the mean tilt. Therefore, the tanks belonging to the system of the present invention act indistinctly as active (heel correction) or passive (roll and pitch correction) and, depending on the required performance, with the possibility of the same tank acting simultaneously.
  • the US 4864968A solution also presents a combination of an active system and a passive system for the control of movements, although their operation is not simultaneous. Trim / list correction is performed actively, while roll / pitch damping can be performed actively or passively, but in no case simultaneously, since the active system is based on acting on the pressurization of tanks and the passive system. communicates the pressurized tanks with the outside, thus losing the simultaneity.
  • the present invention in addition to having simultaneity, does not require energy input during the damping of the roll / pitch movement, although its effectiveness can be optimized by modifying the water heights in the free surface tanks. Therefore, it is more economical in operation as it tends towards passivity and is adjustable with less energy expenditure.
  • SUBSTITUTE SHEET (RULE 26) arfada (the arfada being the vertical movement of the platform) which is a function of the speed of the oscillation of the platform.
  • This system can be operated actively by controlling pumps and valves, in a purely passive way producing a pressure difference in the tanks by opening valves and turning off pumps or, in a controlled passive way acting exclusively on the valves.
  • This solution does not correct the roll / pitch of the platform.
  • the passive system of the present invention has the advantage of being the most economical system in the industry by not having the need to have any means to damp the movement since it is based on the principle of free surface tanks. Furthermore, the present invention does not correct the arfade movement.
  • the principle of operation of the U-shaped tanks is another passive method that allows the improvement of the behavior at sea of the floating units.
  • this system is only capable of damping the movement when the direction of incidence of the waves is parallel to the tube that joins the tanks. Therefore, in the US2019 / 0061884 A1 solution, a multidirectional damping system for U-shaped tanks is proposed, which can be pure passive or passive controlled through valve actuation.
  • the passive system of the present invention also allows multidirectional damping without the need for connection between tanks, since the principle of operation is that of free surface, with the consequent saving of material, which is not negligible, and without the need for means. restriction of fluid movement, whether liquid or gaseous, as stated in the solution US2019 / 0061884 A1.
  • the present invention refers to a procedure, and systems, for righting and reducing movements in marine installations whose innovative feature consists in the combination of a passive system and an active ballast system that allows, through a combined operation of both systems, for On the one hand, to increase the operating performance of the wind turbine by being able to cancel the average inclination of the platform when faced with the action of the wind and current (active system), and, on the other hand, to increase the fatigue life of the platform (in addition to its components) and reduce maintenance costs by improving the
  • SUBSTITUTE SHEET (RULE 26) behavior at sea since it is capable of reducing the pitch and roll movements of the platform when it faces the action of the waves and the variability of the wind (passive system, based on passive anti-roll tanks, whose efficiency is adjusted by the active system). Fatigue on the turbine and tower components will also be reduced by canceling the mean platform tilt.
  • the procedure for righting and reducing movements in marine facilities is established based on a subsystem of sensors where environmental measurements (wave height, periods, wind speed %) and those of the floating platform (inclination, level of ballast in tanks ...), a component subsystem (remotely actuated pumps and valves) and a control and actuator subsystem that provides automation and computer support.
  • the measurements of the sensors are computed, stored and processed through the computer subsystem, which, depending on how the logic modules and calculation algorithms have been programmed, automatically establishes a transferring and ballasting process and a distribution of ballast in the system tanks to optimize a predefined target (objective function), such as, among others, correcting the mean bank in the fastest way or correcting the mean bank and compensating for roll and pitch movements with the least expense energetic.
  • a predefined target objective function
  • the compensation of the average inclination consists of the transfer of water from one tank to another to generate a moment opposite to the average inclination. This compensation is called active compensation since it requires active means of transferring ballast to perform its righting function.
  • Compensation for movements due to waves consists of achieving that the ballast of a given tank, without communication with another tank, oscillates due to the movement of the platform itself to a period such that it compensates totally or partially the oscillation itself of the platform.
  • the period of oscillation of the ballast in a tank is a function of the height of the water in the tank and its dimensions. This compensation is considered passive since, although it requires active means of ballast transfer to adjust the height of the water in the tank, once said transfer has been carried out, the damping of movements is a totally
  • the present invention shows the following innovative characteristics, compared to the previously described background, of application to the offshore wind industry, substantially improving the response of floating offshore wind platforms, substations or the like against wind, waves and current: a) A single system that allows to reduce two types of movements crucial for the decrease of OPEX, on the one hand, the average inclination of the tower, and on the other the pitch and balance. b) The reduction / cancellation of movements is combined and simultaneous. c) The means used are reduced to a set of ballast tanks, a ballast system, and a control system, which allows at least two of these tanks to act indistinctly for the cancellation / reduction of the two characteristic movements.
  • Movement reduction tanks can cancel / reduce by themselves all movements specified in the invention or some of them in combination with another set / sets of tanks in the system.
  • An economical system that does not require many means for its installation on floating offshore wind platforms, substations or similar.
  • Versatile system perfectly adaptable to any type of offshore wind floating platform, substation or similar.
  • Figure 1A shows a schematic elevation and plan view of an example of a floating offshore wind platform, substation or similar, in which the object of the invention is applicable, formed by a floating body that can be completely or partially submerged.
  • Figure number 1 B shows a schematic elevation and plan view of an example of a floating offshore wind platform, substation or similar, in which the object of the invention is applicable, consisting of several floating bodies that can be completely or partially submerged .
  • Figure number 2 shows a schematic elevation view of an example of a floating offshore wind platform, substation or similar subject to wind and collinear waves (coming from the same direction), in addition to plan-elevation views of the set of tanks of the system of reduction of movements in which the operation of the system is shown.
  • Figure number 3 shows a schematic elevation view of an example of a floating offshore wind platform, substation or similar subject to wind and waves whose main directions of origin form 90 °, in addition to plan-elevation views of the set of tanks of the system of reduction of movements in which the operation of the system is shown.
  • Figure number 4A shows elevation and plan views of an example of a free surface anti roll tank in which the wave front on the free surface of the tank can be observed, induced by the roll / pitch of the platform and that would produce the effect shock absorber on said movements.
  • Figure 4B shows an elevation view of a column of water between two tanks joined by a conduit through their lower part.
  • Figure 5 shows a diagram of the system for righting and reducing movements.
  • Figure 6 shows a block diagram of the system for righting and reducing movements.
  • SUBSTITUTE SHEET (RULE 26) average inclination of the unit with respect to the vertical produced mainly by the effect of the wind and the current and, simultaneously, reducing the roll / pitch amplitude produced by the waves and by the variability of the wind speed.
  • the present invention consists of a combined system to right up and reduce movements in which part of the ballast tanks (100) that make up the system, depending on the direction of incidence of the metocean conditions (wind, current and waves) on the offshore wind floating platform (1), substation or similar, can act indistinctly both to reduce pitch and roll movements, and / or to reduce / cancel the average inclination.
  • the average inclination will be reduced / canceled by the principle of anti-heeling tanks, transferring water between tanks (100) a priori opposite, correction that is achieved exclusively by active means (ballast system).
  • the reduction of roll and pitch movements will be carried out through the principle of passive free surface anti-roll tanks (FIG 4A), selecting for this purpose at least one tank in which the water oscillates preferentially along wave direction (along the longest dimension of the tank if there are no internal obstacles).
  • the reduction of movement around certain periods of the waves will be optimized in a passive way thanks to the oscillation, in opposition of phase with respect to the waves, of the front of the wave that is formed on the free surface of the tank itself.
  • the free surface tank (FIG 4A) in this case acts passively, being its operation therefore very economical, the height adjustment of the tank requires the actuation of the ballast system, having an associated active initial operation.
  • the floating offshore wind platform (1), substation or similar When the floating offshore wind platform (1), substation or similar is installed in its final location and ready for operation, it will be ballasted according to its design requirements. Part or all of that ballast necessary for the operation will be contained in the tanks (100) of the system to rightize and reduce the movements of the platform (1), some of them not being completely full,
  • the offshore wind floating platform (1), substation or similar will be exposed to the action of the wind, current and waves and will vary its equilibrium position according to the intensity of these, and to the design characteristics of the platform ( 1).
  • the platform (1) will acquire a new equilibrium position by tilting a certain angle 0 ⁇ m (average angle of inclination of the platform) with respect to the vertical due to the action of the wind, and another certain angle 0 b / c (platform roll / pitch angle (1)) at wave frequency around this new equilibrium position due to wave action.
  • the direction of oscillation will be the wave incidence, which in the event that it is collinear with the wind (coming from the same direction), will have the same direction of the mean inclination (FIG 2A) and, in the event that they form 90 ° (FIG 3A) will oscillate perpendicular to the direction of the mean tilt.
  • the floating offshore wind platform (1), substation or similar When the floating offshore wind platform (1), substation or similar is in regular (or monochromatic) seas, formed by regular waves at a certain period, and in which the wind and waves are collinear (coming from the same direction) ( FIG 2A), the platform acquires its new equilibrium position (FIG 2B).
  • the average heel associated to the overturning moment caused mainly by the wind (average inclination angle) will be canceled by generating a recovery moment (righting) transferring water from the Cs tanks to the Bs tanks (FIG 2C), which in this case act as anti-heeling tanks.
  • SUBSTITUTE SHEET (RULE 26) irregular sea (FIG 2E), sea formed by a very large number of regular waves with different periods, the tanks that act as free surface tanks (As tanks) will be more effective at some frequencies than at others. For this reason, these As tanks can be filled at different heights, so that the frequency range in which they are effective is greater, thus cushioning the balance of the platform due to the incident waves at different periods.
  • the tanks used to cancel the average inclination angle (Bs and Cs tanks) of the floating offshore wind platform (1), substation or similar, in addition to acting as tipping compensators (and having to transfer water between them) they will have to adjust their level to avoid a variation in draft, or trim, produced by the action on the As tanks.
  • FIG 3A a misalignment at 90 ° of the environmental conditions is schematized and in FIG 3B the equilibrium position reached.
  • FIG 3C the tanks Bs and Cs will cancel the average inclination by transferring water between them (from Cs to Bs), but one or more of them will reduce the pitch and roll movements by adjusting their height. filling, using for said adjustment water from tanks As, which is adequately supplied to all tanks Bs and Cs so as not to modify the mean inclination (FIG 3D).
  • some of the Bs and Cs tanks will have the double function of canceling the mean bank angle caused by the wind (righting) and reducing pitch / roll movements caused by the incident waves, and the As tanks will act adjustment adjustment of ballast filling-emptying of the Bs and Cs tanks (to maintain draft), in addition to being able to help reduce pitch / roll movements due to wind turbulence.
  • tanks (100) In a general sea state composed of a wind sea (short crest swell, sum of multiple regular waves propagating in different directions) and one or more bottom seas (long crest swell, irregular and propagating sensibly in a single direction ) with different dominant periods, tanks (100) will be used to reduce pitch and roll movements due to swell. The procedure will be analogous to the previous cases, water will be transferred from some tanks (100) to others to cancel the average inclination and adjust the water level of the
  • the time scale in which the active system acts is slow compared to the passive correction, associated with the periods of the swell (usually a few seconds). Corrections for differences in the average inclination are mainly associated with variations in the average intensity of the wind, the value of which is reasonably constant for tens of minutes.
  • the system to rightize and reduce the movements of floating offshore wind platforms (1), substations or similar is, therefore, a combined-simultaneous system that will contain at least three tanks (100), and in which at least two of those tanks (100) can act either actively, by transferring ballast, or passively, by moving their free surface after adjusting the height of the water.
  • a combined reduction system is configured. of pitch / roll movements and cancellation of medium inclination (FIG 5) whose objective is to increase the performance of the floating platform (1) in its operation and reduce the fatigue damage of the structural components and that: a) contains the least three ballast tanks (100) b) in which the transfer medium is at least one pump (102) that moves water from one tank to another, interchangeably, through a distribution of pipes that connect the tanks (104) , c) the transfer of water through the connecting pipes (104) between tanks is controlled with remotely operated valves (106),
  • SUBSTITUTE SHEET (RULE 26) d) that contains a sensor subsystem, an actuator subsystem and a control subsystem that houses the logic modules and calculation algorithms whose resolution provides the necessary ballast distribution to automatically compensate the heel / trim, while achieving the damping of roll / pitch movements.
  • the control subsystem will be housed in one or more computers.
  • the number of tanks (100) that make up the system to right and reduce movements of the platform (1) will depend on the type of structure and design conditions. Although with three tanks (100) it would only be possible to make a single adjustment that maintains the draft (for example, correcting only the trim and pitch), from three the possibilities of different adjustments are much higher. Although a greater subdivision is favorable by providing a greater number of degrees of freedom to achieve the combined objective, a high number of tanks (100) results in tanks of smaller dimensions (beam or length), which reduces the efficiency of the passive system when the efficiency depend greatly on the dimensions of the tank (100).
  • the floating offshore wind platform (1), substation or similar is exposed to external agents, such as environmental conditions, which cause movements on the platform (1).
  • external agents such as environmental conditions
  • the ones that will be controlled by the system to right and reduce movements are list or trim (very low frequency, with characteristic periods of the order of tens of minutes derived from changes in average speed and / or wind and current direction due to the phenomena
  • SUBSTITUTE SHEET (RULE 26) occur throughout a day), and roll / pitch movements induced by wave frequency (with characteristic periods of the order of 4 seconds to 30 seconds produced by windy seas and / or swells ).
  • control strategy of the transfer sequence in the control subsystem determines when the transfer sequence must be activated and which optimization criteria must be followed for its calculation.
  • the control strategy is defined by: a set of control parameters, activation laws of the system based on said parameters, and, at least, one objective function to optimize depending on the initial and final distributions of ballast in the tanks, of the transfer sequence with its corresponding intermediate ballast distributions in the tanks and the means to carry out said transfer.
  • the control parameters will be at least four, a threshold mean inclination angle (0i mU ) and a time range (ti) above which if the platform remains the system is activated to correct the platform inclination, and a period characteristic threshold (T cu ) and a time range) above which if the difference in absolute value between the periods of water (Tu) of the ballast tanks (100) and the characteristic periods of the roll / pitch of the platform due to When the swell (T 0 ) exceeds the value of the threshold characteristic period, the system is activated to modify the ballast height of the tanks (100) that will act as passive anti-balance tanks.
  • the optimization of the objective function determines the final distribution of the ballast in the tanks of the system and the transfer sequence between them from an initial distribution of ballast, leading to correcting the mean inclination and / or simultaneously increasing the damping of the rolling movements and pitching, considering to achieve this goal minimize any of the following variables: energy consumption, the height of the center of gravity of the water in the tanks (thus maximizing the stability of the platform), the time to reach the final distribution of ballast, structural stresses in the wind turbine (4) and / or interference in its operation, roll and / or pitch movements, or some weighted combination of these.
  • the choice of the control parameters and the objective function to be optimized for the transfer is carried out automatically by the control subsystem, which has defined criteria based on the operation, environmental conditions and the conditions of the wind floating platform. marine (1), substation or similar. For the choice of the control parameters and the
  • SUBSTITUTE SHEET (RULE 26)
  • the objective function is also contemplated the manual option, to be executed in exceptional or emergency cases, or the definition from a control center outside the platform.
  • the sensor subsystem is the set of sensors and transducers installed on the platform (1). Basically, these sensors will produce a digital or analog electrical signal that is taken to the control computer / res for processing. Depending on the type of sensor, more sophisticated or not, it may be that this signal is already conditioned or processed in some way.
  • the platform (1) there may be sensors that measure wind speed and direction (for example anemometers), current speed and its direction (such as current meters), sensors that measure the absolute wave height and serve to subsequently obtain the period (such as ultrasonic sensor or external buoy), a system that measures the instantaneous movements of the platform (1) (such as an inertial system), level sensors that measure the draft of the platform (1) and the level of water in each ballast tank (100) of the system.
  • the transfer system will be monitored through the sensor subsystem, which will provide at least data to the control subsystem on the status of the pumps, status of the valves, flow and pressure in the system.
  • the control subsystem calculates the average angle of inclination of the platform (1), the periods of water in the ballast tanks (100) derived from them and the characteristic periods of the roll / pitch of the platform due to the swell.
  • a fourth phase the activation of the system to right up and reduce movements is analyzed by comparing both the average angle of inclination of the platform (1) and the difference in absolute value of the periods of water in the ballast tanks (100) and the characteristic periods of the roll / pitch of the platform due to the waves obtained with the parameters of the control strategy, being:
  • • 0 ⁇ m is the mean angle of inclination of the platform (1) due to movements induced by external forces.
  • T ti the periods of the water in the ballast tanks (100) of the system to right and reduce movements.
  • the system is not activated. That is: If 0 im ⁇ ti £ 0 imu and, in addition, ⁇ T U - T 0 ⁇ tz £ T cu for the ballast tanks (100) that are going to dampen the wave movements, the system is not activated.
  • SUBSTITUTE SHEET (RULE 26) c) The difference in absolute value between the characteristic periods of the roll / pitch of the platform due to the swell T 0 and the periods of the water in the ballast tanks (100) Tu effective for the damping of the roll / pitch during a range of time t2 is less than or equal to the threshold characteristic period, then the system is activated by transferring water between the ballast tanks (100) to compensate for the mean angle of inclination. That is: S ⁇ e im ⁇ ti > 0 imu and, in addition, ⁇ T U - T 0 ⁇ tz £ T cu for the ballast tanks (100) that are going to dampen the wave movements, the system is activated to compensate for the medium incline.
  • a fifth phase once the system to right and reduce movements of the platform (1) is activated in any of the previous ways, the final distribution of water in the tanks and the transfer sequence between them is calculated to perform the control action, optimizing the objective function defined in the first phase.
  • the objective compensation is: a) the damping of the roll / pitch of the platform, the ballast distribution in the tanks is calculated at the end of the transfer sequence, so that the difference in absolute value between the periods of surface oscillation
  • ballast between the tanks of the system determines for each tank its filling level and consequently its natural period of oscillation, which, together with its relationship with the water levels of the rest of the tanks of This system establishes whether the tank in question is acting as an anti-heeling tank, a free surface anti-balance tank, or simultaneously as an anti-heeling and anti-balance tank.
  • both the final ballast distribution and the transfer sequence from initial to final state are calculated to achieve this end, for example by distributing the ballast as evenly as possible in height between the tanks. time to right and / or roll / pitch damping.
  • the final distribution of ballast and transfer sequence from the initial state to the end are calculated so that the righting and the damping functionality is carried out as quickly as possible with the transfer means that are available.
  • the final distribution of ballast and the transfer sequence between the initial and final state is calculated so that both the angle of inclination and the damping during transfer are conducive to this end, for example, avoiding possible resonances with the turbine operation and extreme tilt angles during racking that could occur when correcting the average tilt of the platform in exceptional situations of changes in direction and intensity of the wind. roll and pitch movements due to swell.
  • the final distribution of ballast and the transfer sequence between the initial and final state is calculated so that roll and pitch movements are reduced to the maximum, for example, by selecting the maximum number of tanks with the possibility of exercising. an anti-balance function compatible with the correction of the average inclination. a weighted combination of the above.
  • the final distribution of ballast and the ballast sequence is chosen in such a way as to minimize the factored sum
  • SUBSTITUTE SHEET (RULE 26) of the squares of the values that the objective functions take for a set of final ballast distributions and ballast sequences compatible with the objective compensation in mean bank and / or roll / pitch.
  • control subsystem will order the actuator subsystem of the transfer means (pumps, valves) to carry out the defined transfer and the platform (1) will reach the new corrected position, thus returning to phase 3) of the procedure.
  • This procedure in addition to correcting the average inclination produced by the wind, is capable of correcting the inclination due to the flooding of at least one ballast tank (100) caused by a waterway, righting the platform (1) and maintaining the draft.
  • the system for righting and reducing the movements of a platform (1) will be connected to the outside (open loop) through at least one sea intake.
  • the correction criteria are exactly the same as those set forth above, that is, threshold values are not exceeded.
  • the complete flooding of one of the tanks (100) is detected through the tank level sensor (100)
  • the control upon detecting the flooding, will ballast accordingly the tanks (100) necessary to completely correct the flooding ; and simultaneously, it will dislodge ballast from the rest of the tanks (100) from the platform (1) through the sea intake, since when the flooding occurs, the draft increases. If the breakdown allows it, water will be reduced until the platform (1) emerges at the transport draft, to facilitate its transfer and repair.
  • the criterion that defines this transfer sequence will be a weighted combination of the minimum righting time and the minimum height of the center of gravity (maximum stability) to guarantee the safety of the platform (1).
  • An open loop also allows modifying the depth of the platform (1), to vary
  • tank fill (100) can be allowed that result in the same trim, list and draft. In this case, it is possible to move water from some tanks (100) to others to store potential energy without modifying the trim, list and draft. Thus, excess energy generated by the wind turbine (4) can be used. In times of lower generation, it is possible to take advantage of the stored energy if a generator that takes advantage of the waterfall is incorporated.
  • This procedure can also correct the roll and pitch movements by using at least one tank with a “U” shape (FIG 4B), consisting of two vertical columns communicated by its lower part and which, thanks to its design, allow the Oscillating movement of the mass of water contained in them at a period and phase such that an oscillating moment is generated opposite to the roll / pitch of the platform whose period is independent of the average difference between them.
  • the period of oscillation of the water in the tank will depend on the design and the filling of the tank.
  • the signals from the wind turbine as a whole and its subsystems can be used, which, among others, measure or estimate the thrust and aerodynamic torque, the operation and supervision status (alarms, warnings), the revolutions, the structural forces, accelerations. , etc., and these are taken into account in the optimization of the objective functions.
  • FIG. 1A and 1B Examples of floating offshore wind platforms (1), substations or the like in which the present invention is applied are shown in Figure 1A and 1B.
  • the floating body 1 can have any type of shape as long as it is hollow to be able to contain inside at least the tanks that make up the system to right up and reduce movements, although for generality it has been represented as a cylinder / cylinders.
  • the floating body / s (1) has a transition piece (2), a tower (3) and a wind turbine (4).
  • the wind turbine (4) illustrated has a horizontal, downwind or upwind axis, and can also be a vertical axis, and where the number of blades
  • the floating body (1) can have both a wind turbine (4) that is centered or off-center in the floating body (1) or in the set of floating bodies (1).
  • the floating body (s) (1) will be fixed to the seabed (7) by means of an anchoring system (5) whose characteristics (catenary, semi-rigid, rigid ...), materials (chain, cable ,. ..), layout (1, 2, 3, 4 ... lines) and type of anchor (type of anchors, type of platform anchors ...) will be according to the type of solution.
  • the floating body (s) (1) can be completely submerged below the water line (6) or partially. Additionally, the floating body (s) (1) can serve to support electrical substations or the like. In that case, the wind turbine (4), the tower (3) and the transition piece (2) would be replaced by the relevant upper modules (topsides).
  • FIG 2A An example of an offshore wind platform (1), substation or the like subjected to the collinear action of wind and waves is shown in figure 2A.
  • the wind incident on the platform formed by a floating body (1), a transition piece (2), a tower (3), a wind turbine (4) and an anchoring system (5) produces a thrust that makes the tower (3) forms an average inclination angle (0im) with respect to the vertical. If, in addition, the waves are incident in the same direction, to this average tilt angle (0im) is added the roll / pitch angle (0c / b) that will oscillate in one direction and the other due to the forces of the waves.
  • FIG 2B a generic distribution of tanks of the system is shown in plan and elevation to right and reduce movements before making corrections with the system.
  • Adjusting the height of the As tanks is achieved by transferring ballast from the Bs and Cs tanks to the As tanks, in such a way that the righting moment produced by the Bs and Cs tanks is not modified.
  • the height in the tanks that act as movement reducers through the principle of free surface will be the same, as seen in figure 2D. This is because in a regular sea the
  • SUBSTITUTE SHEET (RULE 26) swell has a single frequency, which requires the same height in the tanks. However, when the sea is rough, this height can vary between tanks to cover more periods of swell. In such a case, one tank A will increase its water level and the other tank A will reduce it, compensating for the spin that this change produces by a movement of water from one tank C to the other tank C, as shown in figure 2E, and / or from tank B to the other B.
  • FIG. 3A An example of an offshore wind platform, substations or the like subjected to the action of wind and waves at 90 ° is shown in figure 3A.
  • the wind incident on the platform formed by a floating body (1) a transition piece (2), a tower (3), a wind turbine (4) and an anchoring system (5) produces a thrust that makes the tower (3) form a mean tilt angle (0im) with respect to the vertical.
  • the wave acts perpendicularly, causing a roll / pitch angle (0c / b) that will oscillate with different magnitude and direction due to the onslaught of the waves.
  • FIG 3B a generic distribution of tanks of the system is shown in plan and elevation to right and reduce movements before making corrections with the system.
  • the tanks A will function as adjustment of the ballast filling-emptying of the tanks Cs and Bs, whose height, and therefore their period of oscillation, can be adjusted to act as free surface anti-balance tanks, in such a way that their anti-heeling action and operating draft are not modified, that is, the Cs and Bs tanks act simultaneously as anti-heeling tanks (in the direction of the wind). ) and anti-balance (in the direction of the waves).
  • the height level of the As tanks could be adjusted (playing with the other tanks as much as possible) to reduce movements associated with wind turbulence / variability.
  • FIG. 4A An example of a free surface tank is shown in Figure 4A.
  • the water moves from side to side of the tank, the natural oscillation frequency depending on the height

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

The invention relates to a method and a system that allows the reduction of pitch–roll movements in a floating wind platform formed by at least one floating body, and the reduction/countering of the average slope of the platform, simultaneously combining during the operation of the wind turbine an active ballast system and a passive ballast system that exclusively act on the water depth in the ballast tanks.

Description

Figure imgf000003_0001
Figure imgf000003_0001
SISTEMA PARA ADRIZAR Y REDUCIR MOVIMIENTOS EN PLATAFORMASSYSTEM TO STRAIGHTEN AND REDUCE MOVEMENTS ON PLATFORMS
FLOTANTESFLOATING
SECTOR DE LA TÉCNICA El campo técnico de aplicación principal de la presente invención es el de las estructuras flotantes marinas de la industria del sector eólico como son las de soporte de generadores eólicos, subestaciones y similares, además de la aplicación para las estructuras flotantes marinas de la industria del sector de los hidrocarburos o cualquier tipo de dispositivo o unidad flotante marina. Procedimiento y sistema que permite a una plataforma eólica flotante formada por al menos un cuerpo flotante, la reducción de los movimientos de cabeceo-balance y la reducción/cancelación de la inclinación media de la plataforma, combinando durante la operación del aerogenerador, simultáneamente, un sistema de lastre activo y pasivo en los que exclusivamente se actúa sobre la altura de agua de los tanques de lastre. ANTECEDENTES DE LA INVENCIÓN TECHNICAL SECTOR The main technical field of application of the present invention is that of floating marine structures of the wind sector industry, such as those for supporting wind generators, substations and the like, in addition to the application for floating marine structures of the hydrocarbon sector industry or any type of marine floating device or unit. Procedure and system that allows a floating wind turbine platform made up of at least one floating body, the reduction of pitch-roll movements and the reduction / cancellation of the average inclination of the platform, combining during the operation of the wind turbine, simultaneously, a active and passive ballast system in which only the height of the water in the ballast tanks is acted upon. BACKGROUND OF THE INVENTION
El auge de las energías renovables hace que se tienda a la búsqueda de un mayor aprovechamiento de estas. Particularizando para la energía eólica, la tendencia que se observa es la de la instalación de plataformas en la mar donde las velocidades de viento son mayores que en tierra (y menos turbulentos), asegurando así una mayor producción de energía. Estas características de viento además mejoran cuanto más nos alejamos de la costa. The rise of renewable energies leads to a search for greater use of these. Particularly for wind energy, the trend observed is that of the installation of platforms at sea where wind speeds are higher than on land (and less turbulent), thus ensuring greater energy production. These wind characteristics also improve the further we get from the coast.
Sin embargo, estos emplazamientos presentan como inconveniente el que en muchos casos las plataformas fijas (plataformas ya economizadas y bien conocidas) no son competitivas, ya sea por desniveles en el lecho marino, por el tipo de suelo o porque nos encontremos a profundidades mayores de 60 metros. Esto lleva a que las soluciones más viables pasen a ser las flotantes, con la consiguiente alteración del coste debido al aumento del tamaño de las soluciones, necesidad de un sistema de fondeo y medios de anclaje al lecho marino, diferentes operaciones marinas, nuevas incertidumbres, riesgos... Además, estas plataformas, al no estar fijas, están expuestas a los movimientos inducidos por el viento, el oleaje y la corriente, que hacenHowever, these sites have the drawback that in many cases the fixed platforms (platforms that are already economized and well known) are not competitive, either due to unevenness in the seabed, the type of soil or because we are at depths greater than 60 meters. This leads to the most viable solutions becoming floating ones, with the consequent alteration in cost due to the increase in the size of the solutions, the need for an anchoring system and means of anchoring to the seabed, different marine operations, new uncertainties, risks ... In addition, these platforms, as they are not fixed, are exposed to movements induced by wind, waves and current, which make
1 1
HOJA DE REEMPLAZO (REGLA 26) que disminuya el rendimiento del generador eólico, aumente la fatiga de ciertos componentes de la unidad, posibilidad de resonancias, etc. SUBSTITUTE SHEET (RULE 26) that decreases the performance of the wind generator, increases the fatigue of certain components of the unit, possibility of resonances, etc.
En la actualidad existen múltiples soluciones flotantes, algunas de ellas operando, otras en demostración, y una mayoría en desarrollo. Estas soluciones se basan principalmente en cuatro tipos de estructuras provenientes de la Industria del Petróleo, siendo otras muchas híbridos que aprovechan las mejores características de cada tipología clásica: Spars, TLPs (Tensión Leg Platforms), Semisumergibles (o semis), y las barcazas (barges). Las estructuras tipo Spar son estructuras tradicionalmente esbeltas que se caracterizan porque el centro de gravedad se encuentra por debajo del centro del volumen sumergido o centro de carena, asegurando de esta manera la estabilidad. Estas estructuras presentan, en general, un mejor comportamiento que las estructuras semisumergibles a los movimientos verticales (arfada) debido a su gran calado y tienen una respuesta reducida a las fuerzas de excitación vertical de las olas. Con respecto a las TLPs, se trata de estructuras que tienen exceso de flotabilidad gracias a unos cuerpos sumergidos, obteniendo la estabilidad a través un amarre de tendones pre-tensionados. Esta estructura es muy rígida ante los movimientos verticales y los angulares (los tendones actúan casi como si la estructura fuese fija). Sin embargo, su complejidad constructiva, alto coste de instalación y posibles acoplamientos de frecuencia hacen que esta solución siga por el momento lejos de mercado. Por su parte, las semisumergibles son estructuras estabilizadas gracias al área de la flotación, obtenida por varias columnas separadas entre sí, que en general presentan muy buen comportamiento en cabeceo y balance aunque no tanto en movimientos verticales, teniendo que disponer de medios amortiguadores. Estas plataformas son muy estables y las operaciones de transporte e instalación se simplifican enormemente respecto a las otras tipologías. Por último, las barcazas son soluciones que logran la estabilidad gracias al área en la flotación de un único cuerpo (en vez de varias columnas como las semisumergibles). Esto resulta en una estructura más compacta que las semisumergibles pero de mucho área en la flotación y por ello sujeta a unas grandes aceleraciones, lo que repercute sobre los diferentes componentes. Currently there are multiple floating solutions, some of them operating, others in demonstration, and a majority in development. These solutions are mainly based on four types of structures from the Oil Industry, being many other hybrids that take advantage of the best characteristics of each classic typology: Spars, TLPs (Tension Leg Platforms), Semisubmersibles (or semis), and barges ( barges). Spar-type structures are traditionally slender structures that are characterized in that the center of gravity is below the center of the submerged volume or center of the hull, thus ensuring stability. These structures generally have a better performance than semi-submersible structures to vertical movements (arfada) due to their great draft and have a reduced response to the vertical excitation forces of the waves. With regard to TLPs, these are structures that have excess buoyancy thanks to submerged bodies, obtaining stability through a pre-tensioned tendon mooring. This structure is very rigid in the face of vertical and angular movements (the tendons act almost as if the structure were fixed). However, its constructive complexity, high installation cost and possible frequency couplings mean that this solution remains far from the market for the moment. For their part, semi-submersibles are stabilized structures thanks to the buoyancy area, obtained by several columns separated from each other, which in general present very good behavior in pitch and roll, although not so much in vertical movements, having to have damping means. These platforms are very stable and the transport and installation operations are greatly simplified compared to the other typologies. Finally, barges are solutions that achieve stability thanks to the area in the flotation of a single body (instead of several columns like semi-submersibles). This results in a more compact structure than semi-submersibles but with a large area in the flotation and therefore subject to great accelerations, which affects the different components.
De las soluciones flotantes actuales, algunas se diseñan para reducir la inclinación media, con el consiguiente aumento del rendimiento del generador de viento. Cuando el viento incide sobre la turbina durante la operación, se transforma en energíaOf today's floating solutions, some are designed to reduce the mean tilt, thereby increasing the performance of the wind generator. When the wind hits the turbine during operation, it is transformed into energy
2 two
HOJA DE REEMPLAZO (REGLA 26) mecánica gracias a la rotación de las palas, y produce un momento que tiende a inclinar la torre en la misma dirección del viento respecto a la vertical. Esta inclinación hace que el área barrida por las palas ya no se encuentre perpendicular a la dirección del viento, y por tanto, que disminuya la potencia producida. Por lo general, hay un máximo admisible dinámicamente en operación de 10 grados de inclinación de la torre con respecto a la vertical, aunque es preferible estar por debajo de los tres grados. Para ello, se pueden instalar los denominados sistemas activos de lastre o sistemas activos compensadores de escora, que son habituales en los barcos. Su objetivo es la cancelación del ángulo de inclinación medio. En el caso de los barcos, la escora suele ser principalmente debida a situaciones de carga asimétricas o una inundación. En el caso de una plataforma eólica, la escora se debe a la acción del viento. Para cancelar la escora (o ponerla con un ángulo de cero grados) el sistema compensador de escora realiza el trasvase de agua de lastre entre tanques, generando de esta manera un par que se opone al escorante. Estos sistemas, en su mayoría instalados en plataformas semisumergibles, barcazas, o soluciones híbridas, además se emplean para minimizar los costes de transporte e instalación ya que ayudan a reducir los medios auxiliares externos necesarios para el transporte e instalación de la plataforma. La complejidad de estos sistemas varía de una plataforma a otra, así como los medios para realizar los lastrados y los modos de trasvase de agua entre tanques. La corrección de la escora media con tanques de lastre es considerada por la industria como una corrección activa. Es decir, si la escora media es no nula, y queremos anularla, es necesario el traslado de agua de un tanque a otro, lo que requiere un aporte de energía, lo que le da la connotación de corrección activa. SUBSTITUTE SHEET (RULE 26) mechanical thanks to the rotation of the blades, and produces a moment that tends to tilt the tower in the same direction of the wind with respect to the vertical. This inclination means that the area swept by the blades is no longer perpendicular to the wind direction, and therefore, the power produced decreases. In general, there is a maximum allowable dynamically in operation of 10 degrees of inclination of the tower with respect to the vertical, although it is preferable to be below three degrees. For this, the so-called active ballast systems or active heel compensating systems, which are common on ships, can be installed. Your goal is the cancellation of the average lean angle. In the case of ships, the list is usually mainly due to asymmetric loading situations or flooding. In the case of a wind platform, the heel is due to the action of the wind. To cancel the heel (or set it at a zero degree angle) the heel compensator system transfers ballast water between tanks, thus generating a torque that opposes the heeling. These systems, mostly installed on semi-submersible platforms, barges, or hybrid solutions, are also used to minimize transportation and installation costs since they help reduce the external auxiliary means necessary for transporting and installing the platform. The complexity of these systems varies from one platform to another, as well as the means to carry out the ballasting and the ways of transferring water between tanks. The correction of the mean heel with ballast tanks is considered by the industry as an active correction. That is, if the average heel is non-zero, and we want to cancel it, it is necessary to transfer water from one tank to another, which requires a contribution of energy, which gives it the connotation of active correction.
Pero las plataformas no sólo se encuentran sometidas a la acción del viento. También está el oleaje, que, junto con la variabilidad del viento y las corrientes, producen el movimiento de las unidades en torno a la inclinación media de la unidad. Aunque los diseños se optimicen para tener el mejor comportamiento en la mar posible, la existencia de medios en la plataforma que mejoren el comportamiento en la mar durante la operación permitirá una disminución adicional de los Costes de Operación y Mantenimiento debido al aumento de la vida a fatiga, al alargamiento de los tiempos entre mantenimientos y al aumento de la vida útil en general, aumentando los tiempos de disponibilidad operativa y haciendo más competitiva la solución. Para reducir los movimientos producidos por el oleaje y la corriente, la industria marina distingue medios activos (como giroestabilizadores) o pasivos (como los tanques anti-balance, But the platforms are not only subjected to the action of the wind. There is also the swell, which, together with the variability of the wind and currents, causes the movement of the units around the average inclination of the unit. Although the designs are optimized to have the best possible behavior at sea, the existence of means on the platform that improve the behavior at sea during operation will allow an additional decrease in Operation and Maintenance Costs due to the increase in life to fatigue, the lengthening of the times between maintenance and the increase in the useful life in general, increasing the operational availability times and making the solution more competitive. To reduce the movements produced by the waves and the current, the marine industry distinguishes between active means (such as gyrostabilizers) or passive (such as anti-balance tanks,
3 3
HOJA DE REEMPLAZO (REGLA 26) que pueden ser, o bien de superficie libre, o bien de disposición en “U”). SUBSTITUTE SHEET (RULE 26) which can be either free surface, or in a "U" arrangement).
En los tanques de superficie libre, los tanques pasivos más simples, el agua se mueve de lado a lado del tanque, dependiendo la frecuencia de oscilación natural de la altura del agua en el tanque (así como de las dimensiones del tanque). Así, se puede ajustar la frecuencia natural del tanque a un valor determinado gracias a la variación del nivel de agua, de manera que el tanque, al ser excitado cerca de su resonancia, oponga de manera pasiva, es decir sin requerir la aportación exterior de energía, un momento que reduce el movimiento de alta frecuencia de balance o cabeceo. Aunque se requiere un aporte de energía inicial para ajustar la altura del tanque para que este trabaje de manera efectiva, el funcionamiento de los tanques de superficie libre es considerado en la industria marina como pasivo. Esto se debe a que ese aporte de energía busca ajustar el periodo de resonancia del tanque, pero una vez hecho, el agua en el interior del tanque se mueve sola (por el efecto del oleaje, viento y corrientes). Estos movimientos del agua en el interior del tanque realizan así una corrección pasiva cada pocos segundos. In free-surface tanks, the simplest passive tanks, the water moves from side to side of the tank, the natural oscillation frequency depending on the height of the water in the tank (as well as the dimensions of the tank). Thus, the natural frequency of the tank can be adjusted to a certain value thanks to the variation of the water level, so that the tank, when excited near its resonance, opposes passively, that is, without requiring the external contribution of energy, a moment that reduces high-frequency pitch or roll motion. Although an initial energy input is required to adjust the height of the tank for it to work effectively, the operation of free-surface tanks is considered passive in the marine industry. This is due to the fact that this energy contribution seeks to adjust the resonant period of the tank, but once it is done, the water inside the tank moves by itself (due to the effect of waves, wind and currents). These movements of the water inside the tank thus carry out a passive correction every few seconds.
En los tanques de disposición en U, el principio de funcionamiento es diferente. Un tanque con forma de “U” (FIG 4B), consiste en dos columnas verticales comunicadas por su parte inferior. Este tanque logra la amortiguación mediante el movimiento oscilante de la masa de agua contenida en ellas. In U-arrangement tanks, the principle of operation is different. A tank with a “U” shape (FIG 4B), consists of two vertical columns communicated by its lower part. This tank achieves damping through the oscillating movement of the mass of water contained in them.
Existen soluciones en las que se tienen sistemas activos para la reducción de los movimientos en plataformas: There are solutions in which there are active systems to reduce movements on platforms:
La solución presentada en ES2681271T3 hace referencia a un procedimiento para controlar una inclinación de una plataforma de aerogenerador flotante de al menos tres columnas estabilizadoras en las que está montada la torre, teniendo cada una un volumen interno para contener el lastre. En base a las mediciones recibidas por el sistema de sensores, el sistema de control ajusta el paso de la turbina y el par de torsión para maximizar la obtención de energía, y a su vez actúa sobre los tanques de lastre con el fin de reducir los movimientos de balance y cabeceo de baja frecuencia debidos al oleaje y/o viento. Esta solución es de aplicación a plataformas de al menos tres columnas estabilizadoras independientes, actuando cada una de ellas como tanque de lastre. Este hecho limita el campo de aplicación de la invención ES2681271T3 a otras plataformas, donde la presente invención de este documento síThe solution presented in ES2681271T3 refers to a procedure to control an inclination of a floating wind turbine platform of at least three stabilizing columns on which the tower is mounted, each one having an internal volume to contain the ballast. Based on the measurements received by the sensor system, the control system adjusts the turbine pitch and torque to maximize energy production, and in turn acts on the ballast tanks in order to reduce movements. low frequency roll and pitch due to swell and / or wind. This solution is applicable to platforms with at least three independent stabilizing columns, each one acting as a ballast tank. This fact limits the field of application of the invention ES2681271T3 to other platforms, where the present invention of this document does
4 4
HOJA DE REEMPLAZO (REGLA 26) es aplicable, como por ejemplo, a plataformas de un solo cuerpo flotante, subdividido en su interior en distintos tanques de lastre. Por otro lado, el sistema de lastre que se describe en la patente es un sistema de lastre activo, enfocado a compensar los movimientos de baja frecuencia debidos a oleaje y/o viento a través del trasiego de agua de lastre mediante bombas entre las columnas estabilizadoras. Los movimientos de baja frecuencia en la plataforma son debidos principalmente a la acción del viento y de forma menos significativa al oleaje, pudiéndose dar algún mar de fondo con periodos de ola suficientemente altos que puedan ser mitigados con el sistema de lastre activo. Sin embargo, el oleaje generalmente en las plataformas flotantes marinas produce movimientos de cabeceo y balance de alta frecuencia, que derivan en fuertes aceleraciones en la turbina y grandes esfuerzos en la torre que la soporta. La patente ES2681271T3 carece de medios para mitigar estos movimientos de alta frecuencia en su procedimiento, ya que los tiempos de respuesta que tienen los sistemas activos de lastre por medio de bombeo son altos, y quedan fuera del rango de la frecuencia del oleaje. La presente invención mejora en este aspecto el sistema de lastre añadiendo medios de compensación pasivos, que tienen unos periodos de acción más bajos, es decir, frecuencias más altas, lo que permite compensar los movimientos de cabeceo y balance de la plataforma. Estos medios pasivos de la presente invención se basan en tanques anti-balance que pueden ser de superficie libre o de disposición en “U”. SUBSTITUTE SHEET (RULE 26) it is applicable, for example, to platforms with a single floating body, subdivided inside into different ballast tanks. On the other hand, the ballast system described in the patent is an active ballast system, focused on compensating for low frequency movements due to waves and / or wind through the transfer of ballast water by means of pumps between the stabilizing columns. . The low frequency movements on the platform are mainly due to the action of the wind and to a lesser extent to the waves, being able to give some swell with sufficiently high wave periods that can be mitigated with the active ballast system. However, the waves generally on floating offshore platforms produce high-frequency pitching and rolling movements, which lead to strong accelerations in the turbine and great stresses in the tower that supports it. Patent ES2681271T3 lacks means to mitigate these high-frequency movements in its procedure, since the response times that active ballast systems have by means of pumping are high, and are outside the range of the wave frequency. The present invention improves the ballast system in this aspect by adding passive compensation means, which have lower periods of action, that is to say, higher frequencies, which makes it possible to compensate for the pitch and roll movements of the platform. These passive means of the present invention are based on anti-balance tanks that can be free-surface or with a “U” arrangement.
Por otro lado, hay soluciones en las que se combina un sistema activo y un sistema pasivo para la reducción de los movimientos en plataformas: a) La solución presentada en ES 2643906 T3 es una solución de actuación simultánea. En este caso, el sistema activo sólo está diseñado para corregir la inclinación de la plataforma, siendo la propia plataforma la que dispone de medios estructurales externos que permiten la amortiguación del movimiento frente a la acción del oleaje y la corriente mediante el aumento de la masa añadida. Estos medios estructurales que actúan como sistema pasivo, comúnmente denominados planchas de arfada (heave piafes, en inglés), para que sean efectivos y resistan la fuerza de excitación de las olas, fatiga y demás solicitaciones a las que están expuestos, requieren de unas dimensiones y un reforzado importante. Esto hace que este sistema pasivo sea bastante más caro que el expuesto en la presente invención que no conlleva ningún coste adicional ya que lo que hace es aprovechar los tanques existentes en la plataformaOn the other hand, there are solutions in which an active system and a passive system are combined to reduce movements on platforms: a) The solution presented in ES 2643906 T3 is a simultaneous action solution. In this case, the active system is only designed to correct the inclination of the platform, being the platform itself the one that has external structural means that allow the damping of the movement against the action of the waves and the current by increasing the mass. added. These structural means that act as a passive system, commonly called heave piafes, in order to be effective and resist the excitation force of the waves, fatigue and other stresses to which they are exposed, require dimensions and a major booster. This makes this passive system much more expensive than the one exposed in the present invention, which does not entail any additional cost since what it does is take advantage of the existing tanks on the platform.
5 5
HOJA DE REEMPLAZO (REGLA 26) aplicando el principio de tanques anti-balance de superficie libre para la corrección de los movimientos de balance/cabeceo. Estos sistemas de amortiguación, planchas de arfada, son de aplicación a estructuras flotantes tipo semisumergibles mientras que la presente invención es de aplicación a cualquier unidad flotante que disponga de tanques de lastre. El sistema activo de esta solución sólo corrige la inclinación de la plataforma mientras que en la presente invención los tanques que actúan en la corrección de la inclinación gracias al sistema activo también pueden actuar simultáneamente corrigiendo los movimientos de balance y cabeceo al ajustar de manera conveniente su altura de llenado sin afectar a la corrección de la inclinación media. Por tanto, los tanques pertenecientes al sistema de la presente invención actúan indistintamente como activos (corrección de escora) o pasivos (corrección de balance y cabeceo) y, dependiendo de la actuación requerida, con la posibilidad de que un mismo tanque actúe de manera simultánea activa y pasivamente. b) La solución US 4864968A presenta también una combinación de un sistema activo y un sistema pasivo para el control de movimientos aunque su funcionamiento no es de manera simultánea. La corrección del trimado/escora se realiza activamente, mientras que la amortiguación de balance/cabeceo puede realizarse activa o pasivamente, pero en ningún caso de manera simultánea, ya que el sistema activo se basa en actuar sobre la presurización de tanques y el sistema pasivo comunica los tanques presurizados con el exterior, perdiendo así la simultaneidad. La presente invención, además de poseer la simultaneidad, no necesita aporte de energía durante la amortiguación del movimiento de balance/cabeceo aunque su efectividad puede optimizarse modificando las alturas de agua en los tanques de superficie libre. Por tanto, es más económica en operación al tender a la pasividad y es ajustable con menos gasto energético. SUBSTITUTE SHEET (RULE 26) applying the principle of free surface anti-roll tanks for the correction of roll / pitch movements. These damping systems, arfada plates, are applicable to semi-submersible type floating structures while the present invention is applicable to any floating unit that has ballast tanks. The active system of this solution only corrects the inclination of the platform whereas in the present invention the tanks that act in the correction of the inclination thanks to the active system can also act simultaneously correcting the movements of roll and pitch by adjusting their appropriate way. filling height without affecting the correction of the mean tilt. Therefore, the tanks belonging to the system of the present invention act indistinctly as active (heel correction) or passive (roll and pitch correction) and, depending on the required performance, with the possibility of the same tank acting simultaneously. actively and passively. b) The US 4864968A solution also presents a combination of an active system and a passive system for the control of movements, although their operation is not simultaneous. Trim / list correction is performed actively, while roll / pitch damping can be performed actively or passively, but in no case simultaneously, since the active system is based on acting on the pressurization of tanks and the passive system. communicates the pressurized tanks with the outside, thus losing the simultaneity. The present invention, in addition to having simultaneity, does not require energy input during the damping of the roll / pitch movement, although its effectiveness can be optimized by modifying the water heights in the free surface tanks. Therefore, it is more economical in operation as it tends towards passivity and is adjustable with less energy expenditure.
Y también hay soluciones activas-pasivas pero exclusivamente para el amortiguamiento del movimiento en arfada de plataformas: c) La solución US 4167147A presenta un sistema activo-pasivo de cámaras de presión de aire controladas por bombas con o sin válvulas que permiten el llenado/vaciado de tanques de lastre abiertos al mar ejerciendo una fuerza anti-And there are also active-passive solutions but exclusively for the damping of the movement in arfada of platforms: c) The US 4167147A solution presents an active-passive system of air pressure chambers controlled by pumps with or without valves that allow filling / emptying of ballast tanks open to the sea exerting an anti-stress force
6 6
HOJA DE REEMPLAZO (REGLA 26) arfada (siendo la arfada el movimiento vertical de la plataforma) que es una función de la velocidad de la oscilación de la plataforma. Este sistema puede operarse de manera activa controlando bombas y válvulas, de manera puramente pasiva produciendo una diferencia de presión en los tanques abriendo válvulas y apagando bombas o, de una manera pasiva controlada actuando exclusivamente sobre las válvulas. Sin embargo, esta solución no corrige el balance/cabeceo de la plataforma. El sistema pasivo de la presente invención presenta la ventaja de ser el sistema más económico de la industria al no tener la necesidad de disponer de ningún medio para poder amortiguar el movimiento ya que se basa en el principio de tanques de superficie libre. Además, la presente invención no corrige el movimiento de arfada. d) El principio de funcionamiento de los tanques en U es otro método pasivo que permite la mejora del comportamiento en la mar de las unidades flotantes. Sin embargo, este sistema solo es capaz de amortiguar el movimiento cuando la dirección de incidencia del oleaje es paralelo al tubo que une los tanques. Por ello, en la solución US2019/0061884 A1 se plantea un sistema de amortiguación multidireccional de tanques en U pudiendo ser pasivo puro o pasivo controlado a través de la actuación en válvulas. El sistema pasivo de la presente invención permite también la amortiguación multidireccional sin la necesidad de conexión entre tanques, ya que el principio de funcionamiento es el de superficie libre, con el consiguiente ahorro de material, que no es despreciable, y sin la necesidad de medios de restricción de movimiento de fluido, ya sea líquido o gaseoso como plantea la solución US2019/0061884 A1. SUBSTITUTE SHEET (RULE 26) arfada (the arfada being the vertical movement of the platform) which is a function of the speed of the oscillation of the platform. This system can be operated actively by controlling pumps and valves, in a purely passive way producing a pressure difference in the tanks by opening valves and turning off pumps or, in a controlled passive way acting exclusively on the valves. However, this solution does not correct the roll / pitch of the platform. The passive system of the present invention has the advantage of being the most economical system in the industry by not having the need to have any means to damp the movement since it is based on the principle of free surface tanks. Furthermore, the present invention does not correct the arfade movement. d) The principle of operation of the U-shaped tanks is another passive method that allows the improvement of the behavior at sea of the floating units. However, this system is only capable of damping the movement when the direction of incidence of the waves is parallel to the tube that joins the tanks. Therefore, in the US2019 / 0061884 A1 solution, a multidirectional damping system for U-shaped tanks is proposed, which can be pure passive or passive controlled through valve actuation. The passive system of the present invention also allows multidirectional damping without the need for connection between tanks, since the principle of operation is that of free surface, with the consequent saving of material, which is not negligible, and without the need for means. restriction of fluid movement, whether liquid or gaseous, as stated in the solution US2019 / 0061884 A1.
EXPLICACIÓN DE LA INVENCIÓN EXPLANATION OF THE INVENTION
La presente invención se refiere a un procedimiento, y sistemas, para adrizar y reducir los movimientos en instalaciones marinas cuya particularidad innovadora consiste en la combinación de un sistema pasivo y un sistema activo de lastre que permite, mediante una operación combinada de ambos sistemas, por una parte, aumentar el rendimiento de funcionamiento del aerogenerador al ser capaz de cancelar la inclinación media de la plataforma cuando se enfrenta a la acción del viento y la corriente (sistema activo), y, por otra parte, aumentar la vida a fatiga de la plataforma (además de sus componentes) y disminuir los costes de mantenimiento al mejorar elThe present invention refers to a procedure, and systems, for righting and reducing movements in marine installations whose innovative feature consists in the combination of a passive system and an active ballast system that allows, through a combined operation of both systems, for On the one hand, to increase the operating performance of the wind turbine by being able to cancel the average inclination of the platform when faced with the action of the wind and current (active system), and, on the other hand, to increase the fatigue life of the platform (in addition to its components) and reduce maintenance costs by improving the
7 7
HOJA DE REEMPLAZO (REGLA 26) comportamiento en la mar ya que es capaz de reducir los movimientos de cabeceo y balance de la plataforma cuando se enfrenta a la acción del oleaje y de la variabilidad del viento (sistema pasivo, basado en los tanques anti-balance pasivos, cuya eficiencia es ajustada por el sistema activo). La fatiga en los componentes del aerogenerador y de la torre se verá reducida también por la cancelación de la inclinación media de la plataforma. SUBSTITUTE SHEET (RULE 26) behavior at sea since it is capable of reducing the pitch and roll movements of the platform when it faces the action of the waves and the variability of the wind (passive system, based on passive anti-roll tanks, whose efficiency is adjusted by the active system). Fatigue on the turbine and tower components will also be reduced by canceling the mean platform tilt.
El procedimiento para adrizar y reducir los movimientos en instalaciones marinas se establece en base a un subsistema de sensores donde se recogen mediciones ambientales (altura de olas, periodos, velocidad del viento...) y propias de la plataforma flotante (inclinación, nivel de lastre en tanques...), un subsistema de componentes (bombas y válvulas de accionamiento remoto) y un subsistema de control y actuadores que proporciona el soporte informático y de automatización. En dicho procedimiento se computan, almacenan y procesan las mediciones de los sensores mediante el subsistema informático, el cual, en función de cómo se hayan programado los módulos lógicos y algoritmos de cálculo, establece de forma automática un proceso de trasiego y lastrado y una distribución del lastre en los tanque del sistema para optimizar un objetivo predefinido (función objetivo), como puede ser, entre otros, corregir la inclinación media de la forma más rápida o corregir la inclinación media y compensar los movimientos de balance y cabeceo con el menor gasto energético. The procedure for righting and reducing movements in marine facilities is established based on a subsystem of sensors where environmental measurements (wave height, periods, wind speed ...) and those of the floating platform (inclination, level of ballast in tanks ...), a component subsystem (remotely actuated pumps and valves) and a control and actuator subsystem that provides automation and computer support. In this procedure, the measurements of the sensors are computed, stored and processed through the computer subsystem, which, depending on how the logic modules and calculation algorithms have been programmed, automatically establishes a transferring and ballasting process and a distribution of ballast in the system tanks to optimize a predefined target (objective function), such as, among others, correcting the mean bank in the fastest way or correcting the mean bank and compensating for roll and pitch movements with the least expense energetic.
La compensación de la inclinación media consiste en el trasiego de agua de unos tanques a otros para generar un momento opuesto a la inclinación media. Esta compensación se denomina compensación activa ya que requiere de medios activos de trasiego de lastre para realizar su función de adrizamiento. The compensation of the average inclination consists of the transfer of water from one tank to another to generate a moment opposite to the average inclination. This compensation is called active compensation since it requires active means of transferring ballast to perform its righting function.
La compensación de los movimientos debidos al oleaje (balance y cabeceo) consiste en lograr que el lastre de un tanque determinado, sin comunicación con otro tanque, oscile debido al propio movimiento de la plataforma a un periodo tal que compense total o parcialmente la propia oscilación de la plataforma. El periodo de oscilación del lastre en un tanque es función de la altura de agua en el tanque y sus dimensiones. Esta compensación se considera pasiva ya que, aunque requiere medios activos de trasiego de lastre para ajustar la altura del agua en el tanque, una vez realizado dicho trasiego, la amortiguación de los movimientos es un fenómeno totalmenteCompensation for movements due to waves (roll and pitch) consists of achieving that the ballast of a given tank, without communication with another tank, oscillates due to the movement of the platform itself to a period such that it compensates totally or partially the oscillation itself of the platform. The period of oscillation of the ballast in a tank is a function of the height of the water in the tank and its dimensions. This compensation is considered passive since, although it requires active means of ballast transfer to adjust the height of the water in the tank, once said transfer has been carried out, the damping of movements is a totally
8 8
HOJA DE REEMPLAZO (REGLA 26) independiente de cualquier intervención externa. SUBSTITUTE SHEET (RULE 26) independent of any external intervention.
La presente invención muestra las siguientes características innovadoras, frente a los antecedentes anteriormente descritos, de aplicación a la industria eólica marina, mejorando sustancialmente la respuesta de plataformas flotantes eólicas marinas, subestaciones o similares frente al viento, oleaje y corriente: a) Un único sistema que permite reducir dos tipos de movimientos cruciales para la disminución del OPEX, por un lado, la inclinación media de la torre, y por otro el cabeceo y balance. b) La reducción/anulación de movimientos es combinada y simultánea. c) Los medios empleados se reducen a un conjunto de tanques de lastre, un sistema de lastre, y un sistema de control, que permita que al menos dos de estos tanques puedan actuar indistintamente para la anulación/reducción de los dos movimientos característicos. d) Los tanques de reducción de movimientos pueden anular/reducir por sí mismos todos los movimientos especificados en la invención o alguno de ellos en combinación con otro conjunto/conjuntos de tanques del sistema. e) Sistema económico que no requiere de muchos medios para su instalación en plataformas flotantes eólicas marinas, subestaciones o similares. f) Sistema versátil perfectamente adaptable a cualquier tipo de plataforma flotante eólica marina, subestación o similar. The present invention shows the following innovative characteristics, compared to the previously described background, of application to the offshore wind industry, substantially improving the response of floating offshore wind platforms, substations or the like against wind, waves and current: a) A single system that allows to reduce two types of movements crucial for the decrease of OPEX, on the one hand, the average inclination of the tower, and on the other the pitch and balance. b) The reduction / cancellation of movements is combined and simultaneous. c) The means used are reduced to a set of ballast tanks, a ballast system, and a control system, which allows at least two of these tanks to act indistinctly for the cancellation / reduction of the two characteristic movements. d) Movement reduction tanks can cancel / reduce by themselves all movements specified in the invention or some of them in combination with another set / sets of tanks in the system. e) An economical system that does not require many means for its installation on floating offshore wind platforms, substations or similar. f) Versatile system perfectly adaptable to any type of offshore wind floating platform, substation or similar.
BREVE DESCRIPCIÓN DE LOS DIBUJOS BRIEF DESCRIPTION OF THE DRAWINGS
La presente invención se describe en más detalle con referencia a las figuras que la acompañan, en los que con carácter ilustrativo, y no limitativo, se ha representado lo siguiente: The present invention is described in more detail with reference to the accompanying figures, in which by way of illustration, and not limiting, the following has been represented:
La figura número 1A muestra una vista esquemática del alzado y planta de un ejemplo de plataforma flotante eólica marina, subestación o similar, en el que el objeto de la invención es de aplicación, formado por un cuerpo flotante que puede estar completa o parcialmente sumergido. Figure 1A shows a schematic elevation and plan view of an example of a floating offshore wind platform, substation or similar, in which the object of the invention is applicable, formed by a floating body that can be completely or partially submerged.
9 9
HOJA DE REEMPLAZO (REGLA 26) La figura número 1 B muestra una vista esquemática del alzado y planta de un ejemplo de plataforma flotante eólica marina, subestación o similar, en el que el objeto de la invención es de aplicación, formado por varios cuerpos flotantes que pueden estar completa o parcialmente sumergidos. SUBSTITUTE SHEET (RULE 26) Figure number 1 B shows a schematic elevation and plan view of an example of a floating offshore wind platform, substation or similar, in which the object of the invention is applicable, consisting of several floating bodies that can be completely or partially submerged .
La figura número 2 muestra una vista esquemática del alzado de un ejemplo de plataforma flotante eólica marina, subestación o similar sometida a viento y oleaje colineal (procedentes de la misma dirección), además de vistas en planta-alzado del conjunto de tanques del sistema de reducción de movimientos en las que se muestra el funcionamiento del sistema. Figure number 2 shows a schematic elevation view of an example of a floating offshore wind platform, substation or similar subject to wind and collinear waves (coming from the same direction), in addition to plan-elevation views of the set of tanks of the system of reduction of movements in which the operation of the system is shown.
La figura número 3 muestra una vista esquemática del alzado de un ejemplo de plataforma flotante eólica marina, subestación o similar sometida a viento y oleaje cuyas direcciones principales de procedencia forman 90°, además de vistas en planta- alzado del conjunto de tanques del sistema de reducción de movimientos en las que se muestra el funcionamiento del sistema. Figure number 3 shows a schematic elevation view of an example of a floating offshore wind platform, substation or similar subject to wind and waves whose main directions of origin form 90 °, in addition to plan-elevation views of the set of tanks of the system of reduction of movements in which the operation of the system is shown.
La figura número 4A muestra vistas del alzado y planta de un ejemplo de tanque anti balance de superficie libre en el que se puede observar el frente de ola en la superficie libre del mismo inducido por el balance/cabeceo de la plataforma y que produciría el efecto amortiguador sobre dichos movimientos. Figure number 4A shows elevation and plan views of an example of a free surface anti roll tank in which the wave front on the free surface of the tank can be observed, induced by the roll / pitch of the platform and that would produce the effect shock absorber on said movements.
La figura número 4B muestra una vista en alzado de una columna de agua entre dos tanques unidos mediante un conducto por su parte inferior. Figure 4B shows an elevation view of a column of water between two tanks joined by a conduit through their lower part.
La figura número 5 muestra un diagrama del sistema para adrizar y reducir movimientos. Figure 5 shows a diagram of the system for righting and reducing movements.
La figura número 6 muestra un diagrama de bloques del sistema para adrizar y reducir movimientos. Figure 6 shows a block diagram of the system for righting and reducing movements.
REALIZACIÓN PREFERENTE DE LA INVENCIÓN PREFERRED EMBODIMENT OF THE INVENTION
Por lo tanto, es objeto de la presente invención proporcionar un procedimiento, y sistema, para adrizar y reducir los movimientos de plataformas flotantes eólicas marinas (1), subestaciones o similares por medio del cual sea posible, durante el periodo de operación y en condiciones extremas, reducir/cancelar el ángulo deTherefore, it is the object of the present invention to provide a method, and system, to right and reduce the movements of floating offshore wind platforms (1), substations or the like by means of which it is possible, during the period of operation and under conditions extreme, reduce / cancel the angle of
10 10
HOJA DE REEMPLAZO (REGLA 26) inclinación media de la unidad con respecto a la vertical producido principalmente por efecto del viento y la corriente y, simultáneamente, disminuir la amplitud de balance/cabeceo producida por el oleaje y por la variabilidad de la velocidad viento.SUBSTITUTE SHEET (RULE 26) average inclination of the unit with respect to the vertical produced mainly by the effect of the wind and the current and, simultaneously, reducing the roll / pitch amplitude produced by the waves and by the variability of the wind speed.
La presente invención consiste en un sistema combinado para adrizar y reducir los movimientos en el que parte de los tanques de lastre (100) que componen el sistema, dependiendo de la dirección de incidencia de las condiciones metoceánicas (viento, corriente y olas) sobre la plataforma flotante eólica marina (1), subestación o similar, pueden actuar indistintamente tanto para reducir los movimientos de cabeceo y balance, y/o para la reducción/cancelación de la inclinación media. La inclinación media se reducirá/cancelará mediante el principio de tanques anti-escora, trasegando agua entre tanques (100) a priori opuestos, corrección que se logra exclusivamente por medios activos (sistema de lastre). Sin embargo, la reducción de los movimientos de balance y cabeceo se realizará mediante el principio de los tanques anti-balance pasivos de superficie libre (FIG 4A), seleccionando para este fin al menos un tanque en el que el agua oscila preferentemente a lo largo de la dirección del oleaje (a lo largo de la dimensión más larga del tanque si no hay obstáculos internos). Mediante un ajuste previo del nivel de agua en el tanque, se optimizará la reducción del movimiento en torno a ciertos periodos del oleaje de forma pasiva gracias a la oscilación, en oposición de fase con respecto al oleaje, del frente de la ola que se forma en la superficie libre del propio tanque. Si bien el tanque de superficie libre (FIG 4A) en este caso actúa de manera pasiva, siendo su operación por ello muy económica, la regulación de altura del tanque requiere la actuación del sistema de lastre, habiendo una operación inicial activa asociada. En el caso de oleaje irregular, compuesto de muchas componentes regulares propagándose en múltiples direcciones, se actuará sobre varios tanques (100). Las variaciones de altura requeridas para reducir el movimiento de balance y cabeceo no deben modificar la cancelación de la inclinación media ni el calado. Y esto es posible si se cuenta con un número suficiente de tanques (100), como mínimo tres. The present invention consists of a combined system to right up and reduce movements in which part of the ballast tanks (100) that make up the system, depending on the direction of incidence of the metocean conditions (wind, current and waves) on the offshore wind floating platform (1), substation or similar, can act indistinctly both to reduce pitch and roll movements, and / or to reduce / cancel the average inclination. The average inclination will be reduced / canceled by the principle of anti-heeling tanks, transferring water between tanks (100) a priori opposite, correction that is achieved exclusively by active means (ballast system). However, the reduction of roll and pitch movements will be carried out through the principle of passive free surface anti-roll tanks (FIG 4A), selecting for this purpose at least one tank in which the water oscillates preferentially along wave direction (along the longest dimension of the tank if there are no internal obstacles). By means of a previous adjustment of the water level in the tank, the reduction of movement around certain periods of the waves will be optimized in a passive way thanks to the oscillation, in opposition of phase with respect to the waves, of the front of the wave that is formed on the free surface of the tank itself. Although the free surface tank (FIG 4A) in this case acts passively, being its operation therefore very economical, the height adjustment of the tank requires the actuation of the ballast system, having an associated active initial operation. In the case of irregular waves, composed of many regular components propagating in multiple directions, several tanks (100) will be acted upon. Height variations required to reduce roll and pitch motion should not change mean bank cancellation or draft. And this is possible if you have a sufficient number of tanks (100), at least three.
Cuando la plataforma flotante eólica marina (1), subestación o similar se halle instalada en su emplazamiento definitivo y preparada para la operación, se encontrará lastrada acorde a sus requerimientos de diseño. Parte o el total de ese lastre necesario para la operación estará contenido en los tanques (100) del sistema para adrizar y reducir los movimientos de la plataforma (1), no estando alguno de ellos completamente lleno, When the floating offshore wind platform (1), substation or similar is installed in its final location and ready for operation, it will be ballasted according to its design requirements. Part or all of that ballast necessary for the operation will be contained in the tanks (100) of the system to rightize and reduce the movements of the platform (1), some of them not being completely full,
11 eleven
HOJA DE REEMPLAZO (REGLA 26) posibilitando de esta manera el trasiego de lastre entre los tanques del sistema (100) para adrizar y reducir los movimientos de la plataforma. SUBSTITUTE SHEET (RULE 26) thus enabling the transfer of ballast between the tanks of the system (100) to right and reduce the movements of the platform.
La plataforma flotante eólica marina (1), subestación o similar se encontrará expuesta a la acción del viento, la corriente y el oleaje y variará su posición de equilibrio de acuerdo a la intensidad de estos, y a las características propias de diseño de la plataforma (1). En términos generales, la plataforma (1) adquirirá una nueva posición de equilibrio inclinándose un cierto ángulo 0¡m (ángulo de inclinación media de la plataforma) respecto a la vertical debido a la acción del viento y, oscilará otro cierto ángulo 0b/c (ángulo balance/cabeceo de la plataforma (1)) a la frecuencia del oleaje alrededor de esta nueva posición de equilibrio debido a la acción de las olas. La dirección de oscilación será la de incidencia de oleaje, que en el caso de que sea colineal con el viento (provenientes de la misma dirección), tendrá la misma dirección de la inclinación media (FIG 2A) y, en el caso de que formen 90° (FIG 3A) oscilará perpendicularmente a la dirección de la inclinación media. The offshore wind floating platform (1), substation or similar will be exposed to the action of the wind, current and waves and will vary its equilibrium position according to the intensity of these, and to the design characteristics of the platform ( 1). In general terms, the platform (1) will acquire a new equilibrium position by tilting a certain angle 0¡ m (average angle of inclination of the platform) with respect to the vertical due to the action of the wind, and another certain angle 0 b / c (platform roll / pitch angle (1)) at wave frequency around this new equilibrium position due to wave action. The direction of oscillation will be the wave incidence, which in the event that it is collinear with the wind (coming from the same direction), will have the same direction of the mean inclination (FIG 2A) and, in the event that they form 90 ° (FIG 3A) will oscillate perpendicular to the direction of the mean tilt.
Cuando la plataforma flotante eólica marina (1), subestación o similar se encuentre en mares regulares (o monocromáticos), formados por olas regulares a un periodo determinado, y en el que el viento y oleaje son colineales (provenientes de la misma dirección) (FIG 2A), la plataforma adquiere su nueva posición de equilibrio (FIG 2B). La escora media asociada al momento de vuelco provocado principalmente por el viento (ángulo de inclinación media) se cancelará al generar un momento recuperador (adrizante) trasegando agua desde los tanques Cs a los tanques Bs (FIG 2C), que en este caso actúan como tanques anti-escora. Simultáneamente, los movimientos de cabeceo y balance de la plataforma flotante eólica marina (1), subestación o similar debidos a la incidencia del oleaje se reducirán mediante el ajuste de la altura de los tanques As, que en este caso actúan como tanques anti-balance pasivos de superficie libre, hasta llegar al periodo efectivo que amortigua el movimiento de balance de la plataforma debido al oleaje (FIG 2D). Para no variar el calado, en el caso de que haya que introducir (o en otro caso quitar) agua en los tanques As, esta se quitará (o en otro caso introducirá) de los tanques Bs y tanques Cs de tal manera que no se modifique la corrección de escora (FIG 2D). When the floating offshore wind platform (1), substation or similar is in regular (or monochromatic) seas, formed by regular waves at a certain period, and in which the wind and waves are collinear (coming from the same direction) ( FIG 2A), the platform acquires its new equilibrium position (FIG 2B). The average heel associated to the overturning moment caused mainly by the wind (average inclination angle) will be canceled by generating a recovery moment (righting) transferring water from the Cs tanks to the Bs tanks (FIG 2C), which in this case act as anti-heeling tanks. Simultaneously, the pitching and rolling movements of the floating offshore wind platform (1), substation or similar due to the incidence of waves will be reduced by adjusting the height of the As tanks, which in this case act as anti-balance tanks. free surface liabilities, until reaching the effective period that dampens the roll movement of the platform due to the waves (FIG 2D). In order not to vary the draft, in the event that water has to be introduced (or otherwise removed) in the As tanks, it will be removed (or otherwise introduced) from the Bs tanks and Cs tanks in such a way that it does not modify the heel correction (FIG 2D).
Si el viento y el oleaje siguen siendo colineales (provenientes de la misma dirección), pero la plataforma flotante eólica marina (1), subestación o similar se encuentra en unaIf the wind and waves are still collinear (coming from the same direction), but the floating offshore wind platform (1), substation or similar is in a
12 12
HOJA DE REEMPLAZO (REGLA 26) mar irregular (FIG 2E), mar formada por un número muy grande de olas regulares con distintos periodos, los tanques que actúan como tanques de superficie libre (tanques As) serán más efectivos a unas frecuencias que a otras. Por ello, estos tanques As podrán llenarse a diferente altura, de manera que el rango de frecuencias en el que son efectivos sea mayor, amortiguando así el balance de la plataforma debido al oleaje incidente a diferentes periodos. De nuevo, los tanques empleados en la cancelación del ángulo de inclinación media (tanques Bs y Cs) de la plataforma flotante eólica marina (1), subestación o similar, además de actuar como compensadores de vuelco (y tener que trasegar agua entre ellos), tendrán que ajustar su nivel para evitar una variación de calado, o trimado, producido por la actuación sobre los tanques As.SUBSTITUTE SHEET (RULE 26) irregular sea (FIG 2E), sea formed by a very large number of regular waves with different periods, the tanks that act as free surface tanks (As tanks) will be more effective at some frequencies than at others. For this reason, these As tanks can be filled at different heights, so that the frequency range in which they are effective is greater, thus cushioning the balance of the platform due to the incident waves at different periods. Again, the tanks used to cancel the average inclination angle (Bs and Cs tanks) of the floating offshore wind platform (1), substation or similar, in addition to acting as tipping compensators (and having to transfer water between them) , they will have to adjust their level to avoid a variation in draft, or trim, produced by the action on the As tanks.
Cuando la plataforma flotante eólica marina, subestación o similar se enfrenta a la incidencia de viento y oleaje desalineado, varios de los tanques del sistema para adrizar y reducir los movimientos de la plataforma poseerán doble función, independientemente del tipo de mar. En la FIG 3A se esquematiza una desalineación a 90° de las condiciones ambientales y en la FIG 3B la posición de equilibrio alcanzada. En este caso (FIG 3C) los tanques Bs y Cs cancelarán la inclinación media mediante el trasiego de agua entre ellos (de Cs a Bs), pero alguno o varios de ellos reducirán los movimientos de cabeceo y balance a través del ajuste de su altura de llenado, usando para dicho ajuste agua desde los tanques As, que es aportada de manera adecuada a todos los tanques Bs y Cs para no modificar la inclinación media (FIG 3D). De esta manera, algunos de los tanques Bs y Cs presentarán la doble función de cancelación del ángulo de inclinación media provocado por el viento (adrizar) y de reducción de los movimientos de cabeceo/balance provocados por el oleaje incidente, y los tanques As actuarán de ajuste de llenado-vaciado de lastre de los tanques Bs y Cs (para mantener el calado), además de poder ayudar a reducir los movimientos de cabeceo/balance debidos a la turbulencia del viento. When the offshore wind floating platform, substation or similar is faced with the incidence of wind and misaligned waves, several of the tanks of the system to right and reduce the movements of the platform will have a double function, regardless of the type of sea. In FIG 3A a misalignment at 90 ° of the environmental conditions is schematized and in FIG 3B the equilibrium position reached. In this case (FIG 3C) the tanks Bs and Cs will cancel the average inclination by transferring water between them (from Cs to Bs), but one or more of them will reduce the pitch and roll movements by adjusting their height. filling, using for said adjustment water from tanks As, which is adequately supplied to all tanks Bs and Cs so as not to modify the mean inclination (FIG 3D). In this way, some of the Bs and Cs tanks will have the double function of canceling the mean bank angle caused by the wind (righting) and reducing pitch / roll movements caused by the incident waves, and the As tanks will act adjustment adjustment of ballast filling-emptying of the Bs and Cs tanks (to maintain draft), in addition to being able to help reduce pitch / roll movements due to wind turbulence.
En un estado de la mar general compuesto por un mar de viento (oleaje de cresta corta, suma de múltiples olas regulares propagándose en direcciones diferentes) y uno o más mares de fondo (oleaje de cresta larga, irregular y propagándose sensiblemente en una única dirección) con periodos dominantes diferentes, los tanques (100) serán usados para reducir los movimientos de cabeceo y balance debidos al oleaje. El procedimiento será análogo al de los casos previos, se trasegará agua de unos tanques (100) a otros para cancelar la inclinación media y ajustar el nivel de agua deIn a general sea state composed of a wind sea (short crest swell, sum of multiple regular waves propagating in different directions) and one or more bottom seas (long crest swell, irregular and propagating sensibly in a single direction ) with different dominant periods, tanks (100) will be used to reduce pitch and roll movements due to swell. The procedure will be analogous to the previous cases, water will be transferred from some tanks (100) to others to cancel the average inclination and adjust the water level of the
13 13
HOJA DE REEMPLAZO (REGLA 26) los tanques (100) más efectivos ante movimientos de balance y cabeceo. SUBSTITUTE SHEET (RULE 26) tanks (100) most effective against rolling and pitching movements.
La escala de tiempos en la que el sistema activo actúa es lenta en comparación con la corrección pasiva, asociada a los periodos del oleaje (unos pocos segundos habitualmente). Las correcciones relativas a diferencias en la inclinación media van sobretodo asociadas a variaciones en la intensidad media del viento, cuyo valor es razonablemente constante durante decenas de minutos. Lo mismo le sucede a los ajustes activos necesarios para adaptar la frecuencia propia de los tanques (100): el oleaje asociado a un estado de la mar tiene un espectro de energía que es razonablemente constante durante rangos de una o más horas. Por ello, una vez ajustada la altura de agua, el funcionamiento en pasivo, donde la frecuencia de los movimientos del agua en los tanques (100) es de unos pocos segundos, puede estar en el entorno de una o más horas. Por tanto, la frecuencia de actuación del sistema activo es muy baja (horas) en comparación a la del sistema pasivo (segundos). The time scale in which the active system acts is slow compared to the passive correction, associated with the periods of the swell (usually a few seconds). Corrections for differences in the average inclination are mainly associated with variations in the average intensity of the wind, the value of which is reasonably constant for tens of minutes. The same happens to the active settings necessary to adapt the natural frequency of the tanks (100): the waves associated with a sea state have an energy spectrum that is reasonably constant over ranges of one or more hours. For this reason, once the water height has been adjusted, the passive operation, where the frequency of the movements of the water in the tanks (100) is a few seconds, can be in the environment of one or more hours. Therefore, the frequency of actuation of the active system is very low (hours) compared to that of the passive system (seconds).
El sistema para adrizar y reducir los movimientos de plataformas flotantes eólicas marinas (1), subestaciones o similares es, por tanto, un sistema combinado-simultáneo que contendrá al menos tres tanques (100), y en el que al menos dos de esos tanques (100) pueden actuar indistintamente de manera activa, mediante trasiego de lastre, o de manera pasiva, por el movimiento de su superficie libre previo ajuste de la altura de agua. The system to rightize and reduce the movements of floating offshore wind platforms (1), substations or similar is, therefore, a combined-simultaneous system that will contain at least three tanks (100), and in which at least two of those tanks (100) can act either actively, by transferring ballast, or passively, by moving their free surface after adjusting the height of the water.
Para ello, en una plataforma flotante eólica marina (1), subestación o similar, con capacidad de albergar lastre líquido y hecho de cualquier material/es susceptible/s de ser empleado/s en un entorno marino, se configura un sistema combinado de reducción de movimientos de cabeceo/balance y cancelación de inclinación media (FIG 5) cuyo objetivo es el de aumentar el rendimiento de la plataforma flotante (1) en su operación y reducir los daños a fatiga de los componentes estructurales y que: a) contiene al menos tres tanques de lastre (100) b) en la que el medio de trasiego es al menos una bomba (102) que mueve agua de un tanque a otro, indistintamente, a través de una distribución de tuberías que conectan los tanques (104), c) el trasiego de agua a través de las tuberías de conexión (104) entre tanques se controla con válvulas operadas remotamente (106), For this, in a floating offshore wind platform (1), substation or similar, with the capacity to house liquid ballast and made of any material (s) capable of being used in a marine environment, a combined reduction system is configured. of pitch / roll movements and cancellation of medium inclination (FIG 5) whose objective is to increase the performance of the floating platform (1) in its operation and reduce the fatigue damage of the structural components and that: a) contains the least three ballast tanks (100) b) in which the transfer medium is at least one pump (102) that moves water from one tank to another, interchangeably, through a distribution of pipes that connect the tanks (104) , c) the transfer of water through the connecting pipes (104) between tanks is controlled with remotely operated valves (106),
14 14
HOJA DE REEMPLAZO (REGLA 26) d) que contiene un subsistema de sensores, un subsistema de actuadores y un subsistema de control que alberga los módulos lógicos y algoritmos de cálculo cuya resolución proporciona la distribución de lastre necesaria para compensar automáticamente la escora/trimado, a la vez que se logra el amortiguamiento de los movimientos de balance/cabeceo. El subsistema de control se albergará en uno o más ordenadores. Esta división en subsistemas atiende meramente a un hecho descriptivo para la comprensión de la presente invención, no apartándose del alcance general, ya que el funcionamiento global del sistema es independiente de dicha división en subsistemas, debiendo considerarse, por tanto, como un simple ejemplo y no siendo restrictiva dicha división. SUBSTITUTE SHEET (RULE 26) d) that contains a sensor subsystem, an actuator subsystem and a control subsystem that houses the logic modules and calculation algorithms whose resolution provides the necessary ballast distribution to automatically compensate the heel / trim, while achieving the damping of roll / pitch movements. The control subsystem will be housed in one or more computers. This division into subsystems serves merely a descriptive fact for the understanding of the present invention, not departing from the general scope, since the overall operation of the system is independent of said division into subsystems, and should therefore be considered as a simple example and this division is not restrictive.
El número de tanques (100) que componen el sistema para adrizar y reducir movimientos de la plataforma (1) será dependiente del tipo de estructura y de los condicionantes de diseño. Si bien con tres tanques (100) sólo se podría hacer un único ajuste que mantenga el calado (por ejemplo, corrigiendo sólo el trimado y cabeceo), a partir de tres las posibilidades de diferentes ajustes son muy superiores. Aunque una mayor subdivisión es favorable al proporcionar un mayor número de grados de libertad para la consecución del objetivo combinado, un número de tanques (100) alto resulta en tanques de menores dimensiones (manga o eslora), lo que resta eficiencia al sistema pasivo al depender la eficiencia enormemente de las dimensiones del tanque (100). The number of tanks (100) that make up the system to right and reduce movements of the platform (1) will depend on the type of structure and design conditions. Although with three tanks (100) it would only be possible to make a single adjustment that maintains the draft (for example, correcting only the trim and pitch), from three the possibilities of different adjustments are much higher. Although a greater subdivision is favorable by providing a greater number of degrees of freedom to achieve the combined objective, a high number of tanks (100) results in tanks of smaller dimensions (beam or length), which reduces the efficiency of the passive system when the efficiency depend greatly on the dimensions of the tank (100).
El procedimiento que, partiendo de una distribución inicial de lastre, se usa para la obtención de la secuencia de trasiego y la distribución final de lastre en los tanques del sistema que produce la compensación del ángulo de inclinación media y/o el amortiguamiento de los movimientos de balance/cabeceo de la plataforma, atiende a las siguientes fases (FIG 6): The procedure that, starting from an initial distribution of ballast, is used to obtain the transfer sequence and the final distribution of ballast in the tanks of the system that produces the compensation of the average angle of inclination and / or the damping of movements roll / pitch of the platform, attends the following phases (FIG 6):
1) La plataforma flotante eólica marina (1), subestación o similar se encuentra expuesta a los agentes externos, como pueden ser las condiciones ambientales, que originan movimientos en la plataforma (1). De entre los diferentes movimientos inducidos, los que van a ser controlados por el sistema para adrizar y reducir movimientos son las escoras o trimados (de muy baja frecuencia, con periodos característicos del orden de decenas de minutos derivados de los cambios de la velocidad media y/o dirección del viento y corriente debidos a los fenómenos1) The floating offshore wind platform (1), substation or similar is exposed to external agents, such as environmental conditions, which cause movements on the platform (1). Among the different induced movements, the ones that will be controlled by the system to right and reduce movements are list or trim (very low frequency, with characteristic periods of the order of tens of minutes derived from changes in average speed and / or wind and current direction due to the phenomena
15 fifteen
HOJA DE REEMPLAZO (REGLA 26) meteorológicos que tienen lugar a lo largo de un día), y los movimientos de balance/cabeceo inducidos a la frecuencia del oleaje (con periodos característicos del orden de los 4 segundos a los 30 segundos producidos por mares de viento y/o mares de fondo). SUBSTITUTE SHEET (RULE 26) occur throughout a day), and roll / pitch movements induced by wave frequency (with characteristic periods of the order of 4 seconds to 30 seconds produced by windy seas and / or swells ).
2) En una primera fase se define la estrategia de control de la secuencia de trasiego en el subsistema de control. Dicha estrategia determina en qué momento se debe activar la secuencia de trasiego y qué criterio de optimización se debe seguir para su cálculo. La estrategia de control viene definida por: un conjunto de parámetros de control, unas leyes de activación del sistema basadas en dichos parámetros, y, al menos, una función objetivo a optimizar dependiente de las distribuciones inicial y final de lastre en los tanques, de la secuencia de trasiego con sus correspondientes distribuciones intermedias de lastre en los tanques y, de los medios para realizar dicho trasiego. Los parámetros de control serán al menos cuatro, un ángulo de inclinación media umbral (0imU) y un rango de tiempo (ti) por encima del cual si permanece la plataforma se activa el sistema para corregir la inclinación de la plataforma, y un periodo característico umbral (Tcu) y un rango de tiempo ) por encima del cual si la diferencia en valor absoluto entre los periodos del agua (Tu) de los tanques de lastre (100) y los periodos característicos del balance/cabeceo de la plataforma debidos al oleaje (T0) supera el valor del periodo característico umbral se activa el sistema para modificar la altura de lastre de los tanques (100) que actuarán como tanques anti balance pasivos. La optimización de la función objetivo determina la distribución final del lastre en los tanques del sistema y la secuencia de trasiego entre ellos desde una distribución inicial de lastre, conducentes a corregir la inclinación media y/o simultáneamente aumentar el amortiguamiento de los movimientos de balance y cabeceo, considerando para la consecución de este fin minimizar alguna de las siguientes variables: el consumo de energía, la altura del centro de gravedad del agua en los tanques (maximizando así la estabilidad de la plataforma), el tiempo para alcanzar la distribución final de lastre, los esfuerzos estructurales en la turbina eólica (4) y/o la interferencia en su operación, los movimientos de balance y/o cabeceo, o alguna combinación ponderada de estas. La elección de los parámetros de control y de la función objetivo a optimizar para el trasiego se realiza de forma automática por parte del subsistema de control, el cual tiene definido unos criterios basados en la operación, condiciones ambientales y las condiciones de la plataforma flotante eólica marina (1), subestación o similar. Para la elección de los parámetros de control y de la2) In a first phase, the control strategy of the transfer sequence in the control subsystem is defined. This strategy determines when the transfer sequence must be activated and which optimization criteria must be followed for its calculation. The control strategy is defined by: a set of control parameters, activation laws of the system based on said parameters, and, at least, one objective function to optimize depending on the initial and final distributions of ballast in the tanks, of the transfer sequence with its corresponding intermediate ballast distributions in the tanks and the means to carry out said transfer. The control parameters will be at least four, a threshold mean inclination angle (0i mU ) and a time range (ti) above which if the platform remains the system is activated to correct the platform inclination, and a period characteristic threshold (T cu ) and a time range) above which if the difference in absolute value between the periods of water (Tu) of the ballast tanks (100) and the characteristic periods of the roll / pitch of the platform due to When the swell (T 0 ) exceeds the value of the threshold characteristic period, the system is activated to modify the ballast height of the tanks (100) that will act as passive anti-balance tanks. The optimization of the objective function determines the final distribution of the ballast in the tanks of the system and the transfer sequence between them from an initial distribution of ballast, leading to correcting the mean inclination and / or simultaneously increasing the damping of the rolling movements and pitching, considering to achieve this goal minimize any of the following variables: energy consumption, the height of the center of gravity of the water in the tanks (thus maximizing the stability of the platform), the time to reach the final distribution of ballast, structural stresses in the wind turbine (4) and / or interference in its operation, roll and / or pitch movements, or some weighted combination of these. The choice of the control parameters and the objective function to be optimized for the transfer is carried out automatically by the control subsystem, which has defined criteria based on the operation, environmental conditions and the conditions of the wind floating platform. marine (1), substation or similar. For the choice of the control parameters and the
16 16
HOJA DE REEMPLAZO (REGLA 26) función objetivo también está contemplada la opción manual, para ejecutarse en caso excepcional o de emergencia, o la definición desde un centro de control exterior a la plataforma. SUBSTITUTE SHEET (RULE 26) The objective function is also contemplated the manual option, to be executed in exceptional or emergency cases, or the definition from a control center outside the platform.
3) En una segunda fase se toman datos del estado de la plataforma (1) a través del subsistema de sensores y son transmitidos al subsistema de control. El subsistema de sensores es el conjunto de sensores y transductores instalados en la plataforma (1). Básicamente, estos sensores producirán una señal eléctrica digital o analógica que es llevada al ordenador/res de control para su procesamiento. En función del tipo de sensor, más sofisticado o no, puede ser que esta señal ya venga acondicionada o procesada de alguna manera. En la plataforma (1) podrá haber sensores que midan velocidad de viento y dirección (por ejemplo anemómetros), velocidad de la corriente y su dirección (como por ejemplo correntómetros), sensores que midan la altura de ola absoluta y sirvan para obtener posteriormente el periodo (como por ejemplo sensor ultrasónico o boya exterior), un sistema que mida los movimientos instantáneos de la plataforma (1) (como por ejemplo un sistema inercial), sensores de nivel que midan el calado de la plataforma (1) y el nivel del agua en cada tanque de lastre (100) del sistema. El sistema de trasiego estará monitorizado a través del subsistema de sensores, que aportará como mínimo datos al subsistema de control del estado de las bombas, estado de las válvulas, flujo y presión en el sistema. 3) In a second phase, data on the status of the platform (1) are taken through the sensor subsystem and transmitted to the control subsystem. The sensor subsystem is the set of sensors and transducers installed on the platform (1). Basically, these sensors will produce a digital or analog electrical signal that is taken to the control computer / res for processing. Depending on the type of sensor, more sophisticated or not, it may be that this signal is already conditioned or processed in some way. On the platform (1) there may be sensors that measure wind speed and direction (for example anemometers), current speed and its direction (such as current meters), sensors that measure the absolute wave height and serve to subsequently obtain the period (such as ultrasonic sensor or external buoy), a system that measures the instantaneous movements of the platform (1) (such as an inertial system), level sensors that measure the draft of the platform (1) and the level of water in each ballast tank (100) of the system. The transfer system will be monitored through the sensor subsystem, which will provide at least data to the control subsystem on the status of the pumps, status of the valves, flow and pressure in the system.
4) En una tercera fase, a partir de los datos del subsistema de sensores, el subsistema de control calcula el ángulo de inclinación media de la plataforma (1), los periodos del agua de los tanques de lastre (100) derivados de ellos y los periodos característicos del balance/cabeceo de la plataforma debidos al oleaje. 4) In a third phase, from the sensor subsystem data, the control subsystem calculates the average angle of inclination of the platform (1), the periods of water in the ballast tanks (100) derived from them and the characteristic periods of the roll / pitch of the platform due to the swell.
5) En una cuarta fase se analiza la activación del sistema para adrizar y reducir los movimientos comparando tanto el ángulo de inclinación media de la plataforma (1) como la diferencia en valor absoluto de los periodos del agua de los tanques de lastre (100) y los periodos característicos del balance/cabeceo de la plataforma debidos al oleaje obtenidos con los parámetros de la estrategia de control, siendo: 5) In a fourth phase, the activation of the system to right up and reduce movements is analyzed by comparing both the average angle of inclination of the platform (1) and the difference in absolute value of the periods of water in the ballast tanks (100) and the characteristic periods of the roll / pitch of the platform due to the waves obtained with the parameters of the control strategy, being:
• 0¡m el ángulo de inclinación media de la plataforma (1) debido a los movimientos inducidos por las fuerzas externas. • 0 µm is the mean angle of inclination of the platform (1) due to movements induced by external forces.
• ti el tiempo usado para calcular la inclinación media 0¡m • ti the time used to calculate the mean inclination 0¡ m
17 17
HOJA DE REEMPLAZO (REGLA 26) • 0¡mu el ángulo de inclinación media umbral (parámetro de control). SUBSTITUTE SHEET (RULE 26) • 0¡ mu angle threshold average inclination (control parameter).
• Tti los periodos del agua de los tanques de lastre (100) del sistema para adrizar y reducir movimientos. • T ti the periods of the water in the ballast tanks (100) of the system to right and reduce movements.
• T0 los periodos característicos del balance/cabeceo de la plataforma debidos al oleaje. • T 0 the characteristic periods of the roll / pitch of the platform due to the waves.
• Tcu el periodo característico umbral (parámetro de control). • T cu the threshold characteristic period (control parameter).
• Í2 el tiempo usado para calcular T0. • Í2 the time used to calculate T 0 .
Si la inclinación media de la plataforma es inferior o igual al parámetro de control inclinación media umbral durante un rango de tiempo ti y a) La diferencia en valor absoluto entre los periodos característicos del balance/cabeceo de la plataforma debidos al oleaje T0 y los periodos del agua de los tanques de lastre (100) Tu efectivos para el amortiguamiento del balance/cabeceo durante un rango de tiempo t2 es menor o igual al periodo característico umbral, entonces el sistema no se activa. Es decir: Si 0im\ti £ 0imu y, además \TU - T0\tz £ Tcu para los tanques de lastre (100) que van a amortiguar los movimientos del oleaje, el sistema no se activa. b) La diferencia en valor absoluto entre los periodos característicos del balance/cabeceo de la plataforma debidos al oleaje T0 y los periodos del agua de los tanques de lastre (100) Tu efectivos para el amortiguamiento del balance/cabeceo durante un rango de tiempo t2 es mayor al periodo característico umbral, entonces el sistema se activa modificando adecuadamente la altura del agua de los tanques de lastre (100) que van a actuar como tanques de superficie libre (FIG 4A) para amortiguar el movimiento de balance/cabeceo producidos por el viento y el oleaje. Es decir: Si 0im\ti £ 0imu y, además \TU - T0\tz > Tcu para los tanques de lastre (100) que van a amortiguar los movimientos del oleaje, el sistema se activa para amortiguar el balance/cabeceo. If the mean tilt of the platform is less than or equal to the control parameter mean tilt threshold during a time range ti ya) The difference in absolute value between the characteristic periods of the roll / pitch of the platform due to swell T 0 and the periods of the water in the ballast tanks (100) Your effective for roll / pitch damping during a time range t2 is less than or equal to the threshold characteristic period, then the system is not activated. That is: If 0 im \ ti £ 0 imu and, in addition, \ T U - T 0 \ tz £ T cu for the ballast tanks (100) that are going to dampen the wave movements, the system is not activated. b) The difference in absolute value between the characteristic periods of the roll / pitch of the platform due to the swell T 0 and the periods of the water in the ballast tanks (100) Tu effective for the damping of the roll / pitch during a range of time t2 is greater than the characteristic threshold period, then the system is activated by suitably modifying the height of the water in the ballast tanks (100) that will act as free surface tanks (FIG 4A) to dampen the roll / pitch movement produced by the wind and the swell. That is: If 0 im \ ti £ 0 imu and, in addition, \ T U - T 0 \ tz > T cu for the ballast tanks (100) that are going to damp the wave movements, the system is activated to damp the balance /pitching.
Si la inclinación media de la plataforma (1) es superior al parámetro de control inclinación media umbral durante un rango de tiempo L y If the average slope of the platform (1) is greater than the control parameter average slope threshold during a time range L and
18 18
HOJA DE REEMPLAZO (REGLA 26) c) La diferencia en valor absoluto entre los periodos característicos del balance/cabeceo de la plataforma debidos al oleaje T0 y los periodos del agua de los tanques de lastre (100) Tu efectivos para el amortiguamiento del balance/cabeceo durante un rango de tiempo t2 es menor o igual al periodo característico umbral, entonces el sistema se activa trasegando agua entre los tanques de lastre (100) para compensar el ángulo de inclinación media. Es decir: S¡ eim\ti > 0imu y, además \TU — T0 \tz £ Tcu para los tanques de lastre (100) que van a amortiguar los movimientos del oleaje, el sistema se activa para compensar la inclinación media. d) La diferencia en valor absoluto entre los periodos característicos del balance/cabeceo de la plataforma debidos al oleaje T0 y los periodos del agua de los tanques de lastre (100) Tu efectivos para el amortiguamiento del balance/cabeceo durante un rango de tiempo t2 es mayor al periodo característico umbral, entonces el sistema se activa trasegando agua entre los tanques de lastre (100) para compensar el ángulo de inclinación media producido por el viento y modificando adecuadamente la altura del agua de los tanques de lastre (100) que van a actuar como tanques de superficie libre (FIG 4A) para amortiguar el movimiento de balance/cabeceo producidos por el viento y el oleaje. Es decir: si 0im\ti > 6imu y, además \TU - T0\tz > Tcu para los tanques de lastre (100) que van a amortiguar los movimientos del oleaje, el sistema se activa para compensar la inclinación media y amortiguar el balance/ cabeceo de manera simultánea. SUBSTITUTE SHEET (RULE 26) c) The difference in absolute value between the characteristic periods of the roll / pitch of the platform due to the swell T 0 and the periods of the water in the ballast tanks (100) Tu effective for the damping of the roll / pitch during a range of time t2 is less than or equal to the threshold characteristic period, then the system is activated by transferring water between the ballast tanks (100) to compensate for the mean angle of inclination. That is: S¡ e im \ ti > 0 imu and, in addition, \ T U - T 0 \ tz £ T cu for the ballast tanks (100) that are going to dampen the wave movements, the system is activated to compensate for the medium incline. d) The difference in absolute value between the characteristic periods of the roll / pitch of the platform due to the swell T 0 and the periods of the water in the ballast tanks (100) Tu effective for the damping of the roll / pitch during a range of time t2 is greater than the characteristic threshold period, then the system is activated by transferring water between the ballast tanks (100) to compensate for the average inclination angle produced by the wind and by suitably modifying the water height of the ballast tanks (100) that they will act as free-surface tanks (FIG 4A) to cushion the roll / pitch movement produced by wind and waves. That is: if 0 im \ ti > 6 imu and, in addition, \ T U - T 0 \ tz > T cu for the ballast tanks (100) that are going to dampen the wave movements, the system is activated to compensate for the inclination medium and roll / pitch damping simultaneously.
6) En una quinta fase, una vez que el sistema para adrizar y reducir movimientos de la plataforma (1) es activado de cualquiera de las maneras anteriores, se calcula la distribución final de agua en los tanques y la secuencia de trasiego entre ellos para realizar la acción de control, optimizando la función objetivo definida en la primera fase. Para ello, a partir de los datos del estado de los tanques (100) que suministra el subsistema de sensores en el instante anterior de la activación del sistema, si la compensación objetivo es: a) el amortiguamiento del balance/cabeceo de la plataforma, se calcula la distribución de lastre en los tanques al final de la secuencia de trasiego, para que la diferencia en valor absoluto entre los periodos de oscilación de la superficie6) In a fifth phase, once the system to right and reduce movements of the platform (1) is activated in any of the previous ways, the final distribution of water in the tanks and the transfer sequence between them is calculated to perform the control action, optimizing the objective function defined in the first phase. To do this, based on the data on the status of the tanks (100) supplied by the sensor subsystem at the instant before the system was activated, if the objective compensation is: a) the damping of the roll / pitch of the platform, the ballast distribution in the tanks is calculated at the end of the transfer sequence, so that the difference in absolute value between the periods of surface oscillation
19 19
HOJA DE REEMPLAZO (REGLA 26) libre (FIG 4A) en los tanques (100) y los periodos característicos de balance/cabeceo de la plataforma debidos al oleaje sea nula, |Tti - T0I = 0, sin modificar la inclinación media de la plataforma. b) la corrección del ángulo de inclinación media, se calcula la distribución de agua en los tanques al final de la secuencia de trasiego para que la inclinación media de la plataforma (1) esté por debajo de la inclinación media umbral, es decir, G¡m£ 0¡mu, sin alterar la acción amortiguadora de los tanques anti-balance de superficie libre que estuviera activa. c) amortiguar simultáneamente el balance/cabeceo y corregir el ángulo de inclinación media, se calcula la distribución de agua en los tanques al final de la secuencia de trasiego, de modo y manera que simultáneamente, la diferencia en valor absoluto entre los periodos de oscilación de la superficie libre (FIG 4A) en los tanques (100) y los periodos característicos de balance/cabeceo de la plataforma debido al oleaje sea nula, |Tti - T0| = 0 y la inclinación media de la plataforma (1) esté por debajo de la inclinación media umbral, es decir, G¡m£ G¡mu.SUBSTITUTE SHEET (RULE 26) free (FIG 4A) in the tanks (100) and the characteristic periods of roll / pitch of the platform due to the swell is zero, | T ti - T 0 I = 0, without modifying the average inclination of the platform. b) correction of the mean inclination angle, the distribution of water in the tanks at the end of the transfer sequence is calculated so that the mean inclination of the platform (1) is below the threshold mean inclination, that is, G m £ 0¡mu without altering the damping action of anti-tank free surface balance was active. c) simultaneously damping roll / pitch and correcting the mean tilt angle, the water distribution in the tanks at the end of the transfer sequence is calculated, so that simultaneously, the difference in absolute value between the oscillation periods of the free surface (FIG 4A) in the tanks (100) and the characteristic periods of roll / pitch of the platform due to the swell are zero, | T ti - T 0 | = 0 and the mean slope of the platform (1) is below the threshold mean slope, that is, G, m £ G, mu.
La distribución de lastre entre los tanques del sistema, realizada por un algoritmo específico, determina para cada tanque su nivel de llenado y por consiguiente su periodo natural de oscilación, lo que, unido a su relación con los niveles de agua del resto de tanques de sistema, establece si el tanque en cuestión está actuando como tanque anti-escora, tanque anti-balance de superficie libre, o simultáneamente como tanque anti-escora y anti-balance. The distribution of ballast between the tanks of the system, carried out by a specific algorithm, determines for each tank its filling level and consequently its natural period of oscillation, which, together with its relationship with the water levels of the rest of the tanks of This system establishes whether the tank in question is acting as an anti-heeling tank, a free surface anti-balance tank, or simultaneously as an anti-heeling and anti-balance tank.
En función del número de tanques del sistema, las interconexiones entre ellos y los medios de trasiego disponibles, las posibles combinaciones de distribuciones finales de lastre entre los diferentes tanques y de secuencias de trasiego desde una distribución inicial de lastre, que logren la compensación objetivo (la acción de control), puede ser muy elevada, y por ello, el cálculo de la distribución final de lastre y de la secuencia de trasiego entre el estado inicial y final se realiza en base a la optimización de la función objetivo definida en la estrategia de control de la fase 1, considerando para este fin minimizar: o el consumo de energía de los medios de trasiego. En este caso, tanto la distribución final de lastre como la secuencia de trasiego se calculaDepending on the number of tanks in the system, the interconnections between them and the transfer means available, the possible combinations of final ballast distributions between the different tanks and transfer sequences from an initial ballast distribution, which achieve the target compensation ( control action), can be very high, and therefore, the calculation of the final distribution of ballast and of the transfer sequence between the initial and final state is carried out based on the optimization of the objective function defined in the strategy control of phase 1, considering for this purpose to minimize: o the energy consumption of the transfer means. In this case, both the final ballast distribution and the transfer sequence are calculated
20 twenty
HOJA DE REEMPLAZO (REGLA 26) imponiendo que el paso desde el estado inicial al estado final se realice con el mínimo consumo de energía. la altura del centro de gravedad del agua en los tanques de lastre del sistema en su acción de control, es decir maximizar la estabilidad de la plataforma (1). En este caso, tanto la distribución final de lastre como la secuencia de trasiego del estado inicial al final se calculan para lograr este fin, por ejemplo, distribuyendo el lastre de la manera más uniforme posible en altura entre los tanques. el tiempo en adrizar y/o amortiguar el balance/cabeceo. En este caso, la distribución final de lastre y secuencia de trasiego desde el estado inicial al final, se calculan de manera que el adrizado y la funcionalidad de amortiguamiento se realice lo más rápido posible con los medios de trasiego que se disponen. minimizar los esfuerzos estructurales en la turbina eólica (4) y/o interferir mínimamente en su operación. En este caso, la distribución final de lastre y la secuencia de trasiego entre el estado inicial y final, se calcula para que tanto el ángulo de inclinación como el amortiguamiento durante el trasiego sean conducentes a este fin, por ejemplo, evitando posibles resonancias con la operación de la turbina y ángulos de inclinación extremos durante el trasiego que pudieran darse al corregir la inclinación media de la plataforma en situaciones excepcionales de cambios de dirección e intensidad del viento. los movimientos de balance y cabeceo debidos al oleaje. En este caso, la distribución final de lastre y la secuencia de trasiego entre el estado inicial y el final, se calcula para que los movimientos de balance y cabeceo se reduzcan al máximo, por ejemplo, seleccionando el máximo número de tanques con posibilidad de ejercer una función anti-balance compatible con la corrección de la inclinación media. una combinación ponderada de las anteriores. En este caso, partiendo de una distribución inicial de lastre, la distribución final de lastre y la secuencia de lastrado se elige de modo y manera que se minimice la suma factorizadaSUBSTITUTE SHEET (RULE 26) imposing that the passage from the initial state to the final state is carried out with the minimum energy consumption. the height of the center of gravity of the water in the ballast tanks of the system in its control action, that is, to maximize the stability of the platform (1). In this case, both the final ballast distribution and the transfer sequence from initial to final state are calculated to achieve this end, for example by distributing the ballast as evenly as possible in height between the tanks. time to right and / or roll / pitch damping. In this case, the final distribution of ballast and transfer sequence from the initial state to the end, are calculated so that the righting and the damping functionality is carried out as quickly as possible with the transfer means that are available. minimize structural stresses on the wind turbine (4) and / or minimally interfere with its operation. In this case, the final distribution of ballast and the transfer sequence between the initial and final state is calculated so that both the angle of inclination and the damping during transfer are conducive to this end, for example, avoiding possible resonances with the turbine operation and extreme tilt angles during racking that could occur when correcting the average tilt of the platform in exceptional situations of changes in direction and intensity of the wind. roll and pitch movements due to swell. In this case, the final distribution of ballast and the transfer sequence between the initial and final state is calculated so that roll and pitch movements are reduced to the maximum, for example, by selecting the maximum number of tanks with the possibility of exercising. an anti-balance function compatible with the correction of the average inclination. a weighted combination of the above. In this case, starting from an initial distribution of ballast, the final distribution of ballast and the ballast sequence is chosen in such a way as to minimize the factored sum
21 twenty-one
HOJA DE REEMPLAZO (REGLA 26) de los cuadrados de los valores que las funciones objetivo toman para un conjunto de distribuciones finales de lastre y secuencias de lastrado compatibles con la compensación objetivo en inclinación media y/o en balance/cabeceo. SUBSTITUTE SHEET (RULE 26) of the squares of the values that the objective functions take for a set of final ballast distributions and ballast sequences compatible with the objective compensation in mean bank and / or roll / pitch.
7) En una sexta fase, el subsistema de control ordenará al subsistema de actuadores de los medios de trasiego (bombas, válvulas) que realice el trasiego definido y la plataforma (1) alcanzará la nueva posición corregida, volviendo así a la fase 3) del procedimiento. 7) In a sixth phase, the control subsystem will order the actuator subsystem of the transfer means (pumps, valves) to carry out the defined transfer and the platform (1) will reach the new corrected position, thus returning to phase 3) of the procedure.
Todo este proceso descrito es automático y se realiza completamente en cuestión de muy pocos minutos, dependiendo del tipo de secuencia de trasiego. Este sistema para adrizar y reducir movimientos estará integrado dentro de los demás sistemas de la plataforma (1) y podrá ser monitorizado desde el puesto/s de control del parque, desde donde se podrá modificar la estrategia de control de la secuencia de trasiego de acuerdo a los criterios de funcionamiento requeridos. All this described process is automatic and is carried out completely in a matter of very few minutes, depending on the type of transfer sequence. This system to right and reduce movements will be integrated into the other systems of the platform (1) and can be monitored from the park control post / s, from where the control strategy of the transfer sequence can be modified according to to the required performance criteria.
Este procedimiento además de corregir la inclinación media producida por el viento es capaz de corregir la inclinación debida a la inundación de, al menos, un tanque de lastre (100) provocado por una vía de agua, adrizando la plataforma (1) y manteniendo el calado. En esta realización, el sistema para adrizar y reducir los movimientos de una plataforma (1) estará conectado al exterior (bucle abierto) a través de al menos una toma de mar. Los criterios de corrección son exactamente los mismos que los expuestos anteriormente, es decir, que no se superen unos valores umbrales. En este caso se detecta la inundación completa de uno de los tanques (100) a través del sensor de nivel del tanque (100) El control, al detectar la inundación, lastrará de manera acorde los tanques (100) necesarios para corregir completamente la inundación; y simultáneamente, desalojará lastre del resto de tanques (100) de la plataforma (1) a través de la toma mar, ya que al producirse la inundación se aumenta el calado. Si la avería lo permite, se achicará agua hasta emerger la plataforma (1) al calado de transporte, para facilitar su traslado y reparación. El criterio que define esta secuencia de trasiego será una combinación ponderada del mínimo tiempo de adrizamiento y de mínima altura del centro de gravedad (máxima estabilidad) para garantizar la seguridad de la plataforma (1). This procedure, in addition to correcting the average inclination produced by the wind, is capable of correcting the inclination due to the flooding of at least one ballast tank (100) caused by a waterway, righting the platform (1) and maintaining the draft. In this embodiment, the system for righting and reducing the movements of a platform (1) will be connected to the outside (open loop) through at least one sea intake. The correction criteria are exactly the same as those set forth above, that is, threshold values are not exceeded. In this case, the complete flooding of one of the tanks (100) is detected through the tank level sensor (100) The control, upon detecting the flooding, will ballast accordingly the tanks (100) necessary to completely correct the flooding ; and simultaneously, it will dislodge ballast from the rest of the tanks (100) from the platform (1) through the sea intake, since when the flooding occurs, the draft increases. If the breakdown allows it, water will be reduced until the platform (1) emerges at the transport draft, to facilitate its transfer and repair. The criterion that defines this transfer sequence will be a weighted combination of the minimum righting time and the minimum height of the center of gravity (maximum stability) to guarantee the safety of the platform (1).
Un bucle abierto permite además modificar el calado de la plataforma (1), para variarAn open loop also allows modifying the depth of the platform (1), to vary
22 22
HOJA DE REEMPLAZO (REGLA 26) el calado de transporte a operación y viceversa. SUBSTITUTE SHEET (RULE 26) the draft from transport to operation and vice versa.
Si el sistema incorpora cuatro tanques (100) o más, pueden permitirse varias combinaciones de llenado de tanques (100) que resulten en un mismo trimado, escora y calado. En tal caso, cabe la posibilidad de mover agua de unos tanques (100) a otros para almacenar energía potencial sin modificar el trimado, escora y calado. Así se pueden aprovechar excesos de energía generados por la turbina eólica (4). En momentos de menor generación, se podrá aprovechar la energía almacenada si se incorpora un generador que aproveche el salto de agua. If the system incorporates four tanks (100) or more, various combinations of tank fill (100) can be allowed that result in the same trim, list and draft. In this case, it is possible to move water from some tanks (100) to others to store potential energy without modifying the trim, list and draft. Thus, excess energy generated by the wind turbine (4) can be used. In times of lower generation, it is possible to take advantage of the stored energy if a generator that takes advantage of the waterfall is incorporated.
Este procedimiento puede además corregir los movimientos de balance y cabeceo mediante el uso de al menos un tanque con forma de “U” (FIG 4B), consistente en dos columnas verticales comunicadas por su parte inferior y que, gracias a su diseño, permiten el movimiento oscilante de la masa de agua contenida en ellas a un periodo y fase tales que se genera un momento oscilante opuesto al balance/cabeceo de la plataforma cuyo periodo es independiente del desnivel medio entre ellas. El periodo de oscilación del agua en el tanque dependerá del diseño y del llenado del mismo.This procedure can also correct the roll and pitch movements by using at least one tank with a “U” shape (FIG 4B), consisting of two vertical columns communicated by its lower part and which, thanks to its design, allow the Oscillating movement of the mass of water contained in them at a period and phase such that an oscillating moment is generated opposite to the roll / pitch of the platform whose period is independent of the average difference between them. The period of oscillation of the water in the tank will depend on the design and the filling of the tank.
Adicionalmente, se pueden utilizar las señales provenientes del aerogenerador en su conjunto y de sus subsistemas, que entre otras miden o estiman el empuje y par aerodinámico, el estado de operación y supervisión (alarmas, advertencias), las revoluciones, los esfuerzos estructurales, aceleraciones, etc., y estas son tenidas en cuenta en la optimización de las funciones objetivo. Additionally, the signals from the wind turbine as a whole and its subsystems can be used, which, among others, measure or estimate the thrust and aerodynamic torque, the operation and supervision status (alarms, warnings), the revolutions, the structural forces, accelerations. , etc., and these are taken into account in the optimization of the objective functions.
De manera informativa y nunca limitativa se muestran a continuación algunos ejemplos de realización preferente para el sistema asociado al procedimiento de la presente invención. In an informative and never limiting manner, some examples of preferred embodiment for the system associated with the process of the present invention are shown below.
Ejemplos de plataformas flotantes eólicas marinas (1), subestaciones o similares en los que son de aplicación la presente invención se muestran en la figura 1A y 1 B. El cuerpo flotante 1 puede tener cualquier tipo de forma mientras que sea hueco para ser capaz de contener en su interior al menos los tanques que conforman el sistema para adrizar y reducir movimientos, aunque por darle generalidad se ha representado como un cilindro/cilindros. El/los cuerpo/s flotante/s (1) tiene una pieza de transición (2), una torre (3) y una turbina eólica (4). La turbina eólica (4) ilustrada es de eje horizontal, downwind o upwind, pudiendo ser también de eje vertical, y donde el número de palasExamples of floating offshore wind platforms (1), substations or the like in which the present invention is applied are shown in Figure 1A and 1B. The floating body 1 can have any type of shape as long as it is hollow to be able to contain inside at least the tanks that make up the system to right up and reduce movements, although for generality it has been represented as a cylinder / cylinders. The floating body / s (1) has a transition piece (2), a tower (3) and a wind turbine (4). The wind turbine (4) illustrated has a horizontal, downwind or upwind axis, and can also be a vertical axis, and where the number of blades
23 2. 3
HOJA DE REEMPLAZO (REGLA 26) puede ser cualquiera. El cuerpo flotante (1) puede disponer tanto de aerogenerador (4) que se encuentre centrado o descentrado en el cuerpo flotante (1) o en el conjunto de cuerpos flotantes (1). El/los cuerpo/s flotante/s (1) se fijarán al fondo marino (7) mediante un sistema de fondeo (5) cuyas características (catenaria, semi-rígido, rígido...), materiales (cadena, cable,...), disposición (1, 2, 3, 4... líneas) y tipo de anclaje (tipo de anclas, tipo de anclajes a plataforma...) será acorde al tipo de solución. El/los cuerpo/s flotante/s (1) pueden estar completamente sumergidos por debajo de la línea de flotación (6) o parcialmente. Adicionalmente, el/los cuerpo/s flotante/s (1) pueden servir para soportar subestaciones eléctricas o similares. En ese caso, el aerogenerador (4), la torre (3) y la pieza de transición (2) se sustituirían por los módulos superiores (topsides) pertinentes. SUBSTITUTE SHEET (RULE 26) it can be anyone. The floating body (1) can have both a wind turbine (4) that is centered or off-center in the floating body (1) or in the set of floating bodies (1). The floating body (s) (1) will be fixed to the seabed (7) by means of an anchoring system (5) whose characteristics (catenary, semi-rigid, rigid ...), materials (chain, cable ,. ..), layout (1, 2, 3, 4 ... lines) and type of anchor (type of anchors, type of platform anchors ...) will be according to the type of solution. The floating body (s) (1) can be completely submerged below the water line (6) or partially. Additionally, the floating body (s) (1) can serve to support electrical substations or the like. In that case, the wind turbine (4), the tower (3) and the transition piece (2) would be replaced by the relevant upper modules (topsides).
Un ejemplo de plataforma eólica marina (1), subestación o similar sometida a la acción colineal del viento y oleaje se muestra en la figura 2A. El viento al incidir sobre la plataforma formada por un cuerpo flotante (1), una pieza de transición (2), una torre (3), una turbina eólica (4) y un sistema de fondeo (5) produce un empuje que hace que la torre (3) forme un ángulo de inclinación media (0im) con respecto a la vertical. Si además, en la misma dirección incide el oleaje, a este ángulo de inclinación media (0im) se le añade el ángulo de balance/cabeceo (0c/b) que irá oscilando en un sentido y otro debido a las fuerzas del oleaje. En la figura 2B, se muestra en planta y alzado una distribución genérica de tanques del sistema para adrizar y reducir movimientos antes de realizar correcciones con el sistema. Cuando incide el viento, figura 2C, se produce un momento escorante que inclina la plataforma de tal manera que los tanques C1 y C2 se sumergen más, y el oleaje genera un movimiento oscilatorio en la dirección de su acción, haciendo que la unidad oscile a la frecuencia de este. En este caso, el sistema de reducción de movimientos trasvasa agua desde los tanques Cs a los tanques Bs para generar un momento recuperador que se oponga al momento escorante producido por el viento y, simultáneamente ajustará la altura de los tanques As para que estos produzcan, por el movimiento de su superficie libre (figura 4A), un momento anti-balance que contrarreste el balance de la plataforma debido al oleaje. El ajuste de la atura de los tanques As se logra trasvasando lastre de los tanques Bs y Cs a los tanques As, de tal manera que no se modifique el momento adrizante producido por los tanques Bs y Cs. Cuando la mar es regular, la altura en los tanques que actúan como reductores de movimientos mediante el principio de superficie libre será la misma, como se ve en la figura 2D. Esto se debe a que en una mar regular elAn example of an offshore wind platform (1), substation or the like subjected to the collinear action of wind and waves is shown in figure 2A. The wind incident on the platform formed by a floating body (1), a transition piece (2), a tower (3), a wind turbine (4) and an anchoring system (5) produces a thrust that makes the tower (3) forms an average inclination angle (0im) with respect to the vertical. If, in addition, the waves are incident in the same direction, to this average tilt angle (0im) is added the roll / pitch angle (0c / b) that will oscillate in one direction and the other due to the forces of the waves. In figure 2B, a generic distribution of tanks of the system is shown in plan and elevation to right and reduce movements before making corrections with the system. When the wind hits, figure 2C, there is a heeling moment that tilts the platform in such a way that the tanks C1 and C2 sink further, and the waves generate an oscillatory movement in the direction of their action, causing the unit to oscillate at the frequency of this. In this case, the movement reduction system transfers water from the Cs tanks to the Bs tanks to generate a recovery moment that opposes the heeling moment produced by the wind and, simultaneously, it will adjust the height of the As tanks so that they produce, due to the movement of its free surface (figure 4A), an anti-balance moment that counteracts the balance of the platform due to the swell. Adjusting the height of the As tanks is achieved by transferring ballast from the Bs and Cs tanks to the As tanks, in such a way that the righting moment produced by the Bs and Cs tanks is not modified. When the sea is regular, the height in the tanks that act as movement reducers through the principle of free surface will be the same, as seen in figure 2D. This is because in a regular sea the
24 24
HOJA DE REEMPLAZO (REGLA 26) oleaje tiene una única frecuencia, lo que exige la misma altura en los tanques. Sin embargo, cuando la mar sea irregular, esta altura puede variar entre los tanques para abarcar más periodos del oleaje. En tal caso, un tanque A aumentará su nivel de agua y el otro tanque A lo reducirá, compensando el giro que este cambio produce mediante un movimiento de agua de un tanque C al otro tanque C, como se muestra en la figura 2E, y/o bien del tanque B al otro B. SUBSTITUTE SHEET (RULE 26) swell has a single frequency, which requires the same height in the tanks. However, when the sea is rough, this height can vary between tanks to cover more periods of swell. In such a case, one tank A will increase its water level and the other tank A will reduce it, compensating for the spin that this change produces by a movement of water from one tank C to the other tank C, as shown in figure 2E, and / or from tank B to the other B.
Un ejemplo de plataforma eólica marina, subestaciones o similares sometida a la acción de viento y oleaje a 90° se muestra en la figura 3A. El viento al incidir sobre la plataforma formada por un cuerpo flotante (1) una pieza de transición (2), una torre (3), una turbina eólica (4) y un sistema de fondeo (5) produce un empuje que hace que la torre (3) forme un ángulo de inclinación media (0im) con respecto a la vertical. Perpendicularmente actúa el oleaje, provocando un ángulo de balance/cabeceo (0c/b) que irá oscilando con diferente magnitud y sentido debido al embate de las olas. En la figura 3B, se muestra en planta y alzado una distribución genérica de tanques del sistema para adrizar y reducir movimientos antes de realizar correcciones con el sistema. Cuando incide el viento en la unidad, figura 3C, se produce un momento escorante que inclina la plataforma de manera que los tanques Cs se hunden más. El oleaje, por su parte, genera un movimiento oscilatorio en la dirección de su acción (por el que los tanques As se mueven arriba y abajo alternativamente). En este caso, el sistema de reducción de movimientos trasvasa agua desde los tanques Cs a los tanques Bs para generar un momento recuperador que se oponga al momento escorante producido por el viento. Y, simultáneamente, para corregir el movimiento oscilatorio provocado por el oleaje, figura 3D, los tanques A funcionarán de ajuste de llenado-vaciado de lastre de los tanques Cs y Bs, cuya altura, y por tanto su periodo de oscilación, se puede ajustar para que actúen como tanques anti-balance de superficie libre, de tal manera que no se modifique su acción anti-escora ni el calado de operación, es decir los tanques Cs y Bs actúan simultáneamente como tanques anti-escora (en la dirección del viento) y anti-balance (en la dirección de las olas). Además, el nivel de altura de los tanques As se podría ajustar (jugando con los demás tanques en la medida de lo posible) para reducir movimientos asociados a la turbulencia/variabilidad del viento. An example of an offshore wind platform, substations or the like subjected to the action of wind and waves at 90 ° is shown in figure 3A. The wind incident on the platform formed by a floating body (1) a transition piece (2), a tower (3), a wind turbine (4) and an anchoring system (5) produces a thrust that makes the tower (3) form a mean tilt angle (0im) with respect to the vertical. The wave acts perpendicularly, causing a roll / pitch angle (0c / b) that will oscillate with different magnitude and direction due to the onslaught of the waves. In figure 3B, a generic distribution of tanks of the system is shown in plan and elevation to right and reduce movements before making corrections with the system. When the wind hits the unit, Figure 3C, a heeling moment occurs that tilts the platform so that the tanks Cs sink further. The swell, for its part, generates an oscillatory movement in the direction of its action (whereby the Ace tanks move up and down alternately). In this case, the movement reduction system transfers water from the Cs tanks to the Bs tanks to generate a recovery moment that opposes the heeling moment produced by the wind. And, simultaneously, to correct the oscillatory movement caused by the waves, figure 3D, the tanks A will function as adjustment of the ballast filling-emptying of the tanks Cs and Bs, whose height, and therefore their period of oscillation, can be adjusted to act as free surface anti-balance tanks, in such a way that their anti-heeling action and operating draft are not modified, that is, the Cs and Bs tanks act simultaneously as anti-heeling tanks (in the direction of the wind). ) and anti-balance (in the direction of the waves). In addition, the height level of the As tanks could be adjusted (playing with the other tanks as much as possible) to reduce movements associated with wind turbulence / variability.
Un ejemplo de tanque de superficie libre se muestra en la figura 4A. El agua se mueve de lado a lado del tanque, dependiendo la frecuencia de oscilación natural de la alturaAn example of a free surface tank is shown in Figure 4A. The water moves from side to side of the tank, the natural oscillation frequency depending on the height
25 25
HOJA DE REEMPLAZO (REGLA 26) del agua en el tanque, así como de las dimensiones y forma del mismo. Ajustando la frecuencia natural del tanque a un valor determinado y excitándolo cerca de su resonancia, el frente de ola (el movimiento de la superficie libre) opone un momento de carácter dinámico que reduce el movimiento de balance/cabeceo. Se ha descrito la invención con referencia a casos específicos, y de un solo cuerpo flotante (1), sin apartarse del alcance general de la invención según lo definido en las reivindicaciones adjuntas. Por esta razón, la especificación y con ello los dibujos no son restrictivos ni limitantes y deben considerarse como un ejemplo. SUBSTITUTE SHEET (RULE 26) of the water in the tank, as well as its dimensions and shape. By adjusting the natural frequency of the tank to a certain value and exciting it near its resonance, the wave front (the movement of the free surface) opposes a dynamic moment that reduces the roll / pitch movement. The invention has been described with reference to specific cases, and of a single floating body (1), without departing from the general scope of the invention as defined in the appended claims. For this reason, the specification and hence the drawings are not restrictive or limiting and should be considered as an example.
26 26
HOJA DE REEMPLAZO (REGLA 26) SUBSTITUTE SHEET (RULE 26)

Claims

REIVINDICACIONES
1- Procedimiento para reducir la inclinación media y reducir los movimientos de una plataforma flotante eólica marina (1), subestación o similar caracterizado por: 1- Procedure to reduce the average inclination and reduce the movements of a floating offshore wind platform (1), substation or similar characterized by:
• detectar, al menos, velocidad de viento, dirección de viento, altura de ola, el periodo de la ola, los ángulos de la inclinación de la plataforma, el calado, y el nivel de agua de los tanques de lastre. • detect, at least, wind speed, wind direction, wave height, wave period, platform tilt angles, draft, and water level of ballast tanks.
• comparar que: o el ángulo de inclinación media de la plataforma (0¡m) durante un rango de tiempo ti sea menor o igual que el ángulo de inclinación media umbral• compare that: o the platform mean tilt angle (0¡ m ) during a time range ti is less than or equal to the threshold mean tilt angle
(0¡mu) (0mu)
^im \t1 — imu o la diferencia en valor absoluto entre los periodos característicos del balance/cabeceo de la plataforma debidos al oleaje (T0) y los periodos del agua de los tanques de lastre (Tu) efectivos para el amortiguamiento del balance/cabeceo durante un rango de tiempo ) sea menor o igual al periodo característico umbral (Tcu). ^ im \ t 1 - imu or the difference in absolute value between the characteristic periods of the roll / pitch of the platform due to the swell (T 0 ) and the periods of the water of the ballast tanks (Tu) effective for the damping of the balance / pitch over a time range) is less than or equal to the threshold characteristic period (T cu ).
\Tti ~ To \t2 < Tcu Paras tanques de lastre que van a amortiguar los movimientos del oleaje. \ T ti ~ T o \ t 2 <Tcu P ara l ° s ballast tanks will dampen the movements of the waves.
• al menos una función objetivo de la estrategia de control de la secuencia de trasiego, y que puede ser minimizar: el consumo de energía de los medios de trasiego, la altura del centro de gravedad del agua de lastre en los tanques del sistema, el tiempo en adrizar y/o amortiguar el balance/cabeceo, los esfuerzos estructurales en la turbina eólica y/o interferir mínimamente en su operación, los movimientos de balance y cabeceo debidos al oleaje, o una combinación ponderada de las anteriores. • at least one objective function of the transfer sequence control strategy, which may be to minimize: the energy consumption of the transfer means, the height of the center of gravity of the ballast water in the tanks of the system, the time to right and / or damp roll / pitch, structural stresses on the wind turbine and / or minimally interfere with its operation, roll and pitch movements due to waves, or a weighted combination of the above.
27 27
HOJA DE REEMPLAZO (REGLA 26) • Transferir agua entre los tanques de lastre en el momento que alguna de las comparaciones anteriores sea mayor que los valores umbrales, asegurando que la distribución de lastre final y la secuencia de trasiego se realizan de acuerdo a la optimización de la función objetivo, para: o compensar, por medio del principio de tanque anti-escora (sistema activo), el ángulo de inclinación media producido por el viento. o y/o amortiguar, por medio de tanques anti-balance pasivos, el movimiento de balance/cabeceo producidos por el viento y el oleaje.SUBSTITUTE SHEET (RULE 26) • Transfer water between the ballast tanks when any of the previous comparisons is greater than the threshold values, ensuring that the final ballast distribution and the transfer sequence are carried out according to the optimization of the objective function, for: or compensate, by means of the anti-heeling tank principle (active system), the average angle of inclination produced by the wind. o and / or damping, by means of passive anti-roll tanks, the roll / pitch movement produced by wind and waves.
2- Procedimiento de la reivindicación 1-, donde el lastre está en sistema de bucle abierto, permitiendo llenar/vaciar los tanques con agua del exterior. 2- Procedure of claim 1-, where the ballast is in an open loop system, allowing the tanks to be filled / emptied with water from outside.
3- Procedimiento de la reivindicación 2-, donde se transfiere agua entre los tanques de lastre del sistema para compensar el ángulo de inclinación media producido por la inundación de al menos uno de los tanques provocada por una vía de agua y simultáneamente se corrige el aumento de calado provocado por la inundación deslastrando otros tanques de la plataforma. 3- Procedure of claim 2-, where water is transferred between the ballast tanks of the system to compensate for the average inclination angle produced by the flooding of at least one of the tanks caused by a waterway and simultaneously the increase is corrected draft caused by the flood shedding other tanks from the platform.
4- Procedimiento de la reivindicación 1-, donde se transfiere agua entre los tanques de lastre del sistema para almacenar excesos de energía como energía potencial en los tanques. 4- Procedure of claim 1-, where water is transferred between the ballast tanks of the system to store excess energy as potential energy in the tanks.
5- Procedimiento de la reivindicación 2-, donde se transfiere agua entre los tanques de lastre del sistema para almacenar excesos de energía como energía potencial en los tanques. 6- Procedimiento de acuerdo a cualquiera de las reivindicaciones anteriores, donde la compensación pasiva también se obtiene por la oscilación de agua en un tanque con forma de “U”, consistente en dos columnas verticales comunicadas por su parte inferior. 5- Procedure of claim 2-, where water is transferred between the ballast tanks of the system to store excess energy as potential energy in the tanks. 6- Procedure according to any of the preceding claims, where the passive compensation is also obtained by the oscillation of water in a tank with a “U” shape, consisting of two vertical columns communicated by its lower part.
28 28
HOJA DE REEMPLAZO (REGLA 26) 7- Procedimiento de acuerdo a cualquiera de las reivindicaciones anteriores, donde se modifica la estrategia de control de la secuencia de trasiego de acuerdo a los criterios de funcionamiento requeridos para más de una plataforma dentro de uno o más parques eólicos. SUBSTITUTE SHEET (RULE 26) 7- Procedure according to any of the preceding claims, where the control strategy of the transfer sequence is modified according to the operating criteria required for more than one platform within one or more wind farms.
8- Procedimiento de acuerdo a cualquiera de las reivindicaciones anteriores, donde se reciben señales provenientes del aerogenerador en su conjunto, que miden o estiman el empuje y par aerodinámico, el estado de operación y supervisión, las revoluciones y los esfuerzos estructurales, y estas son tenidas en cuenta en la optimización de las funciones objetivo. 8- Procedure according to any of the preceding claims, where signals are received from the wind turbine as a whole, which measure or estimate the thrust and aerodynamic torque, the state of operation and supervision, the revolutions and the structural efforts, and these are taken into account in the optimization of the objective functions.
9- Soporte de datos legible por un ordenador que comprende instrucciones que, al ejecutarse en un ordenador, hacen que el ordenador lleve a cabo las etapas de cualquiera de los procedimientos de las reivindicaciones anteriores para reducir la inclinación media y reducir los movimientos de una plataforma flotante eólica marina (1), subestación o similar. 9- Computer-readable data carrier comprising instructions that, when executed on a computer, cause the computer to carry out the steps of any of the procedures of the preceding claims to reduce the average inclination and reduce the movements of a platform floating offshore wind (1), substation or similar.
10- Sistema para reducir la inclinación media y reducir los movimientos de una plataforma flotante eólica marina (1), subestación o similar que realiza la reivindicación 1- caracterizado por: 10- System to reduce the average inclination and reduce the movements of a floating offshore wind platform (1), substation or similar that makes claim 1 characterized by:
• un control configurado para realizar dicho procedimiento, • a control configured to perform this procedure,
• al menos tres tanques de lastre, • at least three ballast tanks,
• al menos una bomba que mueve agua de un tanque a otro, indistintamente, a través de una distribución de tuberías que conectan los tanques, • at least one pump that moves water from one tank to another, interchangeably, through a distribution of pipes connecting the tanks,
• que el trasiego de agua a través de las tuberías de conexión entre tanques se controla con válvulas operadas remotamente. • that the transfer of water through the connecting pipes between tanks is controlled with remotely operated valves.
11- Sistema de acuerdo a la reivindicación 10- y que realiza el procedimiento de la reivindicación 2-, donde el sistema está conectado al mar a través de, al menos, una toma de mar. 11. System according to claim 10- and that performs the procedure of claim 2-, where the system is connected to the sea through at least one sea outlet.
12- Sistema de acuerdo a la reivindicación 10- y que realiza el procedimiento de la reivindicación 3-, donde el sistema está conectado al mar a través de, al menos, una toma de mar. 12- System according to claim 10- and that performs the procedure of claim 3-, where the system is connected to the sea through at least one sea outlet.
29 29
HOJA DE REEMPLAZO (REGLA 26) 13- Sistema de acuerdo a la reivindicación 10- y que realiza el procedimiento de la reivindicación 4-, donde hay un generador de energía movido por al menos una turbina que aproveche el salto de agua y al menos cuatro tanques de lastre. SUBSTITUTE SHEET (RULE 26) 13. System according to claim 10- and that performs the procedure of claim 4-, where there is an energy generator driven by at least one turbine that takes advantage of the waterfall and at least four ballast tanks.
14- Sistema de acuerdo a la reivindicación 11- y que realiza el procedimiento de la reivindicación 5-, donde hay un generador de energía movido por al menos una turbina que aproveche el salto de agua y al menos cuatro tanques de lastre. 14- System according to claim 11- and that performs the procedure of claim 5-, where there is an energy generator driven by at least one turbine that takes advantage of the waterfall and at least four ballast tanks.
15- Sistema de acuerdo a cualquiera de las reivindicaciones de la 10- a la 14- y que realiza el procedimiento de la reivindicación 6-, donde hay tanques anti balance de disposición en “U”. 16- Sistema de acuerdo a cualquiera de las reivindicaciones de la 10- a la 15- y que realiza el procedimiento de la reivindicación 7-, donde el control del sistema se encuentra monitorizado en el puesto/s de control del parque. 15. System according to any of claims 10- to 14- and that performs the procedure of claim 6-, where there are anti-balance tanks arranged in a "U". 16. System according to any of claims 10- to 15- and that performs the procedure of claim 7-, where the system control is monitored at the park control post / s.
17- Sistema de acuerdo a cualquiera de las reivindicaciones de la 10- a la 16- y que realiza el procedimiento de la reivindicación 8-, donde el sistema de control recibe señales del conjunto del aerogenerador, que miden o estiman el empuje y par aerodinámico, el estado de operación y supervisión, las revoluciones, los esfuerzos estructurales, y las emplea en la optimización de la función objetivo. 17- System according to any of claims 10- to 16- and that performs the procedure of claim 8-, where the control system receives signals from the wind turbine assembly, which measure or estimate the thrust and aerodynamic torque , the state of operation and supervision, the revolutions, the structural forces, and uses them in the optimization of the objective function.
30 30
HOJA DE REEMPLAZO (REGLA 26) SUBSTITUTE SHEET (RULE 26)
PCT/ES2020/070694 2019-11-11 2020-11-10 System for righting and reducing movements in floating platforms WO2021094635A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201930986A ES2824373B2 (en) 2019-11-11 2019-11-11 PROCEDURE AND SYSTEM TO REDUCE THE AVERAGE INCLINATION AND REDUCE THE MOVEMENTS OF AN OFFSHORE FLOATING PLATFORM, SUBSTATION OR SIMILAR
ESP201930986 2019-11-11

Publications (1)

Publication Number Publication Date
WO2021094635A1 true WO2021094635A1 (en) 2021-05-20

Family

ID=75780060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2020/070694 WO2021094635A1 (en) 2019-11-11 2020-11-10 System for righting and reducing movements in floating platforms

Country Status (2)

Country Link
ES (1) ES2824373B2 (en)
WO (1) WO2021094635A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113266523A (en) * 2021-04-25 2021-08-17 明阳智慧能源集团股份公司 Feed-forward control method and system for wave disturbance of floating type double-impeller wind turbine generator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005271673A (en) * 2004-03-24 2005-10-06 Hitachi Zosen Corp Attitude control system in floating structure
WO2007096680A1 (en) * 2006-02-24 2007-08-30 Theodoros Lilas Stable floating structure with limited oscillations
KR20100113202A (en) * 2009-04-13 2010-10-21 대우조선해양 주식회사 Apparatus for reducing rolling motion for ships
WO2013110276A1 (en) * 2012-01-23 2013-08-01 Vestas Wind Systems A/S Coordinated control of a floating wind turbine
EP3499024A1 (en) * 2017-12-13 2019-06-19 Siemens Gamesa Renewable Energy A/S Wake optimisation of a floating wind turbine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005271673A (en) * 2004-03-24 2005-10-06 Hitachi Zosen Corp Attitude control system in floating structure
WO2007096680A1 (en) * 2006-02-24 2007-08-30 Theodoros Lilas Stable floating structure with limited oscillations
KR20100113202A (en) * 2009-04-13 2010-10-21 대우조선해양 주식회사 Apparatus for reducing rolling motion for ships
WO2013110276A1 (en) * 2012-01-23 2013-08-01 Vestas Wind Systems A/S Coordinated control of a floating wind turbine
EP3499024A1 (en) * 2017-12-13 2019-06-19 Siemens Gamesa Renewable Energy A/S Wake optimisation of a floating wind turbine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113266523A (en) * 2021-04-25 2021-08-17 明阳智慧能源集团股份公司 Feed-forward control method and system for wave disturbance of floating type double-impeller wind turbine generator
CN113266523B (en) * 2021-04-25 2022-05-03 明阳智慧能源集团股份公司 Feed-forward control method and system for wave disturbance of floating type double-impeller wind turbine generator

Also Published As

Publication number Publication date
ES2824373B2 (en) 2022-05-27
ES2824373A1 (en) 2021-05-11

Similar Documents

Publication Publication Date Title
KR102638423B1 (en) Control system for floating wind turbine structures
ES2456345T3 (en) Offshore platform stabilized by columns with water entrapment plates and asymmetric mooring system for support of offshore wind turbines
EP2685093B1 (en) Wind turbine stabilization
ES2516590B1 (en) SUBMERSIBLE STRUCTURE OF ACTIVE SUPPORT FOR GENERATOR TOWERS AND SUBSTATIONS OR SIMILAR ELEMENTS, IN MARITIME FACILITIES
CN106460790B (en) The wind turbine structure control system and its method adjusted with floating ground and position
ES2654602T3 (en) Floating mast structure
ES2233387T3 (en) AMORTIGUATION OF SWINGS IN WIND TURBINES.
WO2018095304A1 (en) Movable ballast leveling control device for use in floating wind turbine
JP6523304B2 (en) Floating wind power generator
CN113544053B (en) Tuned mass damper for floating structures
EP2783975B1 (en) Floating offshore structures
US20140234105A1 (en) Floating wind turbine
US20170241094A1 (en) Floatable support structure for an offshore wind turbine or other device
JP2002285951A (en) Floating type foundation structure for marine wind power generation
US20130031897A1 (en) Wave Power Plant
WO2009068712A1 (en) Marine electric power production system and installation method
ES2824373B2 (en) PROCEDURE AND SYSTEM TO REDUCE THE AVERAGE INCLINATION AND REDUCE THE MOVEMENTS OF AN OFFSHORE FLOATING PLATFORM, SUBSTATION OR SIMILAR
CN117561198A (en) Anchor system and method for installing a floating platform using the same
KR101165739B1 (en) Solar Light Power Generating Device and Mooring Device therefor
US20140167421A1 (en) Offshore wind turbine on offset floating support
KR20140035592A (en) Floating offshore wind power generator
KR101165740B1 (en) Solar Light Power Generating Device and Mooring Device therefor
GB2530302A (en) Method and apparatus for transporting offshore floating wind turbines
NO330856B1 (en) Liquid wind turbines
IE85887B1 (en) Floating platform

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20888451

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20888451

Country of ref document: EP

Kind code of ref document: A1