WO2021093259A1 - 一种任意奇点光束阶数检测装置及方法 - Google Patents
一种任意奇点光束阶数检测装置及方法 Download PDFInfo
- Publication number
- WO2021093259A1 WO2021093259A1 PCT/CN2020/083790 CN2020083790W WO2021093259A1 WO 2021093259 A1 WO2021093259 A1 WO 2021093259A1 CN 2020083790 W CN2020083790 W CN 2020083790W WO 2021093259 A1 WO2021093259 A1 WO 2021093259A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- singular point
- polarization
- arbitrary
- polarizer
- Prior art date
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 68
- 238000000034 method Methods 0.000 title claims abstract description 15
- 230000010287 polarization Effects 0.000 claims abstract description 132
- 238000000926 separation method Methods 0.000 claims abstract description 15
- 239000011521 glass Substances 0.000 claims description 7
- 230000002452 interceptive effect Effects 0.000 claims description 4
- 238000004458 analytical method Methods 0.000 claims description 3
- 230000008859 change Effects 0.000 claims description 2
- 230000003287 optical effect Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 235000012489 doughnuts Nutrition 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000005350 fused silica glass Substances 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 238000005305 interferometry Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012634 optical imaging Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J11/00—Measuring the characteristics of individual optical pulses or of optical pulse trains
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J4/00—Measuring polarisation of light
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J4/00—Measuring polarisation of light
- G01J4/04—Polarimeters using electric detection means
Definitions
- the invention relates to the technical field of information optics, and in particular to a device and method for detecting arbitrary singular point beam orders, which is suitable for detecting the topological charge and polarization order of arbitrary singular point beams.
- Vortex Beam (VB) and Cylindrical Vector Beam (CVB) that carry Orbital Angular Momentum (OAM) are two typical singularity beams that have been extensively studied. They have phase singularity and polarization singularity. point. They all have a circular intensity distribution and dark spots due to the central singularity. Due to their unique optical characteristics, vortex light and cylindrical vector light have been widely used in various applications ranging from optical communication, optical manipulation, optical imaging to quantum information processing.
- a beam with both phase singularity and polarization singularity can also provide more freedom for beam manipulation.
- These beams are also called Cylindrical Vector Vortex Beam (CVVB), which has attracted widespread attention in the field of optical manipulation.
- CVVB Cylindrical Vector Vortex Beam
- researchers have proposed many methods for generating singular light beams.
- it is also important to effectively identify its topological charge and polarization order. Since the spatial field distribution of the singularity beam is different from each other, the detection methods for its topological charge and polarization order should also be different.
- the interferometry is used to determine the topological charge of VB, and the analyzer is widely used to detect the polarization order of CVB and CVVB.
- CVB Cylindrical Vector Vortex Beam
- the technical problem to be solved by the present invention is to provide a device and method for detecting any singular point beam order in view of the above-mentioned defects of the prior art, which utilizes polarization-sensitive blazed grating to detect incident singular point light and reference light (incident 45 ° Linear polarization singularity light and 45° linear polarization reference light) separate the horizontal and vertical polarization components and interfere with each other.
- incident singular point light and reference light incident 45 ° Linear polarization singularity light and 45° linear polarization reference light
- An arbitrary singular point beam order detection device wherein the arbitrary singular point beam order detection device includes:
- a singular point beam generating module for generating singular point light with any topological charge and polarization order of orthogonal linear polarization components
- a reference beam generating module for generating reference light linearly polarized along a preset angle
- a polarization separation interference module for separating and interfering with the horizontal polarization component and the vertical polarization component of the incident singular point light and the reference light;
- Light intensity detection module for detecting interference light intensity distribution.
- the arbitrary singular point beam order detection device wherein the singular point beam generating module includes:
- a polarizer arranged behind the light source for adjusting the polarization of the Gaussian beam
- Singular point light generating device used to change the polarization direction and phase
- a first polarizer arranged behind the singular point light generating device and used for changing the polarization direction of the singular point light.
- the reference beam generating module includes:
- a beam splitting device arranged behind the polarizer for splitting the Gaussian beam after being adjusted by the polarizer into two beams;
- a first turning device arranged under the beam splitting device and used for changing the direction of the light path;
- a second polarizer arranged behind the first turning device for changing the polarization direction
- a second turning device arranged behind the second polarizer for changing the direction of the light path
- a beam combining device arranged behind the first polarizer and above the second turning device and used for combining the singular point light with the adjusted polarization state and the reference light.
- the arbitrary singular point beam order detection device wherein the beam splitting device is used to divide the Gaussian beam after being adjusted by the polarizer into two beams, one beam is used to generate the singular point light, and the other is used to Generating the reference light;
- the singular point light generating device is arranged behind the beam splitting device.
- the polarization separation interference module includes a blazed grating for reflecting back the horizontal and vertical polarization components of the incident beam at different reflection angles, so that the different polarization components are spatially separated;
- the blazed grating is arranged behind the beam combining device.
- the arbitrary singular point beam order detection device wherein the light intensity detection module includes a light intensity detection device for recording interference fringe information;
- the light intensity detection device is arranged under the blazed grating.
- the arbitrary singular point beam order detection device wherein the light source is a laser with a wavelength of 1550 nm;
- the polarizer is a Glan prism
- the beam splitting device is a polarization beam splitter
- the singularity light generating device is a metasurface
- the first polarizer and the second polarizer are a quarter glass plate and a half wave plate, respectively;
- the first steering device and the second steering device are both flat mirrors
- the beam combining device is a polarization beam combiner
- the blazed grating is a reflective phase type spatial light modulator
- the light intensity detection device is a CCD camera.
- the arbitrary singular point beam order detection device wherein the singular point light and the reference light are incident on the blazed grating coaxially.
- Step A two sub-beams with strong coherence are generated through the light source, the polarizer and the beam splitting device, which are the first sub-beam and the second sub-beam respectively;
- Step B After the first sub-beam passes through the singular point light generating device and the first polarizer, a 45° linearly polarized singular point light is generated;
- Step C after the second sub-beam passes through the first turning device, the second polarizer and the second turning device, a 45° linearly polarized reference light is generated;
- Step D the 45° linearly polarized singular point light and the 45° linearly polarized reference light are projected onto the polarization-sensitive blazed grating after passing through the beam combining device to realize the separation and interference of the horizontal and vertical polarization components;
- Step E Read the interference pattern by the light intensity detection device, and obtain the topological charge and polarization order information of the singular point beam carried in the interference pattern through analysis.
- the arbitrary singular point beam order detection method wherein after passing through the polarization-sensitive blazed grating, the vertical polarization component of the beam is reflected at the same reflection angle as the incident angle, and the horizontal polarization component of the beam is diffracted at a reflection angle greater than the incident angle .
- the present invention provides an arbitrary singular point beam order detection device and method.
- the device includes: a singular point for generating singular point light with an arbitrary topological charge and polarization order of orthogonal linear polarization components A beam generating module; a reference beam generating module for generating reference light linearly polarized along a preset angle; for separating and interfering with the horizontal polarization component and vertical polarization component of the incident singular point light and the reference light
- the polarization separation interference module used to detect the interference light intensity distribution.
- the present invention separates and interferes with the horizontal polarization component and vertical polarization component of the beam of any polarization state, and realizes the accurate detection of the topological charge and polarization order of any singular point beam by analyzing the interference fringes, and has high detection efficiency, The advantages of a wide range of applications.
- Fig. 1 is a schematic structural diagram of a preferred embodiment of a detection device for arbitrary singular point beam orders of the present invention.
- each module that is, the entire optical path structure of the preferred embodiment of an arbitrary singular point beam order detection device of the present invention.
- Fig. 3 is a flowchart of a preferred embodiment of the method for detecting arbitrary singularity beam orders according to the present invention.
- Fig. 4 is a schematic diagram of a device for generating vortex light in the method for detecting any singular point beam order of the present invention.
- Fig. 5 is a schematic diagram of a device for generating cylindrical vector vortex light in the method for detecting any singular point beam order of the present invention.
- FIG. 1 is a schematic structural diagram of a preferred embodiment of an arbitrary singular point beam order detection device of the present invention.
- an arbitrary singular point beam order detection device provided by an embodiment of the present invention includes:
- a singular point beam generating module for generating singular point light with an arbitrary topological charge and polarization order of orthogonal linear polarization components; a reference beam generating module for generating reference light linearly polarized along a preset angle; A polarization separation interference module that separates and interferes with the horizontal polarization component and vertical polarization component of the incident singular point light and the reference light; and a light intensity detection module for detecting the interference light intensity distribution.
- the singular point beam generating module includes: a light source 1 for generating a Gaussian beam; a polarizer 2 arranged behind the light source 1 for adjusting the polarization of the Gaussian beam; A singular point light generating device 4 for changing the polarization direction and phase; a first polarizer 5 arranged behind the singular point light generating device 4 and used for changing the polarization direction of the singular point light.
- the reference beam generating module includes: a beam splitting device 3 arranged behind the polarizer 2 for splitting the Gaussian beam after being adjusted by the polarizer 2 into two beams; arranged below the beam splitting device 3 , The first turning device 8 for changing the direction of the light path; the second polarizer 9 arranged behind the first turning device 8 for changing the polarization direction; and the second polarizer 9 arranged behind the second polarizer 9 for changing A second turning device 10 in the direction of the light path; arranged behind the first polarizer 5 and above the second turning device 10, for combining the polarization state of the singular point light and the reference light Device 6.
- the beam splitting device 3 is used to divide the Gaussian beam after being adjusted by the polarizer into two beams, one beam is used to generate the singular point light, and the singular point light beam refers to a phase singularity or a polarization singularity
- the beam includes phase singularity light and polarization singularity light.
- the light intensity of the beam center is zero because the phase or polarization cannot be determined.
- the macroscopic appearance is a dark spot in the center of the beam, and the cross section of the beam is a hollow donut shape; one beam is used In order to generate the reference light, it is used to interfere with the singular point beam to form an auxiliary beam of specific interference fringes.
- Commonly used reference beams include Gaussian plane light and Gaussian spherical light.
- Phase singular point beams with known topological charges can also be used as the reference light
- the Gaussian plane light with linear polarization along 45° is preferred here (it should be known that the unprocessed laser beam can be regarded as the Gaussian plane light without a specific polarization state); the two interfering beams must meet the coherence Conditions (in short, the laser is a short pulse generated by a molecular energy level transition, and only the light of the same pulse can be coherent), so it can only be split from the same laser; the singular point light generating device 4 is set at all The beam splitting device 3 is behind.
- the polarization separation interference module includes a blazed grating 7 that is used to reflect the horizontal and vertical polarization components of the incident beam at different reflection angles to spatially separate the different polarization components.
- the blazed grating 7 has polarization-sensitive characteristics;
- the blazed grating 7 is arranged behind the beam combining device 6.
- the light intensity detection module includes a light intensity detection device 11 for recording interference fringe information; the light intensity detection device 11 is arranged under the blazed grating 7.
- the light source 1 is a laser with a wavelength of 1550 nm, which is used to generate a continuous Gaussian laser beam.
- the polarizer 2 is a Glan prism for adjusting the polarization state of the Gaussian beam to horizontal polarization.
- the beam splitting device 3 is a polarization beam splitter for splitting the optical path.
- the singular point light generating device 4 is a metasurface for generating cylindrical vector light (CVB) of any topological charge and polarization order.
- the metasurface is an array composed of a scattering structure of subwavelength anisotropic materials, which can be The ultra-thin artificial microstructure that regulates the polarization, phase, amplitude and even the propagation direction of the beam; it is not limited to the metasurface, but can also be replaced by a phase-type spatial light modulator, a spiral phase plate, etc.
- the first polarizer 5 and the second polarizer 9 are a quarter glass plate and a half wave plate, respectively, wherein the first polarizer 5 is a quarter glass with a fast axis rotated to 45°
- the second polarizer 9 is a half-wave plate whose fast axis rotates to 45° and is used to adjust the polarization state of the reference beam to 45° linear polarization.
- the first steering device 8 and the second steering device 10 are both flat mirrors for adjusting the transmission direction of the reference light.
- the beam combining device 6 is a polarization beam combiner for combining light paths.
- the blazed grating 7 is a reflective phase type spatial light modulator and the blazed grating information is loaded by a computer to realize the separation and interference of the horizontal polarization and vertical polarization components of the incident light; the blazed grating is not limited to the reflective phase type spatial light.
- the modulator loading can also be replaced by a specially designed actual grating; the singular point light and the reference light are incident on the blazed grating coaxially.
- the light intensity detection device 11 is a 1550nm CCD camera, which is used to detect and record interference fringes.
- the present invention also provides an arbitrary singular point beam order detection method, please refer to FIG. 3, which is the arbitrary singular point beam order detection method of the present invention A flowchart of a preferred embodiment of the method.
- Step S100 through the light source 1, the polarizer 2 and the beam splitting device 3, strong coherence is generated (laser is a beam with good monochromaticity, and the two sub-beams generated by the same laser beam splitting belong to the same wave in time. Two sub-beams with a constant phase difference, random phase differences between different wave trains, and good coherence) are the first sub-beam and the second sub-beam respectively;
- Step S200 after the first sub-beam passes through the singular point light generating device 4 and the first polarizer 5, a 45° linearly polarized singular point light is generated;
- Step S300 after the second sub-beam passes through the first turning device 8, the second polarizer 9 and the second turning device 10, a 45° linearly polarized reference light is generated;
- Step S400 the 45° linearly polarized singular point light and the 45° linearly polarized reference light are projected onto the polarization-sensitive blazed grating 7 after passing through the beam combining device 6, so as to realize the separation and interference of horizontal and vertical polarization components;
- step S500 step E, the interference pattern is read by the light intensity detection device 11, and the topological charge and polarization order information of the singular point beam carried in the interference pattern is obtained through analysis.
- the vertical polarization component of the light beam is reflected at the same reflection angle as the incident angle, and the horizontal polarization component of the light beam is diffracted at a reflection angle greater than the incident angle.
- the light source 1 generates a Gaussian laser beam, which is converted into horizontal linearly polarized light after passing through the polarizer 2, and is evenly divided into two sub-beams after passing through the beam splitting device 3, wherein the transmission direction remains unchanged
- a circularly polarized cylindrical vector light with controllable topological charge and polarization order is generated.
- the singular point beam generating device 4 described in this embodiment is preferably a metasurface, which is manufactured by etching a space-varying nanograting on a fused silica substrate with a femtosecond laser, and thus has space-varying birefringence.
- the required polarization distribution can be adjusted by adjusting the groove.
- the local direction and geometric parameters are realized.
- l is the topological charge
- ⁇ is the azimuth angle
- Is the initial phase
- m is the polarization order
- i is the unit length in the imaginary field, which is equivalent to 1 in the real field
- the square of i is equal to -1.
- the second sub-beam generated by the beam splitter 3 is deflected by the first turning device 8, and then enters the second polarizer 9 and is adjusted to be linearly polarized light along 45°.
- the second steering device 10 and the beam combining device 6 realize coaxial transmission with the CVB.
- the phase SLM can only modulate the horizontal polarization component of the incident light and is a polarization sensitive element. Therefore, by loading the blazed grating information on the SLM, the horizontally polarized light can be diffracted and the vertically polarized light beam can be reflected. By cleverly designing the period of the blazed grating, the reflected vertically polarized light and the diffracted horizontally polarized light can be spatially separated. Blazed grating can be expressed as follows:
- n takes any positive integer.
- the linearly polarized Gaussian reference light and the horizontal and vertical polarization components of the linearly polarized CVB are separated from each other and interfere.
- the incident angle is controlled below 6°
- the reflection angle of the vertical polarization component is equal to the incident angle
- the blaze angle of the blazed grating is about 20°.
- the light intensity detection device 11 is used to photograph the second polarizer 9 for reception, and the topological charge of the vortex light is used to determine the topological charge.
- the topological charge l and the polarization order m of any singular point beam can be calculated by the following formula:
- the device and method for detecting any singular point beam order described in this embodiment successfully realize the separation of the horizontal polarization component and the vertical polarization component of the coaxial singular point light and the reference beam through the polarization-sensitive blazed grating, and use the same polarization component
- the interference fringe distribution realizes the detection of CVB topological charge and polarization order.
- the interference light intensity distribution changes with the selection of the reference beam.
- the interference pattern is a parallel fringe branched from the center, and the number of branches is related to the topological charge to be measured.
- the bifurcation direction is related to the positive and negative of the topological charge to be measured;
- the interference pattern is a spiral stripe with a central bifurcation, the number of spiral arms is related to the topological charge to be measured, and the spiral direction is related to the topological charge to be measured.
- Positive and negative are related; when the reference light is a phase singularity light with a known topological charge, the interference pattern is petal-like.
- the specific number and shape of the petals are related to the topological charge of the reference light and the light to be measured, and specific analysis is required.
- the present invention can not only realize the order detection of the CVB beam, but when the linearly polarized Gaussian beam passes through the singular point beam generating device 4, any singular point beam including VB, CVB, CVVB and other beams can be generated.
- Figure 4 is a diagram of the VB generating device.
- the linearly polarized Gaussian beam is converted into a left-handed circular Gaussian beam after passing through a quarter glass with an angle of 45° between the fast axis and the optical axis. After passing through the metasurface, it will produce Right-handed circular offset VB with positive topological charges.
- FIG. 5 is a diagram of the CVVB generating device.
- CVVB can be generated by cascading two metasurfaces. First, the linearly polarized Gaussian beam passes through a quarter glass with a 45° angle between the fast axis and the optical axis, and then is converted into a left-handed circularly polarized Gaussian beam. After passing through the metasurface, the circularly polarized VB is obtained. The quarter behind the metasurface A glass slide converts it into linearly polarized VB, which is further modulated by another metasurface, and finally CVVB can be produced.
- the present invention can detect the topological charge and polarization order of any singular point beam by using the device for detecting any singular point beam order.
- the detection method is to effectively measure the topological charge and polarization order of any singular point beam.
- the polarization order provides a new way.
- the present invention provides an arbitrary singular point beam order detection device and method.
- the device includes: a device for generating singular point light with orthogonal linear polarization components with arbitrary topological charges and polarization orders.
- a singular point beam generating module ; a reference beam generating module for generating reference light linearly polarized along a preset angle; used to separate and separate the incident singular point light and the horizontal polarization component and vertical polarization component of the reference light Polarization separation interference module for mutual interference; light intensity detection module for detecting interference light intensity distribution.
- the present invention separates and interferes with the horizontal polarization component and vertical polarization component of the beam of any polarization state, and realizes the accurate detection of the topological charge and polarization order of any singular point beam by analyzing the interference fringes, and has high detection efficiency, The advantages of a wide range of applications.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Polarising Elements (AREA)
Abstract
一种任意奇点光束阶数检测装置,包括:用于生成具有正交线偏振分量的任意拓扑荷数和偏振阶数的奇点光的奇点光束产生模块;用于生成沿预设角度线性偏振的参考光的参考光束产生模块;用于使入射的奇点光和参考光的水平偏振分量和垂直偏振分量进行分离和相互干涉的偏振分离干涉模块;用于对干涉光强分布进行探测的光强检测模块。通过将任意偏振态的光束进行水平偏振分量和垂直偏振分量进行分离和相互干涉,通过分析干涉条纹,实现对任意奇点光束拓扑荷数与偏振阶数的准确检测,具有检测效率高、适用范围广的优点。还公开了一种任意奇点光束阶数检测方法。
Description
本发明涉及信息光学技术领域,尤其涉及的是一种任意奇点光束阶数检测装置及方法,适用于检测任意奇点光束的拓扑荷数和偏振阶数。
结构光束由于具有空间变化的场分布而吸引了广泛关注。携带轨道角动量(Orbital Angular Momentum,OAM)的涡旋光(VortexBeam,VB)和柱矢量光(Cylindrical Vector Beam,CVB)是被广泛研究的两种典型奇点光束,分别具有相位奇点和偏振奇点。他们都具有环形的强度分布,以及由于中心奇点而产生的暗点。由于其独特的光学特性,涡旋光和柱矢量光已经广泛应用于从光通信、光学操纵、光学成像到量子信息处理的各种应用中。
通常,同时具有相位奇异性奇点和偏振奇异奇点性的光束同时也能为光束操纵提供更多自由度。这些光束也称为圆柱矢量涡旋光(Vector Vortex Beam,CVVB),在光学操纵领域引起了广泛关注。研究人员提出了许多奇点光束的产生方法。但是,在产生高质量的奇点光束之外,有效识别其拓扑荷数和偏振阶数也至关重要。由于奇点光束的空间场分布互不相同,关于其拓扑荷数和偏振阶数的检测方法也应有所不同。通常,干涉法用于确定VB的拓扑荷数,检偏器则广泛用于检测CVB和CVVB的偏振阶数。然而,目前仍缺乏一套通用且行之有效的方法用以检测任意奇点光束的拓扑荷和偏振阶数。
因此,针对上述缺陷,现有技术还有待于改进和发展。
发明内容
本发明要解决的技术问题在于,针对现有技术的上述缺陷,提供一种任意奇点光束阶数检测的装置及方法,利用偏振敏感的闪耀光栅对入射奇点光和参考光(入射的45°线偏振奇点光和45°线偏振参考光)进行水平与垂直偏振分量的分离和相互干涉,通过 分析闪耀光栅后的孔径后所产生干涉条纹,实现涡旋光束拓扑荷数检测,整个系统光路结构相对简单合理、检测现象直观易读,现实中易于操作,耗时短,不仅能准确测量拓扑荷数值,还能测量偏振阶数。
本发明解决技术问题所采用的技术方案如下:
一种任意奇点光束阶数检测装置,其中,所述任意奇点光束阶数检测装置包括:
用于生成具有正交线偏振分量的任意拓扑荷数和偏振阶数的奇点光的奇点光束产生模块;
用于生成沿预设角度线性偏振的参考光的参考光束产生模块;
用于使入射的所述奇点光和所述参考光的水平偏振分量和垂直偏振分量进行分离和相互干涉的偏振分离干涉模块;
用于对干涉光强分布进行探测的光强检测模块。
所述任意奇点光束阶数检测装置,其中,所述奇点光束产生模块包括:
用于产生高斯光束的光源;
设置在所述光源后方,用于调节所述高斯光束的偏振的起偏器;
用于改变偏振方向和相位的奇点光发生装置;
设置在所述奇点光发生装置后方,用于改变所述奇点光的偏振方向的第一偏振片。
所述任意奇点光束阶数检测装置,其中,所述参考光束产生模块包括:
设置在所述起偏器后方,用于将经过所述起偏器调整后高斯光束分成两束的分束装置;
设置在所述分束装置下方,用于改变光路方向的第一转向装置;
设置在所述第一转向装置后方,用于改变偏振方向的第二偏振片;
设置在所述第二偏振片后方,用于改变光路方向的第二转向装置;
设置在所述第一偏振片后方并设置在所述第二转向装置上方,用于将偏振态调整后的奇点光和参考光进行合并的合束装置。
所述任意奇点光束阶数检测装置,其中,所述分束装置用于将经过所述起偏器调整后高斯光束分成两束,一束用于产生所述奇点光,一束用于产生所述参考光;
所述奇点光发生装置设置在所述分束装置后方。
所述任意奇点光束阶数检测装置,其中,所述偏振分离干涉模块包括用于将入射光束的水平和垂直偏振分量以不同的反射角反射回去,使不同偏振分量空间分离的闪耀光栅;
所述闪耀光栅设置在合束装置后方。
所述任意奇点光束阶数检测装置,其中,所述光强检测模块包括用于记录干涉条纹信息的光强探测装置;
所述光强探测装置设置在所述闪耀光栅下方。
所述任意奇点光束阶数检测装置,其中,所述光源为波长为1550nm的激光器;
所述起偏器为格兰棱镜;
所述分束装置为偏振分束器;
所述奇点光发生装置为超表面;
所述第一偏振片和所述第二偏振片分别为四分之一玻片和半波片;
所述第一转向装置和所述第二转向装置均为平面镜;
所述合束装置为偏振合束器;
所述闪耀光栅为反射式相位型空间光调制器;
所述光强探测装置为CCD相机。
所述任意奇点光束阶数检测装置,其中,所述奇点光与所述参考光共轴入射至所述闪耀光栅上。
一种基于所述的任意奇点光束阶数检测装置的任意奇点光束阶数检测方法,其中,所述任意奇点光束阶数检测方法包括以下步骤:
步骤A,经过光源、起偏器和分束装置产生强相干性的两束子光束,分别为第一子光束和第二子光束;
步骤B,所述第一子光束经过奇点光发生装置和第一偏振片后产生45°线偏振的奇点光;
步骤C,所述第二子光束经过第一转向装置、第二偏振片和第二转向装置后产生45° 线偏振的参考光;
步骤D,所述45°线偏振的奇点光和所述45°线偏振的参考光经过合束装置后投射到偏振敏感的闪耀光栅上,实现水平和垂直偏振分量的分离和干涉;
步骤E,通过光强探测装置读取干涉图样,并通过分析得到干涉图样中携带的奇点光束拓扑荷数和偏振阶数信息。
所述的任意奇点光束阶数检测方法,其中,通过偏振敏感的所述闪耀光栅后,光束垂直偏振分量以与入射角相同的反射角反射,光束水平偏振分量以大于入射角的反射角衍射。
有益效果:本发明提供的一种任意奇点光束阶数检测装置及方法,所述装置包括:用于生成具有正交线偏振分量的任意拓扑荷数和偏振阶数的奇点光的奇点光束产生模块;用于生成沿预设角度线性偏振的参考光的参考光束产生模块;用于使入射的所述奇点光和所述参考光的水平偏振分量和垂直偏振分量进行分离和相互干涉的偏振分离干涉模块;用于对干涉光强分布进行探测的光强检测模块。本发明通过将任意偏振态的光束进行水平偏振分量和垂直偏振分量进行分离和相互干涉,通过分析干涉条纹,实现对任意奇点光束拓扑荷数与偏振阶数的准确检测,具有检测效率高、适用范围广的优点。
图1是本发明任意奇点光束阶数检测装置的较佳实施例的结构示意图。
图2是本发明任意奇点光束阶数检测装置的较佳实施例各个模块具体组成结构(即整个光路结构)的原理图。
图3是本发明任意奇点光束阶数检测方法的的较佳实施例的流程图。
图4是本发明任意奇点光束阶数检测方法中产生涡旋光的装置示意图。
图5图是本发明任意奇点光束阶数检测方法中产生圆柱矢量涡旋光的装置示意图。
为使本发明的目的、技术方案及优点更加清楚、明确,以下参照附图并举实施例对 本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
请参阅图1,图1是本发明任意奇点光束阶数检测装置的较佳实施例的结构示意图。
如图1所示,本发明实施例提供的一种任意奇点光束阶数检测装置,所述任意奇点光束阶数检测装置包括:
用于生成具有正交线偏振分量的任意拓扑荷数和偏振阶数的奇点光的奇点光束产生模块;用于生成沿预设角度线性偏振的参考光的参考光束产生模块;用于使入射的所述奇点光和所述参考光的水平偏振分量和垂直偏振分量进行分离和相互干涉的偏振分离干涉模块;用于对干涉光强分布进行探测的光强检测模块。
具体地,如图2所示,所述奇点光束产生模块包括:用于产生高斯光束的光源1;设置在所述光源1后方,用于调节所述高斯光束的偏振的起偏器2;用于改变偏振方向和相位的奇点光发生装置4;设置在所述奇点光发生装置4后方,用于改变所述奇点光的偏振方向的第一偏振片5。
所述参考光束产生模块包括:设置在所述起偏器2后方,用于将经过所述起偏器2调整后高斯光束分成两束的分束装置3;设置在所述分束装置3下方,用于改变光路方向的第一转向装置8;设置在所述第一转向装置8后方,用于改变偏振方向的第二偏振片9;设置在所述第二偏振片9后方,用于改变光路方向的第二转向装置10;设置在所述第一偏振片5后方并设置在所述第二转向装置10上方,用于将偏振态调整后的奇点光和参考光进行合并的合束装置6。
其中,所述分束装置3用于将经过所述起偏器调整后高斯光束分成两束,一束用于产生所述奇点光,奇点光束是指具有相位奇点或偏振奇点的光束,包括相位奇点光和偏振奇点光,光束中心由于相位或偏振无法确定从而光强为零,宏观表现为光束中心出现暗斑,光束横截面为中空的甜甜圈形状;一束用于产生所述参考光,用于与奇点光束相干涉、形成特定干涉条纹的辅助光束,常用的参考光束有高斯平面光和高斯球面光,拓扑荷数已知的相位奇点光束也可以用作参考光,在这里优选沿45°线偏振的高斯平面光(需要知道的是,未经处理的激光器光束可认为是没有特定偏振态的高斯平面光);产 生干涉的两束光必须满足相干条件(简单地说就是激光是分子能级跃迁产生的短脉冲,而只有同一脉冲的光才能相干),所以只能从同一束激光中分束出来;所述奇点光发生装置4设置在所述分束装置3后方。
所述偏振分离干涉模块包括用于将入射光束的水平和垂直偏振分量以不同的反射角反射回去,使不同偏振分量空间分离的闪耀光栅7,所述闪耀光栅7具有偏振敏感的特性;所述闪耀光栅7设置在合束装置6后方。
所述光强检测模块包括用于记录干涉条纹信息的光强探测装置11;所述光强探测装置11设置在所述闪耀光栅7下方。
进一步地,所述光源1为波长为1550nm的激光器,用于产生连续高斯激光光束。
所述起偏器2为格兰棱镜,用于调整高斯光束偏振态至水平偏振。
所述分束装置3为偏振分束器,用于光路的拆分。
所述奇点光发生装置4为超表面,用于产生任意拓扑荷数和偏振阶数的柱矢量光(CVB),超表面是用亚波长各向异性材料的散射结构构成的阵列,可以对光束的偏振、相位、振幅乃至传播方向进行调控的超薄人工微结构;不局限于超表面,还可用相位型空间光调制器,螺旋相位板等替代。
所述第一偏振片5和所述第二偏振片9分别为四分之一玻片和半波片,其中,所述第一偏振片5为快轴旋转至45°的四分之一玻片,用于调整柱矢量光的偏振态至45°线偏振,所述第二偏振片9为快轴旋转至45°的半波片,用于调整参考光束的偏振态至45°线偏振。
所述第一转向装置8和所述第二转向装置10均为平面镜,用于调整参考光传输方向。
所述合束装置6为偏振合束器,用于光路的合并。
所述闪耀光栅7为反射式相位型空间光调制器并由电脑加载闪耀光栅信息,用于实现入射光水平偏振和垂直偏振分量的分离和干涉;闪耀光栅并不仅局限于反射式相位型空间光调制器加载,还可用特殊设计的实际光栅替代;所述奇点光与所述参考光共轴入射至所述闪耀光栅上。
所述光强探测装置11为1550nm的CCD相机,用于探测和记录干涉条纹。
进一步地,基于上述实施例提供的任意奇点光束阶数检测装置,本发明还提供一种任意奇点光束阶数检测方法,请参阅图3,图3是本发明任意奇点光束阶数检测方法的的较佳实施例的流程图。
依照本发明中的任意奇点光束阶数检测装置的光路结构,具体实现过程如下:
步骤S100,经过光源1、起偏器2和分束装置3产生强相干性(激光是具有良好单色性的一种光束,由同一束激光分束产生的两束子光束在时间上属于同一波列,具有恒定的相位差,不同波列之间相位差随机,相干性很好)的两束子光束,分别为第一子光束和第二子光束;
步骤S200,所述第一子光束经过奇点光发生装置4和第一偏振片5后产生45°线偏振的奇点光;
步骤S300,所述第二子光束经过第一转向装置8、第二偏振片9和第二转向装置10后产生45°线偏振的参考光;
步骤S400,所述45°线偏振的奇点光和所述45°线偏振的参考光经过合束装置6后投射到偏振敏感的闪耀光栅7上,实现水平和垂直偏振分量的分离和干涉;
步骤S500,步骤E,通过光强探测装置11读取干涉图样,并通过分析得到干涉图样中携带的奇点光束拓扑荷数和偏振阶数信息。
其中,通过偏振敏感的所述闪耀光栅7后,光束垂直偏振分量以与入射角相同的反射角反射,光束水平偏振分量以大于入射角的反射角衍射。
具体地,本实施例由所述光源1产生高斯激光光束,经过所述起偏器2后转换成水平线性偏振光,经所述分束装置3后均匀分成两束子光束,其中传输方向不变的第一子光束通过所述奇点光束产生装置4作用后,生成拓扑荷数和偏振阶数可控的圆偏振柱矢量光。
本实施例所述奇点光束产生装置4优选为超表面,通过用飞秒激光在熔融石英基板上蚀刻空变纳米光栅制造,因而具有空变双折射,所需的偏振分布可以通过调节凹槽的局部方向和几何参数来实现。
此时出射的圆偏振柱矢量光可简单数学描述如下:
另一方面,经所述分束器3产生的第二子光束经过所述第一转向装置8偏折后,入射所述第二偏振片9,被调整为沿45°的线偏振光,再经过第二转向装置10与所述合束装置6,实现与CVB共轴传输。
然后,共轴传输的CVB与参考光束一同入射偏振敏感的所述闪耀光栅7。相位型SLM只能调制入射光的水平偏振分量,是偏振敏感元件。因此,通过在SLM上加载闪耀光栅信息可以对水平偏振光进行衍射,以及反射垂直偏振光束。通过巧妙设计闪耀光栅的周期,可以使反射的垂直偏振光和衍射的水平偏振光空间分离。闪耀光栅可以表示如下:
2d sinαcos(α-β)=nλ,n=1,2,3…, (3)
其中d是光栅常数,α是闪耀角,β是入射角,λ是入射光的波长,n取任意正整数。
在经过偏振敏感的所述闪耀光栅7的调制后,线偏振的高斯参考光以及线偏振的CVB的水平和垂直偏振分量相互分离并发生干涉。为了充分利用SLM性能,入射角控制在6°以下,垂直偏振分量的反射角等于入射角,所述闪耀光栅的闪耀角约为20°。利用所述光强探测装置11拍摄所述第二偏振片9中进行接收,利用涡旋光拓扑荷数的衍射图案实现拓扑荷数的判别。在得到水平和垂直偏振分量的拓扑荷数(分别为h、v)后,任意奇点光束的拓扑荷数l、偏振阶数m可以通过下式计算得到:
本实施例所述的任意奇点光束阶数检测的装置及方法,成功实现同轴奇点光和参考光束经过偏振敏感的闪耀光栅的水平偏振分量和垂直偏振分量的分离,并利用相同偏振分量的干涉条纹分布实现对CVB拓扑荷数和偏振阶数的检测。
最终实现对干涉光强分布进行探测,干涉光强分布随参考光束的选择而变化,参考光为平面光时,干涉图样为中心分叉的平行条纹,分叉数与待测拓扑荷数有关,分叉方向与待测拓扑荷的正负有关;参考光为球面光时,干涉图样为中心分叉的螺旋条纹,螺旋臂的个数与待测拓扑荷数有关,螺旋方向与待测拓扑荷正负有关;参考光为已知拓扑荷数的相位奇点光时,干涉图样为花瓣状,具体花瓣数量和形状与参考光和待测光的拓扑荷数均相关,需要具体分析。
值得注意的是,本发明不仅可以实现CVB光束的阶数检测,线偏振高斯光束经过所述奇点光束产生装置4时,可以产生包括VB、CVB、CVVB等光束在内的任意奇点光束。
图4为VB的产生装置图示,线偏振的高斯光束经过快轴与光轴呈45°夹角的四分之一玻片后转换为左旋圆偏高斯光束,继续通过超表面后,会产生带有正拓扑荷数的右旋圆偏VB。
图5为CVVB的产生装置图示,通过级联两个超表面可以产生CVVB。首先线偏振的高斯光束经过快轴与光轴呈45°夹角的四分之一玻片后转换为左旋圆偏高斯光束,通过超表面后获得圆偏振的VB,超表面后的四分之一玻片将其转换成线偏振的VB,被另一个超表面进一步调制后,最终可产生CVVB。
本发明利用所述用于任意奇点光束阶数检测的装置均能够对以上任意奇点光束的拓扑荷数和偏振阶数进行检测,该检测方法为有效测量任意奇点光束的拓扑荷数和偏振阶数提供了新途径。
综上所述,本发明提出了一种任意奇点光束阶数检测装置及方法,所述装置包括:用于生成具有正交线偏振分量的任意拓扑荷数和偏振阶数的奇点光的奇点光束产生模 块;用于生成沿预设角度线性偏振的参考光的参考光束产生模块;用于使入射的所述奇点光和所述参考光的水平偏振分量和垂直偏振分量进行分离和相互干涉的偏振分离干涉模块;用于对干涉光强分布进行探测的光强检测模块。本发明通过将任意偏振态的光束进行水平偏振分量和垂直偏振分量进行分离和相互干涉,通过分析干涉条纹,实现对任意奇点光束拓扑荷数与偏振阶数的准确检测,具有检测效率高、适用范围广的优点。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。
Claims (10)
- 一种任意奇点光束阶数检测装置,其特征在于,所述任意奇点光束阶数检测装置包括:用于生成具有正交线偏振分量的任意拓扑荷数和偏振阶数的奇点光的奇点光束产生模块;用于生成沿预设角度线性偏振的参考光的参考光束产生模块;用于使入射的所述奇点光和所述参考光的水平偏振分量和垂直偏振分量进行分离和相互干涉的偏振分离干涉模块;用于对干涉光强分布进行探测的光强检测模块。
- 根据权利要求1所述的任意奇点光束阶数检测装置,其特征在于,所述奇点光束产生模块包括:用于产生高斯光束的光源;设置在所述光源后方,用于调节所述高斯光束的偏振的起偏器;用于改变偏振方向和相位的奇点光发生装置;设置在所述奇点光发生装置后方,用于改变所述奇点光的偏振方向的第一偏振片。
- 根据权利要求2所述的任意奇点光束阶数检测装置,其特征在于,所述参考光束产生模块包括:设置在所述起偏器后方,用于将经过所述起偏器调整后高斯光束分成两束的分束装置;设置在所述分束装置下方,用于改变光路方向的第一转向装置;设置在所述第一转向装置后方,用于改变偏振方向的第二偏振片;设置在所述第二偏振片后方,用于改变光路方向的第二转向装置;设置在所述第一偏振片后方并设置在所述第二转向装置上方,用于将偏振态调整后的奇点光和参考光进行合并的合束装置。
- 根据权利要求3所述的任意奇点光束阶数检测装置,其特征在于,所述分束装置用于将经过所述起偏器调整后高斯光束分成两束,一束用于产生所述奇点光,一束用于产生所述参考光;所述奇点光发生装置设置在所述分束装置后方。
- 根据权利要求3所述的任意奇点光束阶数检测装置,其特征在于,所述偏振分离干涉模块包括用于将入射光束的水平和垂直偏振分量以不同的反射角反射回去,使不同偏振分量空间分离的闪耀光栅;所述闪耀光栅设置在合束装置后方。
- 根据权利要求5所述的任意奇点光束阶数检测装置,其特征在于,所述光强检测模块包括用于记录干涉条纹信息的光强探测装置;所述光强探测装置设置在所述闪耀光栅下方。
- 根据权利要求6所述的任意奇点光束阶数检测装置,其特征在于,所述光源为波长为1550nm的激光器;所述起偏器为格兰棱镜;所述分束装置为偏振分束器;所述奇点光发生装置为超表面;所述第一偏振片和所述第二偏振片分别为四分之一玻片和半波片;所述第一转向装置和所述第二转向装置均为平面镜;所述合束装置为偏振合束器;所述闪耀光栅为反射式相位型空间光调制器;所述光强探测装置为CCD相机。
- 根据权利要求6所述的任意奇点光束阶数检测装置,其特征在于,所述奇点光与所述参考光共轴入射至所述闪耀光栅上。
- 一种基于权利要求1-8任一项所述任意奇点光束阶数检测装置的任意奇点光束阶数检测方法,其特征在于,所述任意奇点光束阶数检测方法包括以下步骤:步骤A,经过光源、起偏器和分束装置产生强相干性的两束子光束,分别为第一子光束和第二子光束;步骤B,所述第一子光束经过奇点光发生装置和第一偏振片后产生45°线偏振的奇点光;步骤C,所述第二子光束经过第一转向装置、第二偏振片和第二转向装置后产生45°线偏振的参考光;步骤D,所述45°线偏振的奇点光和所述45°线偏振的参考光经过合束装置后投射到偏振敏感的闪耀光栅上,实现水平和垂直偏振分量的分离和干涉;步骤E,通过光强探测装置读取干涉图样,并通过分析得到干涉图样中携带的奇点光束拓扑荷数和偏振阶数信息。
- 根据权利要求9所述的任意奇点光束阶数检测方法,其特征在于,通过偏振敏感的所述闪耀光栅后,光束垂直偏振分量以与入射角相同的反射角反射,光束水平偏振分量以大于入射角的反射角衍射。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911114063.9 | 2019-11-14 | ||
CN201911114063.9A CN110836726A (zh) | 2019-11-14 | 2019-11-14 | 一种任意奇点光束阶数检测装置及方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021093259A1 true WO2021093259A1 (zh) | 2021-05-20 |
Family
ID=69574984
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/083790 WO2021093259A1 (zh) | 2019-11-14 | 2020-04-08 | 一种任意奇点光束阶数检测装置及方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110836726A (zh) |
WO (1) | WO2021093259A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114785422A (zh) * | 2022-04-15 | 2022-07-22 | 西安理工大学 | 一种径向偏振涡旋光束干涉在水下传输的系统 |
CN115102626A (zh) * | 2022-07-15 | 2022-09-23 | 长沙军民先进技术研究有限公司 | 一种实现空间多偏振编码的装置及方法 |
CN115276817A (zh) * | 2022-07-20 | 2022-11-01 | 陕西师范大学 | 一种基于矢量涡旋光双维度多模式的通信方法及系统 |
CN117274287A (zh) * | 2023-08-31 | 2023-12-22 | 哈尔滨理工大学 | 一种基于无干涉编码孔径相关全息术的边缘检测方法 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110836726A (zh) * | 2019-11-14 | 2020-02-25 | 深圳大学 | 一种任意奇点光束阶数检测装置及方法 |
CN112558203B (zh) * | 2020-12-25 | 2022-07-08 | 深圳大学 | 一种径向和角向柱矢量光束的独立位相控制装置及方法 |
CN112924032B (zh) * | 2021-02-01 | 2023-05-16 | 西安中科微星光电科技有限公司 | 用于透射式空间光调制器相位和偏振调制特性的检测方法 |
CN113271173B (zh) * | 2021-04-20 | 2023-05-05 | 深圳大学 | 一种解复用方法及系统 |
CN113465756B (zh) * | 2021-06-29 | 2022-07-15 | 中国科学技术大学 | 一种新型的oam光束检测器 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103940520A (zh) * | 2014-04-10 | 2014-07-23 | 昆明理工大学 | 一种基于改进型马赫曾德干涉仪测定涡旋光束拓扑电荷数的装置及方法 |
CN103954367A (zh) * | 2014-04-18 | 2014-07-30 | 河南科技大学 | 一种测量分数阶光学涡旋拓扑荷值的装置及其测量方法 |
CN204064471U (zh) * | 2014-07-21 | 2014-12-31 | 河南科技大学 | 一种测量涡旋光束高阶拓扑荷的测量装置 |
CN106885633A (zh) * | 2017-04-17 | 2017-06-23 | 哈尔滨工业大学 | 基于轨道角动量辅助的偏振测量系统 |
EP3415978A1 (en) * | 2016-02-10 | 2018-12-19 | Citizen Watch Co., Ltd. | Illumination device and method for generating illumination light |
TW201932921A (zh) * | 2017-11-16 | 2019-08-16 | 國立大學法人長岡技術科學大學 | 光產生裝置、具備光產生裝置的曝光裝置、曝光系統、光產生方法、及曝光光阻的製造方法 |
CN110836726A (zh) * | 2019-11-14 | 2020-02-25 | 深圳大学 | 一种任意奇点光束阶数检测装置及方法 |
-
2019
- 2019-11-14 CN CN201911114063.9A patent/CN110836726A/zh active Pending
-
2020
- 2020-04-08 WO PCT/CN2020/083790 patent/WO2021093259A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103940520A (zh) * | 2014-04-10 | 2014-07-23 | 昆明理工大学 | 一种基于改进型马赫曾德干涉仪测定涡旋光束拓扑电荷数的装置及方法 |
CN103954367A (zh) * | 2014-04-18 | 2014-07-30 | 河南科技大学 | 一种测量分数阶光学涡旋拓扑荷值的装置及其测量方法 |
CN204064471U (zh) * | 2014-07-21 | 2014-12-31 | 河南科技大学 | 一种测量涡旋光束高阶拓扑荷的测量装置 |
EP3415978A1 (en) * | 2016-02-10 | 2018-12-19 | Citizen Watch Co., Ltd. | Illumination device and method for generating illumination light |
CN106885633A (zh) * | 2017-04-17 | 2017-06-23 | 哈尔滨工业大学 | 基于轨道角动量辅助的偏振测量系统 |
TW201932921A (zh) * | 2017-11-16 | 2019-08-16 | 國立大學法人長岡技術科學大學 | 光產生裝置、具備光產生裝置的曝光裝置、曝光系統、光產生方法、及曝光光阻的製造方法 |
CN110836726A (zh) * | 2019-11-14 | 2020-02-25 | 深圳大学 | 一种任意奇点光束阶数检测装置及方法 |
Non-Patent Citations (1)
Title |
---|
HE YANLIANG; LI YING; FAN DIANYUAN; YE HUAPENG; LIU JUNMIN; XIE ZHIQIANG; WANG PEIPEI; YANG BO; ZHOU XINXING; GAO YANXIA; CHEN SHU: "Effectively Identifying the Topological Charge and Polarization Order of Arbitrary Singular Light Beams Based on Orthogonal Polarization Separating", IEEE PHOTONICS JOURNAL, IEEE, USA, vol. 11, no. 6, 1 December 2019 (2019-12-01), USA, pages 1 - 8, XP011755675, DOI: 10.1109/JPHOT.2019.2944968 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114785422A (zh) * | 2022-04-15 | 2022-07-22 | 西安理工大学 | 一种径向偏振涡旋光束干涉在水下传输的系统 |
CN114785422B (zh) * | 2022-04-15 | 2024-01-19 | 西安理工大学 | 一种径向偏振涡旋光束干涉在水下传输的系统 |
CN115102626A (zh) * | 2022-07-15 | 2022-09-23 | 长沙军民先进技术研究有限公司 | 一种实现空间多偏振编码的装置及方法 |
CN115102626B (zh) * | 2022-07-15 | 2024-01-16 | 长沙军民先进技术研究有限公司 | 一种实现空间多偏振编码的装置及方法 |
CN115276817A (zh) * | 2022-07-20 | 2022-11-01 | 陕西师范大学 | 一种基于矢量涡旋光双维度多模式的通信方法及系统 |
CN115276817B (zh) * | 2022-07-20 | 2024-01-16 | 陕西师范大学 | 一种基于矢量涡旋光双维度多模式的通信方法及系统 |
CN117274287A (zh) * | 2023-08-31 | 2023-12-22 | 哈尔滨理工大学 | 一种基于无干涉编码孔径相关全息术的边缘检测方法 |
Also Published As
Publication number | Publication date |
---|---|
CN110836726A (zh) | 2020-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021093259A1 (zh) | 一种任意奇点光束阶数检测装置及方法 | |
Brock et al. | Dynamic interferometry | |
CN104034257B (zh) | 一种菲索型准共光路结构的同步相移干涉测量装置及方法 | |
US6972906B2 (en) | Space-variant subwavelength polarization grating and applications thereof | |
US20220381619A1 (en) | Device and method for phase imaging and element detection based on wavefront modulation | |
TW201416810A (zh) | 離軸對準系統及對準方法 | |
CN105021284B (zh) | 一种快速测量任意空间矢量偏振光空间偏振信息的系统及方法 | |
US20220065617A1 (en) | Determination of a change of object's shape | |
CN104111590B (zh) | 基于复合涡旋双瓣聚焦光斑的激光直写装置 | |
WO2021083046A1 (zh) | 激光干涉光刻系统 | |
US9863841B2 (en) | Measuring device having ideal wavefront generator for detecting point diffraction interferometric wavefront aberration of measured optical system and method for detecting wavefront aberration thereof | |
CN104280141A (zh) | 一种分光棱镜及探测涡旋光束拓扑荷的方法和装置 | |
KR20160147647A (ko) | 편파를 이용한 코히런트 경사도 감지 시스템 및 방법 | |
CN101762331A (zh) | 基于四步空间移相的共光路径向剪切干涉仪 | |
CN102401630B (zh) | 空间移相菲索球面干涉仪 | |
CN202329545U (zh) | 空间移相菲索球面干涉仪 | |
CN114485966A (zh) | 一种测量涡旋光束拓扑荷数与方向的装置 | |
CN110631994B (zh) | 动量空间光学相位测量系统 | |
CN107917760A (zh) | 基于透射点衍射式共路数字全息的偏振态参量测量装置与方法 | |
JPH11325831A (ja) | 物理化学アナライザのクレ―タの底の深さを測定するための方法及び装置 | |
CN102589702B (zh) | 一种菲涅尔双面镜干涉成像光谱仪 | |
CN107631687A (zh) | 点源异位扩束同步移相斐索干涉仪及其测量方法 | |
US8804128B2 (en) | Interferometer with a space-variant polarization converter to produce radially and azimuthally polarized beams | |
CN109883553A (zh) | 一种偏振测量装置 | |
Xu et al. | A phase-shifting vectorial-shearing interferometer with wedge plate phase-shifter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20888396 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 06.07.2022) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20888396 Country of ref document: EP Kind code of ref document: A1 |