[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021087736A1 - 水泵流量的控制方法、水泵控制系统和农业无人飞行器 - Google Patents

水泵流量的控制方法、水泵控制系统和农业无人飞行器 Download PDF

Info

Publication number
WO2021087736A1
WO2021087736A1 PCT/CN2019/115669 CN2019115669W WO2021087736A1 WO 2021087736 A1 WO2021087736 A1 WO 2021087736A1 CN 2019115669 W CN2019115669 W CN 2019115669W WO 2021087736 A1 WO2021087736 A1 WO 2021087736A1
Authority
WO
WIPO (PCT)
Prior art keywords
water pump
flow rate
flow
control
control unit
Prior art date
Application number
PCT/CN2019/115669
Other languages
English (en)
French (fr)
Inventor
常子敬
段武阳
闫光
胡德琪
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201980041392.7A priority Critical patent/CN112292530A/zh
Priority to PCT/CN2019/115669 priority patent/WO2021087736A1/zh
Publication of WO2021087736A1 publication Critical patent/WO2021087736A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • F04B49/065Control using electricity and making use of computers
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M7/00Special adaptations or arrangements of liquid-spraying apparatus for purposes covered by this subclass
    • A01M7/0089Regulating or controlling systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D1/00Dropping, ejecting, releasing, or receiving articles, liquids, or the like, in flight
    • B64D1/16Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting
    • B64D1/18Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting by spraying, e.g. insecticides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/20Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by changing the driving speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications

Definitions

  • This application relates to the technology of agricultural unmanned aerial vehicles, and in particular to a method for controlling the flow of a water pump, a water pump control system and an agricultural unmanned aerial vehicle.
  • agricultural unmanned aerial vehicles are increasingly accepted and used in plant protection and crop operations.
  • agricultural unmanned aerial vehicles can spray through the medicine tank and water pump mounted on the aircraft, and control the spraying flow of the water pump through the flight controller.
  • the water pump on the agricultural unmanned aerial vehicle is driven by the water pump motor.
  • the flight controller determines the speed of the water pump motor through the curve between the pump motor speed and the pump flow rate that has been calibrated in advance. Realize the control of water pump flow.
  • the water pumps used in this method include metering pumps and peristaltic pumps.
  • the water pump has a complex structure, large weight and large volume.
  • the relationship between flow and speed of this kind of water pump in different media will change; after the aging of the pump components, this relationship will also change. Therefore, the long-term stability and medium adaptability are poor; it cannot meet the complex pesticide application scenarios.
  • the embodiments of the present application provide a method for controlling the flow rate of a water pump, a water pump control system, and an agricultural unmanned aerial vehicle, which can accurately control the flow rate of the water pump in various pesticide application scenarios.
  • an embodiment of the present application provides a method for controlling the flow of a water pump, which is applied to an agricultural unmanned aerial vehicle equipped with a water pump, and the method includes: obtaining a flow control instruction of the water pump, and the flow control The command is generated based on the expected flow rate of the water pump; according to the flow control command, a speed control command of the water pump motor is generated to control the operation of the motor of the water pump; when the water pump motor is working, the flowmeter measured by the flow meter is obtained in real time.
  • the first actual flow rate of the water pump according to the first actual flow rate and the expected flow rate, the rotation speed of the water pump is adjusted so that the flow rate of the water pump reaches the second actual flow rate, and the second actual flow rate is the same as the expected flow rate.
  • the absolute value of the difference in flow rate is less than the preset value.
  • the acquiring the flow control instruction of the water pump includes: receiving a terminal control instruction sent by a terminal device, and generating the flow control instruction based on the terminal control instruction, wherein the terminal device and the agricultural The unmanned aerial vehicle is in communication connection, and the terminal control command is generated based on the user's input on the terminal device.
  • the acquiring the flow control instruction of the water pump includes: generating the flow control instruction based on flight information, wherein the flight information includes at least one of the following: a flight trajectory position and a surrounding environment target.
  • the generating a rotation speed control command of the water pump motor according to the flow control command includes: obtaining a desired rotation speed corresponding to the desired flow according to the flow control command and a corresponding relationship; the corresponding relationship Is the corresponding relationship between the rotation speed and the flow rate of the water pump; according to the expected rotation speed, a rotation speed control command of the water pump motor is generated.
  • the adjusting the rotation speed of the water pump according to the first actual flow rate and the expected flow rate includes: obtaining a flow rate adjustment parameter according to the first actual flow rate and the expected flow rate; The flow adjustment command and the flow control command generate a rotation speed adjustment command to adjust the rotation speed of the water pump, and the flow adjustment command is generated based on the flow adjustment parameter.
  • the method further includes: obtaining the working status of the flow meter in real time when the water pump motor is working; when it is determined that the flow meter is faulty, generating the water pump motor directly according to the flow control instruction
  • the rotation speed control command is used to adjust the rotation speed of the water pump.
  • the failure of the flowmeter includes: the output of the flowmeter within a preset time period is the maximum flow rate that can be measured by the flowmeter; or, the flowmeter is within the preset time period The output of is the smallest flow rate that can be measured by the flowmeter; or, among the flow rates output by the flowmeter within a preset time period, at least a first flow rate and a second flow rate exist, and the first flow rate and the second flow rate The absolute value of the difference is greater than or equal to the preset value.
  • the flowmeter is an electromagnetic flowmeter.
  • an embodiment of the present application provides a water pump control system for an agricultural unmanned aerial vehicle.
  • the water pump control system includes: a water pump, a flow meter, a controller, a first control unit and a second control unit; the control The device is used to obtain the flow control instruction of the water pump, the flow control instruction is generated based on the expected flow of the water pump; the controller is also used to generate the rotation speed of the motor of the water pump according to the flow control instruction A control instruction to control the operation of the motor of the water pump; when the motor of the water pump is operating, the first control unit is used to obtain the first actual flow rate of the water pump measured by the flow meter in real time; the first control unit And the second control unit is configured to adjust the rotation speed of the water pump according to the first actual flow rate and the desired flow rate, so that the flow rate of the water pump reaches a second actual flow rate, and the second actual flow rate is equal to The absolute value of the difference in the expected flow rate is less than the preset value.
  • the agricultural unmanned aerial vehicle includes a processor, and when the controller is used to obtain a flow control instruction of the water pump, it is specifically configured to: receive the flow control instruction from the processor .
  • the flow control instruction is generated by the processor based on a terminal control instruction received from a terminal device, the terminal device is in communication connection with the agricultural unmanned aerial vehicle, and the terminal control instruction is based on the user It is generated by input on a terminal device; or, the flow control instruction is generated by the processor based on flight information, and the flight information includes at least one of the following: flight trajectory position and surrounding environment targets.
  • the controller when used to generate a rotation speed control command of the water pump motor according to the flow control command, it is specifically used to: obtain the desired flow corresponding to the desired flow according to the flow control command and the corresponding relationship.
  • the corresponding relationship is the corresponding relationship between the rotation speed of the water pump and the flow rate; the rotation speed control command of the water pump motor is generated according to the expected rotation speed.
  • the agricultural unmanned aerial vehicle includes a processor, and the first control unit and the second control unit are configured to adjust the water pump according to the first actual flow rate and the desired flow rate.
  • the first control unit is specifically configured to: receive the flow control instruction from the processor; obtain the expected flow rate according to the flow control instruction; according to the first actual flow rate and the expected flow rate Flow, obtain flow adjustment parameters.
  • the agricultural unmanned aerial vehicle includes a processor, and the first control unit and the second control unit are configured to adjust the water pump according to the first actual flow rate and the desired flow rate.
  • the second control unit is specifically configured to: receive the flow control instruction from the processor; receive the flow adjustment instruction from the controller, where the flow adjustment instruction is based on the controller The flow adjustment parameter is generated; according to the flow adjustment instruction and the flow control instruction, a rotation speed adjustment instruction is generated to adjust the rotation speed of the water pump.
  • the controller is further configured to: Acquire the working status of the flow meter; when it is determined that the flow meter is faulty, generate a rotation speed control command of the water pump motor according to the flow control command, and control the operation of the water pump motor.
  • the failure of the flowmeter includes: the output of the flowmeter within a preset time period is the maximum flow rate that can be measured by the flowmeter; or, the flowmeter is within the preset time period The output of is the smallest flow rate that can be measured by the flowmeter; or, among the flow rates output by the flowmeter within a preset time period, at least a first flow rate and a second flow rate exist, and the first flow rate and the second flow rate The absolute value of the difference is greater than or equal to the preset value.
  • the flowmeter is an electromagnetic flowmeter.
  • it further includes a pipeline connected to the water pump, and the flow meter is arranged on the pipeline; the water pump is connected to the controller and the second control unit respectively, and the controller The two ends of the are respectively connected with the second control unit and the first control unit, and the first control unit is also connected with the flow meter.
  • an embodiment of the present application provides an agricultural unmanned aerial vehicle equipped with a water pump control system, including: a water pump control system and a processor, the water pump control system is in communication connection with the processor; the water pump control system includes : A water pump, a flow meter, a controller, a first control unit and a second control unit; the processor is used to generate flow control instructions for the water pump; the controller is used to receive the flow control from the processor Instruction; the controller is also used to generate a rotational speed control instruction of the motor of the water pump according to the flow control instruction to control the operation of the motor of the water pump; when the motor of the water pump is in operation, the first control unit uses Acquire the first actual flow rate of the water pump measured by the flow meter in real time; the first control unit and the second control unit are used to adjust the flow rate according to the first actual flow rate and the desired flow rate.
  • the rotation speed of the water pump is such that the flow rate of the water pump reaches a second actual flow rate, and the absolute value of the difference
  • the processor when the processor is used to generate the flow control instruction of the water pump, it is specifically used for: the processor obtains the expected flow of the water pump; and generates the flow according to the expected flow Control instruction.
  • the processor when used to obtain the desired traffic, it is specifically used to: the processor receives a terminal control instruction sent by a terminal device; wherein the terminal device communicates with the agricultural unmanned aerial vehicle To connect, the terminal control instruction is generated based on the user's input on the terminal device; and the desired traffic is obtained according to the terminal control instruction.
  • the processor when used to obtain the expected flow rate, it is specifically used to: determine the expected flow rate based on flight information; wherein the flight information includes at least one of the following: flight track position or surrounding environment target .
  • the controller when used to generate a rotation speed control command of the water pump motor according to the flow control command, it is specifically used to: obtain the desired flow corresponding to the desired flow according to the flow control command and the corresponding relationship.
  • the corresponding relationship is the corresponding relationship between the rotation speed of the water pump and the flow rate; the rotation speed control command of the water pump motor is generated according to the expected rotation speed.
  • the first control unit when the first control unit and the second control unit are used to adjust the rotation speed of the water pump according to the first actual flow rate and the desired flow rate, the first control unit It is specifically configured to: receive the flow control instruction from the processor; obtain the expected flow according to the flow control instruction; obtain the flow adjustment parameter according to the first actual flow and the expected flow.
  • the second control unit when the first control unit and the second control unit are used to adjust the rotation speed of the water pump according to the first actual flow rate and the desired flow rate, the second control unit It is specifically configured to: receive the flow control instruction from the processor; receive a flow adjustment instruction from the controller, where the flow adjustment instruction is generated by the controller based on the flow adjustment parameter; and according to the The flow adjustment command and the flow control command generate a rotation speed adjustment command to adjust the rotation speed of the water pump.
  • the controller is further configured to: Acquire the working status of the flow meter; when it is determined that the flow meter is faulty, generate a rotation speed control command of the water pump motor according to the flow control command, and control the operation of the water pump motor.
  • the failure of the flowmeter includes: the output of the flowmeter within a preset time period is the maximum flow rate that can be measured by the flowmeter; or, the flowmeter is within the preset time period The output of is the smallest flow rate that can be measured by the flowmeter; or, among the flow rates output by the flowmeter within a preset time period, at least a first flow rate and a second flow rate exist, and the first flow rate and the second flow rate The absolute value of the difference is greater than or equal to the preset value.
  • the flowmeter is an electromagnetic flowmeter.
  • the water pump control system further includes a pipeline connected to the water pump, and the flow meter is provided on the pipeline; the water pump is connected to the controller and the second control unit respectively , Both ends of the controller are respectively connected to the second control unit and the first control unit, and the first control unit is also connected to the flow meter.
  • an embodiment of the present invention provides a computer-readable storage medium, the computer-readable storage medium stores a computer program, the computer program includes at least one piece of code, the at least one piece of code can be executed by a computer to control the computer to execute The method described in the above-mentioned first aspect and/or various embodiments.
  • the actual flow rate of the water pump is obtained in real time through a flow meter, and the speed of the water pump is adjusted according to the obtained actual flow rate and the expected flow rate of the water pump so that the actual flow rate of the water pump is stable near the expected flow rate, when the water pump is aging or the medium changes in the pump, etc. Therefore, the flow rate of the water pump can still be accurately controlled, that is, the method of the present application can accurately control the flow rate of the water pump in various pesticide application scenarios.
  • Figure 1 is a schematic diagram of an application scenario provided by an embodiment of the application
  • FIG. 2 is a flowchart of a method for controlling the flow rate of a water pump according to an embodiment of the application
  • Figure 3 is a system architecture diagram provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of an interface of a terminal device provided by an embodiment of the application.
  • FIG. 5 is a schematic diagram of an interface of another terminal device provided by an embodiment of the application.
  • Figure 6 is a schematic structural diagram of a water pump control system provided by an embodiment of the application.
  • Fig. 7 is a schematic structural diagram of an agricultural unmanned aerial vehicle provided by an embodiment of the application.
  • FIG 1 is a schematic diagram of an application scenario provided by an embodiment of the application. See Figure 1.
  • An agricultural unmanned aerial vehicle includes a body and a water pump control system.
  • the water pump control system includes at least one or more water pumps (for example, 4 water pumps). On the body.
  • the water pump contains the medium corresponding to the current operation, such as a certain concentration of pesticides; the agricultural unmanned aerial vehicle moves under the control of the terminal or according to the preset flight trajectory, and controls the pump control system to perform tasks such as pesticides. Spraying and other operations.
  • FIG. 2 is a flowchart of a method for controlling the flow rate of a water pump according to an embodiment of the application. Referring to Figure 2, the method of this embodiment includes:
  • Step S201 Obtain a flow control instruction of the water pump, and the flow control instruction is generated based on the expected flow rate of the water pump.
  • acquiring the flow control instruction of the water pump includes: receiving the terminal control instruction sent by the terminal device, and generating the flow control instruction based on the terminal control instruction, wherein the terminal device is in communication connection with the agricultural unmanned aerial vehicle, and the terminal controls The instructions are generated based on the user's input on the terminal device.
  • the terminal device after the terminal device generates a terminal control instruction, it sends the terminal control instruction to the agricultural unmanned aerial vehicle, and the agricultural unmanned aerial vehicle receives the terminal control instruction and obtains the expected flow rate of the water pump according to the terminal control instruction. , Based on the expected flow rate to generate flow control instructions.
  • the terminal device may be a remote control of an agricultural unmanned aerial vehicle.
  • the system architecture diagram involved in this solution can be shown in Figure 3.
  • the generation of terminal control instructions includes but is not limited to the following methods:
  • the first method the terminal device generates a terminal control instruction according to the user's operation of the flow setting button on the terminal device.
  • the user's operation on the flow setting button may be pressing or sliding the flow setting button.
  • the second method the terminal device generates a terminal control instruction according to the user's operation of the flow setting icon or module on the terminal device.
  • the user's operation on the flow setting icon may be clicking or sliding the flow setting icon or module.
  • the schematic diagram of the interface corresponding to this method is shown in Figure 4.
  • the third method the terminal device generates a terminal control instruction according to the expected flow input by the user. Among them, the user can input the desired flow rate by voice or on the interface of the terminal device.
  • the fourth method the terminal device generates terminal control instructions according to the current surrounding environment target input by the user.
  • the agricultural unmanned aerial vehicle obtains the expected flow rate of the water pump according to the terminal control instruction, including: the agricultural unmanned aerial vehicle obtains the current surrounding environment target according to the terminal control instruction, and determines that the preset flow rate corresponding to the current surrounding environment target is Expected flow.
  • the identification of multiple targets and the preset flow rate corresponding to each target can be stored in the agricultural unmanned aerial vehicle.
  • the preset flow rate corresponding to each target is the value of the pump expected by the user when the surrounding environment is the target. Expected flow.
  • the surrounding environmental target may be, for example, soybean crops, corn crops or other crops or fruit trees.
  • the schematic diagram of the interface corresponding to this method can be shown in Figure 5.
  • obtaining the flow control instruction of the water pump includes: generating the flow control instruction based on the flight information, where the flight information includes at least one of the following: the position of the flight trajectory and the surrounding environment target.
  • the agricultural unmanned aerial vehicle obtains flight information, determines the expected flow rate of the water pump based on the flight information, and generates a flow control command based on the expected flow rate.
  • the flight information includes the flight trajectory position
  • the agricultural unmanned aerial vehicle obtains the flight trajectory position, determines that the flow corresponding to the flight trajectory position is the desired flow, and generates a flow control command based on the desired flow.
  • the agricultural unmanned aerial vehicle may store a preset flight trajectory of the agricultural unmanned aerial vehicle, and the agricultural unmanned aerial vehicle flies according to the preset flight trajectory.
  • the preset flight trajectory is divided into multiple flight segments. Each flight segment corresponds to a preset flow rate.
  • the agricultural unmanned aerial vehicle also stores the preset flow rate corresponding to each flight segment.
  • the preset flow rate is the expected flow rate of the water pump expected by the user when the agricultural unmanned aerial vehicle is in the flight segment; after the agricultural unmanned aerial vehicle determines the current flight path position, the preset flow rate corresponding to the flight segment where the current flight path position is located can be determined. Let the flow rate be the desired flow rate.
  • the flight information includes surrounding environmental targets
  • the agricultural unmanned aerial vehicle obtains the surrounding environmental targets, determines that the flow corresponding to the surrounding environmental target is the desired flow, and generates a flow control command based on the desired flow.
  • the agricultural unmanned aerial vehicle can store the identification of multiple targets, and the preset flow rate corresponding to each target.
  • the preset flow rate corresponding to each target is the user when the surrounding environment is the target.
  • After the agricultural unmanned aerial vehicle determines the current surrounding environment target it can be determined that the preset flow rate corresponding to the current surrounding environment target is the expected flow rate.
  • agricultural unmanned aerial vehicles can also be equipped with sensors such as radar, vision sensors, and multispectral imagers to detect and identify targets in the surrounding environment.
  • the flow control instruction of the above-mentioned water pump may be generated by the processor of the agricultural unmanned aerial vehicle.
  • Step S202 According to the flow control instruction, a speed control instruction of the water pump motor is generated to control the operation of the water pump motor.
  • the agricultural unmanned aerial vehicle After the agricultural unmanned aerial vehicle obtains the flow control command, it generates the speed control command of the water pump motor based on the flow control command to control the operation of the water pump motor.
  • the speed control command of the water pump motor can be a command directly used to control the speed of the water pump.
  • the speed control command of the water pump motor is used to control an electronic governor to control the speed of the water pump, and the electronic governor is connected to the impeller of the water pump. , As part of the pump control system.
  • the speed control command of the water pump motor can also be an indirect command used to control the speed of the water pump.
  • the speed control command of the water pump motor is used to control the voltage across the pump motor, that is, the speed of the water pump is indirectly controlled by controlling the voltage across the pump motor.
  • the speed control command of the water pump motor is generated, including: according to the flow rate
  • the control command and the corresponding relationship are used to obtain the expected rotation speed corresponding to the expected flow rate of the water pump; the corresponding relationship is the corresponding relationship between the rotation speed and the flow rate of the water pump; and the rotation speed control command of the water pump motor is generated according to the expected rotation speed.
  • the corresponding relationship between the rotation speed and the flow rate of the water pump can be stored in the agricultural unmanned aerial vehicle after being calibrated.
  • multiple rotational speeds can be selected uniformly within the working rotational speed range of the water pump, and the flow rate of the water pump at each of the multiple rotational speeds can be calibrated with clean water (such as tap water) to obtain multiple pairs of rotational speeds.
  • -Flow rate value according to the multiple pairs of speed-flow rate values, the corresponding relationship between the speed and flow rate of the water pump is obtained.
  • the rotation speed control command of the water pump motor is generated by the controller of the water pump control system; specifically, after the processor of the agricultural unmanned aerial vehicle generates the flow control command of the water pump, it sends the flow control command to The controller of the water pump control system generates a speed control command of the water pump motor based on the flow control command.
  • Step S203 When the water pump motor is working, obtain the first actual flow rate of the water pump measured by the flow meter in real time.
  • the agricultural unmanned aerial vehicle obtains the first actual flow rate of the water pump measured by the flow meter in real time.
  • the flow meter can be set on the pipe connected with the water pump, as a part of the water pump control system.
  • the flow meter may be an electromagnetic flow meter.
  • the real-time acquisition of the flow rate measured by the flowmeter means that the delay between when the liquid passes through the flowmeter and when the measured flow rate is obtained is less than a predetermined time, which can meet the requirements of achieving flow rate on agricultural unmanned aerial vehicles.
  • the need for control does not mean that the liquid passing through the flow meter and the measured flow are at the same time.
  • the delay for realizing the measurement feedback flow result is usually greater than 2s, which cannot meet the flow control requirements on the agricultural UAV.
  • the measurement delay time of the electromagnetic flowmeter is less than 0.5s, and the current actual flow rate of the water pump can be quickly fed back, so as to realize the precise control of the water pump flow rate in step S204, that is, control the actual flow rate of the water pump and
  • the absolute value of the difference in the expected flow rate is less than the preset value.
  • the water pump control system further includes a PID controller, and the PID controller includes a first control unit.
  • the first control unit obtains the first actual flow rate of the water pump measured by the flow meter in real time. That is, after the first actual flow rate of the water pump is measured by the flow meter, the first actual flow rate is fed back to the first control unit.
  • Step S204 Adjust the rotation speed of the water pump according to the first actual flow rate and the desired flow rate, so that the flow rate of the water pump reaches the second actual flow rate, and the absolute value of the difference between the second actual flow rate and the desired flow rate is less than the preset value.
  • the agricultural unmanned aerial vehicle obtains the first actual flow rate of the water pump measured by the flowmeter in real time, and adjusts the rotation speed of the water pump according to the first actual flow rate and the expected flow rate in real time so that the flow rate of the water pump reaches the second actual flow rate.
  • the absolute value of the difference in the expected flow rate is less than the preset value. That is, the actual flow rate of the water pump is stabilized near the expected flow rate to achieve the purpose of accurately controlling the flow rate of the water pump.
  • the PID control algorithm can be used to adjust the speed of the water pump according to the first actual flow rate and the expected flow rate, so that the flow rate of the water pump reaches the second actual flow rate.
  • adjusting the speed of the water pump according to the first actual flow rate and the expected flow rate so that the flow rate of the water pump reaches the second actual flow rate includes: obtaining flow adjustment parameters according to the first actual flow rate and the expected flow rate; The flow adjustment command and the flow control command generate a speed adjustment command to adjust the speed of the water pump. The flow adjustment command is generated based on the flow adjustment parameter. Among them, the flow adjustment parameters can be obtained through the PID control algorithm, which will not be repeated at this time.
  • the PID controller included in the water pump control system further includes a second control unit.
  • the first control unit In addition to real-time acquisition of the first actual flow rate of the water pump measured by the flow meter, the first control unit also inputs the flow control instruction generated by the processor of the agricultural unmanned aerial vehicle to the first control unit, which is based on the flow control instruction of the water pump The expected flow rate is obtained, and the flow rate adjustment parameter is obtained according to the first actual flow rate and the expected flow rate.
  • the flow adjustment parameter is input to the controller, and the controller generates a flow adjustment instruction based on the flow adjustment parameter.
  • the flow adjustment command is input to the second control unit, and the flow control command generated by the processor of the agricultural unmanned aerial vehicle is also input to the second control unit.
  • the second control unit generates a speed adjustment command according to the flow adjustment command and the flow control command to adjust The speed of the water pump.
  • the method for controlling the flow rate of the water pump in this embodiment may further include the following steps a1 to a2:
  • the rotation speed control command of the water pump motor is directly generated according to the flow control command obtained in step S201, and the rotation speed of the water pump is adjusted. That is, when the actual flow rate of the water pump fed back by the flow meter is not accurate, the actual flow rate of the water pump is no longer obtained in real time, and the speed of the water pump is adjusted according to the actual flow rate and the expected flow rate of the obtained water pump so that the actual flow rate of the water pump is stable near the expected flow rate. So that the agricultural unmanned aerial vehicle can operate normally.
  • the failure of the flowmeter includes but is not limited to the following situations: the output of the flowmeter during the preset time is the maximum flow that the flowmeter can measure; or the output of the flowmeter during the preset time is all that the flowmeter can The measured minimum flow rate; or, the flowmeter outputs at least the first flow rate and the second flow rate in each flow rate output within the preset time period, and the absolute value of the difference between the first flow rate and the second flow rate is greater than or equal to the preset value ( That is, the flow rate of the water pump measured by the flow meter fluctuates greatly).
  • the actual flow rate of the water pump is obtained in real time through a flow meter, and the speed of the water pump is adjusted according to the obtained actual flow rate and expected flow rate of the water pump so that the actual flow rate of the water pump is stable near the expected flow rate, and the water pump is aging or the medium changes in the water pump, etc.
  • the flow rate of the water pump can still be accurately controlled. That is, the method of this embodiment can accurately control the flow rate of the water pump in various pesticide application scenarios.
  • the method of this embodiment can reduce the complexity of the water pump structure, making the water pump small in size and light in weight, thereby reducing agricultural waste.
  • Fig. 6 is a schematic structural diagram of a water pump control system provided by an embodiment of the application.
  • the water pump control system is used in an agricultural unmanned aerial vehicle.
  • the water pump control system includes: a water pump 51, a flow meter 52, a controller 53, a first control unit 54, a second control unit 55 and a pipeline 56 connected to the water pump 51.
  • the flow meter 52 is arranged on the pipeline 56
  • the water pump 51 is connected to the controller 53 and the second control unit 55
  • both ends of the controller 53 are connected to the second control unit 55 and the first control unit 54 respectively
  • the first control The unit 54 is also connected to a flow meter 52.
  • the processor of the agricultural unmanned aerial vehicle is also in communication connection with the water pump control system, and the connection between the processor and the first control unit 54, the controller 53 and the second control unit 55 of the water pump control system can be realized through a communication bus.
  • the controller 53 is configured to obtain a flow control instruction of the water pump 51, and the flow control instruction is generated based on the expected flow of the water pump 51; the controller 53 is also configured to, according to the flow control instruction, The rotation speed control instruction of the motor of the water pump 51 is generated to control the operation of the motor of the water pump 51; when the motor of the water pump 51 is working, the first control unit 54 is used to obtain the measured value of the flow meter 52 in real time.
  • the first actual flow rate of the water pump 51; the first control unit 54 and the second control unit 55 are used to adjust the rotation speed of the water pump 51 according to the first actual flow rate and the expected flow rate, so that the The flow rate of the water pump 51 reaches the second actual flow rate, and the absolute value of the difference between the second actual flow rate and the expected flow rate is less than a preset value.
  • the agricultural unmanned aerial vehicle includes a processor.
  • the controller 53 is used to obtain the flow control instruction of the water pump 51, it is specifically configured to: receive the flow rate from the processor. Control instruction.
  • the flow control instruction is generated by the processor based on a terminal control instruction received from a terminal device, the terminal device is in communication connection with the agricultural unmanned aerial vehicle, and the terminal control instruction is based on the user It is generated by input on a terminal device; or, the flow control instruction is generated by the processor based on flight information, and the flight information includes at least one of the following: flight trajectory position and surrounding environment targets.
  • the controller 53 when used to generate a rotation speed control command of the motor of the water pump 51 according to the flow control command, it is specifically used to: obtain the expected speed according to the flow control command and the corresponding relationship.
  • the desired rotation speed corresponding to the flow; the corresponding relationship is the corresponding relationship between the rotation speed of the water pump 51 and the flow; according to the desired rotation speed, a rotation speed control command of the motor of the water pump 51 is generated.
  • the agricultural unmanned aerial vehicle includes a processor, and the first control unit 54 and the second control unit 55 are configured to adjust the total flow rate according to the first actual flow rate and the desired flow rate.
  • the first control unit 54 is specifically configured to: receive the flow control instruction from the processor; obtain the desired flow rate according to the flow control instruction; and obtain the desired flow rate according to the first actual flow rate. With the expected flow rate, the flow rate adjustment parameters are obtained.
  • the agricultural unmanned aerial vehicle includes a processor, and the first control unit 54 and the second control unit 55 are used to adjust the total flow rate according to the first actual flow rate and the desired flow rate.
  • the second control unit 55 is specifically configured to: receive the flow control instruction from the processor; receive a flow adjustment instruction from the controller 53, where the flow adjustment instruction is The controller 53 is generated based on the flow adjustment parameter; according to the flow adjustment instruction and the flow control instruction, a rotation speed adjustment instruction is generated to adjust the rotation speed of the water pump 51.
  • the controller 53 It is also used to: obtain the working status of the flow meter 52; when it is determined that the flow meter 52 is faulty, generate a rotation speed control command of the motor of the water pump 51 according to the flow control command, and control the operation of the motor of the water pump 51.
  • the failure of the flow meter 52 includes: the output of the flow meter 52 within a preset time period is the maximum flow rate that the flow meter 52 can measure; or, the flow meter 52 is in The output within the preset time period is the minimum flow rate that can be measured by the flowmeter 52; or, the flow rate output by the flowmeter 52 during the preset time period includes at least the first flow rate and the second flow rate, and the first flow rate The absolute value of the difference between the first flow rate and the second flow rate is greater than or equal to the preset value.
  • the flow meter 52 is an electromagnetic flow meter 52.
  • the water pump control system of this embodiment can be used to implement the technical solutions corresponding to the water pump control systems in the foregoing method embodiments.
  • the implementation principles and technical effects are similar, and will not be repeated here.
  • FIG. 7 is a schematic structural diagram of an agricultural unmanned aerial vehicle provided by an embodiment of the application.
  • the agricultural unmanned aerial vehicle includes a water pump control system 61 and a processor 62, and the water pump control system 61 is in communication connection with the processor 62;
  • the water pump control system 61 includes: a water pump 51, a flow meter 52, a controller 53, a first control unit 54, a second control unit 55, and a pipeline 56 connected to the water pump 51.
  • the flow meter 52 is arranged on the pipeline 56, the water pump 51 is connected to the controller 53 and the second control unit 55, both ends of the controller 53 are connected to the second control unit 55 and the first control unit 54 respectively, and the first control The unit 54 is also connected to a flow meter 52.
  • the processor 62 can realize the connection between the processor and the first control unit 54, the controller 53, and the second control unit 55 of the water pump control system through the communication bus 63.
  • the processor 62 is used to generate a flow control instruction of the water pump 51; the controller 53 is used to receive the flow control instruction from the processor 62; the controller 53 is also used to The flow control command generates a speed control command for the motor of the water pump 51 to control the operation of the motor of the water pump 51; when the motor of the water pump 51 is working, the first control unit 54 is used to obtain the flow meter 52 in real time
  • the measured first actual flow rate of the water pump 51; the first control unit 54 and the second control unit 55 are used to adjust the flow rate of the water pump 51 according to the first actual flow rate and the expected flow rate Rotation speed, so that the flow rate of the water pump 51 reaches the second actual flow rate, and the absolute value of the difference between the second actual flow rate and the expected flow rate is less than a preset value.
  • the processor 62 when the processor 62 is used to generate the flow control instruction of the water pump 51, it is specifically used to: the processor 62 obtains the expected flow rate of the water pump 51; according to the expected flow rate, The flow control instruction is generated.
  • the processor 62 when the processor 62 is used to obtain the desired traffic, it is specifically used to: the processor 62 receives a terminal control instruction sent by a terminal device; wherein, the terminal device and the agricultural unmanned The aircraft is in communication connection, the terminal control instruction is generated based on the user's input on the terminal device; and the desired traffic is obtained according to the terminal control instruction.
  • the processor 62 when used to obtain the expected flow rate, it is specifically used to: determine the expected flow rate based on flight information; wherein the flight information includes at least one of the following: flight path position or surrounding environment the goal.
  • the controller 53 when used to generate a rotation speed control command of the motor of the water pump 51 according to the flow control command, it is specifically used to: obtain the expected speed according to the flow control command and the corresponding relationship.
  • the desired rotation speed corresponding to the flow; the corresponding relationship is the corresponding relationship between the rotation speed of the water pump 51 and the flow; according to the desired rotation speed, a rotation speed control command of the motor of the water pump 51 is generated.
  • control unit 54 and the second control unit 55 are used to adjust the rotation speed of the water pump 51 according to the first actual flow rate and the desired flow rate
  • the first control unit 54 and the second control unit 55 A control unit 54 is specifically configured to: receive the flow control instruction from the processor 62; obtain the expected flow rate according to the flow control instruction; obtain flow adjustments according to the first actual flow rate and the expected flow rate parameter.
  • the first control unit 54 and the second control unit 55 are used to adjust the rotation speed of the water pump 51 according to the first actual flow rate and the desired flow rate
  • the first control unit 54 and the second control unit 55 is specifically configured to: receive the flow control instruction from the processor 62; receive a flow adjustment instruction from the controller 53, where the flow adjustment instruction is the controller 53 based on the flow adjustment Parameter generated; according to the flow adjustment instruction and the flow control instruction, generate a rotation speed adjustment instruction to adjust the rotation speed of the water pump 51.
  • the controller 53 It is also used to: obtain the working status of the flow meter 52; when it is determined that the flow meter 52 is faulty, generate a rotation speed control command of the motor of the water pump 51 according to the flow control command, and control the operation of the motor of the water pump 51.
  • the failure of the flow meter 52 includes: the output of the flow meter 52 within a preset time period is the maximum flow rate that the flow meter 52 can measure; or, the flow meter 52 is in The output within the preset time period is the minimum flow rate that can be measured by the flowmeter 52; or, the flow rate output by the flowmeter 52 during the preset time period includes at least the first flow rate and the second flow rate, and the first flow rate The absolute value of the difference between the first flow rate and the second flow rate is greater than or equal to the preset value.
  • the flow meter 52 is an electromagnetic flow meter.
  • the water pump control system of this embodiment can be used to implement the technical solutions corresponding to the water pump control systems in the foregoing method embodiments.
  • the implementation principles and technical effects are similar, and will not be repeated here.
  • a person of ordinary skill in the art can understand that all or part of the steps in the foregoing method embodiments can be implemented by a program instructing relevant hardware.
  • the aforementioned program can be stored in a computer readable storage medium. When the program is executed, it executes the steps including the foregoing method embodiments; and the foregoing storage medium includes: ROM, RAM, magnetic disk, or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Pest Control & Pesticides (AREA)
  • Insects & Arthropods (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

一种水泵流量的控制方法、水泵控制系统和农业无人飞行器,该方法包括:获取水泵的流量控制指令,流量控制指令基于水泵的期望流量而生成;根据流量控制指令,生成水泵电机的转速控制指令,控制水泵的电机工作;在水泵电机工作时,实时获取流量计测量得到的水泵的第一实际流量;根据第一实际流量与期望流量,调节水泵的转速,以使水泵的流量达到第二实际流量,第二实际流量与期望流量的差值的绝对值小于预设值。该方法可在各种农药施用场景下精确控制水泵的流量。

Description

水泵流量的控制方法、水泵控制系统和农业无人飞行器 技术领域
本申请涉及农用无人飞行器技术,尤其涉及一种水泵流量的控制方法、水泵控制系统和农业无人飞行器。
背景技术
随着无人飞行器技术的发展,农业无人飞行器在植保、农作物作业中越来越多地被人们所接受使用。在果林养护、农作物防治等场景中,农业无人飞行器可以通过搭载于飞行器的药箱及水泵实现喷洒,并且通过飞行控制器来控制水泵的喷洒流量。通常,农业无人飞行器上的水泵由水泵电机所驱动,当需要获得特定的流量时,飞行控制器通过预先标定好的水泵电机转速与水泵流量之间的曲线,确定水泵电机的转速,即可以实现水泵流量的控制。
然而,这种方法使用的水泵包括计量泵,蠕动泵,水泵结构复杂,重量大,体积大。这种水泵在不同介质时的流量与转速关系会发生变化;水泵部件老化后,这个关系也会发生变化。因此长期稳定性和介质适应性差;无法满足复杂的农药施用场景。
发明内容
本申请实施例提供一种水泵流量的控制方法、水泵控制系统和农业无人飞行器,可在各种农药施用场景下精确控制水泵的流量。
第一方面,本申请实施例提供一种水泵流量的控制方法,应用于农业无人飞行器,所述农业无人飞行器搭载有水泵,所述方法包括:获取水泵的流量控制指令,所述流量控制指令基于所述水泵的期望流量而生成;根据所述流量控制指令,生成水泵电机的转速控制指令,控制所述水泵的电机工作;所述水泵电机工作时,实时获取流量计测量得到的所述水泵的第一实际流量;根据所述第一实际流量与所述期望流量,调节所述水泵的转速,以使所述水泵的流量达到第二实际流量,所述第二实际流量与所述期望流量的差值的绝对值小于预设值。
在一种实施方式中,所述获取水泵的流量控制指令,包括:接收终端设备发送的终端控制指令,基于所述终端控制指令生成所述流量控制指令,其中,所述终端设备与所述农业无人飞行器通信连接,所述终端控制指令基于用户在终端设备上的输入而生成。
在一种实施方式中,所述获取水泵的流量控制指令,包括:基于飞行信息生成所述流量控制指令,其中,所述飞行信息至少包括如下一种:飞行轨迹位置、周围环境目标。
在一种实施方式中,所述根据所述流量控制指令,生成水泵电机的转速控制指令,包括:根据所述流量控制指令和对应关系,获取所述期望流量对应的期望转速;所述对应关系为所述水泵的转速与流量之间的对应关系;根据所述期望转速,生成所述水泵电机的转速控制指令。
在一种实施方式中,所述根据所述第一实际流量与所述期望流量,调节所述水泵的转速,包括:根据所述第一实际流量与所述期望流量,获取流量调整参数;根据流量调整指令和所述流量控制指令,生成转速调节指令,以调节所述水泵的转速,所述流量调整指令是基于所述流量调整参数生成的。
在一种实施方式中,所述方法还包括:所述水泵电机工作时,实时获取所述流量计的工作状态;当确定所述流量计发生故障时,直接根据所述流量控制指令生成水泵电机的转速控制指令,调节所述水泵的转速。
在一种实施方式中,所述流量计的故障包括:所述流量计在预设时长内的输出均为所述流量计能够测量到的最大流量;或者,所述流量计在预设时长内的输出均为所述流量计能够测量到的最小流量;或者,所述流量计在预设时长内输出的各流量中至少存在第一流量和第二流量,所述第一流量和第二流量的差值的绝对值大于或等于预设值。
在一种实施方式中,所述流量计为电磁流量计。
第二方面,本申请实施例提供一种水泵控制系统,用于农业无人飞行器,所述水泵控制系统包括:水泵,流量计,控制器,第一控制单元和第二控制单元;所述控制器用于,获取所述水泵的流量控制指令,所述流量控制指令基于所述水泵的期望流量而生成;所述控制器还用于,根据所述流量控制指令,生成所述水泵的电机的转速控制指令,控制所述水泵的电机工作;所述水泵电机工作时,所述第一控制单元用于实时获取所述流量计测量得到的所 述水泵的第一实际流量;所述第一控制单元和所述第二控制单元用于,根据所述第一实际流量与所述期望流量,调节所述水泵的转速,以使所述水泵的流量达到第二实际流量,所述第二实际流量与所述期望流量的差值的绝对值小于预设值。
在一种实施方式中,所述农业无人飞行器包括处理器,所述控制器在用于获取所述水泵的流量控制指令时,具体用于:接收来自所述处理器的所述流量控制指令。
在一种实施方式中,所述流量控制指令是所述处理器基于从终端设备接收的终端控制指令生成的,所述终端设备与所述农业无人飞行器通信连接,所述终端控制指令基于用户在终端设备上的输入而生成;或者,所述流量控制指令是所述处理器基于飞行信息生成的,所述飞行信息至少包括如下一种:飞行轨迹位置、周围环境目标。
在一种实施方式中,所述控制器在用于根据所述流量控制指令,生成水泵电机的转速控制指令时,具体用于:根据所述流量控制指令和对应关系,获取所述期望流量对应的期望转速;所述对应关系为所述水泵的转速与流量之间的对应关系;根据所述期望转速,生成所述水泵电机的转速控制指令。
在一种实施方式中,所述农业无人飞行器包括处理器,所述第一控制单元和所述第二控制单元在用于根据所述第一实际流量与所述期望流量,调节所述水泵的转速时,所述第一控制单元具体用于:接收来自所述处理器的所述流量控制指令;根据所述流量控制指令获取所述期望流量;根据所述第一实际流量与所述期望流量,获取流量调整参数。
在一种实施方式中,所述农业无人飞行器包括处理器,所述第一控制单元和所述第二控制单元在用于根据所述第一实际流量与所述期望流量,调节所述水泵的转速时,所述第二控制单元具体用于:接收来自所述处理器的所述流量控制指令;接收来自所述控制器的流量调整指令,所述流量调整指令是所述控制器基于所述流量调整参数生成的;根据所述流量调整指令和所述流量控制指令,生成转速调节指令,以调节所述水泵的转速。
在一种实施方式中,在所述第一控制单元和所述第二控制单元根据所述第一实际流量与所述期望流量,调节所述水泵的转速之后,所述控制器还用于:获取所述流量计的工作状态;当确定所述流量计发生故障时,根据所述 流量控制指令,生成水泵电机的转速控制指令,控制所述水泵的电机工作。
在一种实施方式中,所述流量计的故障包括:所述流量计在预设时长内的输出均为所述流量计能够测量到的最大流量;或者,所述流量计在预设时长内的输出均为所述流量计能够测量到的最小流量;或者,所述流量计在预设时长内输出的各流量中至少存在第一流量和第二流量,所述第一流量和第二流量的差值的绝对值大于或等于预设值。
在一种实施方式中,所述流量计为电磁流量计。
在一种实施方式中,还包括与所述水泵连接的管道,所述流量计设置在所述管道上;所述水泵分别与所述控制器和所述第二控制单元连接,所述控制器的两端分别与所述第二控制单元和所述第一控制单元连接,所述第一控制单元还与所述流量计连接。
第三方面,本申请实施例提供一种搭载有水泵控制系统的农业无人飞行器,包括:水泵控制系统和处理器,所述水泵控制系统与所述处理器通信连接;所述水泵控制系统包括:水泵,流量计,控制器,第一控制单元和第二控制单元;所述处理器用于生成所述水泵的流量控制指令;所述控制器用于,接收来自所述处理器的所述流量控制指令;所述控制器还用于,根据所述流量控制指令,生成所述水泵的电机的转速控制指令,控制所述水泵的电机工作;所述水泵电机工作时,所述第一控制单元用于实时获取所述流量计测量得到的所述水泵的第一实际流量;所述第一控制单元和所述第二控制单元用于,根据所述第一实际流量与所述期望流量,调节所述水泵的转速,以使所述水泵的流量达到第二实际流量,所述第二实际流量与所述期望流量的差值的绝对值小于预设值。
在一种实施方式中,所述处理器在用于生成所述水泵的流量控制指令时,具体用于:所述处理器获取所述水泵的期望流量;根据所述期望流量,生成所述流量控制指令。
在一种实施方式中,所述处理器在用于获取期望流量时,具体用于:所述处理器接收终端设备发送的终端控制指令;其中,所述终端设备与所述农业无人飞行器通信连接,所述终端控制指令基于用户在终端设备上的输入而生成;根据所述终端控制指令,获取期望流量。
在一种实施方式中,所述处理器在用于获取期望流量时,具体用于:基 于飞行信息,确定期望流量;其中,所述飞行信息至少包括如下一种:飞行轨迹位置或周围环境目标。
在一种实施方式中,所述控制器在用于根据所述流量控制指令,生成水泵电机的转速控制指令时,具体用于:根据所述流量控制指令和对应关系,获取所述期望流量对应的期望转速;所述对应关系为所述水泵的转速与流量之间的对应关系;根据所述期望转速,生成所述水泵电机的转速控制指令。
在一种实施方式中,所述第一控制单元和所述第二控制单元在用于根据所述第一实际流量与所述期望流量,调节所述水泵的转速时,所述第一控制单元具体用于:接收来自所述处理器的所述流量控制指令;根据所述流量控制指令获取所述期望流量;根据所述第一实际流量与所述期望流量,获取流量调整参数。
在一种实施方式中,所述第一控制单元和所述第二控制单元在用于根据所述第一实际流量与所述期望流量,调节所述水泵的转速时,所述第二控制单元具体用于:接收来自所述处理器的所述流量控制指令;接收来自所述控制器的流量调整指令,所述流量调整指令是所述控制器基于所述流量调整参数生成的;根据所述流量调整指令和所述流量控制指令,生成转速调节指令,以调节所述水泵的转速。
在一种实施方式中,在所述第一控制单元和所述第二控制单元根据所述第一实际流量与所述期望流量,调节所述水泵的转速之后,所述控制器还用于:获取所述流量计的工作状态;当确定所述流量计发生故障时,根据所述流量控制指令,生成水泵电机的转速控制指令,控制所述水泵的电机工作。
在一种实施方式中,所述流量计的故障包括:所述流量计在预设时长内的输出均为所述流量计能够测量到的最大流量;或者,所述流量计在预设时长内的输出均为所述流量计能够测量到的最小流量;或者,所述流量计在预设时长内输出的各流量中至少存在第一流量和第二流量,所述第一流量和第二流量的差值的绝对值大于或等于预设值。
在一种实施方式中,所述流量计为电磁流量计。
在一种实施方式中,所述水泵控制系统还包括与所述水泵连接的管道,所述流量计设置在所述管道上;所述水泵分别与所述控制器和所述第二控制单元连接,所述控制器的两端分别与所述第二控制单元和所述第一控制单元 连接,所述第一控制单元还与所述流量计连接。
第四方面,本发明实施例提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,该计算机程序包含至少一段代码,该至少一段代码可由计算机执行,以控制所述计算机执行上述第一方面以及或各实施方式中所述的方法。
本申请中通过流量计实时获取水泵的实际流量,并根据获取的水泵的实际流量和期望流量调节水泵的转速以使得水泵的实际流量稳定在期望流量附近,在水泵老化或者水泵中介质变化等情况下,仍能对水泵的流量进行精确控制,即本申请的方法可在各种农药施用场景下精确控制水泵的流量。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的应用场景示意图;
图2为本申请实施例提供的水泵流量的控制方法的流程图;
图3为本申请实施例提供的一种系统架构图;
图4为本申请实施例提供的一种终端设备的界面示意图;
图5为本申请实施例提供的另一种终端设备的界面示意图;
图6为本申请实施例提供的水泵控制系统的结构示意图;
图7为本申请实施例提供的农业无人飞行器的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
下面结合附图,对本申请实施例进行说明。
图1为本申请实施例提供的应用场景示意图,参见图1,农业无人飞行器包括机体和水泵控制系统,其中,水泵控制系统至少包括一个或多个水泵(比如4个水泵),水泵可搭载在机体上。
在进行作业时,水泵中承装有与当前作业相应的介质,比如一定浓度的农药;农业无人飞行器在终端的控制下或者按照预设的飞行轨迹移动,控制水泵控制系统工作,完成诸如农药喷晒等作业。
首先采用具体的实施例对本申请的水泵流量的控制方法进行说明。图2为本申请实施例提供的水泵流量的控制方法的流程图。参见图2,本实施例的方法包括:
步骤S201、获取水泵的流量控制指令,该流量控制指令基于水泵的期望流量而生成。
在第一种方案中:获取水泵的流量控制指令,包括:接收终端设备发送的终端控制指令,基于该终端控制指令生成流量控制指令,其中,终端设备与农业无人飞行器通信连接,该终端控制指令基于用户在终端设备上的输入而生成。
在该方案的一种具体实现中,终端设备生成终端控制指令后,将终端控制指令发送至农业无人飞行器,农业无人飞行器接收该终端控制指令,并根据该终端控制指令获取水泵的期望流量,基于该期望流量生成流量控制指令。其中,终端设备可为农业无人飞行器的遥控器。该方案所涉及的系统架构图可如图3所示。
其中,终端控制指令的生成包括但不限于如下的几种方式:
第一种方式:终端设备根据用户对终端设备上的流量设置按钮的操作,生成终端控制指令。其中,用户对流量设置按钮的操作可为按压或滑动流量设置按钮。
第二种方式:终端设备根据用户对终端设备上的流量设置图标或模块的操作,生成终端控制指令。其中,用户对流量设置图标的操作可为点击或滑动流量设置图标或模块。该方式对应的界面示意图可如图4所示。
第三种方式:终端设备根据用户输入的期望流量,生成终端控制指令。其中,用户可通过语音或者在终端设备的界面上输入期望流量。
第四种方式:终端设备根据用户输入的当前周围环境目标,生成终端控 制指令。在该种方式中,农业无人飞行器根据该终端控制指令获取水泵的期望流量,包括:农业无人飞行器根据该终端控制指令获取当前周围环境目标,确定当前周围环境目标所对应的预设流量为期望流量。相应地,农业无人飞行器中可存储有多个目标的标识以及每个目标所对应的预设流量,每个目标所对应的预设流量为当周围环境为该目标时用户所期望的水泵的期望流量。其中,周围环境目标比如可为:大豆农作物、玉米农作物或其他农作物或果树等。该方式对应的界面示意图可如图5所示。
在第二种方案中:获取水泵的流量控制指令,包括:基于飞行信息生成流量控制指令,其中,飞行信息至少包括如下一种:飞行轨迹位置、周围环境目标。
在该方案的一种具体实现中,农业无人飞行器获取飞行信息,基于飞行信息确定水泵的期望流量,并基于该期望流量生成流量控制指令。
一种方式中:飞行信息包括飞行轨迹位置,农业无人飞行器获取飞行轨迹位置,确定飞行轨迹位置所对应的流量为期望流量,基于该期望流量生成流量控制指令。
在该方式中,农业无人飞行器中可存储有农业无人飞行器的预设飞行轨迹,农业无人飞行器按照该预设飞行轨迹飞行。该预设飞行轨迹被划分成多个飞行段,每个飞行段对应有一个预设流量,农业无人飞行器中还存储有每个飞行段对应的预设流量,其中,每个飞行段对应的预设流量为当农业无人飞行器处于该飞行段时用户所期望的水泵的期望流量;在农业无人飞行器确定当前飞行轨迹位置后,可确定当前飞行轨迹位置所处的飞行段所对应的预设流量为期望流量。
另一种方式中:飞行信息包括周围环境目标,农业无人飞行器获取周围环境目标,确定周围环境目标所对应的流量为期望流量,基于该期望流量生成流量控制指令。
在该方式中,农业无人飞行器中可存储有多个目标的标识,以及,每个目标所对应的预设流量,每个目标所对应的预设流量即为当周围环境为该目标时用户所期望的水泵的期望流量。在农业无人飞行器确定当前周围环境目标后,可确定当前周围环境目标所对应的预设流量为期望流量。其中,农业无人飞行器上还可搭载有诸如雷达、视觉传感器、多光谱成像仪等传感器, 从而探测并识别周围环境目标。
在一种可能的实现方式中,上述水泵的流量控制指令可以是农业无人飞行器的处理器生成的。
步骤S202、根据流量控制指令,生成水泵电机的转速控制指令,控制水泵的电机工作。
农业无人飞行器获取到流量控制指令后,基于流量控制指令生成水泵电机的转速控制指令,以控制水泵的电机工作。其中,水泵电机的转速控制指令可以是直接用于控制水泵转速的指令,比如该水泵电机的转速控制指令用于控制电子调速器来控制水泵的转速,该电子调速器与水泵的叶轮连接,为水泵控制系统的一部分。水泵电机的转速控制指令也可以是间接用于控制水泵转速的指令,比如该水泵电机的转速控制指令用于控制水泵电机两端的电压,即通过控制水泵电机两端的电压间接来控制水泵的转速。
为了提高水泵电机的转速控制指令的控制效率,即使得开始控制到水泵达到稳定流量之间能够更快,在一种方案中:根据流量控制指令,生成水泵电机的转速控制指令,包括:根据流量控制指令以及对应关系,获取水泵的期望流量对应的期望转速;该对应关系为水泵的转速与流量之间的对应关系;根据该期望转速,生成水泵电机的转速控制指令。
其中,水泵的转速与流量之间的对应关系可以是标定好后存储至农业无人飞行器中的。在该对应关系的标定过程中,可以在水泵工作的转速范围内均匀选取多个转速,用清水(比如自来水)标定在该多个转速中的每个转速下该水泵的流量,得到多对转速-流量数值,根据该多对转速-流量数值得到水泵的转速与流量之间的对应关系。
在一种可能的实现方式中,上述水泵电机的转速控制指令为水泵控制系统的控制器生成的;具体地,农业无人飞行器的处理器生成水泵的流量控制指令后,将流量控制指令发送至水泵控制系统的控制器,水泵控制系统的控制器基于该流量控制指令,生成水泵电机的转速控制指令。
步骤S203、在水泵电机工作时,实时获取流量计测量得到的水泵的第一实际流量。
水泵电机在根据水泵电机的转速控制指令工作时,农业无人飞行器实时获取流量计测量得到的水泵的第一实际流量。其中,流量计可设置在与水泵 连接的管道上,为水泵控制系统的一部分。可选地,流量计可为电磁流量计。需要注意的是,本发明实施例中,实时获取流量计测量的流量指的是液体通过流量计至获取测得的其流量之间的延时小于预定时长,能够满足农业无人飞行器上实现流量控制的需求,并非指液体通过流量计与获得测得的流量为同一时刻。通常农业无人飞行器上所搭载的流量计由于体积结构所限,其实现测量反馈流量结果的延时通常大于2s,无法满足农业无人飞行器上的流量控制需求。而在本发明实施例中,使用电磁流量计的测量延时小于0.5s,可以快速的反馈水泵当前的实际流量,以实现步骤S204中的对水泵流量的精确控制,即控制水泵的实际流量与期望流量的差值的绝对值小于预设值。
在一种可能的实现方式中,水泵控制系统还包括PID控制器,PID控制器包括第一控制单元。第一控制单元实时获取流量计测量得到的水泵的第一实际流量。也就是流量计测量得到水泵的第一实际流量后,即将第一实际流量反馈至第一控制单元。
步骤S204、根据第一实际流量与期望流量,调节水泵的转速,以使水泵的流量达到第二实际流量,第二实际流量与期望流量的差值的绝对值小于预设值。
农业无人飞行器实时获取流量计测量得到的水泵的第一实际流量,实时的根据第一实际流量与期望流量,调节水泵的转速,以使水泵的流量达到第二实际流量,第二实际流量与期望流量的差值的绝对值小于预设值。即将水泵的实际流量稳定在期望流量附近,达到精确控制水泵流量的目的。其中,可通过PID控制算法,根据第一实际流量与期望流量,调节水泵的转速,以使水泵的流量达到第二实际流量。
在一种具体的实现中:根据第一实际流量与期望流量,调节水泵的转速,以使水泵的流量达到第二实际流量,包括:根据第一实际流量与期望流量,获取流量调整参数;根据流量调整指令和流量控制指令,生成转速调节指令,以调节水泵的转速,流量调整指令是基于流量调整参数生成的。其中,可通过PID控制算法获取流量调整参数,此时不再赘述。
在一种可能的实现方式中,水泵控制系统包括的PID控制器还包括第二控制单元。第一控制单元除了实时获取流量计测量得到的水泵的第一实际流量外,农业无人飞行器的处理器生成的流量控制指令也输入至第一控制单元, 第一控制单元根据水泵的流量控制指令得到期望流量,并根据第一实际流量和期望流量得到流量调整参数。流量调整参数输入至控制器,控制器基于流量调整参数,生成流量调整指令。流量调整指令输入至第二控制单元,农业无人飞行器的处理器生成的流量控制指令也输入至第二控制单元,第二控制单元根据流量调整指令和流量控制指令,生成转速调节指令,以调节水泵的转速。
可选地,本实施例的水泵流量的控制方法还可包括如下的步骤a1~a2:
a1、水泵电机工作时,实时获取流量计的工作状态。
a2、当确定流量计发生故障时,直接根据流量控制指令生成水泵电机的转速控制指令,调节水泵的转速。
在流量计发生故障时,直接根据步骤S201中获取的流量控制指令生成水泵电机的转速控制指令,调节水泵的转速。即在流量计反馈的水泵的实际流量不准确时,不再实时获取水泵的实际流量,并根据获取的水泵的实际流量和期望流量调节水泵的转速以使得水泵的实际流量稳定在期望流量附近,以使得农业无人飞行器能够正常作业。
其中,流量计的故障包括但不限于如下的情况:流量计在预设时长内的输出均为流量计能够测量到的最大流量;或者,流量计在预设时长内的输出均为流量计能够测量到的最小流量;或者,流量计在预设时长内输出的各流量中至少存在第一流量和第二流量,第一流量和第二流量的差值的绝对值大于或等于预设值(也就是流量计测量得到的水泵的流量波动很大)。
本实施例中通过流量计实时获取水泵的实际流量,并根据获取的水泵的实际流量和期望流量调节水泵的转速以使得水泵的实际流量稳定在期望流量附近,在水泵老化或者水泵中介质变化等情况下,仍能对水泵的流量进行精确控制。即本实施例的方法可在各种农药施用场景下精确控制水泵的流量。
同时,由于本实施例的方法在实现精确控制水泵的流量时不受水泵结构的影响,因此本实施例的方法可降低水泵结构的复杂度,使得水泵体积小,重量轻,进而降低了农业无人飞行器的结构与性能的复杂度。
以上对本申请涉及的水泵流量的控制方法进行了说明,下面对本申请涉及的装置进行说明。
图6为本申请实施例提供的水泵控制系统的结构示意图,该水泵控制系 统用于农业无人飞行器。如图6所示,该水泵控制系统包括:水泵51,流量计52,控制器53,第一控制单元54、第二控制单元55和与水泵51连接的管道56。其中,流量计52设置在管道56上,水泵51分别与控制器53和第二控制单元55连接,控制器53的两端分别与第二控制单元55和第一控制单元54连接,第一控制单元54还与流量计52连接。此外,农业无人飞行器的处理器还与水泵控制系统通信连接,可通过通信总线实现处理器与水泵控制系统的第一控制单元54、控制器53和第二控制单元55的连接。
所述控制器53用于,获取所述水泵51的流量控制指令,所述流量控制指令基于所述水泵51的期望流量而生成;所述控制器53还用于,根据所述流量控制指令,生成所述水泵51的电机的转速控制指令,控制所述水泵51的电机工作;所述水泵51电机工作时,所述第一控制单元54用于实时获取所述流量计52测量得到的所述水泵51的第一实际流量;所述第一控制单元54和所述第二控制单元55用于,根据所述第一实际流量与所述期望流量,调节所述水泵51的转速,以使所述水泵51的流量达到第二实际流量,所述第二实际流量与所述期望流量的差值的绝对值小于预设值。
在一种实施方式中,所述农业无人飞行器包括处理器,所述控制器53在用于获取所述水泵51的流量控制指令时,具体用于:接收来自所述处理器的所述流量控制指令。
在一种实施方式中,所述流量控制指令是所述处理器基于从终端设备接收的终端控制指令生成的,所述终端设备与所述农业无人飞行器通信连接,所述终端控制指令基于用户在终端设备上的输入而生成;或者,所述流量控制指令是所述处理器基于飞行信息生成的,所述飞行信息至少包括如下一种:飞行轨迹位置、周围环境目标。
在一种实施方式中,所述控制器53在用于根据所述流量控制指令,生成水泵51电机的转速控制指令时,具体用于:根据所述流量控制指令和对应关系,获取所述期望流量对应的期望转速;所述对应关系为所述水泵51的转速与流量之间的对应关系;根据所述期望转速,生成所述水泵51电机的转速控制指令。
在一种实施方式中,所述农业无人飞行器包括处理器,所述第一控制单元54和所述第二控制单元55在用于根据所述第一实际流量与所述期望流量, 调节所述水泵51的转速时,所述第一控制单元54具体用于:接收来自所述处理器的所述流量控制指令;根据所述流量控制指令获取所述期望流量;根据所述第一实际流量与所述期望流量,获取流量调整参数。
在一种实施方式中,所述农业无人飞行器包括处理器,所述第一控制单元54和所述第二控制单元55在用于根据所述第一实际流量与所述期望流量,调节所述水泵51的转速时,所述第二控制单元55具体用于:接收来自所述处理器的所述流量控制指令;接收来自所述控制器53的流量调整指令,所述流量调整指令是所述控制器53基于所述流量调整参数生成的;根据所述流量调整指令和所述流量控制指令,生成转速调节指令,以调节所述水泵51的转速。
在一种实施方式中,在所述第一控制单元54和所述第二控制单元55根据所述第一实际流量与所述期望流量,调节所述水泵51的转速之后,所述控制器53还用于:获取所述流量计52的工作状态;当确定所述流量计52发生故障时,根据所述流量控制指令,生成水泵51电机的转速控制指令,控制所述水泵51的电机工作。
在一种实施方式中,所述流量计52的故障包括:所述流量计52在预设时长内的输出均为所述流量计52能够测量到的最大流量;或者,所述流量计52在预设时长内的输出均为所述流量计52能够测量到的最小流量;或者,所述流量计52在预设时长内输出的各流量中至少存在第一流量和第二流量,所述第一流量和第二流量的差值的绝对值大于或等于预设值。
在一种实施方式中,所述流量计52为电磁流量计52。
本实施例的水泵控制系统,可以用于执行上述各方法实施例中的水泵控制系统所对应的技术方案,其实现原理和技术效果类似,此处不再赘述。
图7为本申请实施例提供的农业无人飞行器的结构示意图,参见图7,该农业无人飞行器包括水泵控制系统61和处理器62,水泵控制系统61与处理器62通信连接;水泵控制系统61包括:水泵51,流量计52,控制器53,第一控制单元54、第二控制单元55和与水泵51连接的管道56。其中,流量计52设置在管道56上,水泵51分别与控制器53和第二控制单元55连接,控制器53的两端分别与第二控制单元55和第一控制单元54连接,第一控制单元54还与流量计52连接。处理器62可通过通信总线63实现处理器与水 泵控制系统的第一控制单元54、控制器53和第二控制单元55的连接。
所述处理器62用于生成所述水泵51的流量控制指令;所述控制器53用于,接收来自所述处理器62的所述流量控制指令;所述控制器53还用于,根据所述流量控制指令,生成所述水泵51的电机的转速控制指令,控制所述水泵51的电机工作;所述水泵51电机工作时,所述第一控制单元54用于实时获取所述流量计52测量得到的所述水泵51的第一实际流量;所述第一控制单元54和所述第二控制单元55用于,根据所述第一实际流量与所述期望流量,调节所述水泵51的转速,以使所述水泵51的流量达到第二实际流量,所述第二实际流量与所述期望流量的差值的绝对值小于预设值。
在一种实施方式中,所述处理器62在用于生成所述水泵51的流量控制指令时,具体用于:所述处理器62获取所述水泵51的期望流量;根据所述期望流量,生成所述流量控制指令。
在一种实施方式中,所述处理器62在用于获取期望流量时,具体用于:所述处理器62接收终端设备发送的终端控制指令;其中,所述终端设备与所述农业无人飞行器通信连接,所述终端控制指令基于用户在终端设备上的输入而生成;根据所述终端控制指令,获取期望流量。
在一种实施方式中,所述处理器62在用于获取期望流量时,具体用于:基于飞行信息,确定期望流量;其中,所述飞行信息至少包括如下一种:飞行轨迹位置或周围环境目标。
在一种实施方式中,所述控制器53在用于根据所述流量控制指令,生成水泵51电机的转速控制指令时,具体用于:根据所述流量控制指令和对应关系,获取所述期望流量对应的期望转速;所述对应关系为所述水泵51的转速与流量之间的对应关系;根据所述期望转速,生成所述水泵51电机的转速控制指令。
在一种实施方式中,所述第一控制单元54和所述第二控制单元55在用于根据所述第一实际流量与所述期望流量,调节所述水泵51的转速时,所述第一控制单元54具体用于:接收来自所述处理器62的所述流量控制指令;根据所述流量控制指令获取所述期望流量;根据所述第一实际流量与所述期望流量,获取流量调整参数。
在一种实施方式中,所述第一控制单元54和所述第二控制单元55在用 于根据所述第一实际流量与所述期望流量,调节所述水泵51的转速时,所述第二控制单元55具体用于:接收来自所述处理器62的所述流量控制指令;接收来自所述控制器53的流量调整指令,所述流量调整指令是所述控制器53基于所述流量调整参数生成的;根据所述流量调整指令和所述流量控制指令,生成转速调节指令,以调节所述水泵51的转速。
在一种实施方式中,在所述第一控制单元54和所述第二控制单元55根据所述第一实际流量与所述期望流量,调节所述水泵51的转速之后,所述控制器53还用于:获取所述流量计52的工作状态;当确定所述流量计52发生故障时,根据所述流量控制指令,生成水泵51电机的转速控制指令,控制所述水泵51的电机工作。
在一种实施方式中,所述流量计52的故障包括:所述流量计52在预设时长内的输出均为所述流量计52能够测量到的最大流量;或者,所述流量计52在预设时长内的输出均为所述流量计52能够测量到的最小流量;或者,所述流量计52在预设时长内输出的各流量中至少存在第一流量和第二流量,所述第一流量和第二流量的差值的绝对值大于或等于预设值。
在一种实施方式中,所述流量计52为电磁流量计。
本实施例的水泵控制系统,可以用于执行上述各方法实施例中的水泵控制系统所对应的技术方案,其实现原理和技术效果类似,此处不再赘述。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (30)

  1. 一种水泵流量的控制方法,应用于农业无人飞行器,所述农业无人飞行器搭载有水泵,其特征在于,所述方法包括:
    获取水泵的流量控制指令,所述流量控制指令基于所述水泵的期望流量而生成;
    根据所述流量控制指令,生成水泵电机的转速控制指令,控制所述水泵的电机工作;
    所述水泵电机工作时,实时获取流量计测量得到的所述水泵的第一实际流量;
    根据所述第一实际流量与所述期望流量,调节所述水泵的转速,以使所述水泵的流量达到第二实际流量,所述第二实际流量与所述期望流量的差值的绝对值小于预设值。
  2. 根据权利要求1所述的方法,其特征在于,所述获取水泵的流量控制指令,包括:
    接收终端设备发送的终端控制指令,基于所述终端控制指令生成所述流量控制指令,其中,所述终端设备与所述农业无人飞行器通信连接,所述终端控制指令基于用户在终端设备上的输入而生成。
  3. 根据权利要求1所述的方法,其特征在于,所述获取水泵的流量控制指令,包括:
    基于飞行信息生成所述流量控制指令,其中,所述飞行信息至少包括如下一种:飞行轨迹位置、周围环境目标。
  4. 根据权利要求1所述的方法,其特征在于,所述根据所述流量控制指令,生成水泵电机的转速控制指令,包括:
    根据所述流量控制指令和对应关系,获取所述期望流量对应的期望转速;所述对应关系为所述水泵的转速与流量之间的对应关系;
    根据所述期望转速,生成所述水泵电机的转速控制指令。
  5. 根据权利要求1所述的方法,其特征在于,所述根据所述第一实际流量与所述期望流量,调节所述水泵的转速,包括:
    根据所述第一实际流量与所述期望流量,获取流量调整参数;
    根据流量调整指令和所述流量控制指令,生成转速调节指令,以调节所 述水泵的转速,所述流量调整指令是基于所述流量调整参数生成的。
  6. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述水泵电机工作时,实时获取所述流量计的工作状态;
    当确定所述流量计发生故障时,直接根据所述流量控制指令生成水泵电机的转速控制指令,调节所述水泵的转速。
  7. 根据权利要求6所述的方法,其特征在于,所述流量计的故障包括:
    所述流量计在预设时长内的输出均为所述流量计能够测量到的最大流量;或者,
    所述流量计在预设时长内的输出均为所述流量计能够测量到的最小流量;或者,
    所述流量计在预设时长内输出的各流量中至少存在第一流量和第二流量,所述第一流量和第二流量的差值的绝对值大于或等于预设值。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述流量计为电磁流量计。
  9. 一种水泵控制系统,用于农业无人飞行器,其特征在于,所述水泵控制系统包括:水泵,流量计,控制器,第一控制单元和第二控制单元;
    所述控制器用于,获取所述水泵的流量控制指令,所述流量控制指令基于所述水泵的期望流量而生成;
    所述控制器还用于,根据所述流量控制指令,生成所述水泵的电机的转速控制指令,控制所述水泵的电机工作;
    所述水泵电机工作时,所述第一控制单元用于实时获取所述流量计测量得到的所述水泵的第一实际流量;
    所述第一控制单元和所述第二控制单元用于,根据所述第一实际流量与所述期望流量,调节所述水泵的转速,以使所述水泵的流量达到第二实际流量,所述第二实际流量与所述期望流量的差值的绝对值小于预设值。
  10. 根据权利要求9所述的水泵控制系统,其特征在于,所述农业无人飞行器包括处理器,所述控制器在用于获取所述水泵的流量控制指令时,具体用于:
    接收来自所述处理器的所述流量控制指令。
  11. 根据权利要求10所述的水泵控制系统,其特征在于,
    所述流量控制指令是所述处理器基于从终端设备接收的终端控制指令生成的,所述终端设备与所述农业无人飞行器通信连接,所述终端控制指令基于用户在终端设备上的输入而生成;或者,
    所述流量控制指令是所述处理器基于飞行信息生成的,所述飞行信息至少包括如下一种:飞行轨迹位置、周围环境目标。
  12. 根据权利要求9所述的水泵控制系统,其特征在于,所述控制器在用于根据所述流量控制指令,生成水泵电机的转速控制指令时,具体用于:
    根据所述流量控制指令和对应关系,获取所述期望流量对应的期望转速;所述对应关系为所述水泵的转速与流量之间的对应关系;
    根据所述期望转速,生成所述水泵电机的转速控制指令。
  13. 根据权利要求9所述的水泵控制系统,其特征在于,所述农业无人飞行器包括处理器,所述第一控制单元和所述第二控制单元在用于根据所述第一实际流量与所述期望流量,调节所述水泵的转速时,所述第一控制单元具体用于:
    接收来自所述处理器的所述流量控制指令;
    根据所述流量控制指令获取所述期望流量;
    根据所述第一实际流量与所述期望流量,获取流量调整参数。
  14. 根据权利要求13所述的水泵控制系统,其特征在于,所述农业无人飞行器包括处理器,所述第一控制单元和所述第二控制单元在用于根据所述第一实际流量与所述期望流量,调节所述水泵的转速时,所述第二控制单元具体用于:
    接收来自所述处理器的所述流量控制指令;
    接收来自所述控制器的流量调整指令,所述流量调整指令是所述控制器基于所述流量调整参数生成的;
    根据所述流量调整指令和所述流量控制指令,生成转速调节指令,以调节所述水泵的转速。
  15. 根据权利要求9所述的水泵控制系统,其特征在于,在所述第一控制单元和所述第二控制单元根据所述第一实际流量与所述期望流量,调节所述水泵的转速之后,所述控制器还用于:
    获取所述流量计的工作状态;
    当确定所述流量计发生故障时,根据所述流量控制指令,生成水泵电机的转速控制指令,控制所述水泵的电机工作。
  16. 根据权利要求15所述的水泵控制系统,其特征在于,所述流量计的故障包括:
    所述流量计在预设时长内的输出均为所述流量计能够测量到的最大流量;或者,
    所述流量计在预设时长内的输出均为所述流量计能够测量到的最小流量;或者,
    所述流量计在预设时长内输出的各流量中至少存在第一流量和第二流量,所述第一流量和第二流量的差值的绝对值大于或等于预设值。
  17. 根据权利要求9-16任一项所述的水泵控制系统,其特征在于,所述流量计为电磁流量计。
  18. 根据权利要求9-16任一项所述的水泵控制系统,其特征在于,还包括与所述水泵连接的管道,所述流量计设置在所述管道上;
    所述水泵分别与所述控制器和所述第二控制单元连接,所述控制器的两端分别与所述第二控制单元和所述第一控制单元连接,所述第一控制单元还与所述流量计连接。
  19. 一种搭载有水泵控制系统的农业无人飞行器,其特征在于,包括:水泵控制系统和处理器,所述水泵控制系统与所述处理器通信连接;所述水泵控制系统包括:水泵,流量计,控制器,第一控制单元和第二控制单元;
    所述处理器用于生成所述水泵的流量控制指令;
    所述控制器用于,接收来自所述处理器的所述流量控制指令;
    所述控制器还用于,根据所述流量控制指令,生成所述水泵的电机的转速控制指令,控制所述水泵的电机工作;
    所述水泵电机工作时,所述第一控制单元用于实时获取所述流量计测量得到的所述水泵的第一实际流量;
    所述第一控制单元和所述第二控制单元用于,根据所述第一实际流量与所述期望流量,调节所述水泵的转速,以使所述水泵的流量达到第二实际流量,所述第二实际流量与所述期望流量的差值的绝对值小于预设值。
  20. 根据权利要求19所述的农业无人飞行器,其特征在于,所述处理器 在用于生成所述水泵的流量控制指令时,具体用于:
    所述处理器获取所述水泵的期望流量;
    根据所述期望流量,生成所述流量控制指令。
  21. 根据权利要求20所述的农业无人飞行器,其特征在于,所述处理器在用于获取期望流量时,具体用于:
    所述处理器接收终端设备发送的终端控制指令;其中,所述终端设备与所述农业无人飞行器通信连接,所述终端控制指令基于用户在终端设备上的输入而生成;
    根据所述终端控制指令,获取期望流量。
  22. 根据权利要求20所述的农业无人飞行器,其特征在于,所述处理器在用于获取期望流量时,具体用于:
    基于飞行信息,确定期望流量;其中,所述飞行信息至少包括如下一种:飞行轨迹位置或周围环境目标。
  23. 根据权利要求19所述的农业无人飞行器,其特征在于,所述控制器在用于根据所述流量控制指令,生成水泵电机的转速控制指令时,具体用于:
    根据所述流量控制指令和对应关系,获取所述期望流量对应的期望转速;所述对应关系为所述水泵的转速与流量之间的对应关系;
    根据所述期望转速,生成所述水泵电机的转速控制指令。
  24. 根据权利要求19所述的农业无人飞行器,其特征在于,所述第一控制单元和所述第二控制单元在用于根据所述第一实际流量与所述期望流量,调节所述水泵的转速时,所述第一控制单元具体用于:
    接收来自所述处理器的所述流量控制指令;
    根据所述流量控制指令获取所述期望流量;
    根据所述第一实际流量与所述期望流量,获取流量调整参数。
  25. 根据权利要求24所述的农业无人飞行器,其特征在于,所述第一控制单元和所述第二控制单元在用于根据所述第一实际流量与所述期望流量,调节所述水泵的转速时,所述第二控制单元具体用于:
    接收来自所述处理器的所述流量控制指令;
    接收来自所述控制器的流量调整指令,所述流量调整指令是所述控制器基于所述流量调整参数生成的;
    根据所述流量调整指令和所述流量控制指令,生成转速调节指令,以调节所述水泵的转速。
  26. 根据权利要求19所述的农业无人飞行器,其特征在于,在所述第一控制单元和所述第二控制单元根据所述第一实际流量与所述期望流量,调节所述水泵的转速之后,所述控制器还用于:
    获取所述流量计的工作状态;
    当确定所述流量计发生故障时,根据所述流量控制指令,生成水泵电机的转速控制指令,控制所述水泵的电机工作。
  27. 根据权利要求26所述的农业无人飞行器,其特征在于,所述流量计的故障包括:
    所述流量计在预设时长内的输出均为所述流量计能够测量到的最大流量;或者,
    所述流量计在预设时长内的输出均为所述流量计能够测量到的最小流量;或者,
    所述流量计在预设时长内输出的各流量中至少存在第一流量和第二流量,所述第一流量和第二流量的差值的绝对值大于或等于预设值。
  28. 根据权利要求19-27任一项所述的农业无人飞行器,其特征在于,所述流量计为电磁流量计。
  29. 根据权利要求19-27任一项所述的农业无人飞行器,其特征在于,所述水泵控制系统还包括与所述水泵连接的管道,所述流量计设置在所述管道上;
    所述水泵分别与所述控制器和所述第二控制单元连接,所述控制器的两端分别与所述第二控制单元和所述第一控制单元连接,所述第一控制单元还与所述流量计连接。
  30. 一种计算机可读存储介质,包括程序或指令,当所述程序或指令在计算机上运行时,权利要求1~8任一所述的方法被执行。
PCT/CN2019/115669 2019-11-05 2019-11-05 水泵流量的控制方法、水泵控制系统和农业无人飞行器 WO2021087736A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980041392.7A CN112292530A (zh) 2019-11-05 2019-11-05 水泵流量的控制方法、水泵控制系统和农业无人飞行器
PCT/CN2019/115669 WO2021087736A1 (zh) 2019-11-05 2019-11-05 水泵流量的控制方法、水泵控制系统和农业无人飞行器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/115669 WO2021087736A1 (zh) 2019-11-05 2019-11-05 水泵流量的控制方法、水泵控制系统和农业无人飞行器

Publications (1)

Publication Number Publication Date
WO2021087736A1 true WO2021087736A1 (zh) 2021-05-14

Family

ID=74418896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/115669 WO2021087736A1 (zh) 2019-11-05 2019-11-05 水泵流量的控制方法、水泵控制系统和农业无人飞行器

Country Status (2)

Country Link
CN (1) CN112292530A (zh)
WO (1) WO2021087736A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114527803A (zh) * 2022-01-20 2022-05-24 云鲸智能(深圳)有限公司 供水控制方法、供水系统、装置、清洁设备以及存储介质
CN114607822A (zh) * 2022-03-28 2022-06-10 三一电动车科技有限公司 水阀控制方法、装置及清洗车

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114251852A (zh) * 2021-08-24 2022-03-29 佛山市顺德区美的饮水机制造有限公司 即热装置及其控制方法和控制装置、水处理装置和介质
CN113719889B (zh) * 2021-09-09 2023-04-07 中国电子信息产业集团有限公司第六研究所 一种区块链边缘流量安全控制方法、系统、电子设备
CN113973794A (zh) * 2021-09-10 2022-01-28 常州希米智能科技有限公司 一种无人机喷洒农药量监控处理方法和装置
CN114253307B (zh) * 2021-12-22 2024-07-05 广州极飞科技股份有限公司 喷撒量控制方法、装置、电子设备及存储介质
CN114837963A (zh) * 2022-03-31 2022-08-02 江铃汽车股份有限公司 一种水泵的流量控制方法、系统、可读存储介质以及车辆
CN115076128B (zh) * 2022-06-24 2024-01-02 广州安捷制造有限公司 一种水泵水流量测量方法、装置、设备及存储介质

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101560971A (zh) * 2009-04-03 2009-10-21 杨治金 泵组能源效率自动化控制系统及其控制方法
US7814749B2 (en) * 2008-03-03 2010-10-19 Deere & Company Method and apparatus for controlling a hydraulic system of a work machine
CN204919657U (zh) * 2015-08-03 2015-12-30 湖南沃尔特水设备有限公司 一种根据实时流量自动匹配合适水泵的供水设备
CN105928569A (zh) * 2016-04-18 2016-09-07 广州极飞电子科技有限公司 无人机喷洒流量检测方法和装置
CN104563219B (zh) * 2014-12-24 2017-01-04 卧龙电气集团股份有限公司 一种无外部传感器的供水控制方法
US20170002580A1 (en) * 2013-10-22 2017-01-05 Zodiac Pool Systems, Inc. Systems including variable speed pumps for cleaning swimming pools and spas
CN108150396A (zh) * 2017-12-28 2018-06-12 芜湖环球汽车配件有限公司 一种水泵智能流量控制方法
CN108361184A (zh) * 2018-02-11 2018-08-03 北京百度网讯科技有限公司 用于控制水泵的方法和装置
CN109026635A (zh) * 2018-09-30 2018-12-18 常州市泽宸电子有限公司 一种泵流量控制的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4237884B2 (ja) * 1999-07-29 2009-03-11 株式会社ジェイ・エム・エス 輸液用ポンプの流量制御装置
CN2615714Y (zh) * 2003-05-15 2004-05-12 李尚文 稳定流量装置
CN109072902A (zh) * 2017-12-18 2018-12-21 深圳市大疆创新科技有限公司 植保机的液体抽取装置的流量控制方法、装置及系统
CN109275648A (zh) * 2018-10-12 2019-01-29 杭州瓦屋科技有限公司 无人机喷洒控制方法和系统
CN109857141B (zh) * 2019-03-13 2022-06-03 商丘中原无人机科技有限公司 植保无人机喷洒方法和系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7814749B2 (en) * 2008-03-03 2010-10-19 Deere & Company Method and apparatus for controlling a hydraulic system of a work machine
CN101560971A (zh) * 2009-04-03 2009-10-21 杨治金 泵组能源效率自动化控制系统及其控制方法
US20170002580A1 (en) * 2013-10-22 2017-01-05 Zodiac Pool Systems, Inc. Systems including variable speed pumps for cleaning swimming pools and spas
CN104563219B (zh) * 2014-12-24 2017-01-04 卧龙电气集团股份有限公司 一种无外部传感器的供水控制方法
CN204919657U (zh) * 2015-08-03 2015-12-30 湖南沃尔特水设备有限公司 一种根据实时流量自动匹配合适水泵的供水设备
CN105928569A (zh) * 2016-04-18 2016-09-07 广州极飞电子科技有限公司 无人机喷洒流量检测方法和装置
CN108150396A (zh) * 2017-12-28 2018-06-12 芜湖环球汽车配件有限公司 一种水泵智能流量控制方法
CN108361184A (zh) * 2018-02-11 2018-08-03 北京百度网讯科技有限公司 用于控制水泵的方法和装置
CN109026635A (zh) * 2018-09-30 2018-12-18 常州市泽宸电子有限公司 一种泵流量控制的方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114527803A (zh) * 2022-01-20 2022-05-24 云鲸智能(深圳)有限公司 供水控制方法、供水系统、装置、清洁设备以及存储介质
CN114607822A (zh) * 2022-03-28 2022-06-10 三一电动车科技有限公司 水阀控制方法、装置及清洗车
CN114607822B (zh) * 2022-03-28 2024-04-30 三一电动车科技有限公司 水阀控制方法、装置及清洗车

Also Published As

Publication number Publication date
CN112292530A (zh) 2021-01-29

Similar Documents

Publication Publication Date Title
WO2021087736A1 (zh) 水泵流量的控制方法、水泵控制系统和农业无人飞行器
CN109857141B (zh) 植保无人机喷洒方法和系统
CN109122633B (zh) 神经网络决策的植保无人机精准变量喷雾装置和控制方法
CN107264804A (zh) 一种基于gps的无人飞行器变量喷雾控制装置与方法
CN106970634B (zh) 一种智能植保无人机的控制管理系统及其控制方法
US10316760B2 (en) Turboshaft engine control
JP2019537182A (ja) 無人機の飛行を制御するための方法及び装置
Desale et al. Unmanned aerial vehicle for pesticides spraying
US11492786B2 (en) Method for fluid pressure control in a closed system
CN103657923B (zh) Pwm间歇喷雾式变量喷施系统喷施流量分组调控方法
CN102591302A (zh) 一种无人机喷洒农药的作业方法
US20210333805A1 (en) Flight Control Method and Device of Unmanned Aerial Vehicle, and Unmanned Aerial Vehicle
CN113485470A (zh) 一种变量喷雾控制方法、装置及系统
Mercaldi et al. Flow and pressure regulation for agricultural sprayers using solenoid valves
JP2017516203A (ja) 過渡状態のシステムにおける流量制御の補正方法
US20200277057A1 (en) Flow control method, apparatus and system for liquid extraction apparatus of plant protection machine
CN109725655B (zh) 一种多喷头流量控制模型的构建方法及装置
CN107992071A (zh) 尾座式无人机纵向姿态双模糊控制系统及方法
JP2018043696A (ja) 空中散布装置
CN110262541B (zh) 无人机控制方法、装置、无人机、遥控器及存储介质
CN109901607A (zh) 一种多旋翼无人机专用飞控系统
WO2021258258A1 (zh) 流量计的校准方法、装置、设备及存储介质
WO2021256916A3 (en) System and method for controlling fluid flow
CN107943174A (zh) 一种地面结冰云雾模拟设备控制系统
CN109654004A (zh) 基于can总线的消防车水泵稳压控制系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19951350

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19951350

Country of ref document: EP

Kind code of ref document: A1