[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021085791A1 - Feedback-based on-die termination circuit - Google Patents

Feedback-based on-die termination circuit Download PDF

Info

Publication number
WO2021085791A1
WO2021085791A1 PCT/KR2020/008254 KR2020008254W WO2021085791A1 WO 2021085791 A1 WO2021085791 A1 WO 2021085791A1 KR 2020008254 W KR2020008254 W KR 2020008254W WO 2021085791 A1 WO2021085791 A1 WO 2021085791A1
Authority
WO
WIPO (PCT)
Prior art keywords
gate
transistor
voltage
impedance matching
feedback
Prior art date
Application number
PCT/KR2020/008254
Other languages
French (fr)
Korean (ko)
Inventor
조성환
정연욱
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Publication of WO2021085791A1 publication Critical patent/WO2021085791A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers

Definitions

  • the present invention relates to an on-die termination circuit for transmission channel impedance matching, and more particularly, to a feedback-based on-die termination circuit that reduces power and maintains signal integrity by adjusting a gate voltage of a transistor using a feedback method. .
  • various semiconductor devices implemented as integrated circuit chips such as a CPU, memory, and gate array are used in various electrical products such as personal computers, servers, or workstations.
  • the semiconductor device has a receiving circuit for receiving various signals transmitted from the outside world through an input pad, and an output circuit for providing internal signals to the outside through an output pad.
  • the swing width of signals interfaced between the semiconductor devices gradually decreases. The reason is to minimize the delay time required for signal transmission.
  • the influence on external noise increases, and the reflection of the signal due to impedance mismatching (hereinafter referred to as'mismatching') at the interface terminal becomes serious.
  • the impedance mismatch occurs due to changes in operating temperature, changes and limitations in manufacturing processes, and the like.
  • impedance mismatching occurs, high-speed transmission of data becomes difficult, and output data output from the data output terminal of the semiconductor device may be distorted. Accordingly, when the semiconductor device of the receiving side receives the distorted output signal through the input terminal, problems such as setup/hold failure or an error in determining the input level may be frequently caused.
  • the semiconductor device on the receiving side which is required to increase the operation speed, employs an impedance matching circuit called on-chip termination or on-die termination near the pad in the integrated circuit chip.
  • source termination by an output circuit is performed on the transmission side
  • parallel termination is performed by a termination circuit connected in parallel to the reception circuit connected to the input pad on the reception side.
  • FIG. 1 is a conceptual diagram of an on-die termination circuit according to the prior art, and FIG. 1 is to perform impedance matching through resistors connected to each transmission line.
  • This method has a disadvantage in that the DC power consumption is greatly increased. This is a fundamental problem of the parallel termination method, so it is intended to solve the problem in implementation.
  • a resistor is not used to save an area, and a transistor such as a MOSFET is used instead of a resistor.
  • a separate resistor is not added, and as shown in FIG. 2, the transmitting end Tx is also used as a termination resistor.
  • the conventional method of using a MOSFET and using the Tx stage as a termination resistor can bring a large gain in terms of area.
  • the channel resistance (r DS ) in the linear region of the MOSFET is defined as in Equation 1, and the channel resistance (r DS ) decreases non-linearly with respect to the drain voltage (v SD ).
  • k n is a preset constant
  • v SG is a gate voltage
  • v th is a threshold voltage
  • v SD is a drain voltage
  • the reflection coefficient formula is an equation of the value of the termination resistance and the load impedance, and is shown in Equation 2 below.
  • the magnitude of the reflected and returned signal is the same as in Equation 3, and the input signal ⁇ v is multiplied by a reflection coefficient and an attenuation coefficient ⁇ .
  • Z L is the load impedance and Z O is the transmission channel impedance.
  • the channel resistance of the MOSFET linearly decreases according to the drain voltage of the MOSFET, and the current consumption increases as the channel resistance of the MOSFET decreases.
  • the voltage of the transmission channel is 500mV, it is 50 ohms, in the case of 750 mV, it is 40 ohms, and in the case of 1V, if it is 30 ohms, reflection occurs at the part falling below 50 ohms and it consumes less than 50 ohms Becomes larger.
  • the resistance of the MOSFET is increased excessively, it becomes 50 ohms for 500mV, 60 ohms for 750mV, and 70 ohms for 1V, causing an additional problem of increasing the reflected signal.
  • the present invention is to provide a new type of feedback-based on-die termination circuit that reduces power and maintains signal integrity by adjusting the gate voltage of the transistor using a feedback method. .
  • a transistor connected to a transmission channel to perform impedance matching based on a channel resistance; And a feedback circuit for adjusting the channel resistance by feeding back a driving voltage or a ground to a gate of the transistor when impedance matching is requested.
  • the transistor is connected between a driving voltage and a transmission channel, and is a first type transistor that is turned on when a gate voltage is less than or equal to a threshold.
  • the feedback circuit comprises: first and second resistors for applying a voltage to a gate of a first transistor by dividing a driving voltage; A first switch connecting a driving voltage to the first and second resistors when impedance matching is requested; And a second switch connecting a transmission channel to the first and second resistors when impedance matching is requested.
  • the feedback circuit includes a third resistor connected to the ground; A second type transistor connected between the gate of the first transistor and the third resistor and turned on when a threshold voltage or more is applied to the gate; And a third switch connected to a contact point between the drain of the first type transistor and the transfer channel, and connecting the transfer channel to the gate of the second type transistor when impedance matching is requested.
  • the transistor may be a second type transistor that is connected between the ground and the transmission channel and is turned on when the gate voltage is greater than or equal to a threshold.
  • the feedback circuit includes fourth and fifth resistors that divide the voltage of the transmission channel and apply it to the gate of the second type transistor; A fourth switch connecting the transmission channel to the fourth and fifth resistors when impedance matching is requested; And a fifth switch connecting the ground to the fourth and fifth resistors when impedance matching is requested.
  • the present invention adjusts a gate voltage of a transmission transistor through feedback, so that power can be saved without increasing the maximum size of a reflected signal regardless of whether or not the drain voltage is increased.
  • impedance matching can be turned on or off through a switch, so that it can be directly applied to an existing circuit, and can be applied directly to a current structure that uses a transmitting transistor as a terminating resistor.
  • FIG 1 and 2 are diagrams for explaining an on-die termination circuit according to the prior art.
  • FIG. 3 is a diagram illustrating a conceptual diagram of an on-die termination circuit according to an embodiment of the present invention.
  • FIG. 4 is a diagram showing a detailed circuit diagram of an on-die termination circuit according to an embodiment of the present invention.
  • FIG. 5 is a diagram illustrating a data value change pattern according to a detailed circuit diagram of an on-die termination circuit according to an embodiment of the present invention.
  • FIG. 6 is a diagram showing a detailed circuit diagram of an on-die termination circuit according to another embodiment of the present invention.
  • FIG. 7 is a diagram showing a detailed circuit diagram of an on-die termination circuit according to another embodiment of the present invention.
  • FIG. 8 is a diagram illustrating a data value change pattern according to a detailed circuit diagram of an on-die termination circuit according to another embodiment of the present invention.
  • FIG. 9 is a diagram for explaining the performance of a transistor according to an embodiment of the present invention.
  • block diagrams herein are to be understood as representing a conceptual perspective of exemplary circuits embodying the principles of the invention.
  • all flowcharts, state transition diagrams, pseudocodes, etc. are understood to represent the various processes performed by a computer or processor, whether or not the computer or processor is clearly depicted and that can be represented substantially in a computer-readable medium. It should be.
  • the functions of the various elements shown in the drawings may be provided by the use of dedicated hardware as well as hardware having the ability to execute software in association with appropriate software.
  • the function may be provided by a single dedicated processor, a single shared processor, or a plurality of individual processors, some of which may be shared.
  • DSP digital signal processor
  • ROM read-only memory
  • RAM random access memory
  • non-volatile memory Other commonly used hardware may also be included.
  • components expressed as means for performing the functions described in the detailed description include all types of software including, for example, combinations of circuit elements or firmware/microcodes that perform the above functions. It is intended to include all methods of performing a function to perform the function, and is combined with suitable circuitry for executing the software to perform the function. Since the invention defined by these claims is combined with the functions provided by the various enumerated means and combined with the manner required by the claims, any means capable of providing the above functions are equivalent to those conceived from this specification. It should be understood as.
  • FIG. 3 is a diagram illustrating a conceptual diagram of an on-die termination circuit according to an embodiment of the present invention.
  • the circuit 10 of the present invention is connected to the transmission channel CH, the transistor 11 applies a channel resistance to the transmission channel, and when impedance matching is requested from an external control device, the driving voltage or ground Is fed back to the gate of the transistor 11 so that the channel resistance r DS of the transistor 11 is adjusted according to the gate voltage.
  • the present invention adjusts the gate voltage of the MOSFET through feedback differently from the conventional method, thereby conserving power without increasing the maximum size of the reflected signal.
  • the feedback circuit can be directly applied to an existing circuit by determining through a switch whether or not the feedback circuit is driven.
  • it can be applied directly to the current structure using the transmitting end (Tx) as a terminating resistor.
  • the transistor 11 of the present invention is connected between the driving voltage V DD and the transmission channel CH, and is implemented as a pMOSFET that is turned on when the gate voltage is less than or equal to the threshold, or the ground (GND) and the transmission channel (CH) It is connected between and can be implemented as an nMOSFET that turns on when the gate voltage is greater than the threshold.
  • FIG. 4 is a diagram showing a detailed circuit diagram of an on-die termination circuit according to an embodiment of the present invention, and it is assumed that the transistor 11 at this time is implemented as a pMOSFET (PM).
  • PM pMOSFET
  • the feedback circuit 12 of the present invention comprises first and second resistors R1 and R2 applied to the gate of the pMOSFET PM by dividing the driving voltage VDD, and the driving voltage VDD. ) And the first and second resistors R1 and R2 to connect the driving voltage VDD to the first and second resistors R1 and R2 when impedance matching is requested. , Is located between the first and second resistors R1 and R2 and the transmission channel CH, and connects the transmission channel CH to the first and second resistors R1 and R2 when impedance matching is requested. 2 Impedance matching is performed by using a pMOSFET (PM) connected to the driving voltage in a VDD termination method, including the switch SW2, as a resistor.
  • PM pMOSFET
  • the first and second switches SW1 and SW2 are turned on to connect the driving voltage V DD and the transmission channel CH to both ends of the first and second resistors R1 and R2. .
  • the first and second resistors R1 and R2 divide the voltage difference between the driving voltage V DD and the transmission channel CH according to their resistance ratio ( ) And applied to the gate of the pMOSFET PM, so that the correlation between the gate voltage Vgs and the drain voltage Vds is maintained at a specific coefficient ratio.
  • Equation 4 is the current formula of the MOSFET in the linear mode. However, if the gate voltage Vgs is maintained at a specific coefficient ratio of the drain voltage Vds, V ds 2 may be canceled, and in this case, Equation 4 may be converted to Equation 5.
  • the drain current changes linearly with the drain voltage, and the magnitude of the channel resistance of the MOSFET is always maintained at 50 ohms.
  • the MOSFET acts like a pure resistor.
  • I D is the drain current
  • Vds is the drain voltage
  • Vt is the threshold voltage
  • W is the capacitance of the parallel plate capacitor per unit gate area
  • W is the channel width
  • L is the channel length.
  • the first and second switches SW1 and SW2 are turned off, and no voltage is applied through the first and second resistors R1 and R2, so that the gate of the pMOSFET PM Goes to the floating state. Then, the channel resistance (r DS ) of the pMOSFET (PM) becomes infinite, and it no longer functions as a termination resistor.
  • the resistance of the feedback circuit 12 is seen as it is from the side of the transmission channel.
  • the data value transmitted through the transmission channel swings within the range from VDD/2 to VDD as shown in FIG. 5, and at this time, if the resistance in the feedback circuit 12 is sufficiently large, no problem occurs.
  • an nMOSFET is attached without a resistance directly attached to the contact point (Node A) of the transmission channel and the feedback circuit, so that the impedance of the feedback circuit viewed from the transmission channel becomes a large resistance of the nMOSFET gate.
  • the gate voltage and the source voltage of the nMOSFET are the same, the same effect as the resistor connection can be achieved.
  • FIG. 6 is a diagram showing a detailed circuit diagram of an on-die termination circuit according to another embodiment of the present invention.
  • the feedback circuit 12' of the present invention is connected between the third resistor R connected to the ground, the gate of the pMOSFET PM, and the third resistor R3, and the gate voltage is greater than or equal to the threshold voltage.
  • the drain of the pMOSFET (PM) is connected to the contact point of the transmission channel (CH), and when impedance matching is requested, the transmission channel (CH) is connected to the gate of the nMOSFET (NM). It is configured to include three switches (SW3) and the like.
  • the voltage of the transmission channel (CH) is fed back through the nMOSFET (NM) so that the gate voltage of the pMOSFET (PM) is variable. .
  • NM nMOSFET
  • the feedback circuit 12 ′′ of the present invention divides the voltage of the transmission channel CH and applies the fourth and fifth resistors R4 and R5 to the gate of the nMOSFET NM, and the transmission channel.
  • a fourth switch SW4 positioned between the fourth and fifth resistors R4 and R5 to connect the transmission channel CH to the fourth and fifth resistors R4 and R5 when impedance matching is requested, Including a fifth switch (SW5) that is located between the fourth and fifth resistors (R4, R5) and the ground, and connects the ground to the fourth and fifth resistors (R4, R5) when impedance matching is requested.
  • Impedance matching is performed by using an nMOSFET (NM) connected to the ground in a ground termination method as a resistor.
  • the feedback circuit of FIG. 7 is driven by the same principle as in FIG. 4, but the feedback is implemented in a source follower method.
  • the data value transmitted through the transmission channel of FIG. 7 swings within the range from VDD/2 to VDD as shown in FIG. 8.
  • FIG. 9 is a diagram for explaining the performance of a transistor according to an embodiment of the present invention.
  • a dotted line corresponds to a conventional transistor
  • a solid line corresponds to a transistor of the present invention.
  • the linear relationship between the drain voltage and the drain current is continuously maintained regardless of the drain voltage, and as a result, the channel resistance is also maintained at 50 ohms.
  • the present invention keeps the channel resistance of the transistor constant through the gate voltage feedback, so that the reflected signal does not increase and the current can be saved at the same time.
  • the method according to the present invention described above may be produced as a program for execution in a computer and stored in a computer-readable recording medium.
  • Examples of computer-readable recording media include ROM, RAM, CD-ROM, and magnetic tape. , Floppy disks, optical data storage devices, and the like, and also include those implemented in the form of a carrier wave (for example, transmission through the Internet).
  • the computer-readable recording medium is distributed over a computer system connected through a network, so that computer-readable codes can be stored and executed in a distributed manner.
  • functional programs, codes, and code segments for implementing the method can be easily inferred by programmers in the art to which the present invention pertains.

Landscapes

  • Logic Circuits (AREA)

Abstract

The present invention relates to a feedback-based on-die termination circuit, which may comprise: a transistor connected to a transmission channel so as to perform channel resistance-based impedance matching; and a feedback circuit configured such that, if impedance matching is requested, a driving voltage or ground is fed back to a gate of the transistor, thereby adjusting the channel resistance.

Description

피드백 기반의 온 다이 터미네이션 회로Feedback-based on-die termination circuit
본 발명은 전송 채널 임피던스 정합을 위한 온 다이 터미네이션 회로에 관한 것으로, 특히 피드백 방식으로 트랜지스터의 게이트 전압을 조정하여, 전력을 줄이면서 신호 무결성을 유지할 수 있도록 하는 피드백 기반의 온 다이 터미네이션 회로에 관한 것이다. The present invention relates to an on-die termination circuit for transmission channel impedance matching, and more particularly, to a feedback-based on-die termination circuit that reduces power and maintains signal integrity by adjusting a gate voltage of a transistor using a feedback method. .
일반적으로 CPU, 메모리, 및 게이트 어레이 등과 같이 집적회로 칩으로 구현되는 다양한 반도체 소자들(devices)은 퍼스널 컴퓨터, 서버, 또는 워크스테이션과 같은 다양한 전기적 제품(electrical products)에 사용된다. 대부분의 경우에, 상기 반도체 소자는 외부(outside world)에서 전송되는 각종 신호들을 입력 패드를 통해 수신하기 위한 수신회로와, 내부의 신호를 출력 패드를 통해 외부로 제공하기 위한 출력회로를 가지고 있다.In general, various semiconductor devices implemented as integrated circuit chips such as a CPU, memory, and gate array are used in various electrical products such as personal computers, servers, or workstations. In most cases, the semiconductor device has a receiving circuit for receiving various signals transmitted from the outside world through an input pad, and an output circuit for providing internal signals to the outside through an output pad.
한편, 전기적 제품의 동작스피드가 고속화됨에 따라 상기 반도체 장치들간에 인터페이스되는 신호의 스윙 폭은 점차로 줄어들고 있다. 그 이유는 신호전달에 걸리는 지연시간을 최소화하기 위해서이다. 그러나 신호의 스윙 폭이 줄어들수록 외부 노이즈에 대한 영향은 증가되고, 인터페이스단에서 임피던스 미스매칭(impedance mismatching, 이하 '부정합'이라고 함)에 따른 신호의 반사도 심각해진다. 상기 임피던스 미스매칭은 동작 온도의 변화, 제조공정의 변화와 한계 등에 기인하여 발생된다. 임피던스 미스매칭이 발생되면 데이터의 고속전송이 어렵게 되고 반도체장치의 데이터 출력단으로부터 출력되는 출력 데이터가 왜곡될 수 있다. 따라서, 수신측의 반도체 소자가 상기 왜곡된 출력신호를 입력단으로 수신할 경우 셋업/홀드 페일 또는 입력 레벨의 판단미스 등의 문제들이 빈번히 야기될 수 있다.Meanwhile, as the operation speed of electrical products increases, the swing width of signals interfaced between the semiconductor devices gradually decreases. The reason is to minimize the delay time required for signal transmission. However, as the swing width of the signal decreases, the influence on external noise increases, and the reflection of the signal due to impedance mismatching (hereinafter referred to as'mismatching') at the interface terminal becomes serious. The impedance mismatch occurs due to changes in operating temperature, changes and limitations in manufacturing processes, and the like. When impedance mismatching occurs, high-speed transmission of data becomes difficult, and output data output from the data output terminal of the semiconductor device may be distorted. Accordingly, when the semiconductor device of the receiving side receives the distorted output signal through the input terminal, problems such as setup/hold failure or an error in determining the input level may be frequently caused.
따라서, 동작스피드의 고속화가 요구되는 수신측의 반도체 소자는 온-칩 터미네이션(On-Chip Termination) 또는 온-다이 터미네이션이라고 불리는 임피던스 매칭회로를 상기 집적회로 칩내의 패드 근방에 채용하게 된다.Accordingly, the semiconductor device on the receiving side, which is required to increase the operation speed, employs an impedance matching circuit called on-chip termination or on-die termination near the pad in the integrated circuit chip.
통상적으로 온-다이 터미네이션 시킴에 있어서, 전송측에서는 출력회로에 의한 소오스 터미네이션(Source Termination)이 행해지고, 수신측에서는 상기 입력 패드에 연결된 수신회로에 대하여 병렬로 연결되어진 터미네이션 회로에 의해 병렬 터미네이션이 행해진다.In general, in on-die termination, source termination by an output circuit is performed on the transmission side, and parallel termination is performed by a termination circuit connected in parallel to the reception circuit connected to the input pad on the reception side.
도 1은 종래의 기술에 따른 온 다이 터미네이션 회로의 개념도로, 도 1은 전송 선로 각각에 연결되는 저항을 통해 임피던스 매칭을 수행하도록 한다. 이러한 방식은 DC 전력 소비가 크게 증가하는 단점을 가지는 데, 이는 병렬 터미네이션 방식의 근본적인 문제이므로 구현에서의 문제점을 해결하고자 한다. 1 is a conceptual diagram of an on-die termination circuit according to the prior art, and FIG. 1 is to perform impedance matching through resistors connected to each transmission line. This method has a disadvantage in that the DC power consumption is greatly increased. This is a fundamental problem of the parallel termination method, so it is intended to solve the problem in implementation.
실제 병렬 터미네이션을 구현함에 있어, 면적을 아끼기 위하여 저항을 사용하지 않고, MOSFET와 같은 트랜지스터를 저항 대신 사용하도록 한다. 면적을 더 줄이기 위하여 따로 저항을 넣지 않고, 도 2와 같이, 송신단(Tx)을 터미네이션 저항으로 사용하기도 한다. In realizing parallel termination, a resistor is not used to save an area, and a transistor such as a MOSFET is used instead of a resistor. In order to further reduce the area, a separate resistor is not added, and as shown in FIG. 2, the transmitting end Tx is also used as a termination resistor.
MOSFET 을 이용하고 Tx 단을 터미네이션 저항으로 사용하는 종래의 방식은 면적 측면에서 큰 이득을 가져 올 수 있다. The conventional method of using a MOSFET and using the Tx stage as a termination resistor can bring a large gain in terms of area.
MOSFET의 선형 영역에서의 채널 저항(rDS)은 수학식 1과 같이 정의되며, 채널 저항(rDS)는 드레인 전압(vSD)에 대해 비선형적으로 감소됨을 알 수 있다. It can be seen that the channel resistance (r DS ) in the linear region of the MOSFET is defined as in Equation 1, and the channel resistance (r DS ) decreases non-linearly with respect to the drain voltage (v SD ).
[수학식 1][Equation 1]
Figure PCTKR2020008254-appb-I000001
Figure PCTKR2020008254-appb-I000001
이때, kn는 기 설정된 상수, vSG는 게이트 전압, vth는 문턱 전압, vSD는 드레인 전압이다. In this case, k n is a preset constant, v SG is a gate voltage, v th is a threshold voltage, and v SD is a drain voltage.
반사계수 공식은 종단 저항의 값과 부하 임피던스의 식으로 이하의 수학식 2와 같다. 반사되어 돌아오는 신호의 크기는 수학식 3과 같으며, 입력 신호(△v)에 반사 계수(Reflection coefficient)를 곱하고 감쇠계수(α)를 곱하면 된다.The reflection coefficient formula is an equation of the value of the termination resistance and the load impedance, and is shown in Equation 2 below. The magnitude of the reflected and returned signal is the same as in Equation 3, and the input signal Δv is multiplied by a reflection coefficient and an attenuation coefficient α.
[수학식 2][Equation 2]
Figure PCTKR2020008254-appb-I000002
Figure PCTKR2020008254-appb-I000002
이때, ZL는 부하 임피던스, ZO는 전송 채널 임피던스이다. At this time, Z L is the load impedance and Z O is the transmission channel impedance.
[수학식 3][Equation 3]
Reflected signal Amplitude = △v
Figure PCTKR2020008254-appb-I000003
Reflection coefficient
Figure PCTKR2020008254-appb-I000004
α
Reflected signal Amplitude = △v
Figure PCTKR2020008254-appb-I000003
Reflection coefficient
Figure PCTKR2020008254-appb-I000004
α
따라서 MOSFET의 드레인 전압에 따라 MOSFET의 채널 저항은 선형적으로 감소하고, MOSFET의 채널 저항에 감소함에 따라 전류 소모량을 증가하게 된다. 예를 들어, 전송 채널의 전압이 500mV인 경우에는 50옴, 750 mV인 경우에는 40옴, 1V인 경우에는 30옴 이었다면, 50 옴보다 떨어지는 부분에서 반사가 발생하고 50 옴보다 적어지기 때문에 전류 소모가 커지게 된다. Therefore, the channel resistance of the MOSFET linearly decreases according to the drain voltage of the MOSFET, and the current consumption increases as the channel resistance of the MOSFET decreases. For example, if the voltage of the transmission channel is 500mV, it is 50 ohms, in the case of 750 mV, it is 40 ohms, and in the case of 1V, if it is 30 ohms, reflection occurs at the part falling below 50 ohms and it consumes less than 50 ohms Becomes larger.
한편, MOSFET의 저항을 과하게 키운다면 500mV인 경우에는 50옴, 750 mV인 경우에는 60옴, 1V 에는 70 옴이 되어, 반사되는 신호가 커지는 추가적인 문제가 발생한다. On the other hand, if the resistance of the MOSFET is increased excessively, it becomes 50 ohms for 500mV, 60 ohms for 750mV, and 70 ohms for 1V, causing an additional problem of increasing the reflected signal.
이에 상기와 같은 문제점을 해결하기 위한 것으로서, 본 발명은 피드백 방식으로 트랜지스터의 게이트 전압을 조정함으로써, 전력을 줄이면서 신호 무결성을 유지할 수 있도록 하는 새로운 방식의 피드백 기반의 온 다이 터미네이션 회로를 제공하고자 한다. Accordingly, as to solve the above problems, the present invention is to provide a new type of feedback-based on-die termination circuit that reduces power and maintains signal integrity by adjusting the gate voltage of the transistor using a feedback method. .
본 발명의 목적은 이상에서 언급한 목적으로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 본 발명이 속하는 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The object of the present invention is not limited to the above-mentioned object, and other objects not mentioned will be clearly understood by those of ordinary skill in the art from the following description.
상기 과제를 해결하기 위한 수단으로서, 본 발명의 일 실시 형태에 따르면 전송 채널에 연결되어, 채널 저항에 기반한 임피던스 매칭을 수행하는 트랜지스터; 및 임피던스 매칭이 요청되면, 구동 전압 또는 접지를 상기 트랜지스터의 게이트에 피드백시켜 상기 채널 저항을 조정하는 피드백 회로를 포함하는 피드백 기반의 온 다이 터미네이션 회로를 제공한다. As a means for solving the above problem, according to an embodiment of the present invention, a transistor connected to a transmission channel to perform impedance matching based on a channel resistance; And a feedback circuit for adjusting the channel resistance by feeding back a driving voltage or a ground to a gate of the transistor when impedance matching is requested.
상기 트랜지스터는 구동 전압과 전송 채널 사이에 연결되며, 게이트 전압이 문턱치 이하일 때 턴온되는 제1형의 트랜지스터인 것을 특징으로 한다. The transistor is connected between a driving voltage and a transmission channel, and is a first type transistor that is turned on when a gate voltage is less than or equal to a threshold.
상기 피드백 회로는 구동 전압을 전압 분배하여 제1 트랜지스터의 게이트에 인가하는 제1 및 제2 저항; 임피던스 매칭이 요청되면, 상기 제1 및 제2 저항에 구동 전압을 연결시키는 제1 스위치; 및 임피던스 매칭이 요청되면, 상기 제1 및 제2 저항에 전송 채널을 연결시키는 제2 스위치를 포함하는 것을 특징으로 한다. The feedback circuit comprises: first and second resistors for applying a voltage to a gate of a first transistor by dividing a driving voltage; A first switch connecting a driving voltage to the first and second resistors when impedance matching is requested; And a second switch connecting a transmission channel to the first and second resistors when impedance matching is requested.
또한 상기 피드백 회로는 접지에 연결되는 제3 저항; 상기 제1 트랜지스터의 게이트와 상기 제3 저항 사이에 연결되며, 문턱 전압 이상이 게이트에 인가되면 턴온되는 제2형의 트랜지스터; 및 상기 제1형의 트랜지스터의 드레인과 상기 전송 채널의 접점에 연결되어, 임피던스 매칭이 요청될 때에 상기 전송 채널을 상기 제2형의 트랜지스터의 게이트에 연결하는 제3 스위치를 포함하는 것을 특징으로 한다. In addition, the feedback circuit includes a third resistor connected to the ground; A second type transistor connected between the gate of the first transistor and the third resistor and turned on when a threshold voltage or more is applied to the gate; And a third switch connected to a contact point between the drain of the first type transistor and the transfer channel, and connecting the transfer channel to the gate of the second type transistor when impedance matching is requested. .
반면, 상기 트랜지스터는 접지와 전송 채널 사이에 연결되며, 게이트 전압이 문턱치 이상일 때 턴온되는 제2형의 트랜지스터일 수 있다. On the other hand, the transistor may be a second type transistor that is connected between the ground and the transmission channel and is turned on when the gate voltage is greater than or equal to a threshold.
이때, 상기 피드백 회로는 전송 채널의 전압을 전압 분배하여 제2형의 트랜지스터의 게이트에 인가하는 제4 및 제5 저항; 임피던스 매칭이 요청되면, 상기 제4 및 제5 저항에 상기 전송 채널을 연결시키는 제4 스위치; 및 임피던스 매칭이 요청되면, 상기 제4 및 제5 저항에 상기 접지를 연결시키는 제5 스위치를 포함하는 것을 특징으로 한다. In this case, the feedback circuit includes fourth and fifth resistors that divide the voltage of the transmission channel and apply it to the gate of the second type transistor; A fourth switch connecting the transmission channel to the fourth and fifth resistors when impedance matching is requested; And a fifth switch connecting the ground to the fourth and fifth resistors when impedance matching is requested.
본 발명은 송신용 트랜지스터의 게이트 전압을 피드백을 통해 조정하여, 드레인 전압의 증가 여부에 상관없이 반사 신호의 최대 크기는 키우지 않고 전력을 아낄 수 있도록 한다. The present invention adjusts a gate voltage of a transmission transistor through feedback, so that power can be saved without increasing the maximum size of a reflected signal regardless of whether or not the drain voltage is increased.
그리고 반사 신호의 최대 크기가 커지지 않으므로, 신호 무결성 측면에서 동일한 효과를 가져 올 수 있도록 한다. 더하여, 데이터 값 변화 동안 저항을 키워 전력 소모를 줄일 수도 있도록 한다. In addition, since the maximum size of the reflected signal does not increase, the same effect can be obtained in terms of signal integrity. In addition, it is possible to reduce power consumption by increasing the resistance during data value change.
마지막으로, 스위치를 통하여 임피던스 매칭 여부를 온, 오프를 할 수 있어 기존 회로에 바로 적용시킬 수 있으며, 또한 송신용 트랜지스터를 종단 저항으로 사용하는 현재 구조에도 바로 적용시킬 수 있도록 한다. Lastly, impedance matching can be turned on or off through a switch, so that it can be directly applied to an existing circuit, and can be applied directly to a current structure that uses a transmitting transistor as a terminating resistor.
도 1 및 도 2는 종래의 기술에 따른 온 다이 터미네이션 회로를 설명하기 위한 도면이다. 1 and 2 are diagrams for explaining an on-die termination circuit according to the prior art.
도 3은 본 발명의 일 실시예에 따른 온 다이 터미네이션 회로의 개념도를 도시한 도면이다. 3 is a diagram illustrating a conceptual diagram of an on-die termination circuit according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 온 다이 터미네이션 회로의 상세 회로도를 도시한 도면이다. 4 is a diagram showing a detailed circuit diagram of an on-die termination circuit according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 온 다이 터미네이션 회로의 상세 회로도에 따른 데이터값 변화 패턴을 도시한 도면이다. 5 is a diagram illustrating a data value change pattern according to a detailed circuit diagram of an on-die termination circuit according to an embodiment of the present invention.
도 6은 본 발명의 다른 실시예에 따른 온 다이 터미네이션 회로의 상세 회로도로를 도시한 도면이다. 6 is a diagram showing a detailed circuit diagram of an on-die termination circuit according to another embodiment of the present invention.
도 7은 본 발명의 또 다른 실시예에 따른 온 다이 터미네이션 회로의 상세 회로도로를 도시한 도면이다. 7 is a diagram showing a detailed circuit diagram of an on-die termination circuit according to another embodiment of the present invention.
도 8은 본 발명의 또 다른 실시예에 따른 온 다이 터미네이션 회로의 상세 회로도에 따른 데이터값 변화 패턴을 도시한 도면이다. 8 is a diagram illustrating a data value change pattern according to a detailed circuit diagram of an on-die termination circuit according to another embodiment of the present invention.
도 9는 본 발명의 일 실시예에 따른 트랜지스터의 성능을 설명하기 위한 도면이다. 9 is a diagram for explaining the performance of a transistor according to an embodiment of the present invention.
이하의 내용은 단지 본 발명의 원리를 예시한다. 그러므로 당업자는 비록 본 명세서에 명확히 설명되거나 도시되지 않았지만 본 발명의 원리를 구현하고 본 발명의 개념과 범위에 포함된 다양한 장치를 발명할 수 있는 것이다. 또한, 본 명세서에 열거된 모든 조건부 용어 및 실시예들은 원칙적으로, 본 발명의 개념이 이해되도록 하기 위한 목적으로만 명백히 의도되고, 이와 같이 특별히 열거된 실시예들 및 상태들에 제한적이지 않는 것으로 이해되어야 한다.The following content merely exemplifies the principles of the present invention. Therefore, those skilled in the art can implement the principles of the present invention and invent various devices included in the concept and scope of the present invention, although not clearly described or illustrated herein. In addition, it is understood that all conditional terms and examples listed in this specification are, in principle, expressly intended only for the purpose of making the concept of the present invention understood, and are not limited to the embodiments and states specifically listed as such. It should be.
또한, 본 발명의 원리, 관점 및 실시예들 뿐만 아니라 특정 실시예를 열거하는 모든 상세한 설명은 이러한 사항의 구조적 및 기능적 균등물을 포함하도록 의도되는 것으로 이해되어야 한다. 또한 이러한 균등물들은 현재 공지된 균등물뿐만 아니라 장래에 개발될 균등물 즉 구조와 무관하게 동일한 기능을 수행하도록 발명된 모든 소자를 포함하는 것으로 이해되어야 한다.In addition, it is to be understood that all detailed descriptions listing specific embodiments as well as principles, aspects and embodiments of the present invention are intended to include structural and functional equivalents of these matters. It should also be understood that these equivalents include not only currently known equivalents, but also equivalents to be developed in the future, that is, all devices invented to perform the same function regardless of the structure.
따라서, 예를 들어, 본 명세서의 블럭도는 본 발명의 원리를 구체화하는 예시적인 회로의 개념적인 관점을 나타내는 것으로 이해되어야 한다. 이와 유사하게, 모든 흐름도, 상태 변환도, 의사 코드 등은 컴퓨터가 판독 가능한 매체에 실질적으로 나타낼 수 있고 컴퓨터 또는 프로세서가 명백히 도시되었는지 여부를 불문하고 컴퓨터 또는 프로세서에 의해 수행되는 다양한 프로세스를 나타내는 것으로 이해되어야 한다.Thus, for example, the block diagrams herein are to be understood as representing a conceptual perspective of exemplary circuits embodying the principles of the invention. Similarly, all flowcharts, state transition diagrams, pseudocodes, etc. are understood to represent the various processes performed by a computer or processor, whether or not the computer or processor is clearly depicted and that can be represented substantially in a computer-readable medium. It should be.
프로세서 또는 이와 유사한 개념으로 표시된 기능 블럭을 포함하는 도면에 도시된 다양한 소자의 기능은 전용 하드웨어뿐만 아니라 적절한 소프트웨어와 관련하여 소프트웨어를 실행할 능력을 가진 하드웨어의 사용으로 제공될 수 있다. 프로세서에 의해 제공될 때, 상기 기능은 단일 전용 프로세서, 단일 공유 프로세서 또는 복수의 개별적 프로세서에 의해 제공될 수 있고, 이들 중 일부는 공유될 수 있다.The functions of the various elements shown in the drawings, including a processor or functional block represented by a similar concept, may be provided by the use of dedicated hardware as well as hardware having the ability to execute software in association with appropriate software. When provided by a processor, the function may be provided by a single dedicated processor, a single shared processor, or a plurality of individual processors, some of which may be shared.
또한 프로세서, 제어 또는 이와 유사한 개념으로 제시되는 용어의 명확한 사용은 소프트웨어를 실행할 능력을 가진 하드웨어를 배타적으로 인용하여 해석되어서는 아니되고, 제한 없이 디지털 신호 프로세서(DSP) 하드웨어, 소프트웨어를 저장하기 위한 롬(ROM), 램(RAM) 및 비 휘발성 메모리를 암시적으로 포함하는 것으로 이해되어야 한다. 주지관용의 다른 하드웨어도 포함될 수 있다.In addition, the explicit use of terms presented as processor, control, or similar concepts should not be interpreted exclusively by quoting hardware capable of executing software, but without limitation, digital signal processor (DSP) hardware, ROM for storing software. It should be understood to implicitly include (ROM), RAM (RAM) and non-volatile memory. Other commonly used hardware may also be included.
본 명세서의 청구범위에서, 상세한 설명에 기재된 기능을 수행하기 위한 수단으로 표현된 구성요소는 예를 들어 상기 기능을 수행하는 회로 소자의 조합 또는 펌웨어/마이크로 코드 등을 포함하는 모든 형식의 소프트웨어를 포함하는 기능을 수행하는 모든 방법을 포함하는 것으로 의도되었으며, 상기 기능을 수행하도록 상기 소프트웨어를 실행하기 위한 적절한 회로와 결합된다. 이러한 청구범위에 의해 정의되는 본 발명은 다양하게 열거된 수단에 의해 제공되는 기능들이 결합되고 청구항이 요구하는 방식과 결합되기 때문에 상기 기능을 제공할 수 있는 어떠한 수단도 본 명세서로부터 파악되는 것과 균등한 것으로 이해되어야 한다.In the claims of the present specification, components expressed as means for performing the functions described in the detailed description include all types of software including, for example, combinations of circuit elements or firmware/microcodes that perform the above functions. It is intended to include all methods of performing a function to perform the function, and is combined with suitable circuitry for executing the software to perform the function. Since the invention defined by these claims is combined with the functions provided by the various enumerated means and combined with the manner required by the claims, any means capable of providing the above functions are equivalent to those conceived from this specification. It should be understood as.
상술한 목적, 특징 및 장점은 첨부된 도면과 관련한 다음의 상세한 설명을 통하여 보다 분명해질 것이며, 그에 따라 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 것이다. 또한, 본 발명을 설명함에 있어서 본 발명과 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에 그 상세한 설명을 생략하기로 한다. The above-described objects, features, and advantages will become more apparent through the following detailed description in connection with the accompanying drawings, whereby those of ordinary skill in the technical field to which the present invention pertains can easily implement the technical idea of the present invention. There will be. In addition, in describing the present invention, when it is determined that a detailed description of a known technology related to the present invention may unnecessarily obscure the subject matter of the present invention, a detailed description thereof will be omitted.
도 3은 본 발명의 일 실시예에 따른 온 다이 터미네이션 회로의 개념도를 도시한 도면이다. 3 is a diagram illustrating a conceptual diagram of an on-die termination circuit according to an embodiment of the present invention.
도 3을 참고하변, 본 발명의 회로(10)는 전송 채널(CH)에 연결되어, 채널 저항을 전송 채널에 인가하는 트랜지스터(11), 외부 제어 장치로부터 임피던스 매칭이 요청되면, 구동 전압 또는 접지를 트랜지스터(11)의 게이트에 피드백시켜, 트랜지스터(11)의 채널 저항(rDS)이 게이트 전압에 따라 조정되도록 하는 피드백 회로(12)를 포함하여 구성된다. 3, the circuit 10 of the present invention is connected to the transmission channel CH, the transistor 11 applies a channel resistance to the transmission channel, and when impedance matching is requested from an external control device, the driving voltage or ground Is fed back to the gate of the transistor 11 so that the channel resistance r DS of the transistor 11 is adjusted according to the gate voltage.
즉, 본 발명은 MOSFET 의 게이트 전압을 기존 방식과 다르게 피드백을 통해 조정함으로써, 반사되는 신호의 최대 크기는 키우지 않고 전력을 아끼도록 함을 알 수 있다.That is, it can be seen that the present invention adjusts the gate voltage of the MOSFET through feedback differently from the conventional method, thereby conserving power without increasing the maximum size of the reflected signal.
그리고 반사되는 신호의 최대 크기는 커지지 않으므로 신호 무결성 측면에서 동일한 효과를 가져 올 수 있다. 또한 데이터 값 변화 동안 저항을 키워 전력 소모를 줄일 수 있다.In addition, since the maximum size of the reflected signal does not increase, the same effect can be obtained in terms of signal integrity. In addition, it is possible to reduce power consumption by increasing the resistance during data value change.
또한 피드백 회로의 구동 여부를 통해 스위치를 통해 결정함으로써, 기존 회로에 바로 적용될 수 있다. 특히, 송신단(Tx)을 종단 저항으로 사용하는 지금의 구조에도 바로 적용이 가능하다.In addition, it can be directly applied to an existing circuit by determining through a switch whether or not the feedback circuit is driven. In particular, it can be applied directly to the current structure using the transmitting end (Tx) as a terminating resistor.
본 발명의 트랜지스터(11)는 구동 전압(VDD)과 전송 채널(CH) 사이에 연결되며, 게이트 전압이 문턱치 이하인 경우에 턴온되는 pMOSFET로 구현하거나, 또는 접지(GND)와 전송 채널(CH) 사이에 연결되며, 게이트 전압이 문턱치 보다 큰 경우에 턴온되는 nMOSFET로 구현할 수 있도록 한다. The transistor 11 of the present invention is connected between the driving voltage V DD and the transmission channel CH, and is implemented as a pMOSFET that is turned on when the gate voltage is less than or equal to the threshold, or the ground (GND) and the transmission channel (CH) It is connected between and can be implemented as an nMOSFET that turns on when the gate voltage is greater than the threshold.
도 4는 본 발명의 일 실시예에 따른 온 다이 터미네이션 회로의 상세 회로도로를 도시한 도면으로, 이때의 트랜지스터(11)는 pMOSFET(PM)로 구현된다고 가정하기로 한다. 4 is a diagram showing a detailed circuit diagram of an on-die termination circuit according to an embodiment of the present invention, and it is assumed that the transistor 11 at this time is implemented as a pMOSFET (PM).
도 4를 참고하면, 본 발명의 피드백 회로(12)는 이는 구동 전압(VDD)을 전압 분배하여 pMOSFET(PM)의 게이트에 인가하는 제1 및 제2 저항(R1,R2), 구동 전압(VDD)과 제1 및 제2 저항(R1,R2) 사이에 위치되어, 임피던스 매칭이 요청될 때에 제1 및 제2 저항(R1,R2)에 구동 전압(VDD)을 연결시키는 제1 스위치(SW1), 제1 및 제2 저항(R1,R2)과 전송 채널(CH) 사이에 위치되어, 임피던스 매칭이 요청될 때에 제1 및 제2 저항(R1,R2)에 전송 채널(CH)을 연결시키는 제2 스위치(SW2) 등을 포함하여, VDD 터미터네이션 방식으로 구동 전압에 연결된 pMOSFET(PM)를 저항처럼 사용하여 임피던스 매칭 동작을 수행하도록 한다. Referring to FIG. 4, the feedback circuit 12 of the present invention comprises first and second resistors R1 and R2 applied to the gate of the pMOSFET PM by dividing the driving voltage VDD, and the driving voltage VDD. ) And the first and second resistors R1 and R2 to connect the driving voltage VDD to the first and second resistors R1 and R2 when impedance matching is requested. , Is located between the first and second resistors R1 and R2 and the transmission channel CH, and connects the transmission channel CH to the first and second resistors R1 and R2 when impedance matching is requested. 2 Impedance matching is performed by using a pMOSFET (PM) connected to the driving voltage in a VDD termination method, including the switch SW2, as a resistor.
이하, 도 4의 온 다이 터미네이션 회로의 동작 방법을 설명하면 다음과 같다. Hereinafter, a method of operating the on-die termination circuit of FIG. 4 will be described.
만약, 임피던스 매칭이 요청되면, 제1 및 제2 스위치(SW1, SW2)가 턴온되어 제1 및 제2 저항(R1,R2) 양단에 구동 전압(VDD)과 전송 채널(CH)을 연결한다. If impedance matching is requested, the first and second switches SW1 and SW2 are turned on to connect the driving voltage V DD and the transmission channel CH to both ends of the first and second resistors R1 and R2. .
그러면, 제1 및 제2 저항(R1,R2)은 구동 전압(VDD)과 전송 채널(CH)의 전압차를 자신들의 저항비에 따라 전압 분배(
Figure PCTKR2020008254-appb-I000005
)하여 pMOSFET(PM)의 게이트에 인가하여, 게이트 전압(Vgs)과 드레인 전압(Vds)간의 상관 관계가 특정 계수비로 유지되도록 한다.
Then, the first and second resistors R1 and R2 divide the voltage difference between the driving voltage V DD and the transmission channel CH according to their resistance ratio (
Figure PCTKR2020008254-appb-I000005
) And applied to the gate of the pMOSFET PM, so that the correlation between the gate voltage Vgs and the drain voltage Vds is maintained at a specific coefficient ratio.
수학식 4은 선형 모드에서의 MOSFET의 전류 공식이다. 다만, 게이트 전압(Vgs)이 드레인 전압(Vds)의 특정 계수비로 유지된다면 Vds 2을 상쇄될 수 있으며, 이러한 경우 수학식 4은 수학식5로 변환될 수 있다. Equation 4 is the current formula of the MOSFET in the linear mode. However, if the gate voltage Vgs is maintained at a specific coefficient ratio of the drain voltage Vds, V ds 2 may be canceled, and in this case, Equation 4 may be converted to Equation 5.
그러면, 드레인 전류는 드레인 전압에 따라 선형적으로 변화되고, MOSFET 의 채널 저항의 크기는 항상 50옴으로 유지된다. 즉, MOSFET가 순수 저항과 같이 동작하게 된다. Then, the drain current changes linearly with the drain voltage, and the magnitude of the channel resistance of the MOSFET is always maintained at 50 ohms. In other words, the MOSFET acts like a pure resistor.
[수학식 4][Equation 4]
Figure PCTKR2020008254-appb-I000006
Figure PCTKR2020008254-appb-I000006
[수학식 5][Equation 5]
Figure PCTKR2020008254-appb-I000007
Figure PCTKR2020008254-appb-I000007
이때, ID는 드레인 전류, Vds는 드레인 전압, Vt는 문턱 전압, W는 cox는 단위 게이트 면적당 평행판 커패시터의 커패시턴스이고, W는 채널폭이며, L은 채널 길이이다.Here, I D is the drain current, Vds is the drain voltage, Vt is the threshold voltage, W is the capacitance of the parallel plate capacitor per unit gate area, W is the channel width, and L is the channel length.
반면, 임피던스 매칭이 요청되지 않으면, 제1 및 제2 스위치(SW1, SW2)가 턴오프되고, 제1 및 제2 저항(R1,R2)을 통해 아무런 전압이 인가되지 않아 pMOSFET(PM)의 게이트는 플로팅 상태가 된다. 그러면, pMOSFET(PM)의 채널 저항(rDS)는 무한대가 되어, 더 이상 종단 저항으로 역할을 수행하지 못하게 된다. On the other hand, if impedance matching is not requested, the first and second switches SW1 and SW2 are turned off, and no voltage is applied through the first and second resistors R1 and R2, so that the gate of the pMOSFET PM Goes to the floating state. Then, the channel resistance (r DS ) of the pMOSFET (PM) becomes infinite, and it no longer functions as a termination resistor.
다만, 도 4의 경우, 피드백 회로(12)의 저항이 전송 채널 측에서 그대로 보이는 특징을 가진다. However, in the case of FIG. 4, the resistance of the feedback circuit 12 is seen as it is from the side of the transmission channel.
전송 채널을 통해 전송되는 데이터 값은 도 5에서와 같이 VDD/2에서 VDD 범위내에서 스윙하게 되는 데, 이때 피드백 회로(12)내 저항이 충분히 크다면 아무런 문제가 발생하지 않는다. The data value transmitted through the transmission channel swings within the range from VDD/2 to VDD as shown in FIG. 5, and at this time, if the resistance in the feedback circuit 12 is sufficiently large, no problem occurs.
그러나 피드백 회로(12)내 저항이 500 ohm 정도로 작은 상태에서 전송 채널에 500mV 정도의 전류가 흐르면, 1mA 정도의 큰 전류가 피드백 회로(12) 쪽으로 흐르게 된다. 전송 채널에서 피드백 회로쪽으로 보이는 임피던스 값 또한 저항과 트랜지스터(11)의 병렬 저항이기 때문에 낮아지게 된다. However, when a current of about 500 mV flows through the transmission channel while the resistance in the feedback circuit 12 is as small as about 500 ohms, a large current of about 1 mA flows toward the feedback circuit 12. The impedance value seen from the transmission channel toward the feedback circuit is also lowered because it is the parallel resistance between the resistor and the transistor 11.
이에 본 발명은 도 6과 같이, 전송 채널과 피드백 회로의 접점(Node A)에 저항을 바로 안 달고 nMOSFET를 달아, 전송 채널에서 바라보는 피드백 회로의 임피던스가 nMOSFET 게이트의 큰 저항이 되도록 하였다. 이때, nMOSFET의 게이트 전압과 소스 전압은 동일하기 때문에 저항 연결과 동일한 효과를 낼 수 있게 된다. Accordingly, in the present invention, as shown in FIG. 6, an nMOSFET is attached without a resistance directly attached to the contact point (Node A) of the transmission channel and the feedback circuit, so that the impedance of the feedback circuit viewed from the transmission channel becomes a large resistance of the nMOSFET gate. At this time, since the gate voltage and the source voltage of the nMOSFET are the same, the same effect as the resistor connection can be achieved.
도 6은 본 발명의 다른 실시예에 따른 온 다이 터미네이션 회로의 상세 회로도로를 도시한 도면이다. 6 is a diagram showing a detailed circuit diagram of an on-die termination circuit according to another embodiment of the present invention.
도 6을 참고하면, 본 발명의 피드백 회로(12')는 접지에 연결되는 제3 저항(R), pMOSFET(PM)의 게이트와 제3 저항(R3) 사이에 연결되며, 문턱 전압 이상이 게이트에 인가되면 턴온되는 nMOSFET(NM), pMOSFET(PM)의 드레인과 전송 채널(CH)의 접점에 연결되어, 임피던스 매칭이 요청될 때에 전송 채널(CH)을 nMOSFET(NM)의 게이트에 연결시키는 제3 스위치(SW3) 등을 포함하여 구성된다. Referring to FIG. 6, the feedback circuit 12' of the present invention is connected between the third resistor R connected to the ground, the gate of the pMOSFET PM, and the third resistor R3, and the gate voltage is greater than or equal to the threshold voltage. When applied to the nMOSFET (NM), the drain of the pMOSFET (PM) is connected to the contact point of the transmission channel (CH), and when impedance matching is requested, the transmission channel (CH) is connected to the gate of the nMOSFET (NM). It is configured to include three switches (SW3) and the like.
즉, 전송 채널과 피드백 회로의 접점(Node A)에 nMOSFET(NM)를 연결한 후, nMOSFET(NM)를 통해 전송 채널(CH)의 전압을 피드백하여 pMOSFET(PM)의 게이트 전압이 가변되도록 한다. That is, after connecting the nMOSFET (NM) to the junction (Node A) of the transmission channel and the feedback circuit, the voltage of the transmission channel (CH) is fed back through the nMOSFET (NM) so that the gate voltage of the pMOSFET (PM) is variable. .
도 7은 본 발명의 또 다른 실시예에 따른 온 다이 터미네이션 회로의 상세 회로도로를 도시한 도면으로, 이때의 트랜지스터(11')는 nMOSFET(NM)으로 구현된다고 가정하기로 한다. 7 is a diagram showing a detailed circuit diagram of an on-die termination circuit according to another embodiment of the present invention, and it is assumed that the transistor 11' at this time is implemented as an nMOSFET (NM).
도 7을 참고하면, 본 발명의 피드백 회로(12")는 전송 채널(CH)의 전압을 전압 분배하여 nMOSFET(NM)의 게이트에 인가하는 제4 및 제5 저항(R4,R5), 전송 채널과 제4 및 제5 저항(R4,R5) 사이에 위치되어, 임피던스 매칭이 요청될 때에 제4 및 제5 저항(R4,R5)에 전송 채널(CH)을 연결시키는 제4 스위치(SW4), 제4 및 제5 저항(R4,R5)과 접지 사이에 위치되어, 임피던스 매칭이 요청될 때에 제4 및 제5 저항(R4,R5)에 접지를 연결시키는 제5 스위치(SW5) 등을 포함하여, 접지 터미터네이션 방식으로 접지에 연결된 nMOSFET(NM)를 저항처럼 사용하여 임피던스 매칭 동작을 수행하도록 한다. Referring to FIG. 7, the feedback circuit 12 ″ of the present invention divides the voltage of the transmission channel CH and applies the fourth and fifth resistors R4 and R5 to the gate of the nMOSFET NM, and the transmission channel. And a fourth switch SW4 positioned between the fourth and fifth resistors R4 and R5 to connect the transmission channel CH to the fourth and fifth resistors R4 and R5 when impedance matching is requested, Including a fifth switch (SW5) that is located between the fourth and fifth resistors (R4, R5) and the ground, and connects the ground to the fourth and fifth resistors (R4, R5) when impedance matching is requested. , Impedance matching is performed by using an nMOSFET (NM) connected to the ground in a ground termination method as a resistor.
즉, 도 7의 피드백 회로는 도 4에서와 동일한 원리로 구동되나, 소스 폴로어 방식(source follower)으로 피드백이 구현되도록 한다. That is, the feedback circuit of FIG. 7 is driven by the same principle as in FIG. 4, but the feedback is implemented in a source follower method.
이러한 경우, 도 7의 전송 채널을 통해 전송되는 데이터 값은 도 8에서와 같이 VDD/2에서 VDD 범위내에서 스윙하게 된다. In this case, the data value transmitted through the transmission channel of FIG. 7 swings within the range from VDD/2 to VDD as shown in FIG. 8.
도 9는 본 발명의 일 실시예에 따른 트랜지스터의 성능을 설명하기 위한 도면으로, 도 9에서, 점선은 종래의 트랜지스터에 대응되고, 실선은 본 발명의 트랜지스터에 대응된다. 9 is a diagram for explaining the performance of a transistor according to an embodiment of the present invention. In FIG. 9, a dotted line corresponds to a conventional transistor, and a solid line corresponds to a transistor of the present invention.
먼저, 종래의 트랜지스터의 경우, 드레인 전압이 500mV 부근에서는 드레인 전류 기울기가 완만해 채널 저항이 50 옴을 유지하나, 1V에 가까워질수록 드레인 전류의 기울기가 가파르게 되어 채널 저항이 감소되고, 이에 따라 해당 영역에서 반사가 발생하고 전류 소모도 증가하게 됨을 알 수 있다. First, in the case of a conventional transistor, when the drain voltage is around 500mV, the drain current slope is gentle and the channel resistance maintains 50 ohms, but as the drain voltage approaches 1V, the slope of the drain current becomes steep and the channel resistance decreases. It can be seen that reflection occurs in the area and current consumption increases.
반면, 본 발명의 트랜지스터는 드레인 전압과 드레인 전류간 선형 관계가 드레인 전압이 상관없이 계속적으로 유지되고, 그 결과 채널 저항 또한 50 옴을 유지함을 알 수 있다. On the other hand, in the transistor of the present invention, it can be seen that the linear relationship between the drain voltage and the drain current is continuously maintained regardless of the drain voltage, and as a result, the channel resistance is also maintained at 50 ohms.
이와 같이 본 발명은 게이트 전압 피드백을 통해 트랜지스터의 채널 저항을 일정하게 유지함으로써, 반사 신호가 커지지 않게 하고 이와 동시에 전류는 아낄 수 있도록 한다. As described above, the present invention keeps the channel resistance of the transistor constant through the gate voltage feedback, so that the reflected signal does not increase and the current can be saved at the same time.
상술한 본 발명에 따른 방법은 컴퓨터에서 실행되기 위한 프로그램으로 제작되어 컴퓨터가 읽을 수 있는 기록 매체에 저장될 수 있으며, 컴퓨터가 읽을 수 있는 기록 매체의 예로는 ROM, RAM, CD-ROM, 자기 테이프, 플로피디스크, 광 데이터 저장장치 등이 있으며, 또한 캐리어 웨이브(예를 들어 인터넷을 통한 전송)의 형태로 구현되는 것도 포함한다.The method according to the present invention described above may be produced as a program for execution in a computer and stored in a computer-readable recording medium. Examples of computer-readable recording media include ROM, RAM, CD-ROM, and magnetic tape. , Floppy disks, optical data storage devices, and the like, and also include those implemented in the form of a carrier wave (for example, transmission through the Internet).
컴퓨터가 읽을 수 있는 기록 매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어, 분산방식으로 컴퓨터가 읽을 수 있는 코드가 저장되고 실행될 수 있다. 그리고, 상기 방법을 구현하기 위한 기능적인(function) 프로그램, 코드 및 코드 세그먼트들은 본 발명이 속하는 기술분야의 프로그래머들에 의해 용이하게 추론될 수 있다.The computer-readable recording medium is distributed over a computer system connected through a network, so that computer-readable codes can be stored and executed in a distributed manner. In addition, functional programs, codes, and code segments for implementing the method can be easily inferred by programmers in the art to which the present invention pertains.
이상에서는 본 발명의 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형 실시가 가능한 것은 물론이고, 이러한 변형 실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어서는 안 될 것이다.In the above, preferred embodiments of the present invention have been illustrated and described, but the present invention is not limited to the specific embodiments described above, and the present invention is generally in the technical field to which the present invention belongs without departing from the gist of the present invention claimed in the claims. Of course, various modifications may be implemented by those skilled in the art, and these modifications should not be individually understood from the technical idea or perspective of the present invention.

Claims (6)

  1. 전송 채널에 연결되어, 채널 저항에 기반한 임피던스 매칭을 수행하는 트랜지스터; 및 A transistor connected to the transmission channel to perform impedance matching based on a channel resistance; And
    임피던스 매칭이 요청되면, 구동 전압 또는 접지를 상기 트랜지스터의 게이트에 피드백시켜 상기 채널 저항을 조정하는 피드백 회로를 포함하는 피드백 기반의 온 다이 터미네이션 회로. When impedance matching is requested, a feedback-based on-die termination circuit comprising a feedback circuit for adjusting the channel resistance by feeding back a driving voltage or a ground to a gate of the transistor.
  2. 제1항에 있어서, 상기 트랜지스터는 The method of claim 1, wherein the transistor is
    구동 전압과 전송 채널 사이에 연결되며, 게이트 전압이 문턱치 이하일 때 턴온되는 제1형의 트랜지스터인 것을 특징으로 하는 피드백 기반의 온 다이 터미네이션 회로. A feedback-based on-die termination circuit, characterized in that it is a first type transistor connected between a driving voltage and a transmission channel and turned on when a gate voltage is less than or equal to a threshold.
  3. 제2항에 있어서, 상기 피드백 회로는 The method of claim 2, wherein the feedback circuit
    구동 전압을 전압 분배하여 제1 트랜지스터의 게이트에 인가하는 제1 및 제2 저항;First and second resistors applied to the gate of the first transistor by voltage-dividing the driving voltage;
    임피던스 매칭이 요청되면, 상기 제1 및 제2 저항에 구동 전압을 연결시키는 제1 스위치; 및 A first switch connecting a driving voltage to the first and second resistors when impedance matching is requested; And
    임피던스 매칭이 요청되면, 상기 제1 및 제2 저항에 전송 채널을 연결시키는 제2 스위치를 포함하는 것을 특징으로 하는 피드백 기반의 온 다이 터미네이션 회로. And a second switch connecting a transmission channel to the first and second resistors when impedance matching is requested.
  4. 제3항에 있어서, 상기 피드백 회로는 The method of claim 3, wherein the feedback circuit
    접지에 연결되는 제3 저항;A third resistor connected to ground;
    상기 제1 트랜지스터의 게이트와 상기 제3 저항 사이에 연결되며, 문턱 전압 이상이 게이트에 인가되면 턴온되는 제2형의 트랜지스터; 및 A second type transistor connected between the gate of the first transistor and the third resistor and turned on when a threshold voltage or more is applied to the gate; And
    상기 제1형의 트랜지스터의 드레인과 상기 전송 채널의 접점에 연결되어, 임피던스 매칭이 요청될 때에 상기 전송 채널을 상기 제2형의 트랜지스터의 게이트에 연결하는 제3 스위치를 포함하는 것을 특징으로 하는 피드백 기반의 온 다이 터미네이션 회로. And a third switch connected to a contact point between the drain of the first type transistor and the transfer channel, and connecting the transfer channel to the gate of the second type transistor when impedance matching is requested. Based on-die termination circuit.
  5. 제1항에 있어서, 상기 트랜지스터는 The method of claim 1, wherein the transistor is
    접지와 전송 채널 사이에 연결되며, 게이트 전압이 문턱치 이상일 때 턴온되는 제2형의 트랜지스터인 것을 특징으로 하는 피드백 기반의 온 다이 터미네이션 회로. A feedback-based on-die termination circuit, characterized in that it is a second type transistor connected between ground and a transmission channel and turned on when a gate voltage is greater than or equal to a threshold.
  6. 제5항에 있어서, 상기 피드백 회로는 The method of claim 5, wherein the feedback circuit
    전송 채널의 전압을 전압 분배하여 제2형의 트랜지스터의 게이트에 인가하는 제4 및 제5 저항;Fourth and fifth resistors for applying voltage to the gate of the second type transistor by dividing the voltage of the transmission channel;
    임피던스 매칭이 요청되면, 상기 제4 및 제5 저항에 상기 전송 채널을 연결시키는 제4 스위치; 및 A fourth switch connecting the transmission channel to the fourth and fifth resistors when impedance matching is requested; And
    임피던스 매칭이 요청되면, 상기 제4 및 제5 저항에 상기 접지를 연결시키는 제5 스위치를 포함하는 것을 특징으로 하는 피드백 기반의 온 다이 터미네이션 회로. And a fifth switch connecting the ground to the fourth and fifth resistors when impedance matching is requested.
PCT/KR2020/008254 2019-10-29 2020-06-25 Feedback-based on-die termination circuit WO2021085791A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0135175 2019-10-29
KR1020190135175 2019-10-29

Publications (1)

Publication Number Publication Date
WO2021085791A1 true WO2021085791A1 (en) 2021-05-06

Family

ID=75715259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/008254 WO2021085791A1 (en) 2019-10-29 2020-06-25 Feedback-based on-die termination circuit

Country Status (1)

Country Link
WO (1) WO2021085791A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4952818A (en) * 1989-05-17 1990-08-28 International Business Machines Corporation Transmission line driver circuits
US7679397B1 (en) * 2005-08-05 2010-03-16 Altera Corporation Techniques for precision biasing output driver for a calibrated on-chip termination circuit
KR20140045994A (en) * 2011-06-30 2014-04-17 실리콘 이미지, 인크. Single-ended configurable multi-mode driver
KR101632711B1 (en) * 2009-12-30 2016-06-22 에스케이하이닉스 주식회사 Semiconductor device
US20180367141A1 (en) * 2011-02-02 2018-12-20 Rambus Inc. On-Die Termination

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4952818A (en) * 1989-05-17 1990-08-28 International Business Machines Corporation Transmission line driver circuits
US7679397B1 (en) * 2005-08-05 2010-03-16 Altera Corporation Techniques for precision biasing output driver for a calibrated on-chip termination circuit
KR101632711B1 (en) * 2009-12-30 2016-06-22 에스케이하이닉스 주식회사 Semiconductor device
US20180367141A1 (en) * 2011-02-02 2018-12-20 Rambus Inc. On-Die Termination
KR20140045994A (en) * 2011-06-30 2014-04-17 실리콘 이미지, 인크. Single-ended configurable multi-mode driver

Similar Documents

Publication Publication Date Title
US7627845B2 (en) Macrocell, integrated circuit device, and electronic instrument
US5977797A (en) Method and apparatus for transferring data on a voltage biased data line
WO2016026416A1 (en) Low drop-out regulator circuit, chip and electronic device
US5534811A (en) Integrated I/O bus circuit protection for multiple-driven system bus signals
US7773689B2 (en) Multimodal memory controllers
US7495474B2 (en) Integrated circuit device and electronic instrument
US5657456A (en) Semiconductor process power supply voltage and temperature compensated integrated system bus driver rise and fall time
KR100281266B1 (en) High speed bus interface circuit
US5654653A (en) Reduced system bus receiver setup time by latching unamplified bus voltage
US5361042A (en) Compensated offset voltage, low gain, high bandwidth, full swing, wide common mode range, CMOS differential voltage amplifier
US6084424A (en) Adjustable biasing voltage for a bus line and associated method
US20020172151A1 (en) Transmission circuit, data transfer control device, and electronic equipment
US7999569B2 (en) Edge rate suppression for open drain buses
WO1982000391A1 (en) A dual bandwidth autozero loop for a voice frequency codec
WO2021085791A1 (en) Feedback-based on-die termination circuit
EP1265149B1 (en) Internally and externally biased dual mode 1394 compliant driver
WO2005055540A2 (en) Current transfer logic
US20030126334A1 (en) Bus capability voting mechanism
US5802390A (en) Data bus circuit and method of changing over termination resistor of the data bus circuit
US6072943A (en) Integrated bus controller and terminating chip
KR100302889B1 (en) CMOS bus and transmission line receiver
EP0632392B1 (en) Semiconductor process, power supply and temperature compensated system bus integrated interface architecture with precision receiver
KR100448717B1 (en) Memory system
WO2022242273A1 (en) Attenuation-adjustable circuit based on rlgc circuit model and chip
US20050069394A1 (en) Method, device and system for output impedance calibration that invariably maximizes hybrid performance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20883459

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20883459

Country of ref document: EP

Kind code of ref document: A1