[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021085566A1 - Overload prevention device - Google Patents

Overload prevention device Download PDF

Info

Publication number
WO2021085566A1
WO2021085566A1 PCT/JP2020/040711 JP2020040711W WO2021085566A1 WO 2021085566 A1 WO2021085566 A1 WO 2021085566A1 JP 2020040711 W JP2020040711 W JP 2020040711W WO 2021085566 A1 WO2021085566 A1 WO 2021085566A1
Authority
WO
WIPO (PCT)
Prior art keywords
boom
load
overload prevention
crane
control
Prior art date
Application number
PCT/JP2020/040711
Other languages
French (fr)
Japanese (ja)
Inventor
正裕 石井
Original Assignee
株式会社タダノ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社タダノ filed Critical 株式会社タダノ
Priority to JP2021553700A priority Critical patent/JP7151908B2/en
Publication of WO2021085566A1 publication Critical patent/WO2021085566A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/88Safety gear
    • B66C23/90Devices for indicating or limiting lifting moment

Definitions

  • the present invention relates to an overload prevention device for a crane. More specifically, the present invention relates to an overload prevention device for preventing a fall due to an overload of a crane.
  • the overload prevention device determines that the outrigger jack is overloaded when the ground contact reaction force of the outrigger jack becomes equal to or less than the threshold value.
  • the outrigger jack In the case of a loaded truck crane, the outrigger jack is installed almost right next to the turning center of the boom. In such a configuration, the ground reaction force of the outrigger jack does not change even if the forward overturning moment increases. Therefore, it is not possible to detect a forward fall based on the ground contact reaction force of the outrigger jack.
  • Patent Document 1 discloses a technique for detecting a forward fall based on the fact that the actual load reaches the allowable forward lifting load.
  • the permissible forward lifting load is obtained from the forward overturning moment at the limit where the rear wheels of the truck are lifted in the boom front work in which the telescopic boom is swiveled to the front of the truck in an empty state where no load is loaded on the truck bed.
  • Patent Document 1 The permissible forward lifting load of Patent Document 1 is obtained from the forward overturning moment in the state where the boom is most likely to overturn toward the front. Therefore, when the boom is directed diagonally forward, the loaded truck crane will not tip over even if the actual load exceeds the allowable forward lifting load to some extent. In other words, when the boom is directed diagonally forward, the operation of the crane device is restricted even though there is room for a fall. This means that the working range in front of the crane equipment is unnecessarily limited.
  • an object of the present invention is to provide a crane overload prevention device capable of expanding the working range in front of the crane.
  • An overload prevention device that has a boom and is built into a crane that transports suspended loads.
  • a storage unit that stores the first threshold value set as the upper limit of the load that prevents the crane from tipping forward,
  • a control unit that performs overload prevention control including at least one of control for stopping the operation of the boom and control for issuing an alarm when the forward load that generates the forward moment acting on the boom is larger than the first threshold value.
  • An overload prevention device that has a boom and is built into a crane that transports suspended loads. Based on the forward load that generates the forward moment acting on the boom, the first determination unit that determines whether the crane is in a forward overload state, and The second judgment unit that determines whether the crane is overloaded with respect to the side, and A third judgment unit that determines whether the crane is overloaded with respect to strength, When the judgment result of at least one of the first judgment unit, the second judgment unit, and the third judgment unit is an overload state, the control for stopping the operation of the boom and the control for issuing an alarm are performed.
  • a control unit that performs overload prevention control including at least one control is provided.
  • the overload is determined based on the forward overturning component of the overturning moment acting on the boom, the working range when the boom is directed diagonally forward can be expanded.
  • FIG. 1 is a side view of a loaded truck crane.
  • FIG. 2 is a plan view of a loaded truck crane.
  • FIG. 3 is a hydraulic circuit diagram of a small crane.
  • FIG. 4 is an explanatory view of the forward working range.
  • FIG. 5 is a block diagram of the overload prevention device according to the first embodiment.
  • FIG. 6 is a flowchart of control of the forward stability monitoring unit according to the first embodiment.
  • FIG. 7 is a flowchart of control of the forward stability monitoring unit according to the second embodiment.
  • the overload prevention device AA according to the first embodiment of the present invention is used to prevent the mobile crane from tipping over due to overload.
  • Mobile cranes include all-terrain cranes, rough terrain cranes, truck cranes, and loaded truck cranes.
  • the overload prevention device AA of the present embodiment is preferably used for a load-type truck crane.
  • the load-type truck crane CR has a general-purpose truck 10.
  • a driver's cab 11 is provided in the front portion of the general-purpose truck 10, and a loading platform 12 is provided in the rear portion.
  • a small crane 20 is mounted in a portion of the vehicle frame 13 of the general-purpose truck 10 between the driver's cab 11 and the loading platform 12.
  • the small crane 20 has a base 21 fixed on the vehicle frame 13.
  • a post 22 is provided on the base 21 so as to be rotatable.
  • a boom 23 is provided on the upper end of the post 22 so as to be undulating.
  • the post 22 has a built-in winch.
  • the wire rope extended from this winch is guided to the tip of the boom 23.
  • the wire rope is hung around a pulley provided at the tip of the boom 23 and the hook 24. As a result, the hook 24 is suspended from the tip of the boom 23.
  • a suspended load is suspended from the hook 24.
  • a device composed of a post 22, a boom 23, a hook 24, etc. and used for transporting a suspended load is referred to as a "crane device".
  • the boom 23 can be expanded and contracted and undulated, and can be swiveled around the swivel center O.
  • the length of the boom 23 is referred to as L.
  • the undulation angle (angle with respect to the horizontal plane) of the boom 23 is expressed as ⁇ .
  • the turning angle of the boom 23 is referred to as ⁇ .
  • the turning angle ⁇ is 0 ° directly in front of the loaded truck crane CR.
  • the small crane 20 has an outrigger jack 25 in addition to the crane device.
  • the outrigger jacks 25 are arranged on the left and right sides of the small crane 20.
  • the left and right outrigger jacks 25 and the turning center O of the boom 23 are arranged side by side in the vehicle width direction. That is, the left and right outrigger jacks 25 and the turning center O of the boom 23 are arranged at the same position in the front-rear direction of the general-purpose truck 10 or are arranged at short distances.
  • An outrigger jack different from the outrigger jack 25 may be provided on the left and right rear of the loading platform 12.
  • the small crane 20 is hydraulically driven by the hydraulic circuit 30 shown in FIG.
  • the hydraulic circuit 30 has a hydraulic valve unit 31.
  • the inlet port of the hydraulic valve unit 31 is connected to the tank 32 via the main oil passage 34.
  • a hydraulic pump 33 is provided in the main oil passage 34.
  • the hydraulic pump 33 is connected to the engine 14 of the general-purpose truck 10 via a PTO (power take-off) device, and is driven by the engine 14.
  • the hydraulic oil in the tank 32 is supplied to the hydraulic valve unit 31 by the hydraulic pump 33.
  • the outlet port of the hydraulic valve unit 31 is connected to the tank 32 via the return oil passage 35.
  • a plurality of hydraulic actuators 36a to 36f are connected to the hydraulic valve unit 31.
  • the hydraulic actuators 36a to 36f are a boom expansion / contraction hydraulic cylinder 36a, a winch hydraulic motor 36b, a boom undulating hydraulic cylinder 36c, a swivel hydraulic motor 36d, and an outrigger hydraulic cylinders 36e and 36f.
  • the boom 23 expands and contracts due to the operation of the boom expansion and contraction hydraulic cylinder 36a.
  • the hook 24 is hoisted and unwound by the operation of the winch hydraulic motor 36b.
  • the boom 23 undulates due to the operation of the boom undulating hydraulic cylinder 36c.
  • the post 22 is swiveled by the operation of the swivel hydraulic motor 36d.
  • the outrigger jack 25 expands and contracts due to the operation of the outrigger hydraulic cylinders 36e and 36f.
  • the hydraulic valve unit 31 is provided with a telescopic switching control valve 37a, a winch switching control valve 37b, an undulating switching control valve 37c, a swivel switching control valve 37d, and outrigger switching control valves 37e and 37f.
  • a boom expansion / contraction hydraulic cylinder 36a is connected to the expansion / contraction switching control valve 37a.
  • a winch hydraulic motor 36b is connected to the winch switching control valve 37b.
  • a boom undulating hydraulic cylinder 36c is connected to the undulating switching control valve 37c.
  • a swivel hydraulic motor 36d is connected to the swivel switching control valve 37d.
  • the outrigger hydraulic cylinders 36e and 36f are connected to the outrigger switching control valves 37e and 37f, respectively.
  • the switching control valves 37a to 37f control the direction and flow rate of the hydraulic oil supplied from the hydraulic pump 33 to control the operation of the hydraulic actuators 36a to 36f.
  • An operation lever is connected to the spools of the switching control valves 37a to 37f via a link mechanism or the like.
  • the spool positions of the switching control valves 37a to 37f can be switched. That is, the switching control valves 37a to 37f can be directly operated by the operating lever.
  • the small crane 20 has an operating lever group 26.
  • the operating levers constituting the operating lever group 26 are connected to any of the switching control valves 37a to 37f. The operator can operate the small crane 20 by using the operating lever group 26.
  • pilot cylinders 38a to 38f are attached to the spools of the switching control valves 37a to 37f, respectively.
  • the spool positions of the switching control valves 37a to 37f can also be switched by the operation of the pilot cylinders 38a to 38f.
  • Each of the pilot cylinders 38a to 38f is a double-acting cylinder, and is provided with a solenoid valve for supplying and discharging hydraulic oil to the right oil chamber and an electromagnetic valve for supplying and discharging hydraulic oil to the left oil chamber. There is. These solenoid valves are connected to the control device 40.
  • the control device 40 is a computer composed of a CPU, a memory, and the like. By operating the solenoid valve based on the control signal from the control device 40, the pilot cylinders 38a to 38f are driven, and the spool positions of the switching control valves 37a to 37f are switched. In this way, the control device 40 controls the operation of the small crane 20.
  • the control device 40 can perform bidirectional wireless communication or wired communication with the remote control terminal 41.
  • the remote control terminal 41 may be a wireless control terminal such as a so-called radio control transmitter, or a wired control terminal.
  • the remote control terminal 41 is equipped with an input unit including various switches and an accelerator trigger.
  • the remote control terminal 41 transmits an operation signal to the control device 40.
  • the control device 40 controls the hydraulic circuit 30 based on the operation signal to operate the small crane 20. In this way, the operator can remotely control the small crane 20 using the remote control terminal 41.
  • the small crane 20 has an attitude measuring device that measures the attitude of the boom 23.
  • the posture of the boom 23 is represented by the length L of the boom 23, the undulation angle ⁇ , and the turning angle ⁇ .
  • the posture measuring instrument consists of a plurality of measuring instruments that measure each of these parameters L, ⁇ , and ⁇ . That is, the posture measuring device includes a length measuring device 42, an undulation angle measuring device 43, and a turning angle measuring device 44.
  • the length measuring device 42 measures the length L of the boom 23.
  • the configuration of the length measuring instrument 42 is not particularly limited, and examples thereof include a configuration in which the rotation angle of the cord reel in which the end of the cord is fixed to the tip of the boom 23 is read by a potentiometer.
  • the undulation angle measuring device 43 measures the undulation angle ⁇ of the boom 23.
  • the configuration of the undulation angle measuring device 43 is not particularly limited, and examples thereof include a configuration in which a pendulum type angle measuring device in which a pendulum is attached to a potentiometer is provided on the boom 23.
  • the turning angle measuring device 44 measures the turning angle ⁇ of the boom 23.
  • the configuration of the swivel angle measuring device 44 is not particularly limited, but in addition to a configuration in which the swivel angle ⁇ of the boom 23 is discretely detected by a plurality of proximity switches provided on the base 21 or the post 22, a hydraulic motor that swivels the post 22
  • An example is a configuration in which the rotation angle is read by a potentiometer.
  • the small crane 20 has a load measuring device 45 that measures the load W of the suspended load suspended from the hook 24.
  • the configuration of the load measuring device 45 is not particularly limited, but the load is obtained by measuring the hydraulic pressure in the boom undulating hydraulic cylinder 36c that raises and lowers the boom 23 with a pressure sensor, and from the tension of the wire rope that suspends the hook 24.
  • An example is a configuration using a tension detector that detects a load W.
  • the control device 40 has a function as an overload prevention device AA in addition to a function of controlling the operation of the small crane 20.
  • the overload prevention device AA may be configured by a computer different from the control device 40.
  • the measurement values of the posture measuring device (length measuring device 42, undulation angle measuring device 43, turning angle measuring device 44) and the load measuring device 45 are input to the overload prevention device AA. .. That is, the overload prevention device AA is input with the measured values of the length L d of the boom 23, the undulation angle ⁇ d, and the turning angle ⁇ d , and the measured values of the load W d of the suspended load.
  • the overload prevention device AA detects the overload state of the small crane 20 based on these measured values L d , ⁇ d , ⁇ d , and W d.
  • the "overload state” is a state in which the overload moment exceeds the stable moment and the load-type truck crane CR overturns, and the load due to the load W of the suspended load exceeds the load capacity of the constituent members of the small crane 20. It means a state or a state approaching those states.
  • the overload prevention device AA has a front stability monitoring unit 51, a side stability monitoring unit 52, and a strength limit monitoring unit 53.
  • the forward stability monitoring unit 51 corresponds to an example of the control unit and the first determination unit, and monitors whether or not the loaded truck crane CR falls forward, that is, the stability in the forward direction.
  • the lateral stability monitoring unit 52 corresponds to an example of the second determination unit and monitors whether or not the loaded truck crane CR falls sideways, that is, lateral stability.
  • the strength limit monitoring unit 53 corresponds to an example of the third determination unit, and monitors whether or not the load due to the load of the suspended load exceeds the withstand load of the constituent members.
  • the magnitude M of the overturning moment acting on the boom 23 by the suspended load W is calculated by the equation (2).
  • a moment generated by the weight of the boom 23 may be added to the overturning moment M.
  • the maximum value of the forward moment M f that ensures the forward stability of the loaded truck crane CR is defined as the forward rated moment M f-lim .
  • the forward rated moment M f-lim is a predetermined value.
  • the front rated moment M f-lim means that, for example, the rear wheel of the general-purpose truck 10 is lifted when the boom 23 faces directly in front of the general-purpose truck 10 in an empty state where no load is loaded on the loading platform 12 and the general-purpose truck 10 is most likely to fall forward. It is set to the magnitude of the limit overturning moment.
  • the value obtained by multiplying the magnitude of the critical overturning moment by the safety factor (value less than 1) may be the forward rated moment M f-lim.
  • a predetermined ratio (for example, 25%) of the magnitude of the lateral stabilizing moment may be set as the forward rated moment M f-lim with reference to the lateral stabilizing moment of the loaded truck crane CR.
  • the forward moment M f By comparing the forward moment M f and the forward rated moment M f-lim , it can be determined whether or not the loaded truck crane CR falls forward. Specifically, when the forward moment M f is equal to or less than the forward rated moment M f-lim , it is determined that the vehicle does not tip forward. If the forward moment M f exceeds the forward rated moment M f-lim , it is determined that the vehicle falls forward (overload).
  • the front working range R1 becomes a semi-circular region.
  • the front working range R2 is a horizontally long region including the working range R1. ..
  • the working range when the boom 23 is directed diagonally forward can be expanded.
  • the forward stability monitoring unit 51 of the present embodiment performs the following control.
  • the front stability monitoring unit 51 stores the front rated load W f-lim (L, ⁇ ) in advance. Therefore, the forward stability monitoring unit 51 also has a function as a storage unit.
  • the front rated load W f-lim corresponds to an example of the first threshold value, and the length L of the boom 23 and the undulations so as to be the load W of the suspended load when the front rated moment M f-lim acts on the boom 23. It is a value determined for each angle ⁇ .
  • the front rated load W f-lim may be stored in a table format, or may be stored as a function with the length L of the boom 23 and the undulation angle ⁇ as variables.
  • the first threshold is preset as an upper limit of the load that prevents the crane from tipping forward.
  • the forward stability monitoring unit 51 has measured values L d , ⁇ d , ⁇ d , from the length measuring device 42, the undulation angle measuring device 43, the turning angle measuring device 44, and the load measuring device 45. Acquire W d (step S11).
  • the forward stability monitoring unit 51 confirms that the boom 23 is arranged in the front region of the loaded truck crane CR (step S12).
  • the fact that the boom 23 is arranged in the front region means that the tip end portion (hook 24) of the boom 23 is arranged in front of the forward tipping baseline.
  • the forward overturning baseline is, for example, a line connecting the grounding positions of the left and right outrigger jacks 25.
  • the boom 23 is arranged in the front region when the turning angle ⁇ d of the boom 23 is within the range of ⁇ 90 ° to + 90 °. You can judge that there is.
  • the state in which the boom 23 is arranged in the front region means a state in which the magnitude of the forward moment acting on the boom 23 is greater than 0 based on the load W of the suspended load.
  • the process ends. On the other hand, when the boom 23 is arranged in the front region, the process is continued.
  • the forward stability monitoring unit 51 obtains the forward load W f (step S13).
  • the forward load W f is obtained by the following procedure.
  • the forward stability monitoring unit 51 obtains the forward ratio from the measured value ⁇ d of the turning angle.
  • the forward ratio is the ratio of the forward moment M f to the magnitude M of the overturning moment acting on the boom 23. That is, the forward ratio is the cosine value (cos ⁇ d ) of the turning angle ⁇ d (see equation (3)).
  • the overturning moment has a forward moment M f and a lateral moment as components.
  • the forward moment M f of the overturning moment becomes the maximum, and the turning angle of the boom 23 is 90 ° or ⁇ 90 °.
  • the forward moment M f of the overturning moment becomes the minimum.
  • the forward moment is a moment acting on the boom 23, and means a moment around an axis parallel to the left-right direction of the loaded truck crane CR.
  • the lateral moment is a moment acting on the boom 23, and means a moment around an axis parallel to the front-rear direction of the loaded truck crane CR.
  • the front stability monitoring unit 51 obtains the front load W f by multiplying the measured load value W d by the front ratio (cos ⁇ d) according to the equation (4).
  • the forward load W f is the load W of the suspended load required to generate the overturning moment M equivalent to the forward moment M f , assuming that the boom 23 is arranged directly in front of the boom 23.
  • the forward load W f corresponds to the load that generates the forward moment acting on the boom 23 in the measured value W d of the load.
  • the front stability monitoring unit 51 acquires the front rated load W f-lim (L d , ⁇ d ), which is the first threshold value corresponding to the measured values L d and ⁇ d of the length and undulation angle of the boom 23. (Step S14). Then, the front stability monitoring unit 51 compares the front load W f with the front rated load W f-lim (L d , ⁇ d ) (step S15). Then, when the front load W f exceeds the front rated load W f-lim (L d , ⁇ d ), the front stability monitoring unit 51 determines that the load is overloaded (step S16).
  • the forward stability monitoring unit 51 implements overload prevention control including at least one of control of stopping the operation of the boom 23 and control of issuing an alarm when it is determined that the load is overloaded.
  • the overload prevention control may include a control other than a control for stopping the operation of the boom 23 and a control for issuing an alarm.
  • the lateral stability monitoring unit 52 determines that the load is overloaded when the load-type truck crane CR falls under the condition of falling sideways, or when such a condition is approached.
  • the specific control of the lateral stability monitoring unit 52 is not particularly limited, but for example, the following control is performed.
  • the load-type truck crane CR has a ground reaction force measuring device 46 that measures the ground reaction force F of the left and right outrigger jacks 25.
  • the configuration of the ground reaction force measuring device 46 is not particularly limited, and examples thereof include a configuration using a hydraulic sensor that measures the oil pressure in the oil chamber of the outrigger jack 25.
  • the ground contact reaction force F can be calculated from the differential pressure between the holding side oil chamber and the non-holding side oil chamber of the outrigger jack 25 and the pressure receiving area of the jack cylinder.
  • the measurement values of the ground reaction force measuring device 46 i.e., the ground reaction force F d outrigger jacks 25 are input to the overload prevention device AA.
  • the lateral stability monitoring unit 52 determines that the load is overloaded when the ground contact reaction force F d of any of the left and right outrigger jacks 25 falls below the reaction force threshold value F lim.
  • the reaction force threshold value F lim corresponds to an example of the lateral threshold value, and is a value preset in the lateral stability monitoring unit 52.
  • the reaction force threshold value F lim may be a fixed value of 1, or may be variable based on the posture L, ⁇ , ⁇ of the boom 23, the load W of the suspended load, the overhang width of the outrigger jack 25, and the like.
  • the lateral stability monitoring unit 52 performs lateral stability monitoring at least when the boom 23 is arranged in the lateral region.
  • the fact that the boom 23 is arranged in the lateral region means that the tip end portion (hook 24) of the boom 23 is arranged laterally from the lateral tipping baseline.
  • the front area and the side area of the boom 23 partially overlap each other diagonally in front of the loaded truck crane CR.
  • the side stability monitoring unit 52 may always perform lateral stability monitoring regardless of the turning angle ⁇ of the boom 23. Therefore, when the boom 23 is arranged in the front region, lateral stability monitoring is performed as well as forward stability monitoring. Even if the front stability monitoring unit 51 does not determine that it is overloaded, the side stability monitoring unit 52 may determine that it is overloaded.
  • the strength limit monitoring unit 53 determines that the load is overloaded when the load due to the load W of the suspended load exceeds the withstand load of the constituent members.
  • the specific control of the strength limit monitoring unit 53 is not particularly limited, but for example, the following control is performed.
  • the strength rated load W s-lim (L, ⁇ ) is stored in advance in the strength limit monitoring unit 53.
  • the strength rated load W s-lim is a value determined for each of the length L of the boom 23 and the undulation angle ⁇ as the load capacity of the constituent members such as the boom 23.
  • the length L and the undulation angle ⁇ of the boom 23 correspond to an example of the posture condition of the boom 23.
  • the strength rated load W s-lim may be stored in a table format, or may be stored as a function with the length L of the boom 23 and the undulation angle ⁇ as variables.
  • the strength rated load W s-lim may be a value determined for each of the length L of the boom 23, the undulation angle ⁇ , and the turning angle ⁇ .
  • the strength limit monitoring unit 53 acquires the measured values L d , ⁇ d , and W d from the length measuring device 42, the undulation angle measuring device 43, and the load measuring device 45. Next, the strength limit monitoring unit 53 acquires the strength rated load W s-lim (L d , ⁇ d ) corresponding to the measured values L d and ⁇ d of the length and undulation angle of the boom 23. Then, the strength limit monitoring unit 53 compares the load W d with the rated strength load W s-lim (L d , ⁇ d). Then, when the load W d exceeds the strength rated load W s-lim (L d , ⁇ d ), it is determined to be an overload.
  • the strength limit monitoring unit 53 constantly monitors the strength limit regardless of the turning angle ⁇ of the boom 23.
  • the overload prevention device AA has a final determination unit 54.
  • the determination results of the front stability monitoring unit 51, the side stability monitoring unit 52, and the strength limit monitoring unit 53 are input to the final determination unit 54.
  • the final determination unit 54 obtains the logical sum of the determination results of the front stability monitoring unit 51, the side stability monitoring unit 52, and the strength limit monitoring unit 53, and finally determines the overload. That is, when any one or more of the front stability monitoring unit 51, the side stability monitoring unit 52, and the strength limit monitoring unit 53 determines that the load is overloaded, the final determination unit 54 determines that the load is overloaded. On the contrary, when none of the front stability monitoring unit 51, the side stability monitoring unit 52, and the strength limit monitoring unit 53 determines that the load is overloaded, the final determination unit 54 determines that the load is not overloaded.
  • the determination result of the final determination unit 54 is output to the control device 40.
  • the control device 40 may automatically stop the operation of the boom 23 or issue an alarm.
  • the automatic stop is performed by stopping the operation of the boom 23 in the direction in which the overturning moment increases. That is, it stops the extension and lodging of the boom 23 and allows the boom 23 to contract and stand. Further, the winding of the hook 24 may be stopped and the winding of the hook 24 may be allowed. Either one of the automatic stop and the alarm may be performed, or both may be performed.
  • the overload prevention device AA according to the second embodiment of the present invention will be described.
  • the configuration of the overload prevention device AA of the present embodiment is the same as the configuration shown in FIG. Further, the control of the lateral stability monitoring unit 52, the strength limit monitoring unit 53, and the final determination unit 54 is the same as in the first embodiment. Therefore, only the control of the forward stability monitoring unit 51 will be described.
  • the front stability monitoring unit 51 stores the front rated load W f-lim (L, ⁇ , ⁇ ) in advance.
  • the forward rated load W f-lim corresponds to an example of the first threshold value, and the load W of the suspended load when the forward moment acting on the boom 23 (forward overturning component of the overturning moment) becomes the forward rated moment M f-lim. It is a value determined for each of the length L of the boom 23, the undulation angle ⁇ , and the turning angle ⁇ so as to be.
  • the front rated load W f-lim may be stored in a table format, or may be stored as a function with the length L of the boom 23, the undulation angle ⁇ , and the turning angle ⁇ as variables.
  • the forward stability monitoring unit 51 has measured values L d , ⁇ d , ⁇ d , from the length measuring device 42, the undulation angle measuring device 43, the turning angle measuring device 44, and the load measuring device 45. Acquire W d (step S21).
  • the forward stability monitoring unit 51 confirms that the boom 23 is arranged in the front region of the loaded truck crane CR (step S22). If the boom 23 is not located in the front region, the process ends. On the other hand, when the boom 23 is arranged in the front region, the process is continued.
  • the forward stability monitoring unit 51 determines the forward rated load W f-lim (L d , ⁇ d , ⁇ ) corresponding to the measured values L d , ⁇ d , and ⁇ d of the boom 23 length, undulation angle, and turning angle. d ) is acquired (step S23). Then, the front stability monitoring unit 51 compares the measured value W d of the load with the front rated load W f-lim (L d , ⁇ d , ⁇ d ) (step S24). Then, when the load W d exceeds the front rated load W f-lim (L d , ⁇ d , ⁇ d ), it is determined that the load is overloaded (step S25).
  • the following overload prevention device can also be implemented as a reference example of the present invention.
  • the overload prevention device is an overload prevention device for a mobile crane having a boom, and has a measured value of a suspended load and a measured value of a boom length, an undulation angle, and a turning angle. May be entered. Further, the overload prevention device may store the front rated load determined for each boom length and undulation angle so as to be the load of the suspended load when the front rated moment acts on the boom. Further, the overload prevention device obtains the forward ratio, which is the ratio of the magnitude of the forward overturning component of the overturning moment to the magnitude of the overturning moment acting on the boom, from the measured value of the turning angle, and the forward ratio to the measured value of the load. The front load is obtained by multiplying by, and when the front load exceeds the front rated load corresponding to the measured values of the boom length and the undulation angle, it may be determined as an overload.
  • the overload prevention device is an overload prevention device for a mobile crane having a boom, and has a measured value of a suspended load and a measured value of a boom length, an undulation angle, and a turning angle. May be entered. Further, the overload prevention device may store the forward rated load determined for each boom length, undulation angle and turning angle so as to be the load of the suspended load when the forward rated moment acts on the boom. Further, the overload prevention device may determine that the load is overloaded when the measured value of the load exceeds the front rated load corresponding to the measured values of the boom length, the undulation angle and the turning angle.
  • the present invention is applicable not only to loaded truck cranes but also to various mobile cranes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Jib Cranes (AREA)

Abstract

This overload prevention device is built into a crane that has a boom and that transports a suspended load, and comprises: a storage unit that stores a first threshold value that is set as the upper limit of a load that will not cause the crane to tip forward; and a control unit that performs overload prevention control, including control for stopping the operation of the boom and/or control for issuing an alarm, when a forward load that generates the forward moment acting on the boom is greater than the first threshold value.

Description

過負荷防止装置Overload prevention device
 本発明は、クレーンの過負荷防止装置に関する。さらに詳しくは、本発明は、クレーンの過負荷による転倒を防止するための過負荷防止装置に関する。 The present invention relates to an overload prevention device for a crane. More specifically, the present invention relates to an overload prevention device for preventing a fall due to an overload of a crane.
 クレーンの過負荷防止装置として、アウトリガジャッキの接地反力に基づき、転倒を検知するものがある。移動式クレーンの転倒モーメントが大きくなると、それに従い反転倒側に設けられたアウトリガジャッキの接地反力が小さくなる。これを利用して、過負荷防止装置は、アウトリガジャッキの接地反力が閾値以下となったときに過負荷と判断する。 There is a crane overload prevention device that detects a fall based on the ground reaction force of the outrigger jack. As the overturning moment of the mobile crane increases, the ground contact reaction force of the outrigger jack provided on the overturning side decreases accordingly. Utilizing this, the overload prevention device determines that the outrigger jack is overloaded when the ground contact reaction force of the outrigger jack becomes equal to or less than the threshold value.
 積載形トラッククレーンの場合、アウトリガジャッキは、ブームの旋回中心のほぼ真横に設けられる。このような構成では、前方への転倒モーメントが大きくなってもアウトリガジャッキの接地反力は変化しない。そのため、アウトリガジャッキの接地反力に基づいて前方への転倒を検知することはできない。 In the case of a loaded truck crane, the outrigger jack is installed almost right next to the turning center of the boom. In such a configuration, the ground reaction force of the outrigger jack does not change even if the forward overturning moment increases. Therefore, it is not possible to detect a forward fall based on the ground contact reaction force of the outrigger jack.
 これに対して、特許文献1には、実荷重が許容前方吊上荷重に達したことに基づいて、前方への転倒を検知する技術が開示されている。許容前方吊上荷重は、トラックの荷台に荷物を積載しない空荷状態で伸縮ブームをトラック正面に旋回させたブーム正面作業においてトラックの後輪が浮き上がる限界の前方転倒モーメントから求められる。 On the other hand, Patent Document 1 discloses a technique for detecting a forward fall based on the fact that the actual load reaches the allowable forward lifting load. The permissible forward lifting load is obtained from the forward overturning moment at the limit where the rear wheels of the truck are lifted in the boom front work in which the telescopic boom is swiveled to the front of the truck in an empty state where no load is loaded on the truck bed.
特開2008-105817号公報Japanese Unexamined Patent Publication No. 2008-105817
 特許文献1の許容前方吊上荷重は、ブームを真正面に向けた最も転倒しやすい状態における前方転倒モーメントから求められる。そのため、ブームを斜め前に向けた状態では、実荷重が許容前方吊上荷重をある程度超えたとしても、積載形トラッククレーンが前方に転倒することはない。言い換えれば、ブームを斜め前に向けた状態では、転倒に対する余裕があるにもかかわらず、クレーン装置の動作が制限される。これは、クレーン装置の前方の作業範囲が必要以上に制限されることを意味する。 The permissible forward lifting load of Patent Document 1 is obtained from the forward overturning moment in the state where the boom is most likely to overturn toward the front. Therefore, when the boom is directed diagonally forward, the loaded truck crane will not tip over even if the actual load exceeds the allowable forward lifting load to some extent. In other words, when the boom is directed diagonally forward, the operation of the crane device is restricted even though there is room for a fall. This means that the working range in front of the crane equipment is unnecessarily limited.
 本発明は上記事情に鑑み、前方の作業範囲を拡大できるクレーンの過負荷防止装置を提供することを目的とする。 In view of the above circumstances, an object of the present invention is to provide a crane overload prevention device capable of expanding the working range in front of the crane.
 本発明に係る過負荷防止装置の一態様は、
 ブームを有し、吊荷を搬送するクレーンに組み込まれる過負荷防止装置であって、
 クレーンが前方に転倒しない荷重の上限として設定される第一閾値を記憶する記憶部と、
 ブームに作用する前方モーメントを発生させる前方荷重が、第一閾値よりも大きい場合に、ブームの動作を停止する制御及び警報を発する制御の少なくとも一方の制御を含む過負荷防止制御を実施する制御部と、を備える。
One aspect of the overload prevention device according to the present invention is
An overload prevention device that has a boom and is built into a crane that transports suspended loads.
A storage unit that stores the first threshold value set as the upper limit of the load that prevents the crane from tipping forward,
A control unit that performs overload prevention control including at least one of control for stopping the operation of the boom and control for issuing an alarm when the forward load that generates the forward moment acting on the boom is larger than the first threshold value. And.
 本発明に係る過負荷防止装置の一態様は、
 ブームを有し、吊荷を搬送するクレーンに組み込まれる過負荷防止装置であって、
 ブームに作用する前方モーメントを発生させる前方荷重に基づいて、クレーンが前方に関する過負荷状態であるか否かを判定する第一判定部と、
 クレーンが側方に関する過負荷状態であるか否かを判定する第二判定部と、
 クレーンが強度に関する過負荷状態であるか否かを判定する第三判定部と、
 第一判定部、第二判定部、及び第三判定部のうちの少なくとも一つの判定部の判定結果が、過負荷状態であった場合に、ブームの動作を停止する制御及び警報を発する制御の少なくとも一方の制御を含む過負荷防止制御を実施する制御部と、を備える。
One aspect of the overload prevention device according to the present invention is
An overload prevention device that has a boom and is built into a crane that transports suspended loads.
Based on the forward load that generates the forward moment acting on the boom, the first determination unit that determines whether the crane is in a forward overload state, and
The second judgment unit that determines whether the crane is overloaded with respect to the side, and
A third judgment unit that determines whether the crane is overloaded with respect to strength,
When the judgment result of at least one of the first judgment unit, the second judgment unit, and the third judgment unit is an overload state, the control for stopping the operation of the boom and the control for issuing an alarm are performed. A control unit that performs overload prevention control including at least one control is provided.
 本発明によれば、ブームに作用する転倒モーメントの前方転倒成分を基準として過負荷を判断するので、ブームを斜め前に向けたときの作業範囲を拡大できる。 According to the present invention, since the overload is determined based on the forward overturning component of the overturning moment acting on the boom, the working range when the boom is directed diagonally forward can be expanded.
図1は、積載形トラッククレーンの側面図である。FIG. 1 is a side view of a loaded truck crane. 図2は、積載形トラッククレーンの平面図である。FIG. 2 is a plan view of a loaded truck crane. 図3は、小型クレーンの油圧回路図である。FIG. 3 is a hydraulic circuit diagram of a small crane. 図4は、前方作業範囲の説明図である。FIG. 4 is an explanatory view of the forward working range. 図5は、第1実施形態に係る過負荷防止装置のブロック図である。FIG. 5 is a block diagram of the overload prevention device according to the first embodiment. 図6は、第1実施形態における前方安定監視部の制御のフローチャートである。FIG. 6 is a flowchart of control of the forward stability monitoring unit according to the first embodiment. 図7は、第2実施形態における前方安定監視部の制御のフローチャートである。FIG. 7 is a flowchart of control of the forward stability monitoring unit according to the second embodiment.
 つぎに、本発明の実施形態を図面に基づき説明する。〔第1実施形態〕
 本発明の第1実施形態に係る過負荷防止装置AAは、移動式クレーンの過負荷による転倒を防止するために用いられる。移動式クレーンとして、オールテレーンクレーン、ラフテレーンクレーン、トラッククレーン、および積載形トラッククレーンなどが挙げられる。本実施形態の過負荷防止装置AAは、これらのなかでも積載形トラッククレーンに好適に用いられる。
Next, an embodiment of the present invention will be described with reference to the drawings. [First Embodiment]
The overload prevention device AA according to the first embodiment of the present invention is used to prevent the mobile crane from tipping over due to overload. Mobile cranes include all-terrain cranes, rough terrain cranes, truck cranes, and loaded truck cranes. Among these, the overload prevention device AA of the present embodiment is preferably used for a load-type truck crane.
(積載形トラッククレーン)
 まず、積載形トラッククレーンCRを説明する。図1に示すように、積載形トラッククレーンCRは汎用トラック10を有する。汎用トラック10の前方部分には運転室11が設けられており、後方部分には荷台12が設けられている。汎用トラック10の車両フレーム13のうち、運転室11と荷台12との間の部分には、小型クレーン20が搭載されている。
(Load type truck crane)
First, the loading type truck crane CR will be described. As shown in FIG. 1, the load-type truck crane CR has a general-purpose truck 10. A driver's cab 11 is provided in the front portion of the general-purpose truck 10, and a loading platform 12 is provided in the rear portion. A small crane 20 is mounted in a portion of the vehicle frame 13 of the general-purpose truck 10 between the driver's cab 11 and the loading platform 12.
小型クレーン20は車両フレーム13上に固定されたベース21を有する。ベース21にはポスト22が旋回可能に設けられている。ポスト22の上端部にはブーム23が起伏可能に設けられている。ポスト22にはウインチが内蔵されている。このウインチから延ばされたワイヤロープはブーム23の先端部まで導かれている。ワイヤロープはブーム23の先端部とフック24とに設けられた滑車に掛け回されている。これにより、フック24はブーム23の先端部から吊り下げられている。フック24には吊荷が吊り下げられる。 The small crane 20 has a base 21 fixed on the vehicle frame 13. A post 22 is provided on the base 21 so as to be rotatable. A boom 23 is provided on the upper end of the post 22 so as to be undulating. The post 22 has a built-in winch. The wire rope extended from this winch is guided to the tip of the boom 23. The wire rope is hung around a pulley provided at the tip of the boom 23 and the hook 24. As a result, the hook 24 is suspended from the tip of the boom 23. A suspended load is suspended from the hook 24.
 ポスト22、ブーム23、フック24などから構成され、吊荷の搬送に用いられる装置を「クレーン装置」と称する。ブーム23は伸縮、起伏可能であるとともに、旋回中心Oを中心として旋回可能である。本明細書では、ブーム23の長さをLと表記する。ブーム23の起伏角(水平面に対する角度)をφと表記する。また、図2に示すように、ブーム23の旋回角をθと表記する。旋回角θは積載形トラッククレーンCRの真正面を0°とする。 A device composed of a post 22, a boom 23, a hook 24, etc. and used for transporting a suspended load is referred to as a "crane device". The boom 23 can be expanded and contracted and undulated, and can be swiveled around the swivel center O. In this specification, the length of the boom 23 is referred to as L. The undulation angle (angle with respect to the horizontal plane) of the boom 23 is expressed as φ. Further, as shown in FIG. 2, the turning angle of the boom 23 is referred to as θ. The turning angle θ is 0 ° directly in front of the loaded truck crane CR.
 小型クレーン20は、クレーン装置のほか、アウトリガジャッキ25を有する。アウトリガジャッキ25は小型クレーン20の左右両側に配置されている。左右のアウトリガジャッキ25とブーム23の旋回中心Oとは車幅方向に並んで配置されている。すなわち、左右のアウトリガジャッキ25とブーム23の旋回中心Oとは、汎用トラック10の前後方向に同位置に配置されているか、短い距離を隔てて配置されている。なお、荷台12の後方左右に、アウトリガジャッキ25とは別のアウトリガジャッキを設けてもよい。 The small crane 20 has an outrigger jack 25 in addition to the crane device. The outrigger jacks 25 are arranged on the left and right sides of the small crane 20. The left and right outrigger jacks 25 and the turning center O of the boom 23 are arranged side by side in the vehicle width direction. That is, the left and right outrigger jacks 25 and the turning center O of the boom 23 are arranged at the same position in the front-rear direction of the general-purpose truck 10 or are arranged at short distances. An outrigger jack different from the outrigger jack 25 may be provided on the left and right rear of the loading platform 12.
 小型クレーン20は図3に示す油圧回路30により油圧駆動される。油圧回路30は油圧バルブユニット31を有する。油圧バルブユニット31の入口ポートは主油路34を介してタンク32に接続している。主油路34には油圧ポンプ33が設けられている。油圧ポンプ33はPTO(パワーテイクオフ)装置を介して汎用トラック10のエンジン14に接続されており、エンジン14により駆動される。油圧ポンプ33によりタンク32内の作動油が油圧バルブユニット31に供給される。油圧バルブユニット31の出口ポートは戻油路35を介してタンク32に接続している。 The small crane 20 is hydraulically driven by the hydraulic circuit 30 shown in FIG. The hydraulic circuit 30 has a hydraulic valve unit 31. The inlet port of the hydraulic valve unit 31 is connected to the tank 32 via the main oil passage 34. A hydraulic pump 33 is provided in the main oil passage 34. The hydraulic pump 33 is connected to the engine 14 of the general-purpose truck 10 via a PTO (power take-off) device, and is driven by the engine 14. The hydraulic oil in the tank 32 is supplied to the hydraulic valve unit 31 by the hydraulic pump 33. The outlet port of the hydraulic valve unit 31 is connected to the tank 32 via the return oil passage 35.
 油圧バルブユニット31には複数の油圧アクチュエータ36a~36fが接続されている。油圧アクチュエータ36a~36fは、ブーム伸縮用油圧シリンダ36a、ウインチ用油圧モータ36b、ブーム起伏用油圧シリンダ36c、旋回用油圧モータ36d、およびアウトリガ用油圧シリンダ36e、36fである。ブーム伸縮用油圧シリンダ36aの動作によりブーム23が伸縮する。ウインチ用油圧モータ36bの動作によりフック24が巻上及び巻下作動する。ブーム起伏用油圧シリンダ36cの動作によりブーム23が起伏する。旋回用油圧モータ36dの動作によりポスト22が旋回する。アウトリガ用油圧シリンダ36e、36fの動作によりアウトリガジャッキ25が伸縮する。 A plurality of hydraulic actuators 36a to 36f are connected to the hydraulic valve unit 31. The hydraulic actuators 36a to 36f are a boom expansion / contraction hydraulic cylinder 36a, a winch hydraulic motor 36b, a boom undulating hydraulic cylinder 36c, a swivel hydraulic motor 36d, and an outrigger hydraulic cylinders 36e and 36f. The boom 23 expands and contracts due to the operation of the boom expansion and contraction hydraulic cylinder 36a. The hook 24 is hoisted and unwound by the operation of the winch hydraulic motor 36b. The boom 23 undulates due to the operation of the boom undulating hydraulic cylinder 36c. The post 22 is swiveled by the operation of the swivel hydraulic motor 36d. The outrigger jack 25 expands and contracts due to the operation of the outrigger hydraulic cylinders 36e and 36f.
 油圧バルブユニット31には、伸縮用切換制御弁37a、ウインチ用切換制御弁37b、起伏用切換制御弁37c、旋回用切換制御弁37d、およびアウトリガ用切換制御弁37e、37fが設けられている。伸縮用切換制御弁37aにブーム伸縮用油圧シリンダ36aが接続している。ウインチ用切換制御弁37bにウインチ用油圧モータ36bが接続している。起伏用切換制御弁37cにブーム起伏用油圧シリンダ36cが接続している。旋回用切換制御弁37dに旋回用油圧モータ36dが接続している。アウトリガ用切換制御弁37e、37fにアウトリガ用油圧シリンダ36e、36fが、それぞれ接続している。各切換制御弁37a~37fは、油圧ポンプ33から供給された作動油の方向および流量を制御して、油圧アクチュエータ36a~36fの動作を制御する。 The hydraulic valve unit 31 is provided with a telescopic switching control valve 37a, a winch switching control valve 37b, an undulating switching control valve 37c, a swivel switching control valve 37d, and outrigger switching control valves 37e and 37f. A boom expansion / contraction hydraulic cylinder 36a is connected to the expansion / contraction switching control valve 37a. A winch hydraulic motor 36b is connected to the winch switching control valve 37b. A boom undulating hydraulic cylinder 36c is connected to the undulating switching control valve 37c. A swivel hydraulic motor 36d is connected to the swivel switching control valve 37d. The outrigger hydraulic cylinders 36e and 36f are connected to the outrigger switching control valves 37e and 37f, respectively. The switching control valves 37a to 37f control the direction and flow rate of the hydraulic oil supplied from the hydraulic pump 33 to control the operation of the hydraulic actuators 36a to 36f.
 各切換制御弁37a~37fのスプールにはリンク機構などを介して操作レバーが連結されている。操作レバーを手動操作することにより、切換制御弁37a~37fのスプール位置を切り換えることができる。すなわち、操作レバーにより切換制御弁37a~37fを直接操作できる。 An operation lever is connected to the spools of the switching control valves 37a to 37f via a link mechanism or the like. By manually operating the operating lever, the spool positions of the switching control valves 37a to 37f can be switched. That is, the switching control valves 37a to 37f can be directly operated by the operating lever.
 図1に示すように、小型クレーン20は操作レバー群26を有する。操作レバー群26を構成する操作レバーが切換制御弁37a~37fのいずれかに連結されている。操作者は操作レバー群26を用いて小型クレーン20を操作できる。 As shown in FIG. 1, the small crane 20 has an operating lever group 26. The operating levers constituting the operating lever group 26 are connected to any of the switching control valves 37a to 37f. The operator can operate the small crane 20 by using the operating lever group 26.
 図3に示すように、切換制御弁37a~37fのスプールには、それぞれパイロットシリンダ38a~38fが取り付けられている。パイロットシリンダ38a~38fの動作によっても、切換制御弁37a~37fのスプール位置を切り換えることができる。 As shown in FIG. 3, pilot cylinders 38a to 38f are attached to the spools of the switching control valves 37a to 37f, respectively. The spool positions of the switching control valves 37a to 37f can also be switched by the operation of the pilot cylinders 38a to 38f.
 各パイロットシリンダ38a~38fは、複動形シリンダであり、右側油室への作動油の給排を行なう電磁弁と、左側油室への作動油の給排を行なう電磁弁とが付設されている。これらの電磁弁は制御装置40に接続されている。 Each of the pilot cylinders 38a to 38f is a double-acting cylinder, and is provided with a solenoid valve for supplying and discharging hydraulic oil to the right oil chamber and an electromagnetic valve for supplying and discharging hydraulic oil to the left oil chamber. There is. These solenoid valves are connected to the control device 40.
 制御装置40はCPU、メモリなどで構成されたコンピュータである。制御装置40からの制御信号に基づいて電磁弁が動作することで、パイロットシリンダ38a~38fが駆動し、切換制御弁37a~37fのスプール位置が切り換わる。このようにして、制御装置40は小型クレーン20の動作を制御する。 The control device 40 is a computer composed of a CPU, a memory, and the like. By operating the solenoid valve based on the control signal from the control device 40, the pilot cylinders 38a to 38f are driven, and the spool positions of the switching control valves 37a to 37f are switched. In this way, the control device 40 controls the operation of the small crane 20.
 制御装置40は遠隔操作端末41と双方向に無線通信または有線通信可能である。遠隔操作端末41は、いわゆるラジコン送信機をはじめとする無線操作端末でもよいし、有線操作端末でもよい。遠隔操作端末41は各種のスイッチ、アクセルトリガなどからなる入力部が搭載されている。 The control device 40 can perform bidirectional wireless communication or wired communication with the remote control terminal 41. The remote control terminal 41 may be a wireless control terminal such as a so-called radio control transmitter, or a wired control terminal. The remote control terminal 41 is equipped with an input unit including various switches and an accelerator trigger.
 操作者が遠隔操作端末41の入力部を操作すると、遠隔操作端末41は制御装置40に操作信号を送信する。制御装置40はその操作信号に基づいて油圧回路30を制御して小型クレーン20を動作させる。このようにして、操作者は遠隔操作端末41を用いて小型クレーン20を遠隔操作できる。 When the operator operates the input unit of the remote control terminal 41, the remote control terminal 41 transmits an operation signal to the control device 40. The control device 40 controls the hydraulic circuit 30 based on the operation signal to operate the small crane 20. In this way, the operator can remotely control the small crane 20 using the remote control terminal 41.
 小型クレーン20はブーム23の姿勢を測定する姿勢測定器を有する。本実施形態の場合、ブーム23の姿勢はブーム23の長さL、起伏角φおよび旋回角θによって表される。姿勢測定器はこれらの各パラメータL、φ、θを測定する複数の測定器からなる。すなわち、姿勢測定器は長さ測定器42、起伏角測定器43および旋回角測定器44からなる。 The small crane 20 has an attitude measuring device that measures the attitude of the boom 23. In the case of the present embodiment, the posture of the boom 23 is represented by the length L of the boom 23, the undulation angle φ, and the turning angle θ. The posture measuring instrument consists of a plurality of measuring instruments that measure each of these parameters L, φ, and θ. That is, the posture measuring device includes a length measuring device 42, an undulation angle measuring device 43, and a turning angle measuring device 44.
 長さ測定器42はブーム23の長さLを測定する。長さ測定器42の構成は特に限定されないが、ブーム23の先端部にコードの端部が固定されたコードリールの回転角をポテンショメータで読み取る構成が挙げられる。 The length measuring device 42 measures the length L of the boom 23. The configuration of the length measuring instrument 42 is not particularly limited, and examples thereof include a configuration in which the rotation angle of the cord reel in which the end of the cord is fixed to the tip of the boom 23 is read by a potentiometer.
 起伏角測定器43はブーム23の起伏角φを測定する。起伏角測定器43の構成は特に限定されないが、ポテンショメータに振り子を取り付けた振子式の角度測定器をブーム23に設ける構成が挙げられる。 The undulation angle measuring device 43 measures the undulation angle φ of the boom 23. The configuration of the undulation angle measuring device 43 is not particularly limited, and examples thereof include a configuration in which a pendulum type angle measuring device in which a pendulum is attached to a potentiometer is provided on the boom 23.
 旋回角測定器44はブーム23の旋回角θを測定する。旋回角測定器44の構成は特に限定されないが、ベース21またはポスト22に設けた複数の近接スイッチによりブーム23の旋回角θを離散的に検知する構成のほか、ポスト22を旋回させる油圧モータの回転角をポテンショメータで読み取る構成が挙げられる。 The turning angle measuring device 44 measures the turning angle θ of the boom 23. The configuration of the swivel angle measuring device 44 is not particularly limited, but in addition to a configuration in which the swivel angle θ of the boom 23 is discretely detected by a plurality of proximity switches provided on the base 21 or the post 22, a hydraulic motor that swivels the post 22 An example is a configuration in which the rotation angle is read by a potentiometer.
 また、小型クレーン20はフック24に吊り下げられた吊荷の荷重Wを測定する荷重測定器45を有する。荷重測定器45の構成は特に限定されないが、ブーム23を起伏させるブーム起伏用油圧シリンダ36c内の油圧を圧力センサで測定して荷重を求める構成のほか、フック24を吊り下げるワイヤロープの張力から荷重Wを検出する張力検出器を用いた構成が挙げられる。 Further, the small crane 20 has a load measuring device 45 that measures the load W of the suspended load suspended from the hook 24. The configuration of the load measuring device 45 is not particularly limited, but the load is obtained by measuring the hydraulic pressure in the boom undulating hydraulic cylinder 36c that raises and lowers the boom 23 with a pressure sensor, and from the tension of the wire rope that suspends the hook 24. An example is a configuration using a tension detector that detects a load W.
(過負荷防止装置)
 つぎに、本実施形態の過負荷防止装置AAを説明する。制御装置40は、小型クレーン20の動作を制御する機能のほか、過負荷防止装置AAとしての機能も有する。なお、過負荷防止装置AAを制御装置40とは別のコンピュータで構成してもよい。
(Overload prevention device)
Next, the overload prevention device AA of the present embodiment will be described. The control device 40 has a function as an overload prevention device AA in addition to a function of controlling the operation of the small crane 20. The overload prevention device AA may be configured by a computer different from the control device 40.
 図5に示すように、過負荷防止装置AAには、姿勢測定器(長さ測定器42、起伏角測定器43、旋回角測定器44)および荷重測定器45の測定値が入力されている。すなわち、過負荷防止装置AAには、ブーム23の長さLd、起伏角φdおよび旋回角θdの各測定値と、吊荷の荷重Wdの測定値とが入力されている。 As shown in FIG. 5, the measurement values of the posture measuring device (length measuring device 42, undulation angle measuring device 43, turning angle measuring device 44) and the load measuring device 45 are input to the overload prevention device AA. .. That is, the overload prevention device AA is input with the measured values of the length L d of the boom 23, the undulation angle φ d, and the turning angle θ d , and the measured values of the load W d of the suspended load.
 過負荷防止装置AAは、これらの測定値Ld、φd、θd、Wdに基づき、小型クレーン20の過負荷状態を検知する。ここで、「過負荷状態」とは、転倒モーメントが安定モーメントを超えて積載形トラッククレーンCRが転倒する状態、および吊荷の荷重Wによる負荷が小型クレーン20の構成部材の耐荷重を超えた状態、あるいはそれらの状態に近づいた状態を意味する。 The overload prevention device AA detects the overload state of the small crane 20 based on these measured values L d , φ d , θ d , and W d. Here, the "overload state" is a state in which the overload moment exceeds the stable moment and the load-type truck crane CR overturns, and the load due to the load W of the suspended load exceeds the load capacity of the constituent members of the small crane 20. It means a state or a state approaching those states.
 過負荷防止装置AAは、前方安定監視部51、側方安定監視部52および強度限界監視部53を有する。前方安定監視部51は、制御部及び第一判定部の一例に該当し、積載形トラッククレーンCRが前方へ転倒するか否か、すなわち前方への安定を監視する。側方安定監視部52は、第二判定部の一例に該当し積載形トラッククレーンCRが側方へ転倒するか否か、すなわち側方への安定を監視する。強度限界監視部53は、第三判定部の一例に該当し、吊荷の荷重による負荷が構成部材の耐荷重を超えるか否かを監視する。以下、それぞれの制御を順に説明する。 The overload prevention device AA has a front stability monitoring unit 51, a side stability monitoring unit 52, and a strength limit monitoring unit 53. The forward stability monitoring unit 51 corresponds to an example of the control unit and the first determination unit, and monitors whether or not the loaded truck crane CR falls forward, that is, the stability in the forward direction. The lateral stability monitoring unit 52 corresponds to an example of the second determination unit and monitors whether or not the loaded truck crane CR falls sideways, that is, lateral stability. The strength limit monitoring unit 53 corresponds to an example of the third determination unit, and monitors whether or not the load due to the load of the suspended load exceeds the withstand load of the constituent members. Hereinafter, each control will be described in order.
 (前方安定監視)
 まず、前方安定監視の原理を説明する。ブーム23の長さをL、起伏角をφとした場合、作業半径Rは式(1)で求められる。
Figure JPOXMLDOC01-appb-M000001
 
(Forward stability monitoring)
First, the principle of forward stability monitoring will be described. When the length of the boom 23 is L and the undulation angle is φ, the working radius R is calculated by the equation (1).
Figure JPOXMLDOC01-appb-M000001
 フック24に吊り下げられた吊荷の荷重をWとすると、吊荷の荷重Wによってブーム23に作用する転倒モーメントの大きさMは式(2)で求められる。なお、転倒モーメントMにブーム23の自重により生じるモーメントを加えてもよい。
Figure JPOXMLDOC01-appb-M000002
 
Assuming that the load of the suspended load suspended on the hook 24 is W, the magnitude M of the overturning moment acting on the boom 23 by the suspended load W is calculated by the equation (2). A moment generated by the weight of the boom 23 may be added to the overturning moment M.
Figure JPOXMLDOC01-appb-M000002
 ここで、図2に示すように、ブーム23が斜め前に旋回しているとする。この場合、ブーム23に作用する転倒モーメントのうち、前方転倒成分の大きさMfは式(3)で求められる。以下、Mfを「前方モーメント」と称する。
Figure JPOXMLDOC01-appb-M000003
 
Here, as shown in FIG. 2, it is assumed that the boom 23 is turning diagonally forward. In this case, of the overturning moment acting on the boom 23, the magnitude M f of the forward overturning component is obtained by the equation (3). Hereinafter, M f is referred to as "forward moment".
Figure JPOXMLDOC01-appb-M000003
 積載形トラッククレーンCRの前方への安定が確保される前方モーメントMfの最大値を前方定格モーメントMf-limとする。前方定格モーメントMf-limは予め定められた値である。前方定格モーメントMf-limは、例えば、荷台12に荷物を積載しない空荷状態でブーム23が汎用トラック10の真正面を向いた、最も前方転倒しやすい状態において、汎用トラック10の後輪が浮き上がる限界の転倒モーメントの大きさに設定される。上記限界転倒モーメントの大きさに安全率(1未満の値)をかけた値を前方定格モーメントMf-limとしてもよい。また、積載形トラッククレーンCRの側方への安定モーメントを基準として、側方安定モーメントの大きさの所定割合(例えば25%)を前方定格モーメントMf-limとして設定してもよい。 The maximum value of the forward moment M f that ensures the forward stability of the loaded truck crane CR is defined as the forward rated moment M f-lim . The forward rated moment M f-lim is a predetermined value. The front rated moment M f-lim means that, for example, the rear wheel of the general-purpose truck 10 is lifted when the boom 23 faces directly in front of the general-purpose truck 10 in an empty state where no load is loaded on the loading platform 12 and the general-purpose truck 10 is most likely to fall forward. It is set to the magnitude of the limit overturning moment. The value obtained by multiplying the magnitude of the critical overturning moment by the safety factor (value less than 1) may be the forward rated moment M f-lim. Further, a predetermined ratio (for example, 25%) of the magnitude of the lateral stabilizing moment may be set as the forward rated moment M f-lim with reference to the lateral stabilizing moment of the loaded truck crane CR.
 前方モーメントMfと前方定格モーメントMf-limとを比較すれば、積載形トラッククレーンCRが前方へ転倒するか否かを判断できる。具体的には、前方モーメントMfが前方定格モーメントMf-lim以下の場合は、前方転倒しないと判断する。また、前方モーメントMfが前方定格モーメントMf-limを超える場合は、前方転倒する(過負荷)と判断する。 By comparing the forward moment M f and the forward rated moment M f-lim , it can be determined whether or not the loaded truck crane CR falls forward. Specifically, when the forward moment M f is equal to or less than the forward rated moment M f-lim , it is determined that the vehicle does not tip forward. If the forward moment M f exceeds the forward rated moment M f-lim , it is determined that the vehicle falls forward (overload).
 図4に示すように、吊荷の荷重Wが閾値に達したことに基づいて一律に過負荷と判断する場合、前方の作業範囲R1は半円形の領域となる。これに対して、上記のように、ブーム23に作用する転倒モーメントの前方転倒成分Mfを基準として過負荷を判断する場合、前方の作業範囲R2は作業範囲R1を含んだ横長の領域となる。このように、上記の方法によれば、ブーム23を斜め前に向けたときの作業範囲を拡大できる。 As shown in FIG. 4, when it is uniformly determined that the overload is overloaded based on the fact that the load W of the suspended load reaches the threshold value, the front working range R1 becomes a semi-circular region. On the other hand, as described above, when the overload is determined based on the forward overturning component M f of the overturning moment acting on the boom 23, the front working range R2 is a horizontally long region including the working range R1. .. As described above, according to the above method, the working range when the boom 23 is directed diagonally forward can be expanded.
 以上の原理を踏まえ、本実施形態の前方安定監視部51はつぎの制御を行なう。前方安定監視部51には、予め、前方定格荷重Wf-lim(L、φ)が記憶されている。よって、前方安定監視部51は、記憶部としての機能も有する。前方定格荷重Wf-limは、第一閾値の一例に該当し、ブーム23に前方定格モーメントMf-limが作用するときの吊荷の荷重Wとなるよう、ブーム23の長さLおよび起伏角φごとに定められた値である。前方定格荷重Wf-limは表形式で記憶してもよいし、ブーム23の長さLおよび起伏角φを変数とした関数として記憶してもよい。第一閾値は、クレーンが前方に転倒しない荷重の上限として予め設定される。 Based on the above principle, the forward stability monitoring unit 51 of the present embodiment performs the following control. The front stability monitoring unit 51 stores the front rated load W f-lim (L, φ) in advance. Therefore, the forward stability monitoring unit 51 also has a function as a storage unit. The front rated load W f-lim corresponds to an example of the first threshold value, and the length L of the boom 23 and the undulations so as to be the load W of the suspended load when the front rated moment M f-lim acts on the boom 23. It is a value determined for each angle φ. The front rated load W f-lim may be stored in a table format, or may be stored as a function with the length L of the boom 23 and the undulation angle φ as variables. The first threshold is preset as an upper limit of the load that prevents the crane from tipping forward.
 図6に示すように、まず、前方安定監視部51は、長さ測定器42、起伏角測定器43、旋回角測定器44および荷重測定器45から測定値Ld、φd、θd、Wdを取得する(ステップS11)。 As shown in FIG. 6, first, the forward stability monitoring unit 51 has measured values L d , φ d , θ d , from the length measuring device 42, the undulation angle measuring device 43, the turning angle measuring device 44, and the load measuring device 45. Acquire W d (step S11).
 つぎに、前方安定監視部51は、ブーム23が積載形トラッククレーンCRの前方領域に配置されていることを確認する(ステップS12)。ブーム23が前方領域に配置されているとは、ブーム23の先端部(フック24)が前方への転倒基線よりも前方に配置されていることを意味する。前方への転倒基線は、例えば、左右のアウトリガジャッキ25の接地位置を結ぶ線である。左右のアウトリガジャッキ25が旋回中心Oの真横に配置されている場合には、ブーム23の旋回角θdが-90°~+90°の範囲内のときに、ブーム23が前方領域に配置されていると判断すればよい。換言すれば、ブーム23が前方領域に配置されている状態は、吊荷の荷重Wに基づいて、ブーム23に作用する前方モーメントの大きさが0より大きい状態を意味する。 Next, the forward stability monitoring unit 51 confirms that the boom 23 is arranged in the front region of the loaded truck crane CR (step S12). The fact that the boom 23 is arranged in the front region means that the tip end portion (hook 24) of the boom 23 is arranged in front of the forward tipping baseline. The forward overturning baseline is, for example, a line connecting the grounding positions of the left and right outrigger jacks 25. When the left and right outrigger jacks 25 are arranged right next to the turning center O , the boom 23 is arranged in the front region when the turning angle θ d of the boom 23 is within the range of −90 ° to + 90 °. You can judge that there is. In other words, the state in which the boom 23 is arranged in the front region means a state in which the magnitude of the forward moment acting on the boom 23 is greater than 0 based on the load W of the suspended load.
 ブーム23が前方領域に配置されていない場合は処理を終了する。一方、ブーム23が前方領域に配置されている場合は、処理を継続する。 If the boom 23 is not located in the front area, the process ends. On the other hand, when the boom 23 is arranged in the front region, the process is continued.
 つぎに、前方安定監視部51は前方荷重Wfを求める(ステップS13)。前方荷重Wfはつぎの手順で求められる。まず、前方安定監視部51は、旋回角の測定値θdから前方比率を求める。ここで、前方比率とは、ブーム23に作用する転倒モーメントの大きさMに対する前方モーメントMfの比率である。すなわち、前方比率は旋回角θdの余弦値(cosθd)である(式(3)参照)。 Next, the forward stability monitoring unit 51 obtains the forward load W f (step S13). The forward load W f is obtained by the following procedure. First, the forward stability monitoring unit 51 obtains the forward ratio from the measured value θ d of the turning angle. Here, the forward ratio is the ratio of the forward moment M f to the magnitude M of the overturning moment acting on the boom 23. That is, the forward ratio is the cosine value (cos θ d ) of the turning angle θ d (see equation (3)).
 転倒モーメントは、成分として、前方モーメントMと側方モーメントとを有する。ブーム23の長さ及び起伏角を固定した場合、ブーム23の旋回角が0°の場合に、転倒モーメントのうちの前方モーメントMが最大となり、ブーム23の旋回角が90°又は-90°の場合に、転倒モーメントのうちの前方モーメントMが最小となる。前方モーメントとは、ブーム23に作用するモーメントであって、積載形トラッククレーンCRの左右方向に平行な軸周りのモーメントを意味する。又、側方モーメントとは、ブーム23に作用するモーメントであって、積載形トラッククレーンCRの前後方向に平行な軸周りのモーメントを意味する。 The overturning moment has a forward moment M f and a lateral moment as components. When the length and undulation angle of the boom 23 are fixed, when the turning angle of the boom 23 is 0 °, the forward moment M f of the overturning moment becomes the maximum, and the turning angle of the boom 23 is 90 ° or −90 °. In the case of, the forward moment M f of the overturning moment becomes the minimum. The forward moment is a moment acting on the boom 23, and means a moment around an axis parallel to the left-right direction of the loaded truck crane CR. Further, the lateral moment is a moment acting on the boom 23, and means a moment around an axis parallel to the front-rear direction of the loaded truck crane CR.
 つぎに、前方安定監視部51は、式(4)に従い、荷重の測定値Wdに前方比率(cosθd)を乗じて前方荷重Wfを求める。前方荷重Wfはブーム23を真正面に配置したと仮定した場合に、前方モーメントMfと同等の転倒モーメントMが生じるのに要する吊荷の荷重Wである。換言すれば、前方荷重Wは、荷重の測定値Wのうちブーム23に作用する前方モーメントを発生させる荷重に相当する。 Next, the front stability monitoring unit 51 obtains the front load W f by multiplying the measured load value W d by the front ratio (cos θ d) according to the equation (4). The forward load W f is the load W of the suspended load required to generate the overturning moment M equivalent to the forward moment M f , assuming that the boom 23 is arranged directly in front of the boom 23. In other words, the forward load W f corresponds to the load that generates the forward moment acting on the boom 23 in the measured value W d of the load.
Figure JPOXMLDOC01-appb-M000004
 
Figure JPOXMLDOC01-appb-M000004
 
 つぎに、前方安定監視部51は、ブーム23の長さおよび起伏角の測定値Ld、φdに対応する第一閾値である前方定格荷重Wf-lim(Ld、φd)を取得する(ステップS14)。そして、前方安定監視部51は、前方荷重Wfと前方定格荷重Wf-lim(Ld、φd)とを比較する(ステップS15)。そして、前方安定監視部51は、前方荷重Wfが前方定格荷重Wf-lim(Ld、φd)を超えたときに、過負荷と判断する(ステップS16)。又、前方安定監視部51は、過負荷と判断した場合、ブーム23の動作を停止する制御及び警報を発する制御の少なくとも一方の制御を含む過負荷防止制御を実施する。尚、過負荷防止制御は、ブーム23の動作を停止する制御及び警報を発する制御以外の制御を含んでもよい。 Next, the front stability monitoring unit 51 acquires the front rated load W f-lim (L d , φ d ), which is the first threshold value corresponding to the measured values L d and φ d of the length and undulation angle of the boom 23. (Step S14). Then, the front stability monitoring unit 51 compares the front load W f with the front rated load W f-lim (L d , φ d ) (step S15). Then, when the front load W f exceeds the front rated load W f-lim (L d , φ d ), the front stability monitoring unit 51 determines that the load is overloaded (step S16). Further, the forward stability monitoring unit 51 implements overload prevention control including at least one of control of stopping the operation of the boom 23 and control of issuing an alarm when it is determined that the load is overloaded. The overload prevention control may include a control other than a control for stopping the operation of the boom 23 and a control for issuing an alarm.
 (側方安定監視)
 つぎに、側方安定監視を説明する。
 側方安定監視部52は、積載形トラッククレーンCRが側方へ転倒する条件となったとき、あるいはそのような条件に近づいたときに過負荷と判断する。側方安定監視部52の具体的な制御は特に限定されないが、例えば、以下の制御を行なう。
(Side stability monitoring)
Next, lateral stability monitoring will be described.
The lateral stability monitoring unit 52 determines that the load is overloaded when the load-type truck crane CR falls under the condition of falling sideways, or when such a condition is approached. The specific control of the lateral stability monitoring unit 52 is not particularly limited, but for example, the following control is performed.
 積載形トラッククレーンCRの側方への転倒モーメント(つまり、ブーム23に作用する転倒モーメントのうちの側方モーメント)が大きくなると、それに従い反転倒側に設けられたアウトリガジャッキ25の接地反力Fが小さくなる。これを利用して側方への安定を監視する。 When the lateral overturning moment of the loaded truck crane CR (that is, the lateral moment of the overturning moment acting on the boom 23) increases, the ground reaction force F of the outrigger jack 25 provided on the inverted overturning side accordingly. Becomes smaller. This is used to monitor lateral stability.
 積載形トラッククレーンCRは左右のアウトリガジャッキ25の接地反力Fを測定する接地反力測定器46を有する。接地反力測定器46の構成は特に限定されないが、アウトリガジャッキ25の油室内の油圧を測定する油圧センサを用いる構成が挙げられる。アウトリガジャッキ25の保持側油室と反保持側油室の差圧と、ジャッキシリンダの受圧面積とから接地反力Fを算出できる。 The load-type truck crane CR has a ground reaction force measuring device 46 that measures the ground reaction force F of the left and right outrigger jacks 25. The configuration of the ground reaction force measuring device 46 is not particularly limited, and examples thereof include a configuration using a hydraulic sensor that measures the oil pressure in the oil chamber of the outrigger jack 25. The ground contact reaction force F can be calculated from the differential pressure between the holding side oil chamber and the non-holding side oil chamber of the outrigger jack 25 and the pressure receiving area of the jack cylinder.
 図5に示すように、接地反力測定器46の測定値、すなわち、アウトリガジャッキ25の接地反力Fdは過負荷防止装置AAに入力されている。側方安定監視部52は、左右のアウトリガジャッキ25のいずれかの接地反力Fdが反力閾値Flimを下回ったときに、過負荷と判断する。反力閾値Flimは、側方閾値の一例に該当し、側方安定監視部52に予め設定された値である。反力閾値Flimは一の固定値でもよいし、ブーム23の姿勢L、φ、θ、吊荷の荷重W、アウトリガジャッキ25の張出幅などに基づいて可変としてもよい。 As shown in FIG. 5, the measurement values of the ground reaction force measuring device 46, i.e., the ground reaction force F d outrigger jacks 25 are input to the overload prevention device AA. The lateral stability monitoring unit 52 determines that the load is overloaded when the ground contact reaction force F d of any of the left and right outrigger jacks 25 falls below the reaction force threshold value F lim. The reaction force threshold value F lim corresponds to an example of the lateral threshold value, and is a value preset in the lateral stability monitoring unit 52. The reaction force threshold value F lim may be a fixed value of 1, or may be variable based on the posture L, φ, θ of the boom 23, the load W of the suspended load, the overhang width of the outrigger jack 25, and the like.
 側方安定監視部52は、少なくともブーム23が側方領域に配置されている場合に、側方安定監視を行なう。ブーム23が側方領域に配置されているとは、ブーム23の先端部(フック24)が側方への転倒基線よりも側方に配置されていることを意味する。ブーム23の前方領域と側方領域とは、積載形トラッククレーンCRの斜め前方において、一部重なる。また、アウトリガジャッキ25の接地反力Fに基づいて側方安定監視を行なう場合、側方安定監視部52はブーム23の旋回角θによらず、常に側方安定監視を行なえばよい。したがって、ブーム23が前方領域に配置されている場合は、前方安定監視とともに側方安定監視も行なわれる。前方安定監視部51が過負荷と判断していない場合でも、側方安定監視部52が過負荷と判断する場合がある。 The lateral stability monitoring unit 52 performs lateral stability monitoring at least when the boom 23 is arranged in the lateral region. The fact that the boom 23 is arranged in the lateral region means that the tip end portion (hook 24) of the boom 23 is arranged laterally from the lateral tipping baseline. The front area and the side area of the boom 23 partially overlap each other diagonally in front of the loaded truck crane CR. Further, when performing lateral stability monitoring based on the ground contact reaction force F of the outrigger jack 25, the side stability monitoring unit 52 may always perform lateral stability monitoring regardless of the turning angle θ of the boom 23. Therefore, when the boom 23 is arranged in the front region, lateral stability monitoring is performed as well as forward stability monitoring. Even if the front stability monitoring unit 51 does not determine that it is overloaded, the side stability monitoring unit 52 may determine that it is overloaded.
 (強度限界監視)
 つぎに、強度限界監視を説明する。強度限界監視部53は吊荷の荷重Wによる負荷が構成部材の耐荷重を超える条件となったときに過負荷と判断する。強度限界監視部53の具体的な制御は特に限定されないが、例えば、以下の制御を行なう。
(Strength limit monitoring)
Next, the strength limit monitoring will be described. The strength limit monitoring unit 53 determines that the load is overloaded when the load due to the load W of the suspended load exceeds the withstand load of the constituent members. The specific control of the strength limit monitoring unit 53 is not particularly limited, but for example, the following control is performed.
 強度限界監視部53には、予め、強度定格荷重Ws-lim(L、φ)が記憶されている。強度定格荷重Ws-limは、ブーム23などの構成部材の耐荷重として、ブーム23の長さLおよび起伏角φごとに定められた値である。ブーム23の長さLおよび起伏角φは、ブーム23の姿勢条件の一例に該当する。強度定格荷重Ws-limは表形式で記憶してもよいし、ブーム23の長さLおよび起伏角φを変数とした関数として記憶してもよい。なお、強度定格荷重Ws-limをブーム23の長さL、起伏角φおよび旋回角θごとに定められた値としてもよい。 The strength rated load W s-lim (L, φ) is stored in advance in the strength limit monitoring unit 53. The strength rated load W s-lim is a value determined for each of the length L of the boom 23 and the undulation angle φ as the load capacity of the constituent members such as the boom 23. The length L and the undulation angle φ of the boom 23 correspond to an example of the posture condition of the boom 23. The strength rated load W s-lim may be stored in a table format, or may be stored as a function with the length L of the boom 23 and the undulation angle φ as variables. The strength rated load W s-lim may be a value determined for each of the length L of the boom 23, the undulation angle φ, and the turning angle θ.
 まず、強度限界監視部53は、長さ測定器42、起伏角測定器43および荷重測定器45から測定値Ld、φd、Wdを取得する。つぎに、強度限界監視部53は、ブーム23の長さおよび起伏角の測定値Ld、φdに対応する強度定格荷重Ws-lim(Ld、φd)を取得する。そして、強度限界監視部53は、荷重Wdと強度定格荷重Ws-lim(Ld、φd)とを比較する。そして、荷重Wdが強度定格荷重Ws-lim(Ld、φd)を超えたときに、過負荷と判断する。 First, the strength limit monitoring unit 53 acquires the measured values L d , φ d , and W d from the length measuring device 42, the undulation angle measuring device 43, and the load measuring device 45. Next, the strength limit monitoring unit 53 acquires the strength rated load W s-lim (L d , φ d ) corresponding to the measured values L d and φ d of the length and undulation angle of the boom 23. Then, the strength limit monitoring unit 53 compares the load W d with the rated strength load W s-lim (L d , φ d). Then, when the load W d exceeds the strength rated load W s-lim (L d , φ d ), it is determined to be an overload.
 なお、強度限界監視部53はブーム23の旋回角θによらず、常に強度限界監視を行なう。 The strength limit monitoring unit 53 constantly monitors the strength limit regardless of the turning angle θ of the boom 23.
 (最終判定)
 図5に示すように、過負荷防止装置AAは最終判定部54を有する。前方安定監視部51、側方安定監視部52および強度限界監視部53の判断結果は、最終判定部54に入力されている。最終判定部54は、前方安定監視部51、側方安定監視部52および強度限界監視部53の判断結果の論理和を求めて、最終的に過負荷の判定を行なう。すなわち、最終判定部54は、前方安定監視部51、側方安定監視部52および強度限界監視部53のいずれか一または複数が過負荷と判断している場合、過負荷と判定する。逆に、最終判定部54は、前方安定監視部51、側方安定監視部52および強度限界監視部53のいずれもが過負荷と判断していない場合、過負荷でないと判定する。
(Final judgment)
As shown in FIG. 5, the overload prevention device AA has a final determination unit 54. The determination results of the front stability monitoring unit 51, the side stability monitoring unit 52, and the strength limit monitoring unit 53 are input to the final determination unit 54. The final determination unit 54 obtains the logical sum of the determination results of the front stability monitoring unit 51, the side stability monitoring unit 52, and the strength limit monitoring unit 53, and finally determines the overload. That is, when any one or more of the front stability monitoring unit 51, the side stability monitoring unit 52, and the strength limit monitoring unit 53 determines that the load is overloaded, the final determination unit 54 determines that the load is overloaded. On the contrary, when none of the front stability monitoring unit 51, the side stability monitoring unit 52, and the strength limit monitoring unit 53 determines that the load is overloaded, the final determination unit 54 determines that the load is not overloaded.
 最終判定部54の判定結果は制御装置40に出力される。判定結果が過負荷の場合、制御装置40はブーム23の動作を自動的に停止してもよいし、警報を発してもよい。自動停止は転倒モーメントが増加する方向のブーム23の動作を停止することにより行なわれる。すなわち、ブーム23の伸長および倒伏を停止し、ブーム23の収縮および起立を許容する。また、フック24の巻き上げを停止し、フック24の巻き下げを許容してもよい。なお、自動停止と警報のいずれか一方を行なってもよいし、両方を行なってもよい。 The determination result of the final determination unit 54 is output to the control device 40. When the determination result is an overload, the control device 40 may automatically stop the operation of the boom 23 or issue an alarm. The automatic stop is performed by stopping the operation of the boom 23 in the direction in which the overturning moment increases. That is, it stops the extension and lodging of the boom 23 and allows the boom 23 to contract and stand. Further, the winding of the hook 24 may be stopped and the winding of the hook 24 may be allowed. Either one of the automatic stop and the alarm may be performed, or both may be performed.
〔第2実施形態〕
 つぎに、本発明の第2実施形態に係る過負荷防止装置AAを説明する。
 本実施形態の過負荷防止装置AAの構成は、図5に示す構成と同様である。また、側方安定監視部52、強度限界監視部53および最終判定部54の制御は第1実施形態と同様である。したがって、前方安定監視部51の制御についてのみ説明する。
[Second Embodiment]
Next, the overload prevention device AA according to the second embodiment of the present invention will be described.
The configuration of the overload prevention device AA of the present embodiment is the same as the configuration shown in FIG. Further, the control of the lateral stability monitoring unit 52, the strength limit monitoring unit 53, and the final determination unit 54 is the same as in the first embodiment. Therefore, only the control of the forward stability monitoring unit 51 will be described.
 前方安定監視部51には、予め、前方定格荷重Wf-lim(L、φ、θ)が記憶されている。前方定格荷重Wf-limは、第一閾値の一例に該当し、ブーム23に作用する前方モーメント(転倒モーメントの前方転倒成分)が前方定格モーメントMf-limとなるときの吊荷の荷重Wとなるよう、ブーム23の長さL、起伏角φおよび旋回角θごとに定められた値である。前方定格荷重Wf-limは表形式で記憶してもよいし、ブーム23の長さL、起伏角φおよび旋回角θを変数とした関数として記憶してもよい。 The front stability monitoring unit 51 stores the front rated load W f-lim (L, φ, θ) in advance. The forward rated load W f-lim corresponds to an example of the first threshold value, and the load W of the suspended load when the forward moment acting on the boom 23 (forward overturning component of the overturning moment) becomes the forward rated moment M f-lim. It is a value determined for each of the length L of the boom 23, the undulation angle φ, and the turning angle θ so as to be. The front rated load W f-lim may be stored in a table format, or may be stored as a function with the length L of the boom 23, the undulation angle φ, and the turning angle θ as variables.
 図7に示すように、まず、前方安定監視部51は、長さ測定器42、起伏角測定器43、旋回角測定器44および荷重測定器45から測定値Ld、φd、θd、Wdを取得する(ステップS21)。 As shown in FIG. 7, first, the forward stability monitoring unit 51 has measured values L d , φ d , θ d , from the length measuring device 42, the undulation angle measuring device 43, the turning angle measuring device 44, and the load measuring device 45. Acquire W d (step S21).
 つぎに、前方安定監視部51は、ブーム23が積載形トラッククレーンCRの前方領域に配置されていることを確認する(ステップS22)。ブーム23が前方領域に配置されていない場合は処理を終了する。一方、ブーム23が前方領域に配置されている場合は、処理を継続する。 Next, the forward stability monitoring unit 51 confirms that the boom 23 is arranged in the front region of the loaded truck crane CR (step S22). If the boom 23 is not located in the front region, the process ends. On the other hand, when the boom 23 is arranged in the front region, the process is continued.
 つぎに、前方安定監視部51は、ブーム23の長さ、起伏角および旋回角の測定値Ld、φd、θdに対応する前方定格荷重Wf-lim(Ld、φd、θd)を取得する(ステップS23)。そして、前方安定監視部51は、荷重の測定値Wdと前方定格荷重Wf-lim(Ld、φd、θd)とを比較する(ステップS24)。そして、荷重Wが前方定格荷重Wf-lim(Ld、φd、θd)を超えたときに、過負荷と判断する(ステップS25)。 Next, the forward stability monitoring unit 51 determines the forward rated load W f-lim (L d , φ d , θ) corresponding to the measured values L d , φ d , and θ d of the boom 23 length, undulation angle, and turning angle. d ) is acquired (step S23). Then, the front stability monitoring unit 51 compares the measured value W d of the load with the front rated load W f-lim (L d , φ d , θ d ) (step S24). Then, when the load W d exceeds the front rated load W f-lim (L d , φ d , θ d ), it is determined that the load is overloaded (step S25).
 このような処理により前方安定監視を行なったとしても、ブーム23を斜め前に向けたときの作業範囲を拡大できる。 Even if forward stability monitoring is performed by such processing, the work range when the boom 23 is directed diagonally forward can be expanded.
 2019年10月29日出願の特願2019-196631の日本出願に含まれる明細書、図面、および要約書の開示内容は、すべて本願に援用される。 The disclosures of the specifications, drawings, and abstracts contained in the Japanese application of Japanese Patent Application No. 2019-196631 filed on October 29, 2019 are all incorporated herein by reference.
 (付記)
 本発明の参考例として以下の過負荷防止装置を実施することもできる。
(Additional note)
The following overload prevention device can also be implemented as a reference example of the present invention.
 (参考例1)
 参考例1に係る過負荷防止装置は、ブームを有する移動式クレーンの過負荷防止装置であって、吊荷の荷重の測定値と、ブームの長さ、起伏角および旋回角の測定値とを入力されてよい。
 又、過負荷防止装置は、ブームに前方定格モーメントが作用するときの吊荷の荷重となるよう、ブームの長さおよび起伏角ごとに定められた前方定格荷重を記憶してよい。
 又、過負荷防止装置は、旋回角の測定値から、ブームに作用する転倒モーメントの大きさに対する転倒モーメントの前方転倒成分の大きさの比率である前方比率を求め、荷重の測定値に前方比率を乗じて前方荷重を求め、前方荷重が、ブームの長さおよび起伏角の測定値に対応する前方定格荷重を超えたときに、過負荷と判断してよい。
(Reference example 1)
The overload prevention device according to Reference Example 1 is an overload prevention device for a mobile crane having a boom, and has a measured value of a suspended load and a measured value of a boom length, an undulation angle, and a turning angle. May be entered.
Further, the overload prevention device may store the front rated load determined for each boom length and undulation angle so as to be the load of the suspended load when the front rated moment acts on the boom.
Further, the overload prevention device obtains the forward ratio, which is the ratio of the magnitude of the forward overturning component of the overturning moment to the magnitude of the overturning moment acting on the boom, from the measured value of the turning angle, and the forward ratio to the measured value of the load. The front load is obtained by multiplying by, and when the front load exceeds the front rated load corresponding to the measured values of the boom length and the undulation angle, it may be determined as an overload.
 (参考例2)
 参考例2に係る過負荷防止装置は、ブームを有する移動式クレーンの過負荷防止装置であって、吊荷の荷重の測定値と、ブームの長さ、起伏角および旋回角の測定値とを入力されてよい。
 又、過負荷防止装置は、ブームに前方定格モーメントが作用するときの吊荷の荷重となるよう、ブームの長さ、起伏角および旋回角ごとに定められた前方定格荷重を記憶してよい。
 又、過負荷防止装置は、荷重の測定値が、ブームの長さ、起伏角および旋回角の測定値に対応する前方定格荷重を超えたときに、過負荷と判断してよい。
(Reference example 2)
The overload prevention device according to Reference Example 2 is an overload prevention device for a mobile crane having a boom, and has a measured value of a suspended load and a measured value of a boom length, an undulation angle, and a turning angle. May be entered.
Further, the overload prevention device may store the forward rated load determined for each boom length, undulation angle and turning angle so as to be the load of the suspended load when the forward rated moment acts on the boom.
Further, the overload prevention device may determine that the load is overloaded when the measured value of the load exceeds the front rated load corresponding to the measured values of the boom length, the undulation angle and the turning angle.
 本発明は、積載形トラッククレーンに限らず、種々の移動式クレーンに適用できる。 The present invention is applicable not only to loaded truck cranes but also to various mobile cranes.
 CR 積載形トラッククレーン
 10 汎用トラック
 11 運転室
 12 荷台
 13 車両フレーム
 14 エンジン
 20 小型クレーン
 21 ベース
 22 ポスト
 23 ブーム
 25 アウトリガジャッキ
 26 操作レバー群
 30 油圧回路
 31 油圧バルブユニット
 32 タンク
 33 油圧ポンプ
 34 主油路
 35 戻油路
 36a ブーム伸縮用油圧シリンダ(油圧アクチュエータ)
 36b ウインチ用油圧モータ(油圧アクチュエータ)
 36c ブーム起伏用油圧シリンダ(油圧アクチュエータ)
 36d 旋回用油圧モータ(油圧アクチュエータ)
 36e、36f アウトリガ用油圧シリンダ(油圧アクチュエータ)
 37a 伸縮用切換制御弁
 37b ウインチ用切換制御弁
 37c 起伏用切換制御弁
 37d 旋回用切換制御弁
 37e、37f アウトリガ用切換制御弁
 38a、38b、38c、38d、38e、38f パイロットシリンダ
 40 制御装置
 41 遠隔操作端末
 42 長さ測定器
 43 起伏角測定器
 44 旋回角測定器
 45 荷重測定器
 46 接地反力測定器
 AA 過負荷防止装置
 51 前方安定監視部
 52 側方安定監視部
 53 強度限界監視部
 54 最終判定部
CR Loading type truck crane 10 General-purpose truck 11 Driver's cab 12 Loading platform 13 Vehicle frame 14 Engine 20 Small crane 21 Base 22 Post 23 Boom 25 Out trigger jack 26 Operating lever group 30 Hydraulic circuit 31 Hydraulic valve unit 32 Tank 33 Hydraulic pump 34 Main oil passage 35 Return oil passage 36a Boom expansion / contraction hydraulic cylinder (hydraulic actuator)
36b winch hydraulic motor (hydraulic actuator)
36c Boom undulating hydraulic cylinder (hydraulic actuator)
36d Hydraulic motor for turning (hydraulic actuator)
36e, 36f Hydraulic cylinder for outriggers (hydraulic actuator)
37a Expansion / contraction switching control valve 37b Winch switching control valve 37c Undulation switching control valve 37d Swing switching control valve 37e, 37f Outrigger switching control valve 38a, 38b, 38c, 38d, 38e, 38f Pilot cylinder 40 Control device 41 Remote Operation terminal 42 Length measuring device 43 Undulating angle measuring device 44 Turning angle measuring device 45 Load measuring device 46 Ground reaction force measuring device AA Overload prevention device 51 Front stability monitoring unit 52 Side stability monitoring unit 53 Strength limit monitoring unit 54 Final Judgment unit

Claims (8)

  1.  ブームを有し、吊荷を搬送するクレーンに組み込まれる過負荷防止装置であって、
     前記クレーンが前方に転倒しない荷重の上限として設定される第一閾値を記憶する記憶部と、
     前記ブームに作用する前方モーメントを発生させる前方荷重が、前記第一閾値よりも大きい場合に、前記ブームの動作を停止する制御及び警報を発する制御の少なくとも一方の制御を含む過負荷防止制御を実施する制御部と、を備える
     過負荷防止装置。
    An overload prevention device that has a boom and is built into a crane that transports suspended loads.
    A storage unit that stores a first threshold value set as an upper limit of the load that prevents the crane from tipping forward,
    When the forward load that generates the forward moment acting on the boom is larger than the first threshold value, overload prevention control including at least one of control of stopping the operation of the boom and control of issuing an alarm is performed. An overload prevention device that includes a control unit.
  2.  前記記憶部は、前記第一閾値を前記ブームが取り得る長さ及び起伏角と対応付けて記憶し、
     前記制御部は、前記記憶部から前記ブームの長さ及び起伏角に対応する前記第一閾値を取得し、前記前方荷重が、取得した前記第一閾値よりも大きい場合に、前記過負荷防止制御を実施する、請求項1に記載の過負荷防止装置。
    The storage unit stores the first threshold value in association with the length and undulation angle that the boom can take.
    The control unit acquires the first threshold value corresponding to the length and undulation angle of the boom from the storage unit, and when the forward load is larger than the acquired first threshold value, the overload prevention control The overload prevention device according to claim 1, wherein the overload prevention device according to claim 1 is carried out.
  3.  前記制御部は、前記第一閾値を前記ブームが取り得る長さ、起伏角、及び旋回角と対応付けて記憶し、
     前記制御部は、前記記憶部から前記ブームの長さ、起伏角、及び旋回角に対応する前記第一閾値を取得し、前記吊荷の荷重が、取得した前記第一閾値よりも大きい場合に、前記過負荷防止制御を実施する、請求項1に記載の過負荷防止装置。
    The control unit stores the first threshold value in association with the length, undulation angle, and turning angle that the boom can take.
    The control unit acquires the first threshold value corresponding to the boom length, undulation angle, and turning angle from the storage unit, and when the load of the suspended load is larger than the acquired first threshold value. The overload prevention device according to claim 1, wherein the overload prevention control is performed.
  4.  前記制御部は、前記ブームに作用する転倒モーメントに対する前記前方モーメントの比率を算出し、前記吊荷の荷重に前記比率を乗じることにより前記前方荷重を算出し、前記前方荷重が、前記第一閾値を超えた場合に、前記過負荷防止制御を実施する、請求項1又は2に記載の過負荷防止装置。 The control unit calculates the ratio of the front moment to the overturning moment acting on the boom, calculates the front load by multiplying the load of the suspended load by the ratio, and the front load is the first threshold value. The overload prevention device according to claim 1 or 2, wherein the overload prevention control is performed when the above amount is exceeded.
  5.  前記制御部は、前記クレーンのアウトリガに作用する接地反力と、前記クレーンが側方に転倒しない接地反力の閾値として設定される側方閾値とに基づいて、前記過負荷防止制御を実施する、請求項1~4の何れか一項に記載の過負荷防止装置。 The control unit implements the overload prevention control based on the ground contact reaction force acting on the outriggers of the crane and the lateral threshold value set as the threshold value of the ground contact reaction force that prevents the crane from tipping sideways. , The overload prevention device according to any one of claims 1 to 4.
  6.  前記記憶部は、前記ブームが取り得る姿勢条件と対応付けて強度定格荷重を予め記憶し、
     前記制御部は、前記記憶部から取得した前記ブームの姿勢に対応する前記強度定格荷重と、前記荷重とに基づいて、前記過負荷防止制御を実施する、請求項5に記載の過負荷防止装置。
    The storage unit stores the strength rated load in advance in association with the posture conditions that the boom can take.
    The overload prevention device according to claim 5, wherein the control unit executes the overload prevention control based on the strength rated load corresponding to the posture of the boom acquired from the storage unit and the load. ..
  7.  ブームを有し、吊荷を搬送するクレーンに組み込まれる過負荷防止装置であって、
     前記ブームに作用する転倒モーメントのうちの前方モーメントを発生させる前方荷重に基づいて、前記クレーンが前方に関する過負荷状態であるか否かを判定する第一判定部と、
     前記クレーンが側方に関する過負荷状態であるか否かを判定する第二判定部と、
     前記クレーンが強度に関する過負荷状態であるか否かを判定する第三判定部と、
     前記第一判定部、前記第二判定部、及び前記第三判定部のうちの少なくとも一つの判定部の判定結果が、過負荷状態であった場合に、前記ブームの動作を停止する制御及び警報を発する制御の少なくとも一方の制御を含む過負荷防止制御を実施する制御部と、を備える、
     過負荷防止装置。
    An overload prevention device that has a boom and is built into a crane that transports suspended loads.
    A first determination unit that determines whether or not the crane is in a forward overload state based on a forward load that generates a forward moment among the overturning moments acting on the boom.
    A second determination unit that determines whether or not the crane is in a lateral overload state, and
    A third determination unit that determines whether the crane is in an overloaded state with respect to strength, and
    A control and an alarm for stopping the operation of the boom when the determination result of at least one of the first determination unit, the second determination unit, and the third determination unit is in an overload state. A control unit that implements overload prevention control including control of at least one of the controls that emits
    Overload prevention device.
  8.  前記第二判定部は、前記クレーンのアウトリガに作用する接地反力に基づいて、前記クレーンが側方に関する過負荷状態であるか否かを判定し、
     前記第三判定部は、前記転倒モーメントに基づいて、前記クレーンが強度に関する過負荷状態であるか否かを判定する、請求項7に記載の過負荷防止装置。
    The second determination unit determines whether or not the crane is in a lateral overload state based on the ground contact reaction force acting on the outriggers of the crane.
    The overload prevention device according to claim 7, wherein the third determination unit determines whether or not the crane is in an overload state with respect to strength based on the overturning moment.
PCT/JP2020/040711 2019-10-29 2020-10-29 Overload prevention device WO2021085566A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021553700A JP7151908B2 (en) 2019-10-29 2020-10-29 overload protector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019196631 2019-10-29
JP2019-196631 2019-10-29

Publications (1)

Publication Number Publication Date
WO2021085566A1 true WO2021085566A1 (en) 2021-05-06

Family

ID=75715204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/040711 WO2021085566A1 (en) 2019-10-29 2020-10-29 Overload prevention device

Country Status (2)

Country Link
JP (1) JP7151908B2 (en)
WO (1) WO2021085566A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08119582A (en) * 1994-10-27 1996-05-14 Komatsu Ltd Overturning alarm device of working vehicle and overturning preventing method
JP2007314257A (en) * 2006-05-23 2007-12-06 Tadano Ltd Stability limit monitoring device of mobile crane having cargo bed
JP2008105817A (en) * 2006-10-26 2008-05-08 Tadano Ltd Fall-down preventive device for on-vehicle crane
JP2017206384A (en) * 2016-03-10 2017-11-24 マニトワック・クレーン・グループ・フランス・ソシエテ・パール・アクシオン・サンプリフィエManitowoc Crane Group France SAS Method for ascertaining load capacity of crane, and crane

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6039640B2 (en) * 1974-12-27 1985-09-06 新明和工業株式会社 Fall warning device for crane trucks, etc.
JP2019156579A (en) * 2018-03-14 2019-09-19 株式会社タダノ Loading-type truck crane

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08119582A (en) * 1994-10-27 1996-05-14 Komatsu Ltd Overturning alarm device of working vehicle and overturning preventing method
JP2007314257A (en) * 2006-05-23 2007-12-06 Tadano Ltd Stability limit monitoring device of mobile crane having cargo bed
JP2008105817A (en) * 2006-10-26 2008-05-08 Tadano Ltd Fall-down preventive device for on-vehicle crane
JP2017206384A (en) * 2016-03-10 2017-11-24 マニトワック・クレーン・グループ・フランス・ソシエテ・パール・アクシオン・サンプリフィエManitowoc Crane Group France SAS Method for ascertaining load capacity of crane, and crane

Also Published As

Publication number Publication date
JP7151908B2 (en) 2022-10-12
JPWO2021085566A1 (en) 2021-05-06

Similar Documents

Publication Publication Date Title
AU650359B2 (en) Load moment indicator system
EP2298689B1 (en) Method and device for limiting lifting moment of a loading crane
JP5543741B2 (en) Crane overturn prevention device
CA2672129A1 (en) Load monitoring and control system with selective boom-up lockout
CN109071191B (en) Hydraulic crane
CN108883919B (en) Crane with a movable crane
JP4194820B2 (en) Safety device for on-board crane
JP2021088432A (en) Mobile crane
JP4951311B2 (en) In-vehicle crane overturn prevention device
WO2021085566A1 (en) Overload prevention device
JP7088418B2 (en) Overload prevention device
US11174138B2 (en) Mobile working machine and method for supervising the manoeuvring of stabilizer legs included in a mobile working machine
JP2019156579A (en) Loading-type truck crane
JP7338427B2 (en) mobile crane
JP2021038082A (en) Loading-type truck crane
JP2802802B2 (en) Jib raising limiter for jib crane
WO2023022205A1 (en) Loading type truck crane
CN112299251A (en) Improved arm with two or more hooks
JP2020200159A (en) Mobile crane
JPH01256497A (en) Load vibration preventer at time of ungrounding of slinging load of crane with telescopic boom
JP3724980B2 (en) Leader pile driver
US11891278B1 (en) Lifting capacity systems and methods for lifting machines
JP2018095448A (en) Use hook determination device
JP3258471B2 (en) Crane or tower crane overload protection
JP2605954Y2 (en) Outrigger device for mobile work machine with boom

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20881315

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021553700

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20881315

Country of ref document: EP

Kind code of ref document: A1