WO2021085344A1 - 二次電池用ペースト、二次電池正極用スラリー、二次電池用正極、二次電池、および二次電池用ペーストの製造方法 - Google Patents
二次電池用ペースト、二次電池正極用スラリー、二次電池用正極、二次電池、および二次電池用ペーストの製造方法 Download PDFInfo
- Publication number
- WO2021085344A1 WO2021085344A1 PCT/JP2020/040000 JP2020040000W WO2021085344A1 WO 2021085344 A1 WO2021085344 A1 WO 2021085344A1 JP 2020040000 W JP2020040000 W JP 2020040000W WO 2021085344 A1 WO2021085344 A1 WO 2021085344A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- secondary battery
- positive electrode
- paste
- mass
- acid
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
- C08K3/041—Carbon nanotubes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L9/00—Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
- C08L9/02—Copolymers with acrylonitrile
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
- H01M4/622—Binders being polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F212/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
- C08F212/02—Monomers containing only one unsaturated aliphatic radical
- C08F212/04—Monomers containing only one unsaturated aliphatic radical containing one ring
- C08F212/06—Hydrocarbons
- C08F212/08—Styrene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F236/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
- C08F236/02—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
- C08F236/04—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
- C08F236/06—Butadiene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/002—Physical properties
- C08K2201/006—Additives being defined by their surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/20—Batteries in motive systems, e.g. vehicle, ship, plane
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0404—Methods of deposition of the material by coating on electrode collectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a method for producing a paste for a secondary battery, a slurry for a positive electrode of a secondary battery, a positive electrode for a secondary battery, a secondary battery, and a paste for a secondary battery.
- Secondary batteries such as lithium-ion secondary batteries are small and lightweight, have high energy density, and have the characteristics of being able to be repeatedly charged and discharged, and are used in a wide range of applications.
- lithium ion secondary batteries have been attracting attention as an energy source for electric vehicles (EVs) and hybrid electric vehicles (HEVs), and further improvement in performance is required. Therefore, in recent years, improvement of battery members such as electrodes has been studied for the purpose of further improving the performance of secondary batteries such as lithium ion secondary batteries.
- the electrode for the secondary battery usually includes a current collector and an electrode mixture layer (positive electrode mixture layer, negative electrode mixture layer) formed on the current collector.
- an electrode mixture layer positive electrode mixture layer, negative electrode mixture layer
- Such a paste for a secondary battery is mixed with an electrode active material to prepare a slurry for a secondary battery electrode, and then a dispersion medium is removed from the slurry for the secondary battery electrode to form an electrode mixture layer. be able to.
- the above-mentioned conventional paste for a secondary battery is required to further improve the adhesiveness of the electrode mixture layer and further reduce the internal resistance of the secondary battery.
- an object of the present invention is to provide a paste for a secondary battery and a method for producing the same, which can exhibit excellent adhesiveness to the electrode mixture layer and reduce the internal resistance of the secondary battery.
- Another object of the present invention is to provide a slurry for a positive electrode of a secondary battery capable of producing a positive electrode capable of exhibiting excellent adhesiveness to the positive electrode mixture layer and reducing the internal resistance of the secondary battery.
- An object of the present invention is to provide a positive electrode for a secondary battery capable of reducing the internal resistance of the secondary battery.
- an object of the present invention is to provide a secondary battery having reduced internal resistance.
- the present inventor conducted a diligent study for the purpose of solving the above problems.
- the paste for a secondary battery obtained by using carbon nanotubes having predetermined properties as a conductive auxiliary material hereinafter, may be abbreviated as "CNT"
- the present inventor has an electrode mixture layer.
- the present invention has been completed by newly discovering that the internal resistance of a secondary battery can be reduced while exhibiting excellent adhesiveness.
- the present invention aims to advantageously solve the above problems, and the secondary battery paste of the present invention is a secondary battery paste containing a conductive auxiliary material, a polymer, and a dispersion medium.
- the conductive auxiliary material has a surface acid amount of 0.01 mmol / g or more and 0.15 mmol / g or less, a surface base amount of 0.005 mmol / g or more and 0.500 mmol / g or less, and the surface base. It is characterized by containing carbon nanotubes having a ratio of the amount of surface acid to the amount of 1.3 or more and 3.0 or less and a specific surface area of 150 m 2 / g or more.
- the electrode mixture layer obtained by using the above-mentioned paste containing CNT has excellent adhesiveness, and the electrode provided with the electrode mixture layer can reduce the internal resistance of the secondary battery.
- the "surface acid amount” and the “surface base amount” of the carbon nanotubes can be measured by using the method described in Examples.
- the "specific surface area” is the BET specific surface area by the nitrogen adsorption method, and is measured using, for example, Belsorb-mini (manufactured by Microtrac Bell, based on ASTM D3037-81). be able to.
- the polymer contains a nitrile group-containing monomer unit in a proportion of 10% by mass or more and 40% by mass or less, and a conjugated diene monomer unit in an amount of 15% by mass or more. It is characterized by containing in a proportion of 55% by mass or less. If the polymer has the above-mentioned composition, the cycle characteristics can be improved while further reducing the internal resistance of the secondary battery.
- "containing a monomer unit” means that the polymer obtained by using the monomer contains a structural unit derived from the monomer. .. Further, in the present invention, the content ratio of each monomer unit in the polymer can be measured by a nuclear magnetic resonance method such as 1 H-NMR.
- the polymer has a hydrophilic group.
- the adhesiveness of the electrode mixture layer formed from the electrode slurry containing the paste can be further improved, and the internal resistance of the secondary battery can be further reduced.
- the secondary battery paste of the present invention preferably has an iodine value of 3 mg / 100 mg or more and 50 mg / 100 mg or less of the polymer.
- the iodine value of the polymer is within the above range, the internal resistance of the secondary battery should be further reduced while ensuring the flexibility of the electrode having the electrode mixture layer formed from the slurry for electrodes containing the paste. Can be done.
- the "iodine value" can be measured by using the method described in Examples in accordance with JIS K6235 (2006).
- the content ratio of the conductive auxiliary material is 2% by mass or more and 20% by mass or less, and the content ratio of the polymer is 0.1% by mass or more and 6% by mass or less. It is preferable to have.
- a paste in which the content ratios of the conductive auxiliary material and the polymer are within the above-mentioned ranges is excellent in handleability, and the productivity when forming the electrode mixture layer from the electrode slurry prepared by using the paste is improved. Can be enhanced.
- the present invention also aims to advantageously solve the above problems, and the secondary battery positive electrode slurry of the present invention comprises a positive electrode active material and any of the above-mentioned secondary battery pastes. It is characterized by including.
- the positive electrode mixture layer formed from the positive electrode slurry containing the positive electrode active material and any of the above-mentioned pastes has excellent adhesiveness, and according to the positive electrode provided with the positive electrode mixture layer, the internal resistance of the secondary battery Can be reduced.
- the ratio of nickel to the transition metal in the positive electrode active material is preferably 60.0 mol% or more and 100.0 mol% or less. If a positive electrode active material in which the proportion of nickel in the transition metal is within the above range is used, the capacity of the secondary battery can be increased. Then, while ensuring the stability of the slurry for the positive electrode, the internal resistance of the secondary battery can be sufficiently reduced, and the cycle characteristics of the secondary battery can be sufficiently ensured.
- the ratio of nickel to the transition metal in the positive electrode active material can be measured by using ICP emission spectroscopic analysis (ICP-AES method).
- the present invention also aims to advantageously solve the above problems, and the positive electrode for a secondary battery of the present invention is a positive electrode formed by using any of the above-mentioned slurry for a positive electrode for a secondary battery. It is characterized by having a mixture layer. According to the positive electrode provided with the positive electrode mixture layer formed from any of the above-mentioned positive electrode slurry, the internal resistance of the secondary battery can be reduced.
- the present invention is intended to solve the above problems advantageously, and the secondary battery of the present invention is characterized by including the above-mentioned positive electrode for a secondary battery.
- the internal resistance of the secondary battery provided with the positive electrode described above is reduced.
- the present invention aims to advantageously solve the above-mentioned problems, and the method for producing a paste for a secondary battery of the present invention is a method for producing a paste for a secondary battery according to any one of the above. Therefore, a step of applying an acid treatment to the raw material carbon nanotubes, a step of applying a base treatment to the raw material carbon nanotubes subjected to the acid treatment, and a step of washing the raw material carbon nanotubes subjected to the basic treatment are performed to wash the carbon nanotubes. It is characterized by including a step of obtaining the above-mentioned carbon nanotube and a step of mixing the conductive auxiliary material containing the carbon nanotube with the polymer and the dispersion medium. According to the method for producing a paste for a secondary battery of the present invention including the above-mentioned steps, the paste for a secondary battery of the present invention containing CNT having a predetermined property can be efficiently prepared.
- a paste for a secondary battery and a method for producing the same which can exhibit excellent adhesiveness to the electrode mixture layer and reduce the internal resistance of the secondary battery.
- a slurry for a positive electrode of a secondary battery capable of producing a positive electrode capable of exhibiting excellent adhesiveness to the positive electrode mixture layer and reducing the internal resistance of the secondary battery.
- a positive electrode for a secondary battery that can reduce the internal resistance of the secondary battery.
- the paste for a secondary battery of the present invention can be used as a material for preparing a slurry for a secondary battery electrode (preferably a slurry for a positive electrode of a secondary battery).
- the paste for a secondary battery of the present invention can be produced by the method for producing a paste for a secondary battery of the present invention.
- the slurry for the positive electrode of the secondary battery of the present invention is prepared by using the paste for the secondary battery of the present invention.
- the positive electrode for the secondary battery of the present invention includes a positive electrode mixture layer formed from the slurry for the positive electrode of the secondary battery of the present invention.
- the secondary battery of the present invention includes the positive electrode for the secondary battery of the present invention.
- the paste of the present invention contains a conductive auxiliary material, a polymer, and a dispersion medium, and optionally contains other components.
- the paste of the present invention has a surface acid amount of 0.01 mmol / g or more and 0.15 mmol / g or less and a surface base amount of 0.005 mmol / g or more and 0.500 mmol / g or less as the conductive auxiliary material.
- the paste of the present invention contains CNT having the above-mentioned predetermined properties as a conductive auxiliary material.
- the paste of the present invention may optionally contain a conductive auxiliary material (other conductive auxiliary material) other than the CNT.
- the CNT needs to have a surface acid amount of 0.01 mmol / g or more and 0.15 mmol / g or less, preferably 0.02 mmol / g or more, and 0.03 mmol / g or more. More preferably. If the amount of surface acid is less than 0.01 mmol / g, the adhesiveness of the electrode mixture layer obtained by using the paste is lowered, and the electrode mixture layer cannot be firmly adhered to the current collector. Then, the internal resistance of the secondary battery increases. On the other hand, when the amount of surface acid exceeds 0.15 mmol / g, the residual acid component adhering to the surface of the CNT becomes excessive.
- the CNT needs to have a surface base amount of 0.005 mmol / g or more and 0.500 mmol / g or less, preferably 0.008 mmol / g or more, and 0.010 mmol / g or more. It is more preferably 0.100 mmol / g or less, and more preferably 0.060 mmol / g or less. If the amount of surface base is less than 0.005 mmol / g, the residual acid component adhering to the surface of the CNT becomes excessive. It is presumed that this residual acid component causes a side reaction in the secondary battery, but the internal resistance of the secondary battery increases.
- the surface base amount is more than 0.500 mmol / g, it is presumed that it is due to the reaction with the acid component contained in the electrode slurry prepared by using the paste, but the CNTs are likely to aggregate. .. Therefore, the adhesiveness of the electrode mixture layer is lowered, the internal resistance of the secondary battery is raised, and the cycle characteristics are lowered.
- the amount of surface base is 0.005 mmol / g or more and 0.500 mmol / g or less, CNTs are well dispersed in the dispersion medium and the stability of the paste is ensured.
- the CNT needs to have a ratio of the amount of surface acid to the amount of surface base (amount of surface acid / amount of surface base) of 1.3 or more and 3.0 or less, and preferably 1.4 or more. , 1.5 or more, and more preferably 2.5 or less. If the amount of surface acid / amount of surface base is less than 1.3, the adhesiveness of the electrode mixture layer obtained by using the paste is lowered, and the electrode mixture layer cannot be firmly adhered to the current collector. Then, the internal resistance of the secondary battery increases. On the other hand, when the amount of surface acid / amount of surface base is more than 3.0, the residual acid component adhering to the surface of the CNT becomes excessive.
- the surface treatment CNT has a specific surface area, it must be at 150 meters 2 / g or more, preferably 170m 2 / g or more, more preferably 250 meters 2 / g or more, 300 meters 2 / It is more preferably g or more, preferably 1200 m 2 / g or less, more preferably 1000 m 2 / g or less, and even more preferably 500 m 2 / g or less. If the specific surface area is less than 150 m 2 / g, the internal resistance of the secondary battery cannot be sufficiently reduced. On the other hand, when the specific surface area is 1200 m 2 / g or less, the polymer binds well to the CNTs, and the adhesiveness of the electrode mixture layer can be sufficiently ensured. Further, a conductive network by CNT is sufficiently formed inside the electrode mixture layer obtained by using the paste. Therefore, the internal resistance of the secondary battery can be further reduced.
- the CNT may be a single-walled CNT or a multi-walled CNT. Further, the CNT having the above-mentioned predetermined properties is prepared (as a surface-treated carbon nanotube) by subjecting the raw material CNT to a surface treatment by, for example, the method described later in the section of "Method for producing paste for secondary battery". Can be done.
- the average diameter of CNTs is preferably 0.5 nm or more and 200 nm or less, for example. Further, the average length of CNTs is preferably 1 ⁇ m or more and 1000 ⁇ m or less.
- the average diameter and average length of CNTs are determined by observing CNTs with a transmission electron microscope (TEM) and measuring the diameters (outer diameters) and lengths of 50 CNTs from the obtained TEM images. It can be obtained as the arithmetic mean value of the measured values.
- TEM transmission electron microscope
- conductive auxiliary materials As the other conductive auxiliary material, a known conductive auxiliary material that can be blended in the electrode of the secondary battery can be used. Examples of such conductive auxiliary materials include carbon black (for example, acetylene black, Ketjen black (registered trademark), graphene black, etc.), carbon nanohorns, vapor-grown carbon fibers, and milled obtained by crushing polymer fibers after firing. Conductive carbon materials such as carbon fiber, single-layer or multi-layer graphene, and carbon non-woven sheet obtained by firing a non-woven fabric made of polymer fiber, fibers or foils of various metals, and the like can be used. These can be used alone or in combination of two or more.
- carbon black for example, acetylene black, Ketjen black (registered trademark), graphene black, etc.
- Conductive carbon materials such as carbon fiber, single-layer or multi-layer graphene, and carbon non-woven sheet obtained by firing a non-woven fabric made of polymer fiber, fibers or
- the conductive path is formed more satisfactorily in the electrode mixture layer obtained by using the paste, the conductivity is enhanced, and the internal resistance of the secondary battery is further increased. It may be possible to reduce it.
- the ratio of other conductive auxiliary materials contained in the conductive auxiliary material is, for example, 0 mass, where the total mass of the conductive auxiliary material (that is, the total mass of the above-mentioned CNT and other conductive auxiliary materials) is 100% by mass. % Or more and 50% by mass or less.
- the content ratio of the conductive auxiliary material in the paste is preferably 2% by mass or more, more preferably 3% by mass or more, and 4% by mass or more, assuming that the total mass of the paste is 100% by mass. It is more preferably 20% by mass or less, more preferably 10% by mass or less, and further preferably 8% by mass or less.
- the content ratio of the conductive auxiliary material is 2% by mass or more, the solid content concentration of the electrode slurry prepared by using the paste can be increased, and the production when forming the electrode mixture layer from the electrode slurry. You can improve your sex.
- the content ratio of the conductive auxiliary material is 20% by mass or less, the viscosity of the paste does not increase excessively, and the handleability can be sufficiently ensured.
- the content ratio of the above-mentioned CNT in the paste is preferably 2% by mass or more, more preferably 3% by mass or more, and 4% by mass or more, assuming that the total mass of the paste is 100% by mass. It is more preferably 20% by mass or less, more preferably 10% by mass or less, and further preferably 8% by mass or less.
- the content ratio of CNT is 2% by mass or more, the solid content concentration of the electrode slurry prepared by using the paste can be increased, and the productivity when forming the electrode mixture layer from the electrode slurry can be improved. Can be enhanced.
- the content ratio of CNT is 20% by mass or less, the viscosity of the paste does not increase excessively, and the handleability can be sufficiently ensured.
- the polymer is not particularly limited as long as it is a polymer (dispersant) having a function of dispersing the above-mentioned conductive auxiliary material in a dispersion medium in the paste for a secondary battery of the present invention.
- the polymer is used so that in the electrode mixture layer formed on the current collector using the electrode slurry containing the paste of the present invention, the components contained in the electrode mixture layer are not separated from the electrode mixture layer. It can also function as a retainable component (ie, binder).
- polymer examples include acrylic rubber (ACM), polyvinylpyrrolidone (PVP), polyvinylidene fluoride (PVDF), nitrile rubber (NBR), and hydrogenated nitrile rubber (HNBR). These can be used alone or in combination of two or more.
- ACM acrylic rubber
- PVP polyvinylpyrrolidone
- PVDF polyvinylidene fluoride
- NBR nitrile rubber
- HNBR hydrogenated nitrile rubber
- polyvinylpyrrolidone, polyvinylidene fluoride, nitrile rubber, and hydrogenated nitrile rubber are preferable from the viewpoint of improving the stability of the paste and improving the cycle characteristics while further reducing the internal resistance of the secondary battery.
- Nitrile rubber and hydrogenated nitrile rubber are more preferable, and hydrogenated nitrile rubber is further preferable.
- the polymer preferably has a hydrophilic group from the viewpoint of further improving the adhesiveness of the electrode mixture layer formed from the electrode slurry containing the paste and further reducing the internal resistance of the secondary battery.
- the hydrophilic group include a carboxylic acid group, a sulfonic acid group, a phosphoric acid group, and a hydroxyl group.
- the polymer may have only one of these hydrophilic groups, or may have two or more of these hydrophilic groups.
- a carboxylic acid group is preferable from the viewpoint of further improving the adhesiveness of the electrode mixture layer and further reducing the internal resistance of the secondary battery.
- the polymer preferably contains at least one group consisting of a nitrile group-containing monomer unit, a conjugated diene monomer unit, and a hydrophilic group-containing monomer unit, and the nitrile group-containing monomer. It is more preferred to include all of the units, conjugated diene monomer units, and hydrophilic group-containing monomer units.
- the polymer may contain structural units (other structural units) other than the nitrile group-containing monomer unit, the conjugated diene monomer unit, and the hydrophilic group-containing monomer.
- nitrile group-containing monomer unit examples include ⁇ , ⁇ -ethylenically unsaturated nitrile monomer.
- the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer is not particularly limited as long as it is an ⁇ , ⁇ -ethylenically unsaturated compound having a nitrile group, and for example, acrylonitrile, methacrylonitrile, and ⁇ .
- -Alacrylonitrile ( ⁇ -ethylacrylonitrile, etc.) can be mentioned. These can be used alone or in combination of two or more. And among these, acrylonitrile is preferable.
- the ratio of the nitrile group-containing monomer unit to the total structural units contained in the polymer is preferably 10% by mass or more, preferably 13% by mass or more, with the total structural units as 100% by mass. It is more preferably 18% by mass or more, more preferably 40% by mass or less, further preferably 33% by mass or less, and further preferably 28% by mass or less.
- the ratio of the nitrile group-containing monomer unit to all the structural units is 10% by mass or more, the polymer dissolves well in a dispersion medium such as N-methylpyrrolidone, and the dispersibility of the polymer is enhanced. Therefore, the conductive auxiliary material can be satisfactorily dispersed and the stability of the paste can be improved.
- the electrode mixture layer in which the conductive auxiliary material is well dispersed can be formed, and the internal resistance of the secondary battery can be further reduced.
- the ratio of the nitrile group-containing monomer unit to the total structural unit is 40% by mass or less, excessive swelling of the polymer due to the electrolytic solution can be suppressed, and the cycle characteristics of the secondary battery can be improved. ..
- conjugated diene monomer unit examples include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, and 1,3-pentadiene. These can be used alone or in combination of two or more.
- the "conjugated diene monomer unit” is a structural unit (hydrogen) obtained by further hydrogenating the monomer unit contained in the polymer obtained by using the conjugated diene monomer. The compound unit) is also included.
- 1,3-butadiene and isoprene are preferable.
- 1,3-butadiene unit, isoprene unit, 1,3-butadiene hydride unit, and isoprene hydride unit are preferable.
- the ratio of the conjugated diene monomer unit to the total structural units contained in the polymer is preferably 15% by mass or more, preferably 20% by mass or more, assuming that the total structural units are 100% by mass. More preferably, it is more preferably 25% by mass or more, particularly preferably 30% by mass or more, preferably 55% by mass or less, more preferably 50% by mass or less, and 45% by mass. It is more preferably% or less.
- the ratio of the conjugated diene monomer unit to the total structural unit is 15% by mass or more, the flexibility of the electrode including the electrode mixture layer formed from the electrode slurry containing the paste is ensured.
- the ratio of the conjugated diene monomer unit to the total structural units is 50% by mass or less, the polymer dissolves well in a dispersion medium such as N-methylpyrrolidone, and the dispersibility of the polymer is enhanced. Therefore, the conductive auxiliary material can be satisfactorily dispersed and the stability of the paste can be improved.
- the ratio of the conjugated diene monomer unit to the total structural unit is 15% by mass or more and 55% by mass or less, the cycle characteristics can be improved while further reducing the internal resistance of the secondary battery.
- hydrophilic group-containing monomer unit examples include a polymerizable monomer having a hydrophilic group.
- examples of the hydrophilic group-containing monomer include a monomer having a carboxylic acid group, a monomer having a sulfonic acid group, a monomer having a phosphoric acid group, and a monomer having a hydroxyl group. Can be mentioned.
- Examples of the monomer having a carboxylic acid group include monocarboxylic acid and its derivative, dicarboxylic acid and its acid anhydride, and their derivatives.
- Examples of the monocarboxylic acid include acrylic acid, methacrylic acid, and crotonic acid.
- Examples of the monocarboxylic acid derivative include 2-ethylacrylic acid, isocrotonic acid, ⁇ -acetoxyacrylic acid, ⁇ -trans-aryloxyacrylic acid, ⁇ -chloro- ⁇ -E-methoxyacrylic acid, ⁇ -diaminoacrylic acid and the like.
- Examples of the dicarboxylic acid include maleic acid, fumaric acid, and itaconic acid.
- dicarboxylic acid derivatives include methyl maleic acid, dimethyl maleic acid, phenyl maleic acid, chloromaleic acid, dichloromaleic acid, fluoromaleic acid, methylallyl maleate, diphenyl maleate, nonyl maleate, decyl maleate, and dodecyl maleate. , Octadecil maleate, fluoroalkyl maleate and the like.
- acid anhydride of the dicarboxylic acid include maleic anhydride, acrylic anhydride, methyl maleic anhydride, and dimethyl maleic anhydride.
- an acid anhydride that produces a carboxylic acid group by hydrolysis can also be used as the monomer having a carboxylic acid group.
- monoesters and diesters of ⁇ , ⁇ -ethylene unsaturated polyvalent carboxylic acids such as monobutyl itaconate and dibutyl itaconate.
- Examples of the monomer having a sulfonic acid group include vinyl sulfonic acid, methyl vinyl sulfonic acid, (meth) allyl sulfonic acid, styrene sulfonic acid, ethyl (meth) acrylate-2-sulfonate, and 2-acrylamide-2-methyl. Examples thereof include propanesulfonic acid and 3-allyloxy-2-hydroxypropanesulfonic acid.
- “(meth) acrylic” means acrylic and / or methacrylic.
- (meth) allyl” means allyl and / or metallyl.
- Examples of the monomer having a phosphoric acid group include -2- (meth) acryloyloxyethyl phosphate, methyl-2- (meth) acryloyloxyethyl phosphate, ethyl phosphate- (meth) acryloyloxyethyl and the like. ..
- "(meth) acryloyl” means acryloyl and / or methacryloyl.
- Examples of the monomer having a hydroxyl group include ethylenically unsaturated alcohols such as (meth) allyl alcohol, 3-butene-1-ol, and 5-hexene-1-ol; -2-hydroxyethyl acrylate, -2 acrylate.
- Ethylaceous properties such as -hydroxypropyl, -2-hydroxyethyl methacrylate, -2-hydroxypropyl methacrylate, di-2-hydroxyethyl maleate, di-4-hydroxybutyl maleate, di-2-hydroxypropyl itaconate, etc.
- Mono (meth) acrylic acid esters of dihydroxy esters of dicarboxylic acids such as'-(meth) acryloyloxysuccinate; vinyl ethers such as 2-hydroxyethyl vinyl ether and 2-hydroxypropyl vinyl ether; (meth) allyl-2-hydroxy Ethyl ether, (meth) allyl-2-hydroxypropyl ether, (meth) allyl-3-hydroxypropyl ether, (meth) allyl-2-hydroxybutyl ether, (meth) allyl-3-hydroxybutyl ether, (meth) allyl- Mono (meth) allyl ethers of alkylene glycols such as 4-hydroxybutyl ether and (meth) allyl-6-hydroxyhexyl ether; polyoxyalkylenes such as diethylene glycol mono (meth) allyl ether and dipropylene glycol mono (meth) allyl ether.
- vinyl ethers such as 2-hydroxyethyl vinyl
- Glycol mono (meth) allyl ethers glycerin mono (meth) allyl ethers, (meth) allyl-2-chloro-3-hydroxypropyl ethers, (meth) allyl-2-hydroxy-3-chloropropyl ethers, etc.
- Mono (meth) allyl ethers of halogen and hydroxy substituents on poly) alkylene glycols mono (meth) allyl ethers of polyhydric phenols such as eugenol and isoeugenol and their halogen substituents; (meth) allyl-2-hydroxyethylthioethers , (Meta) Allyl-2-hydroxypropyl thioether and other alkylene gels Recall (meth) allyl thioethers; and the like.
- hydrophilic group-containing monomers can be used alone or in combination of two or more.
- a monomer having a carboxylic acid group is preferable, and acrylic acid and methacrylic acid are more preferable, from the viewpoint of further improving the adhesiveness of the electrode mixture layer and further reducing the internal resistance of the secondary battery. ..
- the ratio of the hydrophilic group-containing monomer unit to the total structural units contained in the polymer is preferably 0.05% by mass or more, assuming that the total structural units are 100% by mass. It is more preferably 1% by mass or more, further preferably 1% by mass or more, particularly preferably 3% by mass or more, preferably 10% by mass or less, and 8% by mass or less. Is more preferable.
- the ratio of the hydrophilic group-containing monomer unit to all the structural units is 0.05% by mass or more, the adhesiveness of the electrode mixture layer obtained by using the paste is further improved, and the electrode mixture layer is collected. It can be more firmly adhered to the electric body. Then, the internal resistance of the secondary battery can be further reduced.
- the polymer dissolves well in a dispersion medium such as N-methylpyrrolidone, and the dispersibility of the polymer is enhanced. .. Therefore, the conductive auxiliary material can be satisfactorily dispersed and the stability of the paste can be improved.
- the other structural unit is not particularly limited, and is a structure derived from a known monomer copolymerizable with the above-mentioned nitrile group-containing monomer, conjugated diene monomer, and hydrophilic group-containing monomer.
- the unit is mentioned.
- the other structural unit is not particularly limited, and for example, an aromatic vinyl monomer unit is preferably mentioned.
- the aromatic vinyl monomer capable of forming an aromatic vinyl monomer unit examples include styrene, styrene sulfonic acid and salts thereof, ⁇ -methylstyrene, butoxystyrene, vinylnaphthalene and the like. These can be used alone or in combination of two or more. And among these, styrene is preferable.
- the ratio of the aromatic vinyl monomer unit to the total structural units contained in the polymer is preferably 15% by mass or more, preferably 20% by mass or more, assuming that the total structural units are 100% by mass. It is more preferably 24% by mass or more, further preferably 55% by mass or less, further preferably 50% by mass or less, and further preferably 45% by mass or less.
- the ratio of the aromatic vinyl monomer unit to the total structural unit is 15% by mass or more, the electrode mixture layer in which the conductive auxiliary material is well dispersed can be formed, and the internal resistance of the secondary battery is further increased. Can be reduced.
- the ratio of the aromatic vinyl monomer unit to the total structural unit is 55% by mass or less, the flexibility of the electrode including the electrode mixture layer formed from the electrode slurry containing the paste is ensured.
- Examples of the (meth) acrylic acid ester monomer capable of forming a (meth) acrylic acid ester monomer unit include (meth) acrylic acid alkyl ester and (meth) acrylic acid perfluoroalkyl ester.
- Examples of the (meth) acrylic acid alkyl ester include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, t-butyl acrylate, isobutyl acrylate, n-pentyl acrylate, isopentyl acrylate, hexyl acrylate, and heptyl.
- Acrylate alkyl esters such as acrylates, octyl acrylates, 2-ethylhexyl acrylates, nonyl acrylates, decyl acrylates, lauryl acrylates, n-tetradecyl acrylates, stearyl acrylates; methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n- Butyl methacrylate, t-butyl methacrylate, isobutyl methacrylate, n-pentyl methacrylate, isopentyl methacrylate, hexyl methacrylate, heptyl methacrylate, octyl methacrylate, 2-ethylhexyl methacrylate, nonyl methacrylate, decyl methacrylate, lauryl methacrylate, n-tetradecyl methacryl
- Alkyl methacrylates such as methacrylate and glycidyl methacrylate; and the like.
- examples of the (meth) acrylic acid perfluoroalkyl ester include 2- (perfluorobutyl) ethyl acrylate, 2- (perfluoropentyl) ethyl acrylate, 2- (perfluorohexyl) ethyl acrylate, and 2-(perfluorohexyl) acrylate.
- the polymer contains (meth) acrylic acid ester monomer units
- the ratio of the (meth) acrylic acid ester monomer units to the total structural units contained in the polymer is the total structural units.
- 100% by mass it is preferably 15% by mass or more, more preferably 20% by mass or more, further preferably 24% by mass or more, preferably 55% by mass or less, and preferably 50% by mass. It is more preferably less than or equal to 45% by mass or less.
- the iodine value of the polymer is preferably 3 mg / 100 mg or more, preferably 50 mg / 100 mg or less, more preferably 25 mg / 100 mg or less, and even more preferably 8 mg / 100 mg or less.
- the iodine value is 3 mg / 100 mg or more, the flexibility of the electrode including the electrode mixture layer formed from the electrode slurry containing the paste is ensured.
- the iodine value is 50 mg / 100 mg or less, the electrode mixture layer in which the conductive auxiliary material is well dispersed can be formed, and the internal resistance of the secondary battery can be further reduced.
- the method for preparing the polymer is not particularly limited, but for example, the polymer can be prepared by polymerizing the above-mentioned monomer composition containing the monomer and optionally hydrogenating it.
- the content ratio of each monomer in the monomer composition can be determined according to the content ratio of each monomer unit in the polymer.
- the polymerization mode is not particularly limited, and any method such as a solution polymerization method, a suspension polymerization method, a massive polymerization method, and an emulsion polymerization method can be used. In each polymerization method, known emulsifiers and polymerization initiators can be used, if necessary.
- the method of hydrogenation is not particularly limited, and a general method using a catalyst (see, for example, International Publication No. 2012/165120, International Publication No. 2013/080989, and JP-A-2013-8485) can be used. it can.
- the content ratio of the polymer in the paste is preferably 0.1% by mass or more, more preferably 0.3% by mass or more, and 0.4% by mass, assuming that the total mass of the paste is 100% by mass. % Or more, 0.7% by mass or more, particularly preferably 6% by mass or less, more preferably 3% by mass or less, and 2.4% by mass or less. It is more preferable to have.
- the content ratio of the polymer is 0.1% by mass or more, the conductive auxiliary material can be satisfactorily dispersed and the stability of the paste can be improved.
- the content ratio of the polymer is 6% by mass or less, the internal resistance of the secondary battery can be sufficiently reduced.
- the dispersion medium is not particularly limited, but an organic solvent having a polarity capable of dissolving the above-mentioned polymer can be preferably used.
- an organic solvent acetonitrile, N-methylpyrrolidone, cyclopentanone, N, N-dimethylacetamide, dimethylformamide, dimethylsulfoxide, methylformamide, methylethylketone, furfural and the like can be used.
- N-methylpyrrolidone is preferable from the viewpoint of ease of handling and safety.
- the dispersion medium may be used alone or in combination of two or more.
- components such as a viscosity modifier, a reinforcing material, an antioxidant, a surfactant, and an electrolytic solution additive having a function of suppressing decomposition of the electrolytic solution may be mixed.
- known ones can be used.
- These other components may be used alone or in combination of two or more.
- the paste of the present invention usually does not contain an electrode active material (positive electrode active material, negative electrode active material).
- the secondary battery paste of the present invention described above can be obtained, for example, by using the method for producing a secondary battery paste of the present invention.
- the method for producing a paste for a secondary battery of the present invention includes a step of applying an acid treatment to the raw material CNT (acid treatment step), a step of applying a base treatment to the acid-treated raw material CNT (base treatment step), and a base.
- a step (cleaning step) of washing the treated raw material CNT to obtain a CNT (surface treated CNT) having predetermined properties, and a conductive auxiliary material containing the surface treated CNT are mixed with the polymer and the dispersion medium.
- the paste for a secondary battery of the present invention containing CNT having a predetermined property can be efficiently prepared.
- the raw material CNT is subjected to acid treatment.
- the raw material CNT is not particularly limited, and can be appropriately selected from known CNTs according to the properties (number of layers, specific surface area, etc.) of the desired surface-treated CNT.
- the method of acid treatment is not particularly limited as long as the raw material CNT can be brought into contact with the raw material CNT, but a method of immersing the raw material CNT in an acid treatment liquid (aqueous solution of acid) is preferable.
- the acid contained in the acid treatment liquid is not particularly limited, and examples thereof include nitric acid, sulfuric acid, and hydrochloric acid. These can be used alone or in combination of two or more. And among these, nitric acid and sulfuric acid are preferable.
- the time (immersion time) for immersing the raw material CNT in the acid treatment liquid is preferably 1 minute or longer, more preferably 10 minutes or longer, further preferably 30 minutes or longer, and more preferably 50 minutes or longer. It is particularly preferable, it is preferably 120 minutes or less, more preferably 100 minutes or less, and further preferably 80 minutes or less. If the immersion time is 1 minute or more, the surface acid amount of the surface-treated CNT can be increased, and if it is 120 minutes or less, the surface acid amount of the surface-treated CNT does not increase excessively, and the paste production efficiency. Is sufficiently secured.
- the temperature (immersion temperature) when the raw material CNT is immersed in the acid treatment liquid is preferably 20 ° C. or higher, more preferably 40 ° C. or higher, preferably 80 ° C. or lower, and preferably 70 ° C. The following is more preferable.
- immersion temperature is within the above range, the amount of surface acid in the obtained surface-treated CNT can be appropriately increased.
- the acid-treated CNT can be recovered from the mixture of the CNT (acid-treated CNT) and the acid-treated liquid that have undergone the acid treatment step by a known method such as filtration.
- the recovered acid-treated CNTs may be washed with water if necessary.
- the method of base treatment is not particularly limited as long as the base can be brought into contact with the acid-treated CNT, but a method of immersing the acid-treated CNT in a base-treated solution (aqueous solution of base) is preferable.
- the base contained in the base treatment solution is not particularly limited, and examples thereof include lithium hydroxide, ammonium chloride, sodium bicarbonate, and sodium hydroxide. These can be used alone or in combination of two or more. And among these, bicarbonate natrim is preferable.
- the time (immersion time) for immersing the acid-treated CNT in the base treatment liquid is preferably 5 minutes or more, more preferably 20 minutes or more, further preferably 40 minutes or more, and 120 minutes or less. It is preferably 100 minutes or less, and more preferably 80 minutes or less. If the immersion time is 5 minutes or more, the surface base amount of the surface-treated CNT can be increased, and if it is 120 minutes or less, the surface base amount of the surface-treated CNT does not increase excessively, and the paste is produced. Sufficient efficiency is ensured.
- the temperature (immersion temperature) when the acid-treated CNT is immersed in the base-treated liquid is preferably 10 ° C. or higher, more preferably 20 ° C. or higher, preferably 28 ° C. or higher, and 40.
- the temperature is preferably 1 ° C or lower, and more preferably 35 ° C or lower.
- the washing step the raw material CNT (acid-base treated CNT) obtained through the above-mentioned acid treatment step and base treatment step is washed.
- excess acid components and base components (particularly base components) adhering to the surface of the acid-base-treated CNT can be removed, and a surface-treated CNT having predetermined properties can be obtained.
- the method for cleaning the acid-base-treated CNT is not particularly limited, but washing with water is preferable.
- the acid-base-treated CNT is recovered from the mixture of the acid-base-treated CNT and the base-treated solution by a known method such as filtration, and the acid-base-treated CNT is washed with water.
- the electrical conductivity of the water (washing water) after being used for washing the acid-base-treated CNT it is possible to estimate how much the acid component and the base component have been removed.
- water adhering to the surface can be removed by drying to obtain surface-treated CNTs.
- the amount of surface acid and the amount of surface base of the surface-treated CNT can be adjusted by changing the conditions of the acid treatment step, the base treatment step, and the cleaning step described above.
- the amount of surface acid and the amount of surface base of the surface-treated CNT can be adjusted by changing the types of acids and bases contained in the acid treatment step, the acid treatment solution used in the base treatment step, and the base treatment solution, respectively, and their concentrations. can do.
- the amount of surface acid in the surface-treated CNT can be increased, and by lengthening the immersion time in the base treatment step, the amount of surface base in the surface-treated CNT can be increased. it can.
- the amount of surface acid and the amount of surface base (particularly the amount of surface base) can be adjusted by changing the degree of cleaning.
- the surface-treated CNTs obtained as described above are mixed with the polymer and the dispersion medium, and other conductive auxiliary materials and / or other components used as needed.
- the mixing method in the mixing step is not particularly limited, and for example, a general mixing device such as a disper, a mill, or a kneader can be used.
- the slurry for a positive electrode for a secondary battery of the present invention includes a positive electrode active material and the above-mentioned paste for a secondary battery of the present invention.
- the positive electrode slurry of the present invention contains a positive electrode active material, CNTs having predetermined properties, a polymer, and a dispersion medium, and optionally further contains other conductive auxiliary materials and / or other components. .. Since the positive electrode slurry of the present invention is prepared by using the paste of the present invention, if the positive electrode mixture layer is formed from the positive electrode mixture layer, the positive electrode mixture layer can exhibit excellent adhesiveness. , The internal resistance of the secondary battery can be reduced.
- the positive electrode active material is a substance that transfers electrons at the positive electrode of the secondary battery.
- the positive electrode active material a substance capable of storing and releasing lithium is usually used.
- the slurry for the positive electrode of the secondary battery is a slurry for the positive electrode of the lithium ion secondary battery will be described as an example, but the present invention is not limited to the following example.
- the positive electrode active material for the lithium ion secondary battery is not particularly limited, and is limited to lithium-containing cobalt oxide (LiCoO 2 ), lithium manganate (LiMn 2 O 4 ), and lithium-containing nickel oxide (LiNiO 2).
- the positive electrode active material a positive electrode active material in which the ratio of nickel to the transition metal is 60.0 mol% or more and 100.0 mol% or less is preferable from the viewpoint of increasing the capacity of the secondary battery.
- the positive electrode slurry prepared by using the positive electrode active material in which the proportion of nickel in the transition metal is large may be inferior in stability, which causes an increase in the internal resistance of the secondary battery and a decrease in the cycle characteristics. May be made.
- the stability of the positive electrode slurry can be ensured and the secondary battery can be used. The improvement of internal resistance and cycle characteristics can be sufficiently achieved.
- transition metals other than nickel contained in the positive electrode active material include cobalt, manganese, iron, and titanium.
- Examples of the positive electrode active material in which the proportion of nickel in the transition metal is 60.0 mol% or more and 100.0 mol% or less include LiNi 0.6 Co 0.2 Mn 0.2 O 2 and LiNi 0.8 Co 0.1 Mn 0.1 O 2.
- the particle size of the positive electrode active material is not particularly limited, and can be the same as that of the conventionally used positive electrode active material. Further, the positive electrode active material may be used alone or in combination of two or more.
- the content ratio of the positive electrode active material in the positive electrode slurry is not particularly limited, but is preferably 90% by mass or more and 99% by mass or less, assuming that the total solid content in the positive electrode slurry is 100% by mass.
- the paste for a secondary battery As the paste for a secondary battery, the above-mentioned paste for a secondary battery of the present invention, which contains a conductive auxiliary material, a polymer, and a dispersion medium and optionally contains other components, is used.
- the content ratio of the conductive auxiliary material in the positive electrode slurry is not particularly limited, but is preferably 0.4% by mass or more and 5% by mass or less, assuming that the total solid content in the positive electrode slurry is 100% by mass.
- the content ratio of the polymer in the positive electrode slurry is not particularly limited, but is not particularly limited, but is 0.01% by mass or more and 2% by mass or less, assuming that the total solid content in the positive electrode slurry is 100% by mass. Is preferable.
- the positive electrode slurry of the present invention can be prepared by mixing the above-mentioned positive electrode active material and the above-mentioned secondary battery paste.
- the mixing method is not particularly limited, and for example, a general mixing device such as a disper, a mill, or a kneader can be used.
- the positive electrode for a secondary battery of the present invention includes a positive electrode mixture layer formed by using the above-mentioned slurry for the positive electrode of the secondary battery of the present invention.
- the positive electrode of the present invention can be formed by applying the above-mentioned slurry for positive electrode of the present invention to the surface of a current collector to form a coating film, and then drying the formed coating film.
- the positive electrode mixture layer provided in the positive electrode of the present invention is made of the dried product of the above-mentioned positive electrode slurry of the present invention, and usually contains a positive electrode active material, a CNT having predetermined properties, and a polymer, and is optionally contained. It further contains other conductive auxiliary materials and / or other components.
- Each component contained in the positive electrode mixture layer was contained in the positive electrode slurry, and the content ratio of these components is usually equal to the content ratio in the positive electrode slurry.
- the positive electrode of the present invention includes a positive electrode mixture layer formed from the slurry for the positive electrode of the present invention, the internal resistance of the secondary battery can be reduced by using the positive electrode of the present invention.
- the positive electrode of the present invention is, for example, in a step of applying the above-mentioned positive electrode slurry on the current collector (coating step) and drying the positive electrode slurry applied on the current collector on the current collector. It can be formed on the current collector through a step of forming a positive electrode mixture layer (drying step).
- the method of applying the positive electrode slurry onto the current collector is not particularly limited, and a known method can be used. Specifically, as the coating method, a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, a brush coating method and the like can be used. At this time, the slurry may be applied to only one side of the current collector, or may be applied to both sides. The thickness of the slurry film on the current collector after application and before drying can be appropriately set according to the thickness of the positive electrode mixture layer obtained by drying.
- the current collector to which the slurry for the positive electrode is applied a material having electrical conductivity and electrochemical durability is used.
- a current collector made of iron, copper, aluminum, nickel, stainless steel, titanium, tantalum, gold, platinum or the like can be used.
- one kind of the said material may be used alone, or two or more kinds may be used in combination at an arbitrary ratio.
- the method for drying the positive electrode slurry on the current collector is not particularly limited, and a known method can be used, for example, a drying method using warm air, hot air, or low humidity air, a vacuum drying method, infrared rays, an electron beam, or the like. A drying method by irradiation can be mentioned.
- the positive electrode mixture layer may be pressure-treated by using a die press or a roll press.
- the pressure treatment can improve the adhesion between the positive electrode mixture layer and the current collector.
- the positive electrode mixture layer contains a curable polymer, it is preferable to cure the polymer after forming the positive electrode mixture layer.
- the secondary battery of the present invention includes the positive electrode for the secondary battery of the present invention described above. More specifically, the secondary battery of the present invention usually includes a positive electrode, a negative electrode, an electrolytic solution, and a separator, and the positive electrode is the positive electrode of the present invention described above. Since the secondary battery of the present invention uses the positive electrode of the present invention described above, the internal resistance is reduced.
- the negative electrode for the secondary battery that can be used in the secondary battery of the present invention is not particularly limited, and a known negative electrode used in the manufacture of the secondary battery can be used.
- a negative electrode a negative electrode formed by forming a negative electrode mixture layer on a current collector using a known manufacturing method can be used.
- an organic electrolytic solution in which a supporting electrolyte is dissolved in an organic solvent is usually used.
- a lithium salt is used as a supporting electrolyte for a lithium ion secondary battery.
- lithium salts include LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi. , (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi and the like.
- LiPF 6 , LiClO 4 , CF 3 SO 3 Li are preferable, and LiPF 6 is particularly preferable because they are easily dissolved in a solvent and show a high degree of dissociation.
- One type of electrolyte may be used alone, or two or more types may be used in combination at an arbitrary ratio. Normally, the more the supporting electrolyte with a higher degree of dissociation is used, the higher the lithium ion conductivity tends to be. Therefore, the lithium ion conductivity can be adjusted depending on the type of the supporting electrolyte.
- the organic solvent used in the electrolytic solution is not particularly limited as long as it can dissolve the supporting electrolyte, and for example, dimethyl carbonate (DMC), ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC), and the like.
- DMC dimethyl carbonate
- EC ethylene carbonate
- DEC diethyl carbonate
- PC propylene carbonate
- Carbonates such as butylene carbonate (BC) and ethylmethyl carbonate (EMC); esters such as ⁇ -butyrolactone and methyl formate; ethers such as 1,2-dimethoxyethane and tetrahydrofuran; sulfur-containing compounds such as sulfolane and dimethyl sulfoxide. Kind; etc. are preferably used. Further, a mixed solution of these solvents may be used. Above all, it is preferable to use carbonates because the dielectric constant is high and the stable potential region is wide.
- concentration of the electrolyte in the electrolytic solution
- the separator is not particularly limited, and for example, the separator described in Japanese Patent Application Laid-Open No. 2012-204303 can be used. Among these, the film thickness of the entire separator can be reduced, and as a result, the ratio of the electrode active material in the secondary battery can be increased and the capacity per volume can be increased.
- a microporous film made of a resin polyethylene, polypropylene, polybutene, polyvinyl chloride) is preferable.
- the secondary battery for example, the positive electrode and the negative electrode are overlapped with each other via a separator, and if necessary, the secondary battery is put into a battery container by winding or folding according to the shape of the battery, and the electrolytic solution is placed in the battery container. Can be manufactured by injecting and sealing.
- the electrochemical device of the present invention the above-mentioned positive electrode for an electrochemical device is used.
- an overcurrent prevention element such as a fuse or a PTC element, an expanded metal, etc.
- a lead plate or the like may be provided.
- the shape of the secondary battery may be, for example, a coin type, a button type, a sheet type, a cylindrical type, a square type, a flat type, or the like.
- the present invention will be specifically described based on examples, but the present invention is not limited to these examples.
- “%” and “part” representing quantities are based on mass unless otherwise specified.
- the surface acid amount, surface base amount and specific surface area of the carbon nanotubes, the stability of the paste for the secondary battery, the adhesiveness of the positive electrode mixture layer, and the internal resistance of the secondary battery are as follows. Evaluated using the method of.
- TBA OH tetrabutyl hydride
- MIBK 4-methyl-2-pentanone
- the amount of acid (mmol / g) was specified.
- An automatic coulometric titrator (manufactured by Kyoto Electronics Co., Ltd., product name "AT-700") was used for the analysis. The series of operations was performed at room temperature under an argon air stream. ⁇ Surface base amount> Approximately 1 g of CNT to be measured was precisely weighed , immersed in 100 ml of 0.01 mol dm -3 HClO 4 / MIBK solution, and stirred with a stirrer for 1 hour. After that, centrifugation was performed and the supernatant was filtered through a filter.
- HClO 4 remaining in 50 mL of the obtained filtrate was quantitatively analyzed by non-hydraulic titration with 0.01 mol dm -3 TBA OH / MIBK solution, and the amount of base per 1 g of CNT (mmol / mmol /) was obtained from the obtained value. g) was identified.
- An automatic coulometric titrator manufactured by Kyoto Electronics Co., Ltd., product name "AT-700" was used for the analysis. The series of operations was performed at room temperature under an argon air stream.
- Viscosity after storage is 100% or more and less than 150%
- B Viscosity after storage is 150% or more and less than 200%
- C Viscosity after storage is 200% or more and less than 250%
- D Viscosity after storage is 250% or more ⁇ Adhesiveness>
- a positive electrode for a lithium ion secondary battery is cut into a rectangle having a length of 100 mm and a width of 10 mm to form a test piece, and a cellophane tape (JIS Z1522 compliant) is applied to the surface of the positive electrode mixture layer with the side having the positive electrode mixture layer facing down.
- the secondary battery was charged to 50% of the SOC (State Of Charge) at 1C (C is a numerical value represented by the rated capacity (mA) / 1 hour (h)) in an atmosphere of 25 ° C.
- Example 1 ⁇ Preparation of surface-treated CNT> 0.8 g of multi-walled carbon nanotubes (specific surface area: 300 m 2 / g) was added to a mixed solution of 20 mL of concentrated nitric acid and 20 mL of 1M sulfuric acid, and the mixture was stirred for 1 hour while maintaining at 60 ° C. (acid treatment). Then, it was filtered using a filter paper (Toyo Roshi Kaisha, Filter Paper No. 2 125 mm) and solid-liquid separated. The solid matter on the filter paper was washed with 200 ml of purified water, and then the CNT solid matter (acid-treated CNT) was recovered.
- a filter paper Toyo Roshi Kaisha, Filter Paper No. 2 125 mm
- this CNT solid was put into 200 ml of an aqueous sodium bicarbonate solution having a concentration of 2 mol / liter, and then stirred for 1 hour while maintaining the temperature at 30 ° C. in a water bath (base treatment). Then, suction filtration was performed using a membrane filter having a pore size of 10 ⁇ m, and solid-liquid separation was performed. The CNT solids (acid-base treated CNTs) on the membrane filter were repeatedly washed with purified water. When the electrical conductivity of the washing water became 50 ⁇ s / m or less, the CNT solids were solid-liquid separated by the same method as described above. The obtained CNT solid was dried under reduced pressure at 50 ° C.
- the contents of the autoclave were heated to 50 ° C. in a state of being pressurized with hydrogen gas to 3 MPa (gauge pressure), and hydrogenated for 6 hours. Then, the contents were returned to room temperature, the inside of the system was made into a nitrogen atmosphere, and then concentrated using an evaporator until the solid content concentration became 40% to obtain hydrogenated nitrile rubber as a polymer. Then, after adding N-methylpyrrolidone to an aqueous solution having a solid content concentration of hydrogenated nitrile rubber as a polymer of 40%, vacuum distillation was carried out to remove water and excess N-methylpyrrolidone to remove solids.
- N-methylpyrrolidone solution of hydrogenated nitrile rubber having a minute concentration of 8% was obtained.
- ⁇ Preparation of paste for secondary battery 4 parts of the surface-treated CNT obtained as described above and 0.8 parts (equivalent to solid content) of the N-methylpyrrolidone solution of the hydrogenated nitrile rubber obtained as described above were used as a dispersion medium. Add an appropriate amount of N-methylpyrrolidone, stir with a disper (3000 rpm, 60 minutes), and then mix for 1 hour at a peripheral speed of 8 m / sec using a bead mill using zirconia beads with a diameter of 1 mm. To produce a paste for a secondary battery.
- the paste had a viscosity of 49,000 mPa ⁇ s at a temperature of 25 ° C. and a shear rate of 0.1 s -1, and a solid content concentration. The value of was 4.8%.
- the stability of this secondary battery paste was evaluated. The results are shown in Table 1.
- a ternary active material LiNi 0.6 Co 0.2 Mn 0.2 O 2 having a layered structure as a positive electrode active material, and the ratio of nickel to the transition metal: 60.0.
- the positive electrode slurry obtained as described above is applied to one side of the aluminum foil with a comma coater so that the basis weight after drying is 20 mg / cm 2 , dried at 90 ° C. for 20 minutes, and dried at 120 ° C. for 20 minutes.
- a positive electrode raw fabric was obtained by heat treatment at 60 ° C. for 10 hours. This positive electrode raw material was rolled by a roll press to prepare a sheet-shaped positive electrode composed of a positive electrode mixture layer (density: 3.2 g / cm 3) and aluminum foil. Then, the sheet-shaped positive electrode was cut into a width of 48.0 mm and a length of 47 cm to obtain a positive electrode for a lithium ion secondary battery.
- a copper foil having a thickness of 15 ⁇ m was prepared as a current collector.
- the slurry for the negative electrode of the secondary battery obtained as described above was applied to one side of the copper foil so that the coating amount after drying was 10 mg / cm 2 , and dried at 60 ° C. for 20 minutes and at 120 ° C. for 20 minutes. Then, it was heat-treated at 150 degreeC for 2 hours, and the negative electrode raw fabric was obtained.
- This negative electrode raw fabric was rolled by a roll press to prepare a sheet-shaped negative electrode composed of a negative electrode mixture layer having a density of 1.6 g / cm 3 and a copper foil.
- the sheet-shaped negative electrode was cut into a width of 50.0 mm and a length of 52 cm to obtain a negative electrode for a lithium ion secondary battery.
- the positive electrode for a lithium ion secondary battery and the negative electrode for a lithium ion secondary battery produced as described above are placed so that the electrode mixture layers face each other, and a separator (microporous film made of polypropylene) having a thickness of 15 ⁇ m is interposed. Then, it was wound using a core having a diameter of 20 mm to obtain a wound body. Then, the obtained wound body was compressed from one direction at a speed of 10 mm / sec until the thickness became 4.5 mm.
- a nickel lead wire is connected to a predetermined position on the negative electrode for a lithium ion secondary battery, an aluminum lead wire is connected to a predetermined position on the positive electrode for a lithium ion secondary battery, and then the opening of the case is sealed with heat.
- a lithium ion secondary battery was obtained.
- This lithium ion secondary battery was a pouch type having a width of 35 mm, a height of 60 mm, and a thickness of 5 mm, and the nominal capacity of the battery was 700 mAh.
- the internal resistance of the obtained lithium ion secondary battery was evaluated. The results are shown in Table 1.
- Example 2 When preparing the surface-treated CNT, the surface-treated CNT, the polymer, and the secondary battery are used in the same manner as in Example 1 except that the acid-base-treated CNT is washed until the electrical conductivity of the washing water becomes 15 ⁇ s / m or less.
- a paste, a slurry for a positive electrode of a secondary battery, a positive electrode for a secondary battery, a negative electrode for a secondary battery, and a secondary battery were prepared and evaluated in various ways. The results are shown in Table 1.
- Example 3 In the preparation of the surface-treated CNT, the surface-treated CNT, the polymer, the paste for the secondary battery, and the slurry for the positive electrode of the secondary battery are the same as in Example 1 except that the base treatment time is changed from 1 hour to 3 hours. , A positive electrode for a secondary battery, a negative electrode for a secondary battery, and a secondary battery were prepared and evaluated in various ways. The results are shown in Table 1.
- Example 4 When preparing the surface-treated CNT, the raw material CNT was changed to another multilayer CNT (specific surface area: 170 m 2 / g), and when preparing the paste for the secondary battery, the amount of the surface-treated CNT was changed from 4 parts to 7 parts, and the polymer.
- Example 5 In the preparation of the polymer, the surface-treated CNTs were prepared in the same manner as in Example 1 except that 18 parts of acrylonitrile, 41 parts of 1,3-butadiene, 4 parts of methacrylic acid, and 37 parts of styrene were used as the monomers.
- a polymer, a paste for a secondary battery, a slurry for a positive electrode of a secondary battery, a positive electrode for a secondary battery, a negative electrode for a secondary battery, and a secondary battery were prepared and evaluated in various ways. The results are shown in Table 1.
- Example 6 In the preparation of the polymer, the surface-treated CNTs were prepared in the same manner as in Example 1 except that 28 parts of acrylonitrile, 44 parts of 1,3-butadiene, 4 parts of methacrylic acid, and 24 parts of styrene were used as the monomers.
- a polymer, a paste for a secondary battery, a slurry for a positive electrode of a secondary battery, a positive electrode for a secondary battery, a negative electrode for a secondary battery, and a secondary battery were prepared and evaluated in various ways. The results are shown in Table 1.
- Example 7 In the preparation of the polymer, the surface-treated CNT, the polymer, the paste for the secondary battery, and the second battery were prepared in the same manner as in Example 1 except that 40 parts of acrylonitrile and 60 parts of 1,3-butadiene were used as the monomers. A slurry for the positive electrode of the secondary battery, a positive electrode for the secondary battery, a negative electrode for the secondary battery, and a secondary battery were prepared and evaluated in various ways. The results are shown in Table 1.
- Example 8 Surface treatment CNT, secondary battery paste, secondary battery positive electrode slurry, secondary battery in the same manner as in Example 1 except that no polymer was prepared and the following polymer was used as the dispersant. Positive electrodes for secondary batteries, negative electrodes for secondary batteries, and secondary batteries were prepared and evaluated in various ways. The results are shown in Table 1.
- Example 2 When preparing the surface-treated CNT, the surface-treated CNT, the polymer, and the secondary battery are used in the same manner as in Example 1 except that the acid-base-treated CNT is washed until the electrical conductivity of the washing water reaches about 350 ⁇ s / m.
- a paste, a slurry for a positive electrode of a secondary battery, a positive electrode for a secondary battery, a negative electrode for a secondary battery, and a secondary battery were prepared and evaluated in various ways. The results are shown in Table 2.
- Example 5 A polymer, a paste for a secondary battery, a slurry for a positive electrode of a secondary battery, and a secondary battery in the same manner as in Example 1 except that the surface-treated CNT was not prepared and the raw material CNT was used instead of the surface-treated CNT.
- a positive electrode, a negative electrode for a secondary battery, and a secondary battery were prepared and evaluated in various ways. The results are shown in Table 2.
- AN indicates an acrylonitrile unit
- BD indicates 1,3-butadiene units (or 1,3-butadiene hydride units).
- MAA indicates a methacrylic acid unit
- ST represents a styrene unit.
- a paste for a secondary battery and a method for producing the same which can exhibit excellent adhesiveness to the electrode mixture layer and reduce the internal resistance of the secondary battery.
- a slurry for a positive electrode of a secondary battery capable of producing a positive electrode capable of exhibiting excellent adhesiveness to the positive electrode mixture layer and reducing the internal resistance of the secondary battery.
- a positive electrode for a secondary battery that can reduce the internal resistance of the secondary battery.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Nanotechnology (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本発明は、電極合材層に優れた接着性を発揮させると共に、二次電池の内部抵抗を低減し得る二次電池用ペーストの提供を目的とする。本発明の二次電池用ペーストは、導電助材、重合体、および分散媒を含み、前記導電助材が、表面酸量が0.01mmol/g以上0.15mmol/g以下であり、表面塩基量が0.005mmol/g以上0.500mmol/g以下であり、前記表面塩基量に対する前記表面酸量の比が1.3以上3.0以下であり、そして比表面積が150m2/g以上であるカーボンナノチューブを含む。
Description
本発明は、二次電池用ペースト、二次電池正極用スラリー、二次電池用正極、二次電池、および二次電池用ペーストの製造方法に関するものである。
リチウムイオン二次電池などの二次電池は、小型で軽量、且つエネルギー密度が高く、さらに繰り返し充放電が可能という特性があり、幅広い用途に使用されている。特に近年、リチウムイオン二次電池は、電気自動車(EV)やハイブリッド電気自動車(HEV)のエネルギー源として注目されており、一層の高性能化が求められている。そのため、近年では、リチウムイオン二次電池などの二次電池の更なる高性能化を目的として、電極などの電池部材の改良が検討されている。
二次電池用の電極は、通常、集電体と、集電体上に形成された電極合材層(正極合材層、負極合材層)とを備えている。ここで、電極合材層を形成するに際し、導電助材を、重合体からなる分散材を用いて分散媒中に分散させて得られる二次電池用ペーストを調製することが従来から行われている(例えば、特許文献1参照)。このような二次電池用ペーストを電極活物質と混合して二次電池電極用スラリーを調製し、次いで当該二次電池電極用スラリーから分散媒を除去することにより、電極合材層を形成することができる。
しかしながら、上記従来の二次電池用ペーストには、電極合材層の接着性を更に向上させつつ、二次電池の内部抵抗を一層低減することが求められていた。
そこで、本発明は、電極合材層に優れた接着性を発揮させると共に、二次電池の内部抵抗を低減し得る二次電池用ペーストおよびその製造方法の提供を目的とする。
また、本発明は、正極合材層に優れた接着性を発揮させると共に、二次電池の内部抵抗を低減し得る正極を作製可能な二次電池正極用スラリーの提供を目的とする。
そして、本発明は、二次電池の内部抵抗を低減し得る二次電池用正極の提供を目的とする。
更に、本発明は、内部抵抗が低減された二次電池の提供を目的とする。
また、本発明は、正極合材層に優れた接着性を発揮させると共に、二次電池の内部抵抗を低減し得る正極を作製可能な二次電池正極用スラリーの提供を目的とする。
そして、本発明は、二次電池の内部抵抗を低減し得る二次電池用正極の提供を目的とする。
更に、本発明は、内部抵抗が低減された二次電池の提供を目的とする。
本発明者は、上記課題を解決することを目的として鋭意検討を行った。そして、本発明者は、導電助材として所定の性状を有するカーボンナノチューブ(以下、「CNT」と略記する場合がある。)を用いて得られる二次電池用ペーストによれば、電極合材層に優れた接着性を発揮させつつ、二次電池の内部抵抗を低減させることができることを新たに見出し、本発明を完成させた。
即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の二次電池用ペーストは、導電助材、重合体、および分散媒を含む二次電池用ペーストであって、前記導電助材が、表面酸量が0.01mmol/g以上0.15mmol/g以下であり、表面塩基量が0.005mmol/g以上0.500mmol/g以下であり、前記表面塩基量に対する前記表面酸量の比が1.3以上3.0以下であり、そして比表面積が150m2/g以上であるカーボンナノチューブを含むことを特徴とする。上述したCNTを含むペーストを用いて得られる電極合材層は、接着性に優れ、また当該電極合材層を備える電極によれば、二次電池の内部抵抗を低減することができる。
なお、本発明において、カーボンナノチューブの「表面酸量」および「表面塩基量」は、実施例に記載の方法を用いて測定することができる。
また、本発明において、「比表面積」とは、窒素吸着法によるBET比表面積のことであり、例えば、Belsorp-mini(マイクロトラック・ベル社製、ASTM D3037-81に準拠)を用いて測定することができる。
なお、本発明において、カーボンナノチューブの「表面酸量」および「表面塩基量」は、実施例に記載の方法を用いて測定することができる。
また、本発明において、「比表面積」とは、窒素吸着法によるBET比表面積のことであり、例えば、Belsorp-mini(マイクロトラック・ベル社製、ASTM D3037-81に準拠)を用いて測定することができる。
ここで、本発明の二次電池用ペーストは、前記重合体が、ニトリル基含有単量体単位を10質量%以上40質量%以下の割合で含み、共役ジエン単量体単位を15質量%以上55質量%以下の割合で含むことを特徴とする。重合体が上述した組成を有すれば、二次電池の内部抵抗を一層低減しつつ、サイクル特性を向上させることができる。
なお、本発明において、重合体が「単量体単位を含む」とは、その単量体を用いて得た重合体中に単量体由来の構造単位が含まれている」ことを意味する。また、本発明において、重合体中の各単量体単位の含有割合は、1H-NMRなどの核磁気共鳴法により測定することができる。
なお、本発明において、重合体が「単量体単位を含む」とは、その単量体を用いて得た重合体中に単量体由来の構造単位が含まれている」ことを意味する。また、本発明において、重合体中の各単量体単位の含有割合は、1H-NMRなどの核磁気共鳴法により測定することができる。
また、本発明の二次電池用ペーストは、前記重合体が親水性基を有することが好ましい。重合体が親水性基を有すれば、ペーストを含む電極用スラリーから形成される電極合材層の接着性を更に向上させると共に、二次電池の内部抵抗を一層低減することができる。
そして、本発明の二次電池用ペーストは、前記重合体のヨウ素価が3mg/100mg以上50mg/100mg以下であることが好ましい。重合体のヨウ素価が上述した範囲内であれば、ペーストを含む電極用スラリーから形成される電極合材層を備える電極の柔軟性を確保しつつ、二次電池の内部抵抗を一層低減することができる。
なお、本発明において、「ヨウ素価」は、JIS K6235(2006)に従い、実施例に記載の方法を用いて測定することができる。
なお、本発明において、「ヨウ素価」は、JIS K6235(2006)に従い、実施例に記載の方法を用いて測定することができる。
ここで、本発明の二次電池用ペーストは、前記導電助材の含有割合が2質量%以上20質量%以下であり、前記重合体の含有割合が0.1質量%以上6質量%以下であることが好ましい。導電助材および重合体の含有割合がそれぞれ上述した範囲内であるペーストは、ハンドリング性に優れ、また当該ペーストを用いて調製される電極用スラリーから電極合材層を形成する際の生産性を高めることができる。
また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の二次電池正極用スラリーは、正極活物質と、上述した何れかの二次電池用ペーストとを含むことを特徴とする。正極活物質と、上述した何れかのペーストとを含む正極用スラリーから形成される正極合材層は接着性に優れ、また当該正極合材層を備える正極によれば、二次電池の内部抵抗を低減することができる。
ここで、本発明の二次電池正極用スラリーは、前記正極活物質中の遷移金属に占めるニッケルの割合が60.0モル%以上100.0モル%以下であることが好ましい。遷移金属中に占めるニッケルの割合が上述した範囲内である正極活物質を用いれば、二次電池を高容量化できる。そして、正極用スラリーの安定性を確保しつつ、二次電池の内部抵抗低減を十分に達成し、また二次電池のサイクル特性を十分に確保することができる。
なお、本発明において、「正極活物質中の遷移金属に占めるニッケルの割合」は、ICP発光分光分析法(ICP-AES法)を用いて測定することができる。
なお、本発明において、「正極活物質中の遷移金属に占めるニッケルの割合」は、ICP発光分光分析法(ICP-AES法)を用いて測定することができる。
また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の二次電池用正極は、上述した何れかの二次電池正極用スラリーを用いて形成される正極合材層を備えることを特徴とする。上述した何れかの正極用スラリーから形成される正極合材層を備える正極によれば、二次電池の内部抵抗を低減することができる。
そして、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の二次電池は、上述した二次電池用正極を備えることを特徴とする。上述した正極を備える二次電池は、内部抵抗が低減されている。
更に、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の二次電池用ペーストの製造方法は、上述した何れかの二次電池用ペーストを製造する方法であって、原料カーボンナノチューブに酸処理を施す工程と、前記酸処理が施された原料カーボンナノチューブに塩基処理を施す工程と、前記塩基処理が施された原料カーボンナノチューブを洗浄して、前記カーボンナノチューブを得る工程と、前記カーボンナノチューブを含む導電助材を、前記重合体および前記分散媒と混合する工程と、を含むことを特徴とする。上述した工程を含む本発明の二次電池用ペーストの製造方法によれば、所定の性状を有するCNTを含有する本発明の二次電池用ペーストを、効率良く調製することができる。
本発明によれば、電極合材層に優れた接着性を発揮させると共に、二次電池の内部抵抗を低減し得る二次電池用ペーストおよびその製造方法を提供することができる。
また、本発明によれば、正極合材層に優れた接着性を発揮させると共に、二次電池の内部抵抗を低減し得る正極を作製可能な二次電池正極用スラリーを提供することができる。
そして、本発明によれば、二次電池の内部抵抗を低減し得る二次電池用正極を提供することができる。
更に、本発明によれば、内部抵抗が低減された二次電池を提供することができる。
また、本発明によれば、正極合材層に優れた接着性を発揮させると共に、二次電池の内部抵抗を低減し得る正極を作製可能な二次電池正極用スラリーを提供することができる。
そして、本発明によれば、二次電池の内部抵抗を低減し得る二次電池用正極を提供することができる。
更に、本発明によれば、内部抵抗が低減された二次電池を提供することができる。
以下、本発明の実施形態について詳細に説明する。
ここで、本発明の二次電池用ペーストは、二次電池電極用スラリー(好ましくは、二次電池正極用スラリー)を調製する際の材料として用いることができる。なお、本発明の二次電池用ペーストは、本発明の二次電池用ペーストの製造方法により製造することができる。また、本発明の二次電池正極用スラリーは、本発明の二次電池用ペーストを用いて調製される。加えて、本発明の二次電池用正極は、本発明の二次電池正極用スラリーから形成される正極合材層を備える。そして、本発明の二次電池は、本発明の二次電池用正極を備える。
ここで、本発明の二次電池用ペーストは、二次電池電極用スラリー(好ましくは、二次電池正極用スラリー)を調製する際の材料として用いることができる。なお、本発明の二次電池用ペーストは、本発明の二次電池用ペーストの製造方法により製造することができる。また、本発明の二次電池正極用スラリーは、本発明の二次電池用ペーストを用いて調製される。加えて、本発明の二次電池用正極は、本発明の二次電池正極用スラリーから形成される正極合材層を備える。そして、本発明の二次電池は、本発明の二次電池用正極を備える。
(二次電池用ペースト)
本発明のペーストは、導電助材、重合体、および分散媒を含み、任意にその他の成分を含有する。ここで、本発明のペーストは、上記導電助材として、表面酸量が0.01mmol/g以上0.15mmol/g以下であり、表面塩基量が0.005mmol/g以上0.500mmol/g以下であり、表面塩基量に対する表面酸量の比が1.3以上3.0以下であり、そして比表面積が150m2/g以上であるCNTを含む。
そして、本発明のペーストは、上述した性状を有するCNTを含んでいるので、当該ペーストを用いて電極合材層を作製すれば、電極合材層の接着性を向上させると共に、二次電池の内部抵抗を低減することができる。
本発明のペーストは、導電助材、重合体、および分散媒を含み、任意にその他の成分を含有する。ここで、本発明のペーストは、上記導電助材として、表面酸量が0.01mmol/g以上0.15mmol/g以下であり、表面塩基量が0.005mmol/g以上0.500mmol/g以下であり、表面塩基量に対する表面酸量の比が1.3以上3.0以下であり、そして比表面積が150m2/g以上であるCNTを含む。
そして、本発明のペーストは、上述した性状を有するCNTを含んでいるので、当該ペーストを用いて電極合材層を作製すれば、電極合材層の接着性を向上させると共に、二次電池の内部抵抗を低減することができる。
<導電助材>
本発明のペーストは、導電助材として、上述した所定の性状を有するCNTを含む。なお、本発明のペーストは、任意に、当該CNT以外の導電助材(その他の導電助材)を含んでいてもよい。
本発明のペーストは、導電助材として、上述した所定の性状を有するCNTを含む。なお、本発明のペーストは、任意に、当該CNT以外の導電助材(その他の導電助材)を含んでいてもよい。
<<カーボンナノチューブ>>
ここで、CNTは、表面酸量が、0.01mmol/g以上0.15mmol/g以下であることが必要であり、0.02mmol/g以上であることが好ましく、0.03mmol/g以上であることがより好ましい。表面酸量が0.01mmol/g以上未満であると、ペーストを用いて得られる電極合材層の接着性が低下し、電極合材層が集電体に強固に密着することができない。そして、二次電池の内部抵抗が上昇する。一方、表面酸量が0.15mmol/g超であると、CNTの表面に付着した残留酸成分が過多となる。この残留酸成分により二次電池内で副反応が起こるためと推察されるが、二次電池の内部抵抗が上昇する。加えて、表面酸量が0.01mmol/g以上0.15mmol/g以下であることにより、分散媒中においてCNTが良好に分散しうり、ペーストの安定性が確保される。
ここで、CNTは、表面酸量が、0.01mmol/g以上0.15mmol/g以下であることが必要であり、0.02mmol/g以上であることが好ましく、0.03mmol/g以上であることがより好ましい。表面酸量が0.01mmol/g以上未満であると、ペーストを用いて得られる電極合材層の接着性が低下し、電極合材層が集電体に強固に密着することができない。そして、二次電池の内部抵抗が上昇する。一方、表面酸量が0.15mmol/g超であると、CNTの表面に付着した残留酸成分が過多となる。この残留酸成分により二次電池内で副反応が起こるためと推察されるが、二次電池の内部抵抗が上昇する。加えて、表面酸量が0.01mmol/g以上0.15mmol/g以下であることにより、分散媒中においてCNTが良好に分散しうり、ペーストの安定性が確保される。
また、CNTは、表面塩基量が、0.005mmol/g以上0.500mmol/g以下であることが必要であり、0.008mmol/g以上であることが好ましく、0.010mmol/g以上であることがより好ましく、0.100mmol/g以下であることが好ましく、0.060mmol/g以下であることがより好ましい。表面塩基量が0.005mmol/g未満であると、CNTの表面に付着した残留酸成分が過多となる。この残留酸成分により二次電池内で副反応が起こるためと推察されるが、二次電池の内部抵抗が上昇する。一方、表面塩基量が0.500mmol/g超であると、ペーストを用いて調製される電極用スラリー中に含まれる酸成分との反応に因ると推察されるが、CNTが凝集しやすくなる。そのため、電極合材層の接着性が低下し、二次電池の内部抵抗が上昇し、またサイクル特性が低下する。加えて、表面塩基量が0.005mmol/g以上0.500mmol/g以下であることにより、分散媒中においてCNTが良好に分散しうり、ペーストの安定性が確保される。
そして、CNTは、表面塩基量に対する表面酸量の比(表面酸量/表面塩基量)が、1.3以上3.0以下であることが必要であり、1.4以上であることが好ましく、1.5以上であることがより好ましく、2.5以下であることが好ましい。表面酸量/表面塩基量が1.3未満であると、ペーストを用いて得られる電極合材層の接着性が低下し、電極合材層が集電体に強固に密着することができない。そして、二次電池の内部抵抗が上昇する。一方、表面酸量/表面塩基量が3.0超であると、CNTの表面に付着した残留酸成分が過多となる。この残留酸成分により二次電池内で副反応が起こるためと推察されるが、二次電池の内部抵抗が上昇する。加えて、表面酸量/表面塩基量が1.3以上3.0以下であることにより、分散媒中においてCNTが良好に分散しうり、ペーストの安定性が確保される。
また、表面処理CNTは、比表面積が、150m2/g以上であることが必要であり、170m2/g以上であることが好ましく、250m2/g以上であることがより好ましく、300m2/g以上であることが更に好ましく、1200m2/g以下であることが好ましく、1000m2/g以下であることがより好ましく、500m2/g以下であることが更に好ましい。比表面積が150m2/g未満であると、二次電池の内部抵抗を十分に低減することができない。一方、比表面積が1200m2/g以下であれば、重合体がCNTに良好に結着して、電極合材層の接着性を十分に確保することができる。また、ペーストを用いて得られる電極合材層内部でCNTによる導電ネットワークが十分に形成される。そのため、二次電池の内部抵抗を一層低減することができる。
なお、CNTは、単層CNTであっても多層CNTであってもよい。また上述した所定の性状を有するCNTは、例えば、「二次電池用ペーストの製造方法」の項で後述する方法で、原料CNTに表面処理を行うことにより(表面処理カーボンナノチューブとして)調製することができる。
また、CNTは、平均直径が、例えば、0.5nm以上200nm以下であることが好ましい。更に、CNTは、平均長さが、1μm以上1000μm以下であることが好ましい。なお、CNTの平均直径および平均長さは、CNTを透過型電子顕微鏡(TEM)で観察し、得られたTEM画像から50本のCNTの直径(外径)および長さを測定し、それぞれの測定値の算術平均値として求めることができる。
また、CNTは、平均直径が、例えば、0.5nm以上200nm以下であることが好ましい。更に、CNTは、平均長さが、1μm以上1000μm以下であることが好ましい。なお、CNTの平均直径および平均長さは、CNTを透過型電子顕微鏡(TEM)で観察し、得られたTEM画像から50本のCNTの直径(外径)および長さを測定し、それぞれの測定値の算術平均値として求めることができる。
<<その他の導電助材>>
その他の導電助材としては、二次電池の電極に配合され得る既知の導電助材を用いることができる。このような導電助材としては、カーボンブラック(例えば、アセチレンブラック、ケッチェンブラック(登録商標)、ファーネスブラックなど)、カーボンナノホーン、気相成長炭素繊維、ポリマー繊維を焼成後に破砕して得られるミルドカーボン繊維、単層または多層グラフェン、ポリマー繊維からなる不織布を焼成して得られるカーボン不織布シートなどの導電性炭素材料、並びに各種金属のファイバー又は箔などを用いることができる。これらは一種単独で、または、二種以上を組み合わせて用いることができる。
その他の導電助材としては、二次電池の電極に配合され得る既知の導電助材を用いることができる。このような導電助材としては、カーボンブラック(例えば、アセチレンブラック、ケッチェンブラック(登録商標)、ファーネスブラックなど)、カーボンナノホーン、気相成長炭素繊維、ポリマー繊維を焼成後に破砕して得られるミルドカーボン繊維、単層または多層グラフェン、ポリマー繊維からなる不織布を焼成して得られるカーボン不織布シートなどの導電性炭素材料、並びに各種金属のファイバー又は箔などを用いることができる。これらは一種単独で、または、二種以上を組み合わせて用いることができる。
このようなその他の導電助材を上述したCNTと併用すると、ペーストを用いて得られる電極合材層中で導電パスが一層良好に形成されて導電性が高まり、二次電池の内部抵抗を更に低減することができる場合がある。
なお、導電助材中に含まれるその他の導電助材の割合は、導電助材全体の質量(即ち、上述したCNTとその他の導電助材の質量合計)を100質量%として、例えば、0質量%以上50質量%以下である。
なお、導電助材中に含まれるその他の導電助材の割合は、導電助材全体の質量(即ち、上述したCNTとその他の導電助材の質量合計)を100質量%として、例えば、0質量%以上50質量%以下である。
<<導電助材の含有割合>>
そして、ペースト中における導電助材の含有割合は、ペースト全体の質量を100質量%として、2質量%以上であることが好ましく、3質量%以上であることがより好ましく、4質量%以上であることが更に好ましく、20質量%以下であることが好ましく、10質量%以下であることがより好ましく、8質量%以下であることが更に好ましい。導電助材の含有割合が2質量%以上であれば、ペーストを用いて調製される電極用スラリーの固形分濃度を高めることができ、当該電極用スラリーから電極合材層を形成する際の生産性を高めることができる。一方、導電助材の含有割合が20質量%以下であれば、ペーストの粘度が過度に上昇することもなく、ハンドリング性を十分に確保することができる。
更に、ペースト中における上述したCNTの含有割合は、ペースト全体の質量を100質量%として、2質量%以上であることが好ましく、3質量%以上であることがより好ましく、4質量%以上であることが更に好ましく、20質量%以下であることが好ましく、10質量%以下であることがより好ましく、8質量%以下であることが更に好ましい。CNTの含有割合が2質量%以上であれば、ペーストを用いて調製される電極用スラリーの固形分濃度を高めることができ、当該電極用スラリーから電極合材層を形成する際の生産性を高めることができる。一方、CNTの含有割合が20質量%以下であれば、ペーストの粘度が過度に上昇することもなく、ハンドリング性を十分に確保することができる。
そして、ペースト中における導電助材の含有割合は、ペースト全体の質量を100質量%として、2質量%以上であることが好ましく、3質量%以上であることがより好ましく、4質量%以上であることが更に好ましく、20質量%以下であることが好ましく、10質量%以下であることがより好ましく、8質量%以下であることが更に好ましい。導電助材の含有割合が2質量%以上であれば、ペーストを用いて調製される電極用スラリーの固形分濃度を高めることができ、当該電極用スラリーから電極合材層を形成する際の生産性を高めることができる。一方、導電助材の含有割合が20質量%以下であれば、ペーストの粘度が過度に上昇することもなく、ハンドリング性を十分に確保することができる。
更に、ペースト中における上述したCNTの含有割合は、ペースト全体の質量を100質量%として、2質量%以上であることが好ましく、3質量%以上であることがより好ましく、4質量%以上であることが更に好ましく、20質量%以下であることが好ましく、10質量%以下であることがより好ましく、8質量%以下であることが更に好ましい。CNTの含有割合が2質量%以上であれば、ペーストを用いて調製される電極用スラリーの固形分濃度を高めることができ、当該電極用スラリーから電極合材層を形成する際の生産性を高めることができる。一方、CNTの含有割合が20質量%以下であれば、ペーストの粘度が過度に上昇することもなく、ハンドリング性を十分に確保することができる。
<重合体>
重合体は、本発明の二次電池用ペーストにおいて、分散媒中で上述した導電助材を分散させ得る機能を有する重合体(分散材)であれば特に限定されない。
なお重合体は、本発明のペーストを含む電極用スラリーを用いて集電体上に形成された電極合材層において、電極合材層に含まれる成分が電極合材層から脱離しないように保持しうる成分(即ち、結着材)としても機能し得る。
重合体は、本発明の二次電池用ペーストにおいて、分散媒中で上述した導電助材を分散させ得る機能を有する重合体(分散材)であれば特に限定されない。
なお重合体は、本発明のペーストを含む電極用スラリーを用いて集電体上に形成された電極合材層において、電極合材層に含まれる成分が電極合材層から脱離しないように保持しうる成分(即ち、結着材)としても機能し得る。
重合体としては、例えば、アクリルゴム(ACM)、ポリビニルピロリドン(PVP)、ポリフッ化ビニリデン(PVDF)、ニトリルゴム(NBR)、水素化ニトリルゴム(HNBR)が挙げられる。これらは一種単独で、または、二種以上を組み合わせて用いることができる。そしてこれらの中でも、ペーストの安定性を向上させると共に、二次電池の内部抵抗を一層低減しつつサイクル特性を向上させる観点から、ポリビニルピロリドン、ポリフッ化ビニリデン、ニトリルゴム、水素化ニトリルゴムが好ましく、ニトリルゴム、水素化ニトリルゴムがより好ましく、水素化ニトリルゴムが更に好ましい。
また、重合体は、ペーストを含む電極用スラリーから形成される電極合材層の接着性を更に向上させると共に、二次電池の内部抵抗を一層低減する観点から、親水性基を有することが好ましい。ここで、親水性基としては、例えば、カルボン酸基、スルホン酸基、リン酸基、水酸基が挙げられる。重合体は、これらの親水性基を一種のみ有していてもよいし、二種以上有していてもよい。そしてこれらの中でも、電極合材層の接着性の更なる向上と、二次電池の内部抵抗のより一層の低減を達成する観点から、カルボン酸基が好ましい。
<<重合体の一例>>
以下に、好適な重合体の一例を挙げるが、本発明はこれに限定されるものではない。
例えば、重合体は、ニトリル基含有単量体単位、共役ジエン単量体単位、および親水性基含有単量体単位からなる群からなる少なくとも一つを含むことが好ましく、ニトリル基含有単量体単位、共役ジエン単量体単位、および親水性基含有単量体単位の全てを含むことがより好ましい。そして、重合体は、ニトリル基含有単量体単位、共役ジエン単量体単位、および親水性基含有単量体以外の構造単位(その他の構造単位)を含んでいてもよい。
以下に、好適な重合体の一例を挙げるが、本発明はこれに限定されるものではない。
例えば、重合体は、ニトリル基含有単量体単位、共役ジエン単量体単位、および親水性基含有単量体単位からなる群からなる少なくとも一つを含むことが好ましく、ニトリル基含有単量体単位、共役ジエン単量体単位、および親水性基含有単量体単位の全てを含むことがより好ましい。そして、重合体は、ニトリル基含有単量体単位、共役ジエン単量体単位、および親水性基含有単量体以外の構造単位(その他の構造単位)を含んでいてもよい。
[ニトリル基含有単量体単位]
ニトリル基含有単量体単位を形成し得るニトリル基含有単量体としては、α,β-エチレン性不飽和ニトリル単量体が挙げられる。具体的には、α,β-エチレン性不飽和ニトリル単量体としては、ニトリル基を有するα,β-エチレン性不飽和化合物であれば特に限定されないが、例えば、アクリロニトリル、メタクリロニトリル、α-アルキルアクリロニトリル(α-エチルアクリロニトリルなど)が挙げられる。これらは一種単独で、または、二種以上を組み合わせて用いることができる。そしてこれらの中でも、アクリロニトリルが好ましい。
ニトリル基含有単量体単位を形成し得るニトリル基含有単量体としては、α,β-エチレン性不飽和ニトリル単量体が挙げられる。具体的には、α,β-エチレン性不飽和ニトリル単量体としては、ニトリル基を有するα,β-エチレン性不飽和化合物であれば特に限定されないが、例えば、アクリロニトリル、メタクリロニトリル、α-アルキルアクリロニトリル(α-エチルアクリロニトリルなど)が挙げられる。これらは一種単独で、または、二種以上を組み合わせて用いることができる。そしてこれらの中でも、アクリロニトリルが好ましい。
ここで、重合体に含まれる全構造単位のうち、ニトリル基含有単量体単位が占める割合は、全構造単位を100質量%として、10質量%以上であることが好ましく、13質量%以上であることがより好ましく、18質量%以上であることが更に好ましく、40質量%以下であることが好ましく、33質量%以下であることがより好ましく、28質量%以下であることが更に好ましい。全構造単位に占めるニトリル基含有単量体単位の割合が10質量%以上であれば、重合体がN-メチルピロリドン等の分散媒に良好に溶解し、重合体の分散能が高まる。そのため導電助材を良好に分散させて、ペーストの安定性を向上させることができる。更には、導電助材が良好に分散した電極合材層を形成することができ、二次電池の内部抵抗を一層低減することができる。一方、全構造単位に占めるニトリル基含有単量体単位の割合が40質量%以下であれば、電解液による重合体の過度な膨潤が抑制され、二次電池のサイクル特性を向上させることができる。
[共役ジエン単量体単位]
共役ジエン単量体単位を形成し得る共役ジエン単量体としては、例えば、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエンが挙げられる。これらは一種単独で、または、二種以上を組み合わせて用いることができる。
なお、本発明において、「共役ジエン単量体単位」には、共役ジエン単量体を用いて得た重合体中に含まれる単量体単位を更に水素添加することで得られる構造単位(水素化物単位)も含まれるものとする。
そして、上述した共役ジエン単量体の中でも、1,3-ブタジエン、イソプレンが好ましい。換言すると、共役ジエン単量体単位としては、1,3-ブタジエン単位、イソプレン単位、1,3-ブタジエン水素化物単位、イソプレン水素化物単位が好ましい。
共役ジエン単量体単位を形成し得る共役ジエン単量体としては、例えば、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエンが挙げられる。これらは一種単独で、または、二種以上を組み合わせて用いることができる。
なお、本発明において、「共役ジエン単量体単位」には、共役ジエン単量体を用いて得た重合体中に含まれる単量体単位を更に水素添加することで得られる構造単位(水素化物単位)も含まれるものとする。
そして、上述した共役ジエン単量体の中でも、1,3-ブタジエン、イソプレンが好ましい。換言すると、共役ジエン単量体単位としては、1,3-ブタジエン単位、イソプレン単位、1,3-ブタジエン水素化物単位、イソプレン水素化物単位が好ましい。
ここで、重合体に含まれる全構造単位のうち、共役ジエン単量体単位が占める割合は、全構造単位を100質量%として、15質量%以上であることが好ましく、20質量%以上であることがより好ましく、25質量%以上であることが更に好ましく、30質量%以上であることが特に好ましく、55質量%以下であることが好ましく、50質量%以下であることがより好ましく、45質量%以下であることが更に好ましい。全構造単位に占める共役ジエン単量体単位の割合が15質量%以上であれば、ペーストを含む電極用スラリーから形成された電極合材層を備える電極の柔軟性が確保される。一方、全構造単位に占める共役ジエン単量体単位の割合が50質量%以下であれば、重合体がN-メチルピロリドン等の分散媒に良好に溶解し、重合体の分散能が高まる。そのため導電助材を良好に分散させて、ペーストの安定性を向上させることができる。そして、全構造単位に占める共役ジエン単量体単位の割合が15質量%以上55質量%以下であれば、二次電池の内部抵抗を一層低減しつつ、サイクル特性を向上させることができる。
[親水性基含有単量体単位]
親水性基含有単量体単位を形成し得る親水性基含有単量体としては、親水性基を有する重合可能な単量体が挙げられる。具体的には、親水性基含有単量体としては、例えば、カルボン酸基を有する単量体、スルホン酸基を有する単量体、リン酸基を有する単量体、水酸基を有する単量体が挙げられる。
親水性基含有単量体単位を形成し得る親水性基含有単量体としては、親水性基を有する重合可能な単量体が挙げられる。具体的には、親水性基含有単量体としては、例えば、カルボン酸基を有する単量体、スルホン酸基を有する単量体、リン酸基を有する単量体、水酸基を有する単量体が挙げられる。
カルボン酸基を有する単量体としては、モノカルボン酸およびその誘導体や、ジカルボン酸およびその酸無水物並びにそれらの誘導体などが挙げられる。
モノカルボン酸としては、アクリル酸、メタクリル酸、クロトン酸などが挙げられる。
モノカルボン酸誘導体としては、2-エチルアクリル酸、イソクロトン酸、α-アセトキシアクリル酸、β-trans-アリールオキシアクリル酸、α-クロロ-β-E-メトキシアクリル酸、β-ジアミノアクリル酸などが挙げられる。
ジカルボン酸としては、マレイン酸、フマル酸、イタコン酸などが挙げられる。
ジカルボン酸誘導体としては、メチルマレイン酸、ジメチルマレイン酸、フェニルマレイン酸、クロロマレイン酸、ジクロロマレイン酸、フルオロマレイン酸や、マレイン酸メチルアリル、マレイン酸ジフェニル、マレイン酸ノニル、マレイン酸デシル、マレイン酸ドデシル、マレイン酸オクタデシル、マレイン酸フルオロアルキルなどのマレイン酸エステルが挙げられる。
ジカルボン酸の酸無水物としては、無水マレイン酸、アクリル酸無水物、メチル無水マレイン酸、ジメチル無水マレイン酸などが挙げられる。
また、カルボン酸基を有する単量体としては、加水分解によりカルボン酸基を生成する酸無水物も使用できる。
その他、マレイン酸モノエチル、マレイン酸ジエチル、マレイン酸モノブチル、マレイン酸ジブチル、フマル酸モノエチル、フマル酸ジエチル、フマル酸モノブチル、フマル酸ジブチル、フマル酸モノシクロヘキシル、フマル酸ジシクロヘキシル、イタコン酸モノエチル、イタコン酸ジエチル、イタコン酸モノブチル、イタコン酸ジブチルなどのα,β-エチレン性不飽和多価カルボン酸のモノエステルおよびジエステルも挙げられる。
モノカルボン酸としては、アクリル酸、メタクリル酸、クロトン酸などが挙げられる。
モノカルボン酸誘導体としては、2-エチルアクリル酸、イソクロトン酸、α-アセトキシアクリル酸、β-trans-アリールオキシアクリル酸、α-クロロ-β-E-メトキシアクリル酸、β-ジアミノアクリル酸などが挙げられる。
ジカルボン酸としては、マレイン酸、フマル酸、イタコン酸などが挙げられる。
ジカルボン酸誘導体としては、メチルマレイン酸、ジメチルマレイン酸、フェニルマレイン酸、クロロマレイン酸、ジクロロマレイン酸、フルオロマレイン酸や、マレイン酸メチルアリル、マレイン酸ジフェニル、マレイン酸ノニル、マレイン酸デシル、マレイン酸ドデシル、マレイン酸オクタデシル、マレイン酸フルオロアルキルなどのマレイン酸エステルが挙げられる。
ジカルボン酸の酸無水物としては、無水マレイン酸、アクリル酸無水物、メチル無水マレイン酸、ジメチル無水マレイン酸などが挙げられる。
また、カルボン酸基を有する単量体としては、加水分解によりカルボン酸基を生成する酸無水物も使用できる。
その他、マレイン酸モノエチル、マレイン酸ジエチル、マレイン酸モノブチル、マレイン酸ジブチル、フマル酸モノエチル、フマル酸ジエチル、フマル酸モノブチル、フマル酸ジブチル、フマル酸モノシクロヘキシル、フマル酸ジシクロヘキシル、イタコン酸モノエチル、イタコン酸ジエチル、イタコン酸モノブチル、イタコン酸ジブチルなどのα,β-エチレン性不飽和多価カルボン酸のモノエステルおよびジエステルも挙げられる。
スルホン酸基を有する単量体としては、ビニルスルホン酸、メチルビニルスルホン酸、(メタ)アリルスルホン酸、スチレンスルホン酸、(メタ)アクリル酸-2-スルホン酸エチル、2-アクリルアミド-2-メチルプロパンスルホン酸、3-アリロキシ-2-ヒドロキシプロパンスルホン酸などが挙げられる。
なお、本発明において「(メタ)アクリル」とは、アクリルおよび/またはメタクリルを意味する。また、本発明において「(メタ)アリル」とは、アリルおよび/またはメタリルを意味する。
なお、本発明において「(メタ)アクリル」とは、アクリルおよび/またはメタクリルを意味する。また、本発明において「(メタ)アリル」とは、アリルおよび/またはメタリルを意味する。
リン酸基を有する単量体としては、リン酸-2-(メタ)アクリロイルオキシエチル、リン酸メチル-2-(メタ)アクリロイルオキシエチル、リン酸エチル-(メタ)アクリロイルオキシエチルなどが挙げられる。
なお、本発明において「(メタ)アクリロイル」とは、アクリロイルおよび/またはメタクリロイルを意味する。
なお、本発明において「(メタ)アクリロイル」とは、アクリロイルおよび/またはメタクリロイルを意味する。
水酸基を有する単量体としては、(メタ)アリルアルコール、3-ブテン-1-オール、5-ヘキセン-1-オールなどのエチレン性不飽和アルコール;アクリル酸-2-ヒドロキシエチル、アクリル酸-2-ヒドロキシプロピル、メタクリル酸-2-ヒドロキシエチル、メタクリル酸-2-ヒドロキシプロピル、マレイン酸ジ-2-ヒドロキシエチル、マレイン酸ジ-4-ヒドロキシブチル、イタコン酸ジ-2-ヒドロキシプロピルなどのエチレン性不飽和カルボン酸のアルカノールエステル類;一般式:CH2=CR1-COO-(CqH2qO)p-H(式中、pは2~9の整数、qは2~4の整数、R1は水素原子またはメチル基を表す)で表されるポリアルキレングリコールと(メタ)アクリル酸とのエステル類;2-ヒドロキシエチル-2’-(メタ)アクリロイルオキシフタレート、2-ヒドロキシエチル-2’-(メタ)アクリロイルオキシサクシネートなどのジカルボン酸のジヒドロキシエステルのモノ(メタ)アクリル酸エステル類;2-ヒドロキシエチルビニルエーテル、2-ヒドロキシプロピルビニルエーテルなどのビニルエーテル類;(メタ)アリル-2-ヒドロキシエチルエーテル、(メタ)アリル-2-ヒドロキシプロピルエーテル、(メタ)アリル-3-ヒドロキシプロピルエーテル、(メタ)アリル-2-ヒドロキシブチルエーテル、(メタ)アリル-3-ヒドロキシブチルエーテル、(メタ)アリル-4-ヒドロキシブチルエーテル、(メタ)アリル-6-ヒドロキシヘキシルエーテルなどのアルキレングリコールのモノ(メタ)アリルエーテル類;ジエチレングリコールモノ(メタ)アリルエーテル、ジプロピレングリコールモノ(メタ)アリルエーテルなどのポリオキシアルキレングリコールモノ(メタ)アリルエーテル類;グリセリンモノ(メタ)アリルエーテル、(メタ)アリル-2-クロロ-3-ヒドロキシプロピルエーテル、(メタ)アリル-2-ヒドロキシ-3-クロロプロピルエーテルなどの、(ポリ)アルキレングリコールのハロゲンおよびヒドロキシ置換体のモノ(メタ)アリルエーテル;オイゲノール、イソオイゲノールなどの多価フェノールのモノ(メタ)アリルエーテルおよびそのハロゲン置換体;(メタ)アリル-2-ヒドロキシエチルチオエーテル、(メタ)アリル-2-ヒドロキシプロピルチオエーテルなどのアルキレングリコールの(メタ)アリルチオエーテル類;などが挙げられる。
これらの親水性基含有単量体は、一種単独で、または、二種以上を組み合わせて用いることができる。そしてこれらの中でも、電極合材層の接着性を更に向上させつつ、二次電池の内部抵抗を一層低減する観点から、カルボン酸基を有する単量体が好ましく、アクリル酸、メタクリル酸がより好ましい。
ここで、重合体に含まれる全構造単位のうち、親水性基含有単量体単位が占める割合は、全構造単位を100質量%として、0.05質量%以上であることが好ましく、0.1質量%以上であることがより好ましく、1質量%以上であることが更に好ましく、3質量%以上であることが特に好ましく、10質量%以下であることが好ましく、8質量%以下であることがより好ましい。全構造単位に占める親水性基含有単量体単位の割合が0.05質量%以上であれば、ペーストを用いて得られる電極合材層の接着性がより向上し、電極合材層が集電体に更に強固に密着することができる。そして、二次電池の内部抵抗を一層低減することができる。一方、全構造単位に占める親水性基含有単量体単位の割合が10質量%以下であれば、重合体がN-メチルピロリドン等の分散媒に良好に溶解し、重合体の分散能が高まる。そのため導電助材を良好に分散させて、ペーストの安定性を向上させることができる。
[その他の構造単位]
その他の構造単位としては、特に限定されることなく、上述したニトリル基含有単量体、共役ジエン単量体および親水性基含有単量体と共重合可能な既知の単量体に由来する構造単位が挙げられる。具体的には、その他の構造単位としては、特に限定されることなく、例えば、芳香族ビニル単量体単位が好ましく挙げられる。
その他の構造単位としては、特に限定されることなく、上述したニトリル基含有単量体、共役ジエン単量体および親水性基含有単量体と共重合可能な既知の単量体に由来する構造単位が挙げられる。具体的には、その他の構造単位としては、特に限定されることなく、例えば、芳香族ビニル単量体単位が好ましく挙げられる。
芳香族ビニル単量体単位を形成し得る芳香族ビニル単量体としては、スチレン、スチレンスルホン酸およびその塩、α-メチルスチレン、ブトキシスチレン、並びに、ビニルナフタレンなどが挙げられる。これらは、一種単独で、または、二種以上を組み合わせて用いることができる。そしてこれらの中でも、スチレンが好ましい。
ここで、重合体に含まれる全構造単位のうち、芳香族ビニル単量体単位が占める割合は、全構造単位を100質量%として、15質量%以上であることが好ましく、20質量%以上であることがより好ましく、24質量%以上であることが更に好ましく、55質量%以下であることが好ましく、50質量%以下であることがより好ましく、45質量%以下であることが更に好ましい。全構造単位に占める芳香族ビニル単量体単位の割合が15質量%以上であれば、導電助材が良好に分散した電極合材層を形成することができ、二次電池の内部抵抗を一層低減することができる。一方、全構造単位に占める芳香族ビニル単量体単位の割合が55質量%以下であれば、ペーストを含む電極用スラリーから形成された電極合材層を備える電極の柔軟性が確保される。
ここで、重合体に含まれる全構造単位のうち、芳香族ビニル単量体単位が占める割合は、全構造単位を100質量%として、15質量%以上であることが好ましく、20質量%以上であることがより好ましく、24質量%以上であることが更に好ましく、55質量%以下であることが好ましく、50質量%以下であることがより好ましく、45質量%以下であることが更に好ましい。全構造単位に占める芳香族ビニル単量体単位の割合が15質量%以上であれば、導電助材が良好に分散した電極合材層を形成することができ、二次電池の内部抵抗を一層低減することができる。一方、全構造単位に占める芳香族ビニル単量体単位の割合が55質量%以下であれば、ペーストを含む電極用スラリーから形成された電極合材層を備える電極の柔軟性が確保される。
(メタ)アクリル酸エステル単量体単位を形成し得る(メタ)アクリル酸エステル単量体としては、(メタ)アクリル酸アルキルエステル、(メタ)アクリル酸パーフルオロアルキルエステルが挙げられる。
(メタ)アクリル酸アルキルエステルとしては、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、イソプロピルアクリレート、n-ブチルアクリレート、t-ブチルアクリレート、イソブチルアクリレート、n-ペンチルアクリレート、イソペンチルアクリレート、ヘキシルアクリレート、ヘプチルアクリレート、オクチルアクリレート、2-エチルヘキシルアクリレート、ノニルアクリレート、デシルアクリレート、ラウリルアクリレート、n-テトラデシルアクリレート、ステアリルアクリレートなどのアクリル酸アルキルエステル;メチルメタクリレート、エチルメタクリレート、n-プロピルメタクリレート、イソプロピルメタクリレート、n-ブチルメタクリレート、t-ブチルメタクリレート、イソブチルメタクリレート、n-ペンチルメタクリレート、イソペンチルメタクリレート、ヘキシルメタクリレート、ヘプチルメタクリレート、オクチルメタクリレート、2-エチルヘキシルメタクリレート、ノニルメタクリレート、デシルメタクリレート、ラウリルメタクリレート、n-テトラデシルメタクリレート、ステアリルメタクリレート、グリシジルメタクリレートなどのメタクリル酸アルキルエステル;などが挙げられる。
(メタ)アクリル酸パーフルオロアルキルエステルとしては、アクリル酸2-(パーフルオロブチル)エチル、アクリル酸2-(パーフルオロペンチル)エチル、アクリル酸2-(パーフルオロヘキシル)エチル、アクリル酸2-(パーフルオロオクチル)エチル、アクリル酸2-(パーフルオロノニル)エチル、アクリル酸2-(パーフルオロデシル)エチル、アクリル酸2-(パーフルオロドデシル)エチル、アクリル酸2-(パーフルオロテトラデシル)エチル、アクリル酸2-(パーフルオロヘキサデシル)エチルなどのアクリル酸2-(パーフルオロアルキル)エチル;メタクリル酸2-(パーフルオロブチル)エチル、メタクリル酸2-(パーフルオロペンチル)エチル、メタクリル酸2-(パーフルオロヘキシル)エチル、メタクリル酸2-(パーフルオロオクチル)エチル、メタクリル酸2-(パーフルオロノニル)エチル、メタクリル酸2-(パーフルオロデシル)エチル、メタクリル酸2-(パーフルオロドデシル)エチル、メタクリル酸2-(パーフルオロテトラデシル)エチル、メタクリル酸2-(パーフルオロヘキサデシル)エチルなどのメタクリル酸2-(パーフルオロアルキル)エチル;などが挙げられる。
これらは、一種単独で、または、二種以上を組み合わせて用いることができる。
ここで、重合体が(メタ)アクリル酸エステル単量体単位を含む場合、重合体に含まれる全構造単位のうち、(メタ)アクリル酸エステル単量体単位が占める割合は、全構造単位を100質量%として、15質量%以上であることが好ましく、20質量%以上であることがより好ましく、24質量%以上であることが更に好ましく、55質量%以下であることが好ましく、50質量%以下であることがより好ましく、45質量%以下であることが更に好ましい。
(メタ)アクリル酸アルキルエステルとしては、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、イソプロピルアクリレート、n-ブチルアクリレート、t-ブチルアクリレート、イソブチルアクリレート、n-ペンチルアクリレート、イソペンチルアクリレート、ヘキシルアクリレート、ヘプチルアクリレート、オクチルアクリレート、2-エチルヘキシルアクリレート、ノニルアクリレート、デシルアクリレート、ラウリルアクリレート、n-テトラデシルアクリレート、ステアリルアクリレートなどのアクリル酸アルキルエステル;メチルメタクリレート、エチルメタクリレート、n-プロピルメタクリレート、イソプロピルメタクリレート、n-ブチルメタクリレート、t-ブチルメタクリレート、イソブチルメタクリレート、n-ペンチルメタクリレート、イソペンチルメタクリレート、ヘキシルメタクリレート、ヘプチルメタクリレート、オクチルメタクリレート、2-エチルヘキシルメタクリレート、ノニルメタクリレート、デシルメタクリレート、ラウリルメタクリレート、n-テトラデシルメタクリレート、ステアリルメタクリレート、グリシジルメタクリレートなどのメタクリル酸アルキルエステル;などが挙げられる。
(メタ)アクリル酸パーフルオロアルキルエステルとしては、アクリル酸2-(パーフルオロブチル)エチル、アクリル酸2-(パーフルオロペンチル)エチル、アクリル酸2-(パーフルオロヘキシル)エチル、アクリル酸2-(パーフルオロオクチル)エチル、アクリル酸2-(パーフルオロノニル)エチル、アクリル酸2-(パーフルオロデシル)エチル、アクリル酸2-(パーフルオロドデシル)エチル、アクリル酸2-(パーフルオロテトラデシル)エチル、アクリル酸2-(パーフルオロヘキサデシル)エチルなどのアクリル酸2-(パーフルオロアルキル)エチル;メタクリル酸2-(パーフルオロブチル)エチル、メタクリル酸2-(パーフルオロペンチル)エチル、メタクリル酸2-(パーフルオロヘキシル)エチル、メタクリル酸2-(パーフルオロオクチル)エチル、メタクリル酸2-(パーフルオロノニル)エチル、メタクリル酸2-(パーフルオロデシル)エチル、メタクリル酸2-(パーフルオロドデシル)エチル、メタクリル酸2-(パーフルオロテトラデシル)エチル、メタクリル酸2-(パーフルオロヘキサデシル)エチルなどのメタクリル酸2-(パーフルオロアルキル)エチル;などが挙げられる。
これらは、一種単独で、または、二種以上を組み合わせて用いることができる。
ここで、重合体が(メタ)アクリル酸エステル単量体単位を含む場合、重合体に含まれる全構造単位のうち、(メタ)アクリル酸エステル単量体単位が占める割合は、全構造単位を100質量%として、15質量%以上であることが好ましく、20質量%以上であることがより好ましく、24質量%以上であることが更に好ましく、55質量%以下であることが好ましく、50質量%以下であることがより好ましく、45質量%以下であることが更に好ましい。
<<性状>>
重合体は、ヨウ素価が、3mg/100mg以上であることが好ましく、50mg/100mg以下であることが好ましく、25mg/100mg以下であることがより好ましく、8mg/100mg以下であることが更に好ましい。ヨウ素価が3mg/100mg以上であれば、ペーストを含む電極用スラリーから形成された電極合材層を備える電極の柔軟性が確保される。一方、ヨウ素価が50mg/100mg以下であれば、導電助材が良好に分散した電極合材層を形成することができ、二次電池の内部抵抗を一層低減することができる。
重合体は、ヨウ素価が、3mg/100mg以上であることが好ましく、50mg/100mg以下であることが好ましく、25mg/100mg以下であることがより好ましく、8mg/100mg以下であることが更に好ましい。ヨウ素価が3mg/100mg以上であれば、ペーストを含む電極用スラリーから形成された電極合材層を備える電極の柔軟性が確保される。一方、ヨウ素価が50mg/100mg以下であれば、導電助材が良好に分散した電極合材層を形成することができ、二次電池の内部抵抗を一層低減することができる。
<<調製方法>>
重合体の調製方法は特に限定されないが、例えば、上述した単量体を含む単量体組成物を重合し、任意に、水素添加を行うことで重合体を調製することができる。
ここで、本発明において単量体組成物中の各単量体の含有割合は、重合体における各単量体単位の含有割合に準じて定めることができる。
重合様式は、特に制限なく、溶液重合法、懸濁重合法、塊状重合法、乳化重合法などのいずれの方法も用いることができる。各重合法において、必要に応じて既知の乳化剤や重合開始剤を使用することができる。
水素添加の方法は、特に制限なく、触媒を用いる一般的な方法(例えば、国際公開第2012/165120号、国際公開第2013/080989号および特開2013-8485号公報参照)を使用することができる。
重合体の調製方法は特に限定されないが、例えば、上述した単量体を含む単量体組成物を重合し、任意に、水素添加を行うことで重合体を調製することができる。
ここで、本発明において単量体組成物中の各単量体の含有割合は、重合体における各単量体単位の含有割合に準じて定めることができる。
重合様式は、特に制限なく、溶液重合法、懸濁重合法、塊状重合法、乳化重合法などのいずれの方法も用いることができる。各重合法において、必要に応じて既知の乳化剤や重合開始剤を使用することができる。
水素添加の方法は、特に制限なく、触媒を用いる一般的な方法(例えば、国際公開第2012/165120号、国際公開第2013/080989号および特開2013-8485号公報参照)を使用することができる。
<<重合体の含有割合>>
そして、ペースト中における重合体の含有割合は、ペースト全体の質量を100質量%として、0.1質量%以上であることが好ましく、0.3質量以上であることがより好ましく、0.4質量%以上であることが更に好ましく、0.7質量%以上であることが特に好ましく、6質量%以下であることが好ましく、3質量%以下であることがより好ましく、2.4質量%以下であることが更に好ましい。重合体の含有割合が0.1質量%以上であれば、導電助材を良好に分散させて、ペーストの安定性を向上させることができる。一方、重合体の含有割合が6質量%以下であれば、二次電池の内部抵抗を十分に低減することができる。
そして、ペースト中における重合体の含有割合は、ペースト全体の質量を100質量%として、0.1質量%以上であることが好ましく、0.3質量以上であることがより好ましく、0.4質量%以上であることが更に好ましく、0.7質量%以上であることが特に好ましく、6質量%以下であることが好ましく、3質量%以下であることがより好ましく、2.4質量%以下であることが更に好ましい。重合体の含有割合が0.1質量%以上であれば、導電助材を良好に分散させて、ペーストの安定性を向上させることができる。一方、重合体の含有割合が6質量%以下であれば、二次電池の内部抵抗を十分に低減することができる。
<分散媒>
分散媒としては、特に限定されないが、上述した重合体を溶解可能な極性を有する有機溶媒を好ましく用いることができる。このような有機溶媒としては、アセトニトリル、N-メチルピロリドン、シクロペンタノン、N,N-ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホキシド、メチルホルムアミド、メチルエチルケトン、フルフラールなどを用いることができる。これらの中でも、取扱い易さ、安全性などの観点から、N-メチルピロリドンが好ましい。なお、分散媒は、一種単独で、または、二種以上を組み合わせて用いることができる。
分散媒としては、特に限定されないが、上述した重合体を溶解可能な極性を有する有機溶媒を好ましく用いることができる。このような有機溶媒としては、アセトニトリル、N-メチルピロリドン、シクロペンタノン、N,N-ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホキシド、メチルホルムアミド、メチルエチルケトン、フルフラールなどを用いることができる。これらの中でも、取扱い易さ、安全性などの観点から、N-メチルピロリドンが好ましい。なお、分散媒は、一種単独で、または、二種以上を組み合わせて用いることができる。
<その他の成分>
その他の成分としては、例えば、粘度調整剤、補強材、酸化防止剤、界面活性剤、及び電解液の分解を抑制する機能を有する電解液添加剤などの成分を混合してもよい。これらの他の成分は、公知のものを使用することができる。これらその他の成分は、一種単独で、または、二種以上を組み合わせて用いることができる。
なお、本発明のペーストは、通常、電極活物質(正極活物質、負極活物質)を含まない。
その他の成分としては、例えば、粘度調整剤、補強材、酸化防止剤、界面活性剤、及び電解液の分解を抑制する機能を有する電解液添加剤などの成分を混合してもよい。これらの他の成分は、公知のものを使用することができる。これらその他の成分は、一種単独で、または、二種以上を組み合わせて用いることができる。
なお、本発明のペーストは、通常、電極活物質(正極活物質、負極活物質)を含まない。
(二次電池用ペーストの製造方法)
そして上述した本発明の二次電池用ペーストは、例えば、本発明の二次電池用ペーストの製造方法を用いて得ることができる。
本発明の二次電池用ペーストの製造方法は、原料CNTに酸処理を施す工程(酸処理工程)と、酸処理が施された原料CNTに塩基処理を施す工程(塩基処理工程)と、塩基処理が施された原料CNTを洗浄して、所定の性状を有するCNT(表面処理CNT)を得る工程(洗浄工程)と、表面処理CNTを含む導電助材を、重合体および前記分散媒と混合する工程(混合工程)と、を少なくとも含む。
そして上述した本発明の二次電池用ペーストは、例えば、本発明の二次電池用ペーストの製造方法を用いて得ることができる。
本発明の二次電池用ペーストの製造方法は、原料CNTに酸処理を施す工程(酸処理工程)と、酸処理が施された原料CNTに塩基処理を施す工程(塩基処理工程)と、塩基処理が施された原料CNTを洗浄して、所定の性状を有するCNT(表面処理CNT)を得る工程(洗浄工程)と、表面処理CNTを含む導電助材を、重合体および前記分散媒と混合する工程(混合工程)と、を少なくとも含む。
そして、本発明の二次電池用ペーストの製造方法を用いれば、所定の性状を有するCNTを含有する本発明の二次電池用ペーストを、効率良く調製することができる。
<酸処理工程>
酸処理工程では、原料CNTに酸処理を施す。原料CNTとしては、特に限定されず、所望の表面処理CNTの性状(層数、比表面積など)に応じて、既知のCNTから適宜選択することができる。
酸処理工程では、原料CNTに酸処理を施す。原料CNTとしては、特に限定されず、所望の表面処理CNTの性状(層数、比表面積など)に応じて、既知のCNTから適宜選択することができる。
ここで酸処理の方法としては、原料CNTに酸を接触させることができれば特に限定されないが、原料CNTを酸処理液(酸の水溶液)中に浸漬させる方法が好ましい。
酸処理液に含まれる酸としては、特に限定されないが、例えば硝酸、硫酸、塩酸が挙げられる。これらは、一種単独で、または、二種以上を組み合わせて用いることができる。そしてこれらの中でも、硝酸、硫酸が好ましい。
酸処理液に含まれる酸としては、特に限定されないが、例えば硝酸、硫酸、塩酸が挙げられる。これらは、一種単独で、または、二種以上を組み合わせて用いることができる。そしてこれらの中でも、硝酸、硫酸が好ましい。
原料CNTを酸処理液に浸漬させる時間(浸漬時間)は、1分以上であることが好ましく、10分以上であることがより好ましく、30分以上であることが更に好ましく、50分以上であることが特に好ましく、120分以下であることが好ましく、100分以下であることがより好ましく、80分以下であることが更に好ましい。浸漬時間が1分以上であれば、表面処理CNTの表面酸量を高めることができ、120分以下であれば、表面処理CNTの表面酸量が過度に高まることもなく、またペーストの生産効率が十分に確保される。
そして、原料CNTを酸処理液に浸漬させる際の温度(浸漬温度)は、20℃以上であることが好ましく、40℃以上であることがより好ましく、80℃以下であることが好ましく、70℃以下であることがより好ましい。浸漬温度が上述した範囲内であれば、得られる表面処理CNTの表面酸量を適度に高めることができる。
上記浸漬後、酸処理工程を経たCNT(酸処理CNT)と酸処理液の混合物から、ろ過などの既知の手法で酸処理CNTを回収することができる。回収された酸処理CNTは、必要に応じて水洗してもよい。
<塩基処理工程>
塩基処理工程では、上述した酸処理工程を経て得られた酸処理CNTに、塩基処理を施す。
塩基処理工程では、上述した酸処理工程を経て得られた酸処理CNTに、塩基処理を施す。
ここで塩基処理の方法としては、酸処理CNTに塩基を接触させることができれば特に限定されないが、酸処理CNTを塩基処理液(塩基の水溶液)中に浸漬させる方法が好ましい。
塩基処理液に含まれる塩基としては、特に限定されないが、例えば水酸化リチウム、塩化アンモニウム、重炭酸ナトリウム、水酸化ナトリムが挙げられる。これらは、一種単独で、または、二種以上を組み合わせて用いることができる。そしてこれらの中でも、重炭酸ナトリムが好ましい。
塩基処理液に含まれる塩基としては、特に限定されないが、例えば水酸化リチウム、塩化アンモニウム、重炭酸ナトリウム、水酸化ナトリムが挙げられる。これらは、一種単独で、または、二種以上を組み合わせて用いることができる。そしてこれらの中でも、重炭酸ナトリムが好ましい。
酸処理CNTを塩基処理液に浸漬させる時間(浸漬時間)は、5分以上であることが好ましく、20分以上であることがより好ましく、40分以上であることが更に好ましく、120分以下であることが好ましく、100分以下であることがより好ましく、80分以下であることが更に好ましい。浸漬時間が5分以上上であれば、表面処理CNTの表面塩基量を高めることができ、120分以下であれば、表面処理CNTの表面塩基量が過度に高まることもなく、またペーストの生産効率が十分に確保される。
そして、酸処理CNTを塩基処理液に浸漬させる際の温度(浸漬温度)は、10℃以上であることが好ましく、20℃以上であることがより好ましく、28℃以上であることが好ましく、40℃以下であることが好ましく、35℃以下であることがより好ましい。浸漬温度が上述した範囲内であれば、得られる表面処理CNTの表面塩基量を適度に高めることができる。
<洗浄工程>
洗浄工程では、上述した酸処理工程および塩基処理工程を経て得られた原料CNT(酸塩基処理CNT)を洗浄する。この洗浄により、酸塩基処理CNTの表面に付着した余剰な酸成分および塩基成分(特に塩基成分)を除去し、所定の性状を有する表面処理CNTを得ることができる。
洗浄工程では、上述した酸処理工程および塩基処理工程を経て得られた原料CNT(酸塩基処理CNT)を洗浄する。この洗浄により、酸塩基処理CNTの表面に付着した余剰な酸成分および塩基成分(特に塩基成分)を除去し、所定の性状を有する表面処理CNTを得ることができる。
また、酸塩基処理CNTを洗浄する方法としては、特に限定されないが、水洗が好ましい。例えば、酸塩基処理CNTと塩基処理液の混合物から、ろ過などの既知の手法で酸塩基処理CNTを回収し、酸塩基処理CNTを水洗する。この際、酸塩基処理CNTの洗浄に用いた後の水(洗浄水)の電気伝導度を測定することにより、どの程度の酸成分および塩基成分が除去されたかを見積もることができる。
上述した洗浄工程後、必要に応じて、表面に付着した水を乾燥により除去する等して、表面処理CNTを得ることができる。
上述した洗浄工程後、必要に応じて、表面に付着した水を乾燥により除去する等して、表面処理CNTを得ることができる。
なお、表面処理CNTの表面酸量、表面塩基量は、上述した酸処理工程、塩基処理工程、洗浄工程の条件を変更することにより調整することができる。例えば、酸処理工程、塩基処理工程に用いる酸処理液、塩基処理液にそれぞれ含まれる酸および塩基の種類、並びにそれらの濃度を変更することにより表面処理CNTの表面酸量、表面塩基量を調整することができる。また、酸処理工程の浸漬時間を長くすることで、表面処理CNTの表面酸量を高めることができ、塩基処理工程の浸漬時間を長くすることで、表面処理CNTの表面塩基量を高めることができる。更に、洗浄工程において、洗浄の度合いを変化させることにより表面酸量、表面塩基量(特には表面塩基量)を調整することができる。
<混合工程>
混合工程では、上述のようにして得られた表面処理CNTを、重合体および分散媒、並びに、必要に応じて用いられるその他の導電助材および/またはその他の成分と混合する。混合工程における混合方法は、特に限定されず、例えば、ディスパー、ミル、ニーダーなどの一般的な混合装置を用いることができる。
混合工程では、上述のようにして得られた表面処理CNTを、重合体および分散媒、並びに、必要に応じて用いられるその他の導電助材および/またはその他の成分と混合する。混合工程における混合方法は、特に限定されず、例えば、ディスパー、ミル、ニーダーなどの一般的な混合装置を用いることができる。
(二次電池正極用スラリー)
本発明の二次電池用正極用スラリーは、正極活物質と、上述した本発明の二次電池用ペーストを含む。換言すると、本発明の正極用スラリーは、正極活物質と、所定の性状を有するCNTと、重合体と、分散媒とを含み、任意にその他の導電助材および/またはその他の成分を更に含む。
そして、本発明の正極用スラリーは、本発明のペーストを用いて調製されているため、当該正極用スラリーから正極合材層を形成すれば、当該正極合材層に優れた接着性発揮させると共に、二次電池の内部抵抗を低減することができる。
本発明の二次電池用正極用スラリーは、正極活物質と、上述した本発明の二次電池用ペーストを含む。換言すると、本発明の正極用スラリーは、正極活物質と、所定の性状を有するCNTと、重合体と、分散媒とを含み、任意にその他の導電助材および/またはその他の成分を更に含む。
そして、本発明の正極用スラリーは、本発明のペーストを用いて調製されているため、当該正極用スラリーから正極合材層を形成すれば、当該正極合材層に優れた接着性発揮させると共に、二次電池の内部抵抗を低減することができる。
<正極活物質>
ここで、正極活物質は、二次電池の正極において電子の受け渡しをする物質である。そして、例えば二次電池がリチウムイオン二次電池の場合には、正極活物質としては、通常は、リチウムを吸蔵および放出し得る物質を用いる。
なお、以下では、一例として二次電池正極用スラリーがリチウムイオン二次電池正極用スラリーである場合について説明するが、本発明は下記の一例に限定されるものではない。
ここで、正極活物質は、二次電池の正極において電子の受け渡しをする物質である。そして、例えば二次電池がリチウムイオン二次電池の場合には、正極活物質としては、通常は、リチウムを吸蔵および放出し得る物質を用いる。
なお、以下では、一例として二次電池正極用スラリーがリチウムイオン二次電池正極用スラリーである場合について説明するが、本発明は下記の一例に限定されるものではない。
そして、リチウムイオン二次電池用の正極活物質としては、特に限定されることなく、リチウム含有コバルト酸化物(LiCoO2)、マンガン酸リチウム(LiMn2O4)、リチウム含有ニッケル酸化物(LiNiO2)、Co-Ni-Mnのリチウム含有複合酸化物(例えば、Li[CoαMnβNiγ]O2、α+β+γ=1)、Ni-Mn-Alのリチウム含有複合酸化物、Ni-Co-Alのリチウム含有複合酸化物、オリビン型リン酸鉄リチウム(LiFePO4)、オリビン型リン酸マンガンリチウム(LiMnPO4)、Li2MnO3-LiNiO2系固溶体、Li1+xMn2-xO4(0<X<2)で表されるリチウム過剰のスピネル化合物、Li[Ni0.17Li0.2Co0.07Mn0.56]O2、LiNi0.5Mn1.5O4等の既知の正極活物質が挙げられる。
そして、正極活物質としては、二次電池を高容量化する観点から、遷移金属に占めるニッケルの割合が60.0モル%以上100.0モル%以下である正極活物質が好ましい。ここで、遷移金属に占めるニッケルの割合が大きい正極活物質を用いて調製される正極用スラリーは、安定性に劣る場合があり、そのため二次電池の内部抵抗の上昇やサイクル特性の低下が引き起こさせる場合がある。しかしながら、このような遷移金属に占めるニッケルの割合が大きい正極活物質と、本発明のペーストを用いて正極用スラリーを調製することで、正極用スラリーの安定性を確保しつつ、二次電池の内部抵抗およびサイクル特性向上を十分に達成することができる。
なお、正極活物質に含まれるニッケル以外の遷移金属としては、例えば、コバルト、マンガン、鉄、チタンが挙げられる。そして、遷移金属に占めるニッケルの割合が60.0モル%以上100.0モル%以下である正極活物質としては、例えば、LiNi0.6Co0.2Mn0.2O2、LiNi0.8Co0.1Mn0.1O2が挙げられる。
なお、正極活物質の粒子径は、特に限定されることなく、従来使用されている正極活物質と同様とすることができる。また、正極活物質は、一種単独で、または、二種以上を組み合わせて用いることができる。
そして、正極用スラリー中の正極活物質の含有割合は、特に限定されないが、正極用スラリー中の全固形分を100質量%として、90質量%以上99質量%以下であることが好ましい。
そして、正極活物質としては、二次電池を高容量化する観点から、遷移金属に占めるニッケルの割合が60.0モル%以上100.0モル%以下である正極活物質が好ましい。ここで、遷移金属に占めるニッケルの割合が大きい正極活物質を用いて調製される正極用スラリーは、安定性に劣る場合があり、そのため二次電池の内部抵抗の上昇やサイクル特性の低下が引き起こさせる場合がある。しかしながら、このような遷移金属に占めるニッケルの割合が大きい正極活物質と、本発明のペーストを用いて正極用スラリーを調製することで、正極用スラリーの安定性を確保しつつ、二次電池の内部抵抗およびサイクル特性向上を十分に達成することができる。
なお、正極活物質に含まれるニッケル以外の遷移金属としては、例えば、コバルト、マンガン、鉄、チタンが挙げられる。そして、遷移金属に占めるニッケルの割合が60.0モル%以上100.0モル%以下である正極活物質としては、例えば、LiNi0.6Co0.2Mn0.2O2、LiNi0.8Co0.1Mn0.1O2が挙げられる。
なお、正極活物質の粒子径は、特に限定されることなく、従来使用されている正極活物質と同様とすることができる。また、正極活物質は、一種単独で、または、二種以上を組み合わせて用いることができる。
そして、正極用スラリー中の正極活物質の含有割合は、特に限定されないが、正極用スラリー中の全固形分を100質量%として、90質量%以上99質量%以下であることが好ましい。
<二次電池用ペースト>
二次電池用ペーストとしては、導電助材、重合体、および分散媒を含み、任意にその他の成分を含有する、上述した本発明の二次電池用ペーストを用いる。
二次電池用ペーストとしては、導電助材、重合体、および分散媒を含み、任意にその他の成分を含有する、上述した本発明の二次電池用ペーストを用いる。
なお、正極用スラリー中の導電助材の含有割合は、特に限定されないが、正極用スラリー中の全固形分を100質量%として、0.4質量%以上5質量%以下であることが好ましい。
また、正極用スラリー中の重合体の含有割合は、特に限定されないが、特に限定されないが、正極用スラリー中の全固形分を100質量%として、0.01質量%以上2質量%以下であることが好ましい。
また、正極用スラリー中の重合体の含有割合は、特に限定されないが、特に限定されないが、正極用スラリー中の全固形分を100質量%として、0.01質量%以上2質量%以下であることが好ましい。
<正極用スラリーの調製方法>
本発明の正極用スラリーは、上述した正極活物質と、上述した二次電池用ペーストを混合することにより調製することができる。混合方法は、特に限定されず、例えば、ディスパー、ミル、ニーダーなどの一般的な混合装置を用いることができる。
本発明の正極用スラリーは、上述した正極活物質と、上述した二次電池用ペーストを混合することにより調製することができる。混合方法は、特に限定されず、例えば、ディスパー、ミル、ニーダーなどの一般的な混合装置を用いることができる。
(二次電池用正極)
本発明の二次電池用正極は、上述した本発明の二次電池正極用スラリーを用いて形成された正極合材層を備える。
例えば、本発明の正極は、上述した本発明の正極用スラリーを集電体の表面に塗布して塗膜を形成した後、形成した塗膜を乾燥することにより、形成することができる。即ち、本発明の正極が備える正極合材層は、上述した本発明の正極用スラリーの乾燥物よりなり、通常、正極活物質と、所定の性状を有するCNTと、重合体を含み、任意にその他の導電助材および/またはその他の成分を更に含む。なお、正極合材層に含まれている各成分は、上記正極用スラリー中に含まれていたものであり、それらの成分の含有比率は、通常、上記正極用スラリー中における含有比率と等しい。
本発明の二次電池用正極は、上述した本発明の二次電池正極用スラリーを用いて形成された正極合材層を備える。
例えば、本発明の正極は、上述した本発明の正極用スラリーを集電体の表面に塗布して塗膜を形成した後、形成した塗膜を乾燥することにより、形成することができる。即ち、本発明の正極が備える正極合材層は、上述した本発明の正極用スラリーの乾燥物よりなり、通常、正極活物質と、所定の性状を有するCNTと、重合体を含み、任意にその他の導電助材および/またはその他の成分を更に含む。なお、正極合材層に含まれている各成分は、上記正極用スラリー中に含まれていたものであり、それらの成分の含有比率は、通常、上記正極用スラリー中における含有比率と等しい。
そして、本発明の正極は、本発明の正極用スラリーから形成される正極合材層を備えているので、本発明の正極を用いることにより、二次電池の内部抵抗を低減することができる。
<正極の製造方法>
ここで、本発明の正極は、例えば、上述した正極用スラリーを集電体上に塗布する工程(塗布工程)と、集電体上に塗布された正極用スラリーを乾燥して集電体上に正極合材層を形成する工程(乾燥工程)とを経て集電体上に形成することができる。
ここで、本発明の正極は、例えば、上述した正極用スラリーを集電体上に塗布する工程(塗布工程)と、集電体上に塗布された正極用スラリーを乾燥して集電体上に正極合材層を形成する工程(乾燥工程)とを経て集電体上に形成することができる。
<<塗布工程>>
そして、上記正極用スラリーを集電体上に塗布する方法としては、特に限定されず公知の方法を用いることができる。具体的には、塗布方法としては、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などを用いることができる。この際、スラリーを集電体の片面だけに塗布してもよいし、両面に塗布してもよい。塗布後乾燥前の集電体上のスラリー膜の厚みは、乾燥して得られる正極合材層の厚みに応じて適宜に設定しうる。
そして、上記正極用スラリーを集電体上に塗布する方法としては、特に限定されず公知の方法を用いることができる。具体的には、塗布方法としては、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などを用いることができる。この際、スラリーを集電体の片面だけに塗布してもよいし、両面に塗布してもよい。塗布後乾燥前の集電体上のスラリー膜の厚みは、乾燥して得られる正極合材層の厚みに応じて適宜に設定しうる。
ここで、正極用スラリーを塗布する集電体としては、電気導電性を有し、かつ、電気化学的に耐久性のある材料が用いられる。具体的には、集電体としては、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などからなる集電体を用い得る。なお、前記の材料は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
<<乾燥工程>>
集電体上の正極用スラリーを乾燥する方法としては、特に限定されず公知の方法を用いることができ、例えば温風、熱風、低湿風による乾燥法、真空乾燥法、赤外線や電子線などの照射による乾燥法が挙げられる。このように集電体上のスラリーを乾燥することで、集電体上に正極合材層を形成し、集電体と正極合材層とを備える正極を得ることができる。
集電体上の正極用スラリーを乾燥する方法としては、特に限定されず公知の方法を用いることができ、例えば温風、熱風、低湿風による乾燥法、真空乾燥法、赤外線や電子線などの照射による乾燥法が挙げられる。このように集電体上のスラリーを乾燥することで、集電体上に正極合材層を形成し、集電体と正極合材層とを備える正極を得ることができる。
なお、乾燥工程の後、金型プレスまたはロールプレスなどを用い、正極合材層に加圧処理を施してもよい。加圧処理により、正極合材層と集電体との密着性を向上させることができる。また、正極合材層が硬化性の重合体を含む場合は、正極合材層の形成後に前記重合体を硬化させることが好ましい。
(二次電池)
本発明の二次電池は、上述した本発明の二次電池用正極を備える。より具体的には、本発明の二次電池は、通常、正極と、負極と、電解液と、セパレータとを備えており、正極が上述した本発明の正極である。
そして、本発明の二次電池は、上述した本発明の正極を用いているので、内部抵抗が低減されている。
本発明の二次電池は、上述した本発明の二次電池用正極を備える。より具体的には、本発明の二次電池は、通常、正極と、負極と、電解液と、セパレータとを備えており、正極が上述した本発明の正極である。
そして、本発明の二次電池は、上述した本発明の正極を用いているので、内部抵抗が低減されている。
<負極>
ここで、本発明の二次電池で使用し得る、二次電池用負極としては、特に限定されることなく、二次電池の製造に用いられている既知の負極を用いることができる。例えば、かかる負極は、既知の製造方法を用いて集電体上に負極合材層を形成してなる負極などを用いることができる。
ここで、本発明の二次電池で使用し得る、二次電池用負極としては、特に限定されることなく、二次電池の製造に用いられている既知の負極を用いることができる。例えば、かかる負極は、既知の製造方法を用いて集電体上に負極合材層を形成してなる負極などを用いることができる。
<電解液>
電解液としては、通常、有機溶媒に支持電解質を溶解した有機電解液が用いられる。例えば、リチウムイオン二次電池の支持電解質としては、リチウム塩が用いられる。リチウム塩としては、例えば、LiPF6、LiAsF6、LiBF4、LiSbF6、LiAlCl4、LiClO4、CF3SO3Li、C4F9SO3Li、CF3COOLi、(CF3CO)2NLi、(CF3SO2)2NLi、(C2F5SO2)NLiなどが挙げられる。なかでも、溶媒に溶けやすく高い解離度を示すので、LiPF6、LiClO4、CF3SO3Liが好ましく、LiPF6が特に好ましい。なお、電解質は1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。通常は、解離度の高い支持電解質を用いるほどリチウムイオン伝導度が高くなる傾向があるので、支持電解質の種類によりリチウムイオン伝導度を調節することができる。
電解液としては、通常、有機溶媒に支持電解質を溶解した有機電解液が用いられる。例えば、リチウムイオン二次電池の支持電解質としては、リチウム塩が用いられる。リチウム塩としては、例えば、LiPF6、LiAsF6、LiBF4、LiSbF6、LiAlCl4、LiClO4、CF3SO3Li、C4F9SO3Li、CF3COOLi、(CF3CO)2NLi、(CF3SO2)2NLi、(C2F5SO2)NLiなどが挙げられる。なかでも、溶媒に溶けやすく高い解離度を示すので、LiPF6、LiClO4、CF3SO3Liが好ましく、LiPF6が特に好ましい。なお、電解質は1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。通常は、解離度の高い支持電解質を用いるほどリチウムイオン伝導度が高くなる傾向があるので、支持電解質の種類によりリチウムイオン伝導度を調節することができる。
電解液に使用する有機溶媒としては、支持電解質を溶解できるものであれば特に限定されないが、例えば、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、エチルメチルカーボネート(EMC)等のカーボネート類;γ-ブチロラクトン、ギ酸メチル等のエステル類;1,2-ジメトキシエタン、テトラヒドロフラン等のエーテル類;スルホラン、ジメチルスルホキシド等の含硫黄化合物類;などが好適に用いられる。またこれらの溶媒の混合液を用いてもよい。中でも、誘電率が高く、安定な電位領域が広いので、カーボネート類を用いることが好ましい。
なお、電解液中の電解質の濃度は適宜調整することができる。また、電解液には、既知の添加剤を添加することができる。
なお、電解液中の電解質の濃度は適宜調整することができる。また、電解液には、既知の添加剤を添加することができる。
<セパレータ>
セパレータとしては、特に限定されることなく、例えば特開2012-204303号公報に記載のものを用いることができる。これらの中でも、セパレータ全体の膜厚を薄くすることができ、これにより、二次電池内の電極活物質の比率を高くして体積あたりの容量を高くすることができるという点より、ポリオレフィン系(ポリエチレン、ポリプロピレン、ポリブテン、ポリ塩化ビニル)の樹脂からなる微多孔膜が好ましい。
セパレータとしては、特に限定されることなく、例えば特開2012-204303号公報に記載のものを用いることができる。これらの中でも、セパレータ全体の膜厚を薄くすることができ、これにより、二次電池内の電極活物質の比率を高くして体積あたりの容量を高くすることができるという点より、ポリオレフィン系(ポリエチレン、ポリプロピレン、ポリブテン、ポリ塩化ビニル)の樹脂からなる微多孔膜が好ましい。
そして、二次電池は、例えば、正極と、負極とを、セパレータを介して重ね合わせ、これを必要に応じて電池形状に応じて巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口することにより製造することができる。ここで、本発明の電気化学素子では、上述した電気化学素子用正極を使用する。なお、本発明の電気化学素子には、二次電池の内部の圧力上昇、過充放電等の発生を防止するために、必要に応じて、ヒューズ、PTC素子等の過電流防止素子、エキスパンドメタル、リード板などを設けてもよい。二次電池の形状は、例えば、コイン型、ボタン型、シート型、円筒型、角形、扁平型など、何れであってもよい。
以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の説明において、量を表す「%」及び「部」は、特に断らない限り、質量基準である。
実施例および比較例において、カーボンナノチューブの表面酸量、表面塩基量および比表面積、二次電池用ペーストの安定性、正極合材層の接着性、並びに、二次電池の内部抵抗は、それぞれ以下の方法を使用して評価した。
実施例および比較例において、カーボンナノチューブの表面酸量、表面塩基量および比表面積、二次電池用ペーストの安定性、正極合材層の接着性、並びに、二次電池の内部抵抗は、それぞれ以下の方法を使用して評価した。
<表面酸量>
測定対象のCNT約1gを精秤し、0.01mol dm-3テトラブチルハイドライド(TBA OH)/4-メチル-2-ペンタノン(MIBK)溶液100mlに浸漬させ、スターラーで1時間撹拌した。その後遠心分離を行ない、上澄みをフィルターでろ過した。得られたろ液50mL中に残存するTBA OHを、0.01mol dm-3過塩素酸(HClO4)/MIBK溶液で非水電量滴定を行うことにより定量分析し、得られた値からCNT1g当たりの酸量(mmol/g)を特定した。なお分析には、自動電量滴定装置(京都電子社製、製品名「AT-700」)を使用した。また一連の作業はアルゴン気流下、室温で行った。
<表面塩基量>
測定対象のCNT約1gを精秤し、0.01mol dm-3HClO4/MIBK溶液100mlに浸漬させ、スターラーで1時間撹拌した。その後遠心分離を行ない、上澄みをフィルターでろ過した。得られたろ液50mL中に残存するHClO4を、0.01mol dm-3TBA OH/MIBK溶液で非水電量滴定を行うことにより定量分析し、得られた値からCNT1g当たりの塩基量(mmol/g)を特定した。なお分析には、自動電量滴定装置(京都電子社製、製品名「AT-700」)を使用した。また一連の作業はアルゴン気流下、室温で行った。
<比表面積>
CNTの比表面積(BET比表面積)は、Belsorp-mini(マイクロトラック・ベル社製、ASTM D3037-81に準拠)を用いて測定した。
<安定性>
調製直後の二次電池用ペーストの粘度(初期粘度)を、レオメーター(Anton Paar社製、「MCR302」)を用いて、温度25℃、せん断速度0.1s-1の条件下で測定した。次いで二次電池用ペーストを7日後常温下にて保存し、初期粘度と同じ条件下で粘度(保存後粘度)を測定した。そして、初期粘度を100%としたときの保存後粘度の値(%)を、下記の基準で評価した。粘度変化が小さい程、ペーストが安定性に優れることを示す。
A:保存後粘度が100%以上150%未満
B:保存後粘度が150%以上200%未満
C:保存後粘度が200%以上250%未満
D:保存後粘度が250%以上
<接着性>
リチウムイオン二次電池用正極を、長さ100mm、幅10mmの長方形に切り出して試験片とし、正極合材層を有する面を下にして正極合材層表面にセロハンテープ(JIS Z1522に準拠するもの)を貼り付け、集電体の一端を垂直方向に引張り、速度100mm/分で引っ張って剥がしたときの応力を測定した(なお、セロハンテープは試験台に固定されている)。測定を合計3回行い、その平均値を求めてこれを剥離ピール強度とし、下記の基準で評価した。剥離ピール強度の値が大きいほど、正極合材層と集電体とが強く密着しており、正極合材層が接着性に優れることを示す。
A:剥離ピール強度が30N/m以上
B:剥離ピール強度が25N/m以上30N/m未満
C:剥離ピール強度が20N/m以上25N/m未満
D:剥離ピール強度が20N/m未満
<内部抵抗>
二次電池を、25℃雰囲気下、1C(Cは、定格容量(mA)/1時間(h)で表される数値)でSOC(State Of Charge、充電深度)の50%まで充電した。その後、25℃の環境下において、SOCの50%を中心として0.2C、0.5C、1.0C、2.0C、3.0Cで20秒間充電と20秒間放電とをそれぞれ行い、それぞれの場合(充電側および放電側)における20秒後の電池電圧を電流値に対してプロットし、その傾きをIV抵抗(Ω)(充電時IV抵抗および放電時IV抵抗)として求めた。得られたIV抵抗の値(Ω)について、比較例5の値を基準とした変化率(%)を算出し(比較例5は0%)、下記の基準で評価した。(比較例5に比して)IV抵抗が小さいほど、内部抵抗が少なく、二次電池が出力特性に優れていることを示す。
A:IV抵抗が11.0%以上減少
B:IV抵抗が6.0%以上11.0%未満減少
C:IV抵抗が1.0%以上6.0%未満減少
D:IV抵抗が1.0%未満減少、比較例5と同一、または比較例5から増加
測定対象のCNT約1gを精秤し、0.01mol dm-3テトラブチルハイドライド(TBA OH)/4-メチル-2-ペンタノン(MIBK)溶液100mlに浸漬させ、スターラーで1時間撹拌した。その後遠心分離を行ない、上澄みをフィルターでろ過した。得られたろ液50mL中に残存するTBA OHを、0.01mol dm-3過塩素酸(HClO4)/MIBK溶液で非水電量滴定を行うことにより定量分析し、得られた値からCNT1g当たりの酸量(mmol/g)を特定した。なお分析には、自動電量滴定装置(京都電子社製、製品名「AT-700」)を使用した。また一連の作業はアルゴン気流下、室温で行った。
<表面塩基量>
測定対象のCNT約1gを精秤し、0.01mol dm-3HClO4/MIBK溶液100mlに浸漬させ、スターラーで1時間撹拌した。その後遠心分離を行ない、上澄みをフィルターでろ過した。得られたろ液50mL中に残存するHClO4を、0.01mol dm-3TBA OH/MIBK溶液で非水電量滴定を行うことにより定量分析し、得られた値からCNT1g当たりの塩基量(mmol/g)を特定した。なお分析には、自動電量滴定装置(京都電子社製、製品名「AT-700」)を使用した。また一連の作業はアルゴン気流下、室温で行った。
<比表面積>
CNTの比表面積(BET比表面積)は、Belsorp-mini(マイクロトラック・ベル社製、ASTM D3037-81に準拠)を用いて測定した。
<安定性>
調製直後の二次電池用ペーストの粘度(初期粘度)を、レオメーター(Anton Paar社製、「MCR302」)を用いて、温度25℃、せん断速度0.1s-1の条件下で測定した。次いで二次電池用ペーストを7日後常温下にて保存し、初期粘度と同じ条件下で粘度(保存後粘度)を測定した。そして、初期粘度を100%としたときの保存後粘度の値(%)を、下記の基準で評価した。粘度変化が小さい程、ペーストが安定性に優れることを示す。
A:保存後粘度が100%以上150%未満
B:保存後粘度が150%以上200%未満
C:保存後粘度が200%以上250%未満
D:保存後粘度が250%以上
<接着性>
リチウムイオン二次電池用正極を、長さ100mm、幅10mmの長方形に切り出して試験片とし、正極合材層を有する面を下にして正極合材層表面にセロハンテープ(JIS Z1522に準拠するもの)を貼り付け、集電体の一端を垂直方向に引張り、速度100mm/分で引っ張って剥がしたときの応力を測定した(なお、セロハンテープは試験台に固定されている)。測定を合計3回行い、その平均値を求めてこれを剥離ピール強度とし、下記の基準で評価した。剥離ピール強度の値が大きいほど、正極合材層と集電体とが強く密着しており、正極合材層が接着性に優れることを示す。
A:剥離ピール強度が30N/m以上
B:剥離ピール強度が25N/m以上30N/m未満
C:剥離ピール強度が20N/m以上25N/m未満
D:剥離ピール強度が20N/m未満
<内部抵抗>
二次電池を、25℃雰囲気下、1C(Cは、定格容量(mA)/1時間(h)で表される数値)でSOC(State Of Charge、充電深度)の50%まで充電した。その後、25℃の環境下において、SOCの50%を中心として0.2C、0.5C、1.0C、2.0C、3.0Cで20秒間充電と20秒間放電とをそれぞれ行い、それぞれの場合(充電側および放電側)における20秒後の電池電圧を電流値に対してプロットし、その傾きをIV抵抗(Ω)(充電時IV抵抗および放電時IV抵抗)として求めた。得られたIV抵抗の値(Ω)について、比較例5の値を基準とした変化率(%)を算出し(比較例5は0%)、下記の基準で評価した。(比較例5に比して)IV抵抗が小さいほど、内部抵抗が少なく、二次電池が出力特性に優れていることを示す。
A:IV抵抗が11.0%以上減少
B:IV抵抗が6.0%以上11.0%未満減少
C:IV抵抗が1.0%以上6.0%未満減少
D:IV抵抗が1.0%未満減少、比較例5と同一、または比較例5から増加
(実施例1)
<表面処理CNTの調製>
0.8g秤量した多層カーボンナノチューブ(比表面積:300m2/g)を、濃硝酸20mLと1M硫酸20mLとの混合溶液に添加し、60℃に保持しながら1時間撹拌した(酸処理)。その後、ろ紙(Toyo Roshi Kaisha、Filter Paper 2号 125mm)を用いてろ過し固液分離した。ろ紙上の固形物を、精製水200mlを用いて洗浄後、CNT固形物(酸処理CNT)を回収した。さらに、このCNT固形物を濃度2mol/リットルの重炭酸ナトリウム水溶液200ml中に投入後、ウォーターバスにて30℃に保持しながら1時間撹拌した(塩基処理)。その後、孔径10μmのメンブレンフィルターを用いて吸引ろ過し固液分離した。メンブレンフィルター上のCNT固形物(酸塩基処理CNT)を、精製水を用いて繰り返し洗浄した。洗浄水の電気伝導度が50μs/m以下となったところでCNT固形物を上記同様の方法で固液分離した。得られたCNT固形物を50℃、8時間で減圧乾燥し、表面処理CNTを調製した。この表面処理CNTについて、表面酸量、表面塩基量、および比表面積を測定した。また、表面塩基量に対する表面酸量の比を算出した。結果は何れも表1に示す。
<重合体の調製>
内容積10リットルの反応器中に、イオン交換水100部、並びに単量体としてのアクリロニトリル23部、1,3-ブタジエン30部、メタクリル酸4部、およびスチレン43部を仕込み、乳化剤としてオレイン酸カリウム2部、安定剤としてリン酸カリウム0.1部、さらに、分子量調整剤として2,2′,4,6,6′-ペンタメチルヘプタン-4-チオール(TIBM)0.5部を加えて、重合開始剤として過硫酸カリウム0.35部の存在下に30℃で乳化重合を行い、上述した単量体を共重合した。
重合転化率が90%に達した時点で、単量体100部あたり0.2部のヒドロキシルアミン硫酸塩を添加して重合を停止させた。続いて、加温し、減圧下で約70℃にて水蒸気蒸留して、残留単量体を回収した後、老化防止剤としてアルキル化フェノールを2部添加して、重合体の水分散液を得た。
次に、得られた重合体の水分散液400mL(全固形分:48g)を、撹拌機付きの1リットルオートクレーブに投入し、窒素ガスを10分間流して水分散液中の溶存酸素を除去した。その後、水素化反応触媒として、酢酸パラジウム50mgを、Pdに対して4倍モル当量の硝酸を添加した水180mLに溶解して、添加した。系内を水素ガスで2回置換した後、3MPa(ゲージ圧)まで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素化反応させた。
その後、内容物を常温に戻し、系内を窒素雰囲気とした後、エバポレータを用いて、固形分濃度が40%となるまで濃縮して、重合体としての水素化ニトリルゴムを得た。
そして、重合体としての水素化ニトリルゴムの固形分濃度40%の水溶液に対して、N-メチルピロリドンを添加した後に、減圧蒸留を実施して水および過剰なN-メチルピロリドンを除去し、固形分濃度8%の水素化ニトリルゴムのN-メチルピロリドン溶液を得た。
<二次電池用ペーストの調製>
上述のようにして得られた表面処理CNTを4部と、上述のようにして得られた水素化ニトリルゴムのN-メチルピロリドン溶液を0.8部(固形分相当量)と、分散媒として適量のN-メチルピロリドンとを添加し、ディスパーにて撹拌(3000rpm、60分)し、その後、直径1mmのジルコニアビーズを用いたビーズミルを使用し、周速8m/秒にて1時間混合することにより、二次電池用ペーストを製造した。なお、ペーストは、レオメーター(Anton Paar社製、「MCR302」)を使用した計測の結果、温度25℃、せん断速度0.1s-1における粘度が49,000mPa・sであるとともに、固形分濃度の値が4.8%であった。この二次電池用ペーストについて、安定性を評価した。結果を表1に示す。
<二次電池正極用スラリーの調製>
上述のようにして得られた二次電池用ペースト中に、正極活物質として層状構造を有する三元系活物質(LiNi0.6Co0.2Mn0.2O2、遷移金属に占めるニッケルの割合:60.0モル%)(体積平均粒子径:10μm)100部と、分散媒として適量のN-メチルピロリドンとを添加し、ディスパーにて撹拌し(3000rpm、20分)、二次電池正極用スラリーを調製した。なおN-メチルピロリドンの添加量は、得られる正極用スラリーの60rpmでの粘度が3000~4000mPa・sの範囲内となるように調整した。
<二次電池用正極の作製>
集電体として、厚さ20μmのアルミ箔を準備した。上述のようにして得た正極用スラリーをコンマコーターでアルミ箔の片面に乾燥後の目付量が20mg/cm2になるように塗布し、90℃で20分、120℃で20分間乾燥後、60℃で10時間加熱処理して正極原反を得た。この正極原反をロールプレスで圧延し、正極合材層(密度:3.2g/cm3)とアルミ箔とからなるシート状正極を作製した。そして、シート状正極を幅48.0mm、長さ47cmに切断して、リチウムイオン二次電池用正極とした。このリチウムイオン二次電池用正極を用いて、正極合材層の接着性を評価した。結果を表1に示す。
<二次電池用負極の作製>
負極活物質としての球状人造黒鉛(体積平均粒子径:12μm)90部とSiOx(体積平均粒子径:10μm)10部との混合物と、負極用バインダーとしてのスチレンブタジエン重合体1部と、増粘剤としてのカルボキシメチルセルロース1部と、分散媒としての適量の水とをプラネタリーミキサーにて撹拌し、二次電池負極用スラリーを調製した。
次に、集電体として、厚さ15μmの銅箔を準備した。上述のようにして得た二次電池負極用スラリーを銅箔の片面に乾燥後の塗布量が10mg/cm2になるように塗布し、60℃で20分、120℃で20分間乾燥した。その後、150℃で2時間加熱処理して、負極原反を得た。この負極原反をロールプレスで圧延し、密度が1.6g/cm3の負極合材層と、銅箔とからなるシート状負極を作製した。そして、シート状負極を幅50.0mm、長さ52cmに切断して、リチウムイオン二次電池用負極とした。
<二次電池の製造>
上述のようにして作製したリチウムイオン二次電池用正極とリチウムイオン二次電池用負極とを、電極合材層同士が向かい合うようにし、厚さ15μmのセパレータ(ポリプロピレン製の微多孔膜)を介在させて、直径20mmの芯を用いて捲回し、捲回体を得た。そして、得られた捲回体を、10mm/秒の速度で厚さ4.5mmになるまで一方向から圧縮した。なお、圧縮後の捲回体は平面視楕円形をしており、その長径と短径との比(長径/短径)は7.7であった。
また、電解液(濃度1.0MのLiPF6溶液(溶媒は、エチレンカーボネート/エチルメチルカーボネート=3/7(質量比)の混合溶媒にフルオロエチレンカーボネート5質量%を添加した混合溶液であり、添加剤としてビニレンカーボネート2体積%を添加))を準備した。
その後、圧縮後の捲回体をアルミ製ラミネートケース内に3.2gの電解液とともに収容した。そして、リチウムイオン二次電池用負極の所定の箇所にニッケルリード線を接続し、リチウムイオン二次電池用正極の所定の箇所にアルミニウムリード線を接続したのち、ケースの開口部を熱で封口し、リチウムイオン二次電池を得た。このリチウムイオン二次電池は、幅35mm、高さ60mm、厚さ5mmのパウチ形であり、電池の公称容量は700mAhであった。
得られたリチウムイオン二次電池について、内部抵抗を評価した。結果を表1に示す。
<表面処理CNTの調製>
0.8g秤量した多層カーボンナノチューブ(比表面積:300m2/g)を、濃硝酸20mLと1M硫酸20mLとの混合溶液に添加し、60℃に保持しながら1時間撹拌した(酸処理)。その後、ろ紙(Toyo Roshi Kaisha、Filter Paper 2号 125mm)を用いてろ過し固液分離した。ろ紙上の固形物を、精製水200mlを用いて洗浄後、CNT固形物(酸処理CNT)を回収した。さらに、このCNT固形物を濃度2mol/リットルの重炭酸ナトリウム水溶液200ml中に投入後、ウォーターバスにて30℃に保持しながら1時間撹拌した(塩基処理)。その後、孔径10μmのメンブレンフィルターを用いて吸引ろ過し固液分離した。メンブレンフィルター上のCNT固形物(酸塩基処理CNT)を、精製水を用いて繰り返し洗浄した。洗浄水の電気伝導度が50μs/m以下となったところでCNT固形物を上記同様の方法で固液分離した。得られたCNT固形物を50℃、8時間で減圧乾燥し、表面処理CNTを調製した。この表面処理CNTについて、表面酸量、表面塩基量、および比表面積を測定した。また、表面塩基量に対する表面酸量の比を算出した。結果は何れも表1に示す。
<重合体の調製>
内容積10リットルの反応器中に、イオン交換水100部、並びに単量体としてのアクリロニトリル23部、1,3-ブタジエン30部、メタクリル酸4部、およびスチレン43部を仕込み、乳化剤としてオレイン酸カリウム2部、安定剤としてリン酸カリウム0.1部、さらに、分子量調整剤として2,2′,4,6,6′-ペンタメチルヘプタン-4-チオール(TIBM)0.5部を加えて、重合開始剤として過硫酸カリウム0.35部の存在下に30℃で乳化重合を行い、上述した単量体を共重合した。
重合転化率が90%に達した時点で、単量体100部あたり0.2部のヒドロキシルアミン硫酸塩を添加して重合を停止させた。続いて、加温し、減圧下で約70℃にて水蒸気蒸留して、残留単量体を回収した後、老化防止剤としてアルキル化フェノールを2部添加して、重合体の水分散液を得た。
次に、得られた重合体の水分散液400mL(全固形分:48g)を、撹拌機付きの1リットルオートクレーブに投入し、窒素ガスを10分間流して水分散液中の溶存酸素を除去した。その後、水素化反応触媒として、酢酸パラジウム50mgを、Pdに対して4倍モル当量の硝酸を添加した水180mLに溶解して、添加した。系内を水素ガスで2回置換した後、3MPa(ゲージ圧)まで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素化反応させた。
その後、内容物を常温に戻し、系内を窒素雰囲気とした後、エバポレータを用いて、固形分濃度が40%となるまで濃縮して、重合体としての水素化ニトリルゴムを得た。
そして、重合体としての水素化ニトリルゴムの固形分濃度40%の水溶液に対して、N-メチルピロリドンを添加した後に、減圧蒸留を実施して水および過剰なN-メチルピロリドンを除去し、固形分濃度8%の水素化ニトリルゴムのN-メチルピロリドン溶液を得た。
<二次電池用ペーストの調製>
上述のようにして得られた表面処理CNTを4部と、上述のようにして得られた水素化ニトリルゴムのN-メチルピロリドン溶液を0.8部(固形分相当量)と、分散媒として適量のN-メチルピロリドンとを添加し、ディスパーにて撹拌(3000rpm、60分)し、その後、直径1mmのジルコニアビーズを用いたビーズミルを使用し、周速8m/秒にて1時間混合することにより、二次電池用ペーストを製造した。なお、ペーストは、レオメーター(Anton Paar社製、「MCR302」)を使用した計測の結果、温度25℃、せん断速度0.1s-1における粘度が49,000mPa・sであるとともに、固形分濃度の値が4.8%であった。この二次電池用ペーストについて、安定性を評価した。結果を表1に示す。
<二次電池正極用スラリーの調製>
上述のようにして得られた二次電池用ペースト中に、正極活物質として層状構造を有する三元系活物質(LiNi0.6Co0.2Mn0.2O2、遷移金属に占めるニッケルの割合:60.0モル%)(体積平均粒子径:10μm)100部と、分散媒として適量のN-メチルピロリドンとを添加し、ディスパーにて撹拌し(3000rpm、20分)、二次電池正極用スラリーを調製した。なおN-メチルピロリドンの添加量は、得られる正極用スラリーの60rpmでの粘度が3000~4000mPa・sの範囲内となるように調整した。
<二次電池用正極の作製>
集電体として、厚さ20μmのアルミ箔を準備した。上述のようにして得た正極用スラリーをコンマコーターでアルミ箔の片面に乾燥後の目付量が20mg/cm2になるように塗布し、90℃で20分、120℃で20分間乾燥後、60℃で10時間加熱処理して正極原反を得た。この正極原反をロールプレスで圧延し、正極合材層(密度:3.2g/cm3)とアルミ箔とからなるシート状正極を作製した。そして、シート状正極を幅48.0mm、長さ47cmに切断して、リチウムイオン二次電池用正極とした。このリチウムイオン二次電池用正極を用いて、正極合材層の接着性を評価した。結果を表1に示す。
<二次電池用負極の作製>
負極活物質としての球状人造黒鉛(体積平均粒子径:12μm)90部とSiOx(体積平均粒子径:10μm)10部との混合物と、負極用バインダーとしてのスチレンブタジエン重合体1部と、増粘剤としてのカルボキシメチルセルロース1部と、分散媒としての適量の水とをプラネタリーミキサーにて撹拌し、二次電池負極用スラリーを調製した。
次に、集電体として、厚さ15μmの銅箔を準備した。上述のようにして得た二次電池負極用スラリーを銅箔の片面に乾燥後の塗布量が10mg/cm2になるように塗布し、60℃で20分、120℃で20分間乾燥した。その後、150℃で2時間加熱処理して、負極原反を得た。この負極原反をロールプレスで圧延し、密度が1.6g/cm3の負極合材層と、銅箔とからなるシート状負極を作製した。そして、シート状負極を幅50.0mm、長さ52cmに切断して、リチウムイオン二次電池用負極とした。
<二次電池の製造>
上述のようにして作製したリチウムイオン二次電池用正極とリチウムイオン二次電池用負極とを、電極合材層同士が向かい合うようにし、厚さ15μmのセパレータ(ポリプロピレン製の微多孔膜)を介在させて、直径20mmの芯を用いて捲回し、捲回体を得た。そして、得られた捲回体を、10mm/秒の速度で厚さ4.5mmになるまで一方向から圧縮した。なお、圧縮後の捲回体は平面視楕円形をしており、その長径と短径との比(長径/短径)は7.7であった。
また、電解液(濃度1.0MのLiPF6溶液(溶媒は、エチレンカーボネート/エチルメチルカーボネート=3/7(質量比)の混合溶媒にフルオロエチレンカーボネート5質量%を添加した混合溶液であり、添加剤としてビニレンカーボネート2体積%を添加))を準備した。
その後、圧縮後の捲回体をアルミ製ラミネートケース内に3.2gの電解液とともに収容した。そして、リチウムイオン二次電池用負極の所定の箇所にニッケルリード線を接続し、リチウムイオン二次電池用正極の所定の箇所にアルミニウムリード線を接続したのち、ケースの開口部を熱で封口し、リチウムイオン二次電池を得た。このリチウムイオン二次電池は、幅35mm、高さ60mm、厚さ5mmのパウチ形であり、電池の公称容量は700mAhであった。
得られたリチウムイオン二次電池について、内部抵抗を評価した。結果を表1に示す。
(実施例2)
表面処理CNTの調製に際し、酸塩基処理CNTを洗浄水の電気伝導度が15μs/m以下となるまで洗浄した以外は、実施例1と同様にして、表面処理CNT、重合体、二次電池用ペースト、二次電池正極用スラリー、二次電池用正極、二次電池用負極、および二次電池を作製し、各種評価を行った。結果を表1に示す。
表面処理CNTの調製に際し、酸塩基処理CNTを洗浄水の電気伝導度が15μs/m以下となるまで洗浄した以外は、実施例1と同様にして、表面処理CNT、重合体、二次電池用ペースト、二次電池正極用スラリー、二次電池用正極、二次電池用負極、および二次電池を作製し、各種評価を行った。結果を表1に示す。
(実施例3)
表面処理CNTの調製に際し、塩基処理の時間を1時間から3時間に変更した以外は、実施例1と同様にして、表面処理CNT、重合体、二次電池用ペースト、二次電池正極用スラリー、二次電池用正極、二次電池用負極、および二次電池を作製し、各種評価を行った。結果を表1に示す。
表面処理CNTの調製に際し、塩基処理の時間を1時間から3時間に変更した以外は、実施例1と同様にして、表面処理CNT、重合体、二次電池用ペースト、二次電池正極用スラリー、二次電池用正極、二次電池用負極、および二次電池を作製し、各種評価を行った。結果を表1に示す。
(実施例4)
表面処理CNTの調製に際し、原料CNTを他の多層CNT(比表面積:170m2/g)に変更し、二次電池用ペーストの調製に際し、表面処理CNTの量を4部から7部、重合体の量を0.8部から0.7部に変更した以外は、実施例1と同様にして、表面処理CNT、重合体、二次電池用ペースト、二次電池正極用スラリー、二次電池用正極、二次電池用負極、および二次電池を作製し、各種評価を行った。結果を表1に示す。
表面処理CNTの調製に際し、原料CNTを他の多層CNT(比表面積:170m2/g)に変更し、二次電池用ペーストの調製に際し、表面処理CNTの量を4部から7部、重合体の量を0.8部から0.7部に変更した以外は、実施例1と同様にして、表面処理CNT、重合体、二次電池用ペースト、二次電池正極用スラリー、二次電池用正極、二次電池用負極、および二次電池を作製し、各種評価を行った。結果を表1に示す。
(実施例5)
重合体の調製に際し、単量体として、アクリロニトリル18部、1,3-ブタジエン41部、メタクリル酸4部、およびスチレン37部を用いた以外は、実施例1と同様にして、表面処理CNT、重合体、二次電池用ペースト、二次電池正極用スラリー、二次電池用正極、二次電池用負極、および二次電池を作製し、各種評価を行った。結果を表1に示す。
重合体の調製に際し、単量体として、アクリロニトリル18部、1,3-ブタジエン41部、メタクリル酸4部、およびスチレン37部を用いた以外は、実施例1と同様にして、表面処理CNT、重合体、二次電池用ペースト、二次電池正極用スラリー、二次電池用正極、二次電池用負極、および二次電池を作製し、各種評価を行った。結果を表1に示す。
(実施例6)
重合体の調製に際し、単量体として、アクリロニトリル28部、1,3-ブタジエン44部、メタクリル酸4部、およびスチレン24部を用いた以外は、実施例1と同様にして、表面処理CNT、重合体、二次電池用ペースト、二次電池正極用スラリー、二次電池用正極、二次電池用負極、および二次電池を作製し、各種評価を行った。結果を表1に示す。
重合体の調製に際し、単量体として、アクリロニトリル28部、1,3-ブタジエン44部、メタクリル酸4部、およびスチレン24部を用いた以外は、実施例1と同様にして、表面処理CNT、重合体、二次電池用ペースト、二次電池正極用スラリー、二次電池用正極、二次電池用負極、および二次電池を作製し、各種評価を行った。結果を表1に示す。
(実施例7)
重合体の調製に際し、単量体として、アクリロニトリル40部および1,3-ブタジエン60部を用いた以外は、実施例1と同様にして、表面処理CNT、重合体、二次電池用ペースト、二次電池正極用スラリー、二次電池用正極、二次電池用負極、および二次電池を作製し、各種評価を行った。結果を表1に示す。
重合体の調製に際し、単量体として、アクリロニトリル40部および1,3-ブタジエン60部を用いた以外は、実施例1と同様にして、表面処理CNT、重合体、二次電池用ペースト、二次電池正極用スラリー、二次電池用正極、二次電池用負極、および二次電池を作製し、各種評価を行った。結果を表1に示す。
(実施例8)
重合体を調製せず、そして分散材として、以下の重合体を使用した以外は、実施例1と同様にして、表面処理CNT、二次電池用ペースト、二次電池正極用スラリー、二次電池用正極、二次電池用負極、および二次電池を作製し、各種評価を行った。結果を表1に示す。
実施例8:PVP(純正化学社製、「ポリビニルピロリドン K-14」)
重合体を調製せず、そして分散材として、以下の重合体を使用した以外は、実施例1と同様にして、表面処理CNT、二次電池用ペースト、二次電池正極用スラリー、二次電池用正極、二次電池用負極、および二次電池を作製し、各種評価を行った。結果を表1に示す。
実施例8:PVP(純正化学社製、「ポリビニルピロリドン K-14」)
(比較例1)
表面処理CNTの調製に際し、酸塩基処理CNTを洗浄水の電気伝導度が150μs/m程度となるまで洗浄した以外は、実施例1と同様にして、表面処理CNT、重合体、二次電池用ペースト、二次電池正極用スラリー、二次電池用正極、二次電池用負極、および二次電池を作製し、各種評価を行った。結果を表2に示す。
表面処理CNTの調製に際し、酸塩基処理CNTを洗浄水の電気伝導度が150μs/m程度となるまで洗浄した以外は、実施例1と同様にして、表面処理CNT、重合体、二次電池用ペースト、二次電池正極用スラリー、二次電池用正極、二次電池用負極、および二次電池を作製し、各種評価を行った。結果を表2に示す。
(比較例2)
表面処理CNTの調製に際し、酸塩基処理CNTを洗浄水の電気伝導度が350μs/m程度となるまで洗浄した以外は、実施例1と同様にして、表面処理CNT、重合体、二次電池用ペースト、二次電池正極用スラリー、二次電池用正極、二次電池用負極、および二次電池を作製し、各種評価を行った。結果を表2に示す。
表面処理CNTの調製に際し、酸塩基処理CNTを洗浄水の電気伝導度が350μs/m程度となるまで洗浄した以外は、実施例1と同様にして、表面処理CNT、重合体、二次電池用ペースト、二次電池正極用スラリー、二次電池用正極、二次電池用負極、および二次電池を作製し、各種評価を行った。結果を表2に示す。
(比較例3)
表面処理CNTの調製に際し、塩基処理の時間を1時間から30分に変更し、酸塩基処理CNTを洗浄水の電気伝導度が150μs/m程度となるまで洗浄した以外は、実施例1と同様にして、表面処理CNT、重合体、二次電池用ペースト、二次電池正極用スラリー、二次電池用正極、二次電池用負極、および二次電池を作製し、各種評価を行った。結果を表2に示す。
表面処理CNTの調製に際し、塩基処理の時間を1時間から30分に変更し、酸塩基処理CNTを洗浄水の電気伝導度が150μs/m程度となるまで洗浄した以外は、実施例1と同様にして、表面処理CNT、重合体、二次電池用ペースト、二次電池正極用スラリー、二次電池用正極、二次電池用負極、および二次電池を作製し、各種評価を行った。結果を表2に示す。
(比較例4)
表面処理CNTの調製に際し、原料CNTをさらに他の多層CNT(比表面積:100m2/g)に変更し、二次電池用ペーストの調製に際し、表面処理CNTの量を4部から15部、重合体の量を0.8部から1.5部に変更した以外は、実施例1と同様にして、表面処理CNT、重合体、二次電池用ペースト、二次電池正極用スラリー、二次電池用正極、二次電池用負極、および二次電池を作製し、各種評価を行った。結果を表2に示す。
表面処理CNTの調製に際し、原料CNTをさらに他の多層CNT(比表面積:100m2/g)に変更し、二次電池用ペーストの調製に際し、表面処理CNTの量を4部から15部、重合体の量を0.8部から1.5部に変更した以外は、実施例1と同様にして、表面処理CNT、重合体、二次電池用ペースト、二次電池正極用スラリー、二次電池用正極、二次電池用負極、および二次電池を作製し、各種評価を行った。結果を表2に示す。
(比較例5)
表面処理CNTを調製せず、表面処理CNTに代えて原料CNTを使用した以外は、実施例1と同様にして、重合体、二次電池用ペースト、二次電池正極用スラリー、二次電池用正極、二次電池用負極、および二次電池を作製し、各種評価を行った。結果を表2に示す。
表面処理CNTを調製せず、表面処理CNTに代えて原料CNTを使用した以外は、実施例1と同様にして、重合体、二次電池用ペースト、二次電池正極用スラリー、二次電池用正極、二次電池用負極、および二次電池を作製し、各種評価を行った。結果を表2に示す。
(比較例6)
表面処理CNTの調製に際し、塩基処理を行わず、酸処理CNTを、洗浄水の電気伝導度が350μs/m程度となるまで洗浄した以外は、実施例1と同様にして、表面処理CNT、重合体、二次電池用ペースト、二次電池正極用スラリー、二次電池用正極、二次電池用負極、および二次電池を作製し、各種評価を行った。結果を表2に示す。
表面処理CNTの調製に際し、塩基処理を行わず、酸処理CNTを、洗浄水の電気伝導度が350μs/m程度となるまで洗浄した以外は、実施例1と同様にして、表面処理CNT、重合体、二次電池用ペースト、二次電池正極用スラリー、二次電池用正極、二次電池用負極、および二次電池を作製し、各種評価を行った。結果を表2に示す。
なお、以下に示す表1および2中、
「AN」は、アクリロニトリル単位を示し、
「BD」は、1,3-ブタジエン単位(または1,3-ブタジエン水素化物単位)を示し、
「MAA」は、メタクリル酸単位を示し、
「ST」は、スチレン単位を示す。
「AN」は、アクリロニトリル単位を示し、
「BD」は、1,3-ブタジエン単位(または1,3-ブタジエン水素化物単位)を示し、
「MAA」は、メタクリル酸単位を示し、
「ST」は、スチレン単位を示す。
表1より、所定の性状を有するCNTを含む二次電池用ペーストを用いて正極を作製した実施例1~8では、正極合材層の接着性を向上させつつ、二次電池の内部抵抗を低減し得ることが分かる。また実施例1~8では、二次電池用ペーストが安定性に優れることも分かる。
一方、表2より、表面酸量が所定の範囲外であるCNTを含む二次電池用ペーストを用いた比較例1では、二次電池の内部抵抗が上昇し、二次電池用ペーストの安定性、および正極合材層の接着性が低下することが分かる。
また、表2より、表面酸量および表面塩基量が所定の範囲外であるCNTを含む二次電池用ペーストを用いた比較例2では、二次電池の内部抵抗が上昇し、二次電池用ペーストの安定性、および正極合材層の接着性が低下することが分かる。
そして、表2より、表面酸量、および表面塩基量に対する表面酸量の比が所定の範囲外であるCNTを含む二次電池用ペーストを用いた比較例3では、二次電池の内部抵抗が上昇し、正極合材層の接着性が低下することが分かる。
更に、表2より、比表面積が所定の値未満であるCNTを含む二次電池用ペーストを用いた比較例4では、二次電池の内部抵抗が上昇することが分かる。
加えて、表2より、表面塩基量に対する表面酸量の比が所定の範囲外であるCNTを含む二次電池用ペーストを用いた比較例5では、二次電池の内部抵抗が上昇し、正極合材層の接着性が低下することが分かる。
また、表2より、表面酸量、および表面塩基量に対する表面酸量の比が所定の範囲外であるCNTを含む二次電池用ペーストを用いた比較例6では、二次電池の内部抵抗が上昇し、二次電池用ペーストの安定性、および正極合材層の接着性が低下することが分かる。
一方、表2より、表面酸量が所定の範囲外であるCNTを含む二次電池用ペーストを用いた比較例1では、二次電池の内部抵抗が上昇し、二次電池用ペーストの安定性、および正極合材層の接着性が低下することが分かる。
また、表2より、表面酸量および表面塩基量が所定の範囲外であるCNTを含む二次電池用ペーストを用いた比較例2では、二次電池の内部抵抗が上昇し、二次電池用ペーストの安定性、および正極合材層の接着性が低下することが分かる。
そして、表2より、表面酸量、および表面塩基量に対する表面酸量の比が所定の範囲外であるCNTを含む二次電池用ペーストを用いた比較例3では、二次電池の内部抵抗が上昇し、正極合材層の接着性が低下することが分かる。
更に、表2より、比表面積が所定の値未満であるCNTを含む二次電池用ペーストを用いた比較例4では、二次電池の内部抵抗が上昇することが分かる。
加えて、表2より、表面塩基量に対する表面酸量の比が所定の範囲外であるCNTを含む二次電池用ペーストを用いた比較例5では、二次電池の内部抵抗が上昇し、正極合材層の接着性が低下することが分かる。
また、表2より、表面酸量、および表面塩基量に対する表面酸量の比が所定の範囲外であるCNTを含む二次電池用ペーストを用いた比較例6では、二次電池の内部抵抗が上昇し、二次電池用ペーストの安定性、および正極合材層の接着性が低下することが分かる。
本発明によれば、電極合材層に優れた接着性を発揮させると共に、二次電池の内部抵抗を低減し得る二次電池用ペーストおよびその製造方法を提供することができる。
また、本発明によれば、正極合材層に優れた接着性を発揮させると共に、二次電池の内部抵抗を低減し得る正極を作製可能な二次電池正極用スラリーを提供することができる。
そして、本発明によれば、二次電池の内部抵抗を低減し得る二次電池用正極を提供することができる。
更に、本発明によれば、内部抵抗が低減された二次電池を提供することができる。
また、本発明によれば、正極合材層に優れた接着性を発揮させると共に、二次電池の内部抵抗を低減し得る正極を作製可能な二次電池正極用スラリーを提供することができる。
そして、本発明によれば、二次電池の内部抵抗を低減し得る二次電池用正極を提供することができる。
更に、本発明によれば、内部抵抗が低減された二次電池を提供することができる。
Claims (10)
- 導電助材、重合体、および分散媒を含む二次電池用ペーストであって、
前記導電助材が、表面酸量が0.01mmol/g以上0.15mmol/g以下であり、表面塩基量が0.005mmol/g以上0.500mmol/g以下であり、前記表面塩基量に対する前記表面酸量の比が1.3以上3.0以下であり、そして比表面積が150m2/g以上であるカーボンナノチューブを含む、二次電池用ペースト。 - 前記重合体が、ニトリル基含有単量体単位を10質量%以上40質量%以下の割合で含み、共役ジエン単量体単位を15質量%以上55質量%以下の割合で含む、請求項1に記載の二次電池用ペースト。
- 前記重合体が親水性基を有する、請求項1または2に記載の二次電池用ペースト。
- 前記重合体のヨウ素価が3mg/100mg以上50mg/100mg以下である、請求項1~3の何れかに記載の二次電池用ペースト。
- 前記導電助材の含有割合が2質量%以上20質量%以下であり、前記重合体の含有割合が0.1質量%以上6質量%以下である、請求項1~4の何れかに記載の二次電池用ペースト。
- 正極活物質と、請求項1~5の何れかに記載の二次電池用ペーストとを含む、二次電池正極用スラリー。
- 前記正極活物質中の遷移金属に占めるニッケルの割合が60.0モル%以上100.0モル%以下である、請求項6に記載の二次電池正極用スラリー。
- 請求項6または7に記載の二次電池正極用スラリーを用いて形成される正極合材層を備える、二次電池用正極。
- 請求項8に記載の二次電池用正極を備える、二次電池。
- 請求項1~5の何れかに記載の二次電池用ペーストを製造する方法であって、
原料カーボンナノチューブに酸処理を施す工程と、
前記酸処理が施された原料カーボンナノチューブに塩基処理を施す工程と、
前記塩基処理が施された原料カーボンナノチューブを洗浄して、前記カーボンナノチューブを得る工程と、
前記カーボンナノチューブを含む導電助材を、前記重合体および前記分散媒と混合する工程と、
を含む、二次電池用ペーストの製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021553584A JPWO2021085344A1 (ja) | 2019-10-31 | 2020-10-23 | |
CN202080073621.6A CN114600265B (zh) | 2019-10-31 | 2020-10-23 | 二次电池用糊、二次电池正极用浆料、二次电池用正极、二次电池、以及二次电池用糊的制造方法 |
EP20882157.9A EP4053209A4 (en) | 2019-10-31 | 2020-10-23 | PASTE FOR RECHARGEABLE BATTERIES, CONCENTRATED SUSPENSION FOR POSITIVE ELECTRODES OF RECHARGEABLE BATTERY, POSITIVE ELECTRODE FOR RECHARGEABLE BATTERIES, RECHARGEABLE BATTERY AND PROCESS FOR PRODUCING PASTE FOR RECHARGEABLE BATTERIES |
US17/755,107 US20220367875A1 (en) | 2019-10-31 | 2020-10-23 | Paste for secondary battery, slurry for secondary battery positive electrode, positive electrode for secondary battery, secondary battery, and method of producing paste for secondary battery |
KR1020227013378A KR20220093112A (ko) | 2019-10-31 | 2020-10-23 | 이차 전지용 페이스트, 이차 전지 정극용 슬러리, 이차 전지용 정극, 이차 전지, 및 이차 전지용 페이스트의 제조 방법 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019199336 | 2019-10-31 | ||
JP2019-199336 | 2019-10-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021085344A1 true WO2021085344A1 (ja) | 2021-05-06 |
Family
ID=75715139
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/040000 WO2021085344A1 (ja) | 2019-10-31 | 2020-10-23 | 二次電池用ペースト、二次電池正極用スラリー、二次電池用正極、二次電池、および二次電池用ペーストの製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20220367875A1 (ja) |
EP (1) | EP4053209A4 (ja) |
JP (1) | JPWO2021085344A1 (ja) |
KR (1) | KR20220093112A (ja) |
CN (1) | CN114600265B (ja) |
WO (1) | WO2021085344A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023053926A1 (ja) * | 2021-09-30 | 2023-04-06 | 日本ゼオン株式会社 | 非水系二次電池用導電材ペースト、非水系二次電池負極用スラリー、非水系二次電池用負極及び非水系二次電池 |
WO2023074356A1 (ja) * | 2021-10-29 | 2023-05-04 | 日本ゼオン株式会社 | 非水系二次電池負極用バインダー組成物、非水系二次電池負極用スラリー組成物、非水系二次電池用負極、及び非水系二次電池 |
JP7453487B1 (ja) | 2022-09-19 | 2024-03-19 | 関西ペイント株式会社 | 導電性顔料ペースト、合材ペースト、及びリチウムイオン電池用電極 |
WO2024063003A1 (ja) * | 2022-09-19 | 2024-03-28 | 関西ペイント株式会社 | 導電性顔料ペースト、合材ペースト、及びリチウムイオン電池用電極 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021253302A1 (en) * | 2020-06-17 | 2021-12-23 | Guangdong Haozhi Technology Co. Limited | Conductive composition for secondary battery |
KR102625654B1 (ko) * | 2021-03-12 | 2024-01-16 | 주식회사 엘지에너지솔루션 | 전극 및 이의 제조방법 |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0547387A (ja) * | 1991-08-20 | 1993-02-26 | Sanyo Electric Co Ltd | 非水電解質電池 |
JP2007297255A (ja) * | 2006-05-03 | 2007-11-15 | The Inctec Inc | カーボンナノチューブを含有する分散液 |
JP2012204303A (ja) | 2011-03-28 | 2012-10-22 | Nippon Zeon Co Ltd | 二次電池用電極、二次電池電極用バインダー、製造方法及び二次電池 |
WO2012165120A1 (ja) | 2011-05-27 | 2012-12-06 | 旭化成ケミカルズ株式会社 | 水添共役ジエン系共重合体の製造方法 |
JP2013008485A (ja) | 2011-06-23 | 2013-01-10 | Nippon Zeon Co Ltd | 二次電池用正極及び二次電池 |
WO2013080989A1 (ja) | 2011-11-28 | 2013-06-06 | 日本ゼオン株式会社 | 二次電池正極用バインダー組成物、二次電池正極用スラリー組成物、二次電池正極及び二次電池 |
WO2014156892A1 (ja) * | 2013-03-25 | 2014-10-02 | Jsr株式会社 | 電極活物質、電極及び蓄電デバイス |
JP2016527171A (ja) * | 2013-07-24 | 2016-09-08 | コベストロ、ドイチュラント、アクチエンゲゼルシャフトCovestro Deutschland Ag | カーボンナノチューブを洗浄するための方法並びにカーボンナノチューブ基材及びその使用 |
WO2018012504A1 (ja) * | 2016-07-15 | 2018-01-18 | 株式会社キャタラー | 蓄電デバイス及びそれに使用する炭素材料 |
JP2018041619A (ja) * | 2016-09-07 | 2018-03-15 | トヨタ自動車株式会社 | 電極の製造方法 |
JP2018160418A (ja) * | 2017-03-23 | 2018-10-11 | 株式会社東芝 | 電極、二次電池、電池パック及び車両 |
WO2019181869A1 (ja) * | 2018-03-23 | 2019-09-26 | 日本ゼオン株式会社 | カーボンナノチューブ分散液、二次電池電極用スラリー、二次電池電極用スラリーの製造方法、二次電池用電極および二次電池 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4241070B2 (ja) * | 2002-02-12 | 2009-03-18 | 東レ株式会社 | 樹脂組成物およびその製造方法 |
CN101425576B (zh) * | 2008-12-02 | 2010-07-07 | 黄德欢 | 锂离子电池的高导电性正极材料的制备方法 |
JP2011076797A (ja) * | 2009-09-29 | 2011-04-14 | Sanyo Electric Co Ltd | 非水電解質二次電池 |
JP5594247B2 (ja) * | 2011-07-25 | 2014-09-24 | トヨタ自動車株式会社 | 非水電解液リチウム空気二次電池の正極およびその製造方法 |
JP5970915B2 (ja) * | 2012-03-30 | 2016-08-17 | 凸版印刷株式会社 | 導電性複合体 |
EP2962990A4 (en) * | 2013-02-28 | 2016-09-21 | Toray Industries | CARBON NANOTUBE AGGREGATE AND MANUFACTURING METHOD THEREFOR |
CN105206839B (zh) * | 2014-06-30 | 2019-04-19 | 比亚迪股份有限公司 | 一种改性碳纳米管及其制备方法、锂离子电池正极及其制备方法和锂离子电池 |
HUE054156T2 (hu) | 2014-12-26 | 2021-08-30 | Zeon Corp | Kötõanyag készítmény nem-vizes szekunder cella pozitív elektródjához, készítmény nem-vizes szekunder cella pozitív elektródjához, nem-vizes szekunder cella pozitív elektród és nem-vizes szekunder cella, és eljárás nem-vizes szekunder cella pozitív elektródjához való készítmény, nem-vizes szekunder cella pozitív elektród és nem-vizes szekunder cella elõállítására |
US10784502B2 (en) * | 2015-06-08 | 2020-09-22 | Zeon Corporation | Slurry composition for secondary battery negative electrode, negative electrode for secondary battery, and secondary battery |
KR20170135564A (ko) * | 2016-05-31 | 2017-12-08 | 서울대학교산학협력단 | 표면이 부분적으로 개방된 탄소나노튜브의 제조방법 |
-
2020
- 2020-10-23 CN CN202080073621.6A patent/CN114600265B/zh active Active
- 2020-10-23 US US17/755,107 patent/US20220367875A1/en active Pending
- 2020-10-23 EP EP20882157.9A patent/EP4053209A4/en active Pending
- 2020-10-23 WO PCT/JP2020/040000 patent/WO2021085344A1/ja unknown
- 2020-10-23 JP JP2021553584A patent/JPWO2021085344A1/ja active Pending
- 2020-10-23 KR KR1020227013378A patent/KR20220093112A/ko unknown
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0547387A (ja) * | 1991-08-20 | 1993-02-26 | Sanyo Electric Co Ltd | 非水電解質電池 |
JP2007297255A (ja) * | 2006-05-03 | 2007-11-15 | The Inctec Inc | カーボンナノチューブを含有する分散液 |
JP2012204303A (ja) | 2011-03-28 | 2012-10-22 | Nippon Zeon Co Ltd | 二次電池用電極、二次電池電極用バインダー、製造方法及び二次電池 |
WO2012165120A1 (ja) | 2011-05-27 | 2012-12-06 | 旭化成ケミカルズ株式会社 | 水添共役ジエン系共重合体の製造方法 |
JP2013008485A (ja) | 2011-06-23 | 2013-01-10 | Nippon Zeon Co Ltd | 二次電池用正極及び二次電池 |
WO2013080989A1 (ja) | 2011-11-28 | 2013-06-06 | 日本ゼオン株式会社 | 二次電池正極用バインダー組成物、二次電池正極用スラリー組成物、二次電池正極及び二次電池 |
WO2014156892A1 (ja) * | 2013-03-25 | 2014-10-02 | Jsr株式会社 | 電極活物質、電極及び蓄電デバイス |
JP2016527171A (ja) * | 2013-07-24 | 2016-09-08 | コベストロ、ドイチュラント、アクチエンゲゼルシャフトCovestro Deutschland Ag | カーボンナノチューブを洗浄するための方法並びにカーボンナノチューブ基材及びその使用 |
WO2018012504A1 (ja) * | 2016-07-15 | 2018-01-18 | 株式会社キャタラー | 蓄電デバイス及びそれに使用する炭素材料 |
JP2018041619A (ja) * | 2016-09-07 | 2018-03-15 | トヨタ自動車株式会社 | 電極の製造方法 |
JP2018160418A (ja) * | 2017-03-23 | 2018-10-11 | 株式会社東芝 | 電極、二次電池、電池パック及び車両 |
WO2019181869A1 (ja) * | 2018-03-23 | 2019-09-26 | 日本ゼオン株式会社 | カーボンナノチューブ分散液、二次電池電極用スラリー、二次電池電極用スラリーの製造方法、二次電池用電極および二次電池 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023053926A1 (ja) * | 2021-09-30 | 2023-04-06 | 日本ゼオン株式会社 | 非水系二次電池用導電材ペースト、非水系二次電池負極用スラリー、非水系二次電池用負極及び非水系二次電池 |
KR20240066249A (ko) | 2021-09-30 | 2024-05-14 | 니폰 제온 가부시키가이샤 | 비수계 이차 전지용 도전재 페이스트, 비수계 이차 전지 부극용 슬러리, 비수계 이차 전지용 부극 및 비수계 이차 전지 |
WO2023074356A1 (ja) * | 2021-10-29 | 2023-05-04 | 日本ゼオン株式会社 | 非水系二次電池負極用バインダー組成物、非水系二次電池負極用スラリー組成物、非水系二次電池用負極、及び非水系二次電池 |
JP7453487B1 (ja) | 2022-09-19 | 2024-03-19 | 関西ペイント株式会社 | 導電性顔料ペースト、合材ペースト、及びリチウムイオン電池用電極 |
WO2024063003A1 (ja) * | 2022-09-19 | 2024-03-28 | 関西ペイント株式会社 | 導電性顔料ペースト、合材ペースト、及びリチウムイオン電池用電極 |
Also Published As
Publication number | Publication date |
---|---|
US20220367875A1 (en) | 2022-11-17 |
CN114600265B (zh) | 2024-05-31 |
CN114600265A (zh) | 2022-06-07 |
KR20220093112A (ko) | 2022-07-05 |
JPWO2021085344A1 (ja) | 2021-05-06 |
EP4053209A4 (en) | 2024-11-13 |
EP4053209A1 (en) | 2022-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110383547B (zh) | 正极用粘结剂组合物、正极用组合物、正极及二次电池 | |
JP6638658B2 (ja) | 非水系二次電池正極用バインダー組成物、非水系二次電池正極用組成物、非水系二次電池用正極および非水系二次電池、並びに、非水系二次電池正極用組成物、非水系二次電池用正極および非水系二次電池の製造方法 | |
WO2021085344A1 (ja) | 二次電池用ペースト、二次電池正極用スラリー、二次電池用正極、二次電池、および二次電池用ペーストの製造方法 | |
JP6589857B2 (ja) | 電解液を備えるリチウムイオン二次電池用正極の製造方法 | |
JP2020074311A (ja) | 電気化学素子用導電材分散液、電気化学素子正極用スラリー、電気化学素子用正極および電気化学素子 | |
JP6702302B2 (ja) | 二次電池正極用バインダー組成物、二次電池正極用スラリー組成物、二次電池用正極および二次電池 | |
WO2011078263A1 (ja) | 二次電池用電極及び二次電池 | |
WO2021085343A1 (ja) | 二次電池用ペースト、二次電池正極用スラリー、二次電池用正極、二次電池、および二次電池用ペーストの製造方法 | |
WO2021200126A1 (ja) | 導電材分散液、二次電池正極用スラリー、二次電池用正極及び二次電池 | |
JP6870772B1 (ja) | 電気化学素子用バインダー組成物、電気化学素子用導電材分散液、電気化学素子電極用スラリー、電気化学素子用電極及び電気化学素子 | |
JP6927393B1 (ja) | 電気化学素子用バインダー組成物、電気化学素子用導電材分散液、電気化学素子電極用スラリー組成物、電気化学素子用電極および電気化学素子 | |
WO2022113859A1 (ja) | 電気化学素子用ペースト、電気化学素子電極用スラリー、電気化学素子用電極及び電気化学素子 | |
WO2024004724A1 (ja) | 電気化学素子用バインダー組成物、電気化学素子用導電材分散液、電気化学素子電極用スラリー、電気化学素子用電極及び電気化学素子 | |
WO2023276788A1 (ja) | 電気化学素子用バインダー組成物、電気化学素子用導電材分散液、電気化学素子電極用スラリー、電気化学素子用電極及び電気化学素子 | |
WO2020241384A1 (ja) | 二次電池正極用スラリー組成物の製造方法、二次電池用正極の製造方法、及び、二次電池の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20882157 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021553584 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020882157 Country of ref document: EP Effective date: 20220531 |