[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021084848A1 - 高周波モジュール及び通信装置 - Google Patents

高周波モジュール及び通信装置 Download PDF

Info

Publication number
WO2021084848A1
WO2021084848A1 PCT/JP2020/031152 JP2020031152W WO2021084848A1 WO 2021084848 A1 WO2021084848 A1 WO 2021084848A1 JP 2020031152 W JP2020031152 W JP 2020031152W WO 2021084848 A1 WO2021084848 A1 WO 2021084848A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring board
high frequency
power amplifier
frequency module
inductor
Prior art date
Application number
PCT/JP2020/031152
Other languages
English (en)
French (fr)
Inventor
大貴 庄内
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN202080073645.1A priority Critical patent/CN114600371A/zh
Publication of WO2021084848A1 publication Critical patent/WO2021084848A1/ja
Priority to US17/713,230 priority patent/US20220278703A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/46Networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/18Input circuits, e.g. for coupling to an antenna or a transmission line
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/38Impedance-matching networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/42Networks for transforming balanced signals into unbalanced signals and vice versa, e.g. baluns
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
    • H04B1/0057Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band using diplexing or multiplexing filters for selecting the desired band
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0458Arrangements for matching and coupling between power amplifier and antenna or between amplifying stages
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers

Definitions

  • the present invention generally relates to a high frequency module and a communication device, and more particularly to a high frequency module including a power amplifier and a communication device including the high frequency module.
  • a high-frequency module a wiring board, a semiconductor chip mounted (mounted) on the upper surface of the wiring board and including a power amplifier circuit, an inductance element mounted (mounted) on the upper surface of the wiring board, and formed on the lower surface of the wiring board.
  • a power amplification module including a plurality of external connection terminals is known (see, for example, Patent Document 1).
  • the power amplification module is equipped with an output matching circuit connected to the power amplification circuit.
  • the output matching circuit includes the above-mentioned inductor element.
  • An object of the present invention is to provide a high frequency module and a communication device capable of improving the Q value of an inductor portion included in an output matching circuit connected to a power amplifier.
  • the high frequency module includes a first wiring board, a second wiring board, a power amplifier, an output matching circuit, and an external connection terminal.
  • the first wiring board has a first main surface and a second main surface facing each other.
  • the second wiring board has a third main surface and a fourth main surface facing each other.
  • the second wiring board is separated from the first wiring board in the thickness direction of the first wiring board.
  • the power amplifier has an output pad electrode.
  • the output matching circuit includes a plurality of inductor portions and is connected to the output pad electrode of the power amplifier.
  • the second main surface of the first wiring board and the third main surface of the second wiring board face each other.
  • the external connection terminal is arranged on the fourth main surface of the second wiring board.
  • the power amplifier is arranged on the first main surface of the first wiring board.
  • the output matching circuit at least a part of the first inductor portion, which is the inductor portion closest to the output pad electrode among the plurality of inductor portions, is arranged on the first main surface of the first wiring board. There is.
  • the communication device includes a signal processing circuit and the high frequency module.
  • the signal processing circuit outputs a transmission signal.
  • the power amplifier of the high frequency module amplifies and outputs the transmission signal from the signal processing circuit.
  • the high-frequency module and communication device can improve the Q value of the inductor portion included in the output matching circuit connected to the power amplifier.
  • FIG. 1A is a cross-sectional view of the high frequency module according to the first embodiment.
  • FIG. 1B is an enlarged view of a main part of the high frequency module of the same.
  • FIG. 2 is a plan view of a main part of the high frequency module of the same.
  • FIG. 3 is a circuit configuration diagram of a communication device including the same high frequency module.
  • FIG. 4 is a circuit diagram of the output matching circuit of the high frequency module of the same.
  • FIG. 5 is a circuit diagram of another example of the output matching circuit of the high frequency module of the same.
  • FIG. 6 is a cross-sectional view of the high frequency module according to the first modification of the first embodiment.
  • FIG. 7 is a cross-sectional view of the high frequency module according to the second modification of the first embodiment.
  • FIG. 8 is a cross-sectional view of the high frequency module according to the third modification of the first embodiment.
  • FIG. 9 is a cross-sectional view of the high frequency module according to the fourth modification of the first embodiment.
  • FIG. 10A is a cross-sectional view of the high frequency module according to the second embodiment.
  • FIG. 10B is an enlarged view of a main part of the high frequency module of the same.
  • FIG. 11 is a partially cutaway plan view of the high frequency module of the same.
  • FIG. 12 is a cross-sectional view of the high frequency module of the above, which is partially broken.
  • FIG. 13 is a circuit configuration diagram of a communication device including the same high frequency module.
  • FIG. 14 is a main circuit diagram of the high frequency module of the same.
  • the high frequency module 1 is used, for example, in the communication device 300.
  • the communication device 300 is, for example, a mobile phone (for example, a smartphone), but is not limited to this, and may be, for example, a wearable terminal (for example, a smart watch) or the like.
  • the high frequency module 1 is, for example, a module capable of supporting 4G (4th generation mobile communication) standard and 5G (5th generation mobile communication) standard.
  • the 4G standard is, for example, a 3GPP LTE (Long Term Evolution) standard.
  • the 5G standard is, for example, 5G NR (New Radio).
  • the high frequency module 1 is a module capable of supporting carrier aggregation and dual connectivity.
  • the high frequency module 1 is configured so that, for example, the transmission signal input from the signal processing circuit 301 can be amplified and output to the antenna 310. Further, the high frequency module 1 is configured so that the received signal input from the antenna 310 can be amplified and output to the signal processing circuit 301.
  • the signal processing circuit 301 is not a component of the high frequency module 1, but a component of the communication device 300 including the high frequency module 1.
  • the high frequency module 1 according to the first embodiment is controlled by, for example, the signal processing circuit 301 included in the communication device 300.
  • the communication device 300 includes a high frequency module 1 and a signal processing circuit 301.
  • the communication device 300 further includes an antenna 310.
  • the communication device 300 further includes a circuit board 320 (see FIG. 1A) on which the high frequency module 1 is mounted.
  • the circuit board 320 is, for example, a printed wiring board.
  • the circuit board 320 has a ground electrode to which a ground potential is applied.
  • the signal processing circuit 301 includes, for example, an RF signal processing circuit 302 and a baseband signal processing circuit 303.
  • the RF signal processing circuit 302 is, for example, an RFIC (Radio Frequency Integrated Circuit), and performs signal processing on a high frequency signal.
  • the RF signal processing circuit 302 performs signal processing such as up-conversion on the high-frequency signal (transmission signal) output from the baseband signal processing circuit 303, and outputs the high-frequency signal after the signal processing. Further, the RF signal processing circuit 302 performs signal processing such as down-conversion on the high frequency signal (received signal) output from the high frequency module 1, and uses the processed high frequency signal as a base band signal processing circuit. Output to 303.
  • the baseband signal processing circuit 303 is, for example, a BBIC (Baseband Integrated Circuit).
  • the baseband signal processing circuit 303 generates an I-phase signal and a Q-phase signal from the baseband signal.
  • the baseband signal is, for example, an audio signal, an image signal, or the like input from the outside.
  • the baseband signal processing circuit 303 performs IQ modulation processing by synthesizing an I-phase signal and a Q-phase signal, and outputs a transmission signal. At this time, the transmission signal is generated as a modulated signal (IQ signal) in which a carrier signal having a predetermined frequency is amplitude-modulated with a period longer than the period of the carrier signal.
  • IQ signal modulated signal
  • the received signal processed by the baseband signal processing circuit 303 is used, for example, for displaying an image as an image signal or for a telephone call as an audio signal.
  • the high frequency module 1 transmits a high frequency signal (received signal, transmitted signal) between the antenna 310 and the RF signal processing circuit 302 of the signal processing circuit 301.
  • the high frequency module 1 includes two power amplifiers 11A and 11B and two output matching circuits 13A and 13B. Further, the high frequency module 1 further includes two low noise amplifiers 21A and 21B. Further, the high frequency module 1 includes two transmission filters 12A and 12B and two reception filters 22A and 22B. Further, the high frequency module 1 further includes one transmission / reception filter 32C. Further, the high frequency module 1 includes a switch 4 (hereinafter, also referred to as a first switch 4), a switch 5 (hereinafter, also referred to as a second switch 5), a switch 6 (hereinafter, also referred to as a third switch 6), and a switch. 7 (hereinafter, also referred to as a fourth switch 7) is further provided. Further, the high frequency module 1 further includes a diplexer 3. Further, the high frequency module 1 further includes two input matching circuits 23A and 23B and three matching circuits 14A, 14B and 14C.
  • the high frequency module 1 is provided with a plurality of external connection terminals 80.
  • the plurality of external connection terminals 80 include an antenna terminal 81, two signal input terminals 82A and 82B, two signal output terminals 83A and 83B, and a plurality of ground terminals 85 (see FIG. 1A).
  • the plurality of ground terminals 85 are terminals that are electrically connected to the ground electrode of the above-mentioned circuit board 320 included in the communication device 300 to give a ground potential.
  • the power amplifier 11A is provided in the signal path Tx11 connected to the signal input terminal 82A.
  • the power amplifier 11A amplifies and outputs, for example, a transmission signal from the signal processing circuit 301. More specifically, the power amplifier 11A amplifies and outputs a transmission signal in the first predetermined frequency band input from the signal processing circuit 301 via the signal input terminal 82A.
  • the first predetermined frequency band includes, for example, a first communication band and a second communication band.
  • the first communication band corresponds to the transmission signal passing through the transmission filter 12A.
  • the second communication band corresponds to the transmission signal passing through the transmission filter 12B.
  • the power amplifier 11B is provided in the signal path Tx12 connected to the signal input terminal 82B.
  • the power amplifier 11B amplifies and outputs the transmission signal from the signal processing circuit 301, for example. More specifically, the power amplifier 11B amplifies and outputs a transmission signal in the second predetermined frequency band input from the signal processing circuit 301 via the signal input terminal 82B.
  • the second predetermined frequency band includes, for example, a third communication band.
  • the third communication band corresponds to the transmission signal passing through the transmission / reception filter 32C.
  • the power amplifier 11A has an input terminal (input pad electrode 111A shown in FIG. 1B) and an output terminal (output pad electrode 112A shown in FIG. 1B).
  • the input terminal of the power amplifier 11A is connected to the signal input terminal 82A. Therefore, the input terminal of the power amplifier 11A is connected to the signal processing circuit 301 via the signal input terminal 82A.
  • the signal input terminal 82A is a terminal for inputting a high frequency signal (transmission signal) from an external circuit (for example, a signal processing circuit 301) to the high frequency module 1.
  • the output terminal of the power amplifier 11A is connected to the common terminal 50 of the second switch 5 via the output matching circuit 13A.
  • the high frequency module 1 further includes a power supply wiring PS1 (see FIG.
  • the power supply wiring PS1 includes an inductor portion L20 having a first end and a second end, and is connected to an output terminal of the power amplifier 11A.
  • the first end of the inductor portion L20 is connected to the output terminal of the power amplifier 11A.
  • the second end of the inductor portion L20 is connected to a power supply terminal (one of a plurality of external connection terminals 80) and the first end of the capacitor C20 having the first end and the second end. ..
  • the second end of capacitor C20 is connected to ground.
  • the power amplifier 11B has an input terminal (input pad electrode) and an output terminal (output pad electrode).
  • the input terminal of the power amplifier 11B is connected to the signal input terminal 82B. Therefore, the input terminal of the power amplifier 11B is connected to the signal processing circuit 301 via the signal input terminal 82B.
  • the signal input terminal 82B is a terminal for inputting a high frequency signal (transmission signal) from an external circuit (for example, a signal processing circuit 301) to the high frequency module 1.
  • the output terminal of the power amplifier 11B is connected to the selection terminal 71 of the fourth switch 7 via the output matching circuit 13B.
  • the high frequency module 1 further includes power supply wiring for supplying a power supply voltage from an external circuit (for example, a signal processing circuit 301) to the power amplifier 11B.
  • the high frequency module 1 may include a controller that controls the power amplifiers 11A, 11B, and the like.
  • the controller is connected to the signal processing circuit 301 via, for example, a plurality of (for example, four) control terminals.
  • the plurality of control terminals are terminals for inputting a control signal from an external circuit (for example, a signal processing circuit 301) to the controller.
  • the controller controls the power amplifiers 11A and 11B based on the control signals acquired from the plurality of control terminals.
  • the plurality of control terminals correspond to, for example, the MIPI (Mobile Industry Processor Interface) standard.
  • the controller has a plurality of terminals connected to a plurality of control terminals as an input unit into which a control signal is input. Further, the controller is connected to the power amplifiers 11A and 11B, but is also connected to the first switch 4 and the second switch 5, and also controls the first switch 4 and the second switch 5 based on the above-mentioned control signal. To do.
  • the output matching circuit 13A is provided between the output terminal of the power amplifier 11A and the common terminal 50 of the second switch 5 in the signal path Tx11.
  • the output matching circuit 13A is a circuit for impedance matching between the power amplifier 11A and the transmission filters 12A and 12B.
  • the output matching circuit 13A includes, for example, a plurality of (two in the illustrated example) inductor portions L1 and L2 and a plurality of (two in the illustrated example) capacitors C1 and C2.
  • Each of the two inductor portions L1 and L2 has a first end and a second end.
  • Each of the two capacitors C1 and C2 has a first end and a second end.
  • the first end of the inductor portion L1 is connected to the output terminal of the power amplifier 11A, and the second end of the inductor portion L1 is connected to the first end of each of the capacitors C1 and C2.
  • the second end of capacitor C1 is connected to ground.
  • the second end of the capacitor C2 is connected to the first end of the inductor portion L2 and the common terminal 50 of the second switch 5.
  • the second end of the inductor portion L2 is connected to the ground.
  • the inductor portion L2 is connected in series to the inductor portion L1, the second end of the inductor portion L1 is connected to the ground via the capacitor C1, and the inductor portion L2 is connected to the ground. The two ends may be connected to the ground via the capacitor C2.
  • the output matching circuit 13B is provided between the output terminal of the power amplifier 11B and the selection terminal 71 of the fourth switch 7 in the signal path Tx12.
  • the output matching circuit 13B is a circuit for impedance matching between the power amplifier 11B and the transmission / reception filter 32C.
  • the output matching circuit 13B includes, for example, a plurality of inductor portions and a plurality of capacitors.
  • the circuit configuration of the output matching circuit 13B is the same as that of the output matching circuit 13A, but is not limited to this, and may be different.
  • the low noise amplifier 21A has an input terminal and an output terminal.
  • the low noise amplifier 21A is provided in the signal path Rx11 connected to the signal output terminal 83A.
  • the low noise amplifier 21A amplifies the reception signal of the first predetermined frequency band input to the input terminal and outputs it from the output terminal.
  • the input terminal of the low noise amplifier 21A is connected to the common terminal 60 of the third switch 6.
  • the high frequency module 1 further includes an input matching circuit 23A provided between the input terminal of the low noise amplifier 21 and the common terminal 60 of the third switch 6.
  • the output terminal of the low noise amplifier 21A is connected to the signal output terminal 83A.
  • the output terminal of the low noise amplifier 21A is connected to the signal processing circuit 301 via, for example, the signal output terminal 83A.
  • the signal output terminal 83A is a terminal for outputting a high frequency signal (received signal) from the low noise amplifier 21A to an external circuit (for example, a signal processing circuit 301).
  • the low noise amplifier 21B has an input terminal and an output terminal.
  • the low noise amplifier 21B is provided in the signal path Rx12 connected to the signal output terminal 83B.
  • the low noise amplifier 21B amplifies the reception signal of the second predetermined frequency band input to the input terminal and outputs it from the output terminal.
  • the input terminal of the low noise amplifier 21B is connected to the selection terminal 72 of the two selection terminals 71 and 72 of the fourth switch 7.
  • the high frequency module 1 further includes an input matching circuit 23B provided between the input terminal of the low noise amplifier 21B and the selection terminal 72 of the fourth switch 7.
  • the output terminal of the low noise amplifier 21B is connected to the signal output terminal 83B.
  • the output terminal of the low noise amplifier 21B is connected to the signal processing circuit 301 via, for example, the signal output terminal 83B.
  • the signal output terminal 83B is a terminal for outputting a high frequency signal (received signal) from the low noise amplifier 21B to an external circuit (for example, a signal processing circuit 301).
  • the transmission filter 12A is, for example, a filter whose pass band is the transmission band of the first communication band.
  • the transmission filter 12B is, for example, a filter whose pass band is the transmission band of the second communication band.
  • the transmission / reception filter 32C is, for example, a filter having a transmission band and a reception band of the third communication band as a pass band.
  • the reception filter 22A is, for example, a filter having a reception band of the first communication band as a pass band.
  • the reception filter 22B is, for example, a filter having a reception band of the second communication band as a pass band.
  • the first switch 4 has a common terminal 40 and a plurality of (here, three) selection terminals 41 to 43.
  • the first switch 4 is an antenna switch connected to the antenna terminal 81.
  • the common terminal 40 is connected to the antenna terminal 81. More specifically, the common terminal 40 is connected to the antenna terminal 81 via the first filter 30 of the diplexer 3 having the first filter 30 and the second filter 31.
  • An antenna 310 is connected to the antenna terminal 81.
  • the selection terminal 41 is connected to the connection point between the output terminal of the transmission filter 12A and the input terminal of the reception filter 22A via the matching circuit 14A.
  • the selection terminal 42 is connected to the connection point between the output terminal of the transmission filter 12B and the input terminal of the reception filter 22B via the matching circuit 14B.
  • the selection terminal 43 is connected to the transmission / reception filter 32C via the matching circuit 14C.
  • the first switch 4 is, for example, a switch capable of connecting at least one or more of a plurality of (three in this case) selection terminals 41 to 43 to the common terminal 40.
  • the first switch 4 is, for example, a switch capable of one-to-one and one-to-many connections.
  • the first switch 4 is connected to a transmission circuit including a power amplifier 11A, an output matching circuit 13A, a second switch 5, a transmission filter 12A, and a matching circuit 14A. Further, the first switch 4 is connected to a transmission circuit including a power amplifier 11A, an output matching circuit 13A, a second switch 5, and a transmission filter 12B. Further, the first switch 4 is connected to a transmission circuit including a power amplifier 11B, an output matching circuit 13B, a fourth switch 7, a transmission / reception filter 32C, and a matching circuit 14C. Further, the first switch 4 is connected to a receiving circuit including a matching circuit 14A, a receiving filter 22A, a second switch 5, an input matching circuit 23A, and a low noise amplifier 21A.
  • the first switch 4 is connected to a receiving circuit including a matching circuit 14B, a receiving filter 22B, a second switch 5, an input matching circuit 23A, and a low noise amplifier 21A. Further, the first switch 4 is connected to a receiving circuit including a matching circuit 14C, a transmission / reception filter 32C, a fourth switch 7, an input matching circuit 23B, and a low noise amplifier 21B.
  • the first switch 4 is controlled by, for example, a controller.
  • the first switch 4 switches the connection state between the common terminal 40 and the plurality of selection terminals 41 to 43 according to, for example, a control signal from the controller.
  • the first switch 4 is, for example, a switch IC (Integrated Circuit).
  • the second switch 5 has a common terminal 50 and a plurality of (here, two) selection terminals 51 to 52.
  • the common terminal 50 is connected to the output terminal of the power amplifier 11A via the output matching circuit 13A.
  • the selection terminal 51 is connected to the input terminal of the transmission filter 12A.
  • the selection terminal 52 is connected to the input terminal of the transmission filter 12B.
  • the second switch 5 is, for example, a switch capable of connecting at least one or more of a plurality of selection terminals 51 to 52 to the common terminal 50.
  • the second switch 5 is, for example, a switch capable of one-to-one and one-to-many connections.
  • the second switch 5 is a band select switch for switching signal paths for a plurality of transmission signals having different communication bands from each other.
  • the second switch 5 is controlled by, for example, a controller.
  • the second switch 5 switches the connection state between the common terminal 50 and the plurality of selection terminals 51 to 52 according to, for example, a control signal from the controller.
  • the second switch 5 is, for example, a switch IC.
  • the third switch 6 has a common terminal 60 and a plurality of selection terminals 61 to 62.
  • the common terminal 60 is connected to the input terminal of the low noise amplifier 21A.
  • the selection terminal 61 is connected to the output terminal of the reception filter 22A.
  • the selection terminal 62 is connected to the output terminal of the reception filter 22B.
  • the third switch 6 is, for example, a switch capable of connecting at least one or more of a plurality of selection terminals 61 to 62 to the common terminal 60.
  • the third switch 6 is, for example, a switch capable of one-to-one and one-to-many connections.
  • the third switch 6 is controlled by, for example, a controller.
  • the third switch 6 switches the connection state between the common terminal 60 and the plurality of selection terminals 61 to 62 according to, for example, a control signal from the controller.
  • the third switch 6 is, for example, a switch IC.
  • the diplexer 3 has a first filter 30 and a second filter 31 as described above.
  • the first filter 30 is, for example, a low-pass filter having a pass band including a first predetermined frequency band and a second predetermined frequency band.
  • the second filter 31 is, for example, a high-pass filter having a frequency band on the higher frequency side than the frequency band including the first predetermined frequency band and the second predetermined frequency band as a pass band.
  • the input matching circuit 23A is provided in the signal path between the input terminal of the low noise amplifier 21A and the common terminal 60 of the third switch 6.
  • the input matching circuit 23A is a circuit for impedance matching between the low noise amplifier 21A and the receiving filters 22A and 22B.
  • the input matching circuit 23A is composed of, for example, one inductor, but is not limited to this, and may include, for example, a plurality of inductors and a plurality of capacitors.
  • the input matching circuit 23B is provided in the signal path between the input terminal of the low noise amplifier 21B and the selection terminal 72 of the fourth switch 7.
  • the input matching circuit 23B is a circuit for impedance matching between the low noise amplifier 21B and the transmission / reception filter 32C.
  • the input matching circuit 23B is composed of, for example, one inductor, but is not limited to this, and may include, for example, a plurality of inductors and a plurality of capacitors.
  • the matching circuit 14A is provided between the transmission filter 12A and the reception filter 22A and the selection terminal 41 of the first switch 4.
  • the matching circuit 14A is a circuit for impedance matching between the antenna 310 and the first switch 4 connected to the antenna terminal 81, the transmitting filter 12A, and the receiving filter 22A.
  • the matching circuit 14A is composed of, for example, one inductor, but is not limited to this, and may include, for example, a plurality of inductors and a plurality of capacitors.
  • the matching circuit 14B is provided between the transmission filter 12B and the reception filter 22B and the first switch 4.
  • the matching circuit 14B is a circuit for impedance matching between the antenna 310 and the first switch 4 connected to the antenna terminal 81, the transmitting filter 12B, and the receiving filter 22B.
  • the matching circuit 14B is composed of, for example, one inductor, but is not limited to this, and may include, for example, a plurality of inductors and a plurality of capacitors.
  • the matching circuit 14C is provided between the transmission / reception filter 32C and the first switch 4.
  • the matching circuit 14C is a circuit for impedance matching between the antenna 310 and the first switch 4 connected to the antenna terminal 81 and the transmission / reception filter 32C.
  • the matching circuit 14C is composed of, for example, one inductor, but is not limited to this, and may include, for example, a plurality of inductors and a plurality of capacitors.
  • the high frequency module 1 includes a first wiring board 9, a second wiring board 10, a power amplifier 11A, an output matching circuit 13A, and an external connection terminal 80.
  • the first wiring board 9 has a first main surface 91 and a second main surface 92 facing each other in the thickness direction D1 of the first wiring board 9.
  • the second wiring board 10 has a third main surface 101 and a fourth main surface 102 that face each other in the thickness direction D2 of the second wiring board 10.
  • the second wiring board 10 is separated from the first wiring board 9 in the thickness direction D1 of the first wiring board 9.
  • the first wiring board 9 is, for example, a printed wiring board, an LTCC (Low Temperature Co-fired Ceramics) substrate, an HTCC (High Temperature Co-fired Ceramics) substrate, and a resin multilayer substrate.
  • the first wiring board 9 is, for example, a multilayer board including a plurality of dielectric layers and a plurality of conductive layers.
  • the plurality of dielectric layers and the plurality of conductive layers are laminated in the thickness direction D1 of the first wiring board 9.
  • the plurality of conductive layers are formed in a predetermined pattern determined for each layer.
  • Each of the plurality of conductive layers includes one or a plurality of conductor portions in one plane orthogonal to the thickness direction D1 of the first wiring board 9.
  • each conductive layer is, for example, copper.
  • the plurality of conductive layers include a ground layer.
  • a plurality of ground terminals 85 and a ground layer are electrically connected via a via conductor or the like included in the first wiring board 9.
  • the first wiring board 9 may be a wiring structure.
  • the wiring structure is, for example, a multi-layer structure.
  • the multilayer structure includes at least one insulating layer and at least one conductive layer.
  • the insulating layer is formed in a predetermined pattern. When there are a plurality of insulating layers, the plurality of insulating layers are formed in a predetermined pattern determined for each layer.
  • the conductive layer is formed in a predetermined pattern different from the predetermined pattern of the insulating layer. When there are a plurality of conductive layers, the plurality of conductive layers are formed in a predetermined pattern determined for each layer.
  • the conductive layer may include one or more rewiring sections.
  • the first surface is the first main surface 91 of the first wiring board 9, and the second surface is the first surface of the first wiring board 9. 2 Main surface 92.
  • the wiring structure may be, for example, an interposer.
  • the interposer may be an interposer using a silicon substrate, or may be a substrate composed of multiple layers.
  • the first main surface 91 and the second main surface 92 of the first wiring board 9 are separated in the thickness direction D1 of the first wiring board 9 and intersect with the thickness direction D1 of the first wiring board 9.
  • the first main surface 91 of the first wiring board 9 is, for example, orthogonal to the thickness direction D1 of the first wiring board 9, but includes, for example, the side surface of the conductor portion as a surface not orthogonal to the thickness direction D1. You may be.
  • the second main surface 92 of the first wiring board 9 is orthogonal to, for example, the thickness direction D1 of the first wiring board 9, but is, for example, a side surface of the conductor portion as a surface not orthogonal to the thickness direction D1. Etc. may be included.
  • first main surface 91 and the second main surface 92 of the first wiring board 9 may be formed with fine irregularities, concave portions or convex portions.
  • the first wiring board 9 has a rectangular shape in a plan view from the thickness direction D1 of the first wiring board 9, but is not limited to this, and may be, for example, a square shape.
  • the second wiring board 10 is, for example, a printed wiring board, an LTCC board, an HTCC board, or a resin multilayer board.
  • the second wiring board 10 is, for example, a multilayer board including a plurality of dielectric layers and a plurality of conductive layers.
  • the plurality of dielectric layers and the plurality of conductive layers are laminated in the thickness direction D2 of the second wiring board 10.
  • the plurality of conductive layers are formed in a predetermined pattern determined for each layer.
  • Each of the plurality of conductive layers includes one or a plurality of conductor portions in one plane orthogonal to the thickness direction D2 of the second wiring board 10.
  • the material of each conductive layer is, for example, copper.
  • the plurality of conductive layers include a ground layer. In the high frequency module 1, a plurality of ground terminals 85 and a ground layer are electrically connected via a via conductor or the like included in the second wiring board 10.
  • the second wiring board 10 may be a wiring structure.
  • the wiring structure is, for example, a multi-layer structure.
  • the multilayer structure includes at least one insulating layer and at least one conductive layer.
  • the insulating layer is formed in a predetermined pattern. When there are a plurality of insulating layers, the plurality of insulating layers are formed in a predetermined pattern determined for each layer.
  • the conductive layer is formed in a predetermined pattern different from the predetermined pattern of the insulating layer. When there are a plurality of conductive layers, the plurality of conductive layers are formed in a predetermined pattern determined for each layer.
  • the conductive layer may include one or more rewiring sections.
  • the first surface is the third main surface 101 of the second wiring board 10
  • the second surface is the second surface of the second wiring board 10. 4 Main surface 102.
  • the wiring structure may be, for example, an interposer.
  • the interposer may be an interposer using a silicon substrate, or may be a substrate composed of multiple layers.
  • the third main surface 101 and the fourth main surface 102 of the second wiring board 10 are separated in the thickness direction D2 of the second wiring board 10 and intersect with the thickness direction D2 of the second wiring board 10.
  • the third main surface 101 of the second wiring board 10 is, for example, orthogonal to the thickness direction D2 of the second wiring board 10, but includes, for example, a side surface of the conductor portion as a surface not orthogonal to the thickness direction D2. You may be.
  • the fourth main surface 102 of the second wiring board 10 is orthogonal to, for example, the thickness direction D2 of the second wiring board 10, but is, for example, a side surface of the conductor portion as a surface not orthogonal to the thickness direction D2. Etc. may be included.
  • the third main surface 101 and the fourth main surface 102 of the second wiring board 10 may be formed with fine irregularities, concave portions or convex portions.
  • the outer peripheral shape of the second wiring board 10 is the same as the outer peripheral shape of the first wiring board 9 in a plan view from the thickness direction D2 of the second wiring board 10, but the outer peripheral shape is not limited to this and may be different.
  • the high-frequency module 1 includes the above-mentioned two power amplifiers 11A and 11B, a plurality of inductor portions L1 and L2 of the output matching circuit 13A, a plurality of capacitors C1 and C2, and a plurality of output matching circuits 13B as a plurality of circuit element units.
  • Inductor section and a plurality of capacitors two low noise amplifiers 21A and 21B, two transmission filters 12A and 12B, two reception filters 22A and 22B, a transmission / reception filter 32C, a first switch 4, and the like.
  • the inductor, the diplexer 3, and the controller are provided.
  • a power amplifier 11A, a plurality of inductor portions L1 and L2 of an output matching circuit 13A, and a plurality of capacitors C1 and C2 are arranged on the first main surface 91 of the first wiring board 9.
  • the power amplifier 11A is, for example, a GaAs-based IC chip having a power amplifier circuit including an HBT (Heterojunction Bipolar Transistor).
  • the power amplifier circuit includes an output stage amplifier circuit and a driver stage amplifier circuit.
  • the power amplifier 11A is not limited to the GaAs IC chip, and may be, for example, a Si IC chip having a power amplifier circuit or a SiGe IC chip having a power amplifier circuit.
  • the outer peripheral shape of the power amplifier 11A is a quadrangular shape in a plan view from the thickness direction D1 of the first wiring board 9.
  • the first inductor portion L1 which is the inductor portion closest to the output pad electrode 112A of the power amplifier 11A is the wiring inductor 95 and is the first wiring board 9. 1 It is arranged on the main surface 91.
  • the wiring inductor 95 is formed by utilizing a part of the outermost conductive layer among the plurality of conductive layers of the first wiring board 9.
  • the inductor portion L2 is a chip inductor and is mounted on the first wiring board 9.
  • the inductor portion L2 is not limited to the chip inductor, and may be a wiring inductor.
  • the plurality of capacitors C1 and C2 are surface mount electronic components and are mounted on the first wiring board 9.
  • to be mounted means that the circuit element portion is arranged on the first wiring board 9 (mechanically connected) and that the circuit element portion is the first wiring board 9 (appropriate conductor portion). Includes being electrically connected to.
  • a power amplifier 11B, a plurality of inductors of the output matching circuit 13B, and a plurality of capacitors are further arranged on the first main surface 91 of the first wiring board 9.
  • the power amplifier 11B is a GaAs-based IC chip having a power amplifier circuit, but may be a Si-based IC chip having a power amplifier circuit or a SiGe-based IC chip having a power amplifier circuit.
  • the first inductor is a wiring inductor and is arranged on the first main surface 91 of the first wiring board 9. ing.
  • the plurality of capacitors of the output matching circuit 13B are surface mount electronic components and are mounted on the first wiring board 9.
  • a second switch 5 and transmission filters 12A and 12B are further arranged on the first main surface 91 of the first wiring board 9.
  • the second switch 5 and the transmission filters 12A and 12B are mounted on the first main surface 91 of the first wiring board 9. More specifically, the second switch 5 and the transmission filters 12A and 12B are flip-chip mounted on the first main surface 91 of the first wiring board 9.
  • Each of the two transmission filters 12A and 12B is, for example, a ladder type filter and has a plurality of (for example, four) series arm resonators and a plurality of (for example, three) parallel arm resonators. ..
  • Each of the two transmission filters 12A and 12B is, for example, an elastic wave filter, and each of the plurality of series arm resonators and the plurality of parallel arm resonators is composed of elastic wave resonators.
  • the surface acoustic wave filter is, for example, a surface acoustic wave filter that utilizes a surface acoustic wave.
  • each of the plurality of series arm resonators and the plurality of parallel arm resonators is, for example, a SAW (Surface Acoustic Wave) resonator.
  • the first switch 4, the receiving filters 22A and 22B, the transmitting / receiving filter 32C, the diplexer 3 and the controller are arranged on the second main surface 92 of the first wiring board 9.
  • the first switch 4, the reception filters 22A and 22B, the transmission / reception filter 32C, and the controller are mounted on the second main surface 92 of the first wiring board 9.
  • the first switch 4, the receiving filters 22A and 22B, and the transmitting / receiving filter 32C are flip-chip mounted on the second main surface 92 of the first wiring board 9.
  • Each of the two receiving filters 22A and 22B is, for example, a ladder type filter and has a plurality of (for example, four) series arm resonators and a plurality of (for example, three) parallel arm resonators.
  • Each of the two receiving filters 22A and 22B is, for example, an elastic wave filter, and each of the plurality of series arm resonators and the plurality of parallel arm resonators is composed of elastic wave resonators.
  • the surface acoustic wave filter is, for example, a surface acoustic wave filter that utilizes a surface acoustic wave.
  • each of the plurality of series arm resonators and the plurality of parallel arm resonators is, for example, a SAW resonator.
  • Each of the first filter 30 and the second filter 31 of the diplexer 3 includes, for example, a plurality of inductors and capacitors.
  • the first filter 30 and the second filter 31 of the diplexer 3 include a plurality of inductors and a plurality of capacitors.
  • the first filter 30 and the second filter 31 may be IPDs (Integrated Passive Devices).
  • the controller is an IC chip having a function of controlling at least the power amplifiers 11A and 11B.
  • a transmission / reception filter 32C and a fourth switch 7 are arranged on the fourth main surface 102 of the second wiring board 10.
  • the transmission / reception filter 32C is, for example, a ladder type filter, and has a plurality of (for example, four) series arm resonators and a plurality of (for example, three) parallel arm resonators.
  • the transmission / reception filter 32C is, for example, an elastic wave filter, and each of the plurality of series arm resonators and the plurality of parallel arm resonators is composed of elastic wave resonators.
  • the surface acoustic wave filter is, for example, a surface acoustic wave filter that utilizes a surface acoustic wave.
  • each of the plurality of series arm resonators and the plurality of parallel arm resonators is, for example, a SAW resonator.
  • the two low noise amplifiers 21A and 21B are Si-based IC chips having an amplifier circuit.
  • the low noise amplifier 21A and the low noise amplifier 21B may be integrated on one chip.
  • the low noise amplifier 21A, the low noise amplifier 21B, and the third switch 6 may be integrated on one chip.
  • Each inductor of the two input matching circuits 23A and 23B is, for example, a chip inductor.
  • the inductors of the two input matching circuits 23A and 23B are mounted on, for example, the fourth main surface 102 of the second wiring board 10, but are not limited thereto.
  • the inductor in each of the plurality of matching circuits 14A, 14B, 14C is, for example, a chip inductor.
  • the inductors in each of the plurality of matching circuits 14A, 14B, and 14C are mounted on, for example, the second main surface 92 of the first wiring board 9, but are not limited thereto.
  • a plurality of external connection terminals 80 are arranged on the fourth main surface 102 of the second wiring board 10.
  • the material of the plurality of external connection terminals 80 is, for example, copper or a copper alloy.
  • Each of the plurality of external connection terminals 80 is a columnar electrode.
  • the columnar electrode is, for example, a columnar electrode.
  • the plurality of external connection terminals 80 include an antenna terminal 81, two signal input terminals 82A and 82B, two signal output terminals 83A and 83B, a plurality of control terminals, and a plurality of ground terminals 85. , Including. As described above, the plurality of ground terminals 85 are electrically connected to at least one ground layer of the first wiring board 9 and the second wiring board 10.
  • the ground layer is a circuit ground of the high frequency module 1, and a plurality of circuit element portions of the high frequency module 1 include a circuit element portion electrically connected to the ground layer.
  • the high frequency module 1 further includes a first resin layer 16.
  • the first resin layer 16 is a plurality of circuit element portions (two power amplifiers 11A, 11B, which are arranged on the first main surface 91 of the first wiring board 9 on the first main surface 91 side of the first wiring board 9. It covers two inductors L1, L2, two capacitors C1, C2, a second switch 5, two transmission filters 12A, 12B, etc.).
  • the first resin layer 16 contains a resin.
  • the first resin layer 16 may contain a filler in addition to the resin.
  • the high frequency module 1 further includes a second resin layer 17.
  • the second resin layer 17 is a plurality of circuit element portions (two low noise amplifiers 21A, 21B, etc.) arranged on the fourth main surface 102 of the second wiring board 10 on the fourth main surface 102 side of the second wiring board 10. ) And a part of each of the plurality of external connection terminals 80.
  • the second resin layer 17 is formed so as to expose the tip surface of each of the plurality of external connection terminals 80.
  • the second resin layer 17 contains a resin.
  • the second resin layer 17 may contain a filler in addition to the resin.
  • the material of the second resin layer 17 may be the same material as the material of the first resin layer 16 or may be a different material.
  • the second resin layer 17 is formed so as to expose the main surface of each of the plurality of circuit element portions arranged on the fourth main surface 102 of the second wiring board 10 on the side opposite to the second wiring board 10 side. It may have been done.
  • the high frequency module 1 further includes a third resin layer 18.
  • the third resin layer 18 is a plurality of circuit element portions (first switch 4, reception filter) arranged on the second main surface 92 of the first wiring board 9 on the second main surface 92 side of the first wiring board 9. 22A, 22B, transmission / reception filter 32C, diplexer 3, controller, etc.) are covered.
  • the third resin layer 18 contains a resin.
  • the third resin layer 18 may contain a filler in addition to the resin.
  • the material of the third resin layer 18 may be the same material as the material of the first resin layer 16 or may be a different material.
  • the third resin layer 18 is interposed between the second main surface 92 of the first wiring board 9 and the third main surface 101 of the second wiring board 10. In the high frequency module 1, for example, the third resin layer 18 and the third main surface 101 of the second wiring board 10 are joined (for example, thermocompression bonding).
  • the high frequency module 1 further includes a through electrode 94.
  • the through silicon via 94 overlaps the power amplifier 11A in a plan view from the thickness direction D1 of the first wiring board 9.
  • the through electrode 94 is connected to the power amplifier 11A and penetrates the first wiring board 9 and the second wiring board 10.
  • the through silicon via 94 includes a conductor portion 941 penetrating the first wiring board 9, a conductor portion 942 penetrating the third resin layer 18, and a conductor portion 943 penetrating the second wiring board 10. including.
  • the through silicon via 94 connects the power amplifier 11A and the heat dissipation terminal 86 included in the plurality of external connection terminals 80.
  • the heat dissipation terminal 86 is connected to the ground of the circuit board 320.
  • the high frequency module 1 preferably includes a plurality of through electrodes 94 connected to the power amplifier 11A.
  • the high frequency module 1 includes a first wiring board 9, a second wiring board 10, a power amplifier 11A, an output matching circuit 13A, and an external connection terminal 80. And.
  • the first wiring board 9 has a first main surface 91 and a second main surface 92 facing each other.
  • the second wiring board 10 has a third main surface 101 and a fourth main surface 102 facing each other.
  • the second wiring board 10 is separated from the first wiring board 9 in the thickness direction D1 of the first wiring board 9.
  • the power amplifier 11A has an output pad electrode 112A.
  • the output matching circuit 13A includes a plurality of inductor portions L1 and L2, and is connected to the output pad electrode 112A of the power amplifier 11A.
  • the second main surface 92 of the first wiring board 9 and the third main surface 101 of the second wiring board 10 face each other.
  • the external connection terminal 80 is arranged on the fourth main surface 102 of the second wiring board 10.
  • the power amplifier 11A is arranged on the first main surface 91 of the first wiring board 9.
  • the first inductor portion which is the inductor portion L1 closest to the output pad electrode 112A among the plurality of inductor portions L1 and L2, is arranged on the first main surface 91 of the first wiring board 9. ..
  • the high frequency module 1 according to the first embodiment can improve the Q value of the inductor unit L1 included in the output matching circuit 13A connected to the power amplifier 11A.
  • the first inductor portion which is the inductor portion L1 closest to the output pad electrode 112A among the plurality of inductor portions L1 and L2 in the output matching circuit 13A, is the first wiring board 9. 1 It is arranged on the main surface 91. As a result, the parasitic capacitance generated between the inductor portion L1 and the ground of the circuit board 320 can be reduced, and the Q value of the inductor portion L1 can be improved.
  • all of the first inductor portion which is the inductor portion L1 closest to the output pad electrode 112A among the plurality of inductor portions L1 and L2, is the first main surface of the first wiring board 9.
  • the present invention is not limited to this, and at least a part of the first inductor portion may be arranged on the first main surface 91 of the first wiring board 9.
  • the Q value of the first inductor portion can be improved as compared with the case where the remaining part of the first inductor portion is arranged in the first wiring board 9.
  • the first inductor portion which is the inductor portion closest to the output pad electrode among the plurality of inductor portions in the output matching circuit 13B, is the first wiring. It is arranged on the first main surface 91 of the substrate 9. As a result, the high frequency module 1 according to the first embodiment can improve the Q value of the first inductor portion included in the output matching circuit 13B connected to the power amplifier 11B.
  • the high-frequency module 1 includes a first wiring board 9 and a second wiring board 10, and the first wiring board 9 and the second wiring board 10 are in the thickness direction D1 of the first wiring board 9. Since they are separated from each other, it is possible to increase the degree of freedom in arranging a plurality of circuit element units while reducing the size of the high frequency module 1 in a plan view from the thickness direction D1 of the first wiring board 9. ..
  • the first inductor portion (inductor portion L1) is the wiring inductor 95.
  • the high frequency module 1 according to the first embodiment it is possible to reduce the height.
  • the high frequency module 1 according to the first embodiment further includes a through electrode 94.
  • the through silicon via 94 overlaps the power amplifier 11A in a plan view from the thickness direction D1 of the first wiring board 9.
  • the through electrode 94 is connected to the power amplifier 11A and penetrates the first wiring board 9 and the second wiring board 10.
  • the second main surface 92 of the first wiring board 9, the third main surface 101 and the fourth main surface 102 of the second wiring board 10 are flat surfaces from the thickness direction D1.
  • the circuit element unit that visually overlaps the power amplifier 11 is not arranged.
  • the high frequency module 1 according to the first embodiment has an advantage that the heat generated by the power amplifier 11 can be easily dissipated, the second main surface 92 of the first wiring board 9, and the third main surface of the second wiring board 10.
  • the characteristics of the circuit element portion arranged on either the 101 or the fourth main surface 102 are less likely to be affected by the heat from the power amplifier 11.
  • the high frequency module 1 according to the first embodiment further includes low noise amplifiers 21A and 21B.
  • the low noise amplifiers 21A and 21B are arranged on the second wiring board 10. Thereby, the high frequency module 1 according to the first embodiment can be used for transmitting the transmission signal and receiving the received signal, and can improve the isolation between the power amplifier 11A and the low noise amplifiers 21A and 21B.
  • the communication device 300 includes a high frequency module 1 and a signal processing circuit 301.
  • the signal processing circuit 301 processes the transmitted signal.
  • the high frequency module 1 amplifies and outputs the transmission signal from the signal processing circuit 301.
  • the high frequency module 1 transmits a transmission signal between the antenna 310 and the signal processing circuit 301.
  • the communication device 300 since the communication device 300 according to the first embodiment includes the high frequency module 1, it is possible to improve the Q value of the inductor unit L1 included in the output matching circuit 13A connected to the power amplifier 11A.
  • the plurality of electronic components constituting the signal processing circuit 301 may be mounted on, for example, the circuit board 320 described above, or a circuit different from the first circuit board which is the circuit board 320 on which the high frequency module 1 is mounted. It may be mounted on a board (second circuit board).
  • the high-frequency module 1a according to the first modification is different from the high-frequency module 1 according to the first embodiment in that the inductor portion L1 of the output matching circuit 13A is the chip inductor 15.
  • the Q value of the inductor portion L1 included in the output matching circuit 13A (see FIG. 4) connected to the power amplifier 11A can be further improved.
  • the high frequency module 1b according to the second modification is different from the high frequency module 1 according to the first embodiment in that the shield layer 19 is further provided.
  • the material of the shield layer 19 is, for example, metal.
  • the shield layer 19 covers the main surface and the outer peripheral surface of the first resin layer 16, the outer peripheral surface of the first wiring board 9, the outer peripheral surface of the third resin layer 18, and the outer peripheral surface of the second wiring board 10. ing.
  • the shield layer 19 is in contact with the ground layer of the first wiring board 9 and the ground layer of the second wiring board 10.
  • the potential of the shield layer 19 can be made substantially the same as the potential of each ground layer.
  • the high frequency module 1b according to the second modification it is possible to suppress the intrusion of radiation noise from the transmission circuit including the power amplifier 11A and the output matching circuit 13A to the outside of the high frequency module 1b and noise such as electromagnetic waves from the outside of the high frequency module 1b. It becomes.
  • the high frequency module 1c according to the third modification is different from the high frequency module 1 according to the first embodiment in that the power amplifier 11B is arranged on the third main surface 101 of the second wiring board 10.
  • the high frequency module 1c according to the third modification is related to the first embodiment in that the inductor portion L1B closest to the output electrode pad of the power amplifier 11B is the chip inductor 15B in the output matching circuit 13B (see FIG. 4). It is different from the high frequency module 1.
  • a chip inductor 15B having a higher Q value than the wiring inductor is adopted as the inductor portion L1B included in the output matching circuit 13B (see FIG. 4) connected to the power amplifier 11B. It becomes possible to do.
  • the high frequency module 1d according to the fourth modification is different from the high frequency module 1 according to the first embodiment in that a plurality of external connection terminals 80 are ball bumps. Further, the high frequency module 1d according to the fourth modification is different from the high frequency module 1 according to the first embodiment in that the second resin layer 17 of the high frequency module 1 according to the first embodiment is not provided.
  • the high-frequency module 1d according to the modified example 4 includes each of the circuit element portions (two low noise amplifiers 21A, 21B, etc.) arranged on the fourth main surface 102 of the second wiring board 10 and the fourth main of the second wiring board 10. An underfill portion provided in a gap between the surface 102 and the surface 102 may be provided.
  • the material of the ball bumps constituting each of the plurality of external connection terminals 80 is, for example, gold, copper, or solder.
  • the plurality of external connection terminals 80 may be a mixture of an external connection terminal 80 composed of ball bumps and an external connection terminal 80 composed of columnar electrodes.
  • the high-frequency module 1e according to the second embodiment includes a differential amplifier circuit 100A instead of the power amplifier 11A and the output matching circuit 13A of the high-frequency module 1 according to the first embodiment, instead of the power amplifier 11B and the output matching circuit 13B. It is different from the high frequency module 1 according to the first embodiment in that it includes a differential amplifier circuit 100B.
  • the differential amplifier circuit 100A includes a power amplifier 11C (hereinafter, also referred to as a first power amplifier 11C), a power amplifier 11D (hereinafter, also referred to as a second power amplifier 11D), and a non-balanced-balanced conversion circuit 110. ..
  • the first power amplifier 11C has an input pad electrode 111C and an output pad electrode 112C (see FIGS. 10B and 11).
  • the second power amplifier 11D has an input pad electrode and an output pad electrode 112D (see FIG. 11).
  • the non-equilibrium-balanced conversion circuit 110 has a non-equilibrium terminal, a first balanced terminal, and a second balanced terminal.
  • the non-equilibrium-balance conversion circuit 110 is a balun.
  • the first balanced terminal of the non-equilibrium-balanced conversion circuit 110 is connected to the first power amplifier 11C, and the second balanced terminal is connected to the second power amplifier 11D.
  • the differential amplifier circuit 100A further includes an amplifier element 11E.
  • the amplification element 11E has an input terminal and an output terminal.
  • the input terminal of the amplification element 11E is connected to the signal input terminal 82A.
  • the output terminal of the amplification element 11E is connected to the non-equilibrium terminal of the non-equilibrium-balance conversion circuit 110.
  • the first balanced terminal of the non-equilibrium-balanced conversion circuit 110 is connected to the input terminal of the first power amplifier 11C.
  • the second balanced terminal of the non-equilibrium-balanced conversion circuit 110 is connected to the input terminal of the second power amplifier 11D.
  • a bias voltage Vcc1 is applied to the output terminal of the amplification element 11E.
  • the output matching circuit 13C includes a plurality of inductor units L11A, L11B, L12, and L13. Further, the output matching circuit 13C includes a plurality of capacitors C11, C12, and C13.
  • Each of the plurality of inductor portions L11A, L11B, L12, and L13 has a first end and a second end. Further, each of the plurality of capacitors C11, C12, and C13 has a first end and a second end.
  • the first end of the inductor section L11A is connected to the output terminal (output pad electrode 112C) of the power amplifier 11C.
  • the first end of the inductor portion L11B is connected to the output terminal (output pad electrode 112D) of the power amplifier 11D.
  • the inductor portion L12 is connected between the second end of the inductor portion L11A and the second end of the inductor portion L11B. Further, a capacitor C11 is connected between the second end of the inductor portion L11A and the second end of the inductor portion L11B. That is, the capacitor C11 is connected in parallel to the inductor portion L12.
  • the first end of the inductor portion L13 is connected to the first end of the capacitor C12.
  • the second end of the inductor portion L13 is connected to the ground.
  • the second end of the capacitor C12 is connected to the common terminal 50 of the second switch 5 and the first end of the capacitor C13.
  • the second end of capacitor C13 is connected to ground.
  • the output matching circuit 13C includes a transformer T1 in which the inductor portion L12 is the primary coil and the inductor portion L13 is the secondary coil. That is, the high frequency module 1e has a differential amplifier circuit 100A including a first power amplifier 11C, a second power amplifier 11D, and a transformer T1.
  • the transformer T1 includes a primary side coil having a first end and a second end (inductor part L12) and a secondary side coil having the first end and the second end (inductor part L13).
  • the first end of the primary coil (inductor L12) is connected to the output terminal of the first power amplifier 11C via the inductor L11A
  • the second end of the primary coil (inductor L12) is the inductor. It is connected to the output terminal of the second power amplifier 11D via L11B.
  • a power supply wiring PS2 for supplying a bias voltage Vcc2 from the outside of the high frequency module 1e is connected to the midpoint of the primary coil.
  • the first end of the secondary coil (inductor portion L13) is connected to the common terminal 50 of the second switch 5 via the capacitor C12.
  • the second end of the secondary coil is connected to the ground (ground terminal 85).
  • the high frequency signal input from the signal input terminal 82A is amplified by the amplification element 11E.
  • the high frequency signal amplified by the amplification element 11E is subjected to non-equilibrium-balance conversion by the non-equilibrium-balance conversion circuit 110.
  • the non-equilibrium-balanced conversion circuit 110 outputs the non-inverting input signal from the first balanced terminal, and the non-equilibrium-balanced conversion circuit 110 outputs the inverting input signal from the second balanced terminal.
  • the non-inverting input signal amplified by the first power amplifier 11C and the inverting input signal amplified by the second power amplifier 11D are connected to the inductors L11A, L11B, the transformer T1 and the capacitor C11 while maintaining the opposite phases. Is impedance-converted.
  • the output impedance of the differential amplifier circuit 100A is impedance-matched with the input impedance of the second switch 5 and the transmission filters 12A and 12B by the inductors L11A and L11B, the transformer T1 and the capacitor C11.
  • the capacitors C12 and C13 also contribute to the impedance matching.
  • the first power amplifier 11C and the second power amplifier 11D operate in inverting phases. At this time, since the current in the fundamental wave of the first power amplifier 11C and the second power amplifier 11D flows in the inverting phase, that is, in the opposite direction, the current of the fundamental wave does not flow in the power supply wiring PS2 and the wiring to the ground. Therefore, in the differential amplifier circuit 100A, the inflow of unnecessary current into the power supply wiring PS2 and the above wiring can be ignored, so that it is possible to suppress a decrease in power gain (power gain) observed in a conventional power amplifier. It becomes.
  • the differential amplifier circuit 100A uses two power amplifiers 11C and 11D to input the combined output impedance of the two power amplifiers 11C and 11D and the input of the circuit element connected to the output side of the differential amplifier circuit 100A. Since the impedance ratio with the impedance can be reduced, the matching loss of the amplified high-frequency signal can be reduced. Further, in the differential amplifier circuit 100A, the non-inverting input signal amplified by the first power amplifier 11C and the inverting input signal amplified by the second power amplifier 11D are combined, so that the non-inverting input signal and the inverting input signal are combined. The noise component superimposed on both of the above can be canceled out, and unnecessary waves such as harmonic components can be reduced.
  • the amplifier element 11E is not an essential component of the differential amplifier circuit 100A.
  • the circuit configuration of the non-equilibrium-balanced conversion circuit 110 is not particularly limited. Further, the capacitor C11 is not an essential component in impedance matching.
  • the circuit configuration of the differential amplifier circuit 100B is the same as the circuit configuration of the differential amplifier circuit 100A.
  • the power amplifiers 11F and 11G of the differential amplifier circuit 100B and the output matching circuit 13F correspond to the power amplifiers 11A and 11B and the output matching circuit 13C of the differential amplifier circuit 100A, respectively.
  • the differential amplifier circuit 100A is provided between the signal input terminal 82A and the common terminal 50 of the second switch 5.
  • the differential amplifier circuit 100B is provided between the signal input terminal 82B and the selection terminal 71 of the fourth switch 7.
  • the first power amplifier 11C and the second power amplifier 11D have the same specifications and the same chip size.
  • the first power amplifier 11F and the second power amplifier 11G have the same specifications and the same chip size.
  • the first power amplifier 11C and the second power amplifier 11D of the differential amplifier circuit 100A are arranged on the first main surface 91 of the first wiring board 9. Further, the first power amplifier 11F and the second power amplifier 11G of the differential amplifier circuit 100B are arranged on the first main surface 91 of the first wiring board 9.
  • the inductor portion L11A closest to the output pad electrode 112C of the first power amplifier 11C among the plurality of inductor portions L11A, L11B, L12, and L13 is the wiring inductor 95A. Further, in the differential amplifier circuit 100A, the inductor portion L11B closest to the output pad electrode 112D of the second power amplifier 11D among the plurality of inductor portions L11A, L11B, L12, and L13 is the wiring inductor.
  • the plurality of capacitors C11, C12, and C13 are surface mount electronic components and are arranged on the first main surface 91 of the first wiring board 9.
  • the second inductor portion L12 constituting the primary side coil of the transformer T1 is an inner layer inductor portion provided in the first wiring board 9 as shown in FIGS. 10A, 10B and 12. ..
  • the third inductor portion L13 constituting the secondary coil of the transformer T1 is arranged on the first main surface 91 of the first wiring board 9 as shown in FIGS. 10A, 10B and 11. It is a wiring inductor.
  • a part of the third inductor portion L13 and the second inductor portion L12 are viewed in a plan view from the thickness direction D1 of the first wiring board 9 so that the primary coil and the secondary coil are magnetically coupled. It overlaps with a part of.
  • a part of the first wiring board 9 is interposed between the third inductor portion L13 and the second inductor portion L12 in the thickness direction D1 of the first wiring board 9.
  • the entire third inductor portion L13 and the entire second inductor portion L12 may overlap in a plan view from the thickness direction D1 of the first wiring board 9.
  • the circuit configuration of the differential amplifier circuit 100B is the same as the circuit configuration of the differential amplifier circuit 100A as described above.
  • the arrangement of each circuit element portion of the differential amplifier circuit 100B is the same as the arrangement of each circuit element portion of the differential amplifier circuit 100A.
  • the high frequency module 1e includes a first wiring board 9, a second wiring board 10, a power amplifier 11C, an output matching circuit 13C, and an external connection terminal 80.
  • the first wiring board 9 has a first main surface 91 and a second main surface 92 facing each other.
  • the second wiring board 10 has a third main surface 101 and a fourth main surface 102 facing each other.
  • the second wiring board 10 is separated from the first wiring board 9 in the thickness direction D1 of the first wiring board 9.
  • the power amplifier 11C has an output pad electrode 112C.
  • the output matching circuit 13C includes a plurality of inductor portions L11A, L11B, L12, and L13, and is connected to the output pad electrode 112C of the power amplifier 11C.
  • the second main surface 92 of the first wiring board 9 and the third main surface 101 of the second wiring board 10 face each other.
  • the external connection terminal 80 is arranged on the fourth main surface 102 of the second wiring board 10.
  • the power amplifier 11C is arranged on the first main surface 91 of the first wiring board 9.
  • the first inductor portion which is the inductor portion L11A closest to the output pad electrode 112C among the plurality of inductor portions L11A, L11B, L12, and L13, is on the first main surface 91 of the first wiring board 9. Have been placed.
  • the high frequency module 1e according to the second embodiment can improve the Q value of the inductor unit L11A included in the output matching circuit 13C connected to the power amplifier 11C.
  • the inductor portion L11A is arranged on the first main surface 91 of the first wiring board 9. As a result, the parasitic capacitance generated between the inductor portion L11A and the ground of the circuit board 320 can be reduced, and the Q value of the inductor portion L11A can be improved.
  • the high frequency module 1e further includes a second power amplifier 11D and a non-equilibrium-balanced conversion circuit 110.
  • the second power amplifier 11D is different from the first power amplifier which is the power amplifier 11C.
  • the second power amplifier 11D has an output pad electrode 112D.
  • the non-equilibrium-balance conversion circuit 110 has a non-equilibrium terminal, a first equilibrium terminal, and a second equilibrium terminal.
  • the second power amplifier 11D is arranged on the first main surface 91 of the first wiring board 9.
  • the first balanced terminal of the non-equilibrium-balanced conversion circuit 110 is connected to the first power amplifier 11C, and the second balanced terminal is connected to the second power amplifier 11D.
  • the first inductor portion L11A is connected to the output pad electrode 112C of the first power amplifier 11C.
  • the plurality of inductor portions L11A, L11B, L12, and L13 include a first inductor portion L11B different from the first inductor portion L11A.
  • Another first inductor portion L11B is connected to the output pad electrode 112D of the second power amplifier 11D.
  • the output matching circuit 13C in which at least a part of another first inductor portion L11B is arranged on the first main surface 91 of the first wiring board 9, is the first of the plurality of inductor portions L11A, L11B, L12, and L13.
  • a transformer T1 having an inductor portion L11A and a second inductor portion L12 other than another first inductor portion L11B as a primary coil and a third inductor portion L13 as a secondary coil is included.
  • the high frequency module 1e includes a differential amplifier circuit 100A including a first power amplifier 11C, a second power amplifier 11D, and a transformer T1. As a result, in the high frequency module 1e according to the second embodiment, it is possible to suppress a decrease in power gain.
  • the high frequency modules 1, 1a to 1e may include only the first filter (low-pass filter) instead of the diplexer 3, or may include a multiplexer (for example, a triplexer).
  • the multiplexer includes, for example, at least two of a low-pass filter, a band-pass filter, and a high-pass filter.
  • the duplexer may be composed of the transmission filter 12A and the reception filter 22A. Further, in the high frequency module 1, the duplexer may be composed of the transmission filter 12B and the reception filter 22B.
  • the number of selection terminals in each of the first switch 4, the second switch 5, the third switch 6, and the fourth switch 7 may be a plurality, and is not limited to the number illustrated.
  • Each of the first switch 4 and the second switch 5 may be controlled by, for example, a control signal from the RF signal processing circuit 302 of the signal processing circuit 301, instead of being controlled by the controller.
  • the elastic wave filter is not limited to an elastic wave filter that utilizes an elastic surface wave, and may be, for example, an elastic wave filter that utilizes an elastic boundary wave, a plate wave, or the like.
  • each of the plurality of series arm resonators and the plurality of parallel arm resonators is not limited to the SAW resonator, and may be, for example, a BAW (Bulk Acoustic Wave) resonator.
  • BAW Bulk Acoustic Wave
  • each tip of the plurality of external connection terminals 80 may include, for example, a gold plating layer.
  • the communication device 300 may include any of the high frequency modules 1a, 1b, 1c, and 1d instead of the high frequency module 1.
  • the high frequency module (1; 1a; 1b; 1c; 1d; 1e) includes a first wiring board (9), a second wiring board (10), a power amplifier (11A; 11C), and the like. It includes an output matching circuit (13A; 13C) and an external connection terminal (80).
  • the first wiring board (9) has a first main surface (91) and a second main surface (92) facing each other.
  • the second wiring board (10) has a third main surface (101) and a fourth main surface (102) facing each other.
  • the second wiring board (10) is separated from the first wiring board (9) in the thickness direction (D1) of the first wiring board (9).
  • the power amplifier (11A; 11C) has an output pad electrode (112A; 112C).
  • the output matching circuit (13A; 13C) includes a plurality of inductor portions (L1, L2; L11A, L11B, L12, L13) and is connected to the output pad electrode (112A; 112C) of the power amplifier (11A; 11C). ing.
  • the second main surface (92) of the first wiring board (9) and the third main surface (101) of the second wiring board (10) are Facing each other.
  • the external connection terminal (80) is arranged on the fourth main surface (102) of the second wiring board (10).
  • the power amplifier (11A; 11C) is arranged on the first main surface (91) of the first wiring board (9).
  • the high frequency module (1; 1a; 1b; 1c; 1d; 1e) is an inductor unit (13A; 13C) included in an output matching circuit (13A; 13C) connected to a power amplifier (11A; 11C). It is possible to improve the Q value of L1; L11A).
  • all of the first inductor portions (L1; L11A) are of the first wiring board (9). It is arranged on the first main surface (91).
  • the high frequency module (1; 1a; 1b; 1c; 1d; 1e) according to the second aspect, only a part of the first inductor portion (L1; L11A) is the first main surface of the first wiring board (9). It is possible to improve the Q value of the inductor portion (L1) as compared with the case where it is arranged in (91).
  • the first inductor section (inductor section L1; inductor section L11A) is a wiring inductor (95; 95A).
  • the high frequency module (1; 1e) according to the third aspect can reduce the height.
  • the first inductor portion in the high frequency module (1a) according to the fourth aspect, is the chip inductor (15).
  • the high frequency module (1e) further includes a second power amplifier (11D) and a non-equilibrium-balanced conversion circuit (110) in the first or second aspect.
  • the second power amplifier (11D) is different from the first power amplifier which is a power amplifier (11C).
  • the second power amplifier (11D) has an output pad electrode (112D).
  • the non-equilibrium-balance conversion circuit (110) has a non-equilibrium terminal, a first equilibrium terminal, and a second equilibrium terminal.
  • the second power amplifier (11D) is arranged on the first main surface (91) of the first wiring board (9).
  • the first balanced terminal of the non-equilibrium-balanced conversion circuit (110) is connected to the first power amplifier, and the second balanced terminal is connected to the second power amplifier (11D).
  • the first inductor section (L11A) is connected to the output pad electrode (112C) of the first power amplifier.
  • the plurality of inductor portions (L11A, L11B, L12, L13) include a first inductor portion (L11B) separate from the first inductor portion (L11A).
  • Another first inductor section (L11B) is connected to the output pad electrode (112D) of the second power amplifier (11D).
  • a transformer (T1) as a side coil.
  • the high frequency module (1e) has a differential amplifier circuit (100A) including a first power amplifier, a second power amplifier (11D), and a transformer (T1).
  • the high frequency module (1e) according to the fifth aspect can suppress a decrease in power gain.
  • the second inductor portion is an inner layer inductor portion provided in the first wiring board (9).
  • the high frequency module (1e) it is possible to reduce the size of the first wiring board (9) in a plan view from the thickness direction (D1).
  • the high frequency module (1; 1a; 1b; 1c; 1d; 1e) according to the seventh aspect further includes a through electrode (94) in any one of the first to sixth aspects.
  • the through silicon via (94) overlaps the power amplifier (11A; 11C) in a plan view from the thickness direction (D1) of the first wiring board (9).
  • the through electrode (94) is connected to the power amplifier (11A; 11C) and penetrates the first wiring board (9) and the second wiring board (10).
  • the high frequency module (1; 1a; 1b; 1c; 1d; 1e) according to the seventh aspect improves heat dissipation because the heat generated by the power amplifier (11A; 11C) is dissipated through the through electrode (94). It is possible to make it.
  • the high frequency module (1; 1a; 1b; 1c; 1d; 1e) according to the eighth aspect is a low noise amplifier arranged on the second wiring board (10) in any one of the first to seventh aspects. (21A, 21B) are further provided.
  • the high frequency module (1; 1a; 1b; 1c; 1d; 1e) can amplify the received signal by the low noise amplifier (21A, 21B), and also has the power amplifier (11A; 11C) and the low noise amplifier (11A; 11C). Isolation with 21A, 21B) can be improved.
  • the low noise amplifier (21A, 21B) is the fourth main surface of the second wiring board (10). It is arranged in (102).
  • the high frequency module (1; 1a; 1b; 1c; 1d; 1e) according to the ninth aspect can improve the isolation between the power amplifier (11A; 11C) and the low noise amplifier (21A, 21B).
  • the eighth or ninth aspect in a plan view from the thickness direction (D1) of the first wiring board (9). , The power amplifier (11A; 11C) and the low noise amplifier (21A; 21B) do not overlap.
  • the high frequency module (1; 1a; 1b; 1c; 1d; 1e) according to the tenth aspect can improve the isolation between the power amplifier (11A; 11C) and the low noise amplifier (21A, 21B).
  • the high frequency module (1; 1a; 1b; 1c; 1d; 1e) according to the eleventh aspect has a receiving filter (22A, 22B) and an input matching circuit (22A, 22B) in any one of the eighth to tenth aspects. 23A, 23B), and further.
  • the input matching circuit (23A, 23B) is provided between the receiving filter (22A, 22B) and the low noise amplifier (21A, 21B).
  • the receiving filter (22A, 22B) and the input matching circuit (23A, 23B) are the second. It is arranged on the third main surface (101) of the wiring board (10).
  • the high frequency module (1; 1a; 1b; 1c; 1d; 1e) according to the twelfth aspect comprises a power amplifier (11A; 11C), a receiving filter (22A, 22B), and an input matching circuit (23A, 23B). It is possible to improve the isolation.
  • the high frequency module (1; 1a; 1b; 1c; 1d; 1e) according to the thirteenth aspect further includes a transmission filter (12A) in the eleventh or twelfth aspect.
  • the transmission filter (12A) is connected to the power amplifier (11A; 11C) at least via an output matching circuit (13A; 13C).
  • the reception path (Rx11) including the reception filter (22A), the input matching circuit (23A), and the low noise amplifier (21A) do not overlap.
  • the high frequency module (1; 1a; 1b; 1c; 1d; 1e) according to the fourteenth aspect includes a plurality of external connection terminals (80) in the thirteenth aspect.
  • the plurality of external connection terminals (80) include a ground terminal (85) connected to an output matching circuit (13A; 13C).
  • the high frequency module according to the fourteenth aspect can improve the isolation between the transmission path (Tx11) including the power amplifier (11A) and the reception path (Rx11) including the low noise amplifier (21A).
  • the communication device (300; 300e) includes a signal processing circuit (301) and a high frequency module (1; 1a; 1b; 1c; 1d; 1e) according to any one of the first to fourteenth aspects. , Equipped with.
  • the power amplifier (11A; 11C) of the high frequency module (1; 1a; 1b; 1c; 1d; 1e) amplifies and outputs the transmission signal from the signal processing circuit (301).
  • the communication device (300; 300e) according to the fifteenth aspect can improve the Q value of the inductor portion included in the output matching circuit (13A; 13C) connected to the power amplifier (11; 11C). It becomes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Transceivers (AREA)
  • Amplifiers (AREA)

Abstract

パワーアンプに接続された出力整合回路に含まれているインダクタ部のQ値を向上させる。出力整合回路(13A)は、複数のインダクタ部(L1,L2)を含み、パワーアンプ(11A)の出力用パッド電極(112A)に接続されている。高周波モジュール(1)では、第1配線基板(9)の第2主面(92)と第2配線基板(10)の第3主面(101)とが向かい合っている。外部接続端子(80)は、第2配線基板(10)の第4主面(102)に配置されている。パワーアンプ(11A)は、第1配線基板(9)の第1主面(91)に配置されている。出力整合回路(13A)では、複数のインダクタ部(L1,L2)のうち出力用パッド電極(112A)に最も近いインダクタ部(L1)である第1インダクタ部の少なくとも一部が、第1配線基板(9)の第1主面(91)に配置されている。

Description

高周波モジュール及び通信装置
 本発明は、一般に高周波モジュール及び通信装置に関し、より詳細には、パワーアンプを備える高周波モジュール、及びそれを備える通信装置に関する。
 従来、高周波モジュールとして、配線基板と、配線基板の上面に搭載(実装)され電力増幅回路を含む半導体チップと、配線基板の上面に搭載(実装)されたインダクタンス素子と、配線基板の下面に形成された複数の外部接続端子と、を備える電力増幅モジュールが知られている(例えば、特許文献1参照)。
 電力増幅モジュールは、電力増幅回路に接続された出力整合回路を備えている。出力整合回路は、上述のインダクタ素子を含んでいる。
特開2007-88363号公報
 高周波モジュールでは、パワーアンプに接続された出力整合回路に含まれているインダクタ部のQ値の向上を望まれることがあった。
 本発明の目的は、パワーアンプに接続された出力整合回路に含まれているインダクタ部のQ値を向上させることが可能な高周波モジュール及び通信装置を提供することにある。
 本発明の一態様に係る高周波モジュールは、第1配線基板と、第2配線基板と、パワーアンプと、出力整合回路と、外部接続端子と、を備える。前記第1配線基板は、互いに対向する第1主面及び第2主面を有する。前記第2配線基板は、互いに対向する第3主面及び第4主面を有する。前記第2配線基板は、前記第1配線基板の厚さ方向において前記第1配線基板から離れている。前記パワーアンプは、出力用パッド電極を有する。前記出力整合回路は、複数のインダクタ部を含み、前記パワーアンプの前記出力用パッド電極に接続されている。前記高周波モジュールでは、前記第1配線基板の前記第2主面と前記第2配線基板の前記第3主面とが向かい合っている。前記外部接続端子は、前記第2配線基板の前記第4主面に配置されている。前記パワーアンプは、前記第1配線基板の前記第1主面に配置されている。前記出力整合回路では、前記複数のインダクタ部のうち前記出力用パッド電極に最も近いインダクタ部である第1インダクタ部の少なくとも一部が、前記第1配線基板の前記第1主面に配置されている。
 本発明の一態様に係る通信装置は、信号処理回路と、前記高周波モジュールと、を備える。前記信号処理回路は、送信信号を出力する。前記高周波モジュールの前記パワーアンプは、前記信号処理回路からの前記送信信号を増幅して出力する。
 本発明の上記態様に係る高周波モジュール及び通信装置は、パワーアンプに接続された出力整合回路に含まれているインダクタ部のQ値を向上させることが可能となる。
図1Aは、実施形態1に係る高周波モジュールの断面図である。図1Bは、同上の高周波モジュールの要部拡大図である。 図2は、同上の高周波モジュールの要部平面図である。 図3は、同上の高周波モジュールを備える通信装置の回路構成図である。 図4は、同上の高周波モジュールの出力整合回路の回路図である。 図5は、同上の高周波モジュールの出力整合回路の他例の回路図である。 図6は、実施形態1の変形例1に係る高周波モジュールの断面図である。 図7は、実施形態1の変形例2に係る高周波モジュールの断面図である。 図8は、実施形態1の変形例3に係る高周波モジュールの断面図である。 図9は、実施形態1の変形例4に係る高周波モジュールの断面図である。 図10Aは、実施形態2に係る高周波モジュールの断面図である。図10Bは、同上の高周波モジュールの要部拡大図である。 図11は、同上の高周波モジュールの一部破断した平面図である。 図12は、同上の高周波モジュールの一部破断した横断面図である。 図13は、同上の高周波モジュールを備える通信装置の回路構成図である。 図14は、同上の高周波モジュールの要部回路図である。
 以下の実施形態等において参照する図1A、1B、2、6~9、10A、10B、11及び12は、いずれも模式的な図であり、図中の各構成要素の大きさや厚さそれぞれの比が、必ずしも実際の寸法比を反映しているとは限らない。
 (実施形態1)
 以下、実施形態1に係る高周波モジュール1及び通信装置300について、図1A~4を参照して説明する。
 (1)高周波モジュール及び通信装置
 (1.1)高周波モジュール及び通信装置の回路構成
 実施形態1に係る高周波モジュール1及び通信装置300の回路構成について、図3及び4を参照して説明する。
 実施形態1に係る高周波モジュール1は、例えば、通信装置300に用いられる。通信装置300は、例えば、携帯電話(例えば、スマートフォン)であるが、これに限らず、例えば、ウェアラブル端末(例えば、スマートウォッチ)等であってもよい。高周波モジュール1は、例えば、4G(第4世代移動通信)規格、5G(第5世代移動通信)規格に対応可能なモジュールである。4G規格は、例えば、3GPP LTE(Long Term Evolution)規格である。5G規格は、例えば、5G NR(New Radio)である。高周波モジュール1は、キャリアアグリゲーション及びデュアルコネクティビティに対応可能なモジュールである。
 高周波モジュール1は、例えば、信号処理回路301から入力された送信信号を増幅してアンテナ310に出力できるように構成されている。また、高周波モジュール1は、アンテナ310から入力された受信信号を増幅して信号処理回路301に出力できるように構成されている。信号処理回路301は、高周波モジュール1の構成要素ではなく、高周波モジュール1を備える通信装置300の構成要素である。実施形態1に係る高周波モジュール1は、例えば、通信装置300の備える信号処理回路301によって制御される。通信装置300は、高周波モジュール1と、信号処理回路301と、を備える。通信装置300は、アンテナ310を更に備える。通信装置300は、高周波モジュール1が実装された回路基板320(図1A参照)を更に備える。回路基板320は、例えば、プリント配線板である。回路基板320は、グランド電位が与えられるグランド電極を有する。
 信号処理回路301は、例えば、RF信号処理回路302と、ベースバンド信号処理回路303と、を含む。RF信号処理回路302は、例えばRFIC(Radio Frequency Integrated Circuit)であり、高周波信号に対する信号処理を行う。RF信号処理回路302は、例えば、ベースバンド信号処理回路303から出力された高周波信号(送信信号)に対してアップコンバート等の信号処理を行い、信号処理が行われた高周波信号を出力する。また、RF信号処理回路302は、例えば、高周波モジュール1から出力された高周波信号(受信信号)に対してダウンコンバート等の信号処理を行い、信号処理が行われた高周波信号をベースバンド信号処理回路303へ出力する。ベースバンド信号処理回路303は、例えばBBIC(Baseband Integrated Circuit)である。ベースバンド信号処理回路303は、ベースバンド信号からI相信号及びQ相信号を生成する。ベースバンド信号は、例えば、外部から入力される音声信号、画像信号等である。ベースバンド信号処理回路303は、I相信号とQ相信号とを合成することでIQ変調処理を行って、送信信号を出力する。この際、送信信号は、所定周波数の搬送波信号を、当該搬送波信号の周期よりも長い周期で振幅変調した変調信号(IQ信号)として生成される。ベースバンド信号処理回路303で処理された受信信号は、例えば、画像信号として画像表示のために、又は、音声信号として通話のために使用される。高周波モジュール1は、アンテナ310と信号処理回路301のRF信号処理回路302との間で高周波信号(受信信号、送信信号)を伝達する。
 実施形態1に係る高周波モジュール1は、2つのパワーアンプ11A,11Bと、2つの出力整合回路13A,13Bと、を備える。また、高周波モジュール1は、2つのローノイズアンプ21A,21Bを更に備える。また、高周波モジュール1は、2つの送信用フィルタ12A,12Bと、2つの受信用フィルタ22A,22Bと、を備える。また、高周波モジュール1は、1つの送受信用フィルタ32Cを更に備える。また、高周波モジュール1は、スイッチ4(以下、第1スイッチ4ともいう)と、スイッチ5(以下、第2スイッチ5ともいう)と、スイッチ6(以下、第3スイッチ6ともいう)と、スイッチ7(以下、第4スイッチ7ともいう)と、を更に備える。また、高周波モジュール1は、ダイプレクサ3を更に備える。また、高周波モジュール1は、2つの入力整合回路23A,23Bと、3つの整合回路14A,14B,14Cと、を更に備える。
 また、高周波モジュール1は、複数の外部接続端子80を備えている。複数の外部接続端子80は、アンテナ端子81と、2つの信号入力端子82A,82Bと、2つの信号出力端子83A,83Bと、複数のグランド端子85(図1A参照)と、を含む。複数のグランド端子85は、通信装置300の備える上述の回路基板320のグランド電極と電気的に接続されてグランド電位が与えられる端子である。
 パワーアンプ11Aは、信号入力端子82Aに接続された信号経路Tx11に設けられている。パワーアンプ11Aは、例えば、信号処理回路301からの送信信号を増幅して出力する。より詳細には、パワーアンプ11Aは、信号処理回路301から信号入力端子82Aを介して入力された第1所定周波数帯域の送信信号を増幅して出力する。ここにおいて、第1所定周波数帯域は、例えば、第1通信バンドと第2通信バンドとを含む。第1通信バンドは、送信用フィルタ12Aを通る送信信号に対応する。第2通信バンドは、送信用フィルタ12Bを通る送信信号に対応する。
 パワーアンプ11Bは、信号入力端子82Bに接続された信号経路Tx12に設けられている。パワーアンプ11Bは、例えば、信号処理回路301からの送信信号を増幅して出力する。より詳細には、パワーアンプ11Bは、信号処理回路301から信号入力端子82Bを介して入力された第2所定周波数帯域の送信信号を増幅して出力する。ここにおいて、第2所定周波数帯域は、例えば、第3通信バンドを含む。第3通信バンドは、送受信用フィルタ32Cを通る送信信号に対応する。
 パワーアンプ11Aは、入力端子(図1Bに示す入力用パッド電極111A)及び出力端子(図1Bに示す出力用パッド電極112A)を有する。パワーアンプ11Aの入力端子は、信号入力端子82Aに接続されている。したがって、パワーアンプ11Aの入力端子は、信号入力端子82Aを介して信号処理回路301に接続される。信号入力端子82Aは、外部回路(例えば、信号処理回路301)からの高周波信号(送信信号)を高周波モジュール1に入力するための端子である。パワーアンプ11Aの出力端子は、出力整合回路13Aを介して第2スイッチ5の共通端子50に接続されている。高周波モジュール1は、外部回路(例えば、信号処理回路301)からパワーアンプ11Aに電源電圧を供給するための電源配線PS1(図4参照)を更に備えている。電源配線PS1は、第1端及び第2端を有するインダクタ部L20を含み、パワーアンプ11Aの出力端子に接続されている。電源配線PS1では、インダクタ部L20の第1端がパワーアンプ11Aの出力端子に接続されている。また、インダクタ部L20の第2端は、電源端子(複数の外部接続端子80のうちの1つ)と、第1端及び第2端を有するキャパシタC20の第1端と、に接続されている。キャパシタC20の第2端は、グランドに接続される。
 パワーアンプ11Bは、入力端子(入力用パッド電極)及び出力端子(出力用パッド電極)を有する。パワーアンプ11Bの入力端子は、信号入力端子82Bに接続されている。したがって、パワーアンプ11Bの入力端子は、信号入力端子82Bを介して信号処理回路301に接続される。信号入力端子82Bは、外部回路(例えば、信号処理回路301)からの高周波信号(送信信号)を高周波モジュール1に入力するための端子である。パワーアンプ11Bの出力端子は、出力整合回路13Bを介して第4スイッチ7の選択端子71に接続されている。高周波モジュール1は、外部回路(例えば、信号処理回路301)からパワーアンプ11Bに電源電圧を供給するための電源配線を更に備えている。
 高周波モジュール1は、パワーアンプ11A,11B等を制御するコントローラを備えていてもよい。コントローラは、例えば、複数(例えば、4つ)の制御端子を介して信号処理回路301に接続される。複数の制御端子は、外部回路(例えば、信号処理回路301)からの制御信号をコントローラに入力するための端子である。コントローラは、複数の制御端子から取得した制御信号に基づいてパワーアンプ11A,11Bを制御する。複数の制御端子は、例えば、MIPI(Mobile Industry Processor Interface)規格に対応している。コントローラは、制御信号が入力される入力部として、複数の制御端子に接続されている複数の端子を有する。また、コントローラは、パワーアンプ11A,11Bに接続されるが、さらに第1スイッチ4と及び第2スイッチ5にも接続され、上述の制御信号に基づいて第1スイッチ4及び第2スイッチ5も制御する。
 出力整合回路13Aは、信号経路Tx11において、パワーアンプ11Aの出力端子と第2スイッチ5の共通端子50との間に設けられている。出力整合回路13Aは、パワーアンプ11Aと送信用フィルタ12A,12Bとのインピーダンス整合をとるための回路である。出力整合回路13Aは、例えば、図4に示すように、複数(図示例では、2つ)のインダクタ部L1,L2及び複数(図示例では2つ)のキャパシタC1,C2を含む。2つのインダクタ部L1,L2の各々は、第1端及び第2端を有する。2つのキャパシタC1,C2の各々は、第1端及び第2端を有する。出力整合回路13Aでは、インダクタ部L1の第1端がパワーアンプ11Aの出力端子と接続され、インダクタ部L1の第2端がキャパシタC1,C2それぞれの第1端と接続されている。キャパシタC1の第2端は、グランドと接続される。キャパシタC2の第2端は、インダクタ部L2の第1端及び第2スイッチ5の共通端子50と接続されている。インダクタ部L2の第2端は、グランドと接続される。出力整合回路13Aの回路構成は、図4の例に限らない。出力整合回路13Aは、例えば、図5に示すように、インダクタ部L1にインダクタ部L2が直列接続され、インダクタ部L1の第2端がキャパシタC1を介してグランドと接続され、インダクタ部L2の第2端がキャパシタC2を介してグランドと接続されてもよい。
 出力整合回路13Bは、信号経路Tx12において、パワーアンプ11Bの出力端子と第4スイッチ7の選択端子71との間に設けられている。出力整合回路13Bは、パワーアンプ11Bと送受信用フィルタ32Cとのインピーダンス整合をとるための回路である。出力整合回路13Bは、例えば、複数のインダクタ部及び複数のキャパシタを含む。出力整合回路13Bの回路構成は、出力整合回路13Aと同じであるが、これに限らず、異なってもよい。
 ローノイズアンプ21Aは、入力端子及び出力端子を有する。ローノイズアンプ21Aは、信号出力端子83Aに接続された信号経路Rx11に設けられている。ローノイズアンプ21Aは、入力端子に入力された第1所定周波数帯域の受信信号を増幅して出力端子から出力する。ローノイズアンプ21Aの入力端子は、第3スイッチ6の共通端子60に接続されている。高周波モジュール1は、ローノイズアンプ21の入力端子と第3スイッチ6の共通端子60との間に設けられた入力整合回路23Aを更に備える。ローノイズアンプ21Aの出力端子は、信号出力端子83Aに接続されている。ローノイズアンプ21Aの出力端子は、例えば、信号出力端子83Aを介して信号処理回路301に接続される。信号出力端子83Aは、ローノイズアンプ21Aからの高周波信号(受信信号)を外部回路(例えば、信号処理回路301)へ出力するための端子である。
 ローノイズアンプ21Bは、入力端子及び出力端子を有する。ローノイズアンプ21Bは、信号出力端子83Bに接続された信号経路Rx12に設けられている。ローノイズアンプ21Bは、入力端子に入力された第2所定周波数帯域の受信信号を増幅して出力端子から出力する。ローノイズアンプ21Bの入力端子は、第4スイッチ7の2つの選択端子71,72のうち選択端子72に接続されている。高周波モジュール1は、ローノイズアンプ21Bの入力端子と第4スイッチ7の選択端子72との間に設けられた入力整合回路23Bを更に備える。ローノイズアンプ21Bの出力端子は、信号出力端子83Bに接続されている。ローノイズアンプ21Bの出力端子は、例えば、信号出力端子83Bを介して信号処理回路301に接続される。信号出力端子83Bは、ローノイズアンプ21Bからの高周波信号(受信信号)を外部回路(例えば、信号処理回路301)へ出力するための端子である。
 送信用フィルタ12Aは、例えば、第1通信バンドの送信帯域を通過帯域とするフィルタである。送信用フィルタ12Bは、例えば、第2通信バンドの送信帯域を通過帯域とするフィルタである。送受信用フィルタ32Cは、例えば、第3通信バンドの送信帯域及び受信帯域を通過帯域とするフィルタである。受信用フィルタ22Aは、例えば、第1通信バンドの受信帯域を通過帯域とするフィルタである。受信用フィルタ22Bは、例えば、第2通信バンドの受信帯域を通過帯域とするフィルタである。
 第1スイッチ4は、共通端子40と、複数(ここでは、3つ)の選択端子41~43と、を有する。第1スイッチ4は、アンテナ端子81に接続されるアンテナスイッチである。第1スイッチ4では、共通端子40が、アンテナ端子81に接続されている。より詳細には、共通端子40は、第1フィルタ30及び第2フィルタ31を有するダイプレクサ3の第1フィルタ30を介してアンテナ端子81に接続されている。アンテナ端子81には、アンテナ310が接続される。選択端子41は、整合回路14Aを介して、送信用フィルタ12Aの出力端子と受信用フィルタ22Aの入力端子との接続点に接続されている。選択端子42は、整合回路14Bを介して、送信用フィルタ12Bの出力端子と受信用フィルタ22Bの入力端子との接続点に接続されている。選択端子43は、整合回路14Cを介して、送受信用フィルタ32Cに接続されている。第1スイッチ4は、例えば、共通端子40に複数(ここでは、3つ)の選択端子41~43のうち少なくとも1つ以上を接続可能なスイッチである。ここで、第1スイッチ4は、例えば、一対一及び一対多の接続が可能なスイッチである。
 第1スイッチ4は、パワーアンプ11Aと出力整合回路13Aと第2スイッチ5と送信用フィルタ12Aと整合回路14Aとを含む送信回路に接続されている。また、第1スイッチ4は、パワーアンプ11Aと出力整合回路13Aと第2スイッチ5と送信用フィルタ12Bとを含む送信回路に接続されている。また、第1スイッチ4は、パワーアンプ11Bと出力整合回路13Bと第4スイッチ7と送受信用フィルタ32Cと整合回路14Cとを含む送信回路に接続されている。また、第1スイッチ4は、整合回路14Aと受信用フィルタ22Aと第2スイッチ5と入力整合回路23Aとローノイズアンプ21Aとを含む受信回路に接続されている。また、第1スイッチ4は、整合回路14Bと受信用フィルタ22Bと第2スイッチ5と入力整合回路23Aとローノイズアンプ21Aとを含む受信回路に接続されている。また、第1スイッチ4は、整合回路14Cと送受信用フィルタ32Cと第4スイッチ7と入力整合回路23Bとローノイズアンプ21Bとを含む受信回路と接続されている。
 第1スイッチ4は、例えば、コントローラによって制御される。第1スイッチ4は、例えば、コントローラからの制御信号にしたがって、共通端子40と複数の選択端子41~43との接続状態を切り替える。第1スイッチ4は、例えば、スイッチIC(Integrated Circuit)である。
 第2スイッチ5は、共通端子50と、複数(ここでは、2つ)の選択端子51~52と、を有する。共通端子50は、出力整合回路13Aを介してパワーアンプ11Aの出力端子に接続されている。選択端子51は、送信用フィルタ12Aの入力端子に接続されている。選択端子52は、送信用フィルタ12Bの入力端子に接続されている。第2スイッチ5は、例えば、共通端子50に複数の選択端子51~52のうち少なくとも1つ以上を接続可能なスイッチである。ここで、第2スイッチ5は、例えば、一対一及び一対多の接続が可能なスイッチである。第2スイッチ5は、互いに通信バンドの異なる複数の送信信号用の信号経路を切り替えるためのバンドセレクトスイッチである。
 第2スイッチ5は、例えば、コントローラによって制御される。第2スイッチ5は、例えば、コントローラからの制御信号にしたがって、共通端子50と複数の選択端子51~52との接続状態を切り替える。第2スイッチ5は、例えば、スイッチICである。
 第3スイッチ6は、共通端子60と、複数の選択端子61~62と、を有する。共通端子60は、ローノイズアンプ21Aの入力端子に接続されている。選択端子61は、受信用フィルタ22Aの出力端子に接続されている。選択端子62は、受信用フィルタ22Bの出力端子に接続されている。第3スイッチ6は、例えば、共通端子60に複数の選択端子61~62のうち少なくとも1つ以上を接続可能なスイッチである。ここで、第3スイッチ6は、例えば、一対一及び一対多の接続が可能なスイッチである。
 第3スイッチ6は、例えば、コントローラによって制御される。第3スイッチ6は、例えば、コントローラからの制御信号にしたがって、共通端子60と複数の選択端子61~62との接続状態を切り替える。第3スイッチ6は、例えば、スイッチICである。
 ダイプレクサ3は、上述のように、第1フィルタ30及び第2フィルタ31を有する。第1フィルタ30は、例えば、第1所定周波数帯域及び第2所定周波数帯域を含む周波数帯域を通過帯域とするローパスフィルタである。第2フィルタ31は、例えば、第1所定周波数帯域及び第2所定周波数帯域を含む周波数帯域よりも高周波側の周波数帯域を通過帯域とするハイパスフィルタである。
 入力整合回路23Aは、ローノイズアンプ21Aの入力端子と第3スイッチ6の共通端子60との間の信号経路に設けられている。入力整合回路23Aは、ローノイズアンプ21Aと受信用フィルタ22A,22Bとのインピーダンス整合をとるための回路である。入力整合回路23Aは、例えば、1つのインダクタで構成されているが、これに限らず、例えば、複数のインダクタ及び複数のキャパシタを含む場合もある。
 入力整合回路23Bは、ローノイズアンプ21Bの入力端子と第4スイッチ7の選択端子72との間の信号経路に設けられている。入力整合回路23Bは、ローノイズアンプ21Bと送受信用フィルタ32Cとのインピーダンス整合をとるための回路である。入力整合回路23Bは、例えば、1つのインダクタで構成されているが、これに限らず、例えば、複数のインダクタ及び複数のキャパシタを含む場合もある。
 整合回路14Aは、送信用フィルタ12A及び受信用フィルタ22Aと第1スイッチ4の選択端子41との間に設けられている。整合回路14Aは、アンテナ端子81に接続されるアンテナ310及び第1スイッチ4と送信用フィルタ12A及び受信用フィルタ22Aとのインピーダンス整合をとるための回路である。整合回路14Aは、例えば、1つのインダクタで構成されているが、これに限らず、例えば、複数のインダクタ及び複数のキャパシタを含む場合もある。
 整合回路14Bは、送信用フィルタ12B及び受信用フィルタ22Bと第1スイッチ4との間に設けられている。整合回路14Bは、アンテナ端子81に接続されるアンテナ310及び第1スイッチ4と送信用フィルタ12B及び受信用フィルタ22Bとのインピーダンス整合をとるための回路である。整合回路14Bは、例えば、1つのインダクタで構成されているが、これに限らず、例えば、複数のインダクタ及び複数のキャパシタを含む場合もある。
 整合回路14Cは、送受信用フィルタ32Cと第1スイッチ4との間に設けられている。整合回路14Cは、アンテナ端子81に接続されるアンテナ310及び第1スイッチ4と送受信用フィルタ32Cとのインピーダンス整合をとるための回路である。整合回路14Cは、例えば、1つのインダクタで構成されているが、これに限らず、例えば、複数のインダクタ及び複数のキャパシタを含む場合もある。
 (1.2)高周波モジュールの構造
 以下、高周波モジュール1の構造について図1A、1B、2及び3を参照して説明する。
 高周波モジュール1は、第1配線基板9と、第2配線基板10と、パワーアンプ11Aと、出力整合回路13Aと、外部接続端子80と、を備える。
 第1配線基板9は、第1配線基板9の厚さ方向D1において互いに対向する第1主面91及び第2主面92を有する。第2配線基板10は、第2配線基板10の厚さ方向D2において互いに対向する第3主面101及び第4主面102を有する。第2配線基板10は、第1配線基板9の厚さ方向D1において第1配線基板9から離れている。
 第1配線基板9は、例えば、プリント配線板、LTCC(Low Temperature Co-fired Ceramics)基板、HTCC(High Temperature Co-fired Ceramics)基板、樹脂多層基板である。ここにおいて、第1配線基板9は、例えば、複数の誘電体層及び複数の導電層を含む多層基板である。複数の誘電体層及び複数の導電層は、第1配線基板9の厚さ方向D1において積層されている。複数の導電層は、層ごとに定められた所定パターンに形成されている。複数の導電層の各々は、第1配線基板9の厚さ方向D1に直交する一平面内において1つ又は複数の導体部を含む。各導電層の材料は、例えば、銅である。複数の導電層は、グランド層を含む。高周波モジュール1では、複数のグランド端子85とグランド層とが、第1配線基板9の有するビア導体等を介して電気的に接続されている。
 第1配線基板9は、配線構造体であってもよい。配線構造体は、例えば、多層構造体である。多層構造体は、少なくとも1つの絶縁層と、少なくとも1つの導電層とを含む。絶縁層は、所定パターンに形成されている。絶縁層が複数の場合は、複数の絶縁層は、層ごとに定められた所定パターンに形成されている。導電層は、絶縁層の所定パターンとは異なる所定パターンに形成されている。導電層が複数の場合は、複数の導電層は、層ごとに定められた所定パターンに形成されている。導電層は、1つ又は複数の再配線部を含んでもよい。配線構造体では、多層構造体の厚さ方向において互いに対向する2つの面のうち第1面が第1配線基板9の第1主面91であり、第2面が第1配線基板9の第2主面92である。配線構造体は、例えば、インタポーザであってもよい。インタポーザは、シリコン基板を用いたインタポーザであってもよいし、多層で構成された基板であってもよい。
 第1配線基板9の第1主面91及び第2主面92は、第1配線基板9の厚さ方向D1において離れており、第1配線基板9の厚さ方向D1に交差する。第1配線基板9における第1主面91は、例えば、第1配線基板9の厚さ方向D1に直交しているが、例えば、厚さ方向D1に直交しない面として導体部の側面等を含んでいてもよい。また、第1配線基板9における第2主面92は、例えば、第1配線基板9の厚さ方向D1に直交しているが、例えば、厚さ方向D1に直交しない面として、導体部の側面等を含んでいてもよい。また、第1配線基板9の第1主面91及び第2主面92は、微細な凹凸又は凹部又は凸部が形成されていてもよい。第1配線基板9の厚さ方向D1からの平面視で、第1配線基板9は、長方形状であるが、これに限らず、例えば、正方形状であってもよい。
 第2配線基板10は、例えば、プリント配線板、LTCC基板、HTCC基板、樹脂多層基板である。ここにおいて、第2配線基板10は、例えば、複数の誘電体層及び複数の導電層を含む多層基板である。複数の誘電体層及び複数の導電層は、第2配線基板10の厚さ方向D2において積層されている。複数の導電層は、層ごとに定められた所定パターンに形成されている。複数の導電層の各々は、第2配線基板10の厚さ方向D2に直交する一平面内において1つ又は複数の導体部を含む。各導電層の材料は、例えば、銅である。複数の導電層は、グランド層を含む。高周波モジュール1では、複数のグランド端子85とグランド層とが、第2配線基板10の有するビア導体等を介して電気的に接続されている。
 第2配線基板10は、配線構造体であってもよい。配線構造体は、例えば、多層構造体である。多層構造体は、少なくとも1つの絶縁層と、少なくとも1つの導電層とを含む。絶縁層は、所定パターンに形成されている。絶縁層が複数の場合は、複数の絶縁層は、層ごとに定められた所定パターンに形成されている。導電層は、絶縁層の所定パターンとは異なる所定パターンに形成されている。導電層が複数の場合は、複数の導電層は、層ごとに定められた所定パターンに形成されている。導電層は、1つ又は複数の再配線部を含んでもよい。配線構造体では、多層構造体の厚さ方向において互いに対向する2つの面のうち第1面が第2配線基板10の第3主面101であり、第2面が第2配線基板10の第4主面102である。配線構造体は、例えば、インタポーザであってもよい。インタポーザは、シリコン基板を用いたインタポーザであってもよいし、多層で構成された基板であってもよい。
 第2配線基板10の第3主面101及び第4主面102は、第2配線基板10の厚さ方向D2において離れており、第2配線基板10の厚さ方向D2に交差する。第2配線基板10における第3主面101は、例えば、第2配線基板10の厚さ方向D2に直交しているが、例えば、厚さ方向D2に直交しない面として導体部の側面等を含んでいてもよい。また、第2配線基板10における第4主面102は、例えば、第2配線基板10の厚さ方向D2に直交しているが、例えば、厚さ方向D2に直交しない面として、導体部の側面等を含んでいてもよい。また、第2配線基板10の第3主面101及び第4主面102は、微細な凹凸又は凹部又は凸部が形成されていてもよい。第2配線基板10の厚さ方向D2からの平面視で、第2配線基板10の外周形状は、第1配線基板9の外周形状と同じであるが、これに限らず、異なってもよい。
 高周波モジュール1は、複数の回路素子部として、上述の2つのパワーアンプ11A,11Bと、出力整合回路13Aの複数のインダクタ部L1,L2及び複数のキャパシタC1,C2と、出力整合回路13Bの複数のインダクタ部及び複数のキャパシタと、2つのローノイズアンプ21A,21Bと、2つの送信用フィルタ12A,12Bと、2つの受信用フィルタ22A,22Bと、送受信用フィルタ32Cと、第1スイッチ4と、第2スイッチ5と、第3スイッチ6と、第4スイッチ7と、入力整合回路23Aのインダクタ、入力整合回路23Bのインダクタと、整合回路14Aのインダクタと、整合回路14Bのインダクタと、整合回路14Cのインダクタと、ダイプレクサ3と、コントローラと、を備える。
 第1配線基板9の第1主面91には、パワーアンプ11A、出力整合回路13Aの複数のインダクタ部L1,L2及び複数のキャパシタC1,C2が配置されている。パワーアンプ11Aは、例えば、HBT(Heterojunction Bipolar Transistor)を含む電力増幅回路を有するGaAs系ICチップである。電力増幅回路は、出力段増幅回路と、ドライバ段増幅回路と、を含んでいる。パワーアンプ11Aは、GaAs系ICチップに限らず、例えば、電力増幅回路を有するSi系ICチップ又は電力増幅回路を有するSiGe系ICチップであってもよい。第1配線基板9の厚さ方向D1からの平面視で、パワーアンプ11Aの外周形状は、四角形状である。出力整合回路13Aの複数のインダクタ部L1,L2のうちパワーアンプ11Aの出力用パッド電極112Aに最も近いインダクタ部である第1インダクタ部L1は、配線インダクタ95であり、第1配線基板9の第1主面91に配置されている。ここにおいて、配線インダクタ95は、第1配線基板9の複数の導電層のうち最表層の導電層の一部を利用して形成されている。また、インダクタ部L2は、チップインダクタであり、第1配線基板9に実装されている。インダクタ部L2は、チップインダクタに限らず、配線インダクタであってもよい。複数のキャパシタC1,C2は、表面実装型電子部品であり、第1配線基板9に実装されている。ここにおいて、実装されるとは、回路素子部が第1配線基板9に配置されること(機械的に接続されること)と、回路素子部が第1配線基板9(の適宜の導体部)と電気的に接続されることと、を含む。
 また、第1配線基板9の第1主面91には、さらに、パワーアンプ11B、出力整合回路13Bの複数のインダクタ部及び複数のキャパシタが配置されている。パワーアンプ11Bは、パワーアンプ11Aと同様、電力増幅回路を有するGaAs系ICチップであるが、電力増幅回路を有するSi系ICチップ又は電力増幅回路を有するSiGe系ICチップであってもよい。出力整合回路13Bの複数のインダクタ部のうちパワーアンプ11Bの出力用パッド電極に最も近いインダクタ部では第1インダクタ部は、配線インダクタであり、第1配線基板9の第1主面91に配置されている。出力整合回路13Bの複数のキャパシタは、表面実装型電子部品であり、第1配線基板9に実装されている。
 第1配線基板9の第1主面91には、さらに、第2スイッチ5、及び送信用フィルタ12A,12Bが配置されている。ここにおいて、第2スイッチ5、及び送信用フィルタ12A,12Bは、第1配線基板9の第1主面91に実装されている。より詳細には、第2スイッチ5、及び送信用フィルタ12A,12Bは、第1配線基板9の第1主面91にフリップチップ実装されている。2つの送信用フィルタ12A,12Bの各々は、例えば、ラダー型フィルタであり、複数(例えば、4つ)の直列腕共振子と、複数(例えば、3つ)の並列腕共振子と、を有する。2つの送信用フィルタ12A、12Bの各々は、例えば、弾性波フィルタであり、複数の直列腕共振子及び複数の並列腕共振子の各々が弾性波共振子により構成されている。弾性波フィルタは、例えば、弾性表面波を利用する表面弾性波フィルタである。表面弾性波フィルタでは、複数の直列腕共振子及び複数の並列腕共振子の各々は、例えば、SAW(Surface Acoustic Wave)共振子である。
 第1配線基板9の第2主面92には、第1スイッチ4、受信用フィルタ22A,22B、送受信用フィルタ32C、ダイプレクサ3及びコントローラが配置されている。ここにおいて、第1スイッチ4、受信用フィルタ22A,22B及び送受信用フィルタ32C及びコントローラは、第1配線基板9の第2主面92に実装されている。より詳細には、第1スイッチ4、受信用フィルタ22A,22B及び送受信用フィルタ32Cは、第1配線基板9の第2主面92にフリップチップ実装されている。2つの受信用フィルタ22A,22Bの各々は、例えば、ラダー型フィルタであり、複数(例えば、4つ)の直列腕共振子と、複数(例えば、3つ)の並列腕共振子と、を有する。2つの受信用フィルタ22A,22Bの各々は、例えば、弾性波フィルタであり、複数の直列腕共振子及び複数の並列腕共振子の各々が弾性波共振子により構成されている。弾性波フィルタは、例えば、弾性表面波を利用する表面弾性波フィルタである。表面弾性波フィルタでは、複数の直列腕共振子及び複数の並列腕共振子の各々は、例えば、SAW共振子である。ダイプレクサ3の第1フィルタ30及び第2フィルタ31の各々は、例えば、複数のインダクタ及びキャパシタを含む。ダイプレクサ3の第1フィルタ30及び第2フィルタ31は、複数のインダクタ及び複数のキャパシタを含む。第1フィルタ30及び第2フィルタ31は、IPD(Integrated Passive Device)であってもよい。コントローラは、少なくともパワーアンプ11A,11Bを制御する機能を有するICチップである。
 第2配線基板10の第4主面102には、例えば、送受信用フィルタ32C及び第4スイッチ7が配置されている。送受信用フィルタ32Cは、例えば、ラダー型フィルタであり、複数(例えば、4つ)の直列腕共振子と、複数(例えば、3つ)の並列腕共振子と、を有する。送受信用フィルタ32Cは、例えば、弾性波フィルタであり、複数の直列腕共振子及び複数の並列腕共振子の各々が弾性波共振子により構成されている。弾性波フィルタは、例えば、弾性表面波を利用する表面弾性波フィルタである。表面弾性波フィルタでは、複数の直列腕共振子及び複数の並列腕共振子の各々は、例えば、SAW共振子である。
 また、第2配線基板10の第4主面102には、2つのローノイズアンプ21A,21B、第3スイッチ6、入力整合回路23Aのインダクタ、入力整合回路23Bのインダクタ、及び複数の外部接続端子80が配置されている。ここにおいて、2つのローノイズアンプ21A,21Bは、増幅回路を有するSi系ICチップである。高周波モジュール1では、ローノイズアンプ21Aとローノイズアンプ21Bとが、1チップに集積化されていてもよい。また、高周波モジュール1では、ローノイズアンプ21Aとローノイズアンプ21Bと第3スイッチ6とが、1チップに集積化されていてもよい。
 2つの入力整合回路23A,23Bの各々のインダクタは、例えば、チップインダクタである。2つの入力整合回路23A,23Bの各々のインダクタは、例えば、第2配線基板10の第4主面102に実装されているが、これに限らない。
 複数の整合回路14A,14B,14Cの各々におけるインダクタは、例えば、チップインダクタである。複数の整合回路14A,14B,14Cの各々におけるインダクタは、例えば、第1配線基板9の第2主面92に実装されているが、これに限らない。
 第2配線基板10の第4主面102には、複数の外部接続端子80が配置されている。複数の外部接続端子80の材料は、例えば、銅、銅合金である。複数の外部接続端子80の各々は、柱状電極である。ここにおいて、柱状電極は、例えば、円柱状の電極である。
 複数の外部接続端子80は、上述のように、アンテナ端子81と、2つの信号入力端子82A,82Bと、2つ信号出力端子83A,83Bと、複数の制御端子と、複数のグランド端子85と、を含んでいる。複数のグランド端子85は、上述のように第1配線基板9のグランド層と第2配線基板10のグランド層との少なくとも一方のグランド層と電気的に接続されている。グランド層は高周波モジュール1の回路グランドであり、高周波モジュール1の複数の回路素子部は、グランド層と電気的に接続されている回路素子部を含む。
 高周波モジュール1は、第1樹脂層16を更に備える。第1樹脂層16は、第1配線基板9の第1主面91側において第1配線基板9の第1主面91に配置されている複数の回路素子部(2つのパワーアンプ11A,11B、2つのインダクタ部L1,L2、2つのキャパシタC1,C2、第2スイッチ5、2つの送信用フィルタ12A,12B等)を覆っている。第1樹脂層16は、樹脂を含む。第1樹脂層16は、樹脂の他にフィラーを含んでいてもよい。
 また、高周波モジュール1は、第2樹脂層17を更に備える。第2樹脂層17は、第2配線基板10の第4主面102側において第2配線基板10の第4主面102に配置されている複数の回路素子部(2つのローノイズアンプ21A,21B等)と複数の外部接続端子80の各々の一部とを覆っている。第2樹脂層17は、複数の外部接続端子80の各々における先端面を露出させるように形成されている。第2樹脂層17は、樹脂を含む。第2樹脂層17は、樹脂の他にフィラーを含んでいてもよい。第2樹脂層17の材料は、第1樹脂層16の材料と同じ材料であってもよいし、異なる材料であってもよい。第2樹脂層17は、第2配線基板10の第4主面102に配置されている複数の回路素子部の各々における第2配線基板10側とは反対側の主面を露出させるように形成されていてもよい。
 また、高周波モジュール1は、第3樹脂層18を更に備える。第3樹脂層18は、第1配線基板9の第2主面92側において第1配線基板9の第2主面92に配置されている複数の回路素子部(第1スイッチ4、受信用フィルタ22A,22B、送受信用フィルタ32C、ダイプレクサ3及びコントローラ等)を覆っている。第3樹脂層18は、樹脂を含む。第3樹脂層18は、樹脂の他にフィラーを含んでいてもよい。第3樹脂層18の材料は、第1樹脂層16の材料と同じ材料であってもよいし、異なる材料であってもよい。第3樹脂層18は、第1配線基板9の第2主面92と第2配線基板10の第3主面101との間に介在している。高周波モジュール1では、例えば、第3樹脂層18と第2配線基板10の第3主面101とが接合(例えば、熱圧着)されている。
 また、高周波モジュール1は、貫通電極94を更に備える。貫通電極94は、第1配線基板9の厚さ方向D1からの平面視でパワーアンプ11Aに重なっている。貫通電極94は、パワーアンプ11Aに接続され第1配線基板9と第2配線基板10とを貫通している。貫通電極94は、第1配線基板9を貫通している導体部941と、第3樹脂層18を貫通している導体部942と、第2配線基板10を貫通している導体部943と、を含む。貫通電極94は、パワーアンプ11Aと複数の外部接続端子80に含まれる放熱用端子86と、を接続している。放熱用端子86は、回路基板320のグランドに接続される。高周波モジュール1は、パワーアンプ11Aに接続されている貫通電極94を複数備えるのが好ましい。
 (2)まとめ
 (2.1)高周波モジュール
 実施形態1に係る高周波モジュール1は、第1配線基板9と、第2配線基板10と、パワーアンプ11Aと、出力整合回路13Aと、外部接続端子80と、を備える。第1配線基板9は、互いに対向する第1主面91及び第2主面92を有する。第2配線基板10は、互いに対向する第3主面101及び第4主面102を有する。第2配線基板10は、第1配線基板9の厚さ方向D1において第1配線基板9から離れている。パワーアンプ11Aは、出力用パッド電極112Aを有する。出力整合回路13Aは、複数のインダクタ部L1,L2を含み、パワーアンプ11Aの出力用パッド電極112Aに接続されている。高周波モジュール1では、第1配線基板9の第2主面92と第2配線基板10の第3主面101とが向かい合っている。外部接続端子80は、第2配線基板10の第4主面102に配置されている。パワーアンプ11Aは、第1配線基板9の第1主面91に配置されている。出力整合回路13Aでは、複数のインダクタ部L1,L2のうち出力用パッド電極112Aに最も近いインダクタ部L1である第1インダクタ部が、第1配線基板9の第1主面91に配置されている。
 実施形態1に係る高周波モジュール1は、パワーアンプ11Aに接続された出力整合回路13Aに含まれているインダクタ部L1のQ値を向上させることが可能となる。実施形態1に係る高周波モジュール1では、出力整合回路13Aにおける複数のインダクタ部L1,L2のうち出力用パッド電極112Aに最も近いインダクタ部L1である第1インダクタ部が、第1配線基板9の第1主面91に配置されている。これにより、インダクタ部L1と回路基板320のグランド等との間に発生する寄生容量を低減でき、インダクタ部L1のQ値を向上させることが可能となる。
 実施形態1に係る高周波モジュール1では、複数のインダクタ部L1,L2のうち出力用パッド電極112Aに最も近いインダクタ部L1である第1インダクタ部の全部が、第1配線基板9の第1主面91に配置されているが、これに限らず、第1インダクタ部の少なくとも一部が、第1配線基板9の第1主面91に配置されていてもよい。ここにおいて、第1インダクタ部の全部が第1配線基板9の第1主面91に配置されているほうが、第1インダクタ部の一部が第1配線基板9の第1主面91に配置され、第1インダクタ部の残りの一部が第1配線基板9中に配置されている場合と比べて、第1インダクタ部のQ値を向上させることが可能となる。
 高周波モジュール1では、パワーアンプ11Bに接続された出力整合回路13Bについても、出力整合回路13Bにおける複数のインダクタ部のうち出力用パッド電極に最も近いインダクタ部である第1インダクタ部が、第1配線基板9の第1主面91に配置されている。これにより、実施形態1に係る高周波モジュール1は、パワーアンプ11Bに接続された出力整合回路13Bに含まれている第1インダクタ部のQ値を向上させることが可能となる。
 実施形態1に係る高周波モジュール1は、第1配線基板9と第2配線基板10とを備えており、第1配線基板9と第2配線基板10とが第1配線基板9の厚さ方向D1において離れているので、第1配線基板9の厚さ方向D1からの平面視での高周波モジュール1の小型化を図りながらも、複数の回路素子部の配置の自由度を高めることが可能となる。
 また、実施形態1に係る高周波モジュール1では、第1インダクタ部(インダクタ部L1)が、配線インダクタ95である。これにより、実施形態1に係る高周波モジュール1では、低背化を図ることが可能となる。
 また、実施形態1に係る高周波モジュール1は、貫通電極94を更に備える。貫通電極94は、第1配線基板9の厚さ方向D1からの平面視でパワーアンプ11Aに重なっている。貫通電極94は、パワーアンプ11Aに接続され第1配線基板9と第2配線基板10とを貫通している。これにより、実施形態1に係る高周波モジュール1では、放熱性を向上させることが可能となる。
 また、実施形態1に係る高周波モジュール1では、第1配線基板9の第2主面92、第2配線基板10の第3主面101及び第4主面102に、厚さ方向D1からの平面視でパワーアンプ11に重なる回路素子部が配置されていない。これにより、実施形態1に係る高周波モジュール1では、パワーアンプ11で発生する熱を放熱させやすくなるという利点、第1配線基板9の第2主面92、第2配線基板10の第3主面101及び第4主面102のいずれかに配置される回路素子部の特性がパワーアンプ11からの熱の影響を受けにくくなる。
 また、実施形態1に係る高周波モジュール1は、ローノイズアンプ21A,21Bを更に備える。ローノイズアンプ21A,21Bは、第2配線基板10に配置されている。これにより、実施形態1に係る高周波モジュール1は、送信信号の送信及び受信信号の受信に利用でき、かつ、パワーアンプ11Aとローノイズアンプ21A,21Bとのアイソレーションを向上させることができる。
 (2.2)通信装置
 実施形態1に係る通信装置300は、高周波モジュール1と、信号処理回路301と、を備える。信号処理回路301は、送信信号を信号処理する。高周波モジュール1は、信号処理回路301からの送信信号を増幅して出力する。高周波モジュール1は、アンテナ310と信号処理回路301との間で送信信号を伝達する。
 実施形態1に係る通信装置300は、高周波モジュール1を備えるので、パワーアンプ11Aに接続された出力整合回路13Aに含まれているインダクタ部L1のQ値を向上させることが可能となる。信号処理回路301を構成する複数の電子部品は、例えば、上述の回路基板320に実装されていてもよいし、高周波モジュール1が実装された回路基板320である第1回路基板とは別の回路基板(第2回路基板)に実装されていてもよい。
 (3)高周波モジュールの変形例
 (3.1)変形例1
 実施形態1の変形例1に係る高周波モジュール1aについて、図6を参照して説明する。変形例1に係る高周波モジュール1aに関し、実施形態1に係る高周波モジュール1と同様の構成要素については、同一の符号を付して説明を省略する。
 変形例1に係る高周波モジュール1aは、出力整合回路13Aのインダクタ部L1がチップインダクタ15である点で、実施形態1に係る高周波モジュール1と相違する。
 変形例1に係る高周波モジュール1aでは、パワーアンプ11Aに接続された出力整合回路13A(図4参照)に含まれているインダクタ部L1のQ値を、より向上させることが可能となる。
 (3.2)変形例2
 実施形態1の変形例2に係る高周波モジュール1bについて、図7を参照して説明する。変形例2に係る高周波モジュール1bに関し、実施形態1に係る高周波モジュール1と同様の構成要素については、同一の符号を付して説明を省略する。
 変形例2に係る高周波モジュール1bは、シールド層19を更に備える点で、実施形態1に係る高周波モジュール1と相違する。
 シールド層19の材料は、例えば、金属である。シールド層19は、第1樹脂層16の主面及び外周面と、第1配線基板9の外周面と、第3樹脂層18の外周面と、第2配線基板10の外周面と、を覆っている。シールド層19は、第1配線基板9の有するグランド層及び第2配線基板10の有するグランド層と接触している。これにより、シールド層19の電位を各グランド層の電位と略同じにすることができる。
 変形例2に係る高周波モジュール1bでは、パワーアンプ11Aと出力整合回路13Aとを含む送信回路から高周波モジュール1bの外部への放射ノイズ及び高周波モジュール1bの外部からの電磁波等のノイズの侵入を抑制可能となる。
 (3.3)変形例3
 実施形態1の変形例3に係る高周波モジュール1cについて、図8を参照して説明する。変形例8に係る高周波モジュール1cに関し、実施形態1に係る高周波モジュール1と同様の構成要素については、同一の符号を付して説明を省略する。
 変形例3に係る高周波モジュール1cは、パワーアンプ11Bが、第2配線基板10の第3主面101に配置されている点で、実施形態1に係る高周波モジュール1と相違する。
 また、変形例3に係る高周波モジュール1cは、出力整合回路13B(図4参照)においてパワーアンプ11Bの出力用電極パッドに最も近いインダクタ部L1Bがチップインダクタ15Bである点で、実施形態1に係る高周波モジュール1と相違する。
 変形例3に係る高周波モジュール1cでは、パワーアンプ11Bに接続された出力整合回路13B(図4参照)に含まれているインダクタ部L1Bとして、配線インダクタと比べてQ値の高いチップインダクタ15Bを採用することが可能となる。
 (3.4)変形例4
 実施形態1の変形例4に係る高周波モジュール1dについて、図9を参照して説明する。変形例4に係る高周波モジュール1dに関し、実施形態1に係る高周波モジュール1と同様の構成要素については、同一の符号を付して説明を省略する。
 変形例4に係る高周波モジュール1dは、複数の外部接続端子80がボールバンプである点で、実施形態1に係る高周波モジュール1と相違する。また、変形例4に係る高周波モジュール1dは、実施形態1に係る高周波モジュール1の第2樹脂層17を備えていない点で、実施形態1に係る高周波モジュール1と相違する。変形例4に係る高周波モジュール1dは、第2配線基板10の第4主面102に配置された回路素子部(2つのローノイズアンプ21A,21B等)の各々と第2配線基板10の第4主面102との間の隙間に設けられたアンダーフィル部を備えていてもよい。
 複数の外部接続端子80の各々を構成するボールバンプの材料は、例えば、金、銅、はんだである。
 複数の外部接続端子80は、ボールバンプにより構成された外部接続端子80と、柱状電極により構成された外部接続端子80と、が混在してもよい。
 (実施形態2)
 実施形態2に係る高周波モジュール1e及び通信装置300eについて、図10A、10B、11~14を参照して説明する。実施形態2に係る高周波モジュール1e及び通信装置300eに関し、実施形態1に係る高周波モジュール1及び通信装置300それぞれと同様の構成要素については、同一の符号を付して説明を省略する。
 まず、実施形態2に係る高周波モジュール1e及び通信装置300eの回路構成について、図13及び14を参照して説明する。
 実施形態2に係る高周波モジュール1eでは、実施形態1に係る高周波モジュール1のパワーアンプ11A及び出力整合回路13Aの代わりに、差動増幅回路100Aを備え、パワーアンプ11B及び出力整合回路13Bの代わりに、差動増幅回路100Bを備える点で、実施形態1に係る高周波モジュール1と相違する。
 差動増幅回路100Aは、パワーアンプ11C(以下、第1パワーアンプ11Cともいう)と、パワーアンプ11D(以下、第2パワーアンプ11Dともいう)と、非平衡-平衡変換回路110と、を備える。第1パワーアンプ11Cは、入力用パッド電極111C及び出力用パッド電極112Cを有する(図10B及び11参照)。第2パワーアンプ11Dは、入力用パッド電極及び出力用パッド電極112D(図11参照)を有する。
 非平衡-平衡変換回路110は、非平衡端子と、第1平衡端子及び第2平衡端子と、を有する。非平衡-平衡変換回路110は、バランである。高周波モジュール1eでは、非平衡-平衡変換回路110の第1平衡端子が第1パワーアンプ11Cに接続され、第2平衡端子が第2パワーアンプ11Dに接続されている。
 差動増幅回路100Aは、増幅素子11Eを更に備える。増幅素子11Eは、入力端子及び出力端子を有する。増幅素子11Eの入力端子は、信号入力端子82Aに接続されている。増幅素子11Eの出力端子は、非平衡-平衡変換回路110の非平衡端子に接続されている。非平衡-平衡変換回路110の第1平衡端子は、第1パワーアンプ11Cの入力端子に接続されている。非平衡-平衡変換回路110の第2平衡端子は、第2パワーアンプ11Dの入力端子に接続されている。増幅素子11Eの出力端子には、バイアス電圧Vcc1が印加される。
 出力整合回路13Cは、複数のインダクタ部L11A,L11B,L12,L13を含む。また、出力整合回路13Cは、複数のキャパシタC11,C12,C13を含む。
 複数のインダクタ部L11A,L11B,L12,L13の各々は、第1端及び第2端を有する。また、複数のキャパシタC11,C12,C13の各々は、第1端及び第2端を有する。
 インダクタ部L11Aの第1端は、パワーアンプ11Cの出力端子(出力用パッド電極112C)に接続されている。インダクタ部L11Bの第1端は、パワーアンプ11Dの出力端子(出力用パッド電極112D)に接続されている。
 インダクタ部L11Aの第2端とインダクタ部L11Bの第2端との間には、インダクタ部L12が接続されている。また、インダクタ部L11Aの第2端とインダクタ部L11Bの第2端との間には、キャパシタC11が接続されている。つまり、キャパシタC11は、インダクタ部L12に並列接続されている。
 インダクタ部L13の第1端はキャパシタC12の第1端に接続されている。インダクタ部L13の第2端はグランドに接続される。キャパシタC12の第2端は、第2スイッチ5の共通端子50及びキャパシタC13の第1端と接続されている。キャパシタC13の第2端は、グランドに接続される。
 出力整合回路13Cは、インダクタ部L12を一次側コイルとし、インダクタ部L13を二次側コイルとするトランスT1を含む。つまり、高周波モジュール1eは、第1パワーアンプ11Cと第2パワーアンプ11DとトランスT1とを含む差動増幅回路100Aを有する。
 トランスT1は、第1端及び第2端を有する一次側コイル(インダクタ部L12)と、第1端及び第2端を有する二次側コイル(インダクタ部L13)と、を含む。一次側コイル(インダクタ部L12)の第1端は、インダクタ部L11Aを介して第1パワーアンプ11Cの出力端子に接続されており、一次側コイル(インダクタ部L12)の第2端は、インダクタ部L11Bを介して第2パワーアンプ11Dの出力端子に接続されている。また、一次側コイルの中点には、高周波モジュール1eの外部からバイアス電圧Vcc2を供給するための電源配線PS2が接続されている。二次側コイル(インダクタ部L13)の第1端は、キャパシタC12を介して第2スイッチ5の共通端子50に接続されている。二次側コイルの第2端は、グランド(グランド端子85)に接続されている。
 差動増幅回路100Aでは、信号入力端子82Aから入力された高周波信号は、増幅素子11Eにて増幅される。増幅素子11Eにて増幅された高周波信号は、非平衡-平衡変換回路110により非平衡-平衡変換される。このとき、非平衡-平衡変換回路110の第1平衡端子から非反転入力信号が出力され、非平衡-平衡変換回路110の第2平衡端子から反転入力信号が出力される。
 第1パワーアンプ11Cにて増幅された非反転入力信号と、第2パワーアンプ11Dにて増幅された反転入力信号とは、逆位相を維持したまま、インダクタL11A,L11B、トランスT1及びキャパシタC11にてインピーダンス変換される。これにより、差動増幅回路100Aの出力インピーダンスは、インダクタL11A,L11B、トランスT1及びキャパシタC11により、第2スイッチ5、送信用フィルタ12A,12Bの入力インピーダンスとインピーダンス整合される。差動増幅回路100Aの出力整合回路13Cでは、キャパシタC12,C13も、上記インピーダンス整合に寄与している。
 差動増幅回路100Aでは、第1パワーアンプ11C及び第2パワーアンプ11Dが反転位相にて動作する。このとき、第1パワーアンプ11C及び第2パワーアンプ11Dの基本波での電流が反転位相、つまり逆方向に流れるため、電源配線PS2及びグランドへの配線には基本波の電流は流れなくなる。このため、差動増幅回路100Aは、電源配線PS2及び上記配線への不要な電流の流れこみが無視できるので、従来の電力増幅器に見られる電力利得(パワーゲイン)の低下を抑制することが可能となる。また、差動増幅回路100Aは、2つのパワーアンプ11C,11Dを用いることで、2つのパワーアンプ11C,11Dの合成出力インピーダンスと、差動増幅回路100Aの出力側に接続される回路素子の入力インピーダンスとのインピーダンス比を小さくできるので、増幅された高周波信号の整合損失を低減できる。さらに、差動増幅回路100Aでは、第1パワーアンプ11Cで増幅された非反転入力信号と第2パワーアンプ11Dで増幅された反転入力信号とが合成されるので、非反転入力信号と反転入力信号との両方に同様に重畳されたノイズ成分を相殺でき、例えば高調波成分等の不要波を低減できる。
 なお、増幅素子11Eは、差動増幅回路100Aに必須の構成要素ではない。また、非平衡-平衡変換回路110の回路構成は、特に限定されない。また、キャパシタC11は、インピーダンス整合において必須の構成要素ではない。
 差動増幅回路100Bの回路構成は、差動増幅回路100Aの回路構成と同様である。差動増幅回路100Bは、差動増幅回路100Bのパワーアンプ11F,11G及び出力整合回路13Fは、差動増幅回路100Aのパワーアンプ11A,11B及び出力整合回路13Cにそれぞれ対応する。差動増幅回路100Aは、信号入力端子82Aと第2スイッチ5の共通端子50との間に設けられる。差動増幅回路100Bは、信号入力端子82Bと第4スイッチ7の選択端子71との間に設けられる。
 以下、高周波モジュール1eの構造について図10A、10B、11及び12を参照して説明する。
 差動増幅回路100Aでは、第1パワーアンプ11Cと第2パワーアンプ11Dとは、同じ仕様であり、同じチップサイズである。差動増幅回路100B(図13参照)では、第1パワーアンプ11Fと第2パワーアンプ11Gとは、同じ仕様であり、同じチップサイズである。
 差動増幅回路100Aの第1パワーアンプ11C及び第2パワーアンプ11Dは、第1配線基板9の第1主面91に配置されている。また、差動増幅回路100Bの第1パワーアンプ11F及び第2パワーアンプ11Gは、第1配線基板9の第1主面91に配置されている。
 差動増幅回路100Aでは、複数のインダクタ部L11A,L11B,L12,L13のうち第1パワーアンプ11Cの出力用パッド電極112Cに最も近いインダクタ部L11Aが配線インダクタ95Aである。また、差動増幅回路100Aでは、複数のインダクタ部L11A,L11B,L12,L13のうち第2パワーアンプ11Dの出力用パッド電極112Dに最も近いインダクタ部L11Bが配線インダクタである。
 差動増幅回路100Aでは、複数のキャパシタC11,C12,C13は、表面実装型電子部品であり、第1配線基板9の第1主面91に配置されている。
 差動増幅回路100Aでは、トランスT1の一次側コイルを構成する第2インダクタ部L12は、図10A、10B及び12に示すように、第1配線基板9中に設けられている内層インダクタ部である。
 差動増幅回路100Aでは、トランスT1の二次側コイルを構成する第3インダクタ部L13は、図10A、10B及び11に示すように、第1配線基板9の第1主面91に配置されている配線インダクタである。トランスT1では、一次側コイルと二次側コイルとが磁気結合するように、第1配線基板9の厚さ方向D1からの平面視で、第3インダクタ部L13の一部と第2インダクタ部L12の一部とが重なっている。第1配線基板9の厚さ方向D1において第3インダクタ部L13と第2インダクタ部L12との間には、第1配線基板9の一部が介在している。トランスT1では、第1配線基板9の厚さ方向D1からの平面視で、第3インダクタ部L13の全部と第2インダクタ部L12の全部とが重なっていてもよい。
 差動増幅回路100Bの回路構成は、上述のように差動増幅回路100Aの回路構成と同様である。差動増幅回路100Bの各回路素子部の配置は、差動増幅回路100Aの各回路素子部の配置と同様である。
 実施形態2に係る高周波モジュール1eは、第1配線基板9と、第2配線基板10と、パワーアンプ11Cと、出力整合回路13Cと、外部接続端子80と、を備える。第1配線基板9は、互いに対向する第1主面91及び第2主面92を有する。第2配線基板10は、互いに対向する第3主面101及び第4主面102を有する。第2配線基板10は、第1配線基板9の厚さ方向D1において第1配線基板9から離れている。パワーアンプ11Cは、出力用パッド電極112Cを有する。出力整合回路13Cは、複数のインダクタ部L11A,L11B,L12,L13を含み、パワーアンプ11Cの出力用パッド電極112Cに接続されている。高周波モジュール1eでは、第1配線基板9の第2主面92と第2配線基板10の第3主面101とが向かい合っている。外部接続端子80は、第2配線基板10の第4主面102に配置されている。パワーアンプ11Cは、第1配線基板9の第1主面91に配置されている。出力整合回路13Cでは、複数のインダクタ部L11A,L11B,L12,L13のうち出力用パッド電極112Cに最も近いインダクタ部L11Aである第1インダクタ部が、第1配線基板9の第1主面91に配置されている。
 実施形態2に係る高周波モジュール1eは、パワーアンプ11Cに接続された出力整合回路13Cに含まれているインダクタ部L11AのQ値を向上させることが可能となる。ここにおいて、実施形態2に係る高周波モジュール1eでは、インダクタ部L11Aが、第1配線基板9の第1主面91に配置されている。これにより、インダクタ部L11Aと回路基板320のグランド等との間に発生する寄生容量を低減でき、インダクタ部L11AのQ値を向上させることが可能となる。
 また、実施形態2に係る高周波モジュール1eは、第2パワーアンプ11Dと、非平衡-平衡変換回路110と、を更に備える。第2パワーアンプ11Dは、パワーアンプ11Cである第1パワーアンプとは別である。第2パワーアンプ11Dは、出力用パッド電極112Dを有する。非平衡-平衡変換回路110は、非平衡端子と、第1平衡端子及び第2平衡端子と、を有する。第2パワーアンプ11Dは、第1配線基板9の第1主面91に配置されている。非平衡-平衡変換回路110の第1平衡端子が第1パワーアンプ11Cに接続され、第2平衡端子が第2パワーアンプ11Dに接続されている。第1インダクタ部L11Aは、第1パワーアンプ11Cの出力用パッド電極112Cに接続されている。複数のインダクタ部L11A,L11B,L12,L13は、第1インダクタ部L11Aとは別の第1インダクタ部L11Bを含む。別の第1インダクタ部L11Bは、第2パワーアンプ11Dの出力用パッド電極112Dに接続されている。別の第1インダクタ部L11Bの少なくとも一部が第1配線基板9の第1主面91に配置されている、出力整合回路13Cは、複数のインダクタ部L11A,L11B,L12,L13のうち第1インダクタ部L11A及び別の第1インダクタ部L11B以外の第2インダクタ部L12を一次側コイルとし、第3インダクタ部L13を二次側コイルとするトランスT1を含む。高周波モジュール1eは、第1パワーアンプ11Cと第2パワーアンプ11DとトランスT1とを含む差動増幅回路100Aを有する。これにより、実施形態2に係る高周波モジュール1eでは、電力利得の低下を抑制することが可能となる。
 上記の実施形態1、2は、本発明の様々な実施形態の一つに過ぎない。上記の実施形態は、本発明の目的を達成できれば、設計等に応じて種々の変更が可能である。
 高周波モジュール1、1a~1eは、ダイプレクサ3の代わりに、第1フィルタ(ローパスフィルタ)のみを備えていてもよいし、マルチプレクサ(例えば、トリプレクサ)を備えていてもよい。マルチプレクサは、例えば、ローパスフィルタとバンドパスフィルタとハイパスフィルタとのうち少なくとも2つを含む。
 なお、高周波モジュール1、1a~1eでは、送信用フィルタ12Aと受信用フィルタ22Aとでデュプレクサを構成していてもよい。また、高周波モジュール1では、送信用フィルタ12Bと受信用フィルタ22Bとでデュプレクサを構成していてもよい。
 第1スイッチ4、第2スイッチ5、第3スイッチ6及び第4スイッチ7の各々における選択端子の数は、複数であればよく、例示した数に限らない。
 第1スイッチ4及び第2スイッチ5の各々は、コントローラによって制御される代わりに、例えば、信号処理回路301のRF信号処理回路302からの制御信号によって制御されてもよい。
 また、弾性波フィルタは、弾性表面波を利用する弾性波フィルタに限らず、例えば、弾性境界波、板波等を利用する弾性波フィルタであってもよい。
 また、弾性波フィルタでは、複数の直列腕共振子及び複数の並列腕共振子の各々は、SAW共振子に限らず、例えば、BAW(Bulk Acoustic Wave)共振子であってもよい。
 高周波モジュール1、1a、1b、1c、1eでは、複数の外部接続端子80の各々の先端部は、例えば、金めっき層を含んでいてもよい。
 また、実施形態1に係る通信装置300は、高周波モジュール1の代わりに、高周波モジュール1a、1b、1c、1dのいずれかを備えてもよい。
 (態様)
 本明細書には、以下の態様が開示されている。
 第1の態様に係る高周波モジュール(1;1a;1b;1c;1d;1e)は、第1配線基板(9)と、第2配線基板(10)と、パワーアンプ(11A;11C)と、出力整合回路(13A;13C)と、外部接続端子(80)と、を備える。第1配線基板(9)は、互いに対向する第1主面(91)及び第2主面(92)を有する。第2配線基板(10)は、互いに対向する第3主面(101)及び第4主面(102)を有する。第2配線基板(10)は、第1配線基板(9)の厚さ方向(D1)において第1配線基板(9)から離れている。パワーアンプ(11A;11C)は、出力用パッド電極(112A;112C)を有する。出力整合回路(13A;13C)は、複数のインダクタ部(L1,L2;L11A,L11B,L12,L13)を含み、パワーアンプ(11A;11C)の出力用パッド電極(112A;112C)に接続されている。高周波モジュール(1;1a;1b;1c;1d;1e)では、第1配線基板(9)の第2主面(92)と第2配線基板(10)の第3主面(101)とが向かい合っている。外部接続端子(80)は、第2配線基板(10)の第4主面(102)に配置されている。パワーアンプ(11A;11C)は、第1配線基板(9)の第1主面(91)に配置されている。出力整合回路(13A;13C)では、複数のインダクタ部(L1,L2;L11A,L11B,L12,L13)のうち出力用パッド電極(112A;112C)に最も近いインダクタ部(L1;L11A)である第1インダクタ部の少なくとも一部が、第1配線基板(9)の第1主面(91)に配置されている。
 第1の態様に係る高周波モジュール(1;1a;1b;1c;1d;1e)は、パワーアンプ(11A;11C)に接続された出力整合回路(13A;13C)に含まれているインダクタ部(L1;L11A)のQ値を向上させることが可能となる。
 第2の態様に係る高周波モジュール(1;1a;1b;1c;1d;1e)では、第1の態様において、第1インダクタ部(L1;L11A)の全部が、第1配線基板(9)の第1主面(91)に配置されている。
 第2の態様に係る高周波モジュール(1;1a;1b;1c;1d;1e)は、第1インダクタ部(L1;L11A)のうち一部のみが第1配線基板(9)の第1主面(91)に配置されている場合と比べて、インダクタ部(L1)のQ値を向上させることが可能となる。
 第3の態様に係る高周波モジュール(1;1e)では、第1又は2の態様において、第1インダクタ部(インダクタ部L1;インダクタ部L11A)は、配線インダクタ(95;95A)である。
 第3の態様に係る高周波モジュール(1;1e)では、低背化を図ることが可能となる。
 第4の態様に係る高周波モジュール(1a)では、第1又は2の態様において、第1インダクタ部(インダクタ部L1)は、チップインダクタ(15)である。
 第4の態様に係る高周波モジュール(1a)では、第1インダクタ部(インダクタ部L1)のQ値を向上させることが可能となる。
 第5の態様に係る高周波モジュール(1e)は、第1又は2の態様において、第2パワーアンプ(11D)と、非平衡-平衡変換回路(110)と、を更に備える。第2パワーアンプ(11D)は、パワーアンプ(11C)である第1パワーアンプとは別である。第2パワーアンプ(11D)は、出力用パッド電極(112D)を有する。非平衡-平衡変換回路(110)は、非平衡端子と、第1平衡端子及び第2平衡端子と、を有する。第2パワーアンプ(11D)は、第1配線基板(9)の第1主面(91)に配置されている。非平衡-平衡変換回路(110)の第1平衡端子が第1パワーアンプに接続され、第2平衡端子が第2パワーアンプ(11D)に接続されている。第1インダクタ部(L11A)は、第1パワーアンプの出力用パッド電極(112C)に接続されている。複数のインダクタ部(L11A,L11B,L12,L13)は、第1インダクタ部(L11A)とは別の第1インダクタ部(L11B)を含む。別の第1インダクタ部(L11B)は、第2パワーアンプ(11D)の出力用パッド電極(112D)に接続されている。別の第1インダクタ部(L11B)の少なくとも一部が第1配線基板(9)の第1主面(91)に配置されている、出力整合回路(13C)は、複数のインダクタ部(L11A,L11B,L12,L13)のうち第1インダクタ部(L11A)及び別の第1インダクタ部(L11B)以外の第2インダクタ部(L12)を一次側コイルとし、第3インダクタ部(L13)を二次側コイルとするトランス(T1)を含む。高周波モジュール(1e)は、第1パワーアンプと第2パワーアンプ(11D)とトランス(T1)とを含む差動増幅回路(100A)を有する。
 第5の態様に係る高周波モジュール(1e)は、電力利得の低下を抑制することが可能となる。
 第6の態様に係る高周波モジュール(1e)では、第5の態様において、第2インダクタ部(インダクタ部L12)は、第1配線基板(9)中に設けられている内層インダクタ部である。
 第6の態様に係る高周波モジュール(1e)では、第1配線基板(9)の厚さ方向(D1)からの平面視のサイズの小型化を図ることが可能となる。
 第7の態様に係る高周波モジュール(1;1a;1b;1c;1d;1e)は、第1~6の態様のいずれか一つにおいて、貫通電極(94)を更に備える。貫通電極(94)は、第1配線基板(9)の厚さ方向(D1)からの平面視でパワーアンプ(11A;11C)に重なっている。貫通電極(94)は、パワーアンプ(11A;11C)に接続され第1配線基板(9)と第2配線基板(10)とを貫通している。
 第7の態様に係る高周波モジュール(1;1a;1b;1c;1d;1e)は、パワーアンプ(11A;11C)で発生した熱が貫通電極(94)を通して放熱されるので、放熱性を向上させることが可能となる。
 第8の態様に係る高周波モジュール(1;1a;1b;1c;1d;1e)は、第1~7の態様のいずれか一つにおいて、第2配線基板(10)に配置されているローノイズアンプ(21A,21B)を更に備える。
 第8の態様に係る高周波モジュール(1;1a;1b;1c;1d;1e)は、受信信号をローノイズアンプ(21A,21B)により増幅でき、かつ、パワーアンプ(11A;11C)とローノイズアンプ(21A,21B)とのアイソレーションを向上させることができる。
 第9の態様に係る高周波モジュール(1;1a;1b;1c;1d;1e)では、第8の態様において、ローノイズアンプ(21A,21B)は、第2配線基板(10)の第4主面(102)に配置されている。
 第9の態様に係る高周波モジュール(1;1a;1b;1c;1d;1e)は、パワーアンプ(11A;11C)とローノイズアンプ(21A,21B)とのアイソレーションを向上させることができる。
 第10の態様に係る高周波モジュール(1;1a;1b;1c;1d;1e)では、第8又は9の態様において、第1配線基板(9)の厚さ方向(D1)からの平面視で、パワーアンプ(11A;11C)とローノイズアンプ(21A;21B)とは重ならない。
 第10の態様に係る高周波モジュール(1;1a;1b;1c;1d;1e)は、パワーアンプ(11A;11C)とローノイズアンプ(21A,21B)とのアイソレーションを向上させることができる。
 第11の態様に係る高周波モジュール(1;1a;1b;1c;1d;1e)は、第8~10の態様のいずれか一つにおいて、受信用フィルタ(22A,22B)と、入力整合回路(23A,23B)と、を更に備える。入力整合回路(23A,23B)は、受信用フィルタ(22A,22B)とローノイズアンプ(21A,21B)との間に設けられている。
 第12の態様に係る高周波モジュール(1;1a;1b;1c;1d;1e)では、第11の態様において、受信用フィルタ(22A,22B)及び入力整合回路(23A,23B)は、第2配線基板(10)の第3主面(101)に配置されている。
 第12の態様に係る高周波モジュール(1;1a;1b;1c;1d;1e)は、パワーアンプ(11A;11C)と受信用フィルタ(22A,22B)及び入力整合回路(23A,23B)とのアイソレーションを向上させることが可能となる。
 第13の態様に係る高周波モジュール(1;1a;1b;1c;1d;1e)は、第11又は12の態様において、送信用フィルタ(12A)を更に備える。送信用フィルタ(12A)は、少なくとも出力整合回路(13A;13C)を介して、パワーアンプ(11A;11C)に接続されている。第1配線基板(9)の厚さ方向(D1)からの平面視で、パワーアンプ(11A;11C)と出力整合回路(13A;13C)と送信用フィルタ(12A)とを含む送信経路(Tx11)と、受信用フィルタ(22A)と入力整合回路(23A)とローノイズアンプ(21A)とを含む受信経路(Rx11)とは重ならない。
 第14の態様に係る高周波モジュール(1;1a;1b;1c;1d;1e)は、第13の態様において、外部接続端子(80)を複数備える。複数の外部接続端子(80)は、出力整合回路(13A;13C)に接続されているグランド端子(85)を含む。
 第14の態様に係る高周波モジュールは、パワーアンプ(11A)を含む送信経路(Tx11)とローノイズアンプ(21A)を含む受信経路(Rx11)とのアイソレーションを向上させることができる。
 第15の態様に係る通信装置(300;300e)は、信号処理回路(301)と、第1~14の態様のいずれか一つの高周波モジュール(1;1a;1b;1c;1d;1e)と、を備える。高周波モジュール(1;1a;1b;1c;1d;1e)のパワーアンプ(11A;11C)は、信号処理回路(301)からの送信信号を増幅して出力する。
 第15の態様に係る通信装置(300;300e)は、パワーアンプ(11;11C)に接続された出力整合回路(13A;13C)に含まれているインダクタ部のQ値を向上させることが可能となる。
 1、1a、1b、1c、1d、1e 高周波モジュール
 3 ダイプレクサ
 30 第1フィルタ
 31 第2フィルタ
 4 スイッチ(第1スイッチ)
 40 共通端子
 41~43 選択端子
 5 スイッチ(第2スイッチ)
 50 共通端子
 51、52 選択端子
 6 スイッチ(第3スイッチ)
 60 共通端子
 61、62 選択端子
 7 スイッチ(第4スイッチ)
 70 共通端子
 71、72 選択端子
 9 第1配線基板
 91 第1主面
 92 第2主面
 94 貫通電極
 941 導体部
 942 導体部
 943 導体部
 10 第2配線基板
 101 第3主面
 102 第4主面
 11A、11B パワーアンプ
 11C パワーアンプ(第1パワーアンプ)
 11D パワーアンプ(第2パワーアンプ)
 11F パワーアンプ
 11G パワーアンプ
 12A、12B送信用フィルタ
 13A、13B 出力整合回路
 13C、13F 出力整合回路
 14A、14B、14C 整合回路
 15 チップインダクタ
 16 第1樹脂層
 17 第2樹脂層
 18 第3樹脂層
 19 シールド層
 21A、21B ローノイズアンプ
 22A、22B 受信用フィルタ
 32C 送受信用フィルタ
 80 外部接続端子
 81 アンテナ端子
 82A、82B 信号入力端子
 83A、83B 信号出力端子
 85 グランド端子
 86 放熱用端子
 100A、100B 差動増幅回路
 110 非平衡-平衡変換回路
 300 通信装置
 301 信号処理回路
 302 RF信号処理回路
 303 ベースバンド信号処理回路
 310 アンテナ
 320 回路基板
 C1、C2、C11、C12、C13 キャパシタ
 D1 厚さ方向
 D2 厚さ方向
 L1 インダクタ部(第1インダクタ部)
 L2 インダクタ部
 L11A、L11B インダクタ部(第1インダクタ部)
 L12 インダクタ部(第2インダクタ部)
 L13 インダクタ部(第3インダクタ部)
 PS1 電源配線
 PS2 電源配線
 T1 トランス
 Tx11、Tx12 送信経路
 Rx11、Rx12 受信経路
 Vcc1 バイアス電圧
 Vcc2 バイアス電圧

Claims (15)

  1.  互いに対向する第1主面及び第2主面を有する第1配線基板と、
     互いに対向する第3主面及び第4主面を有し、前記第1配線基板の厚さ方向において前記第1配線基板から離れている第2配線基板と、
     出力用パッド電極を有するパワーアンプと、
     複数のインダクタ部を含み、前記パワーアンプの前記出力用パッド電極に接続されている出力整合回路と、
     外部接続端子と、を備え、
     前記第1配線基板の前記第2主面と前記第2配線基板の前記第3主面とが向かい合っており、
     前記外部接続端子は、前記第2配線基板の前記第4主面に配置されており、
     前記パワーアンプは、前記第1配線基板の前記第1主面に配置されており、
     前記出力整合回路では、
      前記複数のインダクタ部のうち前記出力用パッド電極に最も近いインダクタ部である第1インダクタ部の少なくとも一部が、前記第1配線基板の前記第1主面に配置されている、
     高周波モジュール。
  2.  前記第1インダクタ部の全部が、前記第1配線基板の前記第1主面に配置されている、
     請求項1に記載の高周波モジュール。
  3.  前記第1インダクタ部は、配線インダクタである、
     請求項1又は2に記載の高周波モジュール。
  4.  前記第1インダクタ部は、チップインダクタである、
     請求項1又は2に記載の高周波モジュール。
  5.  前記パワーアンプである第1パワーアンプとは別であり、出力用パッド電極を有する第2パワーアンプと、
     非平衡端子と第1平衡端子及び第2平衡端子とを有する非平衡-平衡変換回路と、を更に備え、
     前記第2パワーアンプは、前記第1配線基板の前記第1主面に配置されており、
     前記非平衡-平衡変換回路の前記第1平衡端子が前記第1パワーアンプに接続され、前記第2平衡端子が前記第2パワーアンプに接続されており、
     前記第1インダクタ部は、前記第1パワーアンプの前記出力用パッド電極に接続されており、
     前記複数のインダクタ部は、
      前記第2パワーアンプの前記出力用パッド電極に接続されており、少なくとも一部が第1配線基板の前記第1主面に配置されている、前記第1インダクタ部とは別の第1インダクタ部を含み、
     前記出力整合回路は、
      前記複数のインダクタ部のうち前記第1インダクタ部及び前記別の第1インダクタ部以外の第2インダクタ部を一次側コイルとし、第3インダクタ部を二次側コイルとするトランスを含み、
     前記高周波モジュールは、前記第1パワーアンプと前記第2パワーアンプと前記トランスとを含む差動増幅回路を有する、
     請求項1又は2に記載の高周波モジュール。
  6.  前記第2インダクタ部は、前記第1配線基板中に設けられている内層インダクタ部である、
     請求項5に記載の高周波モジュール。
  7.  前記第1配線基板の前記厚さ方向からの平面視で前記パワーアンプに重なっており、前記パワーアンプに接続され前記第1配線基板と前記第2配線基板とを貫通している貫通電極を更に備える、
     請求項1~6のいずれか一項に記載の高周波モジュール。
  8.  前記第2配線基板に配置されているローノイズアンプを更に備える、
     請求項1~7のいずれか一項に記載の高周波モジュール。
  9.  前記ローノイズアンプは、前記第2配線基板の前記第4主面に配置されている、
     請求項8に記載の高周波モジュール。
  10.  前記第1配線基板の前記厚さ方向からの平面視で、前記パワーアンプと前記ローノイズアンプとは重ならない、
     請求項8又は9に記載の高周波モジュール。
  11.  受信用フィルタと、
     前記受信用フィルタと前記ローノイズアンプとの間に設けられている入力整合回路と、を更に備える、
     請求項8~10のいずれか一項に記載の高周波モジュール。
  12.  前記受信用フィルタ及び前記入力整合回路は、前記第2配線基板の前記第3主面に配置されている、
     請求項11に記載の高周波モジュール。
  13.  少なくとも前記出力整合回路を介して、前記パワーアンプに接続されている送信用フィルタを更に備え、
     前記第1配線基板の前記厚さ方向からの平面視で、前記パワーアンプと前記出力整合回路と前記送信用フィルタとを含む送信経路と、前記受信用フィルタと前記入力整合回路と前記ローノイズアンプとを含む受信経路とは重ならない、
     請求項11又は12に記載の高周波モジュール。
  14.  前記外部接続端子を複数備え、
     前記複数の外部接続端子は、前記出力整合回路に接続されているグランド端子を含む、
     請求項13に記載の高周波モジュール。
  15.  送信信号を出力する信号処理回路と、
     請求項1~14のいずれか一項に記載の高周波モジュールと、を備え、
     前記高周波モジュールの前記パワーアンプは、前記信号処理回路からの前記送信信号を増幅して出力する、
     通信装置。
PCT/JP2020/031152 2019-10-31 2020-08-18 高周波モジュール及び通信装置 WO2021084848A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080073645.1A CN114600371A (zh) 2019-10-31 2020-08-18 高频模块和通信装置
US17/713,230 US20220278703A1 (en) 2019-10-31 2022-04-05 Radio frequency module and communication device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-199460 2019-10-31
JP2019199460 2019-10-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/713,230 Continuation US20220278703A1 (en) 2019-10-31 2022-04-05 Radio frequency module and communication device

Publications (1)

Publication Number Publication Date
WO2021084848A1 true WO2021084848A1 (ja) 2021-05-06

Family

ID=75715040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031152 WO2021084848A1 (ja) 2019-10-31 2020-08-18 高周波モジュール及び通信装置

Country Status (3)

Country Link
US (1) US20220278703A1 (ja)
CN (1) CN114600371A (ja)
WO (1) WO2021084848A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023022075A1 (ja) * 2021-08-20 2023-02-23 株式会社村田製作所 高周波モジュールおよび通信装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019103746A1 (en) * 2017-11-23 2019-05-31 Intel IP Corporation Apparatuses and methods for wireless communication
WO2020090230A1 (ja) * 2018-11-01 2020-05-07 株式会社村田製作所 高周波モジュールおよび通信装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000031331A (ja) * 1998-07-14 2000-01-28 Hitachi Ltd 電力増幅器
JP2003204013A (ja) * 2002-01-10 2003-07-18 Hitachi Ltd 高周波モジュール
JP2014112628A (ja) * 2012-11-05 2014-06-19 Taiyo Yuden Co Ltd 回路モジュール

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000031331A (ja) * 1998-07-14 2000-01-28 Hitachi Ltd 電力増幅器
JP2003204013A (ja) * 2002-01-10 2003-07-18 Hitachi Ltd 高周波モジュール
JP2014112628A (ja) * 2012-11-05 2014-06-19 Taiyo Yuden Co Ltd 回路モジュール

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023022075A1 (ja) * 2021-08-20 2023-02-23 株式会社村田製作所 高周波モジュールおよび通信装置

Also Published As

Publication number Publication date
CN114600371A (zh) 2022-06-07
US20220278703A1 (en) 2022-09-01

Similar Documents

Publication Publication Date Title
WO2021044691A1 (ja) 高周波モジュール及び通信装置
US11979137B2 (en) High-frequency module and communication apparatus
KR102432608B1 (ko) 고주파 모듈 및 통신 장치
US20220278703A1 (en) Radio frequency module and communication device
CN216162714U (zh) 高频模块和通信装置
JP2021174854A (ja) 高周波モジュールおよび通信装置
WO2022034821A1 (ja) 高周波モジュール及び通信装置
JP2021097322A (ja) 高周波モジュールおよび通信装置
KR102476616B1 (ko) 고주파 모듈 및 통신장치
US20230308121A1 (en) High-frequency module and communication device
JP2021197590A (ja) 高周波モジュール及び通信装置
CN215912092U (zh) 高频模块和通信装置
WO2022138514A1 (ja) 高周波モジュール及び通信装置
WO2022124262A1 (ja) 高周波モジュール及び通信装置
WO2021261184A1 (ja) 高周波回路及び通信装置
WO2022102197A1 (ja) 高周波モジュール及び通信装置
WO2022137708A1 (ja) 高周波モジュール及び通信装置
WO2021192429A1 (ja) 高周波モジュール及び通信装置
JP2021197611A (ja) 高周波モジュール及び通信装置
WO2022034823A1 (ja) 高周波モジュール及び通信装置
WO2022130733A1 (ja) 高周波モジュール及び通信装置
WO2022091852A1 (ja) 高周波モジュール、及び通信装置
WO2021241064A1 (ja) 高周波モジュール及び通信装置
WO2023022075A1 (ja) 高周波モジュールおよび通信装置
WO2022138441A1 (ja) 高周波モジュール及び通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20882728

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20882728

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP