[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021083252A1 - 一种数据处理方法及其装置 - Google Patents

一种数据处理方法及其装置 Download PDF

Info

Publication number
WO2021083252A1
WO2021083252A1 PCT/CN2020/124676 CN2020124676W WO2021083252A1 WO 2021083252 A1 WO2021083252 A1 WO 2021083252A1 CN 2020124676 W CN2020124676 W CN 2020124676W WO 2021083252 A1 WO2021083252 A1 WO 2021083252A1
Authority
WO
WIPO (PCT)
Prior art keywords
parameter
parameter group
sequence
terminal device
value
Prior art date
Application number
PCT/CN2020/124676
Other languages
English (en)
French (fr)
Inventor
龚名新
曲秉玉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20880637.2A priority Critical patent/EP4033846B1/en
Publication of WO2021083252A1 publication Critical patent/WO2021083252A1/zh
Priority to US17/731,188 priority patent/US12063132B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/0055ZCZ [zero correlation zone]
    • H04J13/0059CAZAC [constant-amplitude and zero auto-correlation]
    • H04J13/0062Zadoff-Chu
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/10Code generation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2649Demodulators
    • H04L27/26524Fast Fourier transform [FFT] or discrete Fourier transform [DFT] demodulators in combination with other circuits for demodulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment
    • H04W74/085Random access procedures, e.g. with 4-step access with collision treatment collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26035Maintenance of orthogonality, e.g. for signals exchanged between cells or users, or by using covering codes or sequences

Definitions

  • This application relates to the field of communication technology, and in particular to a data processing method and device.
  • the base station can simultaneously perform uplink and downlink data transmission with multiple terminals.
  • multi-user multiple-input multiple-output (MU-MIMO) technology enables a base station and multiple terminals to use the same time-frequency resources for uplink and downlink data transmission at the same time, which is conducive to improving the system capacity.
  • the multiple terminals Before transmitting uplink and downlink data between multiple terminals and the base station, the multiple terminals need to send different random access channel (RACH) signals to the base station, and the base station detects the RACH sent by the multiple terminals. After the signal, the access of the multiple terminals can be completed.
  • RACH random access channel
  • a base station receives a signal including a zadoff-chu sequence (ZC sequence for short), it can indicate that it has received a RACH signal sent by a terminal.
  • ZC sequence is obtained by cyclic shifting the root sequence, and the elements in the root sequence satisfy the following relationship:
  • the number of root sequences obtained according to the above-mentioned relational expression is small, and correspondingly, the number of ZC sequences obtained is small. As the number of terminal devices accessed by the cell increases, this will increase the probability of conflicts between terminal devices during random access.
  • the embodiments of the present application provide a data processing method and device, which are beneficial to obtaining more different first sequences, thereby helping to reduce the probability of conflicts between terminal devices during random access.
  • an embodiment of the present application provides a data processing method.
  • the method includes: a first terminal device determines a first sequence containing N elements according to a parameter group, and the parameter group includes a first parameter, a second parameter, and a cyclic shift. Bit value, the first sequence is obtained by cyclic shifting the second sequence according to the cyclic shift value, and the second sequence is determined according to the first parameter and the second parameter; the first terminal device sends to the network device according to the first sequence Signal; where, the elements in the second sequence satisfy:
  • u 1 is the first parameter, u 1 ⁇ 1,2,...,P-1 ⁇ ;
  • u 2 is the second parameter, u 2 ⁇ 0,1,2,...,P-1 ⁇ ;
  • i is The index of the element in the second sequence, the value of i is 0 to N-1, Is the element value of the element index i in the second sequence, N is the length of the second sequence, j is the imaginary sign in the complex number, and P and N satisfy any one of the following relationships: P is greater than or equal to N The smallest prime number; P is the largest prime number less than or equal to N; P is the smallest prime number greater than 2 ⁇ N; P is the largest prime number less than 2 ⁇ N; ⁇ is a non-zero complex number, Is a real number.
  • the foregoing cyclic shift value is the same as the cyclic shift adopted by the second terminal device.
  • the absolute value of the difference between the values may be greater than the first value, where the first terminal device and the second terminal device are located in the same cell.
  • the network device can distinguish the signals sent by the first terminal device and the second terminal device. Avoid conflicts between the first terminal device and the second terminal device.
  • the difference between the second parameter adopted by the foregoing first terminal device and the second parameter adopted by the third terminal device may be greater than the second value, where the first terminal device and the third terminal device are located in the same cell.
  • the aforementioned second value may be determined according to the maximum Doppler shift of the cell. In this way, it can be ensured that when the Doppler shifts of different terminal devices are different, the network device can still distinguish the signals sent by different terminal devices.
  • the method may further include: the aforementioned first terminal device receives the parameter group sent by the network device.
  • the method may further include: the first terminal device receives the first parameter group set sent by the network device; and determines the aforementioned parameter group from the first parameter group set.
  • the absolute value of the difference between the cyclic shift values in any two parameter groups in which the first parameter and the second parameter are the same is greater than the first value.
  • the absolute value of the difference between the second parameter in any two parameter groups with the same first parameter is greater than the second value.
  • the first parameter group set is included in the second parameter group set, and the second parameter group set is included in the candidate parameter group set; the candidate parameter group set includes one or more parameter group subsets, The first parameters of the parameter groups in each parameter group subset in the candidate parameter group set are the same, and the first parameters of any two parameter groups belonging to different parameter group subsets in the candidate parameter group set are different.
  • the cell corresponding to the network device can preferentially use the parameter group in the same parameter group subset.
  • the specific implementation manner of the first terminal device sending a signal to the network device according to the first sequence may be: the first terminal device performs a fast Fourier transform on the first sequence to obtain a frequency domain sequence; The domain sequence is mapped to the sub-carrier to obtain the signal; the signal is sent to the network device.
  • an embodiment of the present application provides another data processing method.
  • the method includes: a network device determines a first sequence containing N elements according to a parameter group, the parameter group including a first parameter, a second parameter, and a cyclic shift Value, the first sequence is obtained by cyclic shifting the second sequence according to the cyclic shift value, the second sequence is determined according to the first parameter and the second parameter; the network device receives the first signal; and according to the first sequence and The first signal determines whether the first signal includes a signal sent according to the first sequence; wherein, the elements in the second sequence satisfy:
  • u 1 is the first parameter, u 1 ⁇ 1,2,...,P-1 ⁇ ;
  • u 2 is the second parameter, u 2 ⁇ 0,1,2,...,P-1 ⁇ ;
  • i is The index of the element in the second sequence, the value of i is 0 to N-1, Is the element value of the element index i in the second sequence, N is the length of the second sequence, j is the imaginary sign in the complex number, and P and N satisfy any one of the following relationships: P is greater than or equal to N The smallest prime number; P is the largest prime number less than or equal to N; P is the smallest prime number greater than 2 ⁇ N; P is the largest prime number less than 2 ⁇ N; ⁇ is a non-zero complex number, Is a real number.
  • the method may further include: the network device sends a parameter group to the first terminal device and the second terminal device, respectively, and the first parameter and the second parameter in the parameter group sent to the first terminal device and When the first parameter and the second parameter in the parameter group sent to the second terminal device are the same, the cyclic shift value in the parameter group sent to the first terminal device is the same as the parameter group sent to the second terminal device The absolute value of the difference between the cyclic shift values in is greater than the first value, where the first terminal device and the second terminal device are located in the same cell.
  • the network device can distinguish the signals sent by the first terminal device and the second terminal device. Avoid conflicts between the first terminal device and the second terminal device.
  • the method may further include: the network device sends a parameter group to the first terminal device and the third terminal device respectively, and the first parameter in the parameter group sent to the first terminal device and the first parameter sent to the first terminal device
  • the difference between the second parameter in the parameter group sent to the first terminal device and the second parameter in the parameter group sent to the third terminal device The absolute value of is greater than the second value, where the first terminal device and the second terminal device are located in the same cell.
  • the aforementioned second value may be determined according to the maximum Doppler shift of the cell. In this way, it can be ensured that when the Doppler shifts of different terminal devices are different, the network device can still distinguish the signals sent by different terminal devices.
  • the method may further include: the network device sends a first parameter group set to the first terminal device; and determining the aforementioned parameter group from the second parameter group set, wherein the first parameter group set is included in The second parameter group set.
  • the absolute value of the difference between the cyclic shift values in any two parameter groups in which the first parameter and the second parameter are the same is greater than the first value.
  • the absolute value of the difference between the second parameter in any two parameter groups with the same first parameter is greater than the second value.
  • the second parameter group set is included in the candidate parameter group set;
  • the candidate parameter group set includes one or more parameter group subsets, and the parameters in each parameter group subset in the candidate parameter group set
  • the first parameter of the group is the same, the first parameters of any two parameter groups belonging to different parameter group subsets in the candidate parameter group set are different, and each parameter group subset in the candidate parameter group set includes a Parameter groups;
  • the cell corresponding to the network device can preferentially use the parameter group in the same parameter group subset.
  • the network device determines whether the first signal includes a signal sent according to the first sequence according to the first sequence and the first signal.
  • a specific implementation manner may be: the network device performs subcarriers in the first signal The carried frequency domain sequence is subjected to inverse fast Fourier transform to obtain a time domain sequence; and the first sequence and the time domain sequence are correlated to obtain a correlation value; according to the correlation value, it is determined whether the first signal includes Signals sent in sequence.
  • an embodiment of the present application provides a sequence-based signal transmission device, which is a first terminal device or a device (such as a chip) with the function of the first terminal device.
  • the device has the function of realizing the data processing method provided in the first aspect, and the function is realized by hardware or by hardware executing corresponding software.
  • the hardware or software package includes one or more modules corresponding to the above-mentioned functions.
  • the embodiments of the present application provide another sequence-based signal transmission device, which is a network device or a device (such as a chip) with a network device function.
  • the device has the function of realizing the data processing method provided by the second aspect, and the function is realized by hardware or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the embodiments of the present application provide yet another sequence-based signal transmission device, which is a first terminal device or a device (for example, a chip) with the function of the first terminal device.
  • the device includes a processor and a storage medium.
  • the storage medium stores instructions. When the instructions are executed by the processor, the device realizes the data processing method provided in the first aspect.
  • the embodiments of the present application provide yet another device for sequence-based signal transmission.
  • the device is a network device or a device (such as a chip) with network device functions.
  • the device includes a processor and a storage medium.
  • the storage medium stores There is an instruction, and when the instruction is executed by the processor, the device realizes the data processing method provided in the second aspect.
  • an embodiment of the present application provides a computer-readable storage medium for storing computer program instructions used by the sequence-based signal transmission device described in the third aspect, which includes the instructions for executing the first aspect. The procedures involved in the method.
  • an embodiment of the present application provides a computer-readable storage medium for storing computer program instructions used by the sequence-based signal transmission device described in the fourth aspect above, which includes instructions for executing the second aspect above. The procedures involved in the method.
  • an embodiment of the present application provides a computer program product, the program product includes a program, and when the program is executed by a sequence-based signal transmission device, the device implements the method described in the first aspect.
  • an embodiment of the present application provides a computer program product, the program product includes a program, and when the program is executed by a sequence-based signal transmission device, the device implements the method described in the second aspect.
  • FIG. 1 is a schematic diagram of the architecture of a communication system disclosed in an embodiment of the present application
  • FIG. 2 is a schematic flowchart of a data processing method disclosed in an embodiment of the present application
  • FIG. 3 is a schematic flowchart of another data processing method disclosed in an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a device for sequence-based signal transmission disclosed in an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of another sequence-based signal transmission device disclosed in an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another device for sequence-based signal transmission disclosed in an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of another device for sequence-based signal transmission disclosed in an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a communication system disclosed in an embodiment of the present application.
  • the communication system includes: a network device 101 and a first terminal device 102.
  • the first terminal device 102 is a terminal device within the coverage area of a cell corresponding to the network device 101.
  • the first terminal device 102 may determine a first sequence containing N elements according to the parameter group, and send a signal to the network device 101 according to the first sequence.
  • the network device 101 may also determine the first sequence according to the parameter group, and after receiving the first signal, according to the first sequence and the first signal, determine whether the first signal includes the first sequence sent according to the first sequence. signal.
  • the network device 101 can receive the first signal. If the first terminal device 102 sends a signal to the network device 101, the first signal received by the network device 101 may include the signal sent by the first terminal device 102. Optionally, the first signal may also include a noise signal and/or Signals sent by other terminal devices to the network device 101. If the first terminal device 102 does not send a signal to the network device 101, the first signal received by the network device 101 does not include the signal sent by the first terminal device 102. Optionally, the first signal may include a noise signal and/or Signals sent by other terminal devices to the network device 101.
  • the communication system shown in FIG. 1 only includes one terminal device (that is, the first terminal device 102) is only for example, and does not constitute a limitation to the embodiment of the present application.
  • the communication system shown in FIG. 1 may also include other terminal devices, and the other terminal devices are also within the coverage of the cell corresponding to the network device 101.
  • the communication system corresponding to the network device 101 includes multiple terminal devices (such as the signal sent by the first terminal device 102 and the second terminal device)
  • the first terminal device 102 and the second terminal device can respectively determine Corresponding to the first sequence, and respectively send signals to the network device 101 according to the corresponding first sequence.
  • the first terminal device 102 corresponds to the first sequence a
  • the second terminal device corresponds to the first sequence b
  • the first signal received by the network device 101 may include signal 1 and signal 2, where signal 1 is a signal sent by the first terminal device 102 according to the first sequence a, and signal 2 is a signal sent by the second terminal device according to the first sequence a.
  • the first sequence a and the first sequence b are not the same.
  • the first sequence a can be used to determine whether the first signal received by the network device 101 includes the signal 1 sent according to the first sequence a.
  • the first sequence b can be used to determine the first signal received by the network device 101 Whether to include the signal 2 sent according to the first sequence b.
  • the above-mentioned parameter group includes a first parameter, a second parameter and a cyclic shift value.
  • the first sequence can be obtained by cyclic shifting the second sequence according to the cyclic shift value, and the second sequence is obtained according to the first parameter and the first parameter.
  • Two parameters are determined. The elements in this second sequence satisfy:
  • u 1 is the first parameter, u 1 ⁇ 1,2,...,P-1 ⁇ ;
  • u 2 is the second parameter, u 2 ⁇ 0,1,2,...,P-1 ⁇ ;
  • i is The index of the element in the second sequence, the value of i is 0 to N-1, Is the element value with element index i in the second sequence, N is the length of the second sequence, j is the symbol of the imaginary number in the complex number, P is a prime number, and ⁇ is a non-zero complex number, Is a real number.
  • P and N satisfy any one of the following relationships: P is the smallest prime number greater than or equal to N; P is the largest prime number less than or equal to N; P is the smallest prime number greater than 2 ⁇ N; P is less than 2 ⁇ N The largest prime number of.
  • the data processing method described in the embodiments of the present application may be applied to a random access process or an uplink and downlink data transmission process between a network device and a terminal device.
  • the network device 101 can determine whether the received first signal includes a RACH signal through the first sequence.
  • the first signal includes A different RACH signals, it may indicate that A different terminal devices need to access the network device 101.
  • the network device when applied to the uplink and downlink data transmission process between a network device and a terminal device, if the first signal received by the network device includes B different data signals (or control signals), it can indicate that the network device receives Signals sent to B different terminal devices. Further, the network device can also perform channel estimation on the channel between the network device and the terminal device through interaction information with the terminal device.
  • a and B are positive integers.
  • the network device 101 may be an entity on the network side for transmitting or receiving signals.
  • the network device 101 may be an access network device (such as a base station).
  • the first terminal device 102 and the second terminal device may be an entity on the user side for receiving or transmitting signals.
  • the first terminal device 102 and the second terminal device may be user equipment (UE), Remote terminals, mobile terminals, wireless communication equipment, user devices, etc., where the user equipment may be a mobile phone, a desktop computer, a notebook computer, or other wearable devices.
  • FIG. 2 is a schematic flowchart of a data processing method provided by an embodiment of the present application.
  • the execution subject of step S201 to step S202 is the first terminal device or the chip in the first terminal device
  • the execution subject of step S203 to step S205 is the network device or the chip in the network device.
  • the terminal equipment and the network equipment are the execution subjects of the data processing method as an example for description. As shown in Figure 2, the method may include but is not limited to the following steps:
  • Step S201 The first terminal device determines a first sequence containing N elements according to a parameter group.
  • the parameter group includes a first parameter, a second parameter and a cyclic shift value.
  • the first sequence is shifted by the second sequence according to the cyclic shift.
  • the value is obtained by cyclic shifting, the second sequence is determined according to the first parameter and the second parameter, and the elements in the second sequence satisfy:
  • u 1 is the first parameter, u 1 ⁇ 1,2,...,P-1 ⁇ ;
  • u 2 is the second parameter, u 2 ⁇ 0,1,2,...,P-1 ⁇ ;
  • i is The index of the element in the second sequence, the value of i is 0 to N-1, Is the element value with element index i in the second sequence, N is the length of the second sequence, j is the symbol of the imaginary number in the complex number, P is a prime number, and ⁇ is a non-zero complex number, Is a real number, mod is the remainder operation.
  • P is the length of the original sequence, and both N and P are positive integers.
  • the second sequence containing N elements can be obtained.
  • P and N can satisfy any one of the following relationships: P is the smallest prime number greater than or equal to N; P is the largest prime number less than or equal to N; P is the smallest prime number greater than 2 ⁇ N Prime number; P is the largest prime number less than 2 ⁇ N; P is the smallest prime number greater than N/2; P is the largest prime number less than N/2.
  • N can be a value close to or equal to P, that is, N can be greater than P or less than P.
  • N may also be a value close to 2P, or N may also be a value close to P/2 (when P/2 is an integer).
  • N can be 139, 839 or other values.
  • n is the index of the element in the first sequence
  • N is the length of the second sequence
  • C v is the cyclic shift value in the sequence group
  • v is the index of C v.
  • the relational expression satisfied by the elements in the above first sequence indicates that: the element value with the element index of n in the first sequence is cyclically shifted (such as left or right) by the element value with the element index of n in the second sequence ( (n+C v )modN) bits. For example, if the second sequence is 0110, after circularly shifting the second sequence by 1, 2, and 3 bits to the left, the resulting sequences are 1100, 1001, and 0011, respectively.
  • v different first sequences can be obtained.
  • the element value with the element index of 0 in the first sequence is obtained by circularly shifting the element value with the element index of 0 in the second sequence by 1 bit;
  • the element value with the element index of 0 in the first sequence is obtained by circularly shifting the element value with the element index of 0 in the second sequence to the left by 3 bits.
  • C v ⁇ ⁇ 0,1,2,...,N-1 ⁇ the actual value of C v may be non-continuous, but the value of v may be continuous.
  • the value may be composed of a set of values of C v, v C v is the index value set in the range of v
  • the difference between the C v values corresponding to any two v is greater than or equal to L, that is, the difference between any two cyclic shift values is greater than or equal to L. among them, Indicates the round-down symbol, Represents the largest integer that does not exceed N/L.
  • the value set of C v includes 5 values
  • the value range of v is [0, 4]
  • the value set of C v is composed of C 0 , C 1 , C 2 , C 3 , and C 4 .
  • C 0 , C 1 , C 2 , C 3 , and C 4 are 0, 10, 20, 30, and 40, respectively.
  • the value of C 0 is only used as an example. In other feasible implementation manners, the value of C 0 can also be any value from 1 to 9, according to C 0
  • the value of can correspondingly determine the values of C 1 , C 2 , C 3 , and C 4 in the value set of C v.
  • the parameter group may be agreed upon by a protocol.
  • the parameter group may be sent by the network device to the first terminal device.
  • the network device may send a parameter group to the first terminal device, or may send instruction information to the first terminal device in various ways to indicate the parameter group.
  • the network device sends information including the parameter group to the first terminal device, and the first terminal device may extract the parameter group from the information.
  • the above P, ⁇ and Both can be agreed upon by agreement, or can be set by the user, which is not limited in the embodiment of the present application.
  • the sequences mentioned in the embodiments of this application can be objects (or elements, events) arranged in a row, and the objects (or elements, events) in the sequence can be a character or a frequency In point, the embodiment of the present application does not limit this.
  • Step S202 The first terminal device sends a signal to the network device according to the first sequence.
  • the first terminal device may send a signal to the network device according to the first sequence.
  • a specific implementation manner for the first terminal device to send a signal to the network device according to the first sequence may be: the first terminal device performs a fast Fourier transform on the first sequence to obtain a frequency domain sequence; The frequency domain sequence is mapped to the sub-carrier to obtain the signal; the signal is sent to the network device.
  • the first sequence is a sequence in the time domain.
  • FFT Fast Fourier Transformation
  • the first sequence can be transformed from the time domain to a sequence in the frequency domain (ie, the frequency domain). sequence).
  • performing FFT on the first sequence by the first terminal device is only used as an example, and does not constitute a limitation to the embodiment of the present application.
  • the first terminal device may also perform the FFT on the first sequence.
  • Perform a discrete Fourier transform (DFT) to transform the first sequence from the time domain to a sequence in the frequency domain.
  • DFT discrete Fourier transform
  • Step S203 The network device determines a first sequence containing N elements according to the parameter group.
  • step S203 The execution process of the network device determining the first sequence containing N elements according to the parameter group is the same as the execution process of the first terminal device determining the first sequence containing N elements according to the parameter group, that is, the execution process of step S203 can be referred to in step S201 The specific description will not be repeated here.
  • the network device may send a parameter group to the first terminal device and the second terminal device, respectively, and the first parameter and the second parameter in the parameter group sent to the first terminal device are the same as those sent to the second terminal device. At least one of the first parameter and the second parameter in the parameter group of is different.
  • first parameter and the second parameter in the parameter group sent to the first terminal device are the same as the first parameter and the second parameter in the parameter group sent to the second terminal device, they are sent to The absolute value of the difference between the cyclic shift value in the parameter group of the first terminal device and the cyclic shift value in the parameter group sent to the second terminal device is greater than the first value (that is, the aforementioned L), where the first The first terminal device and the second terminal device are different terminal devices located in the same cell.
  • the generated second sequence is the same, but conflicts may occur when different terminal devices use the same first sequence. Therefore, the first sequence used by the first terminal device and the second terminal device is obtained by cyclic shifting the second sequence with different bits, so that the first sequence used by the first terminal device and the second terminal device can be different. . But the signal sent according to the first sequence will change during transmission. Specifically, the distance between the first terminal device and the network device may be different from the distance between the second terminal device and the network device. Therefore, the signals sent by the first terminal device and the second terminal device to the network device arrive The propagation delay required by the network equipment is different.
  • the signals transmitted by the two terminal devices may be the same when they reach the network device, which will cause The network device cannot distinguish between the signals transmitted by the first terminal device and the second terminal device.
  • the network device receives the signal sent by the terminal device (that is, the first terminal device, the second terminal device)
  • the first sequence in the signal is shifted.
  • the first terminal device sends signal 1 to the network device according to the first sequence.
  • the signal sent by the first terminal device received by the network device is signal 2
  • the sequence obtained according to signal 2 is the first sequence in signal 1 ( Due to transmission) the sequence obtained after shifting.
  • the shift in the first sequence during the transmission is less than or equal to the first value. Therefore, when the first parameter and the second parameter in the parameter group sent to the first terminal device are the same as the first parameter and the second parameter in the parameter group sent to the second terminal device, the parameter sent to the first terminal device.
  • the absolute value of the difference between the cyclic shift value in the parameter group and the cyclic shift value in the parameter group sent to the second terminal device is greater than the first value (that is, the aforementioned L), which can prevent the network device from receiving the first When the terminal device and the second terminal device respectively send signals, the network device cannot distinguish the signals sent by the first terminal device and the second terminal device.
  • the signal sent by the device is signal 6 as an example.
  • signal 3 and signal 4 are obtained based on the same u1, u2 and different cyclic shift values, and the difference between the cyclic shift value x1 corresponding to signal 3 and the cyclic shift value x2 corresponding to signal 4 is greater than L . Since the shift of the signal during transmission is less than or equal to L, the difference between the cyclic shift value x3 corresponding to signal 5 and the cyclic shift value x4 corresponding to signal 6 is greater than 0, so the network device can distinguish Signal 5 and signal 6.
  • the foregoing first value may be determined by the radius of the cell where the first terminal device and the second terminal device are located, or the first value may be determined by the maximum value of the multipath delay corresponding to the cell.
  • the first value is determined by the maximum value of the propagation delay of the cell, and the maximum value of the propagation delay of the cell It can be determined according to the radius of the cell.
  • the first value is determined by the maximum value of the multipath delay corresponding to the cell.
  • the network device may send a parameter group to the first terminal device and the third terminal device respectively, and the first parameter in the parameter group sent to the first terminal device and the parameter group sent to the third terminal device
  • the absolute value of the difference between the second parameter in the parameter group sent to the first terminal device and the second parameter in the parameter group sent to the third terminal device is greater than the second value, where ,
  • the first terminal device and the third terminal device are different terminal devices located in the same cell.
  • the first terminal device, the second terminal device, and the third terminal device are located in the same cell.
  • the second value may be determined by the maximum value (such as d) of the Doppler shift corresponding to the cell where the first terminal device and the third terminal device are located, or the second value may be determined by This d and the interval between the carriers used to carry the signal sent by the first terminal device (or the signal sent by the third terminal device) (such as )determine.
  • the second value is or among them, Indicates the round up symbol. In this way, when the Doppler shifts of different terminal devices are different, it can be ensured that the network device can still distinguish the signals sent by different terminal devices.
  • Step S204 The network device receives the first signal.
  • the network device may receive the first signal on a preset time-frequency resource. It should be noted that, regardless of whether the first terminal device sends a signal to the network device, the network device can receive the first signal.
  • the first signal may include a signal sent by the first terminal device, a signal sent by other terminal devices (such as the second terminal device and the third terminal device), and/or a noise signal.
  • the first signal may be a mixed signal composed of the signal sent by the first terminal device and the signal sent by other terminal devices.
  • the aforementioned preset time-frequency resources may be configured according to application scenarios.
  • the preset time-frequency resource may be the time-frequency resource for the network device to monitor the random access request.
  • Step S205 The network device determines, according to the first sequence and the first signal, whether the first signal includes a signal sent according to the first sequence.
  • the network device may determine whether the first signal includes a signal sent according to the first sequence according to the determined first sequence and the first signal.
  • the network device determines whether the first signal includes the signal sent according to the first sequence according to the first sequence and the first signal.
  • the specific implementation manner may be: The frequency domain sequence carried by the subcarriers is subjected to inverse fast fourier transformation (IFFT) to obtain the time domain sequence; and the first sequence and the time domain sequence are correlated to obtain the correlation value; determined according to the correlation value Whether the first signal includes a signal sent according to the first sequence.
  • IFFT inverse fast fourier transformation
  • performing correlation processing on the first sequence and the time domain sequence to obtain the correlation value may be as follows: the network device determines according to the first sequence and the cyclic shift that may be caused by propagation The first sequence is a sequence obtained after possible cyclic shifts (brought by propagation); and the sequence is correlated with the time-domain sequence to obtain a set of correlation values.
  • a specific implementation manner of determining whether the first signal includes the signal sent according to the first sequence according to the correlation value may be: the network device performs normalization processing (such as noise normalization processing) on the set of correlation values, A set of normalized correlation values is obtained; if the maximum value in the set of normalized correlation values is greater than the preset threshold, the network device determines that the first signal includes the signal sent according to the first sequence. In an implementation manner, if the maximum value in the group of normalized correlation values is less than or equal to the preset threshold, the network device determines that the first signal does not include the signal sent according to the first sequence.
  • normalization processing such as noise normalization processing
  • the network device determining that the first signal includes a signal sent according to the first sequence can indicate that the network device has received a random access request sent by a terminal device. Further, the network device may determine the distance between the terminal device sending the random access request and the network device according to the possible cyclic shift caused by propagation corresponding to the maximum value in the above-mentioned set of correlation values. Furthermore, the network device may determine the TA value according to the distance, and send the TA value to the terminal device (sending the random access request). In an implementation manner, the network device may determine the distance between the terminal device that sends the random access request and the network device according to the preset correspondence between the cyclic shift value and the distance. In an implementation manner, in the correspondence relationship, a smaller cyclic shift value corresponds to a shorter distance.
  • the network device may determine multiple first sequences, and the multiple first sequences may be used by the terminal devices in the cell corresponding to the network device.
  • the first sequence (that is, the first sequence that the signal sent by the terminal device in the cell may include).
  • the network device can determine three first sequences (such as the first sequence a, the first Sequence b and first sequence c). By correlating the first sequence a with the first signal received by the network device, it can be further determined whether the first signal includes a signal sent according to the first sequence a.
  • the first sequence b with the first signal received by the network device, it can be further determined whether the first signal includes a signal sent according to the first sequence b.
  • the first sequence c with the first signal received by the network device, it can be further determined whether the first signal includes a signal sent according to the first sequence c.
  • the preset threshold may be set by default by the network device, or may be an empirical value input by the user. Specifically, when the length of the first sequence is different, the preset threshold may be different.
  • step S203 may occur before step S202, which is not limited in the embodiment of the present application.
  • FIG. 3 is a schematic flowchart of another data processing method provided by an embodiment of the present application.
  • the method describes in detail that the network device sends the first parameter group set to the first terminal device for the first terminal device.
  • Device configuration parameter group the execution subject of step S302 to step S304 is the first terminal device, or the chip in the first terminal device
  • the execution subject of step S301, step S305 to step S308 is the network device, or the chip in the network device, as follows
  • the method may include but is not limited to the following steps:
  • Step S301 The network device sends a first parameter group set to the first terminal device, where the first parameter group set is included in the second parameter group set.
  • the network device may pre-store a second parameter group set, and the parameter group included in the second parameter group set may be allocated to the terminal device in the cell corresponding to the network device.
  • the network device may configure one or more parameter groups for a terminal device, and in this case, the one or more parameter groups are unique to the terminal device.
  • a network device configures a parameter group for a terminal device, and the first sequence a is determined according to the parameter group, if the first signal received by the network device includes a signal sent according to the first sequence a, it can indicate that the network The device receives the signal sent by the terminal device.
  • the first parameter group set includes multiple parameter groups (for example, 4 parameter groups), and the first sequence a to the first sequence are respectively determined according to the 4 parameter groups
  • the signal sent according to any first sequence of the first sequence a to the first sequence d can represent 2-bit information
  • the signal sent according to the different first sequence of the first sequence a to the first sequence d can be Represents different information.
  • the information represented by the signals sent according to the first sequence in the first sequence a to the first sequence d are: 00, 01, 10, and 11, respectively.
  • the first signal received by the network device includes the signal sent according to the first sequence d, it can indicate that the network device has received the signal sent by the terminal device, and the 2-bit information included in the signal is 11. It can be seen that when more first sequences are generated, more first sequences can be configured for the terminal device, so that the signal sent by the terminal device to the network device according to the first sequence can carry more information.
  • the network device may also send the first parameter group set to other terminal devices (such as the second terminal device and the third terminal device) other than the first terminal device, that is, the network device may send the first parameter set to different terminal devices. Send the same set of parameter groups.
  • the first parameter group set is shared by the first terminal device, the second terminal device, and the third terminal device.
  • the first terminal device, the second terminal device, and the third terminal device may respectively determine a parameter group from the first parameter group set, respectively determine the first sequence according to the parameter group, and determine the first sequence according to the respectively determined first sequence Send signals to network devices.
  • the network device may determine that the first terminal device, the second terminal device, or the first terminal device is received.
  • the first terminal device, the second terminal device, and the third terminal device may select different parameter groups, or may select the same parameter group.
  • the parameter group set includes a larger number of parameter groups.
  • the network device may send different parameter group sets to different terminal devices, and the parameter groups included in the different parameter group sets are completely different.
  • the set of parameter groups received by the terminal device is unique to the terminal device.
  • the network device can determine that the signal sent by the terminal device is received, and the signal also carries Specific information.
  • the parameter group set may include a smaller number of parameter groups.
  • the absolute value of the difference between the cyclic shift values in any two parameter groups in which the first parameter and the second parameter are the same is greater than the first value.
  • the absolute value of the difference between the second parameter in any two parameter groups with the same first parameter is greater than the second value.
  • Step S302 The first terminal device determines a parameter group from the first parameter group set.
  • the first terminal device may determine the parameter group from the first parameter group set.
  • the first terminal device may randomly determine the parameter group from the first parameter group set, or may determine the parameter group from the first parameter group set in a manner preset by other first terminal devices.
  • different terminal devices may determine the parameter group from the first parameter group set in different ways. In this way, the probability that the parameter groups determined by different terminal devices from the first parameter group set are the same can be reduced, thereby helping to reduce the probability of conflicts between different terminal devices.
  • Step S303 The first terminal device determines a first sequence containing N elements according to the parameter group.
  • the parameter group includes the first parameter, the second parameter and the cyclic shift value.
  • the first sequence is shifted by the second sequence according to the cyclic shift value.
  • the bit value is obtained by cyclic shifting, the second sequence is determined according to the first parameter and the second parameter, and the elements in the second sequence satisfy:
  • u 1 is the first parameter, u 1 ⁇ 1,2,...,P-1 ⁇ ;
  • u 2 is the second parameter, u 2 ⁇ 0,1,2,...,P-1 ⁇ ;
  • i is The index of the element in the second sequence, the value of i is 0 to N-1, Is the element value of the element index i in the second sequence, N is the length of the second sequence, j is the symbol of the imaginary number in the complex number, and ⁇ is a non-zero complex number, Is a real number;
  • P and N satisfy any of the following relationships: P is the smallest prime number greater than or equal to N; P is the largest prime number less than or equal to N; P is the smallest prime number greater than 2 ⁇ N; P is The largest prime number less than 2 ⁇ N.
  • Step S304 The first terminal device sends a signal to the network device according to the first sequence.
  • step S303 to step S304 please refer to the specific description of step S201 to step S202 in FIG. 2 respectively, which will not be repeated here.
  • Step S305 The network device determines a parameter group from the second parameter group set.
  • the signal sent by the terminal equipment in the cell to the network device may be based on the second parameter group set. Generated by the first sequence determined by any one parameter group in the parameter group set. Therefore, the network device needs to traverse the first sequence determined according to each parameter group in the second parameter group set to determine whether the signal sent by each terminal device in the cell corresponding to the network device is received.
  • the network device may determine the parameter group from the third parameter group set. It should be noted that the first sequence in the signal sent to the network device by any terminal device in the cell corresponding to the network device is determined according to the parameter group set received from the network device.
  • each parameter group in the fourth parameter group set is not sent to any terminal device in the cell corresponding to the network device, the signal sent by the terminal device in the cell to the network device cannot be based on the fourth parameter group Generated by the first sequence determined by the parameter group in the set.
  • the network device traverses the first sequence determined according to each parameter group in the third parameter group set to determine whether the signal sent by each terminal device in the cell corresponding to the network device is received.
  • Step S306 The network device determines a first sequence containing N elements according to the parameter group.
  • Step S307 The network device receives the first signal.
  • Step S308 The network device determines, according to the first sequence and the first signal, whether the first signal includes a signal sent according to the first sequence.
  • step S306 to step S308 please refer to the specific description of step S203 to step S205 in FIG. 2 respectively, which will not be repeated here. It should also be noted that the order of execution of at least some of the above steps is not limited. For example, step S305 may occur before step S304 (or step S302, step S303), which is not limited in the embodiment of the present application.
  • the network device can send different parameter group sets to different terminal devices.
  • the terminal device determines the first sequence according to the parameter group in the received parameter group set, and sends a signal to the network device according to the first sequence, which is not only helpful for the network device to determine whether the signal sent by the terminal device in the corresponding cell is received, but also It can further determine the specific information carried by the signal sent by the terminal device.
  • FIG. 4 is a schematic flowchart of another data processing method provided by an embodiment of the present application.
  • the method describes in detail the grouping rules of the parameter groups in the second parameter group set.
  • the execution subject of step S402 to step S404 is the first terminal device, or the chip in the first terminal device
  • the execution subject of step S401, step S405 to step S408 is the network device, or the chip in the network device, as follows Take the first terminal device and the network device as the execution subject of the data processing method as an example for description.
  • the method may include but is not limited to the following steps:
  • Step S401 The network device sends a first parameter group set to the first terminal device, where the first parameter group set is included in the second parameter group set, and the second parameter group set is included in the candidate parameter group set;
  • the parameter group set includes one or more parameter group subsets, the first parameters of the parameter groups in each parameter group subset in the candidate parameter group set are the same, and any two of the candidate parameter group sets belong to different parameter groups.
  • the parameter groups are any b parameter groups in any parameter group subset in the candidate parameter group set; and/or when b>a, the b parameter groups are composed of the parameter groups and d in the c parameter group subset.
  • the parameter group may be divided into different parameter group subsets according to the first parameter.
  • a parameter group subset in the candidate parameter group set is composed of parameter groups with the same first parameter (that is, u1), and different parameter group subsets include the same number of parameter groups.
  • the cell corresponding to the network device preferentially uses the parameter groups in the same parameter group subset. If the number of parameter groups in a parameter group subset is not enough, continue to use other parameter group subsets in the candidate parameter group set except the parameter group subset. Until the number of parameter groups meets the requirements of the cell.
  • the parameter group used by the cell can be composed as follows: All parameter groups in a parameter group subset, and (B mod A) parameter groups in another parameter group subset in the candidate parameter group set. In this way, the cell corresponding to the network device can preferentially use the parameter group in the same parameter group subset.
  • a logical index may be configured for the cell corresponding to the network device, and different logical indexes correspond to different parameter groups, or at least one of the first parameter and the second parameter in the parameter groups corresponding to different logical indexes The parameters are different.
  • the network device can determine the second sequence according to the first parameter and the second parameter corresponding to the logical index. If the determined number of the second sequence is less than the number required by the cell, the network device updates the logical index, and according to the updated logic The first parameter and the second parameter in the parameter group corresponding to the index continue to determine the second sequence until the determined number of the second sequence meets the cell requirement.
  • the updated logical index may be i+1.
  • the logical index corresponding to the parameter group with the same first parameter is continuous (for example, the first parameter
  • the logical index corresponding to the 3 parameter groups of 1 is 0 ⁇ 2).
  • the parameter group corresponding to the updated logical index can be made the same as the first parameter in the parameter group corresponding to the logical index before the update, that is, the parameter group corresponding to the updated logical index corresponds to the logical index before the update
  • the parameter groups belong to a subset of the same parameter group.
  • Table 1 is only an example, and does not constitute a limitation to the embodiments of the present application.
  • Table 2 as an example, in other feasible implementation manners, the logical indexes corresponding to parameter groups with the same first parameter can be exchanged with each other.
  • the logical indexes corresponding to different parameter groups whose first parameter is 3 in Table 1 have been exchanged.
  • the logical indexes corresponding to the parameter group with different first parameters can be exchanged with each other.
  • Table 2 it can be seen from Table 2 that the logical index corresponding to the parameter group with the first parameter being 1 and the logical index corresponding to the parameter group with the first parameter being 2 are exchanged with each other. It should be noted that Table 1 and Table 2 take the parameter group including the first parameter and the second parameter as an example. The cyclic shift value is not shown in the table, but it does not constitute a limitation to the embodiment of the present application.
  • the e parameter groups are any e parameter groups in the d parameter groups, or the e parameter groups are any parameter group in the subset of c parameter groups Any e parameter groups in the subset.
  • the e parameter groups are any e parameter groups in any parameter group subset of the c parameter group subsets, or the e parameter groups include d parameter groups And any (eb) parameter groups in any parameter group subset in c parameter group subsets.
  • e parameter groups are composed of all parameter groups in the subset of f parameter groups and g parameter groups, where the subset of f parameter groups is any of the subset of c parameter groups f parameter group subsets, the g parameter groups are any g parameter groups in any parameter group subset other than the f parameter group subsets in the c parameter group subsets, or the g parameter groups are Any g parameter groups in the d parameter groups (when g ⁇ d). In this way, the network device can preferentially allocate parameter groups in the same parameter group subset in the second parameter group set to the terminal device.
  • the determined time domain autocorrelation of the first sequence is That is, the time domain autocorrelation of the determined first sequence is small.
  • the cross-correlation value between the first sequences determined according to different parameter groups in the same parameter group subset can be The cross-correlation value between the first sequence determined according to the parameter groups in the different parameter group subsets is The cross-correlation value between the first sequences used in the same cell determined by the embodiment of the present application is small, which is beneficial to reduce interference between different terminal devices in the cell.
  • Step S402 The first terminal device determines a parameter group from the first parameter group set.
  • Step S403 The first terminal device determines a first sequence containing N elements according to the parameter group.
  • the parameter group includes the first parameter, the second parameter and the cyclic shift value.
  • the first sequence is shifted by the second sequence according to the cyclic shift value.
  • the bit value is obtained by cyclic shifting, the second sequence is determined according to the first parameter and the second parameter, and the elements in the second sequence satisfy:
  • u 1 is the first parameter, u 1 ⁇ 1,2,...,P-1 ⁇ ;
  • u 2 is the second parameter, u 2 ⁇ 0,1,2,...,P-1 ⁇ ;
  • i is The index of the element in the second sequence, the value of i is 0 to N-1, Is the element value of the element index i in the second sequence, N is the length of the second sequence, j is the symbol of the imaginary number in the complex number, and ⁇ is a non-zero complex number, Is a real number;
  • P and N satisfy any of the following relationships: P is the smallest prime number greater than or equal to N; P is the largest prime number less than or equal to N; P is the smallest prime number greater than 2 ⁇ N; P is The largest prime number less than 2 ⁇ N.
  • Step S404 The first terminal device sends a signal to the network device according to the first sequence.
  • Step S405 The network device determines a parameter group from the second parameter group set.
  • Step S406 The network device determines a first sequence containing N elements according to the parameter group.
  • Step S407 The network device receives the first signal.
  • Step S408 The network device determines, according to the first sequence and the first signal, whether the first signal includes a signal sent according to the first sequence.
  • step S401 to step S402 and step S405 can be referred to the detailed description of step S301 to step S302 and step S305 in FIG. 3 respectively, and the execution process of step S403 to step S404 and step S406 to step S408 can be respectively referred to Refer to the specific descriptions of steps S201 to S202, and steps S203 to S205 in FIG. 2, which will not be repeated here.
  • the cell corresponding to the network device can preferentially use parameter groups in the same parameter group subset.
  • FIG. 5 is a schematic structural diagram of a device for sequence-based signal transmission provided by an embodiment of the present application.
  • the device may be a first terminal device or a device (such as a chip) with the function of the first terminal device.
  • the apparatus 50 for sequence-based signal transmission is configured to execute the steps performed by the first terminal device in the method embodiments corresponding to FIGS. 2 to 4, and the apparatus 50 for sequence-based signal transmission includes:
  • the processing module 501 is configured to determine a first sequence containing N elements according to a parameter group.
  • the parameter group includes a first parameter, a second parameter and a cyclic shift value.
  • the first sequence is determined by the second sequence according to the cyclic shift value. After cyclic shifting, the second sequence is determined according to the first parameter and the second parameter; wherein, the elements in the second sequence satisfy:
  • u 1 is the first parameter, u 1 ⁇ 1,2,...,P-1 ⁇ ;
  • u 2 is the second parameter, u 2 ⁇ 0,1,2,...,P-1 ⁇ ;
  • i is The index of the element in the second sequence, the value of i is 0 to N-1, Is the element value of the element index i in the second sequence, N is the length of the second sequence, j is the symbol of the imaginary number in the complex number, and ⁇ is a non-zero complex number, Is a real number;
  • P and N satisfy any of the following relationships: P is the smallest prime number greater than or equal to N; P is the largest prime number less than or equal to N; P is the smallest prime number greater than 2 ⁇ N; P is The largest prime number less than 2 ⁇ N;
  • the communication module 502 is configured to send a signal to the network device according to the first sequence.
  • the cyclic shift value adopted by the first terminal device is the same as the first parameter and the second parameter adopted by the second terminal device
  • the absolute value of the difference between the cyclic shift values adopted by the second terminal device may be greater than the first value, where the first terminal device and the second terminal device are located in the same cell.
  • the second parameter adopted by the first terminal device is the same as the second parameter adopted by the third terminal device.
  • the absolute value of the difference between may be greater than the second value, where the first terminal device and the third terminal device are located in the same cell.
  • the communication module 502 may also be used to receive a parameter group sent by a network device.
  • the communication module 502 may also be used to receive the first parameter group set sent by the network device; the processing module 501 may also be used to determine the aforementioned parameter group from the first parameter group set.
  • the absolute value of the difference between the cyclic shift values in any two parameter groups in which the first parameter and the second parameter are the same is greater than the first value.
  • the absolute value of the difference between the second parameter in any two parameter groups with the same first parameter is greater than the second value.
  • the first parameter group set is included in the second parameter group set, and the second parameter group set is included in the candidate parameter group set; the candidate parameter group set includes one or more parameter group subsets, The first parameters of the parameter groups in each parameter group subset in the candidate parameter group set are the same, and the first parameters of any two parameter groups belonging to different parameter group subsets in the candidate parameter group set are different.
  • the communication module 502 when configured to send a signal to the network device according to the first sequence, it is specifically configured to: perform a fast Fourier transform on the first sequence to obtain a frequency domain sequence; and map the frequency domain sequence to Get the signal on the sub-carrier; send the signal to the network device.
  • FIG. 6 is a schematic structural diagram of another device for sequence-based signal transmission provided by an embodiment of the present application.
  • the device may be a first terminal device or a device (such as a chip) with the function of the first terminal device.
  • the device 60 for sequence-based signal transmission may include a communication interface 601, a processor 602, and a memory 603.
  • the communication interface 601, the processor 602, and the memory 603 may be connected to each other through one or more communication buses, or may be connected in other ways.
  • the related functions implemented by the processing module 501 and the communication module 502 shown in FIG. 5 may be implemented by the same processor 602, or may be implemented by multiple different processors 602.
  • the communication interface 601 may be used to send data and/or signaling, and receive data and/or signaling. In the embodiment of the present application, the communication interface 601 can be used to send a signal to a network device.
  • the communication interface 601 may be a transceiver.
  • the processor 602 is configured to perform corresponding functions of the first terminal device in the methods described in FIGS. 2 to 4.
  • the processor 602 may include one or more processors.
  • the processor 602 may be one or more central processing units (CPUs), network processors (NPs), hardware chips, or any of them. combination.
  • the processor 602 is a CPU, the CPU may be a single-core CPU or a multi-core CPU.
  • the memory 603 is used to store program codes and the like.
  • the memory 603 may include a volatile memory (volatile memory), such as a random access memory (random access memory, RAM); the memory 603 may also include a non-volatile memory (non-volatile memory), such as a read-only memory (read-only memory). Only memory (ROM), flash memory (flash memory), hard disk drive (HDD), or solid-state drive (SSD); the memory 603 may also include a combination of the foregoing types of memories.
  • the device 60 for sequence-based signal transmission includes the memory 603 for example only, and does not constitute a limitation to the embodiment of the present application. In an implementation manner, the memory 603 can be replaced by other storage media with storage functions.
  • the processor 602 may call the program code stored in the memory 603 to cause the apparatus 60 for sequence-based signal transmission to perform the following operations:
  • the parameter group includes the first parameter, the second parameter and the cyclic shift value.
  • the first sequence is determined by the second sequence. According to the cyclic shift value, the cyclic shift is obtained, and the second sequence is determined according to the first parameter and the second parameter; wherein, the elements in the second sequence satisfy:
  • u 1 is the first parameter, u 1 ⁇ 1,2,...,P-1 ⁇ ;
  • u 2 is the second parameter, u 2 ⁇ 0,1,2,...,P-1 ⁇ ;
  • i is The index of the element in the second sequence, the value of i is 0 to N-1, Is the element value of the element index i in the second sequence, N is the length of the second sequence, j is the symbol of the imaginary number in the complex number, and ⁇ is a non-zero complex number, Is a real number;
  • P and N satisfy any of the following relationships: P is the smallest prime number greater than or equal to N; P is the largest prime number less than or equal to N; P is the smallest prime number greater than 2 ⁇ N; P is The largest prime number less than 2 ⁇ N.
  • the cyclic shift value adopted by the first terminal device is the same as the first parameter and the second parameter adopted by the second terminal device
  • the absolute value of the difference between the cyclic shift values adopted by the second terminal device may be greater than the first value, where the first terminal device and the second terminal device are located in the same cell.
  • the second parameter adopted by the first terminal device is the same as the second parameter adopted by the third terminal device.
  • the absolute value of the difference between may be greater than the second value, where the first terminal device and the third terminal device are located in the same cell.
  • the processor 602 may also call the program code stored in the memory 603 to cause the apparatus 60 for sequence-based signal transmission to perform the following operations: receive the parameter group sent by the network device through the communication interface 601.
  • the processor 602 may also call the program code stored in the memory 603 to cause the apparatus 60 for sequence-based signal transmission to perform the following operations: receive the first parameter group set sent by the network device through the communication interface 601; The aforementioned parameter group is determined in the first parameter group set.
  • the absolute value of the difference between the cyclic shift values in any two parameter groups in which the first parameter and the second parameter are the same is greater than the first value.
  • the absolute value of the difference between the second parameter in any two parameter groups with the same first parameter is greater than the second value.
  • the first parameter group set is included in the second parameter group set, and the second parameter group set is included in the candidate parameter group set; the candidate parameter group set includes one or more parameter group subsets, The first parameters of the parameter groups in each parameter group subset in the candidate parameter group set are the same, and the first parameters of any two parameter groups belonging to different parameter group subsets in the candidate parameter group set are different.
  • the processor 602 when it sends a signal to the network device according to the first sequence, it may specifically perform the following operations: perform a fast Fourier transform on the first sequence to obtain a frequency domain sequence; and map the frequency domain sequence On the sub-carrier, the signal is obtained; the signal is sent to the network device through the communication interface 601.
  • the processor 602 may also perform operations corresponding to the first terminal device in the embodiments shown in FIG. 2 to FIG. 4. For details, please refer to the description in the method embodiment, which will not be repeated here.
  • FIG. 7 is a schematic structural diagram of another device for sequence-based signal transmission provided by an embodiment of the present application.
  • the device may be a network device or a device with network device functions (such as a chip), and a sequence-based signal
  • the transmitting device 70 is used to perform the steps performed by the network device in the method embodiments corresponding to FIGS. 2 to 4, and the sequence-based signal transmission device 70 may include:
  • the processing module 701 is configured to determine a first sequence containing N elements according to a parameter group.
  • the parameter group includes a first parameter, a second parameter and a cyclic shift value.
  • the first sequence is determined by the second sequence according to the cyclic shift value. Obtained after cyclic shift, the second sequence is determined according to the first parameter and the second parameter;
  • the communication module 702 is configured to receive the first signal
  • the processing module 701 is further configured to determine whether the first signal includes a signal sent according to the first sequence according to the first sequence and the first signal; wherein, the elements in the second sequence satisfy:
  • u 1 is the first parameter, u 1 ⁇ 1,2,...,P-1 ⁇ ;
  • u 2 is the second parameter, u 2 ⁇ 0,1,2,...,P-1 ⁇ ;
  • i is The index of the element in the second sequence, the value of i is 0 to N-1, Is the element value of the element index i in the second sequence, N is the length of the second sequence, j is the symbol of the imaginary number in the complex number, and ⁇ is a non-zero complex number, Is a real number;
  • P and N satisfy any of the following relationships: P is the smallest prime number greater than or equal to N; P is the largest prime number less than or equal to N; P is the smallest prime number greater than 2 ⁇ N; P is The largest prime number less than 2 ⁇ N.
  • the communication module 702 may also be used to send a parameter group to the first terminal device and the second terminal device, respectively, and the first parameter and the second parameter in the parameter group sent to the first terminal device and the parameter group are sent to the first terminal device and the second terminal device respectively.
  • the cyclic shift value in the parameter group sent to the first terminal device is the same as the parameter group sent to the second terminal device.
  • the absolute value of the difference between the cyclic shift values of is greater than the first value, where the first terminal device and the second terminal device are located in the same cell.
  • the communication module 702 may also be used to send parameter groups to the first terminal device and the third terminal device, respectively, and the first parameter in the parameter group sent to the first terminal device and the parameter group sent to the third terminal device.
  • the first parameter in the parameter group of the terminal device is the same
  • the difference between the second parameter in the parameter group sent to the first terminal device and the second parameter in the parameter group sent to the third terminal device The absolute value is greater than the second value, where the first terminal device and the second terminal device are located in the same cell.
  • the communication module 702 can also be used to send the first parameter group set to the first terminal device; the processing module 701 can also be used to determine the aforementioned parameter group from the second parameter group set, where the first parameter group The parameter group set is included in the second parameter group set.
  • the absolute value of the difference between the cyclic shift values in any two parameter groups in which the first parameter and the second parameter are the same is greater than the first value.
  • the absolute value of the difference between the second parameter in any two parameter groups with the same first parameter is greater than the second value.
  • the second parameter group set is included in the candidate parameter group set;
  • the candidate parameter group set includes one or more parameter group subsets, and the parameters in each parameter group subset in the candidate parameter group set
  • the first parameter of the group is the same, the first parameters of any two parameter groups belonging to different parameter group subsets in the candidate parameter group set are different, and each parameter group subset in the candidate parameter group set includes a Parameter groups;
  • the processing module 701 when the processing module 701 is configured to determine whether the first signal includes a signal sent according to the first sequence according to the first sequence and the first signal, it can be specifically used to: The frequency domain sequence carried by the carrier is subjected to inverse fast Fourier transform to obtain a time domain sequence; and the first sequence and the time domain sequence are correlated to obtain a correlation value; according to the correlation value, it is determined whether the first signal includes A sequence of transmitted signals.
  • FIG. 8 is a schematic structural diagram of another device for sequence-based signal transmission provided by an embodiment of the present application.
  • the device may be a network device or a device (such as a chip) with a network device function.
  • the transmission device 80 may include a communication interface 801, a processor 802, and a memory 803.
  • the communication interface 801, the processor 802, and the memory 803 may be connected to each other through one or more communication buses, or may be connected in other ways.
  • the related functions implemented by the processing module 701 and the communication module 702 shown in FIG. 7 may be implemented by the same processor 802, or may be implemented by multiple different processors 802.
  • the communication interface 801 may be used to send data and/or signaling, and receive data and/or signaling. In the embodiment of the present application, the communication interface 801 may be used to receive the first signal.
  • the communication interface 801 may be a transceiver.
  • the processor 802 is configured to perform the corresponding functions of the network device in the methods described in FIGS. 2 to 4.
  • the processor 802 may include one or more processors.
  • the processor 802 may be one or more central processing units (CPUs), network processors (network processors, NPs), hardware chips, or any of them. combination.
  • the processor 802 is a CPU
  • the CPU may be a single-core CPU or a multi-core CPU.
  • the memory 803 is used to store program codes and the like.
  • the memory 803 may include a volatile memory (volatile memory), such as a random access memory (random access memory, RAM); the memory 803 may also include a non-volatile memory (non-volatile memory), such as a read-only memory (read-only memory). Only memory (ROM), flash memory (flash memory), hard disk drive (HDD), or solid-state drive (SSD); the memory 803 may also include a combination of the foregoing types of memories.
  • the device 80 for sequence-based signal transmission includes the memory 803 for example only, and does not constitute a limitation to the embodiment of the present application. In an implementation manner, the memory 803 can be replaced by other storage media with storage functions.
  • the processor 802 may call the program code stored in the memory 803 to make the apparatus 80 for sequence-based signal transmission perform the following operations:
  • a first sequence containing N elements is determined according to a parameter group, the parameter group includes a first parameter, a second parameter and a cyclic shift value, and the first sequence is obtained by cyclic shifting the second sequence according to the cyclic shift value, The second sequence is determined according to the first parameter and the second parameter;
  • the first signal includes a signal sent according to the first sequence; wherein, the elements in the second sequence satisfy:
  • u 1 is the first parameter, u 1 ⁇ 1,2,...,P-1 ⁇ ;
  • u 2 is the second parameter, u 2 ⁇ 0,1,2,...,P-1 ⁇ ;
  • i is The index of the element in the second sequence, the value of i is 0 to N-1, Is the element value of the element index i in the second sequence, N is the length of the second sequence, j is the symbol of the imaginary number in the complex number, and ⁇ is a non-zero complex number, Is a real number;
  • P and N satisfy any of the following relationships: P is the smallest prime number greater than or equal to N; P is the largest prime number less than or equal to N; P is the smallest prime number greater than 2 ⁇ N; P is The largest prime number less than 2 ⁇ N.
  • the processor 802 may also call the program code stored in the memory 803 to cause the sequence-based signal transmission apparatus 80 to perform the following operations: respectively send to the first terminal device and the second terminal device through the communication interface 801 Parameter group.
  • the first parameter and the second parameter in the parameter group sent to the first terminal device are the same as the first parameter and the second parameter in the parameter group sent to the second terminal device, they are sent to the first parameter group.
  • the absolute value of the difference between the cyclic shift value in the parameter group of a terminal device and the cyclic shift value in the parameter group sent to the second terminal device is greater than the first value, where the first terminal device and the second terminal device The two terminal devices are located in the same cell.
  • the processor 802 may also call the program code stored in the memory 803 to cause the sequence-based signal transmission apparatus 80 to perform the following operations: respectively send to the first terminal device and the third terminal device through the communication interface 801 Parameter group, when the first parameter in the parameter group sent to the first terminal device is the same as the first parameter in the parameter group sent to the third terminal device, the first parameter in the parameter group sent to the first terminal device
  • the absolute value of the difference between the second parameter and the second parameter in the parameter group sent to the third terminal device is greater than the second value, where the first terminal device and the second terminal device are located in the same cell.
  • the processor 802 may also call the program code stored in the memory 803 to cause the sequence-based signal transmission apparatus 80 to perform the following operations: send the first parameter group set to the first terminal device through the communication interface 801; The aforementioned parameter group is determined from the second parameter group set, wherein the first parameter group set is included in the second parameter group set.
  • the absolute value of the difference between the cyclic shift values in any two parameter groups in which the first parameter and the second parameter are the same is greater than the first value.
  • the absolute value of the difference between the second parameter in any two parameter groups with the same first parameter is greater than the second value.
  • the second parameter group set is included in the candidate parameter group set;
  • the candidate parameter group set includes one or more parameter group subsets, and the parameters in each parameter group subset in the candidate parameter group set
  • the first parameter of the group is the same, the first parameters of any two parameter groups belonging to different parameter group subsets in the candidate parameter group set are different, and each parameter group subset in the candidate parameter group set includes a Parameter groups;
  • the processor 802 may specifically perform the following operations: The frequency domain sequence carried by the carrier is subjected to inverse fast Fourier transform to obtain a time domain sequence; and the first sequence and the time domain sequence are correlated to obtain a correlation value; according to the correlation value, it is determined whether the first signal includes A sequence of transmitted signals.
  • processor 802 may also perform operations corresponding to the network device in the embodiments shown in FIG. 2 to FIG. 4. For details, please refer to the description in the method embodiment, which will not be repeated here.
  • the embodiment of the present application also provides a computer-readable storage medium, which can be used to store the computer software instructions used by the sequence-based signal transmission device in the embodiment shown in FIG. A program designed for terminal equipment.
  • the embodiments of the present application also provide a computer-readable storage medium, which can be used to store computer software instructions used by the sequence-based signal transmission apparatus in the embodiment shown in FIG. The designed program.
  • the above-mentioned computer-readable storage medium includes, but is not limited to, flash memory, hard disk, and solid-state hard disk.
  • the embodiments of the present application also provide a computer program product.
  • the computer product When the computer product is run by a computing device, it can execute the method designed for the first terminal device in the above-mentioned embodiments of FIG. 2 to FIG. 4.
  • the embodiments of the present application also provide a computer program product.
  • the computer product When the computer product is run by a computing device, it can execute the method designed for the network device in the above-mentioned embodiments of FIG. 2 to FIG. 4.
  • a chip including a processor and a memory.
  • the memory includes a processor and a memory.
  • the memory is used to store a computer program.
  • the processor is used to call and run the computer program from the memory.
  • the computer program is used to implement the method in the above method embodiment.
  • the foregoing embodiments may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented by software, it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the above-mentioned computer instructions may be stored in a computer-readable storage medium or transmitted through a computer-readable storage medium.
  • the above computer instructions can be sent from one website site, computer, server, or data center to another website site, through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) Computer, server or data center for transmission.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种数据处理方法及其装置,该方法包括:第一终端设备根据参数组确定包含N个元素的第一序列,该参数组包括第一参数,第二参数和循环移位值,该第一序列由第二序列按照该循环移位值经过循环移位得到,该第二序列根据第一参数和第二参数确定;第一终端设备根据该第一序列向网络设备发送信号。通过实施本申请实施例,有利于得到较多不同的第一序列。

Description

一种数据处理方法及其装置
本申请要求于2019年10月31日提交中国专利局、申请号为201911057386.9、申请名称为“一种数据处理方法及其装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种数据处理方法及其装置。
背景技术
随着终端数量的飞速增长,基站能够与多个终端同时进行上行、下行数据传输。例如,多用户多输入多输出(multi-user multiple-input multiple-output,MU-MIMO)技术使得基站可以与多个终端同时利用相同的时频资源进行上行、下行数据传输,从而有利于提升系统容量。
多个终端与基站之间进行上行、下行数据传输之前,该多个终端需要向基站发送不同的随机接入信道(random access channel,RACH)信号,该基站检测到该多个终端各自发送的RACH信号之后,可以完成该多个终端的接入。基站接收到包括zadoff-chu序列(简称ZC序列)的信号时,可以表明接收到某终端发送的RACH信号。ZC序列由根序列经过循环移位得到,根序列中的元素满足如下关系式:
Figure PCTCN2020124676-appb-000001
其中,u为物理根序列号;i为该根序列中元素的索引,i的取值为0至N ZC-1,x u(i)为该根序列中元素索引为i的元素值,N ZC为ZC序列的长度,j为复数中的虚数符号。
但是,根据上述关系式得到的根序列的数量较少,相应的,得到的ZC序列的数量较少。随着小区接入的终端设备的数量增加,这样会导致随机接入过程中终端设备之间发生冲突的概率增大。
发明内容
本申请实施例提供一种数据处理方法及其装置,有利于得到较多不同的第一序列,从而有利于减小随机接入过程中终端设备之间发生冲突的概率。
第一方面,本申请实施例提供一种数据处理方法,该方法包括:第一终端设备根据参数组确定包含N个元素的第一序列,该参数组包括第一参数,第二参数和循环移位值,该第一序列由第二序列按照该循环移位值经过循环移位得到,该第二序列根据第一参数和第二参数确定;第一终端设备根据该第一序列向网络设备发送信号;其中,该第二序列中的元素满足:
Figure PCTCN2020124676-appb-000002
Figure PCTCN2020124676-appb-000003
其中,u 1为第一参数,u 1∈{1,2,…,P-1};u 2为第二参数,u 2∈{0,1,2,…,P-1};i为第二序列中元素的索引,i的取值为0至N-1,
Figure PCTCN2020124676-appb-000004
为第二序列中元素索引为i的元素值,N为第二序列的长度,j为复数中的虚数符号,P与N之间满足如下关系中的任一种:P为大于或等于N的最小质数;P为小于或等于N的最大质数;P为大于2×N的最小质数;P为小于2×N的最大质数;α为一个非零复数,
Figure PCTCN2020124676-appb-000005
为一个实数。
在该技术方案中,通过改变u1或者u2的取值,可以得到(P*(P-1))个不同的第二序列。相较于现有技术只能通过改变一个参数的值来获得不同的第二序列,本申请实施例通过改变u1或u2中任意一个参数的取值能得到不同的第二序列。可见,通过本申请实施例提供的第二序列中的元素满足的关系式可以得到更多不同的第二序列。进一步的,可以得到更多不同的第一序列,从而有利于减小随机接入过程中终端设备之间发生冲突的概率。另外,还可以将第一序列分配给更多的终端设备使用,从而有利于增大小区可以接入的终端设备的数量。
在一种实现方式中,前述第一参数和前述第二参数与第二终端设备采用的第一参数和第二参数均相同时,前述循环移位值与该第二终端设备采用的循环移位值之间的差值的绝对值可以大于第一数值,其中,该第一终端设备和该第二终端设备位于同一小区。
在该技术方案中,可以保证第一终端设备和第二终端设备各自发送的信号到达网络设备时是不同的,所以该网络设备可以区分第一终端设备和第二终端设备发送的信号,即可以避免第一终端设备和第二终端设备发生冲突。
在一种实现方式中,前述第一参数与第三终端设备采用的第一参数相同时,前述第一终端设备采用的第二参数与该第三终端设备采用的第二参数之间的差值的绝对值可以大于第二数值,其中,第一终端设备和第三终端设备位于同一小区。
在该技术方案中,上述第二数值可以根据该小区的最大多普勒频移决定。通过这种方式,可以保证不同终端设备的多普勒频移不同时,网络设备仍可以区分不同终端设备发送的信号。
在一种实现方式中,该方法还可以包括:前述第一终端设备接收网络设备发送的参数组。
在一种实现方式中,该方法还可以包括:第一终端设备接收网络设备发送的第一参数组集合;并从该第一参数组集合中确定前述参数组。
在一种实现方式中,在该第一参数组集合中,第一参数和第二参数均相同的任意两个参数组中的循环移位值之间的差值的绝对值大于第一数值。
在该技术方案中,当多个终端设备共享该第一参数组集合时,不同终端设备选择该第一参数组集合中的不同参数组,并进而根据所选择的参数组分别生成信号,并向网络设备发送时。可以避免由于传输过程导致的移位,使得网络设备不能区分出不同终端设备发送 的信号。
在一种实现方式中,在该第一参数组集合中,第一参数相同的任意两个参数组中的第二参数之间的差值的绝对值大于第二数值。
在一种实现方式中,第一参数组集合包括于第二参数组集合,该第二参数组集合包括于备选参数组集合;该备选参数组集合包括一个或多个参数组子集,该备选参数组集合中各个参数组子集中的参数组的第一参数相同,该备选参数组集合中任意两个分别属于不同的参数组子集的参数组的第一参数不同,该备选参数组集合中的各个参数组子集均包括a个参数组;第二参数组集合包括b个参数组;当b<=a时,b个参数组为该备选参数组集合中的任意一个参数组子集中的任意b个参数组;和/或当b>a时,b个参数组由c个参数组子集中的参数组和d个参数组组成,其中,c个参数组子集为该备选参数组集合中的任意c个参数组子集,d个参数组为该备选参数组集合中除该c个参数组子集以外的任意一个参数组子集中的任意d个参数组。
在该技术方案中,可以使得网络设备对应的小区优先使用同一参数组子集中的参数组。
在一种实现方式中,第一终端设备根据第一序列向网络设备发送信号的具体实施方式可以为:第一终端设备对该第一序列进行快速傅立叶变换,得到频域序列;并将该频域序列映射到子载波上,得到信号;向网络设备发送该信号。
第二方面,本申请实施例提供另一种数据处理方法,该方法包括:网络设备根据参数组确定包含N个元素的第一序列,该参数组包括第一参数,第二参数和循环移位值,该第一序列由第二序列按照该循环移位值经过循环移位得到,该第二序列根据第一参数和第二参数确定;网络设备接收第一信号;并根据该第一序列和该第一信号,确定该第一信号是否包括根据该第一序列发送的信号;其中,该第二序列中的元素满足:
Figure PCTCN2020124676-appb-000006
Figure PCTCN2020124676-appb-000007
其中,u 1为第一参数,u 1∈{1,2,…,P-1};u 2为第二参数,u 2∈{0,1,2,…,P-1};i为第二序列中元素的索引,i的取值为0至N-1,
Figure PCTCN2020124676-appb-000008
为第二序列中元素索引为i的元素值,N为第二序列的长度,j为复数中的虚数符号,P与N之间满足如下关系中的任一种:P为大于或等于N的最小质数;P为小于或等于N的最大质数;P为大于2×N的最小质数;P为小于2×N的最大质数;α为一个非零复数,
Figure PCTCN2020124676-appb-000009
为一个实数。
在一种实现方式中,该方法还可以包括:网络设备分别向第一终端设备和第二终端设备发送参数组,发送给该第一终端设备的参数组中的第一参数和第二参数与发送给该第二终端设备的参数组中的第一参数和第二参数均相同时,发送给该第一终端设备的参数组中的循环移位值与发送给该第二终端设备的参数组中的循环移位值之间的差值的绝对值大于第一数值,其中,第一终端设备和第二终端设备位于同一小区。
在该技术方案中,可以保证第一终端设备和第二终端设备各自发送的信号到达网络设备时是不同的,所以该网络设备可以区分第一终端设备和第二终端设备发送的信号,即可以避免第一终端设备和第二终端设备发生冲突。
在一种实现方式中,该方法还可以包括:网络设备分别向第一终端设备和第三终端设备发送参数组,发送给该第一终端设备的参数组中的第一参数与发送给该第三终端设备的参数组中的第一参数相同时,发送给该第一终端设备的参数组中的第二参数和发送给该第三终端设备的参数组中的第二参数之间的差值的绝对值大于第二数值,其中,该第一终端设备和该第二终端设备位于同一小区。
在该技术方案中,上述第二数值可以根据该小区的最大多普勒频移决定。通过这种方式,可以保证不同终端设备的多普勒频移不同时,网络设备仍可以区分不同终端设备发送的信号。
在一种实现方式中,该方法还可以包括:网络设备向第一终端设备发送第一参数组集合;并从第二参数组集合中确定前述参数组,其中,该第一参数组集合包括于该第二参数组集合。
在一种实现方式中,在该第一参数组集合中,第一参数和第二参数均相同的任意两个参数组中的循环移位值之间的差值的绝对值大于第一数值。
在该技术方案中,当多个终端设备共享该第一参数组集合时,不同终端设备选择该第一参数组集合中的不同参数组,并进而根据所选择的参数组分别生成信号,并向网络设备发送时。可以避免由于传输过程导致的移位,使得网络设备不能区分出不同终端设备发送的信号。
在一种实现方式中,在该第一参数组集合中,第一参数相同的任意两个参数组中的第二参数之间的差值的绝对值大于第二数值。
在一种实现方式中,第二参数组集合包括于备选参数组集合;该备选参数组集合包括一个或多个参数组子集,该备选参数组集合中各个参数组子集中的参数组的第一参数相同,该备选参数组集合中任意两个分别属于不同的参数组子集的参数组的第一参数不同,该备选参数组集合中的各个参数组子集均包括a个参数组;第二参数组集合包括b个参数组;当b<=a时,b个参数组为该备选参数组集合中的任意一个参数组子集中的任意b个参数组;和/或当b>a时,b个参数组由c个参数组子集中的参数组和d个参数组组成,其中,c个参数组子集为该备选参数组集合中的任意c个参数组子集,d个参数组为该备选参数组集合中除该c个参数组子集以外的任意一个参数组子集中的任意d个参数组。
在该技术方案中,可以使得网络设备对应的小区优先使用同一参数组子集中的参数组。
在一种实现方式中,网络设备根据第一序列和第一信号,确定该第一信号是否包括根据该第一序列发送的信号的具体实施方式可以为:网络设备对该第一信号中子载波承载的频域序列进行快速傅立叶反变换,得到时域序列;并对该第一序列和该时域序列进行相关处理,得到相关值;根据该相关值确定该第一信号是否包括根据该第一序列发送的信号。
第三方面,本申请实施例提供一种基于序列的信号传输的装置,该装置为第一终端设备或具有第一终端设备功能的装置(例如芯片)。该装置具有实现第一方面所提供的数据处理方法的功能,该功能通过硬件实现或通过硬件执行相应的软件实现。该硬件或软件包 括一个或多个与上述功能相对应的模块。
第四方面,本申请实施例提供另一种基于序列的信号传输的装置,该装置为网络设备或具有网络设备功能的装置(例如芯片)。该装置具有实现第二方面所提供的数据处理方法的功能,该功能通过硬件实现或通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第五方面,本申请实施例提供又一种基于序列的信号传输的装置,该装置为第一终端设备或具有第一终端设备功能的装置(例如芯片)。该装置包括处理器和存储介质,存储介质中存储有指令,该指令被该处理器运行时,使得该装置实现第一方面所提供的数据处理方法。
第六方面,本申请实施例提供又一种基于序列的信号传输的装置,该装置为网络设备或具有网络设备功能的装置(例如芯片),该装置包括处理器和存储介质,存储介质中存储有指令,该指令被该处理器运行时,使得该装置实现第二方面所提供的数据处理方法。
第七方面,本申请实施例提供一种计算机可读存储介质,用于储存上述第三方面描述的基于序列的信号传输的装置所使用的计算机程序指令,其包含用于执行上述第一方面的方法所涉及的程序。
第八方面,本申请实施例提供一种计算机可读存储介质,用于储存上述第四方面描述的基于序列的信号传输的装置所使用的计算机程序指令,其包含用于执行上述第二方面的方法所涉及的程序。
第九方面,本申请实施例提供一种计算机程序产品,该程序产品包括程序,该程序被基于序列的信号传输的装置执行时,使得该装置实现上述第一方面描述的方法。
第十方面,本申请实施例提供一种计算机程序产品,该程序产品包括程序,该程序被基于序列的信号传输的装置执行时,使得该装置实现上述第二方面描述的方法。
附图说明
图1是本申请实施例公开的一种通信系统的架构示意图;
图2是本申请实施例公开的一种数据处理方法的流程示意图;
图3是本申请实施例公开的另一种数据处理方法的流程示意图;
图4是本申请实施例公开的又一种数据处理方法的流程示意图;
图5是本申请实施例公开的一种基于序列的信号传输的装置的结构示意图;
图6是本申请实施例公开的另一种基于序列的信号传输的装置的结构示意图;
图7是本申请实施例公开的又一种基于序列的信号传输的装置的结构示意图;
图8是本申请实施例公开的又一种基于序列的信号传输的装置的结构示意图。
具体实施方式
为了更好的理解本申请实施例公开的一种数据处理方法,下面首先对本申请实施例适用的通信系统进行描述。
请参见图1,图1是本申请实施例公开的一种通信系统的架构示意图。如图1所示,该通信系统包括:网络设备101和第一终端设备102。其中,第一终端设备102为处于网 络设备101对应的小区的覆盖范围内的终端设备。
第一终端设备102可以根据参数组确定包含N个元素的第一序列,并根据该第一序列向网络设备101发送信号。网络设备101也可以根据该参数组确定出该第一序列,并在接收到第一信号之后,根据该第一序列和该第一信号,确定该第一信号是否包括根据该第一序列发送的信号。
需要说明的是,无论第一终端设备102是否向网络设备101发送信号,该网络设备101均可以接收到第一信号。若第一终端设备102向网络设备101发送信号,该网络设备101接收到的第一信号可以包括第一终端设备102发送的信号,可选的,该第一信号还可以包括噪声信号和/或其他终端设备向网络设备101发送的信号。若第一终端设备102未向网络设备101发送信号,该网络设备101接收到的第一信号不包括第一终端设备102发送的信号,可选的,该第一信号可以包括噪声信号和/或其他终端设备向网络设备101发送的信号。
还需要说明的是,图1所示通信系统仅包括一个终端设备(即第一终端设备102)仅用于举例,并不构成对本申请实施例的限定。在一种实现方式中,除了第一终端设备102以外,图1所示的通信系统还可以包括其他终端设备,该其他终端设备也处于网络设备101对应的小区的覆盖范围内。当网络设备101对应的通信系统包括多个终端设备(如第一终端设备102发送的信号和第二终端设备)时,第一终端设备102和第二终端设备(图1未示)可以分别确定对应的第一序列,并根据对应的第一序列分别向网络设备101发送信号。例如,第一终端设备102对应第一序列a,第二终端设备对应第一序列b。相应的,网络设备101接收到的第一信号可以包括信号1和信号2,其中,信号1是第一终端设备102根据第一序列a发送的信号,信号2是第二终端设备根据第一序列b发送的信号。其中,第一序列a和第一序列b不相同。第一序列a可以用于确定网络设备101接收到的第一信号是否包括根据该第一序列a发送的信号1,同理,第一序列b可以用于确定网络设备101接收到的第一信号是否包括根据该第一序列b发送的信号2。
其中,上述参数组包括第一参数,第二参数和循环移位值,该第一序列可以由第二序列按照该循环移位值经过循环移位得到,该第二序列根据第一参数和第二参数确定。该第二序列中的元素满足:
Figure PCTCN2020124676-appb-000010
Figure PCTCN2020124676-appb-000011
其中,u 1为第一参数,u 1∈{1,2,…,P-1};u 2为第二参数,u 2∈{0,1,2,…,P-1};i为第二序列中元素的索引,i的取值为0至N-1,
Figure PCTCN2020124676-appb-000012
为第二序列中元素索引为i的元素值,N为第二序列的长度,j为复数中的虚数符号,P为一个质数,α为一个非零复数,
Figure PCTCN2020124676-appb-000013
为一个实数。P与N之间满足如下关系中的任一种:P为大于或等于N的最小质数;P为小于或等于N的最大质数;P为大于2×N的最小质数;P为小于2×N的最大质数。
本申请实施例所述数据处理方法,可以应用于随机接入过程或者网络设备与终端设备之间的上、下行数据传输过程。当应用于随机接入过程中,网络设备101通过第一序列可以确定接收到的第一信号是否包括RACH信号。第一信号包括A个不同的RACH信号时,可以表示有A个不同的终端设备需要接入该网络设备101。
同理,当应用于网络设备与终端设备之间的上、下行数据传输过程中,若网络设备接收到的第一信号包括B个不同的数据信号(或者控制信号),可以表示该网络设备接收到B个不同的终端设备发送的信号。进一步的,网络设备还可以通过与终端设备之间的交互信息对该网络设备和该终端设备之间的信道进行信道估计。其中,A、B为正整数。
其中,网络设备101可以是网络侧的一种用于发射或接收信号的实体,例如,网络设101可以是接入网设备(如基站)。第一终端设备102和第二终端设备可以是用户侧的一种用于接收或发射信号的实体,具体的,第一终端设备102和第二终端设备可以是用户设备(user equipment,UE)、远程终端、移动终端、无线通信设备、用户装置等,其中,用户设备可以是手机、台式电脑、笔记本电脑或其他可穿戴设备等。
可以理解的是,本申请实施例描述的通信系统是为了更加清楚的说明本申请实施例的技术方案,并不构成对本申请实施例提供的技术方案的限定,本领域技术人员可知,随着系统架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
下面结合附图对本申请提供的数据处理方法及基于序列的信号传输的装置进行详细地介绍。
请参见图2,图2是本申请实施例提供的一种数据处理方法的流程示意图。其中,步骤S201~步骤S202的执行主体为第一终端设备,或者为第一终端设备中的芯片,步骤S203~步骤S205的执行主体为网络设备,或者为网络设备中的芯片,以下以第一终端设备、网络设备为数据处理方法的执行主体为例进行说明。如图2所示,该方法可以包括但不限于如下步骤:
步骤S201:第一终端设备根据参数组确定包含N个元素的第一序列,该参数组包括第一参数,第二参数和循环移位值,该第一序列由第二序列按照该循环移位值经过循环移位得到,该第二序列根据第一参数和第二参数确定,该第二序列中的元素满足:
Figure PCTCN2020124676-appb-000014
Figure PCTCN2020124676-appb-000015
其中,u 1为第一参数,u 1∈{1,2,…,P-1};u 2为第二参数,u 2∈{0,1,2,…,P-1};i为第二序列中元素的索引,i的取值为0至N-1,
Figure PCTCN2020124676-appb-000016
为第二序列中元素索引为i的元素值,N为第二序列的长度,j为复数中的虚数符号,P为一个质数,α为一个非零复数,
Figure PCTCN2020124676-appb-000017
为一个实数,mod为求余运算。
其中,P是原始序列的长度,N和P均为正整数。通过上述第二序列中的元素满足的关系式和包含P个元素的原始序列,可以得到包含N个元素的第二序列。在本申请实施例中,P与N之间可以满足如下关系中的任一种:P为大于或等于N的最小质数;P为小于或等于N的最大质数;P为大于2×N的最小质数;P为小于2×N的最大质数;P为大于N/2的最小质数;P为小于N/2的最大质数。由P与N之间满足的关系可知,N可以为接近或等于P的一个值,即N可以大于P,也可以小于P。N也可以为接近2P的一个值,或者,N也可以为接近P/2(当P/2为整数时)的一个值。通过P与N之间满足的关系可知,第二序列和原始序列的长度相差不大,通过这种方式,可以使得第二序列依然具有原始序列的序列特征。可选的,N可以为139、839或者其他数值。
通过上述第二序列中的元素满足的关系式可知,通过改变u1或者u2的取值,可以得到(P*(P-1))个不同的第二序列。相较于现有技术只能通过改变一个参数的值来获得不同的第二序列,本申请实施例通过改变u1或u2中任意一个参数的取值能得到不同的第二序列。可见,通过本申请实施例提供的第二序列中的元素满足的关系式可以得到更多不同的第二序列。进一步的,可以得到更多不同的第一序列,从而有利于减小随机接入过程中终端设备之间发生冲突的概率。另外,还可以将第一序列分配给更多的终端设备使用,从而有利于增大小区可以接入的终端设备的数量。
在本申请实施例中,第一序列中的元素满足:
Figure PCTCN2020124676-appb-000018
在第一序列中的元素满足的关系式中,n为第一序列中元素的索引,N为第二序列的长度,C v为序列组中的循环移位值,v为C v的索引。上述第一序列中的元素满足的关系式表示:第一序列中元素索引为n的元素值是通过对第二序列中元素索引为n的元素值循环移位(如左移或右移)((n+C v)modN)位得到的。例如,若第二序列为0110,则对第二序列分别循环左移1位、2位和3位后,得到的序列分别为1100,1001,和0011。通过对第二序列循环移位v次,且每次移位的位数不同,可以得到v个不同的第一序列。又如,当第二序列为0110且C 0=1、C 1=3时,
Figure PCTCN2020124676-appb-000019
此时,第一序列中元素索引为0的元素值是通过对第二序列中元素索引为0的元素值循环左移1位得到的;
Figure PCTCN2020124676-appb-000020
此时,第一序列中元素索引为0的元素值是通过对第二序列中元素索引为0的元素值循环左移3位得到的。
在一种实现方式中,C v∈{0,1,2,…,N-1},C v的实际取值可以是非连续的,但是v的 取值可以是连续的。具体的,{0,1,2,…,N-1}中的
Figure PCTCN2020124676-appb-000021
个取值可以组成C v的取值集合,v为C v在该取值集合中的索引,v的取值范围为
Figure PCTCN2020124676-appb-000022
任意两个v对应的C v值之间的差值大于或等于L,即任意两个循环移位值之间的差值大于或等于L。其中,
Figure PCTCN2020124676-appb-000023
表示向下取整符号,
Figure PCTCN2020124676-appb-000024
表示不超过N/L的最大整数。例如,N为51且L为10时,C v∈{0,1,2,…,50},
Figure PCTCN2020124676-appb-000025
即C v的取值集合包括5个值,v的取值范围为[0,4],C v的取值集合由C 0、C 1、C 2、C 3、C 4组成。具体的,C 0、C 1、C 2、C 3、C 4分别为0、10、20、30、40。需要说明的是,上述例子中,C 0的取值为0仅用于举例,在其他可行的实现方式中,C 0的取值还可以为1~9中的任意一个取值,根据C 0的取值可以相应地确定C v的取值集合中的C 1、C 2、C 3、C 4的取值。
在本申请实施例中,参数组可以由协议约定。在一种实现方式中,参数组可以由网络设备发送给第一终端设备。需要说明的是,网络设备可以向第一终端设备发送参数组,也可以通过多种方式向第一终端设备发送指示信息以指示该参数组。例如,网络设备向第一终端设备发送包括该参数组的信息,第一终端设备可以从该信息中提取出参数组。
在一种实现方式中,上述P、α和
Figure PCTCN2020124676-appb-000026
均可以由协议约定,或者可以由用户设置,本申请实施例对此不做限定。本申请实施例中提及的序列(如第一序列和第二序列)可以是被排成一列的对象(或元素、事件),序列中的对象(或元素、事件)可以是一个字符或者频率点,本申请实施例对此不做限定。
步骤S202:第一终端设备根据该第一序列向网络设备发送信号。
在本申请实施例中,第一终端设备确定第一序列之后,可以根据该第一序列向网络设备发送信号。
在一种实现方式中,第一终端设备根据该第一序列向网络设备发送信号的具体实施方式可以为:第一终端设备对该第一序列进行快速傅立叶变换,得到频域序列;并将该频域序列映射到子载波上,得到信号;向网络设备发送该信号。
其中,第一序列是时域的一个序列,对该第一序列进行快速傅立叶变换(fast fourier transformation,FFT),可以将该第一序列从时域变换为频域中的一个序列(即频域序列)。需要说明的是,第一终端设备通过对第一序列进行FFT仅用于举例,并不构成对本申请实施例的限定,在其他可行的实现方式中,第一终端设备还可以对该第一序列进行离散傅里叶变换(discrete fourier transform,DFT),以将第一序列从时域变换为频域中的一个序列。
步骤S203:网络设备根据参数组确定包含N个元素的第一序列。
网络设备根据参数组确定包含N个元素的第一序列的执行过程与第一终端设备根据参数组确定包含N个元素的第一序列的执行过程相同,即步骤S203的执行过程可参见步骤S201的具体描述,此处不再赘述。
在一种实现方式中,网络设备可以分别向第一终端设备和第二终端设备发送参数组,发送给第一终端设备的参数组中的第一参数和第二参数与发送给第二终端设备的参数组中的第一参数和第二参数至少有一个不同。在一种实现方式中,发送给第一终端设备的参数 组中的第一参数和第二参数与发送给第二终端设备的参数组中的第一参数和第二参数均相同时,发送给第一终端设备的参数组中的循环移位值与发送给第二终端设备的参数组中的循环移位值之间的差值的绝对值大于第一数值(即前述L),其中,第一终端设备和第二终端设备为位于同一小区中的不同终端设备。
第一数值和第二数值相同时,生成的第二序列相同,但是不同终端设备使用相同的第一序列时会导致冲突。因此,第一终端设备和第二终端设备使用的第一序列是对该第二序列进行不同位数的循环移位得到,这样可以使得第一终端设备和第二终端设备使用的第一序列不同。但是根据第一序列发送的信号在传输过程中会发生变化。具体的,第一终端设备与网络设备之间的距离,和第二终端设备与该网络设备之间的距离可能不同,因此第一终端设备和第二终端设备各自向该网络设备发送的信号到达该网络设备所需的传播时延不一样。当第一终端设备和第二终端设备使用的循环移位值之间的差值较小时,由于传播时延差,两个终端设备发射的信号到达该网络设备时可能是相同的,这样会导致网络设备无法区分第一终端设备和第二终端设备发射的信号。换言之,网络设备接收到终端设备(即第一终端设备、第二终端设备)发送的信号时,该信号中的第一序列发生了移位。例如,第一终端设备根据第一序列向网络设备发送信号1,经过传输,网络设备接收的第一终端设备发送的信号为信号2,根据信号2得到的序列是信号1中的第一序列(因传输)经过移位后得到的序列。
在一种实现方式中,在传输过程中第一序列发生的移位小于或等于第一数值。因此,发送给第一终端设备的参数组中的第一参数和第二参数与发送给第二终端设备的参数组中的第一参数和第二参数均相同时,发送给第一终端设备的参数组中的循环移位值与发送给第二终端设备的参数组中的循环移位值之间的差值的绝对值大于第一数值(即前述L),可以避免网络设备接收到第一终端设备和第二终端设备各自发送的信号时,网络设备无法区分第一终端设备和第二终端设备各自发送的信号。以第一终端设备发送的信号为信号3,第二终端设备发送的信号为信号4,网络设备接收到的(第一终端设备发送的)信号为信号5,网络设备接收到的(第二终端设备发送的)信号为信号6为例。其中,信号3和信号4是根据相同的u1、u2和不同的循环移位值得到的,信号3对应的循环移位值x1与信号4对应的循环移位值x2之间的差值大于L。由于传输过程中信号发生的移位小于或等于L,因此,信号5对应的循环移位值x3与信号6对应的循环移位值x4之间的差值大于0,因此,网络设备可以区分出信号5和信号6。
在一种实现方式中,前述第一数值可以由第一终端设备和第二终端设备所处小区的半径确定,或者,第一数值可以由该小区对应的多径时延中的最大值确定。具体的,当第一终端设备未接收到时间提前量(time advance,TA)信息时,第一数值以由该小区的传播时延中的最大值确定,该小区的传播时延中的最大值可以根据该小区的半径确定。当第一终端设备接收到TA信息时,第一数值由该小区对应的多径时延中的最大值确定。
在一种实现方式中,网络设备可以分别向第一终端设备和第三终端设备发送参数组,发送给第一终端设备的参数组中的第一参数与发送给第三终端设备的参数组中的第一参数相同时,发送给第一终端设备的参数组中的第二参数和发送给第三终端设备的参数组中的第二参数之间的差值的绝对值大于第二数值,其中,第一终端设备和第三终端设备为位于 同一小区中的不同终端设备。可选的,第一终端设备、第二终端设备和第三终端设备位于同一小区。
在一种实现方式中,该第二数值可以由第一终端设备和第三终端设备所处小区对应的多普勒频移中的最大值(如d)确定,或者,该第二数值可以由该d以及用于承载第一终端设备发送的信号(或者第三终端设备发送的信号)的载波之间的间隔(如
Figure PCTCN2020124676-appb-000027
)确定。例如,第二数值为
Figure PCTCN2020124676-appb-000028
Figure PCTCN2020124676-appb-000029
其中,
Figure PCTCN2020124676-appb-000030
表示向上取整符号。通过这种方式,在不同终端设备的多普勒频移不同的情况下,可以确保网络设备仍能区分不同终端设备发送的信号。
步骤S204:网络设备接收第一信号。
具体的,网络设备可以在预设的时频资源上接收第一信号。需要说明的是,无论第一终端设备是否向网络设备发送信号,该网络设备均可以接收到第一信号。在一种实现方式中,第一信号可以包括第一终端设备发送的信号、其他终端设备(如第二终端设备和第三终端设备)发送的信号,和/或噪声信号。当第一信号包括第一终端设备发送的信号和其他终端设备发送的信号时,该第一信号可以是由第一终端设备发送的信号和其他终端设备发送的信号组成的混合信号。
在一种实现方式中,前述预设的时频资源可以根据应用场景进行配置。例如,当本申请实施例应用于随机接入过程时,该预设的时频资源可以是网络设备监听随机接入请求的时频资源。
步骤S205:网络设备根据该第一序列和该第一信号,确定该第一信号是否包括根据该第一序列发送的信号。
具体的,网络设备接收到第一信号之后,可以根据确定出的第一序列和该第一信号,确定该第一信号是否包括根据该第一序列发送的信号。
在一种实现方式中,网络设备根据该第一序列和该第一信号,确定该第一信号是否包括根据该第一序列发送的信号的具体实施方式可以为:网络设备对该第一信号中子载波承载的频域序列进行快速傅立叶反变换(inverse fast fourier transformation,IFFT),得到时域序列;并对该第一序列和该时域序列进行相关处理,得到相关值;根据该相关值确定该第一信号是否包括根据该第一序列发送的信号。在一种实现方式中,对该第一序列和该时域序列进行相关处理,得到相关值的具体实施方式可以为:网络设备根据该第一序列和由传播可能带来的循环移位,确定该第一序列经(由传播带来的)可能的循环移位之后所得的序列;并将该序列与该时域序列进行相关,得到一组相关值。相应的,根据该相关值确定该第一信号是否包括根据该第一序列发送的信号的具体实施方式可以为:网络设备对该组相关值进行归一化处理(如噪声归一化处理),得到一组归一化后的相关值;若该组归一化后的相关值中的最大值大于预设阈值,则网络设备确定第一信号包括根据该第一序列发送的信号。在一种实现方式中,若该组归一化后的相关值中的最大值小于或等于该预设阈值,则网络设备确定第一信号不包括根据该第一序列发送的信号。
当本申请实施例应用于随机接入过程中时,网络设备确定第一信号包括根据该第一序 列发送的信号可以表明:网络设备接收到一个终端设备发送的随机接入请求。进一步的,网络设备可以根据上述一组相关值中的最大值所对应的由传播带来的可能的循环移位,确定发送该随机接入请求的终端设备与网络设备之间的距离。进而,网络设备可以根据该距离,确定TA值,并将该TA值发送给(发送该随机接入请求的)终端设备。在一种实现方式中,网络设备可以根据预设的循环移位值和距离之间的对应关系,确定发送该随机接入请求的终端设备与网络设备之间的距离。在一种实现方式中,在该对应关系中,越小的循环移位值对应的距离越短。
需要说明的是,当第一终端设备对应的小区包括多个终端设备时,网络设备可以确定出多个第一序列,该多个第一序列为网络设备对应的小区中的终端设备可能使用的第一序列(即小区中的终端设备发送的信号可能包括的第一序列)。例如,网络设备对应的小区包括3个终端设备(如第一终端设备、第二终端设备和第三终端设备)时,网络设备可以确定出3个第一序列(如第一序列a、第一序列b和第一序列c)。通过将第一序列a与网络设备接收到的第一信号进行相关,进一步可以确定该第一信号是否包括根据该第一序列a发送的信号。同理,通过将第一序列b与网络设备接收到的第一信号进行相关,进一步可以确定该第一信号是否包括根据该第一序列b发送的信号。同理,通过将第一序列c与网络设备接收到的第一信号进行相关,进一步可以确定该第一信号是否包括根据该第一序列c发送的信号。
其中,预设阈值可以由网络设备默认设置,也可以是用户输入的一个经验值。具体的,第一序列的长度不同时,预设阈值可以不同。
需要说明的是,上述步骤中至少部分步骤之间不限制执行的先后顺序,例如,步骤S203可以先于步骤S202发生,本申请实施例不做限定。
在本申请实施例中,通过改变u1或者u2的取值,可以得到(P*(P-1))个不同的第二序列。相较于现有技术只能通过改变一个参数的值来获得不同的第二序列,本申请实施例通过改变u1或u2中任意一个参数的取值能得到不同的第二序列。可见,通过本申请实施例提供的第二序列中的元素满足的关系式可以得到更多不同的第二序列。进一步的,可以得到更多不同的第一序列,从而有利于减小随机接入过程中终端设备之间发生冲突的概率。另外,还可以将第一序列分配给更多的终端设备使用,从而有利于增大小区可以接入的终端设备的数量。
请参见图3,图3是本申请实施例提供的另一种数据处理方法的流程示意图,该方法详细描述了网络设备通过向第一终端设备发送第一参数组集合的方式为该第一终端设备配置参数组。其中,步骤S302~步骤S304的执行主体为第一终端设备,或者为第一终端设备中的芯片,步骤S301、步骤S305~步骤S308的执行主体为网络设备,或者为网络设备中的芯片,以下以第一终端设备、网络设备为数据处理方法的执行主体为例进行说明。该方法可以包括但不限于如下步骤:
步骤S301:网络设备向第一终端设备发送第一参数组集合,其中,该第一参数组集合包括于第二参数组集合。
在本申请实施例中,网络设备可以预先存储有第二参数组集合,该第二参数组集合包 括的参数组可以分配给网络设备对应的小区中的终端设备。具体的,网络设备可以为一个终端设备配置1个或多个参数组,此时该1个或多个参数组为该终端设备特有。当网络设备为一个终端设备配置1个参数组,且根据该参数组确定第一序列a时,若网络设备接收到的第一信号包括根据该第一序列a发送的信号时,可以表明该网络设备接收到该终端设备发送的信号。当网络设备为该终端设备配置第一参数组集合,该第一参数组集合包括多个参数组(如4个参数组),且根据该4个参数组分别确定第一序列a~第一序列d时,根据第一序列a~第一序列d中的任意第一序列发送的信号可以表示2比特的信息,且根据第一序列a~第一序列d中的不同第一序列发送的信号可以表示不同的信息。例如,根据第一序列a~第一序列d中第一序列发送的信号表示的信息分别为:00、01、10、11。即若网络设备接收到的第一信号包括根据第一序列d发送的信号时,可以表明该网络设备接收到该终端设备发送的信号,且该信号包括的2比特信息为11。可见,生成更多的第一序列时,可以为终端设备配置更多的第一序列,从而有利于使得终端设备根据第一序列向网络设备发送的信号可以携带更多信息。
在本申请实施例中,网络设备还可以向除第一终端设备以外的其他终端设备(如第二终端设备和第三终端设备)发送第一参数组集合,即网络设备可以向不同的终端设备发送相同的参数组集合。此时,该第一参数组集合由第一终端设备、第二终端设备和第三终端设备共享。相应的,第一终端设备、第二终端设备和第三终端设备可以分别从该第一参数组集合中确定参数组,根据该参数组分别确定第一序列,并根据分别确定出的第一序列向网络设备发送信号。当网络设备接收到的第一信号包括根据该第一参数组集合中的某一参数组确定的第一序列对应的信号时,网络设备可以确定接收到第一终端设备、第二终端设备或第三终端设备中的某一个终端设备发送的信号,但无法确定具体的终端设备。需要说明的是,第一终端设备、第二终端设备和第三终端设备可能选择不同的参数组,也可能选择相同的参数组。在一种实现方式中,当网络设备向不同的终端设备发送相同的参数组集合时,该参数组集合包括的参数组数量较多。
在一种实现方式中,网络设备可以向不同的终端设备发送不同的参数组集合,且不同的参数组集合中包括的参数组完全不同。此时,终端设备接收到的参数组集合由该终端设备特有。当网络设备接收到的第一信号包括根据该参数组集合中的某一参数组确定的第一序列对应的信号时,网络设备可以确定接收到该终端设备发送的信号,且该信号还携带了具体的信息。在一种实现方式中,当网络设备向不同的终端设备发送不同的参数组集合时,该参数组集合包括的参数组数量可以较少。
在一种实现方式中,在第一参数组集合中,第一参数和第二参数均相同的任意两个参数组中的循环移位值之间的差值的绝对值大于第一数值。通过这种方式,当多个终端设备共享该第一参数组集合时,不同终端设备选择该第一参数组集合中的不同参数组,并进而根据所选择的参数组分别生成信号,并向网络设备发送时。可以避免由于传输过程导致的移位,使得网络设备不能区分出不同终端设备发送的信号。
在一种实现方式中,在第一参数组集合中,第一参数相同的任意两个参数组中的第二参数之间的差值的绝对值大于第二数值。通过这种方式,当多个终端设备共享该第一参数组集合时,不同终端设备选择该第一参数组集合中第一参数相同的不同参数组,并进而根 据所选择的参数组分别生成信号,并向网络设备发送时。可以确保不同终端设备的多普勒频移不同时,网络设备仍能区分不同终端设备发送的信号。
步骤S302:第一终端设备从该第一参数组集合中确定参数组。
具体的,第一终端设备接收到网络设备发送的第一参数组集合之后,可以从该第一参数组集合中确定参数组。在一种实现方式中,第一终端设备可以从该第一参数组集合中随机确定参数组,也可以按照其他第一终端设备预设的方式从第一参数组集合中确定参数组。可选的,在不同终端设备共享第一参数组集合的情况下,不同终端设备可以采用不同的方式从该第一参数组集合中确定参数组。通过这种方式,可以降低不同终端设备从该第一参数组集合中确定的参数组相同的概率,从而有利于降低不同终端设备之间发生冲突的概率。
步骤S303:第一终端设备根据该参数组确定包含N个元素的第一序列,该参数组包括第一参数,第二参数和循环移位值,该第一序列由第二序列按照该循环移位值经过循环移位得到,该第二序列根据第一参数和第二参数确定,该第二序列中的元素满足:
Figure PCTCN2020124676-appb-000031
Figure PCTCN2020124676-appb-000032
其中,u 1为第一参数,u 1∈{1,2,…,P-1};u 2为第二参数,u 2∈{0,1,2,…,P-1};i为第二序列中元素的索引,i的取值为0至N-1,
Figure PCTCN2020124676-appb-000033
为第二序列中元素索引为i的元素值,N为第二序列的长度,j为复数中的虚数符号,α为一个非零复数,
Figure PCTCN2020124676-appb-000034
为一个实数;P与N之间满足如下关系中的任一种:P为大于或等于N的最小质数;P为小于或等于N的最大质数;P为大于2×N的最小质数;P为小于2×N的最大质数。
步骤S304:第一终端设备根据该第一序列向网络设备发送信号。
需要说明的是,步骤S303~步骤S304的执行过程可分别参见图2中步骤S201~步骤S202的具体描述,此处不再赘述。
步骤S305:网络设备从第二参数组集合中确定参数组。
在本申请实施例中,由于第二参数组集合中的参数组可以分配给网络设备对应的小区中的终端设备,因此,该小区中的终端设备向网络设备发送的信号可能是根据该第二参数组集合中的任意一个参数组确定的第一序列生成的。所以,网络设备需要遍历根据第二参数组集合中的各个参数组确定的第一序列,才能确定是否接收到该网络设备对应的小区中的各个终端设备发送的信号。
在一种实现方式中,若第二参数组集合由第三参数组集合和第四参数组集合组成,该第三参数组集合中的每个参数组均发送给网络设备对应的小区中的终端设备,且第四参数组集合中的每个参数组均未发送给网络设备对应的小区中的任一终端设备时,网络设备可以从该第三参数组集合中确定参数组。需要说明的是,网络设备对应的小区中的任一终端设备向网络设备发送的信号中的第一序列,是根据从网络设备接收到的参数组集合中确定 的。由于第四参数组集合中的每个参数组均未发送给网络设备对应的小区中的任一终端设备,因此,该小区中的终端设备向网络设备发送的信号不可能是根据第四参数组集合中的参数组确定的第一序列生成的。网络设备遍历根据第三参数组集合中的各个参数组确定的第一序列,即可确定是否接收到该网络设备对应的小区中的各个终端设备发送的信号。
步骤S306:网络设备根据该参数组确定包含N个元素的第一序列。
步骤S307:网络设备接收第一信号。
步骤S308:网络设备根据该第一序列和该第一信号,确定该第一信号是否包括根据该第一序列发送的信号。
需要说明的是,步骤S306~步骤S308的执行过程可分别参见图2中步骤S203~步骤S205的具体描述,此处不再赘述。还需要说明的是,上述步骤中至少部分步骤之间不限制执行的先后顺序,例如,步骤S305可以先于步骤S304(或者步骤S302、步骤S303)发生,本申请实施例不做限定。
通过实施本申请实施例,网络设备可以向不同的终端设备发送不同的参数组集合。终端设备根据接收到的参数组集合中的参数组确定第一序列,并根据该第一序列向网络设备发送信号,不仅有利于网络设备确定是否接收到对应小区中的终端设备发送的信号,还能进一步确定终端设备发送的信号携带的具体信息。
请参见图4,图4是本申请实施例提供的又一种数据处理方法的流程示意图,该方法详细描述了第二参数组集合中的参数组的分组规则。其中,步骤S402~步骤S404的执行主体为第一终端设备,或者为第一终端设备中的芯片,步骤S401、步骤S405~步骤S408的执行主体为网络设备,或者为网络设备中的芯片,以下以第一终端设备、网络设备为数据处理方法的执行主体为例进行说明。该方法可以包括但不限于如下步骤:
步骤S401:网络设备向第一终端设备发送第一参数组集合,其中,该第一参数组集合包括于第二参数组集合,该第二参数组集合包括于备选参数组集合;该备选参数组集合包括一个或多个参数组子集,该备选参数组集合中各个参数组子集中的参数组的第一参数相同,该备选参数组集合中任意两个分别属于不同的参数组子集的参数组的第一参数不同,该备选参数组集合中的各个参数组子集均包括a个参数组;第二参数组集合包括b个参数组;当b<=a时,b个参数组为该备选参数组集合中的任意一个参数组子集中的任意b个参数组;和/或当b>a时,b个参数组由c个参数组子集中的参数组和d个参数组组成,其中,c个参数组子集为该备选参数组集合中的任意c个参数组子集,d个参数组为该备选参数组集合中除该c个参数组子集以外的任意一个参数组子集中的任意d个参数组。其中,d<a。
在本申请实施例中,可以根据第一参数将参数组划分到不同的参数组子集中。备选参数组集合中的一个参数组子集由第一参数(即u1)相同的参数组组成,不同参数组子集包括的参数组数量相同。网络设备对应的小区优先使用同一参数组子集中的参数组,若一个参数组子集中的参数组数量不够,则继续使用备选参数组集合中除该参数组子集以外的其他参数组子集中的参数组,直到参数组数量满足该小区的要求。
例如,备选参数组集合包括M个参数组子集,每个参数组子集均包含A个参数组,且网络设备对应的小区需要B个参数组时,若A>=B,则该小区使用一个参数组子集中的参 数组集合即可。如果A<B,则该小区使用的参数组可以按照如下方式组成:备选参数组集合中的
Figure PCTCN2020124676-appb-000035
个参数组子集中的所有参数组,和该备选参数组集合中的另一个参数组子集中的(B mod A)个参数组。通过这种方式,可以使得网络设备对应的小区优先使用同一参数组子集中的参数组。
在一种实现方式中,可以为网络设备对应的小区配置一个逻辑索引,不同逻辑索引对应不同的参数组,或者,不同逻辑索引对应的参数组中的第一参数和第二参数中的至少一个参数不同。网络设备可以根据该逻辑索引对应的第一参数和第二参数确定第二序列,若确定出的第二序列的数量小于小区所需的数量时,网络设备更新逻辑索引,并根据更新后的逻辑索引对应的参数组中的第一参数和第二参数继续确定第二序列,直至确定出的第二序列的数量满足小区要求。在一种实现方式中,逻辑索引为i时,更新后的逻辑索引可以为i+1。
以表1所示的逻辑索引与参数组中的第一参数和第二参数的对应关系为例,从表1中可见,第一参数相同的参数组对应的逻辑索引连续(例如,第一参数为1的3个参数组对应的逻辑索引为0~2)。通过这种方式,可以使得更新后的逻辑索引对应的参数组与更新前的逻辑索引对应的参数组中的第一参数相同,即更新后的逻辑索引对应的参数组与更新前的逻辑索引对应的参数组属于同一参数组子集。
表1
逻辑索引i 第一参数 第二参数
0 1 0
1 1 1
2 1 2
3 2 0
4 2 1
5 2 2
6 3 0
7 3 1
8 3 2
需要说明的是,表1仅为举例,并不构成对本申请实施例的限定。以表2为例,在其他可行的实现方式中,第一参数相同的参数组对应的逻辑索引可以相互交换。例如,由表2可知,表1中第一参数为3的不同参数组对应的逻辑索引发生了交换。以第一参数相同的参数组为单位,第一参数不同的参数组对应的逻辑索引可以相互交换。例如,由表2可知,表1中第一参数为1的参数组对应的逻辑索引与第一参数为2的参数组对应的逻辑索引相互交换。需要说明的是,表1和表2以参数组包括第一参数和第二参数为例,表中并未示出循环移位值,但是并不构成对本申请实施例的限定。
表2
逻辑索引i 第一参数 第二参数
0 2 0
1 2 1
2 2 2
3 1 0
4 1 1
5 1 2
6 3 2
7 3 0
8 3 1
在一种实现方式中,第一参数组集合包括e个参数组,其中,e<=b;当b<=a时,e个参数组为b个参数组中的任意e个参数组。当b>a,且e<=d时,e个参数组为该d个参数组中的任意e个参数组,或者,该e个参数组为该c个参数组子集中的任意一个参数组子集中的任意e个参数组。当b>a,d<e<=a时,e个参数组为该c个参数组子集中的任意一个参数组子集中的任意e个参数组,或者,e个参数组包括d个参数组和c个参数组子集中的任意一个参数组子集中的任意(e-b)个参数组。当b>a,e>a时,e个参数组由f个参数组子集中的所有参数组和g个参数组组成,其中,该f个参数组子集为c个参数组子集中的任意f个参数组子集,该g个参数组为c个参数组子集中除该f个参数组子集以外的任意一个参数组子集中的任意g个参数组,或者,该g个参数组为该d个参数组中的任意g个参数组(当g<d时)。通过这种方式,网络设备可以优先将第二参数组集合中的同一参数组子集中的参数组分配给终端设备。
在一种实现方式中,通过实施本申请实施例,确定出的第一序列的时域自相关为
Figure PCTCN2020124676-appb-000036
即确定出的第一序列的时域自相关较小。在一种实现方式中,按照第二参数组集合中的参数组的分组规则,可以使得根据同一参数组子集中的不同参数组确定出的第一序列之间的互相关值为
Figure PCTCN2020124676-appb-000037
根据不同参数组子集中的参数组确定出的第一序列之间的互相关值为
Figure PCTCN2020124676-appb-000038
采用本申请实施例确定出的同一小区使用的第一序列之间的互相关值较小,这样有利于降低小区内不同终端设备之间的干扰。
步骤S402:第一终端设备从该第一参数组集合中确定参数组。
步骤S403:第一终端设备根据该参数组确定包含N个元素的第一序列,该参数组包括第一参数,第二参数和循环移位值,该第一序列由第二序列按照该循环移位值经过循环移位得到,该第二序列根据第一参数和第二参数确定,该第二序列中的元素满足:
Figure PCTCN2020124676-appb-000039
Figure PCTCN2020124676-appb-000040
其中,u 1为第一参数,u 1∈{1,2,…,P-1};u 2为第二参数,u 2∈{0,1,2,…,P-1};i为第二序列中元素的索引,i的取值为0至N-1,
Figure PCTCN2020124676-appb-000041
为第二序列中元素索引为i的元素值,N为第二序列的长度,j为复数中的虚数符号,α为一个非零复数,
Figure PCTCN2020124676-appb-000042
为一个实数;P与N之间满足如下关系中的任一种:P为大于或等于N的最小质数;P为小于或等于N的最大质 数;P为大于2×N的最小质数;P为小于2×N的最大质数。
步骤S404:第一终端设备根据该第一序列向网络设备发送信号。
步骤S405:网络设备从第二参数组集合中确定参数组。
步骤S406:网络设备根据该参数组确定包含N个元素的第一序列。
步骤S407:网络设备接收第一信号。
步骤S408:网络设备根据该第一序列和该第一信号,确定该第一信号是否包括根据该第一序列发送的信号。
需要说明的是,步骤S401~步骤S402和步骤S405的执行过程可分别参见图3中步骤S301~步骤S302和步骤S305的具体描述,步骤S403~步骤S404、步骤S406~步骤S408的执行过程可分别参见图2中步骤S201~步骤S202、步骤S203~步骤S205的具体描述,此处不再赘述。
通过实施本申请实施例,使得网络设备对应的小区可以优先使用同一参数组子集中的参数组。
上述详细阐述了本申请实施例公开的方法,下面将提供本申请实施例的装置。
请参见图5,图5是本申请实施例提供的一种基于序列的信号传输的装置的结构示意图,该装置可以为第一终端设备或具有第一终端设备功能的装置(例如芯片),基于序列的信号传输的装置50用于执行图2-图4对应的方法实施例中第一终端设备所执行的步骤,基于序列的信号传输的装置50包括:
处理模块501,用于根据参数组确定包含N个元素的第一序列,该参数组包括第一参数,第二参数和循环移位值,该第一序列由第二序列按照该循环移位值经过循环移位得到,该第二序列根据第一参数和第二参数确定;其中,该第二序列中的元素满足:
Figure PCTCN2020124676-appb-000043
Figure PCTCN2020124676-appb-000044
其中,u 1为第一参数,u 1∈{1,2,…,P-1};u 2为第二参数,u 2∈{0,1,2,…,P-1};i为第二序列中元素的索引,i的取值为0至N-1,
Figure PCTCN2020124676-appb-000045
为第二序列中元素索引为i的元素值,N为第二序列的长度,j为复数中的虚数符号,α为一个非零复数,
Figure PCTCN2020124676-appb-000046
为一个实数;P与N之间满足如下关系中的任一种:P为大于或等于N的最小质数;P为小于或等于N的最大质数;P为大于2×N的最小质数;P为小于2×N的最大质数;
通信模块502,用于根据该第一序列向网络设备发送信号。
在一种实现方式中,第一终端设备采用的第一参数和第二参数与第二终端设备采用的第一参数和第二参数均相同时,第一终端设备采用的循环移位值与该第二终端设备采用的循环移位值之间的差值的绝对值可以大于第一数值,其中,该第一终端设备和该第二终端 设备位于同一小区。
在一种实现方式中,第一终端设备采用的第一参数与第三终端设备采用的第一参数相同时,该第一终端设备采用的第二参数与该第三终端设备采用的第二参数之间的差值的绝对值可以大于第二数值,其中,第一终端设备和第三终端设备位于同一小区。
在一种实现方式中,通信模块502还可以用于接收网络设备发送的参数组。
在一种实现方式中,通信模块502还可以用于接收网络设备发送的第一参数组集合;处理模块501还可以用于从该第一参数组集合中确定前述参数组。
在一种实现方式中,在该第一参数组集合中,第一参数和第二参数均相同的任意两个参数组中的循环移位值之间的差值的绝对值大于第一数值。
在一种实现方式中,在该第一参数组集合中,第一参数相同的任意两个参数组中的第二参数之间的差值的绝对值大于第二数值。
在一种实现方式中,第一参数组集合包括于第二参数组集合,该第二参数组集合包括于备选参数组集合;该备选参数组集合包括一个或多个参数组子集,该备选参数组集合中各个参数组子集中的参数组的第一参数相同,该备选参数组集合中任意两个分别属于不同的参数组子集的参数组的第一参数不同,该备选参数组集合中的各个参数组子集均包括a个参数组;第二参数组集合包括b个参数组;当b<=a时,b个参数组为该备选参数组集合中的任意一个参数组子集中的任意b个参数组;和/或当b>a时,b个参数组由c个参数组子集中的参数组和d个参数组组成,其中,c个参数组子集为该备选参数组集合中的任意c个参数组子集,d个参数组为该备选参数组集合中除该c个参数组子集以外的任意一个参数组子集中的任意d个参数组。
在一种实现方式中,通信模块502用于根据第一序列向网络设备发送信号时,具体用于:对该第一序列进行快速傅立叶变换,得到频域序列;并将该频域序列映射到子载波上,得到信号;向网络设备发送该信号。
需要说明的是,图5对应的实施例中未提及的内容以及各个模块执行步骤的具体实现方式可参见图2-图4所示实施例以及前述内容,这里不再赘述。
在一种实现方式中,图5中的各个模块所实现的相关功能可以结合处理器与通信接口来实现。参见图6,图6是本申请实施例提供的另一种基于序列的信号传输的装置的结构示意图,该装置可以为第一终端设备或具有第一终端设备功能的装置(例如芯片),该基于序列的信号传输的装置60可以包括通信接口601、处理器602和存储器603,通信接口601、处理器602和存储器603可以通过一条或多条通信总线相互连接,也可以通过其它方式相连接。图5所示的处理模块501和通信模块502所实现的相关功能可以通过同一个处理器602来实现,也可以通过多个不同的处理器602来实现。
通信接口601可以用于发送数据和/或信令,以及接收数据和/或信令。应用在本申请实施例中,通信接口601可以用于向网络设备发送信号。通信接口601可以为收发器。
处理器602被配置为执行图2-图4所述方法中第一终端设备相应的功能。该处理器602可以包括一个或多个处理器,例如该处理器602可以是一个或多个中央处理器(central processing unit,CPU),网络处理器(network processor,NP),硬件芯片或者其任意组合。在处理器602是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
存储器603用于存储程序代码等。存储器603可以包括易失性存储器(volatile memory),例如随机存取存储器(random access memory,RAM);存储器603也可以包括非易失性存储器(non-volatile memory),例如只读存储器(read-only memory,ROM),快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器603还可以包括上述种类的存储器的组合。需要说明的是,基于序列的信号传输的装置60包括存储器603仅用于举例,并不构成对本申请实施例限定,在一种实现方式中,存储器603可以用其他具备存储功能的存储介质替代。
处理器602可以调用存储器603中存储的程序代码以使基于序列的信号传输的装置60执行以下操作:
根据参数组确定包含N个元素的第一序列,并根据该第一序列向网络设备发送信号,该参数组包括第一参数,第二参数和循环移位值,该第一序列由第二序列按照该循环移位值经过循环移位得到,该第二序列根据第一参数和第二参数确定;其中,该第二序列中的元素满足:
Figure PCTCN2020124676-appb-000047
Figure PCTCN2020124676-appb-000048
其中,u 1为第一参数,u 1∈{1,2,…,P-1};u 2为第二参数,u 2∈{0,1,2,…,P-1};i为第二序列中元素的索引,i的取值为0至N-1,
Figure PCTCN2020124676-appb-000049
为第二序列中元素索引为i的元素值,N为第二序列的长度,j为复数中的虚数符号,α为一个非零复数,
Figure PCTCN2020124676-appb-000050
为一个实数;P与N之间满足如下关系中的任一种:P为大于或等于N的最小质数;P为小于或等于N的最大质数;P为大于2×N的最小质数;P为小于2×N的最大质数。
在一种实现方式中,第一终端设备采用的第一参数和第二参数与第二终端设备采用的第一参数和第二参数均相同时,第一终端设备采用的循环移位值与该第二终端设备采用的循环移位值之间的差值的绝对值可以大于第一数值,其中,该第一终端设备和该第二终端设备位于同一小区。
在一种实现方式中,第一终端设备采用的第一参数与第三终端设备采用的第一参数相同时,该第一终端设备采用的第二参数与该第三终端设备采用的第二参数之间的差值的绝对值可以大于第二数值,其中,第一终端设备和第三终端设备位于同一小区。
在一种实现方式中,处理器602还可以调用存储器603中存储的程序代码以使基于序列的信号传输的装置60执行以下操作:通过通信接口601接收网络设备发送的参数组。
在一种实现方式中,处理器602还可以调用存储器603中存储的程序代码以使基于序列的信号传输的装置60执行以下操作:通过通信接口601接收网络设备发送的第一参数组集合;从该第一参数组集合中确定前述参数组。
在一种实现方式中,在该第一参数组集合中,第一参数和第二参数均相同的任意两个 参数组中的循环移位值之间的差值的绝对值大于第一数值。
在一种实现方式中,在该第一参数组集合中,第一参数相同的任意两个参数组中的第二参数之间的差值的绝对值大于第二数值。
在一种实现方式中,第一参数组集合包括于第二参数组集合,该第二参数组集合包括于备选参数组集合;该备选参数组集合包括一个或多个参数组子集,该备选参数组集合中各个参数组子集中的参数组的第一参数相同,该备选参数组集合中任意两个分别属于不同的参数组子集的参数组的第一参数不同,该备选参数组集合中的各个参数组子集均包括a个参数组;第二参数组集合包括b个参数组;当b<=a时,b个参数组为该备选参数组集合中的任意一个参数组子集中的任意b个参数组;和/或当b>a时,b个参数组由c个参数组子集中的参数组和d个参数组组成,其中,c个参数组子集为该备选参数组集合中的任意c个参数组子集,d个参数组为该备选参数组集合中除该c个参数组子集以外的任意一个参数组子集中的任意d个参数组。
在一种实现方式中,处理器602执行根据第一序列向网络设备发送信号时,具体可以执行以下操作:对该第一序列进行快速傅立叶变换,得到频域序列;并将该频域序列映射到子载波上,得到信号;通过通信接口601向网络设备发送该信号。
进一步地,处理器602还可以执行图2-图4所示实施例中第一终端设备对应的操作,具体可参见方法实施例中的描述,在此不再赘述。
请参见图7,图7是本申请实施例提供的又一种基于序列的信号传输的装置的结构示意图,该装置可以为网络设备或具有网络设备功能的装置(例如芯片),基于序列的信号传输的装置70用于执行图2-图4对应的方法实施例中网络设备所执行的步骤,基于序列的信号传输的装置70可以包括:
处理模块701,用于根据参数组确定包含N个元素的第一序列,该参数组包括第一参数,第二参数和循环移位值,该第一序列由第二序列按照该循环移位值经过循环移位得到,该第二序列根据第一参数和第二参数确定;
通信模块702,用于接收第一信号;
该处理模块701,还用于根据该第一序列和该第一信号,确定该第一信号是否包括根据该第一序列发送的信号;其中,该第二序列中的元素满足:
Figure PCTCN2020124676-appb-000051
Figure PCTCN2020124676-appb-000052
其中,u 1为第一参数,u 1∈{1,2,…,P-1};u 2为第二参数,u 2∈{0,1,2,…,P-1};i为第二序列中元素的索引,i的取值为0至N-1,
Figure PCTCN2020124676-appb-000053
为第二序列中元素索引为i的元素值,N为第二序列的长度,j为复数中的虚数符号,α为一个非零复数,
Figure PCTCN2020124676-appb-000054
为一个实数;P与N之间满足如下关系中的任一种:P为大于或等于N的最小质数;P为小于或等于N的最大质 数;P为大于2×N的最小质数;P为小于2×N的最大质数。
在一种实现方式中,通信模块702还可以用于分别向第一终端设备和第二终端设备发送参数组,发送给该第一终端设备的参数组中的第一参数和第二参数与发送给该第二终端设备的参数组中的第一参数和第二参数均相同时,发送给该第一终端设备的参数组中的循环移位值与发送给该第二终端设备的参数组中的循环移位值之间的差值的绝对值大于第一数值,其中,第一终端设备和第二终端设备位于同一小区。
在一种实现方式中,通信模块702还可以用于分别向第一终端设备和第三终端设备发送参数组,发送给该第一终端设备的参数组中的第一参数与发送给该第三终端设备的参数组中的第一参数相同时,发送给该第一终端设备的参数组中的第二参数和发送给该第三终端设备的参数组中的第二参数之间的差值的绝对值大于第二数值,其中,该第一终端设备和该第二终端设备位于同一小区。
在一种实现方式中,通信模块702还可以用于向第一终端设备发送第一参数组集合;处理模块701还可以用于从第二参数组集合中确定前述参数组,其中,该第一参数组集合包括于该第二参数组集合。
在一种实现方式中,在该第一参数组集合中,第一参数和第二参数均相同的任意两个参数组中的循环移位值之间的差值的绝对值大于第一数值。
在一种实现方式中,在该第一参数组集合中,第一参数相同的任意两个参数组中的第二参数之间的差值的绝对值大于第二数值。
在一种实现方式中,第二参数组集合包括于备选参数组集合;该备选参数组集合包括一个或多个参数组子集,该备选参数组集合中各个参数组子集中的参数组的第一参数相同,该备选参数组集合中任意两个分别属于不同的参数组子集的参数组的第一参数不同,该备选参数组集合中的各个参数组子集均包括a个参数组;第二参数组集合包括b个参数组;当b<=a时,b个参数组为该备选参数组集合中的任意一个参数组子集中的任意b个参数组;和/或当b>a时,b个参数组由c个参数组子集中的参数组和d个参数组组成,其中,c个参数组子集为该备选参数组集合中的任意c个参数组子集,d个参数组为该备选参数组集合中除该c个参数组子集以外的任意一个参数组子集中的任意d个参数组。
在一种实现方式中,处理模块701用于根据第一序列和第一信号,确定该第一信号是否包括根据该第一序列发送的信号时,具体可以用于:对该第一信号中子载波承载的频域序列进行快速傅立叶反变换,得到时域序列;并对该第一序列和该时域序列进行相关处理,得到相关值;根据该相关值确定该第一信号是否包括根据该第一序列发送的信号。
需要说明的是,图7对应的实施例中未提及的内容以及各个模块执行步骤的具体实现方式可参见图2-图4所示实施例以及前述内容,这里不再赘述。
在一种实现方式中,图7中的各个模块所实现的相关功能可以结合处理器与通信接口来实现。参见图8,图8是本申请实施例提供的又一种基于序列的信号传输的装置的结构示意图,该装置可以为网络设备或具有网络设备功能的装置(例如芯片),该基于序列的信号传输的装置80可以包括通信接口801、处理器802和存储器803,通信接口801、处理器802和存储器803可以通过一条或多条通信总线相互连接,也可以通过其它方式相连接。图7所示的处理模块701和通信模块702所实现的相关功能可以通过同一个处理器802 来实现,也可以通过多个不同的处理器802来实现。
通信接口801可以用于发送数据和/或信令,以及接收数据和/或信令。应用在本申请实施例中,通信接口801可以用于接收第一信号。通信接口801可以为收发器。
处理器802被配置为执行图2-图4所述方法中网络设备相应的功能。该处理器802可以包括一个或多个处理器,例如该处理器802可以是一个或多个中央处理器(central processing unit,CPU),网络处理器(network processor,NP),硬件芯片或者其任意组合。在处理器802是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
存储器803用于存储程序代码等。存储器803可以包括易失性存储器(volatile memory),例如随机存取存储器(random access memory,RAM);存储器803也可以包括非易失性存储器(non-volatile memory),例如只读存储器(read-only memory,ROM),快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器803还可以包括上述种类的存储器的组合。需要说明的是,基于序列的信号传输的装置80包括存储器803仅用于举例,并不构成对本申请实施例限定,在一种实现方式中,存储器803可以用其他具备存储功能的存储介质替代。
处理器802可以调用存储器803中存储的程序代码以使基于序列的信号传输的装置80执行以下操作:
根据参数组确定包含N个元素的第一序列,该参数组包括第一参数,第二参数和循环移位值,该第一序列由第二序列按照该循环移位值经过循环移位得到,该第二序列根据第一参数和第二参数确定;
通过通信接口801接收第一信号;
根据该第一序列和该第一信号,确定该第一信号是否包括根据该第一序列发送的信号;其中,该第二序列中的元素满足:
Figure PCTCN2020124676-appb-000055
Figure PCTCN2020124676-appb-000056
其中,u 1为第一参数,u 1∈{1,2,…,P-1};u 2为第二参数,u 2∈{0,1,2,…,P-1};i为第二序列中元素的索引,i的取值为0至N-1,
Figure PCTCN2020124676-appb-000057
为第二序列中元素索引为i的元素值,N为第二序列的长度,j为复数中的虚数符号,α为一个非零复数,
Figure PCTCN2020124676-appb-000058
为一个实数;P与N之间满足如下关系中的任一种:P为大于或等于N的最小质数;P为小于或等于N的最大质数;P为大于2×N的最小质数;P为小于2×N的最大质数。
在一种实现方式中,处理器802还可以调用存储器803中存储的程序代码以使基于序列的信号传输的装置80执行以下操作:通过通信接口801分别向第一终端设备和第二终端设备发送参数组,发送给该第一终端设备的参数组中的第一参数和第二参数与发送给该第二终端设备的参数组中的第一参数和第二参数均相同时,发送给该第一终端设备的参数组 中的循环移位值与发送给该第二终端设备的参数组中的循环移位值之间的差值的绝对值大于第一数值,其中,第一终端设备和第二终端设备位于同一小区。
在一种实现方式中,处理器802还可以调用存储器803中存储的程序代码以使基于序列的信号传输的装置80执行以下操作:通过通信接口801分别向第一终端设备和第三终端设备发送参数组,发送给该第一终端设备的参数组中的第一参数与发送给该第三终端设备的参数组中的第一参数相同时,发送给该第一终端设备的参数组中的第二参数和发送给该第三终端设备的参数组中的第二参数之间的差值的绝对值大于第二数值,其中,该第一终端设备和该第二终端设备位于同一小区。
在一种实现方式中,处理器802还可以调用存储器803中存储的程序代码以使基于序列的信号传输的装置80执行以下操作:通过通信接口801向第一终端设备发送第一参数组集合;并从第二参数组集合中确定前述参数组,其中,该第一参数组集合包括于该第二参数组集合。
在一种实现方式中,在该第一参数组集合中,第一参数和第二参数均相同的任意两个参数组中的循环移位值之间的差值的绝对值大于第一数值。
在一种实现方式中,在该第一参数组集合中,第一参数相同的任意两个参数组中的第二参数之间的差值的绝对值大于第二数值。
在一种实现方式中,第二参数组集合包括于备选参数组集合;该备选参数组集合包括一个或多个参数组子集,该备选参数组集合中各个参数组子集中的参数组的第一参数相同,该备选参数组集合中任意两个分别属于不同的参数组子集的参数组的第一参数不同,该备选参数组集合中的各个参数组子集均包括a个参数组;第二参数组集合包括b个参数组;当b<=a时,b个参数组为该备选参数组集合中的任意一个参数组子集中的任意b个参数组;和/或当b>a时,b个参数组由c个参数组子集中的参数组和d个参数组组成,其中,c个参数组子集为该备选参数组集合中的任意c个参数组子集,d个参数组为该备选参数组集合中除该c个参数组子集以外的任意一个参数组子集中的任意d个参数组。
在一种实现方式中,处理器802执行根据第一序列和第一信号,确定该第一信号是否包括根据该第一序列发送的信号时,具体可以执行以下操作:对该第一信号中子载波承载的频域序列进行快速傅立叶反变换,得到时域序列;并对该第一序列和该时域序列进行相关处理,得到相关值;根据该相关值确定该第一信号是否包括根据该第一序列发送的信号。
进一步地,处理器802还可以执行图2-图4所示实施例中网络设备对应的操作,具体可参见方法实施例中的描述,在此不再赘述。
本申请实施例还提供一种计算机可读存储介质,可以用于存储图5所示实施例中基于序列的信号传输的装置所用的计算机软件指令,其包含用于执行上述实施例中为第一终端设备所设计的程序。
本申请实施例还提供一种计算机可读存储介质,可以用于存储图7所示实施例中基于序列的信号传输的装置所用的计算机软件指令,其包含用于执行上述实施例中为网络设备所设计的程序。
上述计算机可读存储介质包括但不限于快闪存储器、硬盘、固态硬盘。
本申请实施例还提供一种计算机程序产品,该计算机产品被计算设备运行时,可以执行上述图2-图4实施例中为第一终端设备所设计的方法。
本申请实施例还提供一种计算机程序产品,该计算机产品被计算设备运行时,可以执行上述图2-图4实施例中为网络设备所设计的方法。
在本申请实施例中还提供一种芯片,包括处理器和存储器,该存储器用包括处理器和存储器,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,该计算机程序用于实现上述方法实施例中的方法。
本领域技术人员可以意识到,结合本申请中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件结合的方式来实现。这些功能究竟以硬件还是软件方式执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用使用不同方法实现所描述的功能,但是这种实现不应认为超出本申请的范围。
上述实施例可以全部或部分地通过软件、硬件、固件或者其任意组合实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。当在计算机上加载和执行该计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。上述计算机指令可以存储在计算机可读存储介质中,或者通过计算机可读存储介质进行传输。上述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (20)

  1. 一种数据处理方法,其特征在于,所述方法包括:
    第一终端设备根据参数组确定包含N个元素的第一序列,所述参数组包括第一参数,第二参数和循环移位值,所述第一序列由第二序列按照所述循环移位值经过循环移位得到,所述第二序列根据所述第一参数和所述第二参数确定;
    所述第一终端设备根据所述第一序列向网络设备发送信号;
    所述第二序列中的元素满足:
    Figure PCTCN2020124676-appb-100001
    Figure PCTCN2020124676-appb-100002
    其中,所述u 1为所述第一参数,u 1∈{1,2,…,P-1};所述u 2为所述第二参数,u 2∈{0,1,2,…,P-1};所述i为所述第二序列中元素的索引,所述i的取值为0至N-1,所述
    Figure PCTCN2020124676-appb-100003
    为所述第二序列中元素索引为所述i的元素值,所述N为所述第二序列的长度,所述j为复数中的虚数符号,所述P与所述N之间满足如下关系中的任一种:所述P为大于或等于所述N的最小质数;所述P为小于或等于所述N的最大质数;所述P为大于2×N的最小质数;所述P为小于2×N的最大质数;所述α为一个非零复数,所述
    Figure PCTCN2020124676-appb-100004
    为一个实数。
  2. 根据权利要求1所述的方法,其特征在于,
    所述第一参数和所述第二参数与第二终端设备采用的第一参数和第二参数均相同时,所述循环移位值与所述第二终端设备采用的循环移位值之间的差值的绝对值大于第一数值,其中,所述第一终端设备和所述第二终端设备位于同一小区。
  3. 根据权利要求1或2所述的方法,其特征在于,
    所述第一参数与第三终端设备采用的第一参数相同时,所述第一终端设备采用的第二参数与所述第三终端设备采用的第二参数之间的差值的绝对值大于第二数值,其中,所述第一终端设备和所述第三终端设备位于同一小区。
  4. 根据权利要求1~3任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备接收所述网络设备发送的所述参数组。
  5. 根据权利要求1~3任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备接收所述网络设备发送的第一参数组集合;
    所述第一终端设备从所述第一参数组集合中确定所述参数组。
  6. 根据权利要求5所述的方法,其特征在于,
    在所述第一参数组集合中,第一参数和第二参数均相同的任意两个参数组中的循环移位值之间的差值的绝对值大于第一数值。
  7. 根据权利要求5或6所述的方法,其特征在于,
    在所述第一参数组集合中,第一参数相同的任意两个参数组中的第二参数之间的差值的绝对值大于第二数值。
  8. 根据权利要求5~7任一项所述的方法,其特征在于,所述第一参数组集合包括于第二参数组集合,所述第二参数组集合包括于备选参数组集合;
    所述备选参数组集合包括一个或多个参数组子集,所述备选参数组集合中各个参数组子集中的参数组的第一参数相同,所述备选参数组集合中任意两个分别属于不同的参数组子集的参数组的第一参数不同,所述备选参数组集合中的各个参数组子集均包括a个参数组;所述第二参数组集合包括b个参数组;
    当所述b<=所述a时,所述b个参数组为所述备选参数组集合中的任意一个参数组子集中的任意b个参数组;
    和/或当所述b>所述a时,所述b个参数组由c个参数组子集中的参数组和d个参数组组成,其中,所述c个参数组子集为所述备选参数组集合中的任意c个参数组子集,所述d个参数组为所述备选参数组集合中除所述c个参数组子集以外的任意一个参数组子集中的任意d个参数组。
  9. 根据权利要求1~8任一项所述的方法,其特征在于,所述第一终端设备根据所述第一序列向网络设备发送信号,包括:
    所述第一终端设备对所述第一序列进行快速傅立叶变换,得到频域序列;
    所述第一终端设备将所述频域序列映射到子载波上,得到信号;
    所述第一终端设备向网络设备发送所述信号。
  10. 一种数据处理方法,其特征在于,所述方法包括:
    网络设备根据参数组确定包含N个元素的第一序列,所述参数组包括第一参数,第二参数和循环移位值,所述第一序列由第二序列按照所述循环移位值经过循环移位得到,所述第二序列根据所述第一参数和所述第二参数确定;
    所述网络设备接收第一信号;
    所述网络设备根据所述第一序列和所述第一信号,确定所述第一信号是否包括根据所述第一序列发送的信号;
    所述第二序列中的元素满足:
    Figure PCTCN2020124676-appb-100005
    Figure PCTCN2020124676-appb-100006
    其中,所述u 1为所述第一参数,u 1∈{1,2,…,P-1};所述u 2为所述第二参数,u 2∈{0,1,2,…,P-1};所述i为所述第二序列中元素的索引,所述i的取值为0至N-1,所述
    Figure PCTCN2020124676-appb-100007
    为所述第二序列中元素索引为所述i的元素值,所述N为所述第二序列的长度,所述j为复数中的虚数符号,所述P与所述N之间满足如下关系中的任一种:所述P为大于或等 于所述N的最小质数;所述P为小于或等于所述N的最大质数;所述P为大于2×N的最小质数;所述P为小于2×N的最大质数;所述α为一个非零复数,所述
    Figure PCTCN2020124676-appb-100008
    为一个实数。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    所述网络设备分别向第一终端设备和第二终端设备发送参数组,发送给所述第一终端设备的参数组中的第一参数和第二参数与发送给所述第二终端设备的参数组中的第一参数和第二参数均相同时,发送给所述第一终端设备的参数组中的循环移位值与发送给所述第二终端设备的参数组中的循环移位值之间的差值的绝对值大于第一数值,其中,所述第一终端设备和所述第二终端设备位于同一小区。
  12. 根据权利要求10或11所述的方法,其特征在于,所述方法还包括:
    所述网络设备分别向第一终端设备和第三终端设备发送参数组,发送给所述第一终端设备的参数组中的第一参数与发送给所述第三终端设备的参数组中的第一参数相同时,发送给所述第一终端设备的参数组中的第二参数和发送给所述第三终端设备的参数组中的第二参数之间的差值的绝对值大于第二数值,其中,所述第一终端设备和所述第二终端设备位于同一小区。
  13. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    所述网络设备向第一终端设备发送第一参数组集合;
    所述网络设备从第二参数组集合中确定所述参数组,其中,所述第一参数组集合包括于所述第二参数组集合。
  14. 根据权利要求13所述的方法,其特征在于,
    在所述第一参数组集合中,第一参数和第二参数均相同的任意两个参数组中的循环移位值之间的差值的绝对值大于第一数值。
  15. 根据权利要求13或14所述的方法,其特征在于,
    在所述第一参数组集合中,第一参数相同的任意两个参数组中的第二参数之间的差值的绝对值大于第二数值。
  16. 根据权利要求13~15任一项所述的方法,其特征在于,所述第二参数组集合包括于备选参数组集合;
    所述备选参数组集合包括一个或多个参数组子集,所述备选参数组集合中各个参数组子集中的参数组的第一参数相同,所述备选参数组集合中任意两个分别属于不同的参数组子集的参数组的第一参数不同,所述备选参数组集合中的各个参数组子集均包括a个参数组;所述第二参数组集合包括b个参数组;
    当所述b<=所述a时,所述b个参数组为所述备选参数组集合中的任意一个参数组子集中的任意b个参数组;
    和/或当所述b>所述a时,所述b个参数组由c个参数组子集中的参数组和d个参数组组成,其中,所述c个参数组子集为所述备选参数组集合中的任意c个参数组子集,所述d个参数组为所述备选参数组集合中除所述c个参数组子集以外的任意一个参数组子集中的任意d个参数组。
  17. 根据权利要求10~16任一项所述的方法,其特征在于,所述网络设备根据所述第 一序列和所述第一信号,确定所述第一信号是否包括根据所述第一序列发送的信号,包括:
    所述网络设备对所述第一信号中子载波承载的频域序列进行快速傅立叶反变换,得到时域序列;
    所述网络设备对所述第一序列和所述时域序列进行相关处理,得到相关值;
    所述网络设备根据所述相关值确定所述第一信号是否包括根据所述第一序列发送的信号。
  18. 一种基于序列的信号传输的装置,其特征在于,用于实现根据权利要求1至17中任一项所述的方法。
  19. 一种基于序列的信号传输的装置,其特征在于,所述装置包括处理器和存储介质,所述存储介质存储有指令,所述指令被所述处理器运行时,使得所述装置执行根据权利要求1至17中任一项所述的方法。
  20. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有指令,所述指令被运行时,使得通信设备执行根据权利要求1至17中任一项所述的方法。
PCT/CN2020/124676 2019-10-31 2020-10-29 一种数据处理方法及其装置 WO2021083252A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20880637.2A EP4033846B1 (en) 2019-10-31 2020-10-29 Data processing method and apparatus
US17/731,188 US12063132B2 (en) 2019-10-31 2022-04-27 Data processing method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911057386.9 2019-10-31
CN201911057386.9A CN112822786B (zh) 2019-10-31 2019-10-31 一种数据处理方法及其装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/731,188 Continuation US12063132B2 (en) 2019-10-31 2022-04-27 Data processing method and apparatus

Publications (1)

Publication Number Publication Date
WO2021083252A1 true WO2021083252A1 (zh) 2021-05-06

Family

ID=75714868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/124676 WO2021083252A1 (zh) 2019-10-31 2020-10-29 一种数据处理方法及其装置

Country Status (4)

Country Link
US (1) US12063132B2 (zh)
EP (1) EP4033846B1 (zh)
CN (1) CN112822786B (zh)
WO (1) WO2021083252A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115473778A (zh) * 2021-06-10 2022-12-13 华为技术有限公司 参考信号的发送、接收方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102333060A (zh) * 2010-07-13 2012-01-25 普天信息技术研究院有限公司 一种生成zc序列的频域表示的方法
US20150365977A1 (en) * 2014-06-13 2015-12-17 Apple Inc. Enhanced PRACH Scheme for Power Savings, Range Improvement and Improved Detection
CN108040366A (zh) * 2017-12-14 2018-05-15 重庆邮电大学 一种基于频偏校正的随机接入前导信号检测方法
CN108271271A (zh) * 2016-12-30 2018-07-10 维沃移动通信有限公司 一种随机接入方法、发送端及接收端

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8594250B2 (en) * 2008-07-25 2013-11-26 Qualcomm Incorporated Apparatus and methods for computing constant amplitude zero auto-correlation sequences
JP6302097B2 (ja) * 2014-06-03 2018-03-28 華為技術有限公司Huawei Technologies Co.,Ltd. ランダム・アクセス・チャネル・zcシーケンスを生成するための方法、および装置
CN108207027B (zh) * 2016-12-20 2021-02-12 华为技术有限公司 一种随机接入方法及设备
CN109842478A (zh) * 2017-11-26 2019-06-04 华为技术有限公司 一种序列确定方法和装置
WO2019223857A1 (en) 2018-05-23 2019-11-28 Huawei Technologies Co., Ltd. A network access node and a client device for generating and using randoms access sequences
WO2021109040A1 (zh) * 2019-12-04 2021-06-10 华为技术有限公司 一种序列检测方法及设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102333060A (zh) * 2010-07-13 2012-01-25 普天信息技术研究院有限公司 一种生成zc序列的频域表示的方法
US20150365977A1 (en) * 2014-06-13 2015-12-17 Apple Inc. Enhanced PRACH Scheme for Power Savings, Range Improvement and Improved Detection
CN108271271A (zh) * 2016-12-30 2018-07-10 维沃移动通信有限公司 一种随机接入方法、发送端及接收端
CN108040366A (zh) * 2017-12-14 2018-05-15 重庆邮电大学 一种基于频偏校正的随机接入前导信号检测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4033846A4

Also Published As

Publication number Publication date
EP4033846A4 (en) 2022-11-23
EP4033846B1 (en) 2023-07-26
CN112822786A (zh) 2021-05-18
US12063132B2 (en) 2024-08-13
US20220255781A1 (en) 2022-08-11
CN112822786B (zh) 2024-11-01
EP4033846A1 (en) 2022-07-27

Similar Documents

Publication Publication Date Title
US11757688B2 (en) Sequence-based signal processing method and apparatus
WO2019154425A1 (zh) 一种导频信号生成方法及装置
US12028199B2 (en) Sequence-based signal processing method and apparatus
JP7463477B2 (ja) 系列に基づく信号処理方法および装置
JP2021503792A (ja) シーケンスを基にした信号処理方法および信号処理装置
US20200092149A1 (en) Signal processing method, signal processing apparatus, computer readable storage medium, and computer program product
WO2018202103A1 (zh) 一种参考信号图样的传输方法及其装置
WO2021083252A1 (zh) 一种数据处理方法及其装置
US11252003B2 (en) Sequence-based signal processing method and apparatus
US10999108B2 (en) Wireless communication method, apparatus, and system
WO2020043103A1 (zh) 一种信号发送、接收方法及装置
WO2022077438A1 (en) Method for beam switching in mmwave systems
CN115913492B (zh) 信号传输方法、装置、设备及存储介质
WO2023130332A1 (zh) 多用户正交频分复用ofdm子载波分配方法及其装置
WO2017193373A1 (zh) 资源映射方法、装置以及通信系统
WO2021017876A1 (zh) 一种数据处理方法及通信装置
WO2021168670A1 (zh) 一种通信方法及装置
WO2022082492A1 (zh) 信号发送、接收的方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20880637

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020880637

Country of ref document: EP

Effective date: 20220421

NENP Non-entry into the national phase

Ref country code: DE