[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021079923A1 - Diffusion plate, display device, projection device, and illumination device - Google Patents

Diffusion plate, display device, projection device, and illumination device Download PDF

Info

Publication number
WO2021079923A1
WO2021079923A1 PCT/JP2020/039657 JP2020039657W WO2021079923A1 WO 2021079923 A1 WO2021079923 A1 WO 2021079923A1 JP 2020039657 W JP2020039657 W JP 2020039657W WO 2021079923 A1 WO2021079923 A1 WO 2021079923A1
Authority
WO
WIPO (PCT)
Prior art keywords
microlens
microlenses
shape
curvature
grid
Prior art date
Application number
PCT/JP2020/039657
Other languages
French (fr)
Japanese (ja)
Inventor
有馬 光雄
正之 石渡
駿介 金杉
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020175853A external-priority patent/JP2021071721A/en
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to US17/766,950 priority Critical patent/US20240077658A1/en
Priority to EP20878757.2A priority patent/EP4027177A4/en
Priority to CN202080072883.0A priority patent/CN114556168B/en
Publication of WO2021079923A1 publication Critical patent/WO2021079923A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/06Simple or compound lenses with non-spherical faces with cylindrical or toric faces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements

Definitions

  • the present invention relates to a diffuser, a display device, a projection device and a lighting device.
  • a diffuser plate that diffuses incident light in a desired direction is used.
  • the diffuser plate is widely used in various devices such as a display device such as a display, a projection device such as a projector, and various lighting devices.
  • a microlens array type diffuser in which a plurality of microlenses having a size of about several tens of ⁇ m are arranged is known.
  • Patent Document 1 in a diffusion plate in which a plurality of microlenses are regularly arranged in a rectangular lattice pattern on a main surface, a plurality of microlenses having different cross-sectional shapes and having no axis of symmetry. Is described to be used. Further, Patent Document 2 describes that the lens apex positions of a plurality of microlenses arranged in a rectangular grid pattern are arranged so as to be offset from the grid points of the reference grid.
  • Patent Document 1 in an array structure in which a plurality of microlenses having no target axis and having different cross-sectional shapes are regularly arranged in a rectangular lattice pattern, between microlenses adjacent to each other.
  • the unevenness of the intensity distribution of the diffused light is reduced only by the phase change of the light. Therefore, the effect of uniformly distributing the diffused light in the two directions orthogonal to each other of the rectangular lattice is limited.
  • Patent Document 2 in an array structure regularly arranged in a rectangular lattice shape, a arrangement having high homogeneity in two directions of the rectangular lattice can be obtained only by shifting the apex positions of each microlens. Optical control could not be realized.
  • an object of the present invention is to suppress unevenness of luminance distribution in two directions of microlenses arranged in a rectangular lattice pattern and to distribute light.
  • the purpose is to improve the homogeneity of the lens.
  • the grid spacing Wx in the X direction randomly fluctuates at a volatility ⁇ Wx within ⁇ 10% to ⁇ 50% with reference to the reference grid spacing Wx_k.
  • the grid spacing Wy in the Y direction may be randomly changed at a volatility ⁇ Wy within ⁇ 10% to ⁇ 50% with reference to the reference grid spacing Wy_k.
  • the radius of curvature Rx of the microlenses arranged in the X direction in the X direction varies from each other.
  • the radius of curvature Ry of the microlenses arranged in the Y direction in the Y direction may be made to fluctuate with each other.
  • the radius of curvature Rx in the X direction randomly fluctuates at a volatility ⁇ Rx within ⁇ 10% to ⁇ 50% with reference to the reference radius of curvature Rx_k.
  • the radius of curvature Ry in the Y direction may be randomly changed at a volatility ⁇ Ry within ⁇ 10% to ⁇ 50% with reference to the reference radius of curvature Ry_k.
  • the grid spacing Wx in the X direction randomly fluctuates at a volatility ⁇ Wx within ⁇ 10% to ⁇ 50% with reference to the reference grid spacing Wx_k.
  • the grid spacing Wy in the Y direction randomly fluctuates at a volatility ⁇ Wy within ⁇ 10% to ⁇ 50% with reference to the reference grid spacing Wy_k.
  • the reference grid spacing Wx_k, Wy_k and the reference curvature radii Rx_k, Ry_k satisfy the following relational expressions (A) and (B).
  • the diffusion angle (full width at half maximum) by the diffusion plate may be 20 ° or less.
  • the plane positions of the vertices of the microlenses arranged in the X direction and the Y direction may be eccentric from the center point of the rectangular lattice.
  • the distances in the X and Y directions from the center point of the rectangular lattice to the plane position of the apex of the eccentric microlens are defined as the eccentric amount Ecx and the eccentric amount Ecy, respectively, and the lattice intervals Wx and Wy of the rectangular lattice.
  • the ratios of the eccentricity Ecx and Ecy to the eccentricity are the eccentricity ⁇ Ecx and the eccentricity ⁇ Ecy, respectively.
  • the plane position of the apex of the microlens may be randomly eccentric with eccentricity ratios ⁇ Ecx and ⁇ Ecy within ⁇ 10% to ⁇ 50%.
  • the height positions of the vertices of the plurality of microlenses arranged in the X direction and the Y direction may be different from each other.
  • microlenses arranged in the X direction and the Y direction may be arranged continuously without any gaps between them.
  • the boundary lines of the microlenses adjacent to each other may include straight lines and curved lines.
  • the microlens array is composed of a plurality of unit cells, which is a basic arrangement pattern of the microlens.
  • the microlens array may be configured by arranging the plurality of unit cells without gaps while maintaining the continuity of the microlenses at the boundary portion between the plurality of unit cells.
  • the surface shape of the microlens may be a spherical shape or an aspherical shape having anisotropy in the X direction or the Y direction.
  • a display device including the above diffusion plate is provided.
  • a projection device including the above diffusion plate is provided.
  • a lighting device including the above diffusion plate is provided.
  • the present invention it is possible to suppress unevenness of the luminance distribution and improve the homogeneity of the light distribution in the two directions of the microlenses arranged in a rectangular grid pattern.
  • FIG. 1 It is a perspective view which shows the curved surface of the torus shape which concerns on this embodiment. It is a flowchart which shows the design method of the microlens which concerns on this embodiment. It is explanatory drawing which shows the rectangular grid generated in the grid generation step which concerns on the same embodiment. It is explanatory drawing which shows the rectangular grid generated in the grid eccentricity step which concerns on the same embodiment. It is explanatory drawing which shows the plurality of microlenses generated in the lens generation step which concerns on this embodiment. It is an image showing a lens pattern designed by the design method which concerns on the same embodiment. It is a flowchart which shows the manufacturing method of the diffusion plate which concerns on this embodiment. It is explanatory drawing about the diffusion plate which concerns on Comparative Example 1.
  • FIG. 1 shows the manufacturing method of the diffusion plate which concerns on this embodiment.
  • the diffusing plate according to the present embodiment described in detail below is a microlens array type diffusing plate having a homogeneous light diffusing function.
  • a diffuser has a microlens array formed on an XY plane on at least one surface (main surface) of the substrate.
  • the microlens array is composed of a plurality of microlenses arranged and expanded in a rectangular grid pattern.
  • the microlens has a convex structure (convex lens) or a concave structure (concave lens) having a light diffusing function, and has a lens diameter of about several tens of ⁇ m.
  • a plurality of microlenses are arranged in a rectangular grid shape (matrix shape) with reference to a rectangular grid having irregularities.
  • a rectangular grid having this irregularity a plurality of grid spacing Wx in the X direction (row direction) randomly fluctuates and differ from each other, and a plurality of grid spacing Wy in the Y direction (column direction) also randomly fluctuates. It fluctuates and is different from each other.
  • the radii of curvature Rx and Ry of the plurality of microlenses arranged in the X and Y directions fluctuate randomly (irregularly) so as to be different from each other.
  • the plane position of the apex of each microlens randomly fluctuates (eccentricity) so as to deviate from the center point of the rectangular lattice.
  • the height positions of the vertices of the plurality of microlenses in the Z direction also fluctuate randomly and are different from each other.
  • the surface shape of the plurality of microlenses developed in a rectangular grid shape can be changed. It fluctuates randomly and has different shapes.
  • the three-dimensional surface structure of the microlens array with high randomness is realized by randomly changing each variable element of the plurality of microlenses.
  • it is possible to control the phase superposition state of the light emitted from each microlens.
  • a surface structure of a diffuser plate capable of controlling the cutoff property of the intensity distribution.
  • a plurality of microlenses are arranged on the XY plane with reference to an irregular rectangular grid having different grid spacings Wx and Wy.
  • a plurality of microlens arrays can be continuously arranged on the surface of the diffuser without any gaps while ensuring the randomness of the surface shape of each microlens. Therefore, since the flat portion can be eliminated as much as possible at the boundary portion of the adjacent microlenses, the unevenness of the intensity distribution of the diffused light can be further reduced, and the homogeneity of the light distribution in the two directions (X and Y directions) can be further improved. Can be improved.
  • FIG. 1 is an explanatory diagram schematically showing the diffusion plate 1 according to the present embodiment.
  • the diffuser plate 1 is a microlens array type diffuser plate in which a microlens array composed of a plurality of microlenses (single lenses) is arranged on a substrate.
  • the microlens array of the diffuser plate 1 is composed of a plurality of unit cells 3.
  • the unit cell 3 is a basic arrangement pattern of the microlens.
  • a plurality of microlenses are arranged on the surface of each unit cell 3 in a predetermined layout pattern (arrangement pattern).
  • FIG. 1 shows an example in which the shape of the unit cell 3 constituting the diffusion plate 1 is rectangular, particularly square.
  • the shape of the unit cell 3 is not limited to the example shown in FIG. 1, and the shape of the unit cell 3 is not limited to the example shown in FIG. Any shape may be used as long as it can be filled.
  • a plurality of square unit cells 3 are repeatedly arranged vertically and horizontally on the surface of the diffusion plate 1.
  • the number of unit cells 3 constituting the diffusion plate 1 according to the present embodiment is not particularly limited, and the diffusion plate 1 may be composed of one unit cell 3 or from a plurality of unit cells 3. It may be configured.
  • the unit cells 3 having different surface structures may be repeatedly arranged, or the unit cells 3 having the same surface structure may be repeatedly arranged.
  • the layout pattern (arrangement pattern) of the plurality of microlenses provided in the unit cell 3 is the unit cell 3. It is continuous in the array direction (in other words, the array array direction).
  • the microlens array is configured by arranging the unit cells 3 without gaps while maintaining the continuity of the microlenses at the boundary portion between the plurality of unit cells 3.
  • the continuity of the microlens means the microlens located on the outer edge of one unit cell 3 and the microlens located on the outer edge of the other unit cell 3 among the two adjacent unit cells 3.
  • the lenses are continuously connected without any deviation of the plane shape or steps in the height direction.
  • the unit cells 3 (basic structure) of the microlens array are arranged without gaps while maintaining the continuity of the boundaries, thereby forming the microlens array. ..
  • the unit cells 3 basic structure of the microlens array
  • FIG. 2 is an enlarged plan view and an enlarged cross-sectional view schematically showing the configuration of the diffusion plate 1 according to the present embodiment.
  • FIG. 3 is an enlarged cross-sectional view schematically showing the vicinity of the boundary of the microlens 21 according to the present embodiment.
  • FIG. 4 is a plan view schematically showing the planar shape (outer shape) of the microlens 21 when the microlens 21 is viewed in a plan view from a direction perpendicular to the surface of the base material 10.
  • the diffuser plate 1 includes a base material 10 and a microlens array 20 formed on the surface of the base material 10.
  • the base material 10 is a substrate for supporting the microlens array 20.
  • the base material 10 may be in the form of a film or in the form of a plate.
  • the base material 10 shown in FIG. 2 has, for example, a rectangular flat plate shape, but is not limited to such an example.
  • the shape and thickness of the base material 10 may be any shape and thickness depending on the shape of the device on which the diffusion plate 1 is mounted.
  • the base material 10 is a transparent base material capable of transmitting light.
  • the base material 10 is formed of a material that can be regarded as transparent in the wavelength band of light incident on the diffuser plate 1.
  • the base material 10 may be made of a material having a light transmittance of 70% or more in a wavelength band corresponding to visible light.
  • the base material 10 is, for example, polymethylmethacrylate (PMMA), polyethylene terephthalate (PET), polycarbonate (PC), cyclic olefin copolymer (Cyclo Olefin Polymer: COC), cyclic olefin. It may be formed of a known resin such as Olefin Polymer (COP) and Triacetyl cellulose (TAC). Alternatively, the base material 10 may be formed of known optical glass such as quartz glass, borosilicate glass, and white plate glass.
  • PMMA polymethylmethacrylate
  • PET polyethylene terephthalate
  • PC polycarbonate
  • COC cyclic olefin copolymer
  • COC cyclic olefin
  • It may be formed of a known resin such as Olefin Polymer (COP) and Triacetyl cellulose (TAC).
  • the base material 10 may be formed of known optical glass such as quartz glass, borosilicate glass, and white plate glass.
  • the microlens array 20 is provided on at least one surface (main surface) of the base material 10.
  • the microlens array 20 is an aggregate of a plurality of microlenses 21 (single lenses) arranged on the surface of the base material 10.
  • the microlens array 20 is formed on one surface of the base material 10.
  • the present invention is not limited to this, and the microlens array 20 may be formed on both main surfaces (front surface and back surface) of the base material 10.
  • the microlens 21 is, for example, a fine optical lens on the order of several tens of ⁇ m.
  • the microlens 21 constitutes a single lens of the microlens array 20.
  • the microlens 21 may have a concave structure (concave lens) formed so as to be depressed in the thickness direction of the diffuser plate 1, or a convex structure (convex lens) formed so as to project in the thickness direction of the diffuser plate 1. It may be.
  • the microlens 21 has a concave structure (concave lens) as shown in FIG. 2 will be described, but the present invention is not limited to such an example.
  • the microlens 21 may have a convex structure (convex lens) depending on the desired optical characteristics of the diffuser plate 1.
  • each microlens 21 is not particularly limited as long as it is a curved surface shape including a curved surface component.
  • the surface shape of the microlens 21 may be, for example, a spherical shape containing only a spherical component, an aspherical shape containing only a spherical component and an aspherical component, or a spherical shape containing only an aspherical component. It may have an aspherical shape.
  • the plurality of microlenses 21 are densely arranged so as to be adjacent to each other without a gap. In other words, it is preferable that the plurality of microlenses 21 are continuously arranged so that there is no gap (flat portion) at the boundary portion between the microlenses 21 adjacent to each other.
  • the incident light is not scattered on the surface of the diffuser plate 1. It is possible to suppress a component that is transmitted as it is (hereinafter, also referred to as a "0th-order transmitted light component"). As a result, the diffusion performance can be further improved by the microlens array 20 in which the plurality of microlenses 21 are arranged so as to be adjacent to each other without a gap.
  • the filling rate of the microlens 21 on the base material 10 is preferably 90% or more, and more preferably 100%.
  • the filling rate is the ratio of the area of the portion occupied by the plurality of microlenses 21 on the surface of the base material 10.
  • the surface of the microlens array 20 is formed of curved surface components and contains almost no flat surface components.
  • the vicinity of the inflection point at the boundary between adjacent microlenses 21 may become substantially flat. obtain.
  • the width of the region near the inflection point (the width of the boundary line between the microlenses 21) that becomes substantially flat at the boundary between the microlenses 21 is preferably 1 ⁇ m or less.
  • the plurality of microlenses 21 are not randomly (irregularly) arranged, but as shown in FIG. 2, the grid spacing is in the X direction and the Y direction. It is arranged in a somewhat regular manner (hereinafter referred to as "quasi-regular") with reference to an irregular rectangular lattice (see FIG. 5) in which Wx and Wy are fluctuated.
  • quadsi-regular means that there is no substantial regularity in the arrangement of microlenses in any region of the microlens array. However, even if there is some regularity in the arrangement of the microlenses in the minute region, the one in which the arrangement of the microlenses does not have regularity in the entire arbitrary region is included in "irregularity".
  • the plurality of microlenses 21 are arranged semi-regularly with reference to a rectangular grid having irregularities.
  • the surface shape and the planar shape of the microlens 21 are randomly changed.
  • the planar shape (outer shape) of the microlens 21 has a shape close to a substantially rectangular shape as a whole, but has a perfect rectangular shape (square shape or rectangular shape) corresponding to a rectangular grid. )is not it.
  • the planar shape of the microlens 21 has a shape close to a substantially polygon having four or more vertices, such as a substantially quadrangle, a substantially pentagon, and a substantially hexagon.
  • the surface shape (three-dimensional curved surface shape) and the planar shape (shape projected onto the XY plane of the base material 10) of the plurality of microlenses 21 are different from each other.
  • the reason why each microlens 21 has a shape that is irregularly collapsed from a rectangular shape is that the radius of curvature Rx, Ry, the aperture diameter Dx, Dy, and the plane position of the lens apex of each microlens 21. This is because the height position and the like fluctuate randomly within a range of a predetermined fluctuation rate.
  • the details of the semi-regular arrangement method of the microlens 21 based on the rectangular grid according to the present embodiment will be described later (see FIGS. 5 to 7).
  • the radii of curvature Rx and Ry and the aperture diameters Dx and Dy of each microlens 21 vary randomly and have variations.
  • the aperture diameters Dx and Dy of the microlens 21 correspond to the lens diameter of a single lens.
  • the phase distribution of the optical aperture of each microlens 21 differs depending on the orientation.
  • a plurality of microlenses 21 are continuously arranged on the surface of the base material 10 so as to overlap each other, and the radii of curvature Rx and Ry and the aperture diameters Dx and Dy (lens diameter) of the respective microlenses 21 vary.
  • the shapes (surface shape and planar shape) of the plurality of microlenses 21 are not the same as each other. Therefore, the plurality of microlenses 21 come to have various shapes as shown in FIG. 2, and many of them do not have symmetry.
  • the curvature radius of the microlens 21A is R A
  • the curvature radius of the microlens 21B adjacent to the microlenses 21A is a state that it is R B ( ⁇ R A) resulting Will be.
  • the radius of curvature R A of the microlenses 21 which are adjacent to each other, if the R B are different from each other, the boundary between the microlenses 21 which are adjacent to each other is not composed of only straight lines, configured to include a curve in at least a part Will be.
  • the outline of the planar shape of the microlens 21 (the microlens 21 and the microlens 21).
  • the boundary line between the plurality of adjacent microlenses 21) includes a plurality of curves having different curvatures from each other and a straight line.
  • the boundary line of the microlens 21 includes a plurality of curves having different curvatures from each other, the regularity of the boundary between the microlenses 21 is further broken, so that the diffraction component of the diffused light can be further reduced.
  • FIG. 5 is a plan view schematically showing the arrangement of the irregular rectangular lattice-shaped microlenses 21 according to the present embodiment.
  • FIG. 6 is an explanatory view showing an example in which the surface shape of the microlens 21 is changed from the state of FIG.
  • FIG. 7 is an explanatory view showing an example in which the plane position of the apex 22 of the microlens 21 is eccentric from the state of FIG.
  • microlens array 20 in which a plurality of microlenses 21 having the above-mentioned characteristics are arranged can be realized by the arrangement method according to the present embodiment described below.
  • a reference state (hereinafter, also referred to as "initial arrangement state") in which a plurality of microlenses 21 having a reference shape are arranged semi-regularly in a rectangular grid pattern is set for the time being.
  • the shape of the microlens 21 that is, the radius of curvature Rx, Ry, the aperture diameter Dx, Dy, etc.
  • the position of the apex 22 of the microlens 21 are determined. It is changed to a randomly changed state (hereinafter, also referred to as "variable array state”).
  • a method of arranging the microlens 21 will be referred to as a "reference arrangement method”.
  • Initial arrangement state of the microlens 21 based on an irregular rectangular lattice (FIG. 5)
  • the initial arrangement state that serves as the reference for the arrangement of the microlens 21 is set.
  • a plurality of microlenses 21 are somewhat regular (quasi-regular) on the XY plane of the reference plane with reference to a rectangular grid having irregularities. ).
  • the rectangular grid according to the present embodiment may be a rectangular grid or a square grid.
  • the rectangular grid includes a plurality of grid lines 32 extending in the first direction (X direction) and a plurality of grid lines 31 extending in the second direction (Y direction).
  • the first direction (X direction) and the second direction (Y direction) are orthogonal to each other.
  • the grid spacing Wx in the X direction is the spacing between a plurality of grid lines 31 extending in the second direction (Y direction).
  • the grid spacing Wy in the Y direction is the spacing between the plurality of grid lines 32 extending in the first direction (X direction).
  • the grid spacing Wx in the X direction fluctuates randomly and differs from each other, and the grid spacing Wy in the Y direction fluctuates randomly. It is a rectangular grid that is different from each other.
  • the three grid spacings Wx 1 , Wx 2 , and Wx 3 in the X direction are different from each other, and the three grid spacings Wy 1 , Wy 2 , and Wy 3 in the Y direction are also different from each other.
  • the grid spacing Wx and the grid spacing Wy may fluctuate independently and randomly without any correlation with each other.
  • the grid spacings Wx 1 , Wx 2 , Wx 3 , Wy 1 , Wy 2 , and Wy 3 in the X and Y directions may be different from each other.
  • the volatility ⁇ Wx and ⁇ Wy are preferably in the range of ⁇ 10% to ⁇ 50%.
  • the volatility ⁇ Wx and ⁇ Wy are set to less than ⁇ 10%, the fluctuations of the lattice spacing Wx and Wy become insufficient, and it becomes difficult to impart sufficient aperiodicity to the microlens array 20. The homogeneity of diffused light may decrease.
  • the volatility ⁇ Wx and ⁇ Wy are set to more than ⁇ 50%, the fluctuation of the lattice spacing W becomes excessively large, and it may be difficult to continuously arrange a plurality of microlenses 21 on the XY plane without gaps. There is.
  • the grid spacing Wx and Wy are within the range of “ ⁇ 10%” or less based on the reference grid spacing Wx_k and Wy_k (that is, Wx_k and Wy_k). 90% or more and 110% or less), and the values are set to randomly deviate from the reference grid spacings Wx_k and Wy_k.
  • the plurality of lattice spacings Wx 1 , Wx 2 , Wx 3 , ..., Wy 1 , Wy 2 , Wy 3 , ... In the X and Y directions are different from each other. Randomly set the value. Then, using the grid spacing Wx 1 , Wx 2 , Wx 3 , ..., Wy 1 , Wy 2 , Wy 3 , ..., Irregular rectangular grids with different grid spacing Wx, Wy (Fig.) 5) is set.
  • This state is the initial arrangement state that serves as a reference for the arrangement of the microlens 21.
  • the planar shape of each microlens 21 is a rectangular shape corresponding to a rectangular grid, and the outline of the planar shape of the microlens 21 coincides with the grid lines 31 and 32 in the X and Y directions. .. Further, the position of the apex 22 of each microlens 21 coincides with the center point 23 of each rectangular grid surrounded by the grid lines 31 and 32.
  • the aperture diameters Dx and Dy of each microlens 21 in the X direction and the Y direction correspond to the lattice spacings Wx and Wy in the X direction and the Y direction, respectively.
  • the aperture diameters Dx and Dy also fluctuate to different values.
  • each microlens 21 in the initial arrangement state is a shape obtained by cutting out a predetermined reference shape (for example, a reference shape having an aspherical shape) set in advance by a rectangular lattice corresponding to each microlens 21. ing.
  • a predetermined reference shape for example, a reference shape having an aspherical shape
  • the aperture diameters Dx and Dy and the surface shape of the plurality of microlenses 21 are different from each other.
  • the plurality of microlenses 21 by arranging the plurality of microlenses 21 with reference to the irregular rectangular lattice, in the initial arrangement state, the plurality of microlenses so that the aperture diameters Dx, Dy and the surface shape of the microlenses 21 are different from each other. 21 can be arranged.
  • FIG. 6 First variable arrangement state of the microlens 21 in which the radius of curvature Rx and Ry are varied.
  • FIG. 6 shows an example in which the radius of curvature Rx and Ry of the aspherical shape are changed when the surface shape of the microlens 21 is an aspherical shape having anisotropy in the X direction.
  • the radius of curvature R includes the radius of curvature Rx of the cross-sectional shape of the microlens 21 cut in the cross section in the X direction and the radius of curvature Ry of the cross-sectional shape of the microlens 21 cut in the cross section in the Y direction.
  • Rx and Ry have the same value.
  • Rx and Ry can have different values.
  • the method of randomly changing the radii of curvature Rx and Ry of the microlens 21 in the initial arrangement state is as follows, for example.
  • constant reference values Rx_k and Ry_k (hereinafter referred to as reference curvature radii Rx_k and Ry_k) that serve as a reference for fluctuations in the radius of curvature Rx and Ry in the X and Y directions are set.
  • the volatility ⁇ Rx and ⁇ Ry are preferably in the range of ⁇ 10% to ⁇ 50%.
  • the volatility ⁇ Rx and ⁇ Ry are set to less than ⁇ 10%, the fluctuations of the radius of curvature Rx and Ry become insufficient, and it becomes difficult to impart sufficient aperiodicity to the microlens array 20. The homogeneity of diffused light may decrease.
  • the volatility ⁇ Rx and ⁇ Ry are set to more than ⁇ 50%, the fluctuations of the radius of curvature Rx and Ry become excessively large, and it becomes difficult to continuously arrange a plurality of microlenses 21 on the XY plane without gaps. There is a risk of becoming.
  • the radius of curvature Rx and Ry of each microlens 21 in the initial arrangement state are randomly changed (first variation arrangement state).
  • the radius of curvature Rx of the microlenses 21 arranged in the X direction in the X direction has different values from each other.
  • the radius of curvature Ry of the microlenses 21 arranged in the Y direction in the Y direction have different values.
  • the radius of curvature Rx randomly fluctuates with a volatility ⁇ Rx within ⁇ 10% to ⁇ 50% with reference to the reference radius of curvature Rx_k.
  • the radius of curvature Ry randomly fluctuates at a volatility ⁇ Ry within ⁇ 10% to ⁇ 50% with reference to the reference radius of curvature Ry_k.
  • each microlens 21 In the first variable arrangement state, as shown in FIG. 6, the planar shape of each microlens 21 is deviated from the rectangular lattice, and the outline of the planar shape of the microlens 21 is a lattice in the X direction and the Y direction. It may not match the lines 31 and 32. However, the positions of the vertices 22 of each microlens 21 coincide with the center point 23 of each rectangular grid. Further, in the first variable arrangement state, the aperture diameters Dx and Dy of each microlens 21 in the X direction and the Y direction deviate from the lattice spacing Wx and Wy in the X direction and the Y direction.
  • the aperture diameters Dx and Dy and the surface shape of the microlens 21 are further different from each other than in the initial arrangement state.
  • a plurality of microlenses 21 can be arranged.
  • the second variable arrangement state of the microlens 21 in which the lens apex position is changed (FIG. 7).
  • the plane position of the apex 22 of the microlens 21 is randomly eccentric from the center point 23 of the rectangular lattice.
  • the eccentricity means that the plane position of the apex 22 of the microlens 21 is changed so as to deviate from the center point 23 of the rectangular lattice on the XY plane.
  • the center point 23 of the rectangular grid is an intersection of two diagonal lines of the rectangular grid (see FIG. 4).
  • the method of randomly eccentricizing the plane position of the apex 22 of the microlens 21 in the first variable arrangement state is as follows.
  • the eccentricity Ec of the plane position of the apex 22 of the microlens 21 (hereinafter, may be referred to as the lens apex position 22) is set.
  • the eccentricity Ec is the amount of deviation (distance) of the lens apex position 22 from the center point 23 of the rectangular lattice.
  • the eccentricity Ec is represented by the eccentricity Ecx in the X direction and the eccentricity Ecy in the Y direction.
  • the eccentricity Ecx is the amount of deviation of the lens apex position 22 from the center point 23 of the rectangular lattice in the X direction
  • the eccentricity Ecy is the amount of deviation of the lens apex position 22 from the center point 23 of the rectangular lattice in the Y direction. is there.
  • the eccentricities ⁇ Ecx and ⁇ Ecy in the X and Y directions are set.
  • the eccentricity ⁇ Ecx in the X direction is the ratio (percentage) of the eccentricity Ecx to the lattice spacing Wx of the rectangular lattice.
  • the eccentricity ⁇ Ecy in the Y direction is the ratio (percentage) of the eccentricity Ecy to the lattice spacing Wy of the rectangular lattice.
  • the eccentricity ⁇ Ecx and ⁇ Ecy are expressed by the following equations.
  • ⁇ Ecx [%] Ecx / Wx ⁇ 100
  • ⁇ Ecy [%] Ecy / Wy ⁇ 100
  • the lens apex position is eccentric based on the eccentricity ⁇ Ecx and ⁇ Ecy set above. Specifically, the lens apex position 22 of each microlens 21 is randomly eccentric with eccentricity ratios ⁇ Ecx and ⁇ Ecy within ⁇ 10% to ⁇ 50%.
  • the eccentricity ⁇ Ecx and ⁇ Ecy are preferably in the range of ⁇ 10% to ⁇ 50%.
  • the eccentricity ratios ⁇ Ecx and ⁇ Ecy are set to less than ⁇ 10%, the eccentricity amounts Ecx and Ecy at the lens apex position 22 become insufficient, and it becomes difficult to impart sufficient aperiodicity to the microlens array 20. There is a risk that the homogeneity of the diffused light in the X and Y directions due to the array 20 will decrease.
  • the plane position of the apex 22 of each microlens 21 in the first variable arrangement state is randomly changed from the center point 23 of the rectangular lattice (second variable arrangement state).
  • the plane positions of the vertices 22 of each microlens 21 are shifted in random directions on the XY plane by random eccentricities Ecx and Ecy.
  • each microlens 21 corresponds to a rectangular lattice more than in the first variable arrangement state (see FIG. 6). The shape deviates from the rectangular shape. Further, in the second variable arrangement state, the aperture diameters Dx and Dy of each microlens 21 in the X and Y directions are further deviated from the lattice spacings Wx and Wy in the X and Y directions.
  • the surface shape, opening diameters Dx, and Dy of the microlens 21 are further higher than those in the first variable arrangement state.
  • a plurality of microlenses 21 can be arranged so as to be different from each other.
  • the height positions of the vertices 22 of the plurality of microlenses 21 are mutually variable. Specifically, as shown in FIG. 2, the height positions of the apex 22 (the deepest point of the concave lens) of the plurality of microlenses 21 arranged in the X direction are different from each other, and the plurality of microlenses arranged in the Y direction are arranged. The height positions of the apex 22 (the deepest point of the concave lens) of the microlens 21 are also different from each other. As a result, the randomness of the shapes and arrangements of the plurality of microlenses 21 can be further enhanced, and sufficient aperiodicity can be imparted to the microlens array 20.
  • a plurality of microlenses 21 are quasi-regularly based on an irregular rectangular grid having different grid spacings Wx and Wy. (Initial arrangement state: Fig. 5).
  • the microlenses 21 are arranged semi-regularly in the XY plane so that the outer line of the planar shape of each microlens 21 is along the grid lines 31 and 32 of the irregular rectangular lattice.
  • the radius of curvature Rx, Ry, the surface shape, and the lens apex position 22 of the plurality of arranged microlenses 21 are randomly changed (first and second variable arrangement states: FIGS. 6 and 7).
  • the surface shape (three-dimensional shape), aperture shape (planar shape), aperture diameters Dx, Dy, arrangement, and the like of the semi-regularly arranged microlenses 21 can be randomly dispersed. Therefore, it is possible to realize a three-dimensional surface structure of the microlens array 20 with high randomness while realizing a semi-regular arrangement of the microlens 21.
  • the microlens array 20 it is possible to suitably control the phase superposition state of the light emitted from each microlens 21. Therefore, interference of diffused light from each microlens 21 and diffraction due to the periodic structure of the microlens arrangement can be suitably suppressed. Therefore, the unevenness of the intensity distribution of the diffused light can be reduced, and the homogeneity of the light distribution in the X and Y directions orthogonal to each other can be improved. Further, it is possible to control the anisotropy of the light distribution in the X and Y directions and the cutoff property of the intensity distribution of the diffused light.
  • the cutoff property means that the diffused light from the microlens array 20 has a so-called top hat type diffusion characteristic.
  • the top hat type diffusion characteristic is the homogeneity of the energy distribution within the angular component in a certain region with respect to collimated light in the visible light region and telecentric light having a collimating main ray and a constant aperture. Is very high, and refers to an optical function in which the energy can be rapidly reduced when a certain region of this angular component is exceeded.
  • the luminance distribution of the diffused light of the light incident on the microlens array 20 becomes substantially uniform within a predetermined diffusion angle range, and the diffused light is within a predetermined diffusion angle range. A state in which the brightness value of is within the range of, for example, ⁇ 20% with respect to the average value of the peak level is realized.
  • a plurality of microlenses 21 are arranged in a rectangular grid by the above arrangement method, and the radius of curvature Rx, Ry, lens apex position 22 and the like of each microlens 21 are appropriately set. It is controlled or an aspherical shape is introduced into the surface shape of the microlens 21. As a result, the desired diffusion characteristics of the microlens array 20 can be realized, so that the top hat type diffusion characteristics can be more reliably realized.
  • a plurality of microlenses 21 are arranged semi-regularly on the XY plane with reference to an irregular rectangular lattice having different lattice intervals Wx and Wy (initial arrangement state). ), The radius of curvature Rx, Ry, and the lens apex position 22 are changed (first and second variable arrangement states).
  • a plurality of microlenses 21 can be continuously arranged on the surface of the diffuser plate 1 without gaps while ensuring the randomness of the surface shape of each microlens 21.
  • the flat portion can be prevented from existing at the boundary portion of the adjacent microlens 21 as much as possible, the component (0th-order transmitted light component) of the incident light that is transmitted as it is without being scattered on the surface of the diffuser plate is suppressed. It becomes possible. As a result, the homogeneity of the light distribution in the X and Y directions orthogonal to each other and the diffusion performance can be further improved.
  • a plurality of microlenses 21 having anisotropy in a common direction may be arranged in a rectangular grid pattern over the entire microlens array 20.
  • the anisotropy microlens 21 is, for example, a microlens having a planar shape in which the length in one direction (longitudinal direction) is longer than the length in the other direction (short direction) orthogonal to the one direction.
  • a plurality of anisotropic microlenses 21 are arranged on the XY plane of the base material 10 so that the longitudinal directions of the microlenses 21 face the same direction.
  • the diffusion width of light in the longitudinal direction of the microlens 21 is reduced, and the diffusion width of light in the lateral direction is increased.
  • the anisotropic shape of the light diffused by the diffuser plate 1 can be controlled according to the shape of the projection surface.
  • each microlens 21 has an aspherical shape having anisotropy extending in a predetermined direction.
  • aspherical shape for example, a first aspherical shape example (anamorphic shape) and a second aspherical shape example (torus shape) described below can be used.
  • FIG. 8 is an explanatory view showing a planar shape of the anamorphic-shaped microlens 21.
  • FIG. 9 is a perspective view showing the three-dimensional shape of the anamorphic-shaped microlens 21.
  • FIG. 10 is a perspective view showing a curved surface having an anamorphic shape.
  • the microlens 21 shown in FIGS. 8 and 9 is a so-called anamorphic lens, and its surface shape is an aspherical shape including a curved surface of the anamorphic shape.
  • the planar shape of the microlens 21 is an anisotropy elliptical shape.
  • the major axis of the elliptical shape in the Y-axis direction is Dy
  • the minor axis in the X-axis direction is Dx.
  • the three-dimensional shape of the microlens 21 is an aspherical curved surface having predetermined radius of curvature Rx and Ry in each of the major axis direction and the minor axis direction of the elliptical shape.
  • the microlens 21 has an aspherical shape having anisotropy in the Y-axis direction.
  • FIG. 10 is a perspective view showing an anamorphic curved surface (aspherical surface) represented by the following mathematical formula (1).
  • the following formula (1) is an example of a formula representing a curved surface (aspherical surface) having an anamorphic shape.
  • each parameter is as follows.
  • Ry Radius of curvature in the Y direction
  • Kx Conic coefficient in the X direction
  • Ky Conic coefficient in the Y direction
  • a y6 4th and 6th aspherical coefficients in the Y direction
  • the minor axis of the elliptical shape on the XY plane in the X direction is Dx
  • the major axis in the Y direction is Dy.
  • Cut out a curved surface A part of the curved surface shape cut out is set to the curved surface shape (anamorphic shape) of the microlens 21.
  • the elliptical major axis Dy, the minor axis Dx, the radius of curvature Ry in the Y direction (major axis direction), and the radius of curvature Rx in the X direction (minor axis direction) are set to a predetermined fluctuation rate ⁇ for each microlens 21. Randomly fluctuate within the range of to make it vary. Thereby, the surface shapes of a plurality of microlenses 21 having different anamorphic shapes can be set.
  • FIG. 11 is an explanatory view showing a planar shape of the torus-shaped microlens 21.
  • FIG. 12 is a perspective view showing the three-dimensional shape of the torus-shaped microlens 21.
  • FIG. 13 is a perspective view showing a torus-shaped curved surface.
  • the surface shape of the microlens 21 according to the second aspherical shape example is an aspherical shape including a part of the curved surface of the torus shape.
  • a torus is a surface of revolution obtained by rotating a circle. Specifically, as shown in FIG. 13, the small circle (radius: r) is centered on the rotation axis (X-axis) arranged outside the small circle (radius: r) along the circumference of the large circle (radius: R). By rotating the circle, a so-called donut-shaped torus is obtained.
  • the curved surface shape of the surface (torus surface) of this annular body is a torus shape. By cutting out the outer portion of the torus shape, the three-dimensional shape of the torus-shaped microlens 21 as shown in FIG. 12 can be obtained.
  • the planar shape of the torus-shaped microlens 21 is an elliptical shape having anisotropy.
  • the major axis of the elliptical shape in the Y-axis direction is R
  • the minor axis in the X-axis direction is r.
  • These r and R correspond to the aperture diameters Dx and Dy of the microlens 21 in the X and Y directions.
  • the three-dimensional shape of the microlens 21 is an aspherical curved surface having predetermined radius of curvature R and r in each of the major axis direction and the minor axis direction of the elliptical shape.
  • the microlens 21 has an aspherical shape having anisotropy in the Y-axis direction.
  • FIG. 13 is a perspective view showing an aspherical curved surface represented by the following mathematical formula (2).
  • R is the radius of the great circle and r is the radius of the small circle.
  • the curved surface is such that the minor axis of the elliptical shape on the XY plane in the X direction is r and the major axis in the Y direction is R. Cut out. A part of the curved surface shape cut out is set to the curved surface shape (torus shape) of the microlens 21.
  • the radius of curvature Rx) is randomly varied within a predetermined fluctuation rate ⁇ for each microlens 21 to be dispersed. Thereby, the surface shapes of a plurality of microlenses 21 having different torus shapes can be set.
  • the surface shape (aspherical shape having anisotropy) of the microlens 21 according to the present embodiment in addition to the examples of the first and second aspherical shapes, for example, an aspherical surface cut out from an elliptical sphere. Shapes can be used.
  • FIG. 14 is a flowchart showing a method of designing a microlens according to the present embodiment.
  • (S10) Setting of grid parameters As shown in FIG. 14, first, various parameters (grid parameters) relating to a rectangular grid (grid) as a reference for arranging a plurality of microlenses 21 on an XY plane are set (S10). ..
  • the grid parameters include, for example, the following parameters.
  • Wy_k [ ⁇ m] Reference value of grid spacing Wy in the Y direction (grid size in the Y direction)
  • ⁇ Wy [ ⁇ %] Fluctuation rate of grid spacing Wy in the Y direction (allowable fluctuation range of Wy in the Y direction)
  • the setting value of the grid parameter can be set to the following numerical values, for example.
  • Wx_k 120 ⁇ m
  • Wy_k 90 ⁇ m ⁇ Wx: ⁇ 20%
  • ⁇ Wy ⁇ 10%
  • ⁇ Ecx ⁇ 10%
  • ⁇ Ecy ⁇ 10%
  • FIG. 15 is an explanatory diagram showing a rectangular grid generated in this step S12. As shown in FIG. 15, an irregular rectangular grid in which the grid spacing Wx and Wy in the X and Y directions fluctuate randomly is set.
  • the grid spacing Wx in the X direction is the spacing between grid lines 31 adjacent to the X direction.
  • the grid spacing Wy in the Y direction is the spacing between grid lines 32 adjacent to the Y direction.
  • the grid spacing Wx in the X direction is set to a value obtained by randomly varying the reference grid spacing Wx_k [ ⁇ m] at the volatility ⁇ Wx [ ⁇ %].
  • the grid spacing Wy in the Y direction is set to a value obtained by randomly varying the reference grid spacing Wy_k [ ⁇ m] at a volatility ⁇ Wy [ ⁇ %].
  • the grid spacing Wx is 96 ⁇ m to 144 ⁇ m (80% of 120 ⁇ m) centered on 120 ⁇ m (Wx_k). It is set to a random value within the range of 120%).
  • the grid spacing Wy is also set in the same manner. As a result, as shown in FIG. 15, the lattice spacings Wx and Wy of the plurality of rectangular lattices arranged in the X and Y directions are set to different values.
  • FIG. 16 is an explanatory diagram showing a rectangular grid whose grid center is eccentric in this step S14.
  • the grid center before the eccentric processing is arranged at the coordinate position of the intersection of the two diagonal lines of each rectangular grid (the center point 23 of the rectangular grid described above).
  • the center of the grid moves to the X and Y coordinate positions corresponding to the eccentricities Ecx and Ecy randomly calculated using the eccentricity ⁇ Ecx and the eccentricity ⁇ Ecy.
  • the eccentricity Ecx and Ecy are 90% to 110% of the lattice spacing Wx and Wy. Set to a value within the range.
  • the center of the grid is moved in the X and Y directions by a distance corresponding to the eccentricities Ecx and Ecy.
  • the position of the center of the grid after movement corresponds to the plane position (lens apex position 22) of the apex 22 of the microlens 21 described above.
  • the microlenses 21 corresponding to each rectangular grid are arranged based on the rectangular grid generated in S12 and the grid center eccentric in S14. Specifically, first, the basic shape of the surface shape (lens surface) of the microlens 21 is selected (S16). Next, parameters (lens parameters) related to the selected basic shape are set (S18, S20). After that, the shape of the microlens 21 in each rectangular lattice is determined based on the set lens parameters, and the Z coordinate position representing the shape of the microlens 21 is calculated to generate the microlens 21 (S22, S24). ..
  • an anamorphic shape or a torus shape is selected as the basic shape of the microlens 21 (hereinafter referred to as a lens shape) (S16).
  • a lens shape S16
  • the present invention is not limited to this, and other types of aspherical shapes or spherical shapes may be selected as the lens shape.
  • the anamorphic shape lens parameters include, for example, the following parameters.
  • ⁇ Ry [ ⁇ %] Volatility of radius of curvature Ry in the Y direction (allowable fluctuation range of Ry in the Y direction)
  • the set value of the lens parameter of the anamorphic shape can be set to the following numerical values, for example.
  • Rx_k 240 ⁇ m
  • Ry_k 200 ⁇ m
  • Rx ⁇ 10%
  • ⁇ Ry ⁇ 10%
  • the surface shape of the anamorphic microlens 21 is generated based on the lens parameters set in S18 (S22). Specifically, the surface shape of each microlens 21 is determined based on the lens parameters, and each microlens 21 is arranged on each rectangular lattice. That is, the Z coordinate value of each point on the anamorphic lens surface is calculated.
  • FIG. 17 is an explanatory diagram showing a plurality of microlenses 21 generated in this step S22.
  • each microlens 21 is arranged on each rectangular grid so that the lens apex position 22 coincides with the grid center position eccentric in S14. Further, the radius of curvature Rx and Ry of each microlens 21 in the X and Y directions fluctuate randomly. Therefore, a plurality of microlenses 21 having different surface shapes (anamorphic shapes) are arranged so as to overlap each other on the XY plane.
  • the radius of curvature Rx in the X direction is set to a value obtained by randomly varying the reference radius of curvature Rx_k [ ⁇ m] at the volatility ⁇ Rx [ ⁇ %].
  • the radius of curvature Ry in the Y direction is set to a value obtained by randomly varying the reference radius of curvature Ry_k [ ⁇ m] with a volatility ⁇ Ry [ ⁇ %].
  • the radius of curvature Rx is 216 ⁇ m to 264 ⁇ m (90% of 240 ⁇ m) centered on 240 ⁇ m (Rx_k).
  • the radius of curvature Ry is also set in the same manner. As a result, as shown in FIG. 17, the surface shapes (anamorphic shapes) of the plurality of microlenses 21 arranged in the X and Y directions are different from each other.
  • the torus-shaped lens parameters include, for example, the following parameters.
  • the small circle radius r and the great circle radius R are radii of curvature that define the torus shape shown in FIGS. 11 to 13.
  • r_k [ ⁇ m] Reference value of small circle radius (radius of curvature Rx in X direction)
  • R_k [ ⁇ m] Reference value of great circle radius (radius of curvature Ry in Y direction)
  • ⁇ Rx [ ⁇ %] Small circle radius (X direction) Rate of fluctuation of radius of curvature Rx) (allowable fluctuation range of r in the X direction)
  • ⁇ Ry [ ⁇ %] Volatility of great circle radius (radius of curvature Ry in Y direction) (allowable fluctuation range of R in Y direction)
  • the set value of the lens parameter of the torus shape can be set to the following numerical values, for example.
  • Rx_k 240 ⁇ m
  • Ry_k 200 ⁇ m
  • Rx ⁇ 10%
  • ⁇ Ry ⁇ 10%
  • the surface shape of the torus-shaped microlens 21 is generated based on the lens parameters set in S20 (S24). Specifically, the surface shape of each microlens 21 is determined based on the lens parameters, and each microlens 21 is arranged on each rectangular lattice. That is, the Z coordinate value of each point on the torus-shaped lens surface is calculated. Since the torus-shaped lens generation process in step S24 is the same as the anamorphic-shaped lens generation process in S22, detailed description thereof will be omitted.
  • a lens pattern representing the shape and arrangement of the microlens 21 generated in S20 or S24 is output (S26). For example, a file of XYZ coordinate values representing the lens pattern and an image file expressing the Z coordinate values of the lens pattern in shade gradation are output.
  • FIG. 18 is an image showing a lens pattern designed by the design method according to the present embodiment. As shown in FIG. 18, a plurality of microlenses 21 are arranged in an irregular rectangular lattice pattern on the XY plane. The lens apex position 22 of each microlens 21 is randomly eccentric, and the radii of curvature Rx and Ry of each microlens 21 also randomly fluctuate.
  • the plurality of microlenses 21 have different aspherical shapes (for example, anamorphic shape or torus shape). Further, the plurality of microlenses 21 have different planar shapes from each other.
  • the planar shape of each microlens 21 generally has a substantially rectangular shape along the rectangular lattice, but has a shape that varies from one to another.
  • the four side portions are generally composed of straight lines, but the four corner portions are composed of curved lines.
  • the plurality of microlenses 21 are arranged so as to overlap each other without a gap, and there is no flat portion at the boundary portion between the microlenses 21 adjacent to each other.
  • a plurality of microlenses 21 are arranged semi-regularly with reference to the above-mentioned irregular rectangular lattice, and each of the microlenses 21 is arranged.
  • the variable elements (lattice spacing Wx, Wy, radius of curvature Rx, Ry, lens apex position 22, etc.) are randomly changed.
  • the microlens array 20 having such a configuration has a variety of highly homogeneous light distribution controllability, with small macro light amount fluctuations depending on the lens surface structure and light amount changes due to diffracted light.
  • FIG. 19 is a flowchart showing a manufacturing method of the diffusion plate 1 according to the present embodiment.
  • the base material (the base material of the master master or the base material 10 of the diffusion plate 1) is washed (step S101).
  • the base material may be, for example, a roll-shaped base material such as a glass roll, or a flat plate-shaped base material such as a glass wafer or a silicon wafer.
  • a resist is formed on the surface of the base material after cleaning (step S103).
  • a resist layer can be formed by a resist using a metal oxide.
  • a resist layer can be formed on a roll-shaped substrate by spray-coating or dipping the resist.
  • a resist layer can be formed on a flat substrate by applying various coating treatments to the resist.
  • a positive type photoreactive resist may be used, or a negative type photoreactive resist may be used.
  • a coupling agent may be used in order to improve the adhesion between the base material and the resist.
  • the resist layer is exposed using a pattern corresponding to the shape of the microlens array 20 (step S105).
  • Such an exposure process is a known exposure method such as exposure using a gray scale mask, multiple exposure by superimposing a plurality of gray scale masks, or laser exposure using a picosecond pulse laser, a femtosecond pulse laser, or the like. May be applied as appropriate.
  • the exposed resist layer is developed (S107).
  • a developing process By such a developing process, a pattern is formed on the resist layer.
  • the developing process can be executed by using an appropriate developer depending on the material of the resist layer.
  • the resist layer when the resist layer is formed of a resist using a metal oxide, the resist layer can be alkaline-developed by using an inorganic or organic alkaline solution.
  • a master master with the shape of the microlens array 20 formed on the surface is completed (S111).
  • a glass master can be manufactured by glass-etching a glass base material using a resist layer on which a pattern is formed as a mask.
  • a metal master can be manufactured by performing Ni sputtering or nickel plating (NED treatment) on the resist layer on which the pattern is formed to form a nickel layer on which the pattern is transferred, and then peeling off the base material. ..
  • a metal master master is manufactured by forming a nickel layer to which a resist pattern is transferred by Ni sputtering having a film thickness of about 50 nm or nickel plating having a film thickness of 100 ⁇ m to 200 ⁇ m (for example, a Ni bath with sulfamic acid). can do.
  • the master master for example, glass master master, metal master master
  • S111 an inverted shape of the microlens array 20 is formed on the surface.
  • the soft mold is created (S113).
  • the pattern of the microlens array 20 is transferred to a glass substrate, a film substrate, or the like (S115), and a protective film, an antireflection film, or the like is further formed as necessary. (S117), the diffuser plate 1 according to the present embodiment is manufactured.
  • a soft mold is manufactured (S113) using the master master (S111) and then the diffusion plate 1 is manufactured (S115) by transfer using the soft mold
  • a master master for example, an inorganic glass master
  • the diffusion plate 1 may be manufactured by imprinting using the master master.
  • an acrylic photo-curing resin is applied to a base material made of PET (PolyEthylene Terephthalate) or PC (PolyCarbonate), the pattern of the master master is transferred to the applied acrylic photo-curing resin, and the acrylic photo-curing resin is UV. By curing, the diffuser plate 1 can be manufactured.
  • the diffusion plate 1 when the diffusion plate 1 is manufactured by directly processing the glass base material itself, the base material 10 is dried using a known compound such as CF 4 following the development treatment in step S107.
  • the diffusion plate 1 according to the present embodiment is manufactured by performing an etching process (S119) and then forming a protective film, an antireflection film, or the like as needed (S121).
  • the manufacturing method shown in FIG. 19 is merely an example, and the manufacturing method of the diffusion plate is not limited to the above example.
  • the diffuser plate 1 as described above can be appropriately mounted on a device that needs to diffuse light in order to realize its function.
  • a device that needs to diffuse light in order to realize its function.
  • Examples of such a device include display devices such as various displays (for example, LEDs and organic EL displays), projection devices such as projectors, and various lighting devices.
  • the diffuser plate 1 can be applied to a backlight of a liquid crystal display device, a diffuser plate integrated lens, and the like, and can also be applied to an application of optical shaping.
  • the diffuser plate 1 can also be applied to a transmission screen, a Fresnel lens, a reflection screen, and the like of a projection device.
  • the diffuser plate 1 can be applied to various lighting devices used for spot lighting, base lighting and the like, various special lightings, various screens such as an intermediate screen and a final screen, and the like.
  • the diffuser plate 1 can also be applied to applications such as diffusion control of light source light in an optical device, such as light distribution control of an LED light source device, light distribution control of a laser light source device, and incident light distribution to various light valve systems. It can also be applied to control and the like.
  • the device to which the diffusion plate 1 is applied is not limited to the above application example, and can be applied to any known device as long as it is a device that utilizes light diffusion.
  • the diffuser plates according to Examples and Comparative Examples were manufactured by the manufacturing method described below.
  • a photoreactive resist was applied to one surface (main surface) of the glass base material with a resist thickness of 2 ⁇ m to 15 ⁇ m.
  • a positive photoreactive resist such as PMER-LA900 (manufactured by Tokyo Ohka Kogyo Co., Ltd.) or AZ4620 (registered trademark) (manufactured by AZ Electronic Materials Co., Ltd.) was used.
  • a pattern was drawn on the resist on the glass substrate with a laser drawing apparatus using a laser having a wavelength of 405 nm, and the resist layer was exposed.
  • the resist layer may be exposed by performing mask exposure on the resist on the glass substrate with a stepper exposure apparatus using g-rays.
  • a pattern was formed on the resist by developing the resist layer.
  • a tetramethylammonium hydroxide (TMAH) solution such as NMD-W (manufactured by Tokyo Ohka Kogyo Co., Ltd.) or PMER P7G (manufactured by Tokyo Ohka Kogyo Co., Ltd.) was used.
  • TMAH tetramethylammonium hydroxide
  • a diffuser plate was manufactured by etching the glass substrate with the resist on which the pattern was formed. Specifically, a diffusion plate was manufactured by forming a resist pattern on a glass substrate by glass etching using Ar gas or CF 4 gas.
  • Table 1 shows the design conditions of the surface structure of the microlens array and the evaluation result of the homogeneity of the light distribution by the diffuser plate with respect to the diffuser plates according to the examples and comparative examples manufactured as described above.
  • the microlens array was designed by the design method shown in FIGS. 14 to 18 described above.
  • various parameters such as grid parameters (Wx_k, Wy_k, ⁇ Wx, ⁇ Wy, ⁇ Ecx, ⁇ Ecy) and lens parameters (Rx_k, Ry_k, ⁇ Rx, ⁇ Ry) shown in Table 1 are appropriately changed to surface different microlenses.
  • a shape pattern was generated.
  • a lens pattern representing the shape and arrangement of the microlenses according to each Example and Comparative Example was output. Using this lens pattern, the diffuser plates according to each Example and Comparative Example were manufactured by the above manufacturing method.
  • the radius of curvature Rx and the radius of curvature Ry were set to fixed values or randomly fluctuating values for each Example and Comparative Example.
  • the surface shape of the microlens was a spherical shape in Examples 1 to 4, 8 and 9 and Comparative Examples 1 to 3, and an aspherical shape (for example, an anamorphic shape) in Examples 5 to 7.
  • the planar shape of the microlens array was square in Examples 1 to 7 and Comparative Examples 1 to 3, and rectangular (long in the X direction) in Examples 8 and 9 and Comparative Example 4.
  • the surface shape of the microlens array of the diffuser according to Examples 1 to 9 and Comparative Examples 1 to 4 manufactured as described above was observed with a laser microscope. Further, the light distribution pattern of each diffuser is simulated by Virtual-Lab (manufactured by LightTrans), and the light distribution characteristics of each diffuser are measured by the light distribution characteristic measuring instrument Mini-Diff (manufactured by Light Tech). Was measured. Further, in order to measure the light distribution characteristics of the diffuser plate, the intensity distribution of the diffused light was measured from the captured image of the laser light intensity (farfield pattern measurement described later).
  • Simulation results and actual measurement results such as the surface shape pattern of the microlens array of the diffuser plate according to Examples 1 to 9 and Comparative Examples 1 to 4, the light distribution characteristics of the diffused light, the brightness distribution, etc. are shown in FIGS. 20 to 33, respectively. Shown.
  • (a) is an image (BMP) showing a pattern of the surface shape of the microlens array or a confocal laser scanning microscope image (magnification 50 times).
  • B is an image showing the simulation result of light distribution by electromagnetic field analysis.
  • C is a graph (horizontal axis: coordinate position, vertical axis: brightness) showing a simulation result of the brightness distribution of diffused light.
  • (e) is a graph showing the actual measurement result of measuring the far field pattern (FFP) of the diffused light of the laser light source using the actually manufactured diffuser plate (horizontal).
  • Axis Diffuse angle
  • Vertical axis Brightness
  • (F) indicates the diffusion angle (full width at half maximum (FWHM)) in the X and Y directions in the FFP of the (e).
  • (G) is an FFP image showing the actual measurement result of (e).
  • (e) is a graph showing the simulation results of the light distribution characteristics of the diffused light in the X and Y directions (horizontal axis: diffusion angle, vertical axis: vertical axis: Luminance) and (f) indicate the diffusion angles (half-value full width (FWHM)) in the X and Y directions in the luminance distribution of (c) above.
  • the light distribution characteristics (light distribution homogeneity, etc.) of the diffuser plates according to Examples 1 to 9 and Comparative Examples 1 to 3 as described above are evaluated in three stages (evaluation A, B, C) according to the following evaluation criteria. Evaluated in.
  • the evaluation results are shown in Table 1.
  • Evaluation A The homogeneity of the diffused light in the X and Y directions was sufficiently high, and uneven brightness distribution along the rectangular grid was not observed.
  • the brightness distribution of the diffused light is substantially uniform in a predetermined diffusion angle range, and the brightness value of the diffused light is within ⁇ 20% of the average value of the peak levels within the predetermined diffusion angle range. It was.
  • Evaluation B The homogeneity of the diffused light in the X and Y directions was high, and there was some unevenness in the luminance distribution along the rectangular grid, but no large unevenness was observed.
  • the brightness distribution of the diffused light is substantially uniform in a predetermined diffusion angle range, and the brightness value of the diffused light is within ⁇ 40% of the average value of the peak levels within the predetermined diffusion angle range. It was.
  • Evaluation C The homogeneity of the diffused light in the X and Y directions was insufficient, and a large unevenness of the luminance distribution was observed along the rectangular grid.
  • the brightness distribution of the diffused light varied within a predetermined diffusion angle range, and the brightness value of the diffused light did not fall within the range of ⁇ 40% centered on the average value of the peak level within the predetermined diffusion angle range.
  • the homogeneity of the luminance distribution can be improved to some extent by eccentricizing the lens apex position as in Comparative Example 2 or randomly varying the curvature radii Rx and Ry as in Comparative Example 3. it can.
  • the lattice spacings Wx and Wy are constant as in Comparative Examples 1 to 4, the brightness unevenness due to diffraction due to the periodicity of the lattice spacing is homogeneous due to fluctuations in the lens apex position and the radius of curvature Rx and Ry. It is considered that the homogeneity of the light distribution was hindered because the effect of improving the light distribution was exceeded.
  • the microlenses are arranged on the XY plane with reference to the rectangular grid.
  • the rectangular lattices of Examples 1 to 9 are not regular rectangular lattices as in the comparative example, but quasi-regular rectangular lattices having irregularity of lattice intervals Wx and Wy. That is, as shown in FIG. 15, the lattice spacings Wx and Wy of the rectangular lattices of Examples 1 to 9 randomly fluctuate so as to have different values from each other, and the volatility ⁇ Wx and ⁇ Wy are ⁇ 10. % Or more.
  • the aperture diameters Dx, Dy and the planar shape of the microlenses are randomly scattered, and the position of the boundary line between adjacent microlenses is also located. It can be shifted randomly.
  • the outer line of the planar shape of the microlens (the boundary line between the microlenses) is a combination of a curve having an arbitrary radius of curvature and a straight line. It will be composed. As a result, the regularity of arrangement at the boundary between the microlenses is further broken, and the diffraction component can be further reduced. Therefore, it is possible to suppress the diffusion of diffused light between the plurality of microlenses and improve the homogeneity of the diffused light distribution of the entire microlens array.
  • Example 1 Comparison between Example 1 and Examples 2 to 9 (effect of fluctuation of radius of curvature and eccentricity of lens apex) As shown in Table 1, in Example 1, only the lattice spacing Wx and Wy are changed. On the other hand, in Examples 2 to 9, in addition to the lattice spacing Wx and Wy, the radius of curvature Rx and Ry are changed and the lens apex position is eccentric.
  • Examples 2 to 9 were able to suppress unevenness of the luminance distribution more effectively than Example 1 (Evaluation B), and were able to improve the homogeneity of the light distribution of diffused light. From this, it can be seen that from the viewpoint of improving the homogeneity of the light distribution, it is effective to change the radius of curvature Rx and Ry and to eccentric the lens apex position in addition to the lattice spacing Wx and Wy.
  • Examples 2, 3 and 5 the radius of curvature Rx and Ry are changed or the lens apex position is eccentric.
  • the radius of curvature Rx and Ry are varied, and the lens apex position is also eccentric.
  • FIGS. 24 to 29, 32, and 33 As a result, as shown in (b) electromagnetic field analysis image and (c) luminance distribution graph of FIGS. 24 to 29, 32, and 33, in Examples 4, 6 to 9, unevenness of the luminance distribution is further suppressed. It was possible to further improve the homogeneity of the diffused light distribution.
  • Examples 1 to 4 and Examples 5 to 7 Effect of aspherical lens shape
  • a spherical lens was used in Examples 1 to 4 as the basic shape of the microlens.
  • aspherical lenses for example, anamorphic-shaped lenses shown in FIGS. 8 to 10.
  • non-spherical lenses of Examples 5-7 by correcting the aspherical coefficients A 4 of 4 order term of the right side of equation (1) which defines the curved surface of the anamorphic shape described above, defining the lens shape.
  • the aspherical lenses of Examples 5 to 7 are more than the spherical lenses of Examples 1 to 4.
  • the unevenness of the brightness distribution could be suppressed, and a finer light distribution homogeneity could be realized. From this, it can be seen that it is more effective to use an aspherical lens than a spherical lens from the viewpoint of improving the homogeneity of the light distribution.
  • an aspherical lens having anisotropy is used, the anisotropy of the diffused light projected from the diffuser plate can be controlled. Therefore, it is possible to control the light distribution angle to have anisotropy between the X direction and the Y direction while achieving high homogeneity of the diffused light.
  • the surface shape of the microlens of Example 7 satisfies the following relational expressions (A) and (B) in terms of the ratio of the reference radius of curvature Rx_k, Ry_k [ ⁇ m] and the reference lattice spacing Wx_k, Wy_k [ ⁇ m]. It has an aspherical shape.
  • the surface shape of the microlens according to the seventh embodiment is an aspherical shape having the above-mentioned anisotropy, and the lattice spacing Wx, Wy, radius of curvature Rx, and Ry are changed under the conditions shown in Table 1, and the lens.
  • the apex positions are eccentric, and the reference radius of curvature Rx_k, Ry_k [ ⁇ m] and the reference lattice spacing Wx_k, Wy_k [ ⁇ m] are adjusted so as to satisfy the above relational expressions (A) and (B).
  • the diffusion angle (full width at half maximum (FWHM)) of the diffused light emitted from the diffuser plate is within the range of 20 ° or less. This makes it possible to more reliably realize the so-called top hat type diffusion characteristics.
  • the diffusion characteristic of Example 7 realizes the top hat type diffusion characteristic. That is, the brightness distribution of the diffused light of the light incident on the microlens array becomes substantially uniform within a predetermined diffusion angle range (a range of 20 ° or less in the full width at half maximum. In the example of FIG. 10, ⁇ 5 to + 5 °). Within the diffusion angle range, a state in which the brightness value of the diffused light is within ⁇ 20% of the average value of the peak level is realized.
  • Microlens array 21 Microlens 22 Microlens apex 23 Center point of rectangular lattice Wx, Wy lattice spacing Rx, Ry radius of curvature Ecx, Ecy Eccentricity Wx_k, Wy_k Reference lattice spacing Rx_k, Ry_k Reference radius of curvature ⁇ Wx, ⁇ Wy Fluctuation rate ⁇ Rx, ⁇ Ry Fluctuation rate ⁇ Ecx, ⁇ Ecy Eccentricity R Great circle radius r Small circle radius

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

[Problem] To suppress unevenness in luminance distribution in two directions of microlenses arranged in a rectangular grid array and to improve homogeneity in light distribution. [Solution] Provided is a microlens array-type diffusion plate which is provided with a substrate and a microlens array comprising a plurality of microlenses that are arrayed in conformity to a rectangular grid on an X-Y plane of at least one surface of the substrate, wherein: X-direction grid intervals Wx of the microlenses arrayed in the X-direction of the rectangular grid are mutually different from each other; Y-direction grid intervals Wy of the microlenses arrayed in the Y-direction of the rectangular grid are mutually different from each other; and the respective microlenses have surface shapes that are different from each other.

Description

拡散板、表示装置、投影装置及び照明装置Diffusing plate, display device, projection device and lighting device
 本発明は、拡散板、表示装置、投影装置及び照明装置に関する。 The present invention relates to a diffuser, a display device, a projection device and a lighting device.
 光の拡散特性を変化させるために、入射光を所望の方向に拡散させる拡散板が用いられている。拡散板は、例えば、ディスプレイ等の表示装置、プロジェクタ等の投影装置、又は各種の照明装置等といった様々な装置に広く利用される。拡散板の表面形状に起因する光の屈折を利用して、入射光を所望の拡散角で拡散させるタイプの拡散板がある。当該タイプの拡散板として、数十μm程度の大きさのマイクロレンズが複数配置されたマイクロレンズアレイ型の拡散板が知られている。 In order to change the diffusion characteristics of light, a diffuser plate that diffuses incident light in a desired direction is used. The diffuser plate is widely used in various devices such as a display device such as a display, a projection device such as a projector, and various lighting devices. There is a type of diffusing plate that diffuses incident light at a desired diffusion angle by utilizing the refraction of light due to the surface shape of the diffusing plate. As a diffuser of this type, a microlens array type diffuser in which a plurality of microlenses having a size of about several tens of μm are arranged is known.
 かかるマイクロレンズアレイ型の拡散板では、各マイクロレンズからの光の波面が干渉した結果、マイクロレンズ配列の周期構造による回折波が生じ、拡散光の強度分布にむらが生じるという問題がある。このため、マイクロレンズの配置や、レンズ面の形状、開口の形状をばらつかせることにより、干渉や回折による拡散光の強度分布のむらを低減する技術が提案されている。 In such a microlens array type diffuser plate, there is a problem that as a result of interference of the wave planes of light from each microlens, diffracted waves due to the periodic structure of the microlens array are generated, and the intensity distribution of diffused light is uneven. Therefore, a technique has been proposed for reducing unevenness in the intensity distribution of diffused light due to interference or diffraction by varying the arrangement of microlenses, the shape of the lens surface, and the shape of the aperture.
 例えば、特許文献1には、主面上に複数のマイクロレンズが矩形格子状に規則的に配置された拡散板において、断面形状が互いに相違し、かつ、対称軸を有さない複数のマイクロレンズを用いることが記載されている。また、特許文献2には、矩形格子状に配列された複数のマイクロレンズのレンズ頂点位置を、基準格子の格子点からずらして配置することが記載されている。 For example, in Patent Document 1, in a diffusion plate in which a plurality of microlenses are regularly arranged in a rectangular lattice pattern on a main surface, a plurality of microlenses having different cross-sectional shapes and having no axis of symmetry. Is described to be used. Further, Patent Document 2 describes that the lens apex positions of a plurality of microlenses arranged in a rectangular grid pattern are arranged so as to be offset from the grid points of the reference grid.
国際公開第2016/051785号International Publication No. 2016/051785 国際公開第2015/182619号International Publication No. 2015/182919
 しかしながら、上記特許文献1に記載のように、対象軸がなく、かつ、互いに異なる断面形状を有する複数のマイクロレンズが矩形格子状に規則的に配列されたアレイ構造では、互いに隣接するマイクロレンズ間の光の位相変化のみにより、拡散光の強度分布のむらを低減することになる。このため、矩形格子の相互に直交する2つの方向に拡散光を均質に配光する効果が限定的であった。また、特許文献2に記載のように、矩形格子状に規則的に配列されたアレイ構造において、各マイクロレンズの頂点位置をずらすことのみによっては、矩形格子の2つの方向に均質性の高い配光制御を実現することはできなかった。 However, as described in Patent Document 1, in an array structure in which a plurality of microlenses having no target axis and having different cross-sectional shapes are regularly arranged in a rectangular lattice pattern, between microlenses adjacent to each other. The unevenness of the intensity distribution of the diffused light is reduced only by the phase change of the light. Therefore, the effect of uniformly distributing the diffused light in the two directions orthogonal to each other of the rectangular lattice is limited. Further, as described in Patent Document 2, in an array structure regularly arranged in a rectangular lattice shape, a arrangement having high homogeneity in two directions of the rectangular lattice can be obtained only by shifting the apex positions of each microlens. Optical control could not be realized.
 そこで、本発明は、上記事情に鑑みてなされたものであり、本発明の目的とするところは、矩形格子状に配列されるマイクロレンズの2つの方向において、輝度分布のむらを抑制し、配光の均質性を向上させることにある。 Therefore, the present invention has been made in view of the above circumstances, and an object of the present invention is to suppress unevenness of luminance distribution in two directions of microlenses arranged in a rectangular lattice pattern and to distribute light. The purpose is to improve the homogeneity of the lens.
 上記課題を解決するために、本発明のある観点によれば、
 マイクロレンズアレイ型の拡散板であって、
 基材と、
 前記基材の少なくとも一方の表面におけるXY平面上に矩形格子を基準として配列された複数のマイクロレンズから構成されるマイクロレンズアレイと、
を備え、
 前記矩形格子のX方向に配列された前記マイクロレンズの前記X方向の格子間隔Wxは、相互に異なり、
 前記矩形格子のY方向に配列された前記マイクロレンズの前記Y方向の格子間隔Wyは、相互に異なり、
 前記複数のマイクロレンズの表面形状は、相互に異なる、拡散板が提供される。
In order to solve the above problems, according to a certain viewpoint of the present invention,
It is a microlens array type diffuser
With the base material
A microlens array composed of a plurality of microlenses arranged on an XY plane on at least one surface of the base material with reference to a rectangular grid, and a microlens array.
With
The lattice spacing Wx in the X direction of the microlenses arranged in the X direction of the rectangular lattice is different from each other.
The lattice spacing Wy in the Y direction of the microlenses arranged in the Y direction of the rectangular lattice is different from each other.
Diffusing plates are provided in which the surface shapes of the plurality of microlenses are different from each other.
 前記X方向の格子間隔Wxは、基準格子間隔Wx_kを基準として、±10%~±50%以内の変動率δWxでランダムに変動しており、
 前記Y方向の格子間隔Wyは、基準格子間隔Wy_kを基準として、±10%~±50%以内の変動率δWyでランダムに変動しているようにしてもよい。
The grid spacing Wx in the X direction randomly fluctuates at a volatility δWx within ± 10% to ± 50% with reference to the reference grid spacing Wx_k.
The grid spacing Wy in the Y direction may be randomly changed at a volatility δWy within ± 10% to ± 50% with reference to the reference grid spacing Wy_k.
 前記X方向に配列された前記マイクロレンズの前記X方向の曲率半径Rxは、相互に変動しており、
 前記Y方向に配列された前記マイクロレンズの前記Y方向の曲率半径Ryは、相互に変動しているようにしてもよい。
The radius of curvature Rx of the microlenses arranged in the X direction in the X direction varies from each other.
The radius of curvature Ry of the microlenses arranged in the Y direction in the Y direction may be made to fluctuate with each other.
 前記X方向の曲率半径Rxは、基準曲率半径Rx_kを基準として、±10%~±50%以内の変動率δRxでランダムに変動しており、
 前記Y方向の曲率半径Ryは、基準曲率半径Ry_kを基準として、±10%~±50%以内の変動率δRyでランダムに変動しているようにしてもよい。
The radius of curvature Rx in the X direction randomly fluctuates at a volatility δRx within ± 10% to ± 50% with reference to the reference radius of curvature Rx_k.
The radius of curvature Ry in the Y direction may be randomly changed at a volatility δRy within ± 10% to ± 50% with reference to the reference radius of curvature Ry_k.
 前記X方向の格子間隔Wxは、基準格子間隔Wx_kを基準として、±10%~±50%以内の変動率δWxでランダムに変動しており、
 前記Y方向の格子間隔Wyは、基準格子間隔Wy_kを基準として、±10%~±50%以内の変動率δWyでランダムに変動しており、
 前記基準格子間隔Wx_k、Wy_k及び前記基準曲率半径Rx_k、Ry_kは以下の関係式(A)及び(B)を満たし、
 前記拡散板による拡散角(半値全幅)が20°以下であるようにしてもよい。
 Rx_k/Wx_k≧1.85 ・・・(A)
 Ry_k/Wy_k≧1.85 ・・・(B)
The grid spacing Wx in the X direction randomly fluctuates at a volatility δWx within ± 10% to ± 50% with reference to the reference grid spacing Wx_k.
The grid spacing Wy in the Y direction randomly fluctuates at a volatility δWy within ± 10% to ± 50% with reference to the reference grid spacing Wy_k.
The reference grid spacing Wx_k, Wy_k and the reference curvature radii Rx_k, Ry_k satisfy the following relational expressions (A) and (B).
The diffusion angle (full width at half maximum) by the diffusion plate may be 20 ° or less.
Rx_k / Wx_k ≧ 1.85 ・ ・ ・ (A)
Ry_k / Wy_k ≧ 1.85 ・ ・ ・ (B)
 前記X方向及び前記Y方向に配列された前記マイクロレンズの頂点の平面位置は、前記矩形格子の中心点から偏心しているようにしてもよい。 The plane positions of the vertices of the microlenses arranged in the X direction and the Y direction may be eccentric from the center point of the rectangular lattice.
 前記矩形格子の中心点から、前記偏心されたマイクロレンズの頂点の平面位置までの前記X方向、前記Y方向の距離をそれぞれ偏心量Ecx、偏心量Ecyとし、前記矩形格子の格子間隔Wx、Wyに対する前記偏心量Ecx、Ecyの割合をそれぞれ偏心率δEcx、偏心率δEcyとしたとき、
 前記マイクロレンズの頂点の平面位置は、±10%~±50%以内の偏心率δEcx、δEcyでランダムに偏心しているようにしてもよい。
The distances in the X and Y directions from the center point of the rectangular lattice to the plane position of the apex of the eccentric microlens are defined as the eccentric amount Ecx and the eccentric amount Ecy, respectively, and the lattice intervals Wx and Wy of the rectangular lattice. When the ratios of the eccentricity Ecx and Ecy to the eccentricity are the eccentricity δEcx and the eccentricity δEcy, respectively.
The plane position of the apex of the microlens may be randomly eccentric with eccentricity ratios δEcx and δEcy within ± 10% to ± 50%.
 前記X方向及び前記Y方向に配列された前記複数のマイクロレンズの頂点の高さ位置は、相互に異なるようにしてもよい。 The height positions of the vertices of the plurality of microlenses arranged in the X direction and the Y direction may be different from each other.
 前記X方向及び前記Y方向に配列された前記マイクロレンズは、相互に隙間なく連続的に配置されているようにしてもよい。 The microlenses arranged in the X direction and the Y direction may be arranged continuously without any gaps between them.
 相互に隣接する前記マイクロレンズの境界線は、直線及び曲線を含むようにしてもよい。 The boundary lines of the microlenses adjacent to each other may include straight lines and curved lines.
 前記マイクロレンズアレイは、前記マイクロレンズの基本配置パターンである複数の単位セルからなり、
 前記複数の単位セル間の境界部分における前記マイクロレンズの連続性を保ちながら、前記複数の単位セルを隙間なく配列することにより、前記マイクロレンズアレイが構成されるようにしてもよい。
The microlens array is composed of a plurality of unit cells, which is a basic arrangement pattern of the microlens.
The microlens array may be configured by arranging the plurality of unit cells without gaps while maintaining the continuity of the microlenses at the boundary portion between the plurality of unit cells.
 前記マイクロレンズの表面形状は、球面形状、あるいは、前記X方向又は前記Y方向の異方性を有する非球面形状であるようにしてもよい。 The surface shape of the microlens may be a spherical shape or an aspherical shape having anisotropy in the X direction or the Y direction.
 上記課題を解決するために、本発明の別の観点によれば、上記の拡散板を備える、表示装置が提供される。 In order to solve the above problems, according to another aspect of the present invention, a display device including the above diffusion plate is provided.
 上記課題を解決するために、本発明の別の観点によれば、上記の拡散板を備える、投影装置が提供される。 In order to solve the above problems, according to another aspect of the present invention, a projection device including the above diffusion plate is provided.
 上記課題を解決するために、本発明の別の観点によれば、上記の拡散板を備える、照明装置が提供される。 In order to solve the above problems, according to another aspect of the present invention, a lighting device including the above diffusion plate is provided.
 以上説明したように本発明によれば、矩形格子状に配列されるマイクロレンズの2つの方向において、輝度分布のむらを抑制し、配光の均質性を向上させることができる。 As described above, according to the present invention, it is possible to suppress unevenness of the luminance distribution and improve the homogeneity of the light distribution in the two directions of the microlenses arranged in a rectangular grid pattern.
本発明の一実施形態に係る拡散板を模式的に示した説明図である。It is explanatory drawing which shows typically the diffusion plate which concerns on one Embodiment of this invention. 同実施形態に係る拡散板の構成を模式的に示す拡大平面図及び拡大断面図である。It is an enlarged plan view and the enlarged sectional view schematically showing the structure of the diffusion plate which concerns on this embodiment. 同実施形態に係るマイクロレンズの境界近傍を模式的示す拡大断面図である。It is an enlarged cross-sectional view which shows typically the vicinity of the boundary of the microlens which concerns on this embodiment. 同実施形態に係るマイクロレンズの平面形状(外形)を模式的に示す平面図である。It is a top view which shows typically the plane shape (outer shape) of the microlens which concerns on this embodiment. 同実施形態に係る不規則な矩形格子状のマイクロレンズの配置を模式的に示す平面図である。It is a top view which shows typically the arrangement of the irregular rectangular grid-like microlenses which concerns on this embodiment. 図5の状態からマイクロレンズの表面形状を変動させた例を示す説明図である。It is explanatory drawing which shows the example which changed the surface shape of a microlens from the state of FIG. 図6の状態からマイクロレンズの頂点の位置を偏心させた例を示す説明図である。It is explanatory drawing which shows the example which eccentric position of the apex of a microlens is eccentric from the state of FIG. 同実施形態に係るアナモルフィック形状のマイクロレンズの平面形状を示す説明図である。It is explanatory drawing which shows the planar shape of the anamorphic shape microlens which concerns on this embodiment. 同実施形態に係るアナモルフィック形状のマイクロレンズの立体形状を示す斜視図である。It is a perspective view which shows the three-dimensional shape of the anamorphic shape microlens which concerns on the same embodiment. 同実施形態に係るアナモルフィック形状の曲面を示す斜視図である。It is a perspective view which shows the curved surface of the anamorphic shape which concerns on this embodiment. 同実施形態に係るトーラス形状のマイクロレンズの平面形状を示す説明図である。It is explanatory drawing which shows the planar shape of the torus-shaped microlens which concerns on this embodiment. 同実施形態に係るトーラス形状のマイクロレンズの立体形状を示す斜視図である。It is a perspective view which shows the three-dimensional shape of the torus-shaped microlens which concerns on this embodiment. 同実施形態に係るトーラス形状の曲面を示す斜視図である。It is a perspective view which shows the curved surface of the torus shape which concerns on this embodiment. 同実施形態に係るマイクロレンズの設計方法を示すフローチャートである。It is a flowchart which shows the design method of the microlens which concerns on this embodiment. 同実施形態に係るグリッド生成ステップにおいて生成された矩形格子を示す説明図である。It is explanatory drawing which shows the rectangular grid generated in the grid generation step which concerns on the same embodiment. 同実施形態に係るグリッド偏心ステップにおいて生成された矩形格子を示す説明図である。It is explanatory drawing which shows the rectangular grid generated in the grid eccentricity step which concerns on the same embodiment. 同実施形態に係るレンズ生成ステップにおいて生成された複数のマイクロレンズを示す説明図である。It is explanatory drawing which shows the plurality of microlenses generated in the lens generation step which concerns on this embodiment. 同実施形態に係る設計方法で設計されたレンズパターンを表す画像である。It is an image showing a lens pattern designed by the design method which concerns on the same embodiment. 同実施形態に係る拡散板の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the diffusion plate which concerns on this embodiment. 比較例1に係る拡散板に関する説明図である。It is explanatory drawing about the diffusion plate which concerns on Comparative Example 1. FIG. 比較例2に係る拡散板に関する説明図である。It is explanatory drawing about the diffusion plate which concerns on Comparative Example 2. 比較例3に係る拡散板に関する説明図である。It is explanatory drawing about the diffusion plate which concerns on Comparative Example 3. 実施例1に係る拡散板に関する説明図である。It is explanatory drawing about the diffusion plate which concerns on Example 1. FIG. 実施例2に係る拡散板に関する説明図である。It is explanatory drawing about the diffusion plate which concerns on Example 2. FIG. 実施例3に係る拡散板に関する説明図である。It is explanatory drawing about the diffusion plate which concerns on Example 3. FIG. 実施例4に係る拡散板に関する説明図である。It is explanatory drawing about the diffusion plate which concerns on Example 4. FIG. 実施例5に係る拡散板に関する説明図である。It is explanatory drawing about the diffusion plate which concerns on Example 5. FIG. 実施例6に係る拡散板に関する説明図である。It is explanatory drawing about the diffusion plate which concerns on Example 6. 実施例7に係る拡散板に関する説明図である。It is explanatory drawing about the diffusion plate which concerns on Example 7. FIG. 実施例7に係る拡散板に関する説明図である。It is explanatory drawing about the diffusion plate which concerns on Example 7. FIG. 比較例4に係る拡散板に関する説明図である。It is explanatory drawing about the diffusion plate which concerns on Comparative Example 4. FIG. 実施例8に係る拡散板に関する説明図である。It is explanatory drawing about the diffusion plate which concerns on Example 8. FIG. 実施例9に係る拡散板に関する説明図である。It is explanatory drawing about the diffusion plate which concerns on Example 9. FIG.
 以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the present specification and the drawings, components having substantially the same functional configuration are designated by the same reference numerals, so that duplicate description will be omitted.
 <1.拡散板の概要>
 まず、本発明の実施形態に係る拡散板の概要について説明する。
<1. Overview of diffuser>
First, an outline of the diffusion plate according to the embodiment of the present invention will be described.
 以下に詳述する本実施形態に係る拡散板は、光の均質拡散機能を備えたマイクロレンズアレイ型の拡散板である。かかる拡散板は、基材の少なくとも一方の表面(主面)におけるXY平面上に形成されたマイクロレンズアレイを有する。マイクロレンズアレイは、矩形格子状に配列及び展開された複数のマイクロレンズから構成される。当該マイクロレンズは、光拡散機能を有する凸構造(凸レンズ)又は凹構造(凹レンズ)からなり、数十μm程度のレンズ径を有する。 The diffusing plate according to the present embodiment described in detail below is a microlens array type diffusing plate having a homogeneous light diffusing function. Such a diffuser has a microlens array formed on an XY plane on at least one surface (main surface) of the substrate. The microlens array is composed of a plurality of microlenses arranged and expanded in a rectangular grid pattern. The microlens has a convex structure (convex lens) or a concave structure (concave lens) having a light diffusing function, and has a lens diameter of about several tens of μm.
 そして、本実施形態に係る拡散板では、不規則性を有する矩形格子を基準として、複数のマイクロレンズが矩形格子状(行列状)に配列される。この不規則性を有する矩形格子では、X方向(行方向)の複数の格子間隔Wxが、ランダムに変動して相互に異なるとともに、Y方向(列方向)の複数の格子間隔Wyも、ランダムに変動して相互に異なっている。さらには、X及びY方向に配列された複数のマイクロレンズの曲率半径Rx、Ryが、相互に異なるように、ランダムに(不規則に)変動している。また、各マイクロレンズの頂点の平面位置は、矩形格子の中心点からずれるようにランダムに変動(偏心)している。また、複数のマイクロレンズの頂点のZ方向の高さ位置(拡散板の厚み方向の位置)も、ランダムに変動し、相互に異なっている。このように格子間隔Wx、Wy、曲率半径Rx、Ry、レンズ頂点の平面位置及び高さ位置等を、ランダムに変動させることにより、矩形格子状に展開された複数のマイクロレンズの表面形状は、ランダムに変動して、相互に異なる形状となっている。 Then, in the diffuser plate according to the present embodiment, a plurality of microlenses are arranged in a rectangular grid shape (matrix shape) with reference to a rectangular grid having irregularities. In a rectangular grid having this irregularity, a plurality of grid spacing Wx in the X direction (row direction) randomly fluctuates and differ from each other, and a plurality of grid spacing Wy in the Y direction (column direction) also randomly fluctuates. It fluctuates and is different from each other. Furthermore, the radii of curvature Rx and Ry of the plurality of microlenses arranged in the X and Y directions fluctuate randomly (irregularly) so as to be different from each other. In addition, the plane position of the apex of each microlens randomly fluctuates (eccentricity) so as to deviate from the center point of the rectangular lattice. Further, the height positions of the vertices of the plurality of microlenses in the Z direction (positions in the thickness direction of the diffuser plate) also fluctuate randomly and are different from each other. By randomly changing the grid spacing Wx, Wy, the radius of curvature Rx, Ry, the plane position and the height position of the lens vertices, etc., the surface shape of the plurality of microlenses developed in a rectangular grid shape can be changed. It fluctuates randomly and has different shapes.
 このように、本実施形態に係る拡散板によれば、複数のマイクロレンズの各変動要素をランダムに変動させることにより、ランダム性の高いマイクロレンズアレイの3次元表面構造を実現している。これにより、各マイクロレンズから発散される光の位相の重合せ状態を制御することができる。この結果、高透過性の輝度特性を有するとともに、相互に直交する2つの方向(X及びY方向)の配光の均質性を満足しつつ、十分な配光の異方性と、拡散光の強度分布のカットオフ性を制御し得る、拡散板の表面構造体を提供することができる。 As described above, according to the diffuser plate according to the present embodiment, the three-dimensional surface structure of the microlens array with high randomness is realized by randomly changing each variable element of the plurality of microlenses. Thereby, it is possible to control the phase superposition state of the light emitted from each microlens. As a result, while having a highly transmissive luminance characteristic and satisfying the homogeneity of light distribution in two directions (X and Y directions) orthogonal to each other, sufficient anisotropy of light distribution and diffused light It is possible to provide a surface structure of a diffuser plate capable of controlling the cutoff property of the intensity distribution.
 さらに、本実施形態によれば、相互に異なる格子間隔Wx、Wyを有する不規則な矩形格子を基準として、XY平面上に複数のマイクロレンズを配列する。これにより、個々のマイクロレンズの表面形状のランダム性を確保しつつ、拡散板の表面上に複数のマイクロレンズアレイを相互に隙間なく連続的に配置することができる。したがって、隣接するマイクロレンズの境界部分に平坦部が極力存在しないようにできるので、拡散光の強度分布のむらをさらに低減して、2つの方向(X及びY方向)の配光の均質性をさらに向上できる。 Further, according to the present embodiment, a plurality of microlenses are arranged on the XY plane with reference to an irregular rectangular grid having different grid spacings Wx and Wy. As a result, a plurality of microlens arrays can be continuously arranged on the surface of the diffuser without any gaps while ensuring the randomness of the surface shape of each microlens. Therefore, since the flat portion can be eliminated as much as possible at the boundary portion of the adjacent microlenses, the unevenness of the intensity distribution of the diffused light can be further reduced, and the homogeneity of the light distribution in the two directions (X and Y directions) can be further improved. Can be improved.
 以下では、以上のような特徴を有する本実施形態に係る拡散板について、詳細に説明する。 Hereinafter, the diffusion plate according to the present embodiment having the above characteristics will be described in detail.
 <2.拡散板の全体構成>
 まず、図1を参照して、本発明の一実施形態に係る拡散板の全体構成と、マイクロレンズのレイアウトパターンについて説明する。図1は、本実施形態に係る拡散板1を模式的に示した説明図である。
<2. Overall configuration of diffuser>
First, with reference to FIG. 1, the overall configuration of the diffuser plate according to the embodiment of the present invention and the layout pattern of the microlens will be described. FIG. 1 is an explanatory diagram schematically showing the diffusion plate 1 according to the present embodiment.
 本実施形態に係る拡散板1は、基板上に複数のマイクロレンズ(単レンズ)からなるマイクロレンズアレイが配置された、マイクロレンズアレイ型の拡散板である。かかる拡散板1のマイクロレンズアレイは、図1に示すように、複数の単位セル3から構成されている。単位セル3は、マイクロレンズの基本配置パターンである。個々の単位セル3の表面には、所定のレイアウトパターン(配置パターン)で複数のマイクロレンズが配置されている。 The diffuser plate 1 according to the present embodiment is a microlens array type diffuser plate in which a microlens array composed of a plurality of microlenses (single lenses) is arranged on a substrate. As shown in FIG. 1, the microlens array of the diffuser plate 1 is composed of a plurality of unit cells 3. The unit cell 3 is a basic arrangement pattern of the microlens. A plurality of microlenses are arranged on the surface of each unit cell 3 in a predetermined layout pattern (arrangement pattern).
 ここで、図1では、拡散板1を構成する単位セル3の形状が矩形、特に正方形である例を示している。しかしながら、単位セル3の形状は、図1に示した例に限定されるものではなく、例えば、正三角形状や正六角形状などのように、拡散板1の表面(XY平面)上を隙間なく埋めることが可能であれば、任意の形状であってもよい。 Here, FIG. 1 shows an example in which the shape of the unit cell 3 constituting the diffusion plate 1 is rectangular, particularly square. However, the shape of the unit cell 3 is not limited to the example shown in FIG. 1, and the shape of the unit cell 3 is not limited to the example shown in FIG. Any shape may be used as long as it can be filled.
 図1の例では、拡散板1の表面上において、正方形の複数の単位セル3が、縦横に繰り返し配列されている。本実施形態に係る拡散板1を構成する単位セル3の個数は、特に限定されるものではなく、拡散板1が1つの単位セル3から構成されていてもよいし、複数の単位セル3から構成されていてもよい。本実施形態に係る拡散板1においては、互いに異なる表面構造を有する単位セル3が繰り返し配置されていてもよいし、互いに同一の表面構造を有する単位セル3が繰り返し配置されていてもよい。 In the example of FIG. 1, a plurality of square unit cells 3 are repeatedly arranged vertically and horizontally on the surface of the diffusion plate 1. The number of unit cells 3 constituting the diffusion plate 1 according to the present embodiment is not particularly limited, and the diffusion plate 1 may be composed of one unit cell 3 or from a plurality of unit cells 3. It may be configured. In the diffusion plate 1 according to the present embodiment, the unit cells 3 having different surface structures may be repeatedly arranged, or the unit cells 3 having the same surface structure may be repeatedly arranged.
 また、単位セル3間では、図1中の右側の拡大図に模式的に示したように、単位セル3内に設けられた複数のマイクロレンズのレイアウトパターン(配置パターン)が、単位セル3の配列方向(換言すれば、アレイ配列方向)に連続している。複数の単位セル3間の境界部分においてマイクロレンズの連続性を保ちながら、単位セル3を隙間なく配列することにより、マイクロレンズアレイが構成されている。ここで、マイクロレンズの連続性とは、相互に隣接する2つの単位セル3のうち、一方の単位セル3の外縁に位置するマイクロレンズと、他方の単位セル3の外縁に位置するマイクロレンズとが、平面形状のずれや高さ方向の段差がなく、連続的に接続されていることを意味する。 Further, between the unit cells 3, as schematically shown in the enlarged view on the right side in FIG. 1, the layout pattern (arrangement pattern) of the plurality of microlenses provided in the unit cell 3 is the unit cell 3. It is continuous in the array direction (in other words, the array array direction). The microlens array is configured by arranging the unit cells 3 without gaps while maintaining the continuity of the microlenses at the boundary portion between the plurality of unit cells 3. Here, the continuity of the microlens means the microlens located on the outer edge of one unit cell 3 and the microlens located on the outer edge of the other unit cell 3 among the two adjacent unit cells 3. However, it means that the lenses are continuously connected without any deviation of the plane shape or steps in the height direction.
 このように、本実施形態に係る拡散板1では、マイクロレンズアレイの単位セル3(基本構造)が、境界の連続性を保って隙間なく配列されることで、マイクロレンズアレイが構成されている。これにより、単位セル3間の境界部分において、光の回折、反射、散乱等の意図しない不具合の発生を防止して、拡散板1による所望の配光特性を得ることができる。 As described above, in the diffuser plate 1 according to the present embodiment, the unit cells 3 (basic structure) of the microlens array are arranged without gaps while maintaining the continuity of the boundaries, thereby forming the microlens array. .. As a result, it is possible to prevent the occurrence of unintended defects such as light diffraction, reflection, and scattering at the boundary portion between the unit cells 3, and obtain the desired light distribution characteristics by the diffuser plate 1.
 <3.拡散板の構成>
 次に、図2~図4を参照して、本実施形態に係る拡散板1の構成についてより詳細に説明する。図2は、本実施形態に係る拡散板1の構成を模式的に示す拡大平面図及び拡大断面図である。図3は、本実施形態に係るマイクロレンズ21の境界近傍を模式的示す拡大断面図である。図4は、基材10の表面に対して垂直な方向からマイクロレンズ21を平面視した場合のマイクロレンズ21の平面形状(外形)を模式的に示す平面図である。
<3. Diffusion plate configuration>
Next, the configuration of the diffusion plate 1 according to the present embodiment will be described in more detail with reference to FIGS. 2 to 4. FIG. 2 is an enlarged plan view and an enlarged cross-sectional view schematically showing the configuration of the diffusion plate 1 according to the present embodiment. FIG. 3 is an enlarged cross-sectional view schematically showing the vicinity of the boundary of the microlens 21 according to the present embodiment. FIG. 4 is a plan view schematically showing the planar shape (outer shape) of the microlens 21 when the microlens 21 is viewed in a plan view from a direction perpendicular to the surface of the base material 10.
 図2に示すように、本実施形態に係る拡散板1は、基材10と、基材10の表面に形成されたマイクロレンズアレイ20と、を備える。 As shown in FIG. 2, the diffuser plate 1 according to the present embodiment includes a base material 10 and a microlens array 20 formed on the surface of the base material 10.
 まず、基材10について説明する。基材10は、マイクロレンズアレイ20を支持するための基板である。かかる基材10は、フィルム状であってもよく、板状であってもよい。図2に示す基材10は、例えば矩形平板状を有するが、かかる例に限定されない。基材10の形状や厚さは、拡散板1が実装される装置の形状に応じて、任意の形状及び厚さであってよい。 First, the base material 10 will be described. The base material 10 is a substrate for supporting the microlens array 20. The base material 10 may be in the form of a film or in the form of a plate. The base material 10 shown in FIG. 2 has, for example, a rectangular flat plate shape, but is not limited to such an example. The shape and thickness of the base material 10 may be any shape and thickness depending on the shape of the device on which the diffusion plate 1 is mounted.
 基材10は、光を透過することが可能な透明基材である。基材10は、拡散板1に入射する光の波長帯域において透明とみなすことが可能な材質で形成される。例えば、基材10は、可視光に対応する波長帯域において光透過率が70%以上の材質にて形成されてもよい。 The base material 10 is a transparent base material capable of transmitting light. The base material 10 is formed of a material that can be regarded as transparent in the wavelength band of light incident on the diffuser plate 1. For example, the base material 10 may be made of a material having a light transmittance of 70% or more in a wavelength band corresponding to visible light.
 基材10は、例えば、ポリメチルメタクリレート(polymethyl methacrylate:PMMA)、ポリエチレンテレフタレート(Polyethylene terephthalate:PET)、ポリカーボネート(polycarbonate:PC)、環状オレフィン・コポリマー(Cyclo Olefin Copolymer:COC)、環状オレフィンポリマー(Cyclo Olefin Polymer:COP)、トリアセチルセルロース(Triacetylcellulose:TAC)等といった公知の樹脂で形成されてもよい。あるいは、基材10は、石英ガラス、ホウケイ酸ガラス、白板ガラス等といった公知の光学ガラスで形成されてもよい。 The base material 10 is, for example, polymethylmethacrylate (PMMA), polyethylene terephthalate (PET), polycarbonate (PC), cyclic olefin copolymer (Cyclo Olefin Polymer: COC), cyclic olefin. It may be formed of a known resin such as Olefin Polymer (COP) and Triacetyl cellulose (TAC). Alternatively, the base material 10 may be formed of known optical glass such as quartz glass, borosilicate glass, and white plate glass.
 次に、マイクロレンズアレイ20について説明する。マイクロレンズアレイ20は、基材10の少なくとも一方の表面(主面)に設けられる。マイクロレンズアレイ20は、基材10の表面上に配列された複数のマイクロレンズ21(単レンズ)の集合体である。本実施形態では、図2に示すように、マイクロレンズアレイ20が、基材10の一方の表面上に形成されている。しかし、かかる例に限定されず、基材10の両方の主面(表面と裏面)に、マイクロレンズアレイ20が形成されてもよい。 Next, the microlens array 20 will be described. The microlens array 20 is provided on at least one surface (main surface) of the base material 10. The microlens array 20 is an aggregate of a plurality of microlenses 21 (single lenses) arranged on the surface of the base material 10. In this embodiment, as shown in FIG. 2, the microlens array 20 is formed on one surface of the base material 10. However, the present invention is not limited to this, and the microlens array 20 may be formed on both main surfaces (front surface and back surface) of the base material 10.
 マイクロレンズ21は、例えば数十μmオーダーの微細な光学レンズである。マイクロレンズ21は、マイクロレンズアレイ20の単レンズを構成する。マイクロレンズ21は、拡散板1の厚み方向に陥没するように形成された凹構造(凹レンズ)であってもよいし、拡散板1の厚み方向に突出するように形成された凸構造(凸レンズ)であってもよい。本実施形態では、図2に示すようにマイクロレンズ21が凹構造(凹レンズ)である例について説明するが、かかる例に限定されない。拡散板1の所望の光学特性に応じて、マイクロレンズ21は凸構造(凸レンズ)であってもよい。 The microlens 21 is, for example, a fine optical lens on the order of several tens of μm. The microlens 21 constitutes a single lens of the microlens array 20. The microlens 21 may have a concave structure (concave lens) formed so as to be depressed in the thickness direction of the diffuser plate 1, or a convex structure (convex lens) formed so as to project in the thickness direction of the diffuser plate 1. It may be. In the present embodiment, an example in which the microlens 21 has a concave structure (concave lens) as shown in FIG. 2 will be described, but the present invention is not limited to such an example. The microlens 21 may have a convex structure (convex lens) depending on the desired optical characteristics of the diffuser plate 1.
 各マイクロレンズ21の表面形状は、曲面成分を含む曲面形状であれば、特に限定されない。マイクロレンズ21の表面形状は、例えば、球面成分のみを含む球面形状であってもよいし、球面成分と非球面成分を含む非球面形状であってもよいし、あるいは、非球面成分のみを含む非球面形状であってもよい。 The surface shape of each microlens 21 is not particularly limited as long as it is a curved surface shape including a curved surface component. The surface shape of the microlens 21 may be, for example, a spherical shape containing only a spherical component, an aspherical shape containing only a spherical component and an aspherical component, or a spherical shape containing only an aspherical component. It may have an aspherical shape.
 図2に示すように、複数のマイクロレンズ21は、互いに隙間なく隣接するように密集して配置されることが好ましい。換言すると、互いに隣接するマイクロレンズ21間の境界部分に隙間(平坦部)が存在しないように、複数のマイクロレンズ21が連続的に配置されることが好ましい。基材10上にマイクロレンズ21を隙間なく配置する(換言すれば、マイクロレンズ21の充填率が100%となるように配置する)ことで、入射光のうち拡散板1の表面で散乱せずにそのまま透過してしまう成分(以下、「0次透過光成分」ともいう。)を抑制することが可能となる。その結果、複数のマイクロレンズ21が互いに隙間なく隣接するように配置されたマイクロレンズアレイ20により、拡散性能を更に向上させることが可能となる。 As shown in FIG. 2, it is preferable that the plurality of microlenses 21 are densely arranged so as to be adjacent to each other without a gap. In other words, it is preferable that the plurality of microlenses 21 are continuously arranged so that there is no gap (flat portion) at the boundary portion between the microlenses 21 adjacent to each other. By arranging the microlens 21 on the base material 10 without gaps (in other words, arranging the microlens 21 so that the filling rate is 100%), the incident light is not scattered on the surface of the diffuser plate 1. It is possible to suppress a component that is transmitted as it is (hereinafter, also referred to as a "0th-order transmitted light component"). As a result, the diffusion performance can be further improved by the microlens array 20 in which the plurality of microlenses 21 are arranged so as to be adjacent to each other without a gap.
 なお、0次透過光成分を抑制するためには、基材10の上のマイクロレンズ21の充填率は、90%以上であることが好ましく、100%であることがより好ましい。ここで、充填率とは、基材10の表面上において複数のマイクロレンズ21が占める部分の面積の割合である。充填率が100%であれば、マイクロレンズアレイ20の表面は、曲面成分で形成され、平坦面成分をほぼ含まないことになる。 In order to suppress the 0th-order transmitted light component, the filling rate of the microlens 21 on the base material 10 is preferably 90% or more, and more preferably 100%. Here, the filling rate is the ratio of the area of the portion occupied by the plurality of microlenses 21 on the surface of the base material 10. When the filling rate is 100%, the surface of the microlens array 20 is formed of curved surface components and contains almost no flat surface components.
 ただし、実際のマイクロレンズアレイ20の製造上では、複数のマイクロレンズ21の曲面を連続的に接続するために、隣接するマイクロレンズ21間の境界における変曲点近傍が略平坦となることがあり得る。このような場合、マイクロレンズ21間の境界において、略平坦となる変曲点近傍領域の幅(マイクロレンズ21間の境界線の幅)は、1μm以下であることが好ましい。これにより、0次透過光成分を十分に抑制できる。 However, in the actual manufacturing of the microlens array 20, in order to continuously connect the curved surfaces of a plurality of microlenses 21, the vicinity of the inflection point at the boundary between adjacent microlenses 21 may become substantially flat. obtain. In such a case, the width of the region near the inflection point (the width of the boundary line between the microlenses 21) that becomes substantially flat at the boundary between the microlenses 21 is preferably 1 μm or less. As a result, the 0th-order transmitted light component can be sufficiently suppressed.
 また、本実施形態に係るマイクロレンズアレイ20においては、複数のマイクロレンズ21は、ランダムに(不規則に)配置されるのではなく、図2に示すように、X方向及びY方向に格子間隔Wx、Wyが変動した不規則な矩形格子(図5参照。)を基準として、ある程度規則的(以下、「準規則的」という。)に配置される。ここで、「ランダム」とは、マイクロレンズアレイの任意の領域において、マイクロレンズの配置に実質的な規則性が存在しないことを表す。ただし、微小領域においてマイクロレンズの配置に何らかの規則性が存在したとしても、任意の領域全体としてマイクロレンズの配置に規則性が存在しないものは、「不規則」に含まれるものとする。 Further, in the microlens array 20 according to the present embodiment, the plurality of microlenses 21 are not randomly (irregularly) arranged, but as shown in FIG. 2, the grid spacing is in the X direction and the Y direction. It is arranged in a somewhat regular manner (hereinafter referred to as "quasi-regular") with reference to an irregular rectangular lattice (see FIG. 5) in which Wx and Wy are fluctuated. Here, "random" means that there is no substantial regularity in the arrangement of microlenses in any region of the microlens array. However, even if there is some regularity in the arrangement of the microlenses in the minute region, the one in which the arrangement of the microlenses does not have regularity in the entire arbitrary region is included in "irregularity".
 本実施形態では、複数のマイクロレンズ21は、不規則性を有する矩形格子を基準として、準規則的に配置される。その上で、マイクロレンズ21の表面形状や平面形状がランダムに変動している。図2及び図4に示すように、マイクロレンズ21の平面形状(外形)は、全体的には略矩形状に近い形状を有するが、矩形格子に対応した完全な矩形状(正方形状又は長方形状)ではない。具体的には、マイクロレンズ21の平面形状は、略四角形、略五角形、略六角形など、4つ以上の頂点を有する略多角形に近い形状を有している。そして、複数のマイクロレンズ21の表面形状(立体的な曲面形状)及び平面形状(基材10のXY平面に投影した形状)は、相互に異なる。このように、各々のマイクロレンズ21が矩形状から不規則に崩れた形状を有している理由は、各マイクロレンズ21の曲率半径Rx、Ry、開口径Dx、Dy、及びレンズ頂点の平面位置及び高さ位置などが、所定の変動率の範囲内でランダムに変動しているからである。なお、本実施形態に係る矩形格子を基準としたマイクロレンズ21の準規則的な配置方法の詳細については、後述する(図5~図7参照。)。 In the present embodiment, the plurality of microlenses 21 are arranged semi-regularly with reference to a rectangular grid having irregularities. On top of that, the surface shape and the planar shape of the microlens 21 are randomly changed. As shown in FIGS. 2 and 4, the planar shape (outer shape) of the microlens 21 has a shape close to a substantially rectangular shape as a whole, but has a perfect rectangular shape (square shape or rectangular shape) corresponding to a rectangular grid. )is not it. Specifically, the planar shape of the microlens 21 has a shape close to a substantially polygon having four or more vertices, such as a substantially quadrangle, a substantially pentagon, and a substantially hexagon. The surface shape (three-dimensional curved surface shape) and the planar shape (shape projected onto the XY plane of the base material 10) of the plurality of microlenses 21 are different from each other. In this way, the reason why each microlens 21 has a shape that is irregularly collapsed from a rectangular shape is that the radius of curvature Rx, Ry, the aperture diameter Dx, Dy, and the plane position of the lens apex of each microlens 21. This is because the height position and the like fluctuate randomly within a range of a predetermined fluctuation rate. The details of the semi-regular arrangement method of the microlens 21 based on the rectangular grid according to the present embodiment will be described later (see FIGS. 5 to 7).
 このように、本実施形態では、各マイクロレンズ21の曲率半径Rx、Ry及び開口径Dx、Dyはそれぞれランダムに変動し、ばらつきを有している。なお、マイクロレンズ21の開口径Dx、Dyは、単レンズのレンズ径に相当する。各々のマイクロレンズ21の光学開口の位相分布は、方位によって異なる。複数のマイクロレンズ21が基材10の表面上に互いに重なり合うように連続的に配置され、かつ各々のマイクロレンズ21の曲率半径Rx、Ry及び開口径Dx、Dy(レンズ径)がばらつきを有する。これにより、複数のマイクロレンズ21の形状(表面形状及び平面形状)は、互いに同一形状とならなくなる。したがって、複数のマイクロレンズ21は、図2に示したように様々な形状を有するようになり、対称性を有しないものが多くなる。 As described above, in the present embodiment, the radii of curvature Rx and Ry and the aperture diameters Dx and Dy of each microlens 21 vary randomly and have variations. The aperture diameters Dx and Dy of the microlens 21 correspond to the lens diameter of a single lens. The phase distribution of the optical aperture of each microlens 21 differs depending on the orientation. A plurality of microlenses 21 are continuously arranged on the surface of the base material 10 so as to overlap each other, and the radii of curvature Rx and Ry and the aperture diameters Dx and Dy (lens diameter) of the respective microlenses 21 vary. As a result, the shapes (surface shape and planar shape) of the plurality of microlenses 21 are not the same as each other. Therefore, the plurality of microlenses 21 come to have various shapes as shown in FIG. 2, and many of them do not have symmetry.
 この結果、図3に示すように、マイクロレンズ21Aの曲率半径がRである一方、当該マイクロレンズ21Aに隣接するマイクロレンズ21Bの曲率半径がR(≠R)であるという状態が生じるようになる。互いに隣接するマイクロレンズ21の曲率半径R、Rが互いに異なる場合、互いに隣接するマイクロレンズ21の間の境界線は、直線のみで構成されず、少なくとも一部に曲線を含んで構成されるようになる。 As a result, as shown in FIG. 3, while the curvature radius of the microlens 21A is R A, the curvature radius of the microlens 21B adjacent to the microlenses 21A is a state that it is R B (≠ R A) resulting Will be. The radius of curvature R A of the microlenses 21 which are adjacent to each other, if the R B are different from each other, the boundary between the microlenses 21 which are adjacent to each other is not composed of only straight lines, configured to include a curve in at least a part Will be.
 具体的には、図4に示すように、基材10の表面に対して垂直なZ方向からマイクロレンズ21を平面視した場合、マイクロレンズ21の平面形状の外形線(当該マイクロレンズ21と、隣接する他の複数のマイクロレンズ21との間の境界線)は、互いに曲率が異なる複数の曲線と、直線とを含むことになる。マイクロレンズ21の境界線が互いに曲率が異なる複数の曲線を含む場合、マイクロレンズ21の間の境界の規則性がさらに崩れるため、拡散光の回折成分をさらに低減することができる。 Specifically, as shown in FIG. 4, when the microlens 21 is viewed in a plan view from the Z direction perpendicular to the surface of the base material 10, the outline of the planar shape of the microlens 21 (the microlens 21 and the microlens 21). The boundary line between the plurality of adjacent microlenses 21) includes a plurality of curves having different curvatures from each other and a straight line. When the boundary line of the microlens 21 includes a plurality of curves having different curvatures from each other, the regularity of the boundary between the microlenses 21 is further broken, so that the diffraction component of the diffused light can be further reduced.
 <4.マイクロレンズの配置方法>
 次に、図5~図7を参照して、本実施形態に係るマイクロレンズ21の配置方法について、詳細に説明する。図5は、本実施形態に係る不規則な矩形格子状のマイクロレンズ21の配置を模式的に示す平面図である。図6は、図5の状態からマイクロレンズ21の表面形状を変動させた例を示す説明図である。図7は、図6の状態からマイクロレンズ21の頂点22の平面位置を偏心させた例を示す説明図である。
<4. How to place the microlens>
Next, the method of arranging the microlens 21 according to the present embodiment will be described in detail with reference to FIGS. 5 to 7. FIG. 5 is a plan view schematically showing the arrangement of the irregular rectangular lattice-shaped microlenses 21 according to the present embodiment. FIG. 6 is an explanatory view showing an example in which the surface shape of the microlens 21 is changed from the state of FIG. FIG. 7 is an explanatory view showing an example in which the plane position of the apex 22 of the microlens 21 is eccentric from the state of FIG.
 上記のような特徴を有する複数のマイクロレンズ21が配列されたマイクロレンズアレイ20は、以下に述べる本実施形態に係る配置方法により実現することが可能である。 The microlens array 20 in which a plurality of microlenses 21 having the above-mentioned characteristics are arranged can be realized by the arrangement method according to the present embodiment described below.
 まず、図5に示すように、基準形状を有する複数のマイクロレンズ21を、矩形格子状に準規則的に配列した基準状態(以下、「初期配列状態」ともいう。)をひとまず設定する。次いで、かかる初期配列状態から、図6、図7に示すように、マイクロレンズ21の形状(即ち、曲率半径Rx、Ry、開口径Dx、Dy等)と、マイクロレンズ21の頂点22の位置をランダムに変動させた状態(以下、「変動配列状態」ともいう。)に変更する。以下、このようなマイクロレンズ21の配置方法を、「基準配置方法」と称する。 First, as shown in FIG. 5, a reference state (hereinafter, also referred to as "initial arrangement state") in which a plurality of microlenses 21 having a reference shape are arranged semi-regularly in a rectangular grid pattern is set for the time being. Next, from such an initial arrangement state, as shown in FIGS. 6 and 7, the shape of the microlens 21 (that is, the radius of curvature Rx, Ry, the aperture diameter Dx, Dy, etc.) and the position of the apex 22 of the microlens 21 are determined. It is changed to a randomly changed state (hereinafter, also referred to as "variable array state"). Hereinafter, such a method of arranging the microlens 21 will be referred to as a "reference arrangement method".
 この基準配置方法では、準規則的なマイクロレンズ21の配列(図5参照。)を経た上で、マイクロレンズ21の形状及び配置にランダム性を付与する(図6、図7参照。)。このため、最終的な変動配列状態のマイクロレンズアレイ20(図2、図7参照。)を、ある程度マクロ的に俯瞰すると、準規則的な初期配列状態(図5参照。)をある程度推定できるようなマイクロレンズ21の配置となる。以下に、この基準配置方法について詳述する。 In this reference arrangement method, randomness is given to the shape and arrangement of the microlenses 21 after passing through a semi-regular arrangement of the microlenses 21 (see FIG. 5) (see FIGS. 6 and 7). Therefore, if the microlens array 20 (see FIGS. 2 and 7) in the final variable array state is viewed macroscopically to some extent, the semi-regular initial array state (see FIG. 5) can be estimated to some extent. The arrangement of the microlens 21 is as follows. The reference placement method will be described in detail below.
 (1)不規則な矩形格子を基準にしたマイクロレンズ21の初期配列状態(図5)
 本実施形態に係る基準配置法では、まず、マイクロレンズ21の配置の基準となる初期配列状態を設定する。具体的には、図5に示すように、初期配列状態では、複数のマイクロレンズ21が、基準面のXY平面上に、不規則性を有する矩形格子を基準として、ある程度規則的(準規則的)に配列される。
(1) Initial arrangement state of the microlens 21 based on an irregular rectangular lattice (FIG. 5)
In the reference arrangement method according to the present embodiment, first, the initial arrangement state that serves as the reference for the arrangement of the microlens 21 is set. Specifically, as shown in FIG. 5, in the initial arrangement state, a plurality of microlenses 21 are somewhat regular (quasi-regular) on the XY plane of the reference plane with reference to a rectangular grid having irregularities. ).
 本実施形態に係る矩形格子は、長方形の格子であってもよいし、正方形の格子であってもよい。図5に示すように、矩形格子は、第1方向(X方向)に延びる複数の格子線32と、第2方向(Y方向)に延びる複数の格子線31からなる。第1方向(X方向)と第2方向(Y方向)は相互に直交する。かかる矩形格子において、X方向の格子間隔Wxは、第2方向(Y方向)に延びる複数の格子線31の間隔である。Y方向の格子間隔Wyは、第1方向(X方向)に延びる複数の格子線32の間隔である。 The rectangular grid according to the present embodiment may be a rectangular grid or a square grid. As shown in FIG. 5, the rectangular grid includes a plurality of grid lines 32 extending in the first direction (X direction) and a plurality of grid lines 31 extending in the second direction (Y direction). The first direction (X direction) and the second direction (Y direction) are orthogonal to each other. In such a rectangular grid, the grid spacing Wx in the X direction is the spacing between a plurality of grid lines 31 extending in the second direction (Y direction). The grid spacing Wy in the Y direction is the spacing between the plurality of grid lines 32 extending in the first direction (X direction).
 ここで、上記不規則な矩形格子とは、図5に示すように、X方向の格子間隔Wxが、ランダムに変動して相互に異なり、かつY方向の格子間隔Wyが、ランダムに変動して相互に異なるような矩形格子である。図5の矩形格子の例では、X方向の3つの格子間隔Wx、Wx、Wxは相互に異なり、Y方向の3つの格子間隔Wy、Wy、Wyも相互に異なる。格子間隔Wxと格子間隔Wyは、相互に相関なく、それぞれ独立的にランダムに変動してもよい。この結果、例えば、X方向及びY方向の格子間隔Wx、Wx、Wx、Wy、Wy、Wyが相互に異なってもよい。 Here, with the irregular rectangular grid, as shown in FIG. 5, the grid spacing Wx in the X direction fluctuates randomly and differs from each other, and the grid spacing Wy in the Y direction fluctuates randomly. It is a rectangular grid that is different from each other. In the example of the rectangular grid of FIG. 5, the three grid spacings Wx 1 , Wx 2 , and Wx 3 in the X direction are different from each other, and the three grid spacings Wy 1 , Wy 2 , and Wy 3 in the Y direction are also different from each other. The grid spacing Wx and the grid spacing Wy may fluctuate independently and randomly without any correlation with each other. As a result, for example, the grid spacings Wx 1 , Wx 2 , Wx 3 , Wy 1 , Wy 2 , and Wy 3 in the X and Y directions may be different from each other.
 格子間隔Wxと格子間隔Wyをランダムに変動させる方法は、例えば、次のとおりである。まず、X方向及びY方向の格子間隔Wx、Wyの変動の基準となる一定の基準値Wx_k、Wy_k(以下、基準格子間隔Wx_k、Wy_kという。)を設定する。次いで、基準格子間隔Wx_k、Wy_kを所定の変動率δWx、δWy[±%]の範囲内でランダムに変動させて、格子間隔Wx、Wyを設定する(Wx=Wx_k×(100±δWx[%])、Wy=Wy_k×(100±δWy[%]))。これを矩形格子の格子数分だけ繰り返して、X方向及びY方向の複数の格子間隔Wx、Wx、Wx、・・・、Wy、Wy、Wy、・・・をそれぞれ設定する。 For example, the method of randomly changing the grid spacing Wx and the grid spacing Wy is as follows. First, constant reference values Wx_k and Wy_k (hereinafter referred to as reference grid spacing Wx_k and Wy_k) that serve as a reference for fluctuations in the grid spacing Wx and Wy in the X and Y directions are set. Next, the reference grid spacing Wx_k and Wy_k are randomly changed within a predetermined volatility δWx and δWy [±%] to set the grid spacing Wx and Wy (Wx = Wx_k × (100 ± δWx [%]). ), Wy = Wy_k × (100 ± δWy [%])). This is repeated for the number of grids of the rectangular grid, and a plurality of grid spacings Wx 1 , Wx 2 , Wx 3 , ..., Wy 1 , Wy 2 , Wy 3 , ... Are set in the X and Y directions, respectively. To do.
 ここで、変動率δWx、δWyは、±10%~±50%の範囲内であることが好ましい。変動率δWx、δWyを±10%未満に設定すると、格子間隔Wx、Wyの変動が不十分となり、マイクロレンズアレイ20に十分な非周期性を付与することが困難になり、マイクロレンズアレイ20による拡散光の均質性が低下するおそれがある。一方、変動率δWx、δWyを±50%超に設定すると、格子間隔Wの変動が過度に大きくなり、XY平面上に複数のマイクロレンズ21を隙間なく連続的に配列することが困難になるおそれがある。 Here, the volatility δWx and δWy are preferably in the range of ± 10% to ± 50%. When the volatility δWx and δWy are set to less than ± 10%, the fluctuations of the lattice spacing Wx and Wy become insufficient, and it becomes difficult to impart sufficient aperiodicity to the microlens array 20. The homogeneity of diffused light may decrease. On the other hand, if the volatility δWx and δWy are set to more than ± 50%, the fluctuation of the lattice spacing W becomes excessively large, and it may be difficult to continuously arrange a plurality of microlenses 21 on the XY plane without gaps. There is.
 例えば、変動率δWx、δWyが「±10%」に設定された場合、格子間隔Wx、Wyは、基準格子間隔Wx_k、Wy_kを基準として「±10%」以下の範囲内(つまり、Wx_k、Wy_kの90%の値以上、110%の値以下)で、基準格子間隔Wx_k、Wy_kからランダムにずれた値に設定される。 For example, when the volatility δWx and δWy are set to “± 10%”, the grid spacing Wx and Wy are within the range of “± 10%” or less based on the reference grid spacing Wx_k and Wy_k (that is, Wx_k and Wy_k). 90% or more and 110% or less), and the values are set to randomly deviate from the reference grid spacings Wx_k and Wy_k.
 以上のようにして、本実施形態では、X方向及びY方向の複数の格子間隔Wx、Wx、Wx、・・・、Wy、Wy、Wy、・・・を相互に異なる値にランダムに設定する。そして、当該格子間隔Wx、Wx、Wx、・・・、Wy、Wy、Wy、・・・を用いて、格子間隔Wx、Wyが相互に異なる不規則な矩形格子(図5参照。)を設定する。 As described above, in the present embodiment, the plurality of lattice spacings Wx 1 , Wx 2 , Wx 3 , ..., Wy 1 , Wy 2 , Wy 3 , ... In the X and Y directions are different from each other. Randomly set the value. Then, using the grid spacing Wx 1 , Wx 2 , Wx 3 , ..., Wy 1 , Wy 2 , Wy 3 , ..., Irregular rectangular grids with different grid spacing Wx, Wy (Fig.) 5) is set.
 次いで、上記不規則な矩形格子を基準として、図5に示すように、XY平面上に複数のマイクロレンズ21を配列する。この状態が、マイクロレンズ21の配置の基準となる初期配列状態である。初期配列状態では、各マイクロレンズ21の平面形状は矩形格子に対応する矩形状であり、マイクロレンズ21の平面形状の外形線は、X方向及びY方向の格子線31、32に一致している。また、各マイクロレンズ21の頂点22の位置は、格子線31、32で囲まれる各矩形格子の中心点23に一致している。また、この初期配列状態では、各マイクロレンズ21のX方向及びY方向の開口径Dx、Dyは、X方向及びY方向の格子間隔Wx、Wyにそれぞれ一致している。ここで、格子間隔Wx、Wyが相互に異なる値に変動しているので、開口径Dx、Dyも相互に異なる値に変動している。 Next, a plurality of microlenses 21 are arranged on the XY plane as shown in FIG. 5 with the irregular rectangular lattice as a reference. This state is the initial arrangement state that serves as a reference for the arrangement of the microlens 21. In the initial arrangement state, the planar shape of each microlens 21 is a rectangular shape corresponding to a rectangular grid, and the outline of the planar shape of the microlens 21 coincides with the grid lines 31 and 32 in the X and Y directions. .. Further, the position of the apex 22 of each microlens 21 coincides with the center point 23 of each rectangular grid surrounded by the grid lines 31 and 32. Further, in this initial arrangement state, the aperture diameters Dx and Dy of each microlens 21 in the X direction and the Y direction correspond to the lattice spacings Wx and Wy in the X direction and the Y direction, respectively. Here, since the lattice spacings Wx and Wy fluctuate to different values, the aperture diameters Dx and Dy also fluctuate to different values.
 また、初期配列状態における各マイクロレンズ21の表面形状は、予め設定された所定の基準形状(例えば、非球面形状の基準形状)を、各マイクロレンズ21に対応する矩形格子で切り出した形状となっている。ここで、各マイクロレンズ21に対応する格子間隔Wx、Wyが相互に異なるので、複数のマイクロレンズ21の開口径Dx、Dyや表面形状は、相互に異なる。つまり、上記不規則な矩形格子を基準として複数のマイクロレンズ21を配列することにより、初期配列状態では、マイクロレンズ21の開口径Dx、Dyや表面形状が相互に異なるように、複数のマイクロレンズ21を配置することができる。 Further, the surface shape of each microlens 21 in the initial arrangement state is a shape obtained by cutting out a predetermined reference shape (for example, a reference shape having an aspherical shape) set in advance by a rectangular lattice corresponding to each microlens 21. ing. Here, since the lattice spacings Wx and Wy corresponding to each microlens 21 are different from each other, the aperture diameters Dx and Dy and the surface shape of the plurality of microlenses 21 are different from each other. That is, by arranging the plurality of microlenses 21 with reference to the irregular rectangular lattice, in the initial arrangement state, the plurality of microlenses so that the aperture diameters Dx, Dy and the surface shape of the microlenses 21 are different from each other. 21 can be arranged.
 (2)曲率半径Rx、Ryを変動させたマイクロレンズ21の第1の変動配列状態(図6)
 上記のように初期配列状態を設定した後、図6に示すように、マイクロレンズ21の曲率半径Rx、Ryをランダムに変動させることにより、マイクロレンズ21の表面形状を変動させた第1の変動配列状態を設定する。図6は、マイクロレンズ21の表面形状が、X方向の異方性を有する非球面形状である場合に、当該非球面形状の曲率半径Rx、Ryを変動させた例を示す。
(2) First variable arrangement state of the microlens 21 in which the radius of curvature Rx and Ry are varied (FIG. 6).
After setting the initial arrangement state as described above, as shown in FIG. 6, the first variation in which the surface shape of the microlens 21 is varied by randomly varying the radii of curvature Rx and Ry of the microlens 21. Set the array state. FIG. 6 shows an example in which the radius of curvature Rx and Ry of the aspherical shape are changed when the surface shape of the microlens 21 is an aspherical shape having anisotropy in the X direction.
 曲率半径Rは、X方向の断面で切断したマイクロレンズ21の断面形状の曲率半径Rxと、Y方向の断面で切断したマイクロレンズ21の断面形状の曲率半径Ryとを含む。マイクロレンズ21の表面形状が球面形状である場合、RxとRyは同一の値となる。一方、マイクロレンズ21の表面形状が、異方性を有する非球面形状である場合、RxとRyは異なる値となり得る。 The radius of curvature R includes the radius of curvature Rx of the cross-sectional shape of the microlens 21 cut in the cross section in the X direction and the radius of curvature Ry of the cross-sectional shape of the microlens 21 cut in the cross section in the Y direction. When the surface shape of the microlens 21 is spherical, Rx and Ry have the same value. On the other hand, when the surface shape of the microlens 21 is an aspherical shape having anisotropy, Rx and Ry can have different values.
 上記の初期配列状態のマイクロレンズ21の曲率半径Rx、Ryをランダムに変動させる方法は、例えば、次のとおりである。まず、X方向及びY方向の曲率半径Rx、Ryの変動の基準となる一定の基準値Rx_k、Ry_k(以下、基準曲率半径Rx_k、Ry_kという。)を設定する。次いで、基準曲率半径Rx_k、Ry_kを所定の変動率δRx、δRy[%]の範囲内でランダムに変動させて、曲率半径Rx、Ryを設定する(Rx=Rx_k×(100±δRx[%])、Ry=Ry_k×(100±δRy[%]))。これを各マイクロレンズ21の個数分だけ繰り返して、各マイクロレンズ21について、X方向及びY方向の曲率半径Rx11、Ry11、Rx21、Ry21、・・・、Rxnm、Rynmをそれぞれ設定する。なお、nは、X方向に配列されるマイクロレンズ21の個数であり、mは、Y方向に配列されるマイクロレンズ21の個数である。 The method of randomly changing the radii of curvature Rx and Ry of the microlens 21 in the initial arrangement state is as follows, for example. First, constant reference values Rx_k and Ry_k (hereinafter referred to as reference curvature radii Rx_k and Ry_k) that serve as a reference for fluctuations in the radius of curvature Rx and Ry in the X and Y directions are set. Next, the reference curvature radii Rx_k and Ry_k are randomly changed within a range of predetermined volatility δRx and δRy [%] to set the curvature radii Rx and Ry (Rx = Rx_k × (100 ± δRx [%])). , Ry = Ry_k × (100 ± δRy [%])). This is repeated for the number of each microlens 21, and for each microlens 21, the radii of curvature Rx 11 , Ry 11 , Rx 21 , Ry 21 , ..., Rx nm , and Ry nm in the X and Y directions are set, respectively. Set. In addition, n is the number of microlenses 21 arranged in the X direction, and m is the number of microlenses 21 arranged in the Y direction.
 ここで、変動率δRx、δRyは、±10%~±50%の範囲内であることが好ましい。変動率δRx、δRyを±10%未満に設定すると、曲率半径Rx、Ryの変動が不十分となり、マイクロレンズアレイ20に十分な非周期性を付与することが困難になり、マイクロレンズアレイ20による拡散光の均質性が低下するおそれがある。一方、変動率δRx、δRyを±50%超に設定すると、曲率半径Rx、Ryの変動が過度に大きくなり、XY平面上に複数のマイクロレンズ21を隙間なく連続的に配列することが困難になるおそれがある。 Here, the volatility δRx and δRy are preferably in the range of ± 10% to ± 50%. When the volatility δRx and δRy are set to less than ± 10%, the fluctuations of the radius of curvature Rx and Ry become insufficient, and it becomes difficult to impart sufficient aperiodicity to the microlens array 20. The homogeneity of diffused light may decrease. On the other hand, when the volatility δRx and δRy are set to more than ± 50%, the fluctuations of the radius of curvature Rx and Ry become excessively large, and it becomes difficult to continuously arrange a plurality of microlenses 21 on the XY plane without gaps. There is a risk of becoming.
 以上のようにして、初期配列状態の各マイクロレンズ21の曲率半径Rx、Ryをランダムに変動させる(第1の変動配列状態)。この結果、図6に示すように、X方向に配列されたマイクロレンズ21のX方向の曲率半径Rxは、相互に異なる値となる。同様に、Y方向に配列されたマイクロレンズ21のY方向の曲率半径Ryは、相互に異なる値となる。詳細には、曲率半径Rxは、基準曲率半径Rx_kを基準として、±10%~±50%以内の変動率δRxでランダムに変動している。また、曲率半径Ryは、基準曲率半径Ry_kを基準として、±10%~±50%以内の変動率δRyでランダムに変動している。 As described above, the radii of curvature Rx and Ry of each microlens 21 in the initial arrangement state are randomly changed (first variation arrangement state). As a result, as shown in FIG. 6, the radius of curvature Rx of the microlenses 21 arranged in the X direction in the X direction has different values from each other. Similarly, the radius of curvature Ry of the microlenses 21 arranged in the Y direction in the Y direction have different values. Specifically, the radius of curvature Rx randomly fluctuates with a volatility δRx within ± 10% to ± 50% with reference to the reference radius of curvature Rx_k. Further, the radius of curvature Ry randomly fluctuates at a volatility δRy within ± 10% to ± 50% with reference to the reference radius of curvature Ry_k.
 かかる第1の変動配列状態では、図6に示すように、各マイクロレンズ21の平面形状は矩形格子からずれた形状となり、マイクロレンズ21の平面形状の外形線は、X方向及びY方向の格子線31、32と一致しない場合もある。ただし、各マイクロレンズ21の頂点22の位置は、各矩形格子の中心点23に一致している。また、第1の変動配列状態では、各マイクロレンズ21のX方向及びY方向の開口径Dx、Dyは、X方向及びY方向の格子間隔Wx、Wyからずれる。 In the first variable arrangement state, as shown in FIG. 6, the planar shape of each microlens 21 is deviated from the rectangular lattice, and the outline of the planar shape of the microlens 21 is a lattice in the X direction and the Y direction. It may not match the lines 31 and 32. However, the positions of the vertices 22 of each microlens 21 coincide with the center point 23 of each rectangular grid. Further, in the first variable arrangement state, the aperture diameters Dx and Dy of each microlens 21 in the X direction and the Y direction deviate from the lattice spacing Wx and Wy in the X direction and the Y direction.
 このように、マイクロレンズ21の曲率半径Rx、Ryをランダムに変動させた第1の変動配列状態では、マイクロレンズ21の開口径Dx、Dyや表面形状が、初期配列状態よりもさらに相互に異なるように、複数のマイクロレンズ21を配置することができる。 In this way, in the first variable arrangement state in which the radii of curvature Rx and Ry of the microlens 21 are randomly changed, the aperture diameters Dx and Dy and the surface shape of the microlens 21 are further different from each other than in the initial arrangement state. As described above, a plurality of microlenses 21 can be arranged.
 (3)レンズ頂点位置を変動させたマイクロレンズ21の第2の変動配列状態(図7)
 上記のように第1の変動配列状態を設定した後、図7に示すように、マイクロレンズ21の頂点22の平面位置を、上記矩形格子の中心点23からランダムに偏心させた第2の変動配列状態を設定する。ここで、偏心とは、XY平面上においてマイクロレンズ21の頂点22の平面位置を、矩形格子の中心点23からずれるように変動させることを意味する。なお、矩形格子の中心点23は、矩形格子の2つの対角線の交点である(図4参照。)。
(3) The second variable arrangement state of the microlens 21 in which the lens apex position is changed (FIG. 7).
After setting the first variation array state as described above, as shown in FIG. 7, the plane position of the apex 22 of the microlens 21 is randomly eccentric from the center point 23 of the rectangular lattice. Set the array state. Here, the eccentricity means that the plane position of the apex 22 of the microlens 21 is changed so as to deviate from the center point 23 of the rectangular lattice on the XY plane. The center point 23 of the rectangular grid is an intersection of two diagonal lines of the rectangular grid (see FIG. 4).
 上記の第1の変動配列状態のマイクロレンズ21の頂点22の平面位置をランダムに偏心させる方法は、例えば、次のとおりである。 For example, the method of randomly eccentricizing the plane position of the apex 22 of the microlens 21 in the first variable arrangement state is as follows.
 まず、マイクロレンズ21の頂点22の平面位置(以下、レンズ頂点位置22という場合もある。)の偏心量Ecを設定する。偏心量Ecは、矩形格子の中心点23からのレンズ頂点位置22のずれ量(距離)である。偏心量Ecは、X方向の偏心量EcxとY方向の偏心量Ecyで表される。偏心量Ecxは、矩形格子の中心点23からのレンズ頂点位置22のX方向のずれ量であり、偏心量Ecyは、矩形格子の中心点23からのレンズ頂点位置22のY方向のずれ量である。 First, the eccentricity Ec of the plane position of the apex 22 of the microlens 21 (hereinafter, may be referred to as the lens apex position 22) is set. The eccentricity Ec is the amount of deviation (distance) of the lens apex position 22 from the center point 23 of the rectangular lattice. The eccentricity Ec is represented by the eccentricity Ecx in the X direction and the eccentricity Ecy in the Y direction. The eccentricity Ecx is the amount of deviation of the lens apex position 22 from the center point 23 of the rectangular lattice in the X direction, and the eccentricity Ecy is the amount of deviation of the lens apex position 22 from the center point 23 of the rectangular lattice in the Y direction. is there.
 次いで、X方向及びY方向の偏心率δEcx、δEcyを設定する。X方向の偏心率δEcxは、上記矩形格子の格子間隔Wxに対する偏心量Ecxの割合(百分率)である。Y方向の偏心率δEcyは、上記矩形格子の格子間隔Wyに対する偏心量Ecyの割合(百分率)である。偏心率δEcx、δEcyは以下の式で表される。
  δEcx[%]=Ecx/Wx×100
  δEcy[%]=Ecy/Wy×100
Next, the eccentricities δEcx and δEcy in the X and Y directions are set. The eccentricity δEcx in the X direction is the ratio (percentage) of the eccentricity Ecx to the lattice spacing Wx of the rectangular lattice. The eccentricity δEcy in the Y direction is the ratio (percentage) of the eccentricity Ecy to the lattice spacing Wy of the rectangular lattice. The eccentricity δEcx and δEcy are expressed by the following equations.
δEcx [%] = Ecx / Wx × 100
δEcy [%] = Ecy / Wy × 100
 次いで、上記設定した偏心率δEcx、δEcyに基づいて、レンズ頂点位置を偏心させる。詳細には、各マイクロレンズ21のレンズ頂点位置22を、±10%~±50%以内の偏心率δEcx、δEcyでランダムに偏心させる。 Next, the lens apex position is eccentric based on the eccentricity δEcx and δEcy set above. Specifically, the lens apex position 22 of each microlens 21 is randomly eccentric with eccentricity ratios δEcx and δEcy within ± 10% to ± 50%.
 ここで、偏心率δEcx、δEcyは、±10%~±50%の範囲内であることが好ましい。偏心率δEcx、δEcyを±10%未満に設定すると、レンズ頂点位置22の偏心量Ecx、Ecyが不十分となり、マイクロレンズアレイ20に十分な非周期性を付与することが困難になり、マイクロレンズアレイ20によるX方向及びY方向の拡散光の均質性が低下するおそれがある。一方、偏心率δEcx、δEcyを±50%超に設定すると、レンズ頂点の偏心量Ecx、Ecyが過度に大きくなり、XY平面上に複数のマイクロレンズ21を隙間なく連続的に配列することが困難になるおそれがある。 Here, the eccentricity δEcx and δEcy are preferably in the range of ± 10% to ± 50%. When the eccentricity ratios δEcx and δEcy are set to less than ± 10%, the eccentricity amounts Ecx and Ecy at the lens apex position 22 become insufficient, and it becomes difficult to impart sufficient aperiodicity to the microlens array 20. There is a risk that the homogeneity of the diffused light in the X and Y directions due to the array 20 will decrease. On the other hand, when the eccentricities δEcx and δEcy are set to more than ± 50%, the eccentricities Ecx and Ecy at the lens vertices become excessively large, and it is difficult to continuously arrange a plurality of microlenses 21 on the XY plane without gaps. There is a risk of becoming.
 以上のようにして、第1の変動配列状態の各マイクロレンズ21の頂点22の平面位置を、矩形格子の中心点23からランダムに変動させる(第2の変動配列状態)。この結果、図7に示すように、各マイクロレンズ21の頂点22の平面位置は、XY平面上においてランダムな方向に、ランダムな偏心量Ecx、Ecyでずれる。 As described above, the plane position of the apex 22 of each microlens 21 in the first variable arrangement state is randomly changed from the center point 23 of the rectangular lattice (second variable arrangement state). As a result, as shown in FIG. 7, the plane positions of the vertices 22 of each microlens 21 are shifted in random directions on the XY plane by random eccentricities Ecx and Ecy.
 この結果、図4及び図7に示すように、第2の変動配列状態では、上記第1の変動配列状態(図6参照。)よりもさらに、各マイクロレンズ21の平面形状は矩形格子に対応する矩形状からずれた形状となる。また、第2の変動配列状態では、各マイクロレンズ21のX方向及びY方向の開口径Dx、Dyは、X方向及びY方向の格子間隔Wx、Wyからさらにずれる。 As a result, as shown in FIGS. 4 and 7, in the second variable arrangement state, the planar shape of each microlens 21 corresponds to a rectangular lattice more than in the first variable arrangement state (see FIG. 6). The shape deviates from the rectangular shape. Further, in the second variable arrangement state, the aperture diameters Dx and Dy of each microlens 21 in the X and Y directions are further deviated from the lattice spacings Wx and Wy in the X and Y directions.
 このように、マイクロレンズ21の頂点22の平面位置をランダムに偏心させた第2の変動配列状態では、マイクロレンズ21の表面形状や開口径Dx、Dyが、第1の変動配列状態よりもさらに相互に異なるように、複数のマイクロレンズ21を配置することができる。 In this way, in the second variable arrangement state in which the plane positions of the vertices 22 of the microlens 21 are randomly eccentric, the surface shape, opening diameters Dx, and Dy of the microlens 21 are further higher than those in the first variable arrangement state. A plurality of microlenses 21 can be arranged so as to be different from each other.
 また、上記第2の変動配列状態では、複数のマイクロレンズ21の頂点22の高さ位置(拡散板1の厚み方向の位置)は、相互に変動している。詳細には、図2に示すように、X方向に配列された複数のマイクロレンズ21の頂点22(凹レンズの最深点)の高さ位置は、相互に異なり、Y方向に配列されたた複数のマイクロレンズ21の頂点22(凹レンズの最深点)の高さ位置も、相互に異なる。これにより、複数のマイクロレンズ21の形状及び配置のランダム性をさらに高めて、マイクロレンズアレイ20に十分な非周期性を付与することができる。 Further, in the second variable arrangement state, the height positions of the vertices 22 of the plurality of microlenses 21 (positions in the thickness direction of the diffusion plate 1) are mutually variable. Specifically, as shown in FIG. 2, the height positions of the apex 22 (the deepest point of the concave lens) of the plurality of microlenses 21 arranged in the X direction are different from each other, and the plurality of microlenses arranged in the Y direction are arranged. The height positions of the apex 22 (the deepest point of the concave lens) of the microlens 21 are also different from each other. As a result, the randomness of the shapes and arrangements of the plurality of microlenses 21 can be further enhanced, and sufficient aperiodicity can be imparted to the microlens array 20.
 以上のように、本実施形態に係るマイクロレンズ21の配置方法によれば、まず、相互に異なる格子間隔Wx、Wyを有する不規則な矩形格子を基準として、複数のマイクロレンズ21を準規則的に配列する(初期配列状態:図5)。これにより、各マイクロレンズ21の平面形状の外形線が当該不規則な矩形格子の格子線31、32に沿うようにして、マイクロレンズ21がXY平面内に準規則的に配列される。 As described above, according to the method of arranging the microlenses 21 according to the present embodiment, first, a plurality of microlenses 21 are quasi-regularly based on an irregular rectangular grid having different grid spacings Wx and Wy. (Initial arrangement state: Fig. 5). As a result, the microlenses 21 are arranged semi-regularly in the XY plane so that the outer line of the planar shape of each microlens 21 is along the grid lines 31 and 32 of the irregular rectangular lattice.
 その後、当該配列された複数のマイクロレンズ21の曲率半径Rx、Ryや表面形状、レンズ頂点位置22をランダムに変動させる(第1、第2の変動配列状態:図6、図7)。これにより、準規則的に配列されたマイクロレンズ21の表面形状(立体形状)や開口形状(平面形状)、開口径Dx、Dy、配置などを、ランダムにばらつかせることができる。このため、準規則的なマイクロレンズ21の配列を実現しつつ、ランダム性の高いマイクロレンズアレイ20の3次元表面構造を実現できる。 After that, the radius of curvature Rx, Ry, the surface shape, and the lens apex position 22 of the plurality of arranged microlenses 21 are randomly changed (first and second variable arrangement states: FIGS. 6 and 7). As a result, the surface shape (three-dimensional shape), aperture shape (planar shape), aperture diameters Dx, Dy, arrangement, and the like of the semi-regularly arranged microlenses 21 can be randomly dispersed. Therefore, it is possible to realize a three-dimensional surface structure of the microlens array 20 with high randomness while realizing a semi-regular arrangement of the microlens 21.
 したがって、本実施形態に係るマイクロレンズアレイ20によれば、各マイクロレンズ21から発散される光の位相の重合せ状態を好適に制御できる。よって、各マイクロレンズ21からの拡散光の干渉や、マイクロレンズ配列の周期構造による回折を好適に抑制できる。それ故、拡散光の強度分布のむらを低減して、相互に直交するX及びY方向の配光の均質性を向上できる。さらに、X及びY方向の配光の異方性と、拡散光の強度分布のカットオフ性を制御することも可能となる。 Therefore, according to the microlens array 20 according to the present embodiment, it is possible to suitably control the phase superposition state of the light emitted from each microlens 21. Therefore, interference of diffused light from each microlens 21 and diffraction due to the periodic structure of the microlens arrangement can be suitably suppressed. Therefore, the unevenness of the intensity distribution of the diffused light can be reduced, and the homogeneity of the light distribution in the X and Y directions orthogonal to each other can be improved. Further, it is possible to control the anisotropy of the light distribution in the X and Y directions and the cutoff property of the intensity distribution of the diffused light.
 なお、カットオフ性とは、マイクロレンズアレイ20からの拡散光が、いわゆるトップハット型の拡散特性を有することを意味する。トップハット型の拡散特性とは、可視光領域のコリメート光や、コリメート性のある主光線を有して一定の開口を持つテレセントリック光に対して、一定領域における角度成分内でエネルギー分布の均質性が非常に高く、この角度成分の一定領域を超過するとエネルギーが急激に減少し得る光学機能をいう。かかるトップハット型の拡散特性が実現されることで、マイクロレンズアレイ20に入射した光の拡散光の輝度分布が、所定の拡散角度範囲で略均一となり、所定の拡散角度範囲内で、拡散光の輝度値がピークレベルの平均値を中心として例えば±20%の範囲内に収まっている状態が実現される。 Note that the cutoff property means that the diffused light from the microlens array 20 has a so-called top hat type diffusion characteristic. The top hat type diffusion characteristic is the homogeneity of the energy distribution within the angular component in a certain region with respect to collimated light in the visible light region and telecentric light having a collimating main ray and a constant aperture. Is very high, and refers to an optical function in which the energy can be rapidly reduced when a certain region of this angular component is exceeded. By realizing such a top hat type diffusion characteristic, the luminance distribution of the diffused light of the light incident on the microlens array 20 becomes substantially uniform within a predetermined diffusion angle range, and the diffused light is within a predetermined diffusion angle range. A state in which the brightness value of is within the range of, for example, ± 20% with respect to the average value of the peak level is realized.
 本実施形態に係るマイクロレンズアレイ20によれば、上記の配置方法で複数のマイクロレンズ21を矩形格子状に配列し、各マイクロレンズ21の曲率半径Rx、Ry、レンズ頂点位置22等を適切に制御したり、マイクロレンズ21の表面形状に非球面形状を導入したりする。これによって、マイクロレンズアレイ20の所望の拡散特性を実現することができるので、トップハット型の拡散特性をより確実に実現させることが可能となる。 According to the microlens array 20 according to the present embodiment, a plurality of microlenses 21 are arranged in a rectangular grid by the above arrangement method, and the radius of curvature Rx, Ry, lens apex position 22 and the like of each microlens 21 are appropriately set. It is controlled or an aspherical shape is introduced into the surface shape of the microlens 21. As a result, the desired diffusion characteristics of the microlens array 20 can be realized, so that the top hat type diffusion characteristics can be more reliably realized.
 さらに、本実施形態によれば、相互に異なる格子間隔Wx、Wyを有する不規則な矩形格子を基準として、XY平面上に複数のマイクロレンズ21を準規則的に配列した上で(初期配列状態)、曲率半径Rx、Ryや、レンズ頂点位置22を変動させる(第1、第2の変動配列状態)。これにより、個々のマイクロレンズ21の表面形状のランダム性を確保しつつ、拡散板1の表面上に複数のマイクロレンズ21を相互に隙間なく連続的に配置することができる。したがって、隣接するマイクロレンズ21の境界部分に平坦部が極力存在しないようにできるので、入射光のうち拡散板表面で散乱せずにそのまま透過してしまう成分(0次透過光成分)を抑制することが可能となる。その結果、相互に直交するX及びY方向の配光の均質性と、拡散性能を更に向上させることが可能となる。 Further, according to the present embodiment, a plurality of microlenses 21 are arranged semi-regularly on the XY plane with reference to an irregular rectangular lattice having different lattice intervals Wx and Wy (initial arrangement state). ), The radius of curvature Rx, Ry, and the lens apex position 22 are changed (first and second variable arrangement states). As a result, a plurality of microlenses 21 can be continuously arranged on the surface of the diffuser plate 1 without gaps while ensuring the randomness of the surface shape of each microlens 21. Therefore, since the flat portion can be prevented from existing at the boundary portion of the adjacent microlens 21 as much as possible, the component (0th-order transmitted light component) of the incident light that is transmitted as it is without being scattered on the surface of the diffuser plate is suppressed. It becomes possible. As a result, the homogeneity of the light distribution in the X and Y directions orthogonal to each other and the diffusion performance can be further improved.
 <5.マイクロレンズの非球面形状の例>
 次に、本実施形態に係るマイクロレンズ21の表面形状が、異方性を有する非球面形状である例について説明する。
<5. Example of aspherical shape of microlens>
Next, an example in which the surface shape of the microlens 21 according to the present embodiment is an aspherical shape having anisotropy will be described.
 本実施形態では、マイクロレンズアレイ20の全体に亘って、共通の方向に異方性を有する複数のマイクロレンズ21を、矩形格子状に配列してもよい。異方性を有するマイクロレンズ21は、例えば、一方向(長手方向)の長さが該一方向と直交する他方向(短手方向)の長さよりも長い平面形状を有するマイクロレンズである。基材10のXY平面上において、各マイクロレンズ21の長手方向が同じ方向に向くように、異方性を有する複数のマイクロレンズ21を配列する。 In the present embodiment, a plurality of microlenses 21 having anisotropy in a common direction may be arranged in a rectangular grid pattern over the entire microlens array 20. The anisotropy microlens 21 is, for example, a microlens having a planar shape in which the length in one direction (longitudinal direction) is longer than the length in the other direction (short direction) orthogonal to the one direction. A plurality of anisotropic microlenses 21 are arranged on the XY plane of the base material 10 so that the longitudinal directions of the microlenses 21 face the same direction.
 これにより、投射面における拡散光の異方形状を制御することが可能になる。例えば、拡散板1において、マイクロレンズ21の長手方向の光の拡散幅を小さくし、短手方向の光の拡散幅を大きくする。これにより、拡散板1により拡散される光の異方形状を、投射面の形状に合わせて制御することができる。 This makes it possible to control the anisotropic shape of the diffused light on the projection surface. For example, in the diffuser plate 1, the diffusion width of light in the longitudinal direction of the microlens 21 is reduced, and the diffusion width of light in the lateral direction is increased. Thereby, the anisotropic shape of the light diffused by the diffuser plate 1 can be controlled according to the shape of the projection surface.
 以下では、図8~図11を参照して、個々のマイクロレンズ21の表面形状(三次元立体形状)が異方性を有する非球面形状である場合について、より詳細に説明する。マイクロレンズ21は、所定の方向に延伸した異方性を有する非球面形状を有する。この非球面形状としては、例えば、以下で説明する第1の非球面形状例(アナモルフィック形状)や、第2の非球面形状例(トーラス形状)などを用いることができる。 In the following, the case where the surface shape (three-dimensional three-dimensional shape) of each microlens 21 is an anisotropic aspherical shape will be described in more detail with reference to FIGS. 8 to 11. The microlens 21 has an aspherical shape having anisotropy extending in a predetermined direction. As the aspherical shape, for example, a first aspherical shape example (anamorphic shape) and a second aspherical shape example (torus shape) described below can be used.
 (1)第1の非球面形状例(アナモルフィック形状)
 まず、図8~図11を参照して、マイクロレンズ21の非球面形状の例(アナモルフィック形状)について説明する。図8は、アナモルフィック形状のマイクロレンズ21の平面形状を示す説明図である。図9は、アナモルフィック形状のマイクロレンズ21の立体形状を示す斜視図である。図10は、アナモルフィック形状の曲面を示す斜視図である。
(1) First aspherical shape example (anamorphic shape)
First, an example of the aspherical shape (anamorphic shape) of the microlens 21 will be described with reference to FIGS. 8 to 11. FIG. 8 is an explanatory view showing a planar shape of the anamorphic-shaped microlens 21. FIG. 9 is a perspective view showing the three-dimensional shape of the anamorphic-shaped microlens 21. FIG. 10 is a perspective view showing a curved surface having an anamorphic shape.
 図8及び図9に示すマイクロレンズ21は、いわゆるアナモルフィックレンズであり、その表面形状は、アナモルフィック形状の曲面を含む非球面形状である。図8に示すように、当該マイクロレンズ21の平面形状は、異方性を有する楕円形状である。当該楕円形状のY軸方向の長径がDyであり、X軸方向の短径がDxである。これらDx、Dyは、マイクロレンズ21のX方向及びY方向の開口径に相当する。図9に示すように、当該マイクロレンズ21の立体形状は、楕円形状の長軸方向及び短軸方向の各々に所定の曲率半径Rx、Ryを有する非球面形状の曲面からなる。かかるマイクロレンズ21は、Y軸方向に異方性を有する非球面形状となっている。 The microlens 21 shown in FIGS. 8 and 9 is a so-called anamorphic lens, and its surface shape is an aspherical shape including a curved surface of the anamorphic shape. As shown in FIG. 8, the planar shape of the microlens 21 is an anisotropy elliptical shape. The major axis of the elliptical shape in the Y-axis direction is Dy, and the minor axis in the X-axis direction is Dx. These Dx and Dy correspond to the aperture diameters of the microlens 21 in the X direction and the Y direction. As shown in FIG. 9, the three-dimensional shape of the microlens 21 is an aspherical curved surface having predetermined radius of curvature Rx and Ry in each of the major axis direction and the minor axis direction of the elliptical shape. The microlens 21 has an aspherical shape having anisotropy in the Y-axis direction.
 ここで、図10及び下記数式(1)を参照して、アナモルフィック形状のマイクロレンズ21の表面形状の設定方法について説明する。図10は、下記数式(1)で表される、アナモルフィック形状の曲面(非球面)を示す斜視図である。下記数式(1)は、アナモルフィック形状の曲面(非球面)を表す式の一例である。 Here, a method of setting the surface shape of the anamorphic microlens 21 will be described with reference to FIG. 10 and the following mathematical formula (1). FIG. 10 is a perspective view showing an anamorphic curved surface (aspherical surface) represented by the following mathematical formula (1). The following formula (1) is an example of a formula representing a curved surface (aspherical surface) having an anamorphic shape.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 なお、数式1において、各パラメータは以下のとおりである。
 Cx=1/Rx
 Cy=1/Ry
 Rx:X方向の曲率半径
 Ry:Y方向の曲率半径
 Kx:X方向のコーニック係数
 Ky:Y方向のコーニック係数
 Ax4,Ax6:X方向の4次、6次の非球面係数
 Ay4,Ay6:Y方向の4次、6次の非球面係数
In addition, in Equation 1, each parameter is as follows.
Cx = 1 / Rx
Cy = 1 / Ry
Rx: Radius of curvature in the X direction Ry: Radius of curvature in the Y direction Kx: Conic coefficient in the X direction Ky: Conic coefficient in the Y direction A x4 , A x6 : 4th and 6th aspherical coefficients in the X direction A y4 , A y6 : 4th and 6th aspherical coefficients in the Y direction
 図10に示すように、上記数式(1)で規定されるアナモルフィック形状の曲面から、XY平面上の楕円形状のX方向の短径がDxとなり、Y方向の長径がDyとなるように、曲面を切り出す。この切り出した一部の曲面形状を、マイクロレンズ21の曲面形状(アナモルフィック形状)に設定する。ここで、楕円形状の長径Dy、短径Dx、Y方向(長軸方向)の曲率半径Ry、及びX方向(短軸方向)の曲率半径Rxを、マイクロレンズ21ごとに、所定の変動率δの範囲内でランダムに変動させて、ばらつかせる。これにより、相互に異なるアナモルフィック形状からなる複数のマイクロレンズ21の表面形状を設定できる。 As shown in FIG. 10, from the anamorphic curved surface defined by the above mathematical formula (1), the minor axis of the elliptical shape on the XY plane in the X direction is Dx, and the major axis in the Y direction is Dy. , Cut out a curved surface. A part of the curved surface shape cut out is set to the curved surface shape (anamorphic shape) of the microlens 21. Here, the elliptical major axis Dy, the minor axis Dx, the radius of curvature Ry in the Y direction (major axis direction), and the radius of curvature Rx in the X direction (minor axis direction) are set to a predetermined fluctuation rate δ for each microlens 21. Randomly fluctuate within the range of to make it vary. Thereby, the surface shapes of a plurality of microlenses 21 having different anamorphic shapes can be set.
 (2)第2の非球面形状例(トーラス形状)
 次に、図11~図13を参照して、マイクロレンズ21の非球面形状の別の例(トーラス形状)について説明する。図11は、トーラス形状のマイクロレンズ21の平面形状を示す説明図である。図12は、トーラス形状のマイクロレンズ21の立体形状を示す斜視図である。図13は、トーラス形状の曲面を示す斜視図である。
(2) Second aspherical shape example (torus shape)
Next, another example (torus shape) of the aspherical shape of the microlens 21 will be described with reference to FIGS. 11 to 13. FIG. 11 is an explanatory view showing a planar shape of the torus-shaped microlens 21. FIG. 12 is a perspective view showing the three-dimensional shape of the torus-shaped microlens 21. FIG. 13 is a perspective view showing a torus-shaped curved surface.
 図11~図13に示すように、第2の非球面形状例に係るマイクロレンズ21の表面形状は、トーラス形状の一部の曲面を含む非球面形状である。トーラスは、円を回転して得られる回転面である。具体的には、図13に示すように、小円(半径:r)の外側に配置された回転軸(X軸)を中心として、大円(半径:R)の円周に沿って当該小円を回転させることにより、いわゆるドーナツ型の円環体が得られる。この円環体の表面(トーラス面)の曲面形状がトーラス形状である。このトーラス形状の外側部分を切り出すことにより、図12に示すようなトーラス形状のマイクロレンズ21の立体形状が得られる。 As shown in FIGS. 11 to 13, the surface shape of the microlens 21 according to the second aspherical shape example is an aspherical shape including a part of the curved surface of the torus shape. A torus is a surface of revolution obtained by rotating a circle. Specifically, as shown in FIG. 13, the small circle (radius: r) is centered on the rotation axis (X-axis) arranged outside the small circle (radius: r) along the circumference of the large circle (radius: R). By rotating the circle, a so-called donut-shaped torus is obtained. The curved surface shape of the surface (torus surface) of this annular body is a torus shape. By cutting out the outer portion of the torus shape, the three-dimensional shape of the torus-shaped microlens 21 as shown in FIG. 12 can be obtained.
 図11に示すように、トーラス形状のマイクロレンズ21の平面形状は、異方性を有する楕円形状である。当該楕円形状のY軸方向の長径がRであり、X軸方向の短径がrである。これらr、Rは、マイクロレンズ21のX方向及びY方向の開口径Dx、Dyに相当する。図12に示すように、当該マイクロレンズ21の立体形状は、楕円形状の長軸方向及び短軸方向の各々に所定の曲率半径R、rを有する非球面形状の曲面からなる。かかるマイクロレンズ21は、Y軸方向に異方性を有する非球面形状となっている。 As shown in FIG. 11, the planar shape of the torus-shaped microlens 21 is an elliptical shape having anisotropy. The major axis of the elliptical shape in the Y-axis direction is R, and the minor axis in the X-axis direction is r. These r and R correspond to the aperture diameters Dx and Dy of the microlens 21 in the X and Y directions. As shown in FIG. 12, the three-dimensional shape of the microlens 21 is an aspherical curved surface having predetermined radius of curvature R and r in each of the major axis direction and the minor axis direction of the elliptical shape. The microlens 21 has an aspherical shape having anisotropy in the Y-axis direction.
 ここで、図13及び下記数式(2)を参照して、トーラス形状のマイクロレンズ21の表面形状の設定方法について説明する。図13は、下記数式(2)で表される非球面の曲面を示す斜視図である。なお、数式2において、Rは大円半径であり、rは小円半径である。 Here, a method of setting the surface shape of the torus-shaped microlens 21 will be described with reference to FIG. 13 and the following mathematical formula (2). FIG. 13 is a perspective view showing an aspherical curved surface represented by the following mathematical formula (2). In Equation 2, R is the radius of the great circle and r is the radius of the small circle.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 図13に示すように、上記数式(2)で規定されるトーラス形状の曲面から、XY平面上の楕円形状のX方向の短径がrとなり、Y方向の長径がRとなるように、曲面を切り出す。この切り出した一部の曲面形状を、マイクロレンズ21の曲面形状(トーラス形状)に設定する。ここで、楕円形状の長径Dy、短径Dx、Y方向(長軸方向)の曲率半径R(レンズの曲率半径Ryに相当。)、及びX方向(短軸方向)の曲率半径r(レンズの曲率半径Rxに相当。)を、マイクロレンズ21ごとに、所定の変動率δの範囲内でランダムに変動させて、ばらつかせる。これにより、相互に異なるトーラス形状からなる複数のマイクロレンズ21の表面形状を設定できる。 As shown in FIG. 13, from the torus-shaped curved surface defined by the above mathematical formula (2), the curved surface is such that the minor axis of the elliptical shape on the XY plane in the X direction is r and the major axis in the Y direction is R. Cut out. A part of the curved surface shape cut out is set to the curved surface shape (torus shape) of the microlens 21. Here, the elliptical major axis Dy, the minor axis Dx, the radius of curvature R in the Y direction (major axis direction) (corresponding to the radius of curvature Ry of the lens), and the radius of curvature r in the X direction (minor axis direction) (of the lens). The radius of curvature Rx) is randomly varied within a predetermined fluctuation rate δ for each microlens 21 to be dispersed. Thereby, the surface shapes of a plurality of microlenses 21 having different torus shapes can be set.
 なお、本実施形態に係るマイクロレンズ21の表面形状(異方性を有する非球面形状)として、上記第1及び第2の非球面形状の例以外にも、例えば、楕円球体から切り出した非球面形状を用いることができる。 As the surface shape (aspherical shape having anisotropy) of the microlens 21 according to the present embodiment, in addition to the examples of the first and second aspherical shapes, for example, an aspherical surface cut out from an elliptical sphere. Shapes can be used.
 <6.マイクロレンズの設計方法>
 次に、図14~図18を参照して、本実施形態に係るマイクロレンズの設計方法について説明する。図14は、本実施形態に係るマイクロレンズの設計方法を示すフローチャートである。
<6. How to design a microlens>
Next, a method of designing a microlens according to the present embodiment will be described with reference to FIGS. 14 to 18. FIG. 14 is a flowchart showing a method of designing a microlens according to the present embodiment.
 (S10)グリッドパラメータの設定
 図14に示すように、まず、複数のマイクロレンズ21をXY平面上に配列する基準となる矩形格子(グリッド)に関する各種のパラメータ(グリッドパラメータ)を設定する(S10)。グリッドパラメータは、例えば、以下のパラメータを含む。
 Wx_k[μm]:X方向の格子間隔Wxの基準値(X方向のグリッドサイズ)
 Wy_k[μm]:Y方向の格子間隔Wyの基準値(Y方向のグリッドサイズ)
 δWx [±%]:X方向の格子間隔Wxの変動率(X方向のWxの許容変動範囲)
 δWy [±%]:Y方向の格子間隔Wyの変動率(Y方向のWyの許容変動範囲)
 δEcx[±%]:X方向のレンズ頂点位置の偏心率(X方向の偏心範囲)
 δEcy[±%]:Y方向のレンズ頂点位置の偏心率(Y方向の偏心範囲)
(S10) Setting of grid parameters As shown in FIG. 14, first, various parameters (grid parameters) relating to a rectangular grid (grid) as a reference for arranging a plurality of microlenses 21 on an XY plane are set (S10). .. The grid parameters include, for example, the following parameters.
Wx_k [μm]: Reference value of grid spacing Wx in the X direction (grid size in the X direction)
Wy_k [μm]: Reference value of grid spacing Wy in the Y direction (grid size in the Y direction)
δWx [±%]: Fluctuation rate of grid spacing Wx in the X direction (allowable fluctuation range of Wx in the X direction)
δWy [±%]: Fluctuation rate of grid spacing Wy in the Y direction (allowable fluctuation range of Wy in the Y direction)
δEcx [±%]: Eccentricity of the lens apex position in the X direction (eccentric range in the X direction)
δEcy [±%]: Eccentricity of the lens apex position in the Y direction (eccentric range in the Y direction)
 具体的には、グリッドパラメータの設定値は、例えば以下の数値に設定することができる。
  Wx_k:120μm
  Wy_k:90μm
  δWx :±20%
  δWy :±10%
  δEcx:±10%
  δEcy:±10%
Specifically, the setting value of the grid parameter can be set to the following numerical values, for example.
Wx_k: 120 μm
Wy_k: 90 μm
δWx: ± 20%
δWy: ± 10%
δEcx: ± 10%
δEcy: ± 10%
 (S12)グリッドの生成
 次いで、S10で設定されたグリッドパラメータに基づいて、X及びY方向に配列される複数の矩形格子を生成する(S12)。図15は、本ステップS12において生成された矩形格子を示す説明図である。図15に示すように、X及びY方向の格子間隔Wx、Wyがランダムに変動した不規則な矩形格子が設定される。X方向の格子間隔Wxは、X方向に隣接する格子線31の間隔である。Y方向の格子間隔Wyは、Y方向に隣接する格子線32の間隔である。
(S12) Generation of grid Next, a plurality of rectangular grids arranged in the X and Y directions are generated based on the grid parameters set in S10 (S12). FIG. 15 is an explanatory diagram showing a rectangular grid generated in this step S12. As shown in FIG. 15, an irregular rectangular grid in which the grid spacing Wx and Wy in the X and Y directions fluctuate randomly is set. The grid spacing Wx in the X direction is the spacing between grid lines 31 adjacent to the X direction. The grid spacing Wy in the Y direction is the spacing between grid lines 32 adjacent to the Y direction.
 X方向の格子間隔Wxは、基準格子間隔Wx_k[μm]を変動率δWx[±%]でランダムに変動させた値に設定される。同様に、Y方向の格子間隔Wyは、基準格子間隔Wy_k[μm]を変動率δWy[±%]でランダムに変動させた値に設定される。例えば、グリッドパラメータの設定値が上記具体例の数値である場合(Wx_k=120μm、δWx=±20%)、格子間隔Wxは、120μm(Wx_k)を中心として、96μm~144μm(120μmの80%~120%の値)の範囲内でランダムな値に設定される。格子間隔Wyについても同様に設定される。この結果、図15に示すように、X及びY方向に配列される複数の矩形格子の格子間隔Wx、Wyは、相互に異なる値に設定される。 The grid spacing Wx in the X direction is set to a value obtained by randomly varying the reference grid spacing Wx_k [μm] at the volatility δWx [±%]. Similarly, the grid spacing Wy in the Y direction is set to a value obtained by randomly varying the reference grid spacing Wy_k [μm] at a volatility δWy [±%]. For example, when the set value of the grid parameter is the numerical value of the above specific example (Wx_k = 120 μm, δWx = ± 20%), the grid spacing Wx is 96 μm to 144 μm (80% of 120 μm) centered on 120 μm (Wx_k). It is set to a random value within the range of 120%). The grid spacing Wy is also set in the same manner. As a result, as shown in FIG. 15, the lattice spacings Wx and Wy of the plurality of rectangular lattices arranged in the X and Y directions are set to different values.
 (S14)グリッド中心の偏心処理
 その後、各矩形格子の中心点(以下、「グリッド中心」という。)の位置をランダムに変動させる偏心処理を実行する(S14)。図16は、本ステップS14においてグリッド中心が偏心された矩形格子を示す説明図である。
(S14) Eccentric processing of the center of the grid After that, an eccentric processing of randomly changing the position of the center point (hereinafter, referred to as “grid center”) of each rectangular grid is executed (S14). FIG. 16 is an explanatory diagram showing a rectangular grid whose grid center is eccentric in this step S14.
 図16に示すように、偏心処理前のグリッド中心は、各矩形格子の2つの対角線の交点の座標位置(前述の矩形格子の中心点23)に配置されている。偏心処理により、グリッド中心は、偏心率δEcx、偏心率δEcyを用いてランダムに計算された偏心量Ecx、Ecyに対応するX,Y座標位置に移動する。例えば、グリッドパラメータの設定値が上記具体例の数値である場合(δEcx=±10%、δEcy=±10%)、偏心量Ecx、Ecyは、各格子間隔Wx、Wyの90%~110%の範囲内の値に設定される。そして、この偏心量Ecx、Ecyに相当する距離だけ、X方向及びY方向にグリッド中心を移動させる。移動後のグリッド中心の位置は、前述のマイクロレンズ21の頂点22の平面位置(レンズ頂点位置22)に相当する。この偏心処理を各矩形格子について繰り返すことにより、各矩形格子のグリッド中心は、各矩形格子内において偏心率δEcx、偏心率δEcyの範囲内でランダムな位置に偏心される。 As shown in FIG. 16, the grid center before the eccentric processing is arranged at the coordinate position of the intersection of the two diagonal lines of each rectangular grid (the center point 23 of the rectangular grid described above). By the eccentric processing, the center of the grid moves to the X and Y coordinate positions corresponding to the eccentricities Ecx and Ecy randomly calculated using the eccentricity δEcx and the eccentricity δEcy. For example, when the set value of the grid parameter is the numerical value of the above specific example (δEcx = ± 10%, δEcy = ± 10%), the eccentricity Ecx and Ecy are 90% to 110% of the lattice spacing Wx and Wy. Set to a value within the range. Then, the center of the grid is moved in the X and Y directions by a distance corresponding to the eccentricities Ecx and Ecy. The position of the center of the grid after movement corresponds to the plane position (lens apex position 22) of the apex 22 of the microlens 21 described above. By repeating this eccentric processing for each rectangular lattice, the grid center of each rectangular lattice is eccentric to random positions within the range of the eccentricity δEcx and the eccentricity δEcy in each rectangular lattice.
 (S16~S24)マイクロレンズの生成
 次いで、上記S12で生成された矩形格子と、S14で偏心されたグリッド中心に基づいて、各矩形格子に対応するマイクロレンズ21を配置する。具体的には、まず、マイクロレンズ21の表面形状(レンズ面)の基本形状を選択する(S16)。次いで、選択された基本形状に関するパラメータ(レンズパラメータ)を設定する(S18、S20)。その後、設定されたレンズパラメータに基づいて、各矩形格子におけるマイクロレンズ21の形状を決定し、マイクロレンズ21の形状を表すZ座標位置を計算して、マイクロレンズ21を生成する(S22、S24)。
(S16 to S24) Generation of Microlenses Next, the microlenses 21 corresponding to each rectangular grid are arranged based on the rectangular grid generated in S12 and the grid center eccentric in S14. Specifically, first, the basic shape of the surface shape (lens surface) of the microlens 21 is selected (S16). Next, parameters (lens parameters) related to the selected basic shape are set (S18, S20). After that, the shape of the microlens 21 in each rectangular lattice is determined based on the set lens parameters, and the Z coordinate position representing the shape of the microlens 21 is calculated to generate the microlens 21 (S22, S24). ..
 具体的には、本実施形態では、マイクロレンズ21の基本形状(以下、レンズ形状という。)として、例えば、アナモルフィック形状又はトーラス形状を選択する(S16)。しかし、かかる例に限定されず、レンズ形状として、他の種類の非球面形状又は球面形状を選択できるようにしてもよい。 Specifically, in the present embodiment, for example, an anamorphic shape or a torus shape is selected as the basic shape of the microlens 21 (hereinafter referred to as a lens shape) (S16). However, the present invention is not limited to this, and other types of aspherical shapes or spherical shapes may be selected as the lens shape.
 S16においてアナモルフィック形状が選択された場合、アナモルフィック形状に関する各種のレンズパラメータを設定する(S18)。アナモルフィック形状のレンズパラメータは、例えば、以下のパラメータを含む。
 Rx_k[μm]:X方向の曲率半径Rxの基準値
 Ry_k[μm]:Y方向の曲率半径Ryの基準値
 δRx [±%]:X方向の曲率半径Rxの変動率(X方向のRxの許容変動範囲)
 δRy [±%]:Y方向の曲率半径Ryの変動率(Y方向のRyの許容変動範囲)
When the anamorphic shape is selected in S16, various lens parameters related to the anamorphic shape are set (S18). The anamorphic shape lens parameters include, for example, the following parameters.
Rx_k [μm]: Reference value of radius of curvature Rx in the X direction Ry_k [μm]: Reference value of radius of curvature Ry in the Y direction δRx [±%]: Fluctuation rate of radius of curvature Rx in the X direction (allowable for Rx in the X direction) Fluctuation range)
δRy [±%]: Volatility of radius of curvature Ry in the Y direction (allowable fluctuation range of Ry in the Y direction)
 具体的には、アナモルフィック形状のレンズパラメータの設定値は、例えば以下の数値に設定することができる。
  Rx_k:240μm
  Ry_k:200μm
  δRx :±10%
  δRy :±10%
Specifically, the set value of the lens parameter of the anamorphic shape can be set to the following numerical values, for example.
Rx_k: 240 μm
Ry_k: 200 μm
δRx: ± 10%
δRy: ± 10%
 次いで、S18で設定されたレンズパラメータに基づいて、アナモルフィック形状のマイクロレンズ21の表面形状を生成する(S22)。詳細には、レンズパラメータに基づいて、各マイクロレンズ21の表面形状を決定し、各矩形格子上に各マイクロレンズ21を配置する。即ち、アナモルフィック形状のレンズ表面の各点のZ座標値を計算する。 Next, the surface shape of the anamorphic microlens 21 is generated based on the lens parameters set in S18 (S22). Specifically, the surface shape of each microlens 21 is determined based on the lens parameters, and each microlens 21 is arranged on each rectangular lattice. That is, the Z coordinate value of each point on the anamorphic lens surface is calculated.
 図17は、本ステップS22において生成された複数のマイクロレンズ21を示す説明図である。図17に示すように、S14で偏心されたグリッド中心位置にレンズ頂点位置22が一致するように、各マイクロレンズ21が各矩形格子上に配置される。また、各マイクロレンズ21のX及びY方向の曲率半径Rx、Ryは、ランダムに変動している。このため、相互に異なる表面形状(アナモルフィック形状)を有する複数のマイクロレンズ21が、XY平面上に相互に重なり合うように配置される。 FIG. 17 is an explanatory diagram showing a plurality of microlenses 21 generated in this step S22. As shown in FIG. 17, each microlens 21 is arranged on each rectangular grid so that the lens apex position 22 coincides with the grid center position eccentric in S14. Further, the radius of curvature Rx and Ry of each microlens 21 in the X and Y directions fluctuate randomly. Therefore, a plurality of microlenses 21 having different surface shapes (anamorphic shapes) are arranged so as to overlap each other on the XY plane.
 X方向の曲率半径Rxは、基準曲率半径Rx_k[μm]を変動率δRx[±%]でランダムに変動させた値に設定される。同様に、Y方向の曲率半径Ryは、基準曲率半径Ry_k[μm]を変動率δRy[±%]でランダムに変動させた値に設定される。例えば、レンズパラメータの設定値が上記具体例の数値である場合(Rx_k=240μm、δRx=±10%)、曲率半径Rxは、240μm(Rx_k)を中心として、216μm~264μm(240μmの90%~110%の値)の範囲内でランダムな値に設定される。曲率半径Ryについても同様に設定される。この結果、図17に示すように、X及びY方向に配列される複数のマイクロレンズ21の表面形状(アナモルフィック形状)は、相互に異なる形状になる。 The radius of curvature Rx in the X direction is set to a value obtained by randomly varying the reference radius of curvature Rx_k [μm] at the volatility δRx [±%]. Similarly, the radius of curvature Ry in the Y direction is set to a value obtained by randomly varying the reference radius of curvature Ry_k [μm] with a volatility δRy [±%]. For example, when the set value of the lens parameter is the numerical value of the above specific example (Rx_k = 240 μm, δRx = ± 10%), the radius of curvature Rx is 216 μm to 264 μm (90% of 240 μm) centered on 240 μm (Rx_k). It is set to a random value within the range of 110%). The radius of curvature Ry is also set in the same manner. As a result, as shown in FIG. 17, the surface shapes (anamorphic shapes) of the plurality of microlenses 21 arranged in the X and Y directions are different from each other.
 一方、上記S16においてトーラス形状が選択された場合、トーラス形状に関する各種のレンズパラメータを設定する(S20)。トーラス形状のレンズパラメータは、例えば、以下のパラメータを含む。なお、小円半径r及び大円半径Rは、図11~図13に示すトーラス形状を規定する曲率半径である。
 r_k[μm]:小円半径(X方向の曲率半径Rx)の基準値
 R_k[μm]:大円半径(Y方向の曲率半径Ry)の基準値
 δRx [±%]:小円半径(X方向の曲率半径Rx)の変動率(X方向のrの許容変動範囲)
 δRy [±%]:大円半径(Y方向の曲率半径Ry)の変動率(Y方向のRの許容変動範囲)
On the other hand, when the torus shape is selected in S16, various lens parameters related to the torus shape are set (S20). The torus-shaped lens parameters include, for example, the following parameters. The small circle radius r and the great circle radius R are radii of curvature that define the torus shape shown in FIGS. 11 to 13.
r_k [μm]: Reference value of small circle radius (radius of curvature Rx in X direction) R_k [μm]: Reference value of great circle radius (radius of curvature Ry in Y direction) δRx [±%]: Small circle radius (X direction) Rate of fluctuation of radius of curvature Rx) (allowable fluctuation range of r in the X direction)
δRy [±%]: Volatility of great circle radius (radius of curvature Ry in Y direction) (allowable fluctuation range of R in Y direction)
 具体的には、トーラス形状のレンズパラメータの設定値は、例えば以下の数値に設定することができる。
  Rx_k:240μm
  Ry_k:200μm
  δRx :±10%
  δRy :±10%
Specifically, the set value of the lens parameter of the torus shape can be set to the following numerical values, for example.
Rx_k: 240 μm
Ry_k: 200 μm
δRx: ± 10%
δRy: ± 10%
 次いで、S20で設定されたレンズパラメータに基づいて、トーラス形状のマイクロレンズ21の表面形状を生成する(S24)。詳細には、レンズパラメータに基づいて、各マイクロレンズ21の表面形状を決定し、各矩形格子上に各マイクロレンズ21を配置する。即ち、トーラス形状のレンズ表面の各点のZ座標値を計算する。本ステップS24のトーラス形状のレンズ生成処理は、上記S22のアナモルフィック形状のレンズ生成処理と同様であるので、詳細説明は省略する。 Next, the surface shape of the torus-shaped microlens 21 is generated based on the lens parameters set in S20 (S24). Specifically, the surface shape of each microlens 21 is determined based on the lens parameters, and each microlens 21 is arranged on each rectangular lattice. That is, the Z coordinate value of each point on the torus-shaped lens surface is calculated. Since the torus-shaped lens generation process in step S24 is the same as the anamorphic-shaped lens generation process in S22, detailed description thereof will be omitted.
 (S26)レンズパターンの出力
 その後、上記S20又はS24で生成されたマイクロレンズ21の形状及び配置を表すレンズパターンを出力する(S26)。例えば、当該レンズパターンを表すXYZ座標値のファイルや、当該レンズパターンのZ座標値を濃淡階調で表現する画像ファイルが出力される。
(S26) Output of lens pattern After that, a lens pattern representing the shape and arrangement of the microlens 21 generated in S20 or S24 is output (S26). For example, a file of XYZ coordinate values representing the lens pattern and an image file expressing the Z coordinate values of the lens pattern in shade gradation are output.
 図18は、本実施形態に係る設計方法で設計されたレンズパターンを表す画像である。図18に示すように、XY平面上に複数のマイクロレンズ21が、不規則な矩形格子状に配列されている。各マイクロレンズ21のレンズ頂点位置22はランダムに偏心しており、かつ、各マイクロレンズ21の曲率半径Rx、Ryもランダムに変動している。 FIG. 18 is an image showing a lens pattern designed by the design method according to the present embodiment. As shown in FIG. 18, a plurality of microlenses 21 are arranged in an irregular rectangular lattice pattern on the XY plane. The lens apex position 22 of each microlens 21 is randomly eccentric, and the radii of curvature Rx and Ry of each microlens 21 also randomly fluctuate.
 このため、複数のマイクロレンズ21は相互に異なる非球面形状(例えば、アナモルフィック形状又はトーラス形状)を有していることがわかる。また、複数のマイクロレンズ21は相互に異なる平面形状を有している。各マイクロレンズ21の平面形状は、概略的には、上記矩形格子に沿った略矩形状を有するが、個々にばらついた形状となっている。マイクロレンズ21間の境界線のうち四辺部分は概ね直線で構成されているが、4つのコーナー部分は曲線で構成されている。 Therefore, it can be seen that the plurality of microlenses 21 have different aspherical shapes (for example, anamorphic shape or torus shape). Further, the plurality of microlenses 21 have different planar shapes from each other. The planar shape of each microlens 21 generally has a substantially rectangular shape along the rectangular lattice, but has a shape that varies from one to another. Of the boundary lines between the microlenses 21, the four side portions are generally composed of straight lines, but the four corner portions are composed of curved lines.
 さらに、複数のマイクロレンズ21は、相互に隙間なく重なり合うように配置されており、相隣接するマイクロレンズ21間の境界部分に平坦部が存在していない。 Further, the plurality of microlenses 21 are arranged so as to overlap each other without a gap, and there is no flat portion at the boundary portion between the microlenses 21 adjacent to each other.
 以上のように、本実施形態に係るマイクロレンズ21の設計方法によれば、上述した不規則な矩形格子を基準として複数のマイクロレンズ21を準規則的に配置し、かつ、マイクロレンズ21の各変動要素(格子間隔Wx、Wy、曲率半径Rx、Ry、レンズ頂点位置22等)をランダムに変動させる。これにより、XY平面上に複数のマイクロレンズアレイ20を、相互に隙間なく連続的に配列しつつ、各マイクロレンズ21に対して相互に異なる拡散特性を付与することができる。かかる構成のマイクロレンズアレイ20は、レンズ表面構造に依存するマクロ光量変動や、回折光による光量変化が小さく、均質性の高い多様な配光制御性を有する。 As described above, according to the method for designing the microlens 21 according to the present embodiment, a plurality of microlenses 21 are arranged semi-regularly with reference to the above-mentioned irregular rectangular lattice, and each of the microlenses 21 is arranged. The variable elements (lattice spacing Wx, Wy, radius of curvature Rx, Ry, lens apex position 22, etc.) are randomly changed. As a result, it is possible to impart different diffusion characteristics to each of the microlenses 21 while continuously arranging the plurality of microlens arrays 20 on the XY plane without any gaps. The microlens array 20 having such a configuration has a variety of highly homogeneous light distribution controllability, with small macro light amount fluctuations depending on the lens surface structure and light amount changes due to diffracted light.
 <7.マイクロレンズの製造方法>
 次に、図19を参照して、本実施形態に係る拡散板1の製造方法について説明する。図19は、本実施形態に係る拡散板1の製造方法を示すフローチャートである。
<7. Manufacturing method of micro lens>
Next, a method for manufacturing the diffuser plate 1 according to the present embodiment will be described with reference to FIG. FIG. 19 is a flowchart showing a manufacturing method of the diffusion plate 1 according to the present embodiment.
 図19に示すように、本実施形態に係る拡散板1の製造方法では、まず、基材(マスタ原盤の基材又は拡散板1の基材10)が洗浄される(ステップS101)。基材は、例えば、ガラスロールのようなロール状の基材であってもよいし、ガラスウェハ又はシリコンウェハのような平板状の基材であってもよい。 As shown in FIG. 19, in the method for manufacturing the diffusion plate 1 according to the present embodiment, first, the base material (the base material of the master master or the base material 10 of the diffusion plate 1) is washed (step S101). The base material may be, for example, a roll-shaped base material such as a glass roll, or a flat plate-shaped base material such as a glass wafer or a silicon wafer.
 次いで、洗浄後の基材の表面上にレジストが形成される(ステップS103)。例えば、金属酸化物を用いたレジストにより、レジスト層を形成することができる。具体的には、ロール形状の基材に対しては、レジストをスプレイ塗布又はディッピング処理することにより、レジスト層を形成することができる。一方、平板状の基材に対しては、レジストを各種コーティング処理することにより、レジスト層を形成することができる。なお、レジストとしては、ポジ型光反応レジストを用いてもよいし、ネガ型光反応レジストを用いてもよい。また、基材とレジストとの密着性を高めるために、カップリング剤を使用してもよい。 Next, a resist is formed on the surface of the base material after cleaning (step S103). For example, a resist layer can be formed by a resist using a metal oxide. Specifically, a resist layer can be formed on a roll-shaped substrate by spray-coating or dipping the resist. On the other hand, a resist layer can be formed on a flat substrate by applying various coating treatments to the resist. As the resist, a positive type photoreactive resist may be used, or a negative type photoreactive resist may be used. Further, a coupling agent may be used in order to improve the adhesion between the base material and the resist.
 さらに、マイクロレンズアレイ20の形状に対応するパターンを用いて、レジスト層が露光される(ステップS105)。かかる露光処理は、例えば、グレイスケールマスクを用いた露光、複数のグレイスケールマスクの重ね合わせによる多重露光、又は、ピコ秒パルスレーザもしくはフェムト秒パルスレーザ等を用いたレーザ露光など、公知の露光方法を適宜適用すればよい。 Further, the resist layer is exposed using a pattern corresponding to the shape of the microlens array 20 (step S105). Such an exposure process is a known exposure method such as exposure using a gray scale mask, multiple exposure by superimposing a plurality of gray scale masks, or laser exposure using a picosecond pulse laser, a femtosecond pulse laser, or the like. May be applied as appropriate.
 その後、露光後のレジスト層が現像される(S107)。かかる現像処理により、レジスト層にパターンが形成される。レジスト層の材質に応じて適切な現像液を用いることで、現像処理を実行することができる。例えば、レジスト層が金属酸化物を用いたレジストで形成されている場合、無機又は有機アルカリ溶液を用いることで、レジスト層をアルカリ現像することができる。 After that, the exposed resist layer is developed (S107). By such a developing process, a pattern is formed on the resist layer. The developing process can be executed by using an appropriate developer depending on the material of the resist layer. For example, when the resist layer is formed of a resist using a metal oxide, the resist layer can be alkaline-developed by using an inorganic or organic alkaline solution.
 次いで、現像後のレジスト層を用いてスパッタ処理又はエッチング処理することにより(S109)、表面にマイクロレンズアレイ20の形状が形成されたマスタ原盤が完成する(S111)。具体的には、パターンが形成されたレジスト層をマスクとして、ガラス基材をガラスエッチングすることで、ガラスマスタを製造することができる。または、パターンが形成されたレジスト層にNiスパッタ又はニッケルめっき(NED処理)を行い、パターンが転写されたニッケル層を形成した後、基材を剥離することで、メタルマスタを製造することができる。例えば、膜厚50nm程度のNiスパッタ、又は膜厚100μm~200μmのニッケルめっき(例えば、スルファミン酸Ni浴)等によって、レジストのパターンが転写されたニッケル層を形成することで、メタルマスタ原盤を製造することができる。 Next, by sputtering or etching using the developed resist layer (S109), a master master with the shape of the microlens array 20 formed on the surface is completed (S111). Specifically, a glass master can be manufactured by glass-etching a glass base material using a resist layer on which a pattern is formed as a mask. Alternatively, a metal master can be manufactured by performing Ni sputtering or nickel plating (NED treatment) on the resist layer on which the pattern is formed to form a nickel layer on which the pattern is transferred, and then peeling off the base material. .. For example, a metal master master is manufactured by forming a nickel layer to which a resist pattern is transferred by Ni sputtering having a film thickness of about 50 nm or nickel plating having a film thickness of 100 μm to 200 μm (for example, a Ni bath with sulfamic acid). can do.
 さらに、上記S111で完成したマスタ原盤(例えば、ガラスマスタ原盤、メタルマスタ原盤)を用いて、樹脂フィルム等にパターンを転写(インプリント)することで、表面にマイクロレンズアレイ20の反転形状が形成されたソフトモールドが作成される(S113)。 Further, by transferring (imprinting) a pattern on a resin film or the like using the master master (for example, glass master master, metal master master) completed in S111, an inverted shape of the microlens array 20 is formed on the surface. The soft mold is created (S113).
 その後、ソフトモールドを用いて、ガラス基板又はフィルム基材等に対して、マイクロレンズアレイ20のパターンを転写し(S115)、さらに、必要に応じて保護膜、反射防止膜等を成膜することにより(S117)、本実施形態に係る拡散板1が製造される。 Then, using a soft mold, the pattern of the microlens array 20 is transferred to a glass substrate, a film substrate, or the like (S115), and a protective film, an antireflection film, or the like is further formed as necessary. (S117), the diffuser plate 1 according to the present embodiment is manufactured.
 なお、上記では、マスタ原盤(S111)を用いてソフトモールドを製造(S113)した後に、当該ソフトモールドを用いた転写により拡散板1を製造(S115)する例について説明した。しかし、かかる例に限定されず、マイクロレンズアレイ20の反転形状が形成されたマスタ原盤(例えば無機ガラス原盤)を製造し、当該マスタ原盤を用いたインプリントにより拡散板1を製造してもよい。例えば、PET(PolyEthylene Terephthalate)又はPC(PolyCarbonate)からなる基材に、アクリル系光硬化樹脂を塗布し、塗布したアクリル系光硬化樹脂にマスタ原盤のパターンを転写し、アクリル系光硬化樹脂をUV硬化させることで、拡散板1を製造することができる。 In the above description, an example in which a soft mold is manufactured (S113) using the master master (S111) and then the diffusion plate 1 is manufactured (S115) by transfer using the soft mold has been described. However, the present invention is not limited to this, and a master master (for example, an inorganic glass master) in which the inverted shape of the microlens array 20 is formed may be manufactured, and the diffusion plate 1 may be manufactured by imprinting using the master master. .. For example, an acrylic photo-curing resin is applied to a base material made of PET (PolyEthylene Terephthalate) or PC (PolyCarbonate), the pattern of the master master is transferred to the applied acrylic photo-curing resin, and the acrylic photo-curing resin is UV. By curing, the diffuser plate 1 can be manufactured.
 一方、ガラス基材自体に対して直接加工を施して、拡散板1を製造する場合には、ステップS107における現像処理に引き続き、CF等の公知の化合物を用いて基材10に対してドライエッチング処理を施し(S119)、その後、必要に応じて保護膜、反射防止膜等を成膜する(S121)ことにより、本実施形態に係る拡散板1が製造される。 On the other hand, when the diffusion plate 1 is manufactured by directly processing the glass base material itself, the base material 10 is dried using a known compound such as CF 4 following the development treatment in step S107. The diffusion plate 1 according to the present embodiment is manufactured by performing an etching process (S119) and then forming a protective film, an antireflection film, or the like as needed (S121).
 なお、図19に示した製造方法は、あくまでも一例であって、拡散板の製造方法は、上記の例に限定されない。 The manufacturing method shown in FIG. 19 is merely an example, and the manufacturing method of the diffusion plate is not limited to the above example.
 <8.拡散板1の適用例>
 次に、本実施形態に係る拡散板1の適用例について説明する。
<8. Application example of diffuser plate 1>
Next, an application example of the diffusion plate 1 according to the present embodiment will be described.
 以上説明したような拡散板1は、その機能を実現するために光を拡散させる必要がある装置に対して、適宜実装することが可能である。かかる装置としては、例えば、各種のディスプレイ(例えば、LED、有機ELディスプレイ)等の表示装置や、プロジェクタ等の投影装置、各種の照明装置を挙げることができる。 The diffuser plate 1 as described above can be appropriately mounted on a device that needs to diffuse light in order to realize its function. Examples of such a device include display devices such as various displays (for example, LEDs and organic EL displays), projection devices such as projectors, and various lighting devices.
 例えば、拡散板1は、液晶表示装置のバックライト、拡散板一体化レンズ等に適用することも可能であり、光整形の用途にも適用可能である。また、拡散板1は、投影装置の透過スクリーン、フレネルレンズ、反射スクリーン等にも適用可能である。また、拡散板1は、スポット照明やベース照明等に利用される各種の照明装置や、各種の特殊ライティングや、中間スクリーンや最終スクリーン等の各種のスクリーン等に適用することも可能である。さらに、拡散板1は、光学装置における光源光の拡散制御などの用途にも適用可能であり、LED光源装置の配光制御、レーザ光源装置の配光制御、各種ライトバルブ系への入射配光制御等にも適用できる。 For example, the diffuser plate 1 can be applied to a backlight of a liquid crystal display device, a diffuser plate integrated lens, and the like, and can also be applied to an application of optical shaping. The diffuser plate 1 can also be applied to a transmission screen, a Fresnel lens, a reflection screen, and the like of a projection device. Further, the diffuser plate 1 can be applied to various lighting devices used for spot lighting, base lighting and the like, various special lightings, various screens such as an intermediate screen and a final screen, and the like. Further, the diffuser plate 1 can also be applied to applications such as diffusion control of light source light in an optical device, such as light distribution control of an LED light source device, light distribution control of a laser light source device, and incident light distribution to various light valve systems. It can also be applied to control and the like.
 なお、拡散板1が適用される装置は、上記の適用例に限定されず、光の拡散を利用する装置であれば、任意の公知の装置に対しても適用可能である。 The device to which the diffusion plate 1 is applied is not limited to the above application example, and can be applied to any known device as long as it is a device that utilizes light diffusion.
 次に、本発明の実施例に係る拡散板について説明する。なお、以下の実施例は、あくまでも本発明に係る拡散板の効果や実施可能性を示すための一例にすぎず、本発明は以下の実施例に限定されるものではない。 Next, the diffusion plate according to the embodiment of the present invention will be described. The following examples are merely examples for showing the effect and feasibility of the diffusion plate according to the present invention, and the present invention is not limited to the following examples.
 マイクロレンズアレイの表面構造を変更しつつ、以下で説明する製造方法により、実施例及び比較例に係る拡散板を製造した。 While changing the surface structure of the microlens array, the diffuser plates according to Examples and Comparative Examples were manufactured by the manufacturing method described below.
 具体的には、まず、ガラス基材を洗浄した後、ガラス基材の一方の表面(主面)に、光反応レジストを2μm~15μmのレジスト厚で塗布した。光反応レジストとしては、例えば、PMER-LA900(東京応化工業社製)、又はAZ4620(登録商標)(AZエレクトロニックマテリアルズ社製)などのポジ型光反応レジストを用いた Specifically, first, after cleaning the glass base material, a photoreactive resist was applied to one surface (main surface) of the glass base material with a resist thickness of 2 μm to 15 μm. As the photoreactive resist, for example, a positive photoreactive resist such as PMER-LA900 (manufactured by Tokyo Ohka Kogyo Co., Ltd.) or AZ4620 (registered trademark) (manufactured by AZ Electronic Materials Co., Ltd.) was used.
 次に、波長405nmのレーザを用いるレーザ描画装置にて、ガラス基材上のレジストにパターンを描画して、レジスト層を露光した。なお、g線を用いたステッパ露光装置にて、ガラス基材上のレジストにマスク露光を行うことで、レジスト層を露光してもよい。 Next, a pattern was drawn on the resist on the glass substrate with a laser drawing apparatus using a laser having a wavelength of 405 nm, and the resist layer was exposed. The resist layer may be exposed by performing mask exposure on the resist on the glass substrate with a stepper exposure apparatus using g-rays.
 続いて、レジスト層を現像することで、レジストにパターンを形成した。現像液としては、例えば、NMD-W(東京応化工業社製)、又はPMER P7G(東京応化工業社製)などの水酸化テトラメチルアンモニウム(Tetramethylammonium hydroxide:TMAH)溶液を用いた。 Subsequently, a pattern was formed on the resist by developing the resist layer. As the developing solution, for example, a tetramethylammonium hydroxide (TMAH) solution such as NMD-W (manufactured by Tokyo Ohka Kogyo Co., Ltd.) or PMER P7G (manufactured by Tokyo Ohka Kogyo Co., Ltd.) was used.
 次に、パターンが形成されたレジストを用いて、ガラス基材をエッチングすることにより、拡散板を製造した。具体的には、Arガス又はCFガスを用いたガラスエッチングによって、レジストのパターンをガラス基材に形成することで、拡散板を製造した。 Next, a diffuser plate was manufactured by etching the glass substrate with the resist on which the pattern was formed. Specifically, a diffusion plate was manufactured by forming a resist pattern on a glass substrate by glass etching using Ar gas or CF 4 gas.
 表1は、上記のように製造した実施例及び比較例に係る拡散板に関し、マイクロレンズアレイの表面構造の設計条件と、当該拡散板による配光の均質性の評価結果を示す。 Table 1 shows the design conditions of the surface structure of the microlens array and the evaluation result of the homogeneity of the light distribution by the diffuser plate with respect to the diffuser plates according to the examples and comparative examples manufactured as described above.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1に示す各実施例及び比較例では、上述した図14~図18で示す設計方法により、マイクロレンズアレイを設計した。この際、表1に示すグリッドパラメータ(Wx_k、Wy_k、δWx、δWy、δEcx、δEcy)やレンズパラメータ(Rx_k、Ry_k、δRx、δRy)等の各種パラメータを適宜変更して、相異なるマイクロレンズの表面形状のパターンを生成した。そして、各実施例及び比較例に係るマイクロレンズの形状及び配置を表すレンズパターンを出力した。このレンズパターンを用いて、上記製造方法により各実施例及び比較例に係る拡散板を製造した。 In each of the examples and comparative examples shown in Table 1, the microlens array was designed by the design method shown in FIGS. 14 to 18 described above. At this time, various parameters such as grid parameters (Wx_k, Wy_k, δWx, δWy, δEcx, δEcy) and lens parameters (Rx_k, Ry_k, δRx, δRy) shown in Table 1 are appropriately changed to surface different microlenses. A shape pattern was generated. Then, a lens pattern representing the shape and arrangement of the microlenses according to each Example and Comparative Example was output. Using this lens pattern, the diffuser plates according to each Example and Comparative Example were manufactured by the above manufacturing method.
 表1に示すように、実施例1~9では、マイクロレンズアレイの表面構造を設計するときに、各マイクロレンズの格子間隔Wx、Wyをランダムに変動させた。これに対し、比較例1~4では、格子間隔Wx、Wyを変動させず、全てのマイクロレンズの格子間隔を一定の基準格子間隔Wx_k、Wy_kとした。 As shown in Table 1, in Examples 1 to 9, when designing the surface structure of the microlens array, the lattice spacing Wx and Wy of each microlens were randomly changed. On the other hand, in Comparative Examples 1 to 4, the grid spacing Wx and Wy were not changed, and the grid spacing of all the microlenses was set to a constant reference grid spacing Wx_k and Wy_k.
 また、曲率半径Rx、曲率半径Ryについては、表1に示すとおり、各実施例及び比較例ごとに、固定値又はランダムな変動値とした。変動率δRx、δRy=±0%である場合は、各マイクロレンズの曲率半径Rx、Ryを変動させずに固定値とし、変動率δRx、δRy=±10%、±15%である場合は、当該曲率半径Rx、Ryを当該変動率δRx、δRyの範囲内でランダムに変動させたことを意味する。また、XY平面におけるレンズ頂点位置の偏心については、偏心率δEcx、δEcy=±0%である場合は、レンズ頂点位置を偏心させず、偏心率δEcx、δEcy=±10%、±15%である場合は、当該偏心率δEcx、δEcyの範囲内で、レンズ頂点位置をランダムに偏心させたことを意味する。 As shown in Table 1, the radius of curvature Rx and the radius of curvature Ry were set to fixed values or randomly fluctuating values for each Example and Comparative Example. When the volatility δRx, δRy = ± 0%, the radius of curvature Rx, Ry of each microlens is fixed without fluctuating, and when the volatility δRx, δRy = ± 10%, ± 15%, the volatility δRx, δRy = ± 10%, ± 15%. It means that the radius of curvature Rx and Ry were randomly changed within the range of the volatility δRx and δRy. Regarding the eccentricity of the lens apex position on the XY plane, when the eccentricity δEcx, δEcy = ± 0%, the lens apex position is not eccentric and the eccentricity δEcx, δEcy = ± 10%, ± 15%. In this case, it means that the lens apex positions are randomly eccentric within the range of the eccentricity ratios δEcx and δEcy.
 また、マイクロレンズの表面形状については、実施例1~4、8、9及び比較例1~3では球面形状とし、実施例5~7では非球面形状(例えばアナモルフィック形状)とした。また、マイクロレンズアレイの平面形状については、実施例1~7及び比較例1~3では正方形状とし、実施例8、9及び比較例4では矩形状(X方向に長い長方形状)とした。 The surface shape of the microlens was a spherical shape in Examples 1 to 4, 8 and 9 and Comparative Examples 1 to 3, and an aspherical shape (for example, an anamorphic shape) in Examples 5 to 7. The planar shape of the microlens array was square in Examples 1 to 7 and Comparative Examples 1 to 3, and rectangular (long in the X direction) in Examples 8 and 9 and Comparative Example 4.
 上記のように製造した実施例1~9及び比較例1~4に係る拡散板のマイクロレンズアレイの表面形状をレーザ顕微鏡にて観察した。さらに、当該各拡散板の配光パターンは、Virtual-Lab(LightTrans社製)にてシミュレーションし、当該各拡散板の配光特性は、配光特性測定器Mini-Diff(Light Tec社製)にて測定した。また、拡散板の配光特性を測定するために、レーザ光強度の撮像画像から拡散光の強度分布を計測した(後述するファーフィールドパターン計測)。 The surface shape of the microlens array of the diffuser according to Examples 1 to 9 and Comparative Examples 1 to 4 manufactured as described above was observed with a laser microscope. Further, the light distribution pattern of each diffuser is simulated by Virtual-Lab (manufactured by LightTrans), and the light distribution characteristics of each diffuser are measured by the light distribution characteristic measuring instrument Mini-Diff (manufactured by Light Tech). Was measured. Further, in order to measure the light distribution characteristics of the diffuser plate, the intensity distribution of the diffused light was measured from the captured image of the laser light intensity (farfield pattern measurement described later).
 実施例1~9及び比較例1~4に係る拡散板のマイクロレンズアレイの表面形状のパターン、拡散光の配光特性や輝度分布等のシミュレーション結果及び実測結果を、図20~図33にそれぞれ示す。 Simulation results and actual measurement results such as the surface shape pattern of the microlens array of the diffuser plate according to Examples 1 to 9 and Comparative Examples 1 to 4, the light distribution characteristics of the diffused light, the brightness distribution, etc. are shown in FIGS. 20 to 33, respectively. Shown.
 図20~図33(実施例1~9及び比較例1~4)において、(a)は、マイクロレンズアレイの表面形状のパターンを示す画像(BMP)又は共焦点レーザ顕微鏡画像(倍率50倍)である。(b)は、電磁場解析による配光のシミュレーション結果を示す画像である。(c)は、拡散光の輝度分布のシミュレーション結果を示すグラフ(横軸:座標位置、縦軸:輝度)である。(d)は、上記(c)の輝度分布における拡散角(半値全幅(FWHM)。Screen Z=100mm)を示す。 In FIGS. 20 to 33 (Examples 1 to 9 and Comparative Examples 1 to 4), (a) is an image (BMP) showing a pattern of the surface shape of the microlens array or a confocal laser scanning microscope image (magnification 50 times). Is. (B) is an image showing the simulation result of light distribution by electromagnetic field analysis. (C) is a graph (horizontal axis: coordinate position, vertical axis: brightness) showing a simulation result of the brightness distribution of diffused light. (D) shows the diffusion angle (full width at half maximum (FWHM). Screen Z = 100 mm) in the luminance distribution of the above (c).
 また、図30(実施例7)において、(e)は、実際に製造された拡散板を用いてレーザ光源の拡散光のファーフィールドパターン(FFP)を計測した実測結果を示すグラフである(横軸:拡散角度、縦軸:輝度)。(f)は、当該(e)のFFPにおけるX及びY方向の拡散角(半値全幅(FWHM))を示す。(g)は、当該(e)の実測結果を示すFFP画像である。 Further, in FIG. 30 (Example 7), (e) is a graph showing the actual measurement result of measuring the far field pattern (FFP) of the diffused light of the laser light source using the actually manufactured diffuser plate (horizontal). Axis: Diffuse angle, Vertical axis: Brightness). (F) indicates the diffusion angle (full width at half maximum (FWHM)) in the X and Y directions in the FFP of the (e). (G) is an FFP image showing the actual measurement result of (e).
 また、図32及び図33(実施例8、9)において、(e)は、拡散光のX及びY方向の配光特性のシミュレーション結果を示すグラフであり(横軸:拡散角度、縦軸:輝度)、(f)は、上記(c)の輝度分布におけるX及びY方向の拡散角(半値全幅(FWHM))を示す。 Further, in FIGS. 32 and 33 (Examples 8 and 9), (e) is a graph showing the simulation results of the light distribution characteristics of the diffused light in the X and Y directions (horizontal axis: diffusion angle, vertical axis: vertical axis: Luminance) and (f) indicate the diffusion angles (half-value full width (FWHM)) in the X and Y directions in the luminance distribution of (c) above.
 上記のような実施例1~9及び比較例1~3に係る拡散板の配光特性(配光の均質性等)を、次のような評価基準により3段階(評価A、B、C)で評価した。かかる評価結果を表1に示す。
 評価A:拡散光のX方向及びY方向の均質性が十分に高く、矩形格子に沿った輝度分布のむらは観察されなかった。拡散光の輝度分布が、所定の拡散角度範囲で略均一であり、当該所定の拡散角度範囲内で、拡散光の輝度値がピークレベルの平均値を中心として±20%の範囲内に収まっていた。
 評価B:拡散光のX方向及びY方向の均質性が高く、矩形格子に沿って多少の輝度分布のむらはあるが、大きなむらは観察されなかった。拡散光の輝度分布が、所定の拡散角度範囲で略均一であり、当該所定の拡散角度範囲内で、拡散光の輝度値がピークレベルの平均値を中心として±40%の範囲内に収まっていた。
 評価C:拡散光のX方向及びY方向の均質性が不十分であり、矩形格子に沿って大きな輝度分布のむらが観察された。拡散光の輝度分布が、所定の拡散角度範囲でばらつき、当該所定の拡散角度範囲内で、拡散光の輝度値がピークレベルの平均値を中心として±40%の範囲内に収まっていなかった。
The light distribution characteristics (light distribution homogeneity, etc.) of the diffuser plates according to Examples 1 to 9 and Comparative Examples 1 to 3 as described above are evaluated in three stages (evaluation A, B, C) according to the following evaluation criteria. Evaluated in. The evaluation results are shown in Table 1.
Evaluation A: The homogeneity of the diffused light in the X and Y directions was sufficiently high, and uneven brightness distribution along the rectangular grid was not observed. The brightness distribution of the diffused light is substantially uniform in a predetermined diffusion angle range, and the brightness value of the diffused light is within ± 20% of the average value of the peak levels within the predetermined diffusion angle range. It was.
Evaluation B: The homogeneity of the diffused light in the X and Y directions was high, and there was some unevenness in the luminance distribution along the rectangular grid, but no large unevenness was observed. The brightness distribution of the diffused light is substantially uniform in a predetermined diffusion angle range, and the brightness value of the diffused light is within ± 40% of the average value of the peak levels within the predetermined diffusion angle range. It was.
Evaluation C: The homogeneity of the diffused light in the X and Y directions was insufficient, and a large unevenness of the luminance distribution was observed along the rectangular grid. The brightness distribution of the diffused light varied within a predetermined diffusion angle range, and the brightness value of the diffused light did not fall within the range of ± 40% centered on the average value of the peak level within the predetermined diffusion angle range.
 以下に、実施例1~9及び比較例1~4の評価結果について対比説明する。 The evaluation results of Examples 1 to 9 and Comparative Examples 1 to 4 will be described below in comparison.
 (1)実施例1~9と比較例1~4の対比(格子間隔の不規則性の効果)
 比較例1~4では、図20~図22及び図31に示すように、拡散光の輝度分布において輝度が周期的に大きく増減し、拡散光の輝度分布に矩形格子状のむらが発生しており、拡散光の配光の均質性は不十分であった。この理由は、次のとおりであると考えられる。
(1) Comparison between Examples 1 to 9 and Comparative Examples 1 to 4 (effect of irregularity of lattice spacing)
In Comparative Examples 1 to 4, as shown in FIGS. 20 to 22 and 31, the brightness increases and decreases periodically in the brightness distribution of the diffused light, and the brightness distribution of the diffused light has unevenness in a rectangular grid pattern. , The homogeneity of the diffused light distribution was insufficient. The reason for this is considered to be as follows.
 比較例1~4では、マイクロレンズの配列の基準となる矩形格子が、規則的な矩形格子であり、X及びY方向の格子間隔が一定値Wx_k、Wy_kに固定されている(δWx、δWy=±0%)。このため、規則的な矩形格子状のマイクロレンズ配列の周期構造により、各マイクロレンズからの拡散光に回折が生じてしまうので、輝度分布にむらが生じ、配光の均質性が低下したと考えられる。 In Comparative Examples 1 to 4, the rectangular grid that serves as a reference for the arrangement of the microlenses is a regular rectangular grid, and the grid spacing in the X and Y directions is fixed to constant values Wx_k and Wy_k (δWx, δWy =). ± 0%). For this reason, it is considered that the periodic structure of the regular rectangular grid-like microlens array causes diffraction of the diffused light from each microlens, resulting in uneven brightness distribution and reduced light distribution homogeneity. Be done.
 この点、比較例2のようにレンズ頂点位置を偏心させたり、比較例3のように曲率半径Rx、Ryをランダムに変動させたりすることで、輝度分布の均質性を多少は向上することができる。しかし、比較例1~4のように格子間隔Wx、Wyが一定である場合、この格子間隔の周期性に起因する回折による輝度むらが、レンズ頂点位置や曲率半径Rx、Ryの変動による均質性の向上効果を上回ってしまい、配光の均質性が阻害されたと考えられる。 In this regard, the homogeneity of the luminance distribution can be improved to some extent by eccentricizing the lens apex position as in Comparative Example 2 or randomly varying the curvature radii Rx and Ry as in Comparative Example 3. it can. However, when the lattice spacings Wx and Wy are constant as in Comparative Examples 1 to 4, the brightness unevenness due to diffraction due to the periodicity of the lattice spacing is homogeneous due to fluctuations in the lens apex position and the radius of curvature Rx and Ry. It is considered that the homogeneity of the light distribution was hindered because the effect of improving the light distribution was exceeded.
 これに対し、実施例1~9では、拡散光の輝度分布において輝度は変動するものの、周期的な増減や、周期的なピークは観察されず、拡散光の輝度分布のむらは十分に抑制されており、拡散光の配光の均質性は良好であった。この理由は、次のとおりであると考えられる。 On the other hand, in Examples 1 to 9, although the brightness fluctuates in the brightness distribution of the diffused light, no periodic increase or decrease or periodic peak is observed, and the unevenness of the brightness distribution of the diffused light is sufficiently suppressed. The homogeneity of the diffused light distribution was good. The reason for this is considered to be as follows.
 実施例1~9では、矩形格子を基準としてマイクロレンズがXY平面上に配列される。ここで、実施例1~9の矩形格子は、比較例のような規則的な矩形格子ではなく、格子間隔Wx、Wyの不規則性を有する準規則的な矩形格子である。つまり、図15に示したように、実施例1~9の矩形格子の格子間隔Wx、Wyは、相互に異なる値になるようにランダムに変動しており、その変動率δWx、δWyは±10%以上である。かかる不規則性を有する矩形格子を基準として複数のマイクロレンズを配列することで、マイクロレンズの開口径Dx、Dyや平面形状をランダムにばらつかせ、隣接するマイクロレンズ間の境界線の位置もランダムにずらすことができる。 In Examples 1 to 9, the microlenses are arranged on the XY plane with reference to the rectangular grid. Here, the rectangular lattices of Examples 1 to 9 are not regular rectangular lattices as in the comparative example, but quasi-regular rectangular lattices having irregularity of lattice intervals Wx and Wy. That is, as shown in FIG. 15, the lattice spacings Wx and Wy of the rectangular lattices of Examples 1 to 9 randomly fluctuate so as to have different values from each other, and the volatility δWx and δWy are ± 10. % Or more. By arranging a plurality of microlenses with reference to a rectangular lattice having such irregularity, the aperture diameters Dx, Dy and the planar shape of the microlenses are randomly scattered, and the position of the boundary line between adjacent microlenses is also located. It can be shifted randomly.
 この結果、例えば図2、図4、図18等に示したように、マイクロレンズの平面形状の外形線(マイクロレンズ間の境界線)は、任意の曲率半径の曲線と、直線との組合せで構成されるようになる。これにより、マイクロレンズ間の境界での配置の規則性が更に崩れることとなり、回折成分を更に低減することが可能となる。したがって、複数のマイクロレンズ間で拡散光が相互に回折することを抑制して、マイクロレンズアレイ全体の拡散光の配光の均質性を向上することができる。 As a result, as shown in FIGS. 2, 4, 18, 18 and the like, the outer line of the planar shape of the microlens (the boundary line between the microlenses) is a combination of a curve having an arbitrary radius of curvature and a straight line. It will be composed. As a result, the regularity of arrangement at the boundary between the microlenses is further broken, and the diffraction component can be further reduced. Therefore, it is possible to suppress the diffusion of diffused light between the plurality of microlenses and improve the homogeneity of the diffused light distribution of the entire microlens array.
 以上の結果から、本発明の拡散板を用いることで、相互に直交する2つの方向(X及びY方向)において、輝度分布のむらを抑制し、配光の均質性を十分に向上できることがわかる。 From the above results, it can be seen that by using the diffuser plate of the present invention, unevenness of the luminance distribution can be suppressed in two directions (X and Y directions) orthogonal to each other, and the homogeneity of the light distribution can be sufficiently improved.
 (2)実施例1と実施例2~9との対比(曲率半径の変動やレンズ頂点の偏心の効果)
 表1に示すように、実施例1では、格子間隔Wx、Wyのみを変動させている。これに対し、実施例2~9では、格子間隔Wx、Wyに加え、曲率半径Rx、Ryを変動させたり、レンズ頂点位置を偏心させたりしている。
(2) Comparison between Example 1 and Examples 2 to 9 (effect of fluctuation of radius of curvature and eccentricity of lens apex)
As shown in Table 1, in Example 1, only the lattice spacing Wx and Wy are changed. On the other hand, in Examples 2 to 9, in addition to the lattice spacing Wx and Wy, the radius of curvature Rx and Ry are changed and the lens apex position is eccentric.
 この結果、実施例2~9(評価A)は実施例1(評価B)よりも効果的に、輝度分布のむらを抑制でき、拡散光の配光の均質性を向上することができた。これにより、配光の均質性の向上の観点からは、格子間隔Wx、Wyに加え、曲率半径Rx、Ryを変動させたり、レンズ頂点位置を偏心させたりすることが有効であることがわかる。 As a result, Examples 2 to 9 (Evaluation A) were able to suppress unevenness of the luminance distribution more effectively than Example 1 (Evaluation B), and were able to improve the homogeneity of the light distribution of diffused light. From this, it can be seen that from the viewpoint of improving the homogeneity of the light distribution, it is effective to change the radius of curvature Rx and Ry and to eccentric the lens apex position in addition to the lattice spacing Wx and Wy.
 さらに、実施例2、3、5では、曲率半径Rx、Ryを変動させるか、あるいは、レンズ頂点位置を偏心させている。これに対し、実施例4、6~9では、曲率半径Rx、Ryを変動させ、かつ、レンズ頂点位置も偏心させている。この結果、図24~図29、図32、図33の(b)電磁場解析画像や(c)輝度分布のグラフに示すように、実施例4、6~9では、輝度分布のむらをより一層抑制でき、拡散光の配光の均質性をさらに向上することができた。これにより、配光の均質性の向上の観点からは、格子間隔Wx、Wyに加え、曲率半径Rx、Ryの変動と、レンズ頂点位置の偏心の双方を行うことが、さらに有効であることがわかる。 Further, in Examples 2, 3 and 5, the radius of curvature Rx and Ry are changed or the lens apex position is eccentric. On the other hand, in Examples 4, 6 to 9, the radius of curvature Rx and Ry are varied, and the lens apex position is also eccentric. As a result, as shown in (b) electromagnetic field analysis image and (c) luminance distribution graph of FIGS. 24 to 29, 32, and 33, in Examples 4, 6 to 9, unevenness of the luminance distribution is further suppressed. It was possible to further improve the homogeneity of the diffused light distribution. Therefore, from the viewpoint of improving the homogeneity of the light distribution, it is more effective to perform both the fluctuation of the radius of curvature Rx and Ry and the eccentricity of the lens apex position in addition to the lattice spacing Wx and Wy. Understand.
 (3)実施例1~4と実施例5~7との対比(非球面レンズ形状の効果)
 表1に示すように、マイクロレンズの基本形状として、実施例1~4では球面レンズを使用した。これに対し、実施例5~7では非球面レンズ(例えば、図8~図10に示したアナモルフィック形状のレンズ)を使用した。実施例5~7の非球面レンズの場合、上述したアナモルフィック形状の曲面を規定する数式(1)の右辺の4次項の非球面係数Aを補正して、レンズ形状を規定した。
(3) Comparison between Examples 1 to 4 and Examples 5 to 7 (effect of aspherical lens shape)
As shown in Table 1, a spherical lens was used in Examples 1 to 4 as the basic shape of the microlens. On the other hand, in Examples 5 to 7, aspherical lenses (for example, anamorphic-shaped lenses shown in FIGS. 8 to 10) were used. For non-spherical lenses of Examples 5-7, by correcting the aspherical coefficients A 4 of 4 order term of the right side of equation (1) which defines the curved surface of the anamorphic shape described above, defining the lens shape.
 この結果、図23~図29の(b)電磁場解析画像や(c)輝度分布のグラフに示すように、実施例1~4の球面レンズよりも実施例5~7の非球面レンズの方が、輝度分布のむらを抑制でき、よりきめの細かい配光均質性を実現できた。これにより、配光の均質性の向上の観点からは、球面レンズよりも非球面レンズを用いることが有効であることがわかる。さらに、異方性を有する非球面レンズを用いれば、拡散板から投射される拡散光の異方性を制御できる。よって、拡散光の高い均質性を実現しつつ、X方向とY方向の間で配光角が異方性を有するように制御できる。 As a result, as shown in (b) electromagnetic field analysis images and (c) luminance distribution graphs of FIGS. 23 to 29, the aspherical lenses of Examples 5 to 7 are more than the spherical lenses of Examples 1 to 4. , The unevenness of the brightness distribution could be suppressed, and a finer light distribution homogeneity could be realized. From this, it can be seen that it is more effective to use an aspherical lens than a spherical lens from the viewpoint of improving the homogeneity of the light distribution. Further, if an aspherical lens having anisotropy is used, the anisotropy of the diffused light projected from the diffuser plate can be controlled. Therefore, it is possible to control the light distribution angle to have anisotropy between the X direction and the Y direction while achieving high homogeneity of the diffused light.
 (4)実施例7の拡散特性(優れた配光均質性とカットオフ性)
 表1に示すように、実施例7では、基準曲率半径Rx_k、Ry_kを比較的大きい値(150μm)に設定し、曲率半径Rx、Ryを、Rx_k、Ry_kの±10%の範囲内で変動させ、かつ、レンズ頂点位置を、偏心率δEcx、δEcy=±10%の範囲内で偏心させている。
(4) Diffusion characteristics of Example 7 (excellent light distribution homogeneity and cutoff property)
As shown in Table 1, in Example 7, the reference curvature vertices Rx_k and Ry_k are set to relatively large values (150 μm), and the curvature vertices Rx and Ry are varied within ± 10% of Rx_k and Ry_k. Moreover, the lens apex position is eccentric within the range of eccentricity δEcx and δEcy = ± 10%.
 さらに、実施例7のマイクロレンズの表面形状は、基準曲率半径Rx_k、Ry_k[μm]及び基準格子間隔Wx_k、Wy_k[μm]との比が以下の関係式(A)及び(B)を満足する非球面形状である。実施例7では、(Rx_k/Wx_k)=(Ry_k/Wy_k)=(150/80)=1.875である。
 Rx_k/Wx_k≧1.85 ・・・(A)
 Ry_k/Wy_k≧1.85 ・・・(B)
Further, the surface shape of the microlens of Example 7 satisfies the following relational expressions (A) and (B) in terms of the ratio of the reference radius of curvature Rx_k, Ry_k [μm] and the reference lattice spacing Wx_k, Wy_k [μm]. It has an aspherical shape. In Example 7, (Rx_k / Wx_k) = (Ry_k / Wy_k) = (150/80) = 1.875.
Rx_k / Wx_k ≧ 1.85 ・ ・ ・ (A)
Ry_k / Wy_k ≧ 1.85 ・ ・ ・ (B)
 実施例7に係るマイクロレンズの表面形状が上記のような異方性を有する非球面形状であり、かつ、表1に示す条件で格子間隔Wx、Wy、曲率半径Rx、Ryを変動させ、レンズ頂点位置を偏心させ、上記関係式(A)及び(B)を満足するように、基準曲率半径Rx_k、Ry_k[μm]及び基準格子間隔Wx_k、Wy_k[μm]を調整する。さらに、拡散板から出射される拡散光の拡散角(半値全幅(FWHM))が20°以下の範囲内である。これにより、いわゆるトップハット型の拡散特性をより確実に実現できる。 The surface shape of the microlens according to the seventh embodiment is an aspherical shape having the above-mentioned anisotropy, and the lattice spacing Wx, Wy, radius of curvature Rx, and Ry are changed under the conditions shown in Table 1, and the lens. The apex positions are eccentric, and the reference radius of curvature Rx_k, Ry_k [μm] and the reference lattice spacing Wx_k, Wy_k [μm] are adjusted so as to satisfy the above relational expressions (A) and (B). Further, the diffusion angle (full width at half maximum (FWHM)) of the diffused light emitted from the diffuser plate is within the range of 20 ° or less. This makes it possible to more reliably realize the so-called top hat type diffusion characteristics.
 図30(e)のFFP計測結果のグラフに示すように、実施例7の拡散特性は、トップハット型の拡散特性を実現している。即ち、マイクロレンズアレイに入射した光の拡散光の輝度分布が、所定の拡散角度範囲(半値全幅で20°以下の範囲。図10の例では、-5~+5°)で略均一となり、当該拡散角度範囲内で、拡散光の輝度値がピークレベルの平均値を中心として±20%の範囲内に収まっている状態が実現される。 As shown in the graph of the FFP measurement result of FIG. 30 (e), the diffusion characteristic of Example 7 realizes the top hat type diffusion characteristic. That is, the brightness distribution of the diffused light of the light incident on the microlens array becomes substantially uniform within a predetermined diffusion angle range (a range of 20 ° or less in the full width at half maximum. In the example of FIG. 10, −5 to + 5 °). Within the diffusion angle range, a state in which the brightness value of the diffused light is within ± 20% of the average value of the peak level is realized.
 以上の結果から、上記実施例7と同様な拡散板を用いることで、拡散角(半値全幅)が20°以下の範囲内で、相互に直交する2つの方向(X及びY方向)において配光の均質性を十分に向上しつつ、X及びY方向の配光の異方性と、拡散光の強度分布のカットオフ性を適切に制御可能であることがわかる。 From the above results, by using the same diffusion plate as in Example 7, light is distributed in two directions (X and Y directions) orthogonal to each other within a range where the diffusion angle (half-value full width) is 20 ° or less. It can be seen that the anisotropy of the light distribution in the X and Y directions and the cutoff property of the intensity distribution of the diffused light can be appropriately controlled while sufficiently improving the homogeneity of the light.
 (7)実施例8、9と比較例4との対比(矩形非球面レンズ形状の効果)
 実施例8、9と比較例4に係る拡散板は、X方向に長く延びる矩形状のマイクロレンズアレイを使用した。基準格子間隔Wx_k=50μm、Wy_k=40μmであり、マイクロレンズアレイの長手方向(X方向)の基準格子間隔Wx_kを、短手方向(Y方向)の基準格子間隔Wy_kよりも大きく設定した(Wx_k>Wy_k)。
(7) Comparison between Examples 8 and 9 and Comparative Example 4 (effect of rectangular aspherical lens shape)
As the diffuser plates according to Examples 8 and 9 and Comparative Example 4, a rectangular microlens array extending in the X direction was used. The reference grid spacing Wx_k = 50 μm and Wy_k = 40 μm, and the reference grid spacing Wx_k in the longitudinal direction (X direction) of the microlens array was set to be larger than the reference grid spacing Wy_k in the lateral direction (Y direction) (Wx_k>. Wy_k).
 かかる矩形状のマイクロレンズアレイにおいて、比較例4では、格子間隔Wx、Wyを変動させなかった。一方、実施例8、9では、格子間隔Wx、Wyを±10%又は±15%の範囲内でランダムに変動させるとともに、曲率半径Rx、Ryを±10%又は±15%の範囲内でランダムに変動させた。さらに、実施例8、9では、レンズ頂点位置も±10%又は±15%の範囲内でランダムに偏心させた。 In the rectangular microlens array, in Comparative Example 4, the lattice spacing Wx and Wy were not changed. On the other hand, in Examples 8 and 9, the lattice spacing Wx and Wy are randomly changed within the range of ± 10% or ± 15%, and the radius of curvature Rx and Ry are randomly changed within the range of ± 10% or ± 15%. It was changed to. Further, in Examples 8 and 9, the lens apex position was also randomly eccentric within the range of ± 10% or ± 15%.
 この結果、比較例4では、図31に示すように、拡散光の輝度分布が周期的に大きく増減し、矩形格子状のむらが顕著に発生し、拡散光の配光の均質性は不十分であった。一方、実施例8、9では、拡散光の輝度分布に周期的な増減やピークは観察されず、拡散光の輝度分布のむらは十分に抑制されており、拡散光の配光の均質性は良好であった。 As a result, in Comparative Example 4, as shown in FIG. 31, the luminance distribution of the diffused light increases and decreases periodically, and the rectangular grid-like unevenness is remarkably generated, and the homogeneity of the diffused light distribution is insufficient. there were. On the other hand, in Examples 8 and 9, no periodic increase or decrease or peak was observed in the brightness distribution of the diffused light, the unevenness of the brightness distribution of the diffused light was sufficiently suppressed, and the homogeneity of the light distribution of the diffused light was good. Met.
 以上の結果から、実施例8、9のように矩形状のマイクロレンズアレイを用いた場合でも、相互に直交する2つの方向(X及びY方向)において配光の均質性を十分に向上できることがわかる。 From the above results, even when a rectangular microlens array is used as in Examples 8 and 9, the homogeneity of light distribution can be sufficiently improved in two directions (X and Y directions) orthogonal to each other. Understand.
 以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。 Although the preferred embodiments of the present invention have been described in detail with reference to the accompanying drawings, the present invention is not limited to such examples. It is clear that a person having ordinary knowledge in the field of technology to which the present invention belongs can come up with various modifications or modifications within the scope of the technical idea described in the claims. , These are also naturally understood to belong to the technical scope of the present invention.
 1 拡散板
 3 単位セル
 10 基材
 20 マイクロレンズアレイ
 21 マイクロレンズ
 22 マイクロレンズの頂点
 23 矩形格子の中心点
 Wx、Wy 格子間隔
 Rx、Ry 曲率半径
 Ecx、Ecy 偏心量
 Wx_k、Wy_k 基準格子間隔
 Rx_k、Ry_k 基準曲率半径
 δWx、δWy 変動率
 δRx、δRy 変動率
 δEcx、δEcy 偏心率
 R 大円半径
 r 小円半径
1 Diffusing plate 3 Unit cell 10 Base material 20 Microlens array 21 Microlens 22 Microlens apex 23 Center point of rectangular lattice Wx, Wy lattice spacing Rx, Ry radius of curvature Ecx, Ecy Eccentricity Wx_k, Wy_k Reference lattice spacing Rx_k, Ry_k Reference radius of curvature δWx, δWy Fluctuation rate δRx, δRy Fluctuation rate δEcx, δEcy Eccentricity R Great circle radius r Small circle radius

Claims (15)

  1.  マイクロレンズアレイ型の拡散板であって、
     基材と、
     前記基材の少なくとも一方の表面におけるXY平面上に矩形格子を基準として配列された複数のマイクロレンズから構成されるマイクロレンズアレイと、
    を備え、
     前記矩形格子のX方向に配列された前記マイクロレンズの前記X方向の格子間隔Wxは、相互に異なり、
     前記矩形格子のY方向に配列された前記マイクロレンズの前記Y方向の格子間隔Wyは、相互に異なり、
     前記複数のマイクロレンズの表面形状は、相互に異なる、拡散板。
    It is a microlens array type diffuser
    With the base material
    A microlens array composed of a plurality of microlenses arranged on an XY plane on at least one surface of the base material with reference to a rectangular grid, and a microlens array.
    With
    The lattice spacing Wx in the X direction of the microlenses arranged in the X direction of the rectangular lattice is different from each other.
    The lattice spacing Wy in the Y direction of the microlenses arranged in the Y direction of the rectangular lattice is different from each other.
    Diffusing plates in which the surface shapes of the plurality of microlenses are different from each other.
  2.  前記X方向の格子間隔Wxは、基準格子間隔Wx_kを基準として、±10%~±50%以内の変動率δWxでランダムに変動しており、
     前記Y方向の格子間隔Wyは、基準格子間隔Wy_kを基準として、±10%~±50%以内の変動率δWyでランダムに変動している、請求項1に記載の拡散板。
    The grid spacing Wx in the X direction randomly fluctuates at a volatility δWx within ± 10% to ± 50% with reference to the reference grid spacing Wx_k.
    The diffusion plate according to claim 1, wherein the grid spacing Wy in the Y direction randomly fluctuates with a volatility δWy within ± 10% to ± 50% with reference to the reference grid spacing Wy_k.
  3.  前記X方向に配列された前記マイクロレンズの前記X方向の曲率半径Rxは、相互に変動しており、
     前記Y方向に配列された前記マイクロレンズの前記Y方向の曲率半径Ryは、相互に変動している、請求項1又は2に記載の拡散板。
    The radius of curvature Rx of the microlenses arranged in the X direction in the X direction varies from each other.
    The diffuser according to claim 1 or 2, wherein the radius of curvature Ry in the Y direction of the microlenses arranged in the Y direction varies from each other.
  4.  前記X方向の曲率半径Rxは、基準曲率半径Rx_kを基準として、±10%~±50%以内の変動率δRxでランダムに変動しており、
     前記Y方向の曲率半径Ryは、基準曲率半径Ry_kを基準として、±10%~±50%以内の変動率δRyでランダムに変動している、請求項3に記載の拡散板。
    The radius of curvature Rx in the X direction randomly fluctuates at a volatility δRx within ± 10% to ± 50% with reference to the reference radius of curvature Rx_k.
    The diffusion plate according to claim 3, wherein the radius of curvature Ry in the Y direction randomly fluctuates with a volatility δRy within ± 10% to ± 50% with reference to the reference radius of curvature Ry_k.
  5.  前記X方向の格子間隔Wxは、基準格子間隔Wx_kを基準として、±10%~±50%以内の変動率δWxでランダムに変動しており、
     前記Y方向の格子間隔Wyは、基準格子間隔Wy_kを基準として、±10%~±50%以内の変動率δWyでランダムに変動しており、
     前記基準格子間隔Wx_k、Wy_k及び前記基準曲率半径Rx_k、Ry_kは以下の関係式(A)及び(B)を満たし、
     前記拡散板による拡散角(半値全幅)が20°以下である、請求項4に記載の拡散板。
     Rx_k/Wx_k≧1.85 ・・・(A)
     Ry_k/Wy_k≧1.85 ・・・(B)
    The grid spacing Wx in the X direction randomly fluctuates at a volatility δWx within ± 10% to ± 50% with reference to the reference grid spacing Wx_k.
    The grid spacing Wy in the Y direction randomly fluctuates at a volatility δWy within ± 10% to ± 50% with reference to the reference grid spacing Wy_k.
    The reference grid spacing Wx_k, Wy_k and the reference curvature radii Rx_k, Ry_k satisfy the following relational expressions (A) and (B).
    The diffusion plate according to claim 4, wherein the diffusion angle (full width at half maximum) by the diffusion plate is 20 ° or less.
    Rx_k / Wx_k ≧ 1.85 ・ ・ ・ (A)
    Ry_k / Wy_k ≧ 1.85 ・ ・ ・ (B)
  6.  前記X方向及び前記Y方向に配列された前記マイクロレンズの頂点の平面位置は、前記矩形格子の中心点から偏心している、請求項1~5のいずれか一項に記載の拡散板。 The diffuser according to any one of claims 1 to 5, wherein the planar positions of the vertices of the microlenses arranged in the X direction and the Y direction are eccentric from the center point of the rectangular lattice.
  7.  前記矩形格子の中心点から、前記偏心されたマイクロレンズの頂点の平面位置までの前記X方向、前記Y方向の距離をそれぞれ偏心量Ecx、偏心量Ecyとし、前記矩形格子の格子間隔Wx、Wyに対する前記偏心量Ecx、Ecyの割合をそれぞれ偏心率δEcx、偏心率δEcyとしたとき、
     前記マイクロレンズの頂点の平面位置は、±10%~±50%以内の偏心率δEcx、δEcyでランダムに偏心している、請求項6に記載の拡散板。
    The distances in the X and Y directions from the center point of the rectangular lattice to the plane position of the apex of the eccentric microlens are defined as the eccentric amount Ecx and the eccentric amount Ecy, respectively, and the lattice intervals Wx and Wy of the rectangular lattice. When the ratios of the eccentricity Ecx and Ecy to the eccentricity are the eccentricity δEcx and the eccentricity δEcy, respectively.
    The diffuser according to claim 6, wherein the plane positions of the vertices of the microlens are randomly eccentric with eccentricity ratios δEcx and δEcy within ± 10% to ± 50%.
  8.  前記X方向及び前記Y方向に配列された前記複数のマイクロレンズの頂点の高さ位置は、相互に異なる、請求項1~7のいずれか一項に記載の拡散板。 The diffuser according to any one of claims 1 to 7, wherein the height positions of the vertices of the plurality of microlenses arranged in the X direction and the Y direction are different from each other.
  9.  前記X方向及び前記Y方向に配列された前記マイクロレンズは、相互に隙間なく連続的に配置されている、請求項1~8のいずれか一項に記載の拡散板。 The diffuser according to any one of claims 1 to 8, wherein the microlenses arranged in the X direction and the Y direction are continuously arranged without a gap between them.
  10.  相互に隣接する前記マイクロレンズの境界線は、直線及び曲線を含む、請求項1~9のいずれか一項に記載の拡散板。 The diffuser according to any one of claims 1 to 9, wherein the boundary lines of the microlenses adjacent to each other include a straight line and a curved line.
  11.  前記マイクロレンズアレイは、前記マイクロレンズの基本配置パターンである複数の単位セルからなり、
     前記複数の単位セル間の境界部分における前記マイクロレンズの連続性を保ちながら、前記複数の単位セルを隙間なく配列することにより、前記マイクロレンズアレイが構成される、請求項1~10のいずれか一項に記載の拡散板。
    The microlens array is composed of a plurality of unit cells, which is a basic arrangement pattern of the microlens.
    Any of claims 1 to 10, wherein the microlens array is formed by arranging the plurality of unit cells without gaps while maintaining the continuity of the microlens at the boundary portion between the plurality of unit cells. The diffuser according to one item.
  12.  前記マイクロレンズの表面形状は、球面形状、あるいは、前記X方向又は前記Y方向の異方性を有する非球面形状である、請求項1~11のいずれか一項に記載の拡散板。 The diffusion plate according to any one of claims 1 to 11, wherein the surface shape of the microlens is a spherical shape or an aspherical shape having anisotropy in the X direction or the Y direction.
  13.  請求項1~12のいずれか1項に記載の拡散板を備える、表示装置。 A display device including the diffuser according to any one of claims 1 to 12.
  14.  請求項1~12のいずれか1項に記載の拡散板を備える、投影装置。 A projection device including the diffuser according to any one of claims 1 to 12.
  15.  請求項1~12のいずれか1項に記載の拡散板を備える、照明装置。 A lighting device including the diffuser according to any one of claims 1 to 12.
PCT/JP2020/039657 2019-10-25 2020-10-22 Diffusion plate, display device, projection device, and illumination device WO2021079923A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/766,950 US20240077658A1 (en) 2019-10-25 2020-10-22 Diffuser plate, display device, projecting device, and lighting device
EP20878757.2A EP4027177A4 (en) 2019-10-25 2020-10-22 Diffusion plate, display device, projection device, and illumination device
CN202080072883.0A CN114556168B (en) 2019-10-25 2020-10-22 Diffusion plate, display device, projection device and lighting device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-194363 2019-10-25
JP2019194363 2019-10-25
JP2020175853A JP2021071721A (en) 2019-10-25 2020-10-20 Diffusion plate, display device, projection device, and illumination device
JP2020-175853 2020-10-20

Publications (1)

Publication Number Publication Date
WO2021079923A1 true WO2021079923A1 (en) 2021-04-29

Family

ID=75620094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/039657 WO2021079923A1 (en) 2019-10-25 2020-10-22 Diffusion plate, display device, projection device, and illumination device

Country Status (1)

Country Link
WO (1) WO2021079923A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015169804A (en) * 2014-03-07 2015-09-28 株式会社リコー Lens array, image display device, and moving body
WO2015182619A1 (en) 2014-05-27 2015-12-03 ナルックス株式会社 Microlens array and optics containing microlens array
WO2016051785A1 (en) 2014-09-30 2016-04-07 株式会社クラレ Diffusing plate and diffusing-plate design method
WO2017043063A1 (en) * 2015-09-10 2017-03-16 パナソニックIpマネジメント株式会社 Diffusion plate and imaging device provided with same
JP2017068216A (en) * 2015-10-02 2017-04-06 デクセリアルズ株式会社 Diffusion plate, display device, projection device, and illumination device
WO2018061816A1 (en) * 2016-09-28 2018-04-05 パナソニックIpマネジメント株式会社 Imaging device
WO2018151097A1 (en) * 2017-02-15 2018-08-23 ナルックス株式会社 Diffusion element

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015169804A (en) * 2014-03-07 2015-09-28 株式会社リコー Lens array, image display device, and moving body
WO2015182619A1 (en) 2014-05-27 2015-12-03 ナルックス株式会社 Microlens array and optics containing microlens array
WO2016051785A1 (en) 2014-09-30 2016-04-07 株式会社クラレ Diffusing plate and diffusing-plate design method
WO2017043063A1 (en) * 2015-09-10 2017-03-16 パナソニックIpマネジメント株式会社 Diffusion plate and imaging device provided with same
JP2017068216A (en) * 2015-10-02 2017-04-06 デクセリアルズ株式会社 Diffusion plate, display device, projection device, and illumination device
WO2018061816A1 (en) * 2016-09-28 2018-04-05 パナソニックIpマネジメント株式会社 Imaging device
WO2018151097A1 (en) * 2017-02-15 2018-08-23 ナルックス株式会社 Diffusion element

Similar Documents

Publication Publication Date Title
US11592156B2 (en) Diffuser plate, designing method of diffuser plate, manufacturing method of diffuser plate, display device, projection device, and lighting device
CN108139512B (en) Diffusion plate, display device, projection device, and illumination device
CN108351437B (en) Diffusion plate, method for designing diffusion plate, method for manufacturing diffusion plate, display device, projection device, and illumination device
CN114556168B (en) Diffusion plate, display device, projection device and lighting device
CN110114698B (en) Reflection type diffusion plate, display device, projection device, and illumination device
CN112534313B (en) Light diffusion plate, image display device and lighting device
WO2022131251A1 (en) Diffusion plate, display device, projection device, lighting device, and remote sensing light source
JP2023152876A (en) Diffusion plate, and device
WO2023042798A1 (en) Diffuser plate, display device, projection device, and illumination device
WO2021079923A1 (en) Diffusion plate, display device, projection device, and illumination device
TWI854054B (en) Diffuser, display device, projection device and lighting device
WO2023190682A1 (en) Diffusion plate and device
WO2023190680A1 (en) Diffuser plate, display device, projection device, and lighting device
WO2020059770A1 (en) Light-diffusing plate, image display device, and lighting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20878757

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 17766950

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2020878757

Country of ref document: EP

Effective date: 20220405

NENP Non-entry into the national phase

Ref country code: DE