[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021079844A1 - Rubber composition, and rubber crosslinked product and pneumatic tire using said rubber composition - Google Patents

Rubber composition, and rubber crosslinked product and pneumatic tire using said rubber composition Download PDF

Info

Publication number
WO2021079844A1
WO2021079844A1 PCT/JP2020/039238 JP2020039238W WO2021079844A1 WO 2021079844 A1 WO2021079844 A1 WO 2021079844A1 JP 2020039238 W JP2020039238 W JP 2020039238W WO 2021079844 A1 WO2021079844 A1 WO 2021079844A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
rubber composition
rubber
hydrocarbon resin
monomer unit
Prior art date
Application number
PCT/JP2020/039238
Other languages
French (fr)
Japanese (ja)
Inventor
淳 野澤
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2021553421A priority Critical patent/JPWO2021079844A1/ja
Publication of WO2021079844A1 publication Critical patent/WO2021079844A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F232/00Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system
    • C08F232/02Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system having no condensed rings
    • C08F232/04Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system having no condensed rings having one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F232/00Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system
    • C08F232/08Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system having condensed rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L45/00Compositions of homopolymers or copolymers of compounds having no unsaturated aliphatic radicals in side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic or in a heterocyclic ring system; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Definitions

  • the present invention relates to a rubber composition, and more particularly to a rubber composition capable of obtaining a rubber crosslinked product having good workability and an excellent balance between rolling resistance and wet grip performance.
  • a crosslinked product of a rubber composition containing silica as a filler in a rubber component has a smaller rolling resistance when a tire is formed than a crosslinked product of a rubber composition containing carbon black. Therefore, by constructing a tire using a crosslinked product of a rubber composition containing silica, a tire having excellent fuel efficiency can be obtained.
  • Patent Document 1 for the purpose of improving the rolling resistance and wet grip property of the tire, a specific amount of a softener having a specific structure is blended in the rubber component, and a specific amount of a hydrocarbon resin having a specific structure is blended. It is disclosed to do.
  • the softener and hydrocarbon resin having a specific structure described in Patent Document 1 certainly improve both wet grip properties and rolling resistance when a tire is manufactured from an elastomer crosslinked product obtained by adding them. It is possible, but there is a problem that it is still insufficient.
  • the present invention has been made in view of the above problems, and provides a rubber composition capable of obtaining a rubber crosslinked product having good workability and an excellent balance between rolling resistance and wet grip performance.
  • the purpose is.
  • the present inventors have realized excellent processability as long as it is a rubber composition obtained by blending a specific hydrocarbon resin with a diene rubber. , It has been found that a rubber crosslinked product having an excellent balance between rolling resistance and wet grip performance can be obtained, and the present invention has been completed.
  • the rubber composition contains a diene-based rubber and a hydrocarbon resin, and the content of the hydrocarbon resin is 1 to 200 parts by mass with respect to 100 parts by mass of the diene-based rubber.
  • the hydrocarbon resin contains a monomer unit derived from a tetracyclododecene compound in a proportion of 0.1 to 50% by weight, and has a weight average molecular weight (Mw) in the range of 500 to 4,000.
  • Mw weight average molecular weight
  • a rubber composition having a softening point in the range of 80 to 170 ° C. is provided.
  • the hydrocarbon resin has a 1,3-pentadiene monomer unit of 1 to 60% by weight in addition to 0.1 to 50% by weight of the monomer unit derived from the tetracyclododecene compound. %, 1 to 30% by weight of an alicyclic monoolefin monomer unit having 4 to 6 carbon atoms, 0 to 50% by weight of an acyclic monoolefin monomer unit having 4 to 8 carbon atoms, and a single alicyclic diolefin.
  • the hydrocarbon resin has a number average molecular weight (Mn) in the range of 250 to 2000, a Z average molecular weight (Mz) in the range of 1,000 to 10,000, and a weight average molecular weight with respect to the number average molecular weight.
  • Mn number average molecular weight
  • Mz Z average molecular weight
  • the ratio (Mw / Mn) of is in the range of 1.0 to 4.0, and the ratio of the Z average molecular weight to the weight average molecular weight (Mz / Mw) is in the range of 1.0 to 4.0.
  • the hydrocarbon resin is a tetracyclo [4.4.0.1 2,5 . 17,10 ] It is preferable to contain a dodeca-3-ene unit.
  • tetracyclo [4.4.0.1 2,5 .] In the monomer unit derived from the tetracyclododecene compound. 17 and 10 ] The ratio of dodeca-3-ene units is preferably 50% by weight or more.
  • the hydrocarbon resin is preferably a hydride.
  • the rubber composition of the present invention preferably further contains silica.
  • the rubber composition of the present invention preferably further contains a silane coupling agent.
  • the rubber composition of the present invention preferably further contains a cross-linking agent.
  • a rubber crosslinked product obtained by crosslinking the above rubber composition. Further, according to the present invention, there is provided a pneumatic tire characterized in that the above rubber composition or the above rubber crosslinked product is used for a tread.
  • the rubber composition of the present invention contains a diene-based rubber and a hydrocarbon resin, and the content of the hydrocarbon resin is 1 to 200 parts by mass with respect to 100 parts by mass of the diene-based rubber, and the hydrocarbon resin.
  • Mw weight average molecular weight
  • the hydrocarbon resin used in the present invention contains a monomer unit derived from a tetracyclododecene compound in a proportion of 0.1 to 50% by weight, and has a weight average molecular weight (Mw) in the range of 500 to 4,000. Yes, the softening point is in the range of 80 to 170 ° C.
  • the hydrocarbon resin used in the present invention can be produced, for example, by addition polymerization of a monomer mixture containing a tetracyclododecene compound and a copolymerizable monomer thereof.
  • the hydrocarbon resin used in the present invention may contain a monomer unit derived from the tetracyclododecene compound at a ratio of 0.1 to 50% by weight, and the content ratio is not particularly limited, but is preferable. It is 5 to 45% by weight, more preferably 10 to 40% by weight, still more preferably 15 to 35% by weight.
  • a hydrocarbon resin containing a monomer unit derived from a tetracyclododecene compound in the above content ratio and having a weight average molecular weight (Mw) and a softening point within the above predetermined ranges it is possible to obtain a rubber crosslinked product having an excellent balance between rolling resistance and wet grip performance while having excellent workability as a rubber composition.
  • the weight average molecular weight (Mw) is increased by containing the monomer unit derived from the tetracyclododecene compound in the hydrocarbon resin at a ratio of 0.1 to 50% by weight.
  • the softening point can be suitably controlled within the above range, whereby the rubber crosslinked product obtained when it is made into a rubber crosslinked product has rolling resistance and rolling resistance while making the rubber composition excellent in processability. It was found that the balance of wet grip performance can be excellent. If the content of the monomer unit derived from the tetracyclododecene compound is too small or too large, it becomes difficult to obtain an excellent balance between rolling resistance and wet grip performance of the obtained rubber crosslinked product. ..
  • tetracyclododecene compound for forming a monomer unit derived from a tetracyclododecene compound tetracyclo [4.4.0.1 2,5 . 1 7, 10 ]
  • a compound having a dodeca-3-ene structure as a basic skeleton may be used, and specific examples thereof include tetracyclo [4.4.0.1 2,5 . 17 and 10 ]
  • Dodeca-3-ene is preferably contained, and tetracyclo [4.4.0.1 2,5 .] In the tetracyclododecene compound. 17 and 10 ] It is more preferable that the proportion of dodeca-3-ene is 50% by weight or more. That is, as a monomer unit derived from the tetracyclododecene compound contained in the hydrocarbon resin used in the present invention, tetracyclo [4.4.0.1 2,5 . 17.10 ] It is preferable to contain a dodeca-3-ene unit, and tetracyclo [4.4.0.1 2,5 .] In the monomer unit derived from the tetracyclododecene compound. 17 and 10 ] It is more preferable that the ratio of the dodeca-3-ene unit is 50% by weight or more.
  • the hydrocarbon resin used in the present invention may contain a monomer unit derived from the tetracyclododecene compound in a proportion of 0.1 to 50% by weight, and the monomer unit derived from the tetracyclododecene compound may be used.
  • the monomer unit other than the above is not particularly limited, and any one can be contained.
  • the content ratio of the 1,3-pentadiene (piperylene) monomer unit in the hydrocarbon resin used in the present invention is preferably 1 to 60% by weight, more preferably 10 to 55% by weight, still more preferably 20 to 50% by weight. Weight%.
  • the cis / trans isomer ratio in 1,3-pentadiene may be any ratio and is not particularly limited.
  • the alicyclic monoolefin having 4 to 6 carbon atoms for forming an alicyclic monoolefin monomer unit having 4 to 6 carbon atoms has one ethylenically unsaturated bond in its molecular structure and is non-aromatic.
  • a hydrocarbon compound having a sex ring structure and having 4 to 6 carbon atoms may be used, and is not particularly limited, and specific examples thereof include cyclohexene, cyclopentene, cyclohexene, methylcyclobutene, and methylcyclopentene.
  • hydrocarbon compound having 4 to 6 carbon atoms Only one type of hydrocarbon compound having 4 to 6 carbon atoms may be used, or two or more types may be used in combination, but at least cyclopentene is preferably contained, and the hydrocarbon compound has 4 to 6 carbon atoms.
  • the proportion of cyclopentene in the alicyclic monoolefin is preferably 50% by weight or more. That is, the ratio of the cyclopentene unit to the alicyclic monoolefin monomer unit having 4 to 6 carbon atoms contained in the hydrocarbon resin used in the present invention is preferably 50% by weight or more.
  • the content ratio of the alicyclic monoolefin monomer unit having 4 to 6 carbon atoms in the hydrocarbon resin used in the present invention is preferably 1 to 30% by weight, more preferably 5 to 30% by weight, still more preferably. It is 10 to 30% by weight, and even more preferably 20 to 30% by weight.
  • An acyclic monoolefin having 4 to 8 carbon atoms for forming an acyclic monoolefin monomer unit having 4 to 8 carbon atoms has one ethylenically unsaturated bond in its molecular structure.
  • a chain hydrocarbon compound having no ring structure and having 4 to 8 carbon atoms may be used, and is not particularly limited. Specific examples thereof include 1-butene, 2-butene, and isobutylene (2-methylpropene).
  • Butenes 1-pentene, 2-pentene, 2-methyl-1-butene, 3-methyl-1-butene, 2-methyl-2-butene and other butenes; 1-hexene, 2-hexene, 2- Hexenes such as methyl-1-pentene; heptenes such as 1-heptene, 2-heptene, 2-methyl-1-hexene; 1-octene, 2-octene, 2-methyl-1-heptene, diisobutylene (2) , 4,4-trimethylpentene-1 and 2,4,4-trimethylpentene-1) and other octenes; and the like.
  • Only one type of acyclic monoolefin having 4 to 8 carbon atoms may be used, or two or more types may be used in combination, but at least from 2-methyl-2-butene, isobutylene and diisobutylene. It is preferable that at least one selected from the above group is contained, and the total amount of 2-methyl-2-butene, isobutylene and diisobutylene in the acyclic monoolefin having 4 to 6 carbon atoms accounts for 50% by weight. The above is more preferable.
  • the total ratio of 2-methyl-2-butene unit, isobutylene unit and diisobutylene unit in the acyclic monoolefin monomer unit having 4 to 6 carbon atoms contained in the hydrocarbon resin used in the present invention is It is preferably 50% by weight or more.
  • the content ratio of the acyclic monoolefin monomer unit having 4 to 8 carbon atoms in the hydrocarbon resin used in the present invention is preferably 0 to 50% by weight, more preferably 0 to 40% by weight, still more preferably. It is 1 to 30% by weight, and even more preferably 5 to 30% by weight.
  • the alicyclic diolefin for forming an alicyclic diolefin monomer unit is a hydrocarbon compound having two or more ethylenically unsaturated bonds and a non-aromatic ring structure in its molecular structure.
  • the specific examples thereof include, but are not limited to, a multimer of cyclopentadiene such as cyclopentadiene and dicyclopentadiene, and a multimer of methylcyclopentadiene and methylcyclopentadiene.
  • alicyclic diolefin Only one type of alicyclic diolefin may be used, or two or more types may be used in combination, but it is preferable that at least dicyclopentadiene is contained, and dicyclo in the alicyclic diolefin. More preferably, the proportion of pentadiene is 50% by weight or more. That is, the ratio of the dicyclopentadiene unit to the alicyclic diolefin monomer unit contained in the hydrocarbon resin used in the present invention is preferably 50% by weight or more.
  • the content ratio of the alicyclic diolefin monomer unit in the hydrocarbon resin used in the present invention is preferably 0 to 10% by weight, more preferably 0 to 7.5% by weight, still more preferably 0 to 5% by weight. %.
  • the aromatic monoolefin for forming an aromatic monoolefin monomer unit is a hydrocarbon compound having one ethylenically unsaturated bond in its molecular structure and having an aromatic ring structure. Often, but not particularly limited, specific examples thereof include styrene, ⁇ -methylstyrene, vinyltoluene and the like. Only one type of aromatic monoolefin may be used, or two or more types may be used in combination, but it is preferable that at least styrene is contained, and the proportion of styrene in the aromatic monoolefin is 50. More preferably, it is by weight% or more. That is, the proportion of the styrene unit in the aromatic monoolefin monomer unit contained in the hydrocarbon resin used in the present invention is preferably 50% by weight or more.
  • the content ratio of the aromatic monoolefin monomer unit in the hydrocarbon resin used in the present invention is preferably 0 to 40% by weight, more preferably 0 to 35% by weight, still more preferably 0 to 30% by weight. ..
  • the obtained rubber crosslinked product can be made excellent in rolling resistance and wet grip performance.
  • An aromatic monomer having a structure in which two or more cyclic structures are bonded for forming an aromatic monomer unit having a structure in which two or more cyclic structures are bonded includes an aromatic ring structure. It may be a hydrocarbon compound having two or more ring structures, and is not particularly limited, but specific examples thereof include a compound having a naphthalene skeleton such as naphthalene, a compound having a fluorene skeleton such as fluorene, and a biphenyl skeleton such as biphenyl.
  • Examples thereof include compounds having an anthracene skeleton such as anthracene, compounds having a phenanthrene skeleton such as phenanthrene, compounds having an inden skeleton such as inden, and compounds having a benzothiophene skeleton such as benzothiophene. Only one type of aromatic monomer having a structure in which two or more cyclic structures are bonded may be used, or two or more types may be used in combination.
  • the content ratio of the aromatic monomer unit having a structure in which two or more cyclic structures are bonded is preferably 0 to 50% by weight, more preferably 0 to 40% by weight, and further. It is preferably 0 to 30% by weight.
  • the hydrocarbon resin used in the present invention may contain units of other monomers other than the above-mentioned monomer units.
  • the other monomer may be a monomer copolymerizable with each monomer containing the above-mentioned tetracycloheptene compound, and is not particularly limited, but for example, 1,3-butadiene, 1,2. -Acyclic polyenes other than 1,3-pentadiene such as butadiene, isoprene, 1,3-hexadiene, and 1,4-pentadiene; alicyclic monoolefins having 7 or more carbon atoms such as cycloheptene; ethylene, propylene, nonene, etc.
  • the content ratio of the unit of the other monomer in the hydrocarbon resin used in the present invention is preferably 0 to 30% by weight, more preferably 0 to 25% by weight, still more preferably 0 to 20% by weight.
  • the hydrocarbon resin used in the present invention can be produced, for example, by addition polymerization of a monomer mixture containing a tetracyclododecene compound and each of the above-mentioned monomers.
  • the method of addition polymerization is not particularly limited, and a method known as an addition polymerization method for producing a hydrocarbon resin can be selected.
  • a part or all of the unsaturated bonds remaining in the polymer molecular structure of the hydrocarbon resin are saturated by the hydrogenation reaction (hydrogenation). It may be a hydrogenated product.
  • the weight average molecular weight (Mw) of the hydrocarbon resin used in the present invention may be in the range of 500 to 4,000 and is not particularly limited, but is preferably in the range of 750 to 3,500, more preferably 1,000 to. It is in the range of 3,000. If the weight average molecular weight (Mw) of the hydrocarbon resin is too small, the obtained rubber crosslinked product will have an inferior balance between rolling resistance and wet grip performance. On the other hand, if the weight average molecular weight (Mw) of the hydrocarbon resin is too large, the processability of the rubber composition becomes inferior.
  • the number average molecular weight (Mn) of the hydrocarbon resin used in the present invention is preferably in the range of 250 to 2,000, more preferably in the range of 375 to 1,750, and further preferably in the range of 500 to 1,500. is there.
  • the obtained rubber crosslinked product can be made excellent in rolling resistance and wet grip performance.
  • the Z average molecular weight (Mz) of the hydrocarbon resin used in the present invention is preferably in the range of 1,000 to 10,000, more preferably in the range of 1,500 to 8,500, and even more preferably in the range of 2,000 to 2,000. It is in the range of 7,000.
  • the Z average molecular weight (Mz) of the hydrocarbon resin is within the above range, the obtained rubber crosslinked product can be made excellent in rolling resistance and wet grip performance.
  • the hydrocarbon resin used in the present invention has a weight average molecular weight ratio (Mw / Mn) to a number average molecular weight preferably in the range of 1.0 to 4.0, more preferably 1.2 to 3.5.
  • the range more preferably 1.4 to 3.0.
  • this ratio is within the above range, the obtained rubber crosslinked product can be made more excellent in rolling resistance and wet grip performance.
  • the hydrocarbon resin used in the present invention has a ratio of Z average molecular weight to weight average molecular weight (Mz / Mw) preferably in the range of 1.0 to 4.0, more preferably 1.2 to 3.5. The range, more preferably 1.4 to 3.0. When this ratio is within the above range, the obtained rubber crosslinked product can be made more excellent in rolling resistance and wet grip performance.
  • the weight average molecular weight (Mw), Z average molecular weight (Mz), and number average molecular weight (Mn) of the hydrocarbon resin are determined as polystyrene-equivalent values measured by high performance liquid chromatography.
  • the weight average molecular weight (Mw), Z average molecular weight (Mz), number average molecular weight (Mn), and their ratios (Mw / Mn, Mz / Mw) of the hydrocarbon resin are simply derived from the tetracyclododecene compound. Control by adjusting the composition of each monomer after setting the molecular weight unit to a ratio of 0.1 to 50% by weight, or by adjusting the production conditions in the method for producing a hydrocarbon resin described later. Can be done.
  • the softening point of the hydrocarbon resin used in the present invention may be in the range of 80 ° C. to 170 ° C., and is not particularly limited, but is preferably 85 to 160 ° C., more preferably 90 to 150 ° C. If the softening point of the hydrocarbon resin is too low or too high, the obtained rubber crosslinked product will have an inferior balance between rolling resistance and wet grip performance.
  • the composition of each monomer may be adjusted after setting the ratio of the monomer unit derived from the tetracyclododecene compound to 0.1 to 50% by weight, or the hydrocarbon described later may be used. In the method for producing a hydrogen resin, it can be controlled by adjusting the production conditions.
  • the hydrocarbon resin used in the present invention may be a hydride in which some or all of the unsaturated bonds remaining in the polymer molecular structure of the hydrocarbon resin are saturated by a hydrogenation reaction (hydrogenation). Good.
  • a monomer mixture containing a tetracyclododecene compound and each of the above-mentioned monomers is addition-polymerized to obtain a weight average molecular weight (Mw) and a softening point.
  • Mw weight average molecular weight
  • the present invention is not particularly limited, but for example, it can be produced by addition polymerization using a Friedel-Crafts type cationic polymerization catalyst, and in particular, Lewis.
  • a method by addition polymerization using the acid catalyst (A) is preferable.
  • the Lewis acid catalyst (A) is not limited, but is preferably a metal halide, and is a halide of an element belonging to Group III of the Periodic Table or a complex thereof from the viewpoint of having good reaction activity. preferable.
  • a Lewis acid catalyst include aluminum trichloride (AlCl 3 ), aluminum bromide (AlBr 3 ), gallium trichloride (GaCl 3 ), and boron trifluorinated diethyl ether complex (BF 3 , Et 2). O) and the like can be mentioned.
  • AlCl 3 or BF 3 ⁇ Et 2 O is preferably used from the viewpoint of versatility and the like. Only one type of Lewis acid catalyst (A) may be used, or two or more types may be used in combination.
  • the amount of the Lewis acid catalyst (A) used is not particularly limited, but is preferably 0.05 to 10 parts by weight, more preferably 0.1 to 5 parts by weight, based on 100 parts by weight of the monomer mixture used for the polymerization. Is.
  • the Lewis acid catalyst (A) is adjacent to a halogenated hydrocarbon (B1) in which a halogen atom is bonded to a tertiary carbon atom and a carbon-carbon unsaturated bond in that the polymerization activity can be further enhanced. It may be used in combination with at least one halogenated hydrocarbon (B) selected from halogenated hydrocarbons (B2) in which a halogen atom is bonded to a carbon atom.
  • halogenated hydrocarbon (B1) in which a halogen atom is bonded to a tertiary carbon atom include t-butyl chloride, t-butyl bromide, 2-chloro-2-methylbutane, and triphenylmethyl chloride.
  • t-butyl chloride is particularly preferably used because it has an excellent balance between activity and ease of handling.
  • halogenated hydrocarbons (B2) in which a halogen atom is bonded to a carbon atom adjacent to a carbon-carbon unsaturated bond include benzyl chloride, benzyl bromide, (1-chloroethyl) benzene, allyl chloride, and 3-chloro-.
  • Examples thereof include 1-propyne, 3-chloro-1-butene, 3-chloro-1-butyne, and silica skin chloride.
  • benzyl chloride is preferably used because it has an excellent balance between activity and ease of handling. Only one type of halogenated hydrocarbon (B) may be used, or two or more types may be used in combination.
  • the amount of the halogenated hydrocarbon (B) used is not particularly limited, but is preferably in the range of 0.05 to 50, more preferably in the range of 0.1 to 10, in terms of the molar ratio to the Lewis acid catalyst (A). ..
  • the order in which each component of the monomer mixture and the polymerization catalyst is added to the polymerization reactor is not particularly limited and may be added in any order, but from the viewpoint of satisfactorily controlling the polymerization reaction.
  • To a part of the monomer component constituting the monomer mixture and a part of the monomer component constituting the monomer mixture by adding the Lewis acid catalyst (A) to the polymerization reactor in advance. After contacting the Lewis acid catalyst (A) in advance, it is preferable to add the rest of the monomer components constituting the monomer mixture to the polymerization reactor to start the polymerization reaction.
  • At least an alicyclic monoolefin having 4 to 6 carbon atoms is used as a part of the monomer components constituting the monomer mixture, and is added to the Lewis acid catalyst (A) and the polymerization reactor in advance. Then, after the alicyclic monoolefin having 4 to 6 carbon atoms and the Lewis acid catalyst (A) are brought into contact with each other in advance, the remainder of the monomer component constituting the monomer mixture is added to the polymerization reactor. , It is more preferable to start the polymerization reaction.
  • halogenated hydrocarbon (B) When a halogenated hydrocarbon (B) is used in addition to the Lewis acid catalyst (A), the monomer mixture and the Lewis acid catalyst (A) are added to the polymerization reactor to carry out the polymerization reaction. After the start, it is preferable to add the halogenated hydrocarbon (B) to the polymerization reactor. Alternatively, the monomer mixture, the Lewis acid catalyst (A), a part of the halogenated hydrocarbon (B) and a part of the halogenated hydrocarbon (B) are added to the polymerization reactor to initiate the polymerization reaction, and then the remainder of the halogenated hydrocarbon (B). Is also preferably added to the polymerization reactor.
  • a solvent to the polymerization reaction system to carry out the polymerization reaction.
  • the type of solvent is not particularly limited as long as it does not inhibit the polymerization reaction, but saturated aliphatic hydrocarbons or aromatic hydrocarbons are preferable.
  • saturated aliphatic hydrocarbons used as a solvent include n-pentane, n-hexane, 2-methylpentane, 3-methylpentane, n-heptane, 2-methylhexane, 3-methylhexane, and 3-ethylpentane.
  • 2,2-Dimethylpentane, 2,3-dimethylpentane, 2,4-dimethylpentane, 3,3-dimethylpentane, 2,2,3-trimethylbutane, 2,2,4-trimethylpentane, etc. 5 to 10 chain saturated aliphatic hydrocarbons; examples include cyclic saturated aliphatic hydrocarbons having 5 to 10 carbon atoms such as cyclopentane, cyclohexane, cycloheptane, and cyclooctane.
  • the aromatic hydrocarbon used as the solvent include aromatic hydrocarbons having 6 to 10 carbon atoms such as benzene, toluene and xylene.
  • One type of solvent may be used alone, or two or more types may be used as a mixed solvent.
  • the amount of the solvent used is not particularly limited, but is preferably 10 to 1000 parts by weight, more preferably 50 to 500 parts by weight, based on 100 parts by weight of the monomer mixture used in the polymerization reaction.
  • a mixture of an addition-polymerizable component and a non-addition-polymerizable component such as a mixture of cyclopentane and cyclopentene derived from the C5 distillate, is added to the polymerization reaction system, and the amount of the addition-polymerizable component is a single amount. It is also possible to use it as a component of the body mixture and use the non-additionally polymerizable component as a solvent.
  • the polymerization temperature at the time of carrying out the polymerization reaction is not particularly limited, but is preferably 85 ° C. or lower, more preferably ⁇ 20 to 85 ° C., and even more preferably 0 to 65 ° C. If the polymerization temperature is too low, the polymerization activity may decrease and the productivity may be deteriorated, and if the polymerization temperature is too high, the hue of the obtained hydrocarbon resin may be inferior.
  • the pressure at which the polymerization reaction is carried out may be under atmospheric pressure or under pressure.
  • the polymerization reaction time can be appropriately selected, but is usually selected in the range of 10 minutes to 12 hours, preferably 30 minutes to 6 hours.
  • the polymerization reaction can be stopped by adding a polymerization terminator such as methanol, an aqueous solution of sodium hydroxide, or an aqueous solution of ammonia to the polymerization reaction system when the desired polymerization conversion rate is obtained.
  • a polymerization terminator such as methanol, an aqueous solution of sodium hydroxide, or an aqueous solution of ammonia
  • the solvent-insoluble catalyst residue produced when the polymerization catalyst is inactivated by adding a polymerization inhibitor may be removed by filtration or the like.
  • the unreacted monomer and solvent are removed, and the low molecular weight oligomer component is further removed by steam distillation or the like and cooled to obtain a solid hydrocarbon resin.
  • hydrocarbon resin used in the present invention thus obtained, if necessary, a part or all of the unsaturated bonds remaining in the polymer molecular structure of the hydrocarbon resin is hydrogenated (hydrogenation). May be saturated with hydrogenated product.
  • the hydrogenation reaction method for carrying out a hydrogenation reaction on a hydrocarbon resin is not particularly limited, but a known method can be used without limitation. For example, a method of contacting with hydrogen in the presence of a nickel catalyst, etc. Can be mentioned.
  • the nickel catalyst is not particularly limited, but from the viewpoint of high reactivity, a catalyst containing a compound supporting nickel as a metal as a main component in a supported inorganic compound as a carrier is preferable.
  • Specific examples of the supported inorganic compound as a carrier include silica, alumina, boria, silica-alumina, diatomaceous earth, clay, clay, magnesia, magnesia-silica (silica-magnesium oxide), titania, and zirconia.
  • the rubber composition of the present invention contains a diene-based rubber in addition to the above-mentioned hydrocarbon resin.
  • the diene rubber is not particularly limited as long as it can be blended with a hydrocarbon resin.
  • Examples of such diene rubber include diene rubber described in JP-A-2015-189873, and specific examples thereof include natural rubber (NB), isoprene rubber (IR), and butadiene rubber ().
  • NB natural rubber
  • IR isoprene rubber
  • BR styrene-butadiene copolymer rubber
  • EPDM ethylene-propylene-dienter polymer
  • styrene-butadiene copolymer rubber, butadiene rubber and the like are preferable. ..
  • diene-based rubber By using the above-mentioned diene-based rubber, it is possible to make the rubber crosslinked product excellent in the balance between rolling resistance and wet grip performance while making the rubber composition excellent in processability.
  • the diene rubber may be used alone or in combination of two or more.
  • the diene rubber in the present invention is not particularly limited in its molecular weight and microstructure, and may be terminal-modified with an amine, amide, silyl, alkoxysilyl, carboxyl, hydroxyl group or the like, or may be epoxidized. .. Further, the diene-based rubber in the present invention may be hydrogenated, but is preferably non-hydrogenated.
  • the blending ratio of the diene-based rubber and the above-mentioned hydrocarbon resin may be 1 to 200 parts by mass of the hydrocarbon resin with respect to 100 parts by mass of the diene-based rubber. It is preferably blended in an amount of 70 parts by mass, more preferably 3 to 35 parts by mass. If the blending amount of the hydrocarbon resin is too small, the processability as a rubber composition will be inferior, while if it is too large, the obtained rubber crosslinked product will have an inferior balance between rolling resistance and wet grip performance. turn into.
  • the rubber composition of the present invention may consist only of a diene-based rubber and the above-mentioned hydrocarbon resin, but may further contain other components.
  • Other components that can be contained in the rubber composition of the present invention include, for example, fillers, silane coupling agents, cross-linking agents, cross-linking accelerators, cross-linking activators, antioxidants, antioxidants, activators, process oils. , Plasticizers, lubricants, tackifiers, etc., and other compounding agents can be blended in required amounts.
  • filler that can be blended in the rubber composition of the present invention
  • those generally used in the rubber composition can be used, for example, carbon black, clay, diatomaceous earth, silica, talc, barium sulfate, calcium carbonate, etc.
  • Inorganic hollow fillers such as magnesium carbonate, metal oxides, mica, aluminum hydroxide, various metal powders, wood powders, glass powders, ceramic powders, glass balloons, silica balloons; polystyrene, vinylidene fluoride, vinylidene fluoride copolymers And the like, organic hollow fillers and the like can be mentioned.
  • silica examples include dry white carbon, wet white carbon, colloidal silica, and precipitated silica. Among these, a wet method white carbon containing hydrous silicic acid as a main component is preferable. Further, a carbon-silica dual phase filler in which silica is supported on the surface of carbon black may be used. These silicas can be used alone or in combination of two or more.
  • the nitrogen adsorption specific surface area of the silica used (measured by the BET method according to ASTM D3037-81) is preferably 100 to 400 m 2 / g, more preferably 150 to 350 m 2 / g.
  • the pH of silica is preferably pH 5-10.
  • the blending amount of silica in the rubber composition of the present invention is preferably 10 to 200 parts by mass, more preferably 20 to 150 parts by mass, and further preferably 30 parts by mass with respect to 100 parts by mass of the rubber component in the rubber composition. ⁇ 75 parts by mass.
  • silica When silica is used as the filler, it is preferable to use a silane coupling agent in combination.
  • the silane coupling agent include vinyl triethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, N- ( ⁇ -aminoethyl) - ⁇ -aminopropyltrimethoxysilane, and 3-octatio-.
  • silane coupling agents can be used alone or in combination of two or more.
  • the blending amount of the silane coupling agent is preferably 0.1 to 30 parts by mass, and more preferably 1 to 15 parts by mass with respect to 100 parts by mass of silica.
  • carbon black examples include furnace black, acetylene black, thermal black, channel black, and graphite. These carbon blacks can be used alone or in combination of two or more.
  • the blending amount of carbon black is usually 120 parts by mass or less with respect to 100 parts by mass of the rubber component in the rubber composition.
  • the filler may be used alone or in combination of two or more.
  • silica and carbon black can be mixed and used as the filler.
  • the content of the filler other than silica and carbon black may be as long as the effect of the present invention can be obtained, and can be, for example, 120 parts by mass or less with respect to 100 parts by mass of the rubber component.
  • the cross-linking agent is not particularly limited, and examples thereof include sulfur, sulfur halide, organic peroxides, quinonedioximes, organic polyvalent amine compounds, and alkylphenol resins having a methylol group. Of these, sulfur is preferably used.
  • the amount of the cross-linking agent blended is preferably 0.1 to 15 parts by mass, more preferably 0.5 to 5 parts by mass, and particularly preferably 1 to 4 parts by mass with respect to 100 parts by mass of the rubber component in the rubber composition. Is.
  • cross-linking accelerator When sulfur or a sulfur-containing compound is used as the cross-linking agent, it is preferable to use a cross-linking accelerator and a cross-linking activator together.
  • the cross-linking accelerator include a sulfenamide-based cross-linking accelerator; a guanidine-based cross-linking accelerator; a thiourea-based cross-linking accelerator; a thiazole-based cross-linking accelerator; a thiuram-based cross-linking accelerator; Crosslink accelerators; and the like. Among these, those containing a sulfenamide-based cross-linking accelerator are preferable. These cross-linking accelerators may be used alone or in combination of two or more.
  • the amount of the cross-linking accelerator to be blended is preferably 0.1 to 15 parts by mass, more preferably 0.5 to 5 parts by mass, and particularly preferably 1 to 4 parts by mass with respect to 100 parts by mass of the rubber component in the rubber composition. It is a department.
  • cross-linking activator examples include higher fatty acids such as stearic acid; zinc oxide; and the like. These cross-linking activators may be used alone or in combination of two or more.
  • the blending amount of the cross-linking activator is preferably 0.05 to 20 parts by mass, particularly preferably 0.5 to 15 parts by mass with respect to 100 parts by mass of the rubber component in the rubber composition.
  • an antiaging agent such as an amine-based stabilizer, a phenol-based stabilizer, a phosphorus-based stabilizer, or a sulfur-based stabilizer may be added to the rubber composition of the present invention.
  • the amount of the anti-aging agent added may be appropriately determined according to the type and the like.
  • an antioxidant may be added to the rubber composition of the present invention, if necessary.
  • the antioxidant is not particularly limited, but for example, pentaerythritol tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di-t).
  • Hindered phenolic compounds such as -butyl-4-hydroxyphenyl) propionate, 2,6-di-t-butyl-p-cresol, di-t-butyl-4-methylphenol; dilaurylthiopropionate and the like.
  • the antioxidant may be used alone or in combination of two or more.
  • the content of the antioxidant is not particularly limited, but is preferably 10 parts by mass or less, and more preferably 0.05 to 5 parts by mass with respect to 100 parts by mass of the rubber component in the rubber composition.
  • the rubber composition of the present invention may contain a resin in addition to the diene-based rubber and the above-mentioned hydrocarbon resin.
  • a resin in addition to the diene-based rubber and the above-mentioned hydrocarbon resin.
  • the resin examples include C9-based petroleum resin, dicyclopentadiene-based resin, terpene-based resin, terpene phenol resin, aromatic-modified terpene resin, alkylphenol-acetylene resin, rosin-based resin, rosin ester resin, inden-based resin, and inden.
  • examples thereof include C9-based resin, ⁇ -methylstyrene / inden copolymer resin, kumaron-inden resin, farnesene-based resin, and polylymonen resin contained. These resins may be modified or hydrogenated. These resins may be used alone or in combination of two or more.
  • the blending amount of the resin is preferably 25 parts by mass or less with respect to 100 parts by mass of the rubber component in the rubber composition.
  • each component may be kneaded according to a conventional method.
  • a component excluding heat-unstable components such as a cross-linking agent and a cross-linking accelerator, a diene-based rubber, and a hydrocarbon may be used.
  • a heat-unstable component such as a cross-linking agent or a cross-linking accelerator can be kneaded into the kneaded product to obtain a desired rubber composition.
  • the kneading temperature at the time of kneading the components excluding the heat-unstable component, the diene rubber, and the hydrocarbon resin is preferably 80 to 200 ° C., more preferably 120 to 180 ° C., and the kneading time is It is preferably 30 seconds to 30 minutes. Further, the kneading of the kneaded product and the heat-unstable component is preferably performed after cooling to 100 ° C. or lower, more preferably 80 ° C. or lower.
  • the rubber composition of the present invention is preferably used as a material for each part of a tire such as a tread (cap tread, base tread), carcass, sidewall, and bead part of the tire.
  • a tread cap tread, base tread
  • carcass sidewall
  • bead part of the tire.
  • it can be suitably used for each part of the tire such as a tread, a carcass, a sidewall, and a bead part. It can be used particularly preferably, and it is particularly preferable to use it for a cap tread.
  • the rubber crosslinked product of the present invention is obtained by cross-linking the above-mentioned rubber composition of the present invention.
  • the rubber crosslinked product of the present invention is formed by using the rubber composition of the present invention, for example, by a molding machine corresponding to a desired shape, for example, an extruder, an injection molding machine, a compressor, a roll, or the like, and is heated. It can be produced by carrying out a cross-linking reaction and fixing the shape as a rubber cross-linked product. In this case, cross-linking may be performed after molding in advance, or cross-linking may be performed at the same time as molding.
  • the molding temperature is usually 10 to 200 ° C, preferably 25 to 120 ° C.
  • the crosslinking temperature is usually 100 to 200 ° C., preferably 130 to 190 ° C.
  • the crosslinking time is usually 1 minute to 24 hours, preferably 2 minutes to 12 hours, particularly preferably 3 minutes to 6 hours. ..
  • the rubber crosslinked product even if the surface is crosslinked, it may not be sufficiently crosslinked to the inside, so further heating may be performed for secondary crosslinking.
  • the heating method a general method used for cross-linking the rubber composition such as press heating, steam heating, oven heating, hot air heating and the like may be appropriately selected.
  • the rubber crosslinked product of the present invention thus obtained is obtained by using the rubber composition of the present invention described above, it is more excellent in the balance between rolling resistance and wet grip performance.
  • the rubber crosslinked product of the present invention is used as a material for each part of a tire such as a tread (cap tread, base tread), carcass, sidewall, bead part, etc. by utilizing its excellent rolling resistance and wet grip performance.
  • a tire such as all-season tires, high-performance tires, and studless tires
  • the tires can be suitably used for each part of the tire such as a tread, a carcass, a sidewall, and a bead portion.
  • a tire It can be particularly preferably used for treads, and particularly preferably for cap treads.
  • the pneumatic tire of the present invention is characterized in that the above-mentioned rubber composition is used for a tread.
  • the tread is a tread using the above-mentioned rubber composition, that is, one formed by using the above-mentioned rubber composition, and is usually a rubber cross-linking of the present invention formed by cross-linking the above-mentioned rubber composition of the present invention. It includes things.
  • the pneumatic tire may have a tread formed by using the rubber composition, and other parts may also be formed by using the rubber composition.
  • the tread formed by using the above rubber composition may be a part of the tread or the whole tread, but preferably contains at least a cap tread.
  • any method can be used as long as it can produce a pneumatic tire having a tread formed by using the above composition, and a known method for producing a pneumatic tire can be used. it can.
  • 3 type-Test piece collection direction Parallel to the row-Number of test pieces: 3 ⁇ Measurement temperature: 23 ° C -Test speed: 500 mm / min -Testing machine used: TENSOMETER 10k manufactured by ALPHA TECHNOLOGIES ⁇ Testing machine capacity: Load cell type 1kN
  • Measurement item Dynamic storage modulus E' : Dynamic loss elastic modulus E " : Loss tangent tan ⁇ -Sample preparation method: Punching from the sheet-Test piece shape: Length 50 mm x Width 2 mm x Thickness 2 mm ⁇ Number of test pieces: 1 ⁇ Distance between clamps: 20 mm
  • tetracyclododecene (tetracyclo [4.4.0.1 2,5 .1 7,10] dodeca-3-ene) 24.6 parts of 1,3-pentadiene 41.1 parts of cyclopentene 15.2
  • a mixture consisting of 2.2 parts of isobutylene, 1.2 parts of diisobutylene, 0.4 parts of dicyclopentadiene, 0.5 parts of C4-C6 unsaturated hydrocarbon, and 10.3 parts of C4-C6 saturated hydrocarbon. was continuously added to the polymerization reactor while maintaining the temperature of 75 ° C. for 60 minutes to carry out the polymerization.
  • the polymerization conversion rate at this time was 85%, and the composition of the obtained polymer was almost the same as the proportion of the components constituting the monomer mixture.
  • the types and amounts of the components in the polymerization reactor during the polymerization reaction are the components constituting the monomer mixture (additionally polymerizable component), the components corresponding to the solvent (non-additionally polymerizable components), and the polymerization catalyst. They are classified and shown in Table 1.
  • the obtained polymer solution was placed in a distillation pot and heated in a nitrogen atmosphere to remove the polymerization solvent and the unreacted monomer. Then, at 240 ° C. or higher, the low molecular weight oligomer component was distilled off while blowing saturated water vapor. 1. Pentaerythritol tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] (BASF's "Irganox 1010”) as an antioxidant for 100 parts of the molten resin.
  • Example 1 Oil-expanded emulsified polymerized styrene-butadiene rubber (SBR) (trade name "Nipol 1739", manufactured by Nippon Zeon Co., Ltd., amount of bonded styrene: 40%, vinyl bond content of butadiene unit portion: 13.5 Mol%, weight average molecular weight: 690,000, molecular weight distribution (Mw / Mn): 3.98, glass transition temperature (Tg): -35 ° C., containing 37.5 parts of styrene oil with respect to 100 parts of rubber component.
  • SBR Oil-expanded emulsified polymerized styrene-butadiene rubber
  • the obtained kneaded product was cooled to room temperature, kneaded again in a Banbury type mixer for 2 minutes (secondary kneading) at a starting temperature of 90 ° C., and then the kneaded product was discharged from the mixer.
  • the temperature of the kneaded product at the end of kneading was 145 ° C.
  • the kneading conditions for the primary kneading, the secondary kneading, and the cross-linking agent kneading were as shown below.
  • Examples 2 to 5 and Comparative Examples 1 to 3 As shown in Table 2 below, a rubber composition was obtained in the same manner as in Example 1 except that the hydrocarbon resins obtained in Production Examples 2 to 8 were used instead of the hydrocarbon resins obtained in Production Example 1. ..
  • a rubber composition containing a diene-based rubber and a hydrocarbon resin wherein the content of the hydrocarbon resin is 1 to 200 parts by mass with respect to 100 parts by mass of the diene-based rubber.
  • the hydrocarbon resin contains a monomer unit derived from a tetracyclododecene compound in a proportion of 0.1 to 50% by weight, and has a weight average molecular weight (Mw) in the range of 500 to 4,000.
  • Mw weight average molecular weight
  • the rubber composition having a softening point in the range of 80 to 170 ° C. has excellent workability, and the obtained rubber crosslinked product has an excellent balance between rolling resistance and wet grip performance, and further. It was also excellent in tensile strength and elongation (Examples 1 to 5).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided is a rubber composition with which a rubber crosslinked product having good workability and an excellent balance between rolling resistance and wet grip performance can be obtained. Provided is a rubber composition containing a diene rubber and a hydrocarbon resin, wherein the hydrocarbon resin content is 1-200 parts by mass per 100 parts by mass of the diene rubber, the hydrocarbon resin contains monomer units derived from a tetracyclododecene compound in a proportion of 0.1-50% by weight, the weight-average molecular weight (Mw) is in the range of 500-4,000, and the softening point is in the range of 80-170°C.

Description

ゴム組成物ならびにそれを用いたゴム架橋物および空気入りタイヤRubber composition and rubber cross-linked products and pneumatic tires using it
 本発明は、ゴム組成物に関し、さらに詳しくは、加工性が良好であり、かつ、転がり抵抗およびウェットグリップ性能のバランスに優れたゴム架橋物を得ることができるゴム組成物に関するものである。 The present invention relates to a rubber composition, and more particularly to a rubber composition capable of obtaining a rubber crosslinked product having good workability and an excellent balance between rolling resistance and wet grip performance.
 近年、自動車用のタイヤには、環境問題および資源問題から低燃費性が強く求められる一方で、安全性の面から例えば、ウェットグリップ性の向上が要求されている。ゴム成分に充填剤としてシリカを配合したゴム組成物の架橋物は、カーボンブラックを配合したゴム組成物の架橋物に比べて、タイヤを構成した場合の転がり抵抗が小さくなる。そのため、シリカを配合したゴム組成物の架橋物を用いてタイヤを構成することにより、低燃費性に優れたタイヤを得ることができる。 In recent years, automobile tires are strongly required to have low fuel consumption due to environmental problems and resource problems, while improvement of wet grip is required from the viewpoint of safety, for example. A crosslinked product of a rubber composition containing silica as a filler in a rubber component has a smaller rolling resistance when a tire is formed than a crosslinked product of a rubber composition containing carbon black. Therefore, by constructing a tire using a crosslinked product of a rubber composition containing silica, a tire having excellent fuel efficiency can be obtained.
 しかしながら、従来のゴム成分にシリカを配合しても、ゴム成分とシリカとの親和性が不十分で、これらが分離しやすいことに起因して、架橋前のゴム組成物の加工性が悪く、また、これらを架橋して得られるゴム架橋物は、タイヤを構成した場合の転がり抵抗が不十分となるといった不具合がある。 However, even if silica is blended with the conventional rubber component, the affinity between the rubber component and silica is insufficient, and the rubber composition before cross-linking is poorly processable due to the fact that these are easily separated. Further, the rubber crosslinked product obtained by cross-linking these has a problem that the rolling resistance when the tire is constructed becomes insufficient.
 また、特許文献1では、タイヤの転がり抵抗およびウェットグリップ性の向上を図ることを目的として、ゴム成分に、特定構造の軟化剤を特定量配合すると共に、特定構造の炭化水素樹脂を特定量配合することが開示されている。 Further, in Patent Document 1, for the purpose of improving the rolling resistance and wet grip property of the tire, a specific amount of a softener having a specific structure is blended in the rubber component, and a specific amount of a hydrocarbon resin having a specific structure is blended. It is disclosed to do.
特開2010-241965号公報Japanese Unexamined Patent Publication No. 2010-241965
 特許文献1に記載の特定構造の軟化剤および炭化水素樹脂では、これらを添加して得られるエラストマー架橋物によりタイヤを製造した場合に、確かに、ウェットグリップ性および転がり抵抗の両特性を向上させることが可能であるが、未だ不十分であるといった問題がある。 The softener and hydrocarbon resin having a specific structure described in Patent Document 1 certainly improve both wet grip properties and rolling resistance when a tire is manufactured from an elastomer crosslinked product obtained by adding them. It is possible, but there is a problem that it is still insufficient.
 本発明は、上記問題点に鑑みてなされたものであり、加工性が良好であり、かつ、転がり抵抗およびウェットグリップ性能のバランスに優れたゴム架橋物を得ることができるゴム組成物を提供することを目的とする。 The present invention has been made in view of the above problems, and provides a rubber composition capable of obtaining a rubber crosslinked product having good workability and an excellent balance between rolling resistance and wet grip performance. The purpose is.
 本発明者等は、上記目的を達成すべく検討を行ったところ、ジエン系ゴムに、特定の炭化水素樹脂を配合することにより得られるゴム組成物であれば、優れた加工性を実現しながら、転がり抵抗およびウェットグリップ性能のバランスに優れたゴム架橋物が得られることを見出し、本発明を完成させるに至った。 As a result of studies to achieve the above object, the present inventors have realized excellent processability as long as it is a rubber composition obtained by blending a specific hydrocarbon resin with a diene rubber. , It has been found that a rubber crosslinked product having an excellent balance between rolling resistance and wet grip performance can be obtained, and the present invention has been completed.
 すなわち、本発明によれば、ジエン系ゴムおよび炭化水素樹脂を含有するゴム組成物であって、前記炭化水素樹脂の含有量が、前記ジエン系ゴム100質量部に対して1~200質量部であり、前記炭化水素樹脂は、テトラシクロドデセン化合物由来の単量体単位を0.1~50重量%の割合で含有し、重量平均分子量(Mw)が500~4,000の範囲内であり、軟化点が80~170℃の範囲内であるゴム組成物が提供される。 That is, according to the present invention, the rubber composition contains a diene-based rubber and a hydrocarbon resin, and the content of the hydrocarbon resin is 1 to 200 parts by mass with respect to 100 parts by mass of the diene-based rubber. The hydrocarbon resin contains a monomer unit derived from a tetracyclododecene compound in a proportion of 0.1 to 50% by weight, and has a weight average molecular weight (Mw) in the range of 500 to 4,000. , A rubber composition having a softening point in the range of 80 to 170 ° C. is provided.
 本発明のゴム組成物において、前記炭化水素樹脂は、前記テトラシクロドデセン化合物由来の単量体単位0.1~50重量%に加えて、1,3-ペンタジエン単量体単位1~60重量%、炭素数4~6の脂環式モノオレフィン単量体単位1~30重量%、炭素数4~8の非環式モノオレフィン単量体単位0~50重量%、脂環式ジオレフィン単量体単位0~10重量%、芳香族モノオレフィン単量体単位0~40重量%、および、2以上の環状構造が結合した構造を有する芳香族単量体単位0~50重量%を含有し、前記炭化水素樹脂は、数平均分子量(Mn)が250~2000の範囲内であり、Z平均分子量(Mz)が1,000~10,000の範囲内であり、数平均分子量に対する重量平均分子量の比(Mw/Mn)が1.0~4.0の範囲内であり、重量平均分子量に対するZ平均分子量の比(Mz/Mw)が1.0~4.0の範囲内であることが好ましい。
 本発明のゴム組成物において、前記炭化水素樹脂が、前記テトラシクロドデセン化合物由来の単量体単位として、テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン単位を含有することが好ましい。
 本発明のゴム組成物において、前記テトラシクロドデセン化合物由来の単量体単位中における、テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン単位の割合が50重量%以上であることが好ましい。
 本発明のゴム組成物において、前記炭化水素樹脂が、水素化物であることが好ましい。
 本発明のゴム組成物は、さらにシリカを含有することが好ましい。
 本発明のゴム組成物は、さらにシランカップリング剤を含有することが好ましい。
 本発明のゴム組成物は、さらに架橋剤を含有することが好ましい。
In the rubber composition of the present invention, the hydrocarbon resin has a 1,3-pentadiene monomer unit of 1 to 60% by weight in addition to 0.1 to 50% by weight of the monomer unit derived from the tetracyclododecene compound. %, 1 to 30% by weight of an alicyclic monoolefin monomer unit having 4 to 6 carbon atoms, 0 to 50% by weight of an acyclic monoolefin monomer unit having 4 to 8 carbon atoms, and a single alicyclic diolefin. It contains 0 to 10% by weight of a molecular weight unit, 0 to 40% by weight of an aromatic monoolefin monomer unit, and 0 to 50% by weight of an aromatic monomer unit having a structure in which two or more cyclic structures are bonded. The hydrocarbon resin has a number average molecular weight (Mn) in the range of 250 to 2000, a Z average molecular weight (Mz) in the range of 1,000 to 10,000, and a weight average molecular weight with respect to the number average molecular weight. The ratio (Mw / Mn) of is in the range of 1.0 to 4.0, and the ratio of the Z average molecular weight to the weight average molecular weight (Mz / Mw) is in the range of 1.0 to 4.0. preferable.
In the rubber composition of the present invention, the hydrocarbon resin is a tetracyclo [4.4.0.1 2,5 . 17,10 ] It is preferable to contain a dodeca-3-ene unit.
In the rubber composition of the present invention, tetracyclo [4.4.0.1 2,5 .] In the monomer unit derived from the tetracyclododecene compound. 17 and 10 ] The ratio of dodeca-3-ene units is preferably 50% by weight or more.
In the rubber composition of the present invention, the hydrocarbon resin is preferably a hydride.
The rubber composition of the present invention preferably further contains silica.
The rubber composition of the present invention preferably further contains a silane coupling agent.
The rubber composition of the present invention preferably further contains a cross-linking agent.
 また、本発明によれば、上記のゴム組成物を架橋してなるゴム架橋物が提供される。
 さらに、本発明によれば、上記のゴム組成物または上記のゴム架橋物をトレッドに使用したことを特徴とする空気入りタイヤが提供される。
Further, according to the present invention, there is provided a rubber crosslinked product obtained by crosslinking the above rubber composition.
Further, according to the present invention, there is provided a pneumatic tire characterized in that the above rubber composition or the above rubber crosslinked product is used for a tread.
 本発明によれば、加工性が良好であり、かつ、転がり抵抗およびウェットグリップ性能のバランスに優れたゴム架橋物を得ることができるゴム組成物を提供することができる。 According to the present invention, it is possible to provide a rubber composition capable of obtaining a rubber crosslinked product having good workability and an excellent balance between rolling resistance and wet grip performance.
 本発明のゴム組成物は、ジエン系ゴムおよび炭化水素樹脂を含有し、前記炭化水素樹脂の含有量が、前記ジエン系ゴム100質量部に対して1~200質量部であり、前記炭化水素樹脂は、テトラシクロドデセン化合物由来の単量体単位を0.1~50重量%の割合で含有し、重量平均分子量(Mw)が500~4,000の範囲内であり、軟化点が80~170℃の範囲内である。以下、本発明のゴム組成物の各成分について説明する。 The rubber composition of the present invention contains a diene-based rubber and a hydrocarbon resin, and the content of the hydrocarbon resin is 1 to 200 parts by mass with respect to 100 parts by mass of the diene-based rubber, and the hydrocarbon resin. Contains a monomer unit derived from a tetracyclododecene compound in a proportion of 0.1 to 50% by mass, has a weight average molecular weight (Mw) in the range of 500 to 4,000, and has a softening point of 80 to 80 to 4,000. It is within the range of 170 ° C. Hereinafter, each component of the rubber composition of the present invention will be described.
<炭化水素樹脂>
 本発明で用いる炭化水素樹脂は、テトラシクロドデセン化合物由来の単量体単位を0.1~50重量%の割合で含有し、重量平均分子量(Mw)が500~4,000の範囲内であり、軟化点が80~170℃の範囲内のものである。本発明で用いる炭化水素樹脂は、たとえば、テトラシクロドデセン化合物と、これと共重合可能な単量体とを含む単量体混合物を付加重合することにより製造することができる。
<Hydrocarbon resin>
The hydrocarbon resin used in the present invention contains a monomer unit derived from a tetracyclododecene compound in a proportion of 0.1 to 50% by weight, and has a weight average molecular weight (Mw) in the range of 500 to 4,000. Yes, the softening point is in the range of 80 to 170 ° C. The hydrocarbon resin used in the present invention can be produced, for example, by addition polymerization of a monomer mixture containing a tetracyclododecene compound and a copolymerizable monomer thereof.
 本発明で用いる炭化水素樹脂は、テトラシクロドデセン化合物由来の単量体単位を0.1~50重量%の割合で含有するものであればよく、その含有割合は特に限定されないが、好ましくは5~45重量%、より好ましくは10~40重量%、さらに好ましくは15~35重量%である。本発明においては、テトラシクロドデセン化合物由来の単量体単位を上記含有割合で含有し、かつ、重量平均分子量(Mw)および軟化点が上記所定の範囲にある炭化水素樹脂を用いることにより、ゴム組成物としての加工性に優れたものとしながら、転がり抵抗およびウェットグリップ性能のバランスに優れたゴム架橋物を得ることができるものである。 The hydrocarbon resin used in the present invention may contain a monomer unit derived from the tetracyclododecene compound at a ratio of 0.1 to 50% by weight, and the content ratio is not particularly limited, but is preferable. It is 5 to 45% by weight, more preferably 10 to 40% by weight, still more preferably 15 to 35% by weight. In the present invention, by using a hydrocarbon resin containing a monomer unit derived from a tetracyclododecene compound in the above content ratio and having a weight average molecular weight (Mw) and a softening point within the above predetermined ranges. It is possible to obtain a rubber crosslinked product having an excellent balance between rolling resistance and wet grip performance while having excellent workability as a rubber composition.
 特に、本発明者等が鋭意検討したところ、炭化水素樹脂中に、テトラシクロドデセン化合物由来の単量体単位を0.1~50重量%の割合で含有させることにより、重量平均分子量(Mw)および軟化点を上記範囲内に好適に制御できることを見出し、これにより、ゴム組成物としての加工性に優れたものとしながら、ゴム架橋物とした場合に、得られるゴム架橋物を転がり抵抗およびウェットグリップ性能のバランスに優れたものとすることができることを見出したものである。テトラシクロドデセン化合物由来の単量体単位の含有割合が少なすぎても、多すぎても、得られるゴム架橋物を転がり抵抗およびウェットグリップ性能のバランスに優れたものとすることが困難となる。 In particular, as a result of diligent studies by the present inventors, the weight average molecular weight (Mw) is increased by containing the monomer unit derived from the tetracyclododecene compound in the hydrocarbon resin at a ratio of 0.1 to 50% by weight. ) And the softening point can be suitably controlled within the above range, whereby the rubber crosslinked product obtained when it is made into a rubber crosslinked product has rolling resistance and rolling resistance while making the rubber composition excellent in processability. It was found that the balance of wet grip performance can be excellent. If the content of the monomer unit derived from the tetracyclododecene compound is too small or too large, it becomes difficult to obtain an excellent balance between rolling resistance and wet grip performance of the obtained rubber crosslinked product. ..
 テトラシクロドデセン化合物由来の単量体単位を形成するための、テトラシクロドデセン化合物としては、テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン構造を基本骨格として有する化合物であればよいが、その具体例としては、テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン(テトラシクロドデセン)、8-メチル-テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-エチル-テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-エチリデン- テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-ビニル-テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-プロペニル-テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エンなどが挙げられる。テトラシクロドデセン化合物は、1種類のみ使用してもよいし、2種類以上を組み合わせて使用してもよいが、少なくともテトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エンが含まれることが好ましく、テトラシクロドデセン化合物中におけるテトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エンが占める割合が50重量%以上であることがより好ましい。すなわち、本発明で用いる炭化水素樹脂に含まれるテトラシクロドデセン化合物由来の単量体単位として、テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン単位を含有することが好ましく、テトラシクロドデセン化合物由来の単量体単位中における、テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン単位の割合が50重量%以上であることがより好ましい。 As a tetracyclododecene compound for forming a monomer unit derived from a tetracyclododecene compound, tetracyclo [4.4.0.1 2,5 . 1 7, 10 ] A compound having a dodeca-3-ene structure as a basic skeleton may be used, and specific examples thereof include tetracyclo [4.4.0.1 2,5 . 17 and 10 ] Dodeca-3-ene (tetracyclododecene), 8-methyl-tetracyclo [4.4.0.1 2,5 . 17 and 10 ] Dodeca-3-ene, 8-ethyl-tetracyclo [4.4.0.1 2,5 . 17 and 10 ] Dodeca-3-ene, 8-ethylidene-tetracyclo [4.4.0.1 2,5 . 17 and 10 ] Dodeca-3-ene, 8-vinyl-tetracyclo [4.4.0.1 2,5 . 17 and 10 ] Dodeca-3-ene, 8-propenyl-tetracyclo [4.4.0.1 2,5 . 17 and 10 ] Dodeca-3-en and the like. Only one type of tetracyclododecene compound may be used, or two or more types may be used in combination, but at least tetracyclo [4.4.0.1 2,5 . 17.10 ] Dodeca-3-ene is preferably contained, and tetracyclo [4.4.0.1 2,5 .] In the tetracyclododecene compound. 17 and 10 ] It is more preferable that the proportion of dodeca-3-ene is 50% by weight or more. That is, as a monomer unit derived from the tetracyclododecene compound contained in the hydrocarbon resin used in the present invention, tetracyclo [4.4.0.1 2,5 . 17.10 ] It is preferable to contain a dodeca-3-ene unit, and tetracyclo [4.4.0.1 2,5 .] In the monomer unit derived from the tetracyclododecene compound. 17 and 10 ] It is more preferable that the ratio of the dodeca-3-ene unit is 50% by weight or more.
 本発明で用いる炭化水素樹脂は、テトラシクロドデセン化合物由来の単量体単位を0.1~50重量%の割合で含有するものであればよく、テトラシクロドデセン化合物由来の単量体単位以外の単量体単位としては、特に限定されず、任意のものを含有させることができるが、ゴム組成物の加工性、および得られるゴム架橋物の転がり抵抗およびウェットグリップ性能の観点から、1,3-ペンタジエン単量体単位1~60重量%、炭素数4~6の脂環式モノオレフィン単量体単位1~30重量%、炭素数4~8の非環式モノオレフィン単量体単位0~50重量%、脂環式ジオレフィン単量体単位0~10重量%、芳香族モノオレフィン単量体単位0~40重量%、および、2以上の環状構造が結合した構造を有する芳香族単量体単位0~50重量%を含有するものとすることが好ましい。 The hydrocarbon resin used in the present invention may contain a monomer unit derived from the tetracyclododecene compound in a proportion of 0.1 to 50% by weight, and the monomer unit derived from the tetracyclododecene compound may be used. The monomer unit other than the above is not particularly limited, and any one can be contained. However, from the viewpoint of the processability of the rubber composition, the rolling resistance of the obtained rubber crosslinked product, and the wet grip performance, 1 , 3-Pentadiene monomer unit 1 to 60% by weight, alicyclic monoolefin monomer unit having 4 to 6 carbon atoms 1 to 30% by weight, acyclic monoolefin monomer unit having 4 to 8 carbon atoms An aromatic having a structure in which 0 to 50% by weight, an alicyclic diolefin monomer unit 0 to 10% by weight, an aromatic monoolefin monomer unit 0 to 40% by weight, and two or more cyclic structures are bonded. It preferably contains 0 to 50% by weight of the monomer unit.
 本発明で用いる炭化水素樹脂中における、1,3-ペンタジエン(ピペリレン)単量体単位の含有割合は、好ましくは1~60重量%、より好ましくは10~55重量%、さらに好ましくは20~50重量%である。1,3-ペンタジエン単量体単位の含有割合を上記範囲とすることにより、ゴム組成物としての加工性に優れたものとしながら、得られるゴム架橋物を転がり抵抗およびウェットグリップ性能のバランスにより優れたものとすることができる。なお、1,3-ペンタジエンにおけるシス/トランス異性体比は任意の比でよく、特に限定されない。 The content ratio of the 1,3-pentadiene (piperylene) monomer unit in the hydrocarbon resin used in the present invention is preferably 1 to 60% by weight, more preferably 10 to 55% by weight, still more preferably 20 to 50% by weight. Weight%. By setting the content ratio of the 1,3-pentadiene monomer unit in the above range, the workability as a rubber composition is excellent, and the obtained rubber crosslinked product is excellent in the balance between rolling resistance and wet grip performance. Can be considered. The cis / trans isomer ratio in 1,3-pentadiene may be any ratio and is not particularly limited.
 炭素数4~6の脂環式モノオレフィン単量体単位を形成するための、炭素数4~6の脂環式モノオレフィンは、その分子構造中にエチレン性不飽和結合を1つと非芳香族性の環構造とを有する炭素数が4~6の炭化水素化合物であればよく、特に限定されないが、その具体例としては、シクロブテン、シクロペンテン、シクロヘキセン、メチルシクロブテン、メチルシクロペンテンなどが挙げられる。炭素数が4~6の炭化水素化合物は、1種類のみ使用してもよいし、2種類以上を組み合わせて使用してもよいが、少なくともシクロペンテンが含まれることが好ましく、炭素数4~6の脂環式モノオレフィン中におけるシクロペンテンの占める割合を50重量%以上とすることが好ましい。すなわち、本発明で用いる炭化水素樹脂に含まれる炭素数4~6の脂環式モノオレフィン単量体単位中における、シクロペンテン単位の割合が50重量%以上であることが好ましい。 The alicyclic monoolefin having 4 to 6 carbon atoms for forming an alicyclic monoolefin monomer unit having 4 to 6 carbon atoms has one ethylenically unsaturated bond in its molecular structure and is non-aromatic. A hydrocarbon compound having a sex ring structure and having 4 to 6 carbon atoms may be used, and is not particularly limited, and specific examples thereof include cyclohexene, cyclopentene, cyclohexene, methylcyclobutene, and methylcyclopentene. Only one type of hydrocarbon compound having 4 to 6 carbon atoms may be used, or two or more types may be used in combination, but at least cyclopentene is preferably contained, and the hydrocarbon compound has 4 to 6 carbon atoms. The proportion of cyclopentene in the alicyclic monoolefin is preferably 50% by weight or more. That is, the ratio of the cyclopentene unit to the alicyclic monoolefin monomer unit having 4 to 6 carbon atoms contained in the hydrocarbon resin used in the present invention is preferably 50% by weight or more.
 本発明で用いる炭化水素樹脂中における、炭素数4~6の脂環式モノオレフィン単量体単位の含有割合は、好ましくは1~30重量%、より好ましくは5~30重量%、さらに好ましくは10~30重量%、さらにより好ましくは20~30重量%である。炭素数4~6の脂環式モノオレフィン単量体単位の含有割合を上記範囲とすることにより、得られるゴム架橋物を転がり抵抗およびウェットグリップ性能により優れたものとすることができる。 The content ratio of the alicyclic monoolefin monomer unit having 4 to 6 carbon atoms in the hydrocarbon resin used in the present invention is preferably 1 to 30% by weight, more preferably 5 to 30% by weight, still more preferably. It is 10 to 30% by weight, and even more preferably 20 to 30% by weight. By setting the content ratio of the alicyclic monoolefin monomer unit having 4 to 6 carbon atoms in the above range, the obtained rubber crosslinked product can be made more excellent in rolling resistance and wet grip performance.
 炭素数4~8の非環式モノオレフィン単量体単位を形成するための、炭素数4~8の非環式モノオレフィンは、その分子構造中にエチレン性不飽和結合1つを有し、環構造を有さない炭素数が4~8の鎖状炭化水素化合物であればよく、特に限定されないが、その具体例としては、1-ブテン、2-ブテン、イソブチレン(2-メチルプロペン)などのブテン類;1-ペンテン、2-ペンテン、2-メチル-1-ブテン、3-メチル-1-ブテン、2-メチル-2-ブテンなどのペンテン類;1-ヘキセン、2-ヘキセン、2-メチル-1-ペンテンなどのヘキセン類;1-ヘプテン、2-ヘプテン、2-メチル-1-ヘキセンなどのヘプテン類;1-オクテン、2-オクテン、2-メチル-1-ヘプテン、ジイソブチレン(2,4,4-トリメチルペンテン-1および2,4,4-トリメチルペンテン-1)などのオクテン類;などが挙げられる。炭素数4~8の非環式モノオレフィンは、1種類のみ使用してもよいし、2種類以上を組み合わせて使用してもよいが、少なくとも2-メチル-2-ブテン、イソブチレンおよびジイソブチレンからなる群から選択される少なくとも一種が含まれることが好ましく、炭素数4~6の非環式モノオレフィン中における2-メチル-2-ブテン、イソブチレンおよびジイソブチレンの合計量が占める割合が50重量%以上であることがより好ましい。すなわち、本発明で用いる炭化水素樹脂に含まれる炭素数4~6の非環式モノオレフィン単量体単位中における、2-メチル-2-ブテン単位、イソブチレン単位およびジイソブチレン単位の合計の割合が50重量%以上であることが好ましい。 An acyclic monoolefin having 4 to 8 carbon atoms for forming an acyclic monoolefin monomer unit having 4 to 8 carbon atoms has one ethylenically unsaturated bond in its molecular structure. A chain hydrocarbon compound having no ring structure and having 4 to 8 carbon atoms may be used, and is not particularly limited. Specific examples thereof include 1-butene, 2-butene, and isobutylene (2-methylpropene). Butenes; 1-pentene, 2-pentene, 2-methyl-1-butene, 3-methyl-1-butene, 2-methyl-2-butene and other butenes; 1-hexene, 2-hexene, 2- Hexenes such as methyl-1-pentene; heptenes such as 1-heptene, 2-heptene, 2-methyl-1-hexene; 1-octene, 2-octene, 2-methyl-1-heptene, diisobutylene (2) , 4,4-trimethylpentene-1 and 2,4,4-trimethylpentene-1) and other octenes; and the like. Only one type of acyclic monoolefin having 4 to 8 carbon atoms may be used, or two or more types may be used in combination, but at least from 2-methyl-2-butene, isobutylene and diisobutylene. It is preferable that at least one selected from the above group is contained, and the total amount of 2-methyl-2-butene, isobutylene and diisobutylene in the acyclic monoolefin having 4 to 6 carbon atoms accounts for 50% by weight. The above is more preferable. That is, the total ratio of 2-methyl-2-butene unit, isobutylene unit and diisobutylene unit in the acyclic monoolefin monomer unit having 4 to 6 carbon atoms contained in the hydrocarbon resin used in the present invention is It is preferably 50% by weight or more.
 本発明で用いる炭化水素樹脂中における、炭素数4~8の非環式モノオレフィン単量体単位の含有割合は、好ましくは0~50重量%、より好ましくは0~40重量%、さらに好ましくは1~30重量%、さらにより好ましくは5~30重量%である。炭素数4~8の非環式モノオレフィン単量体単位を上記割合にて含有させることにより、得られるゴム架橋物を転がり抵抗およびウェットグリップ性能により優れたものとすることができる。 The content ratio of the acyclic monoolefin monomer unit having 4 to 8 carbon atoms in the hydrocarbon resin used in the present invention is preferably 0 to 50% by weight, more preferably 0 to 40% by weight, still more preferably. It is 1 to 30% by weight, and even more preferably 5 to 30% by weight. By containing the acyclic monoolefin monomer unit having 4 to 8 carbon atoms in the above ratio, the obtained rubber crosslinked product can be made excellent in rolling resistance and wet grip performance.
 脂環式ジオレフィン単量体単位を形成するための、脂環式ジオレフィンは、その分子構造中にエチレン性不飽和結合を2つ以上と非芳香族性の環構造とを有する炭化水素化合物であればよく、特に限定されないが、その具体例としては、シクロペンタジエン、ジシクロペンタジエンなどのシクロペンタジエンの多量体、メチルシクロペンタジエン、メチルシクロペンタジエンの多量体などが挙げられる。脂環式ジオレフィンは、1種類のみ使用してもよいし、2種類以上を組み合わせて使用してもよいが、少なくともジシクロペンタジエンが含まれることが好ましく、脂環式ジオレフィン中におけるジシクロペンタジエンが占める割合が50重量%以上であることがより好ましい。すなわち、本発明で用いる炭化水素樹脂に含まれる脂環式ジオレフィン単量体単位中における、ジシクロペンタジエン単位の割合が50重量%以上であることが好ましい。 The alicyclic diolefin for forming an alicyclic diolefin monomer unit is a hydrocarbon compound having two or more ethylenically unsaturated bonds and a non-aromatic ring structure in its molecular structure. However, the specific examples thereof include, but are not limited to, a multimer of cyclopentadiene such as cyclopentadiene and dicyclopentadiene, and a multimer of methylcyclopentadiene and methylcyclopentadiene. Only one type of alicyclic diolefin may be used, or two or more types may be used in combination, but it is preferable that at least dicyclopentadiene is contained, and dicyclo in the alicyclic diolefin. More preferably, the proportion of pentadiene is 50% by weight or more. That is, the ratio of the dicyclopentadiene unit to the alicyclic diolefin monomer unit contained in the hydrocarbon resin used in the present invention is preferably 50% by weight or more.
 本発明で用いる炭化水素樹脂中における、脂環式ジオレフィン単量体単位の含有割合は、好ましくは0~10重量%、より好ましくは0~7.5重量%、さらに好ましくは0~5重量%である。脂環式ジオレフィン単量体単位を上記割合にて含有させることにより、得られるゴム架橋物を転がり抵抗およびウェットグリップ性能により優れたものとすることができる。 The content ratio of the alicyclic diolefin monomer unit in the hydrocarbon resin used in the present invention is preferably 0 to 10% by weight, more preferably 0 to 7.5% by weight, still more preferably 0 to 5% by weight. %. By containing the alicyclic diolefin monomer unit in the above ratio, the obtained rubber crosslinked product can be made excellent in rolling resistance and wet grip performance.
 芳香族モノオレフィン単量体単位を形成するための、芳香族モノオレフィンは、その分子構造中にエチレン性不飽和結合1つを有し、芳香族性の環構造を有する炭化水素化合物であればよく、特に限定されないが、その具体例としては、スチレン、α-メチルスチレン、ビニルトルエンなどが挙げられる。芳香族モノオレフィンは、1種類のみ使用してもよいし、2種類以上を組み合わせて使用してもよいが、少なくともスチレンが含まれることが好ましく、芳香族モノオレフィン中におけるスチレンが占める割合が50重量%以上であることがより好ましい。すなわち、本発明で用いる炭化水素樹脂に含まれる芳香族モノオレフィン単量体単位中における、スチレン単位の割合が50重量%以上であることが好ましい。 The aromatic monoolefin for forming an aromatic monoolefin monomer unit is a hydrocarbon compound having one ethylenically unsaturated bond in its molecular structure and having an aromatic ring structure. Often, but not particularly limited, specific examples thereof include styrene, α-methylstyrene, vinyltoluene and the like. Only one type of aromatic monoolefin may be used, or two or more types may be used in combination, but it is preferable that at least styrene is contained, and the proportion of styrene in the aromatic monoolefin is 50. More preferably, it is by weight% or more. That is, the proportion of the styrene unit in the aromatic monoolefin monomer unit contained in the hydrocarbon resin used in the present invention is preferably 50% by weight or more.
 本発明で用いる炭化水素樹脂中における、芳香族モノオレフィン単量体単位の含有割合は、好ましくは0~40重量%、より好ましくは0~35重量%、さらに好ましくは0~30重量%である。芳香族モノオレフィン単量体単位を上記割合にて含有させることにより、得られるゴム架橋物を転がり抵抗およびウェットグリップ性能により優れたものとすることができる。 The content ratio of the aromatic monoolefin monomer unit in the hydrocarbon resin used in the present invention is preferably 0 to 40% by weight, more preferably 0 to 35% by weight, still more preferably 0 to 30% by weight. .. By containing the aromatic monoolefin monomer unit in the above ratio, the obtained rubber crosslinked product can be made excellent in rolling resistance and wet grip performance.
 2以上の環状構造が結合した構造を有する芳香族単量体単位を形成するための、2以上の環状構造が結合した構造を有する芳香族単量体は、芳香族性の環構造を含む、2以上の環構造を有する炭化水素化合物であればよく、特に限定されないが、その具体例としては、ナフタレンなどのナフタレン骨格を有する化合物、フルオレンなどのフルオレン骨格を有する化合物、ビフェニルなどのビフェニル骨格を有する化合物、アントラセンなどのアントラセン骨格を有する化合物、フェナントレンなどのフェナントレン骨格を有する化合物、インデンなどのインデン骨格を有する化合物、ベンゾチオフェンなどのベンゾチオフェン骨格を有する化合物などが挙げられる。2以上の環状構造が結合した構造を有する芳香族単量体は、1種類のみ使用してもよいし、2種類以上を組み合わせて使用してもよい。 An aromatic monomer having a structure in which two or more cyclic structures are bonded for forming an aromatic monomer unit having a structure in which two or more cyclic structures are bonded includes an aromatic ring structure. It may be a hydrocarbon compound having two or more ring structures, and is not particularly limited, but specific examples thereof include a compound having a naphthalene skeleton such as naphthalene, a compound having a fluorene skeleton such as fluorene, and a biphenyl skeleton such as biphenyl. Examples thereof include compounds having an anthracene skeleton such as anthracene, compounds having a phenanthrene skeleton such as phenanthrene, compounds having an inden skeleton such as inden, and compounds having a benzothiophene skeleton such as benzothiophene. Only one type of aromatic monomer having a structure in which two or more cyclic structures are bonded may be used, or two or more types may be used in combination.
 本発明で用いる炭化水素樹脂中における、2以上の環状構造が結合した構造を有する芳香族単量体単位の含有割合は、好ましくは0~50重量%、より好ましくは0~40重量%、さらに好ましくは0~30重量%である。2以上の環状構造が結合した構造を有する芳香族単量体単位を上記割合にて含有させることにより、得られるゴム架橋物を転がり抵抗およびウェットグリップ性能により優れたものとすることができる。 In the hydrocarbon resin used in the present invention, the content ratio of the aromatic monomer unit having a structure in which two or more cyclic structures are bonded is preferably 0 to 50% by weight, more preferably 0 to 40% by weight, and further. It is preferably 0 to 30% by weight. By containing the aromatic monomer unit having a structure in which two or more cyclic structures are bonded in the above ratio, the obtained rubber crosslinked product can be made excellent in rolling resistance and wet grip performance.
 また、本発明で用いる炭化水素樹脂は、上述した単量体単位以外のその他の単量体の単位を含有するものであってもよい。その他の単量体としては、上述したテトラシクロドデセン化合物を含む各単量体と共重合可能な単量体であればよく、特に限定されないが、たとえば、1,3-ブタジエン、1,2-ブタジエン、イソプレン、1,3-ヘキサジエン、1,4-ペンタジエンなどの1,3-ペンタジエン以外の非環式ポリエン;シクロヘプテンなどの炭素数7以上の脂環式モノオレフィン;エチレン、プロピレン、ノネンなどの炭素数4~8以外の非環式モノオレフィン;などが挙げられる。これらは、1種類のみ使用してもよいし、2種類以上を組み合わせて使用してもよい。本発明で用いる炭化水素樹脂中における、その他の単量体の単位の含有割合は、好ましくは0~30重量%、より好ましくは0~25重量%、さらに好ましくは0~20重量%である。 Further, the hydrocarbon resin used in the present invention may contain units of other monomers other than the above-mentioned monomer units. The other monomer may be a monomer copolymerizable with each monomer containing the above-mentioned tetracycloheptene compound, and is not particularly limited, but for example, 1,3-butadiene, 1,2. -Acyclic polyenes other than 1,3-pentadiene such as butadiene, isoprene, 1,3-hexadiene, and 1,4-pentadiene; alicyclic monoolefins having 7 or more carbon atoms such as cycloheptene; ethylene, propylene, nonene, etc. Acyclic monoolefins other than those having 4 to 8 carbon atoms; Only one type of these may be used, or two or more types may be used in combination. The content ratio of the unit of the other monomer in the hydrocarbon resin used in the present invention is preferably 0 to 30% by weight, more preferably 0 to 25% by weight, still more preferably 0 to 20% by weight.
 本発明で用いる炭化水素樹脂は、たとえば、テトラシクロドデセン化合物と、上述した各単量体とを含む単量体混合物を付加重合することにより製造することができる。付加重合する方法は、特に限定されず、炭化水素樹脂を製造するための付加重合法として公知の方法から選択することができる。また、単量体混合物を付加重合することにより炭化水素樹脂を得た後、炭化水素樹脂の重合体分子構造中に残存する不飽和結合の一部または全部を水素添加反応(水添)により飽和化した水素化物としてもよい。 The hydrocarbon resin used in the present invention can be produced, for example, by addition polymerization of a monomer mixture containing a tetracyclododecene compound and each of the above-mentioned monomers. The method of addition polymerization is not particularly limited, and a method known as an addition polymerization method for producing a hydrocarbon resin can be selected. Further, after the hydrocarbon resin is obtained by addition polymerization of the monomer mixture, a part or all of the unsaturated bonds remaining in the polymer molecular structure of the hydrocarbon resin are saturated by the hydrogenation reaction (hydrogenation). It may be a hydrogenated product.
 本発明で用いる炭化水素樹脂の重量平均分子量(Mw)は、500~4,000の範囲であればよく、特に限定されないが、好ましくは750~3,500の範囲、より好ましくは1,000~3,000の範囲である。炭化水素樹脂の重量平均分子量(Mw)が小さすぎると、得られるゴム架橋物は転がり抵抗およびウェットグリップ性能のバランスに劣るものとなってしまう。一方、炭化水素樹脂の重量平均分子量(Mw)が大きすぎると、ゴム組成物としての加工性に劣るものとなってしまう。 The weight average molecular weight (Mw) of the hydrocarbon resin used in the present invention may be in the range of 500 to 4,000 and is not particularly limited, but is preferably in the range of 750 to 3,500, more preferably 1,000 to. It is in the range of 3,000. If the weight average molecular weight (Mw) of the hydrocarbon resin is too small, the obtained rubber crosslinked product will have an inferior balance between rolling resistance and wet grip performance. On the other hand, if the weight average molecular weight (Mw) of the hydrocarbon resin is too large, the processability of the rubber composition becomes inferior.
 本発明で用いる炭化水素樹脂の数平均分子量(Mn)は、好ましくは250~2,000の範囲であり、より好ましくは375~1,750の範囲、さらに好ましくは500~1,500の範囲である。炭化水素樹脂の数平均分子量(Mn)が上記範囲内であることにより、得られるゴム架橋物を転がり抵抗およびウェットグリップ性能により優れたものとすることができる。 The number average molecular weight (Mn) of the hydrocarbon resin used in the present invention is preferably in the range of 250 to 2,000, more preferably in the range of 375 to 1,750, and further preferably in the range of 500 to 1,500. is there. When the number average molecular weight (Mn) of the hydrocarbon resin is within the above range, the obtained rubber crosslinked product can be made excellent in rolling resistance and wet grip performance.
 本発明で用いる炭化水素樹脂のZ平均分子量(Mz)は、好ましくは1,000~10,000の範囲であり、より好ましくは1,500~8,500の範囲、さらに好ましくは2,000~7,000の範囲である。炭化水素樹脂のZ平均分子量(Mz)が上記範囲内であることにより、得られるゴム架橋物を転がり抵抗およびウェットグリップ性能により優れたものとすることができる。 The Z average molecular weight (Mz) of the hydrocarbon resin used in the present invention is preferably in the range of 1,000 to 10,000, more preferably in the range of 1,500 to 8,500, and even more preferably in the range of 2,000 to 2,000. It is in the range of 7,000. When the Z average molecular weight (Mz) of the hydrocarbon resin is within the above range, the obtained rubber crosslinked product can be made excellent in rolling resistance and wet grip performance.
 本発明で用いる炭化水素樹脂は、数平均分子量に対する重量平均分子量の比(Mw/Mn)が、好ましくは1.0~4.0の範囲であり、より好ましくは1.2~3.5の範囲、さらに好ましくは1.4~3.0の範囲である。この比が上記範囲内であることにより、得られるゴム架橋物を転がり抵抗およびウェットグリップ性能により優れたものとすることができる。 The hydrocarbon resin used in the present invention has a weight average molecular weight ratio (Mw / Mn) to a number average molecular weight preferably in the range of 1.0 to 4.0, more preferably 1.2 to 3.5. The range, more preferably 1.4 to 3.0. When this ratio is within the above range, the obtained rubber crosslinked product can be made more excellent in rolling resistance and wet grip performance.
 本発明で用いる炭化水素樹脂は、重量平均分子量に対するZ平均分子量の比(Mz/Mw)が、好ましくは1.0~4.0の範囲であり、より好ましくは1.2~3.5の範囲、さらに好ましくは1.4~3.0の範囲である。この比が上記範囲内であることにより、得られるゴム架橋物を転がり抵抗およびウェットグリップ性能により優れたものとすることができる。 The hydrocarbon resin used in the present invention has a ratio of Z average molecular weight to weight average molecular weight (Mz / Mw) preferably in the range of 1.0 to 4.0, more preferably 1.2 to 3.5. The range, more preferably 1.4 to 3.0. When this ratio is within the above range, the obtained rubber crosslinked product can be made more excellent in rolling resistance and wet grip performance.
 なお、本発明において、炭化水素樹脂の重量平均分子量(Mw)、Z平均分子量(Mz)、数平均分子量(Mn)は、高速液体クロマトグラフィの測定による、ポリスチレン換算の値として求めるものとする。また、炭化水素樹脂の重量平均分子量(Mw)、Z平均分子量(Mz)、数平均分子量(Mn)、およびそれらの比(Mw/Mn、Mz/Mw)は、テトラシクロドデセン化合物由来の単量体単位を0.1~50重量%の割合とした上で、各単量体組成を調整することや、後述する炭化水素樹脂の製造方法において、製造条件を調整することで、制御することができる。 In the present invention, the weight average molecular weight (Mw), Z average molecular weight (Mz), and number average molecular weight (Mn) of the hydrocarbon resin are determined as polystyrene-equivalent values measured by high performance liquid chromatography. The weight average molecular weight (Mw), Z average molecular weight (Mz), number average molecular weight (Mn), and their ratios (Mw / Mn, Mz / Mw) of the hydrocarbon resin are simply derived from the tetracyclododecene compound. Control by adjusting the composition of each monomer after setting the molecular weight unit to a ratio of 0.1 to 50% by weight, or by adjusting the production conditions in the method for producing a hydrocarbon resin described later. Can be done.
 本発明で用いる炭化水素樹脂の軟化点は、80℃~170℃の範囲であればよく、特に限定されないが、好ましくは85~160℃、より好ましくは90~150℃である。炭化水素樹脂の軟化点が低すぎても、あるいは、高すぎても、得られるゴム架橋物は転がり抵抗およびウェットグリップ性能のバランスに劣るものとなってしまう。なお、炭化水素樹脂の軟化点は、テトラシクロドデセン化合物由来の単量体単位を0.1~50重量%の割合とした上で、各単量体組成を調整することや、後述する炭化水素樹脂の製造方法において、製造条件を調整することで、制御することができる。 The softening point of the hydrocarbon resin used in the present invention may be in the range of 80 ° C. to 170 ° C., and is not particularly limited, but is preferably 85 to 160 ° C., more preferably 90 to 150 ° C. If the softening point of the hydrocarbon resin is too low or too high, the obtained rubber crosslinked product will have an inferior balance between rolling resistance and wet grip performance. As for the softening point of the hydrocarbon resin, the composition of each monomer may be adjusted after setting the ratio of the monomer unit derived from the tetracyclododecene compound to 0.1 to 50% by weight, or the hydrocarbon described later may be used. In the method for producing a hydrogen resin, it can be controlled by adjusting the production conditions.
 また、本発明で用いる炭化水素樹脂は、炭化水素樹脂の重合体分子構造中に残存する不飽和結合の一部または全部を水素添加反応(水添)により飽和化した、水素化物であってもよい。 Further, the hydrocarbon resin used in the present invention may be a hydride in which some or all of the unsaturated bonds remaining in the polymer molecular structure of the hydrocarbon resin are saturated by a hydrogenation reaction (hydrogenation). Good.
 本発明で用いる炭化水素樹脂を製造する方法としては、テトラシクロドデセン化合物と、上述した各単量体とを含む単量体混合物を付加重合して、重量平均分子量(Mw)および軟化点が上記範囲にあるような炭化水素樹脂を得ることができるものである限りにおいて、特に限定されないが、たとえば、フリーデルクラフツ型のカチオン重合触媒を用いた付加重合により製造することができ、特に、ルイス酸触媒(A)を用いた、付加重合による方法が好ましい。 As a method for producing a hydrocarbon resin used in the present invention, a monomer mixture containing a tetracyclododecene compound and each of the above-mentioned monomers is addition-polymerized to obtain a weight average molecular weight (Mw) and a softening point. As long as a hydrocarbon resin as in the above range can be obtained, the present invention is not particularly limited, but for example, it can be produced by addition polymerization using a Friedel-Crafts type cationic polymerization catalyst, and in particular, Lewis. A method by addition polymerization using the acid catalyst (A) is preferable.
 ルイス酸触媒(A)としては、限定されないが、ハロゲン化金属からなるものが好ましく、良好な反応活性を有する点から、周期律表第III族に属する元素のハロゲン化物またはその錯体であることが好ましい。このようなルイス酸触媒の具体例としては、三塩化アルミニウム(AlCl)、三臭化アルミニウム(AlBr)、三塩化ガリウム(GaCl)、三弗化ホウ素ジエチルエーテル錯体(BF・EtO)などを挙げることができる。なかでも汎用性などの観点から、AlClまたはBF・EtOが好適に用いられる。ルイス酸触媒(A)は、1種類のみ使用してもよいし、2種類以上を組み合わせて用いてもよい。 The Lewis acid catalyst (A) is not limited, but is preferably a metal halide, and is a halide of an element belonging to Group III of the Periodic Table or a complex thereof from the viewpoint of having good reaction activity. preferable. Specific examples of such a Lewis acid catalyst include aluminum trichloride (AlCl 3 ), aluminum bromide (AlBr 3 ), gallium trichloride (GaCl 3 ), and boron trifluorinated diethyl ether complex (BF 3 , Et 2). O) and the like can be mentioned. Among them, AlCl 3 or BF 3 · Et 2 O is preferably used from the viewpoint of versatility and the like. Only one type of Lewis acid catalyst (A) may be used, or two or more types may be used in combination.
 ルイス酸触媒(A)の使用量は、特に限定されないが、重合に使用する単量体混合物100重量部に対し、好ましくは0.05~10重量部、より好ましくは0.1~5重量部である。 The amount of the Lewis acid catalyst (A) used is not particularly limited, but is preferably 0.05 to 10 parts by weight, more preferably 0.1 to 5 parts by weight, based on 100 parts by weight of the monomer mixture used for the polymerization. Is.
 また、ルイス酸触媒(A)は、その重合活性をより高めることができるという点より、3級炭素原子にハロゲン原子が結合したハロゲン化炭化水素(B1)、および炭素-炭素不飽和結合に隣接する炭素原子にハロゲン原子が結合したハロゲン化炭化水素(B2)から選択される少なくとも一種のハロゲン化炭化水素(B)と組み合わせて用いてもよい。 Further, the Lewis acid catalyst (A) is adjacent to a halogenated hydrocarbon (B1) in which a halogen atom is bonded to a tertiary carbon atom and a carbon-carbon unsaturated bond in that the polymerization activity can be further enhanced. It may be used in combination with at least one halogenated hydrocarbon (B) selected from halogenated hydrocarbons (B2) in which a halogen atom is bonded to a carbon atom.
 3級炭素原子にハロゲン原子が結合したハロゲン化炭化水素(B1)の具体例としては、t-ブチルクロライド、t-ブチルブロマイド、2-クロロ-2-メチルブタン、トリフェニルメチルクロライドが挙げられる。これらのなかでも、活性と取り扱いやすさとのバランスに優れる点で、t-ブチルクロライドが特に好適に用いられる。炭素-炭素不飽和結合に隣接する炭素原子にハロゲン原子が結合したハロゲン化炭化水素(B2)の具体例としては、ベンジルクロライド、ベンジルブロマイド、(1-クロロエチル)ベンゼン、アリルクロライド、3-クロロ-1-プロピン、3-クロロ-1-ブテン、3-クロロ-1-ブチン、ケイ皮クロライドが挙げられる。これらのなかでも、活性と取り扱いやすさとのバランスに優れる点で、ベンジルクロライドが好適に用いられる。なお、ハロゲン化炭化水素(B)は、1種類のみ使用してもよいし、2種類以上を組み合わせて用いてもよい。 Specific examples of the halogenated hydrocarbon (B1) in which a halogen atom is bonded to a tertiary carbon atom include t-butyl chloride, t-butyl bromide, 2-chloro-2-methylbutane, and triphenylmethyl chloride. Among these, t-butyl chloride is particularly preferably used because it has an excellent balance between activity and ease of handling. Specific examples of halogenated hydrocarbons (B2) in which a halogen atom is bonded to a carbon atom adjacent to a carbon-carbon unsaturated bond include benzyl chloride, benzyl bromide, (1-chloroethyl) benzene, allyl chloride, and 3-chloro-. Examples thereof include 1-propyne, 3-chloro-1-butene, 3-chloro-1-butyne, and silica skin chloride. Among these, benzyl chloride is preferably used because it has an excellent balance between activity and ease of handling. Only one type of halogenated hydrocarbon (B) may be used, or two or more types may be used in combination.
 ハロゲン化炭化水素(B)の使用量は、特に限定されないが、ルイス酸触媒(A)に対するモル比で、好ましくは0.05~50の範囲、より好ましくは0.1~10の範囲である。 The amount of the halogenated hydrocarbon (B) used is not particularly limited, but is preferably in the range of 0.05 to 50, more preferably in the range of 0.1 to 10, in terms of the molar ratio to the Lewis acid catalyst (A). ..
 重合反応を行うに当たり、単量体混合物や重合触媒のそれぞれの成分を重合反応器に添加する順序は特に限定されず、任意の順で添加すればよいが、重合反応を良好に制御するという観点から、単量体混合物を構成する単量体成分の一部と、ルイス酸触媒(A)とを予め重合反応器に添加し、単量体混合物を構成する単量体成分の一部と、ルイス酸触媒(A)とを予め接触させた後に、単量体混合物を構成する単量体成分の残部を重合反応器に添加して、重合反応を開始することが好ましい。この際においては、単量体混合物を構成する単量体成分の一部として、少なくとも、炭素数4~6の脂環式モノオレフィンを用い、ルイス酸触媒(A)と予め重合反応器に添加し、炭素数4~6の脂環式モノオレフィンと、ルイス酸触媒(A)とを予め接触させた後に、単量体混合物を構成する単量体成分の残部を重合反応器に添加して、重合反応を開始することがより好ましい。 In carrying out the polymerization reaction, the order in which each component of the monomer mixture and the polymerization catalyst is added to the polymerization reactor is not particularly limited and may be added in any order, but from the viewpoint of satisfactorily controlling the polymerization reaction. To a part of the monomer component constituting the monomer mixture and a part of the monomer component constituting the monomer mixture by adding the Lewis acid catalyst (A) to the polymerization reactor in advance. After contacting the Lewis acid catalyst (A) in advance, it is preferable to add the rest of the monomer components constituting the monomer mixture to the polymerization reactor to start the polymerization reaction. In this case, at least an alicyclic monoolefin having 4 to 6 carbon atoms is used as a part of the monomer components constituting the monomer mixture, and is added to the Lewis acid catalyst (A) and the polymerization reactor in advance. Then, after the alicyclic monoolefin having 4 to 6 carbon atoms and the Lewis acid catalyst (A) are brought into contact with each other in advance, the remainder of the monomer component constituting the monomer mixture is added to the polymerization reactor. , It is more preferable to start the polymerization reaction.
 また、ルイス酸触媒(A)に加えて、ハロゲン化炭化水素(B)を使用する場合には、単量体混合物とルイス酸触媒(A)とを重合反応器に添加して、重合反応を開始した後に、ハロゲン化炭化水素(B)を重合反応器に添加することが好ましい。あるいは、単量体混合物とルイス酸触媒(A)と、ハロゲン化炭化水素(B)の一部と重合反応器に添加して、重合反応を開始した後に、ハロゲン化炭化水素(B)の残部を重合反応器に添加する態様も好適である。 When a halogenated hydrocarbon (B) is used in addition to the Lewis acid catalyst (A), the monomer mixture and the Lewis acid catalyst (A) are added to the polymerization reactor to carry out the polymerization reaction. After the start, it is preferable to add the halogenated hydrocarbon (B) to the polymerization reactor. Alternatively, the monomer mixture, the Lewis acid catalyst (A), a part of the halogenated hydrocarbon (B) and a part of the halogenated hydrocarbon (B) are added to the polymerization reactor to initiate the polymerization reaction, and then the remainder of the halogenated hydrocarbon (B). Is also preferably added to the polymerization reactor.
 重合反応をより良好に制御する観点からは、重合反応系に溶媒を添加して、重合反応を行うことが好ましい。溶媒の種類は、重合反応を阻害しないものであれば特に制限はないが、飽和脂肪族炭化水素または芳香族炭化水素が好適である。溶媒として用いられる飽和脂肪族炭化水素としては、たとえば、n-ペンタン、n-ヘキサン、2-メチルペンタン、3-メチルペンタン、n-ヘプタン、2-メチルヘキサン、3-メチルヘキサン、3-エチルペンタン、2,2-ジメチルペンタン、2,3-ジメチルペンタン、2,4-ジメチルペンタン、3,3-ジメチルペンタン、2,2,3-トリメチルブタン、2,2,4-トリメチルペンタンなどの炭素数5~10の鎖状飽和脂肪族炭化水素;シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタンなどの炭素数5~10の環状飽和脂肪族炭化水素が挙げられる。溶媒として用いられる芳香族炭化水素としては、たとえば、ベンゼン、トルエン、キシレンなどの炭素数6~10の芳香族炭化水素などが挙げられる。溶媒は1種を単独で使用してもよいし、2種以上の混合溶媒として用いてもよい。溶媒の使用量は、特に限定されないが、重合反応に用いる単量体混合物100重量部に対して、10~1000重量部であることが好ましく、50~500重量部であることがより好ましい。なお、たとえば、C5留分に由来するシクロペンタンとシクロペンテンとの混合物のような、付加重合性成分と非付加重合性成分との混合物を重合反応系に添加して、付加重合性成分は単量体混合物の成分として用い、非付加重合性成分は溶媒として用いるような態様とすることもできる。 From the viewpoint of better controlling the polymerization reaction, it is preferable to add a solvent to the polymerization reaction system to carry out the polymerization reaction. The type of solvent is not particularly limited as long as it does not inhibit the polymerization reaction, but saturated aliphatic hydrocarbons or aromatic hydrocarbons are preferable. Examples of saturated aliphatic hydrocarbons used as a solvent include n-pentane, n-hexane, 2-methylpentane, 3-methylpentane, n-heptane, 2-methylhexane, 3-methylhexane, and 3-ethylpentane. , 2,2-Dimethylpentane, 2,3-dimethylpentane, 2,4-dimethylpentane, 3,3-dimethylpentane, 2,2,3-trimethylbutane, 2,2,4-trimethylpentane, etc. 5 to 10 chain saturated aliphatic hydrocarbons; examples include cyclic saturated aliphatic hydrocarbons having 5 to 10 carbon atoms such as cyclopentane, cyclohexane, cycloheptane, and cyclooctane. Examples of the aromatic hydrocarbon used as the solvent include aromatic hydrocarbons having 6 to 10 carbon atoms such as benzene, toluene and xylene. One type of solvent may be used alone, or two or more types may be used as a mixed solvent. The amount of the solvent used is not particularly limited, but is preferably 10 to 1000 parts by weight, more preferably 50 to 500 parts by weight, based on 100 parts by weight of the monomer mixture used in the polymerization reaction. In addition, for example, a mixture of an addition-polymerizable component and a non-addition-polymerizable component, such as a mixture of cyclopentane and cyclopentene derived from the C5 distillate, is added to the polymerization reaction system, and the amount of the addition-polymerizable component is a single amount. It is also possible to use it as a component of the body mixture and use the non-additionally polymerizable component as a solvent.
 重合反応を行う際の重合温度は、特に限定されないが、好ましくは85℃以下であり、より好ましくは-20~85℃、さらに好ましくは0~65℃である。重合温度が低すぎると重合活性が低下して生産性が劣る可能性があり、重合温度が高すぎると得られる炭化水素樹脂の色相に劣るおそれがある。重合反応を行う際の圧力は、大気圧下でも加圧下でもよい。重合反応時間は、適宜選択できるが、通常10分間~12時間、好ましくは30分間~6時間の範囲で選択される。 The polymerization temperature at the time of carrying out the polymerization reaction is not particularly limited, but is preferably 85 ° C. or lower, more preferably −20 to 85 ° C., and even more preferably 0 to 65 ° C. If the polymerization temperature is too low, the polymerization activity may decrease and the productivity may be deteriorated, and if the polymerization temperature is too high, the hue of the obtained hydrocarbon resin may be inferior. The pressure at which the polymerization reaction is carried out may be under atmospheric pressure or under pressure. The polymerization reaction time can be appropriately selected, but is usually selected in the range of 10 minutes to 12 hours, preferably 30 minutes to 6 hours.
 重合反応は、所望の重合転化率が得られた時点で、メタノール、水酸化ナトリウム水溶液、アンモニア水溶液などの重合停止剤を重合反応系に添加することにより停止することができる。なお、重合停止剤を添加して、重合触媒を不活性化した際に生成する、溶媒に不溶な触媒残渣は濾過などにより除去してもよい。重合反応停止後、未反応の単量体と溶媒を除去し、さらに水蒸気蒸留などにより低分子量のオリゴマー成分を除去し、冷却することにより、固体状の炭化水素樹脂を得ることができる。 The polymerization reaction can be stopped by adding a polymerization terminator such as methanol, an aqueous solution of sodium hydroxide, or an aqueous solution of ammonia to the polymerization reaction system when the desired polymerization conversion rate is obtained. The solvent-insoluble catalyst residue produced when the polymerization catalyst is inactivated by adding a polymerization inhibitor may be removed by filtration or the like. After the polymerization reaction is stopped, the unreacted monomer and solvent are removed, and the low molecular weight oligomer component is further removed by steam distillation or the like and cooled to obtain a solid hydrocarbon resin.
 また、このようにして得られる本発明で用いる炭化水素樹脂について、必要に応じて、炭化水素樹脂の重合体分子構造中に残存する不飽和結合の一部または全部を水素添加反応(水添)により飽和化して、水素化物としてもよい。 Further, with respect to the hydrocarbon resin used in the present invention thus obtained, if necessary, a part or all of the unsaturated bonds remaining in the polymer molecular structure of the hydrocarbon resin is hydrogenated (hydrogenation). May be saturated with hydrogenated product.
 炭化水素樹脂について水素添加反応を行う際における、水素添加反応方法としては、特に限定されないが、公知の方法を制限なく用いることができるが、たとえば、ニッケル触媒の存在下に水素と接触させる方法などが挙げられる。ニッケル触媒としては、特に限定されないが、反応性が高いという観点より、担体としての担持無機化合物に、金属としてのニッケルを担持してなる化合物を主成分として含む触媒が好ましい。担体としての担持無機化合物の具体例としては、シリカ、アルミナ、ボリア、シリカ-アルミナ、珪藻土、白土、粘土、マグネシア、マグネシア-シリカ(シリカ-酸化マグネシウム)、チタニア、ジルコニアなどが挙げられる。 The hydrogenation reaction method for carrying out a hydrogenation reaction on a hydrocarbon resin is not particularly limited, but a known method can be used without limitation. For example, a method of contacting with hydrogen in the presence of a nickel catalyst, etc. Can be mentioned. The nickel catalyst is not particularly limited, but from the viewpoint of high reactivity, a catalyst containing a compound supporting nickel as a metal as a main component in a supported inorganic compound as a carrier is preferable. Specific examples of the supported inorganic compound as a carrier include silica, alumina, boria, silica-alumina, diatomaceous earth, clay, clay, magnesia, magnesia-silica (silica-magnesium oxide), titania, and zirconia.
<ジエン系ゴム>
 本発明のゴム組成物は、上述した炭化水素樹脂に加えて、ジエン系ゴムを含有する。ジエン系ゴムとしては、炭化水素樹脂とともに配合することができるものであれば特に限定されない。このようなジエン系ゴムとしては、例えば、特開2015-189873号公報に記載のジエン系ゴムを挙げることができ、具体的には、天然ゴム(NB)、イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレン-ブタジエン共重合体ゴム(SBR)、エチレン-プロピレン-ジエンターポリマー(EPDM)等を挙げることができ、なかでも、スチレン-ブタジエン共重合体ゴム、ブタジエンゴム等であることが好ましい。上述したジエン系ゴムを用いることにより、ゴム組成物としての加工性に優れたものとしながら、ゴム架橋物を転がり抵抗およびウェットグリップ性能のバランスにより優れたものとすることができる。ジエン系ゴムは、1種単独で用いてもよいし、あるいは2種以上を組み合わせて用いてもよい。
<Diene rubber>
The rubber composition of the present invention contains a diene-based rubber in addition to the above-mentioned hydrocarbon resin. The diene rubber is not particularly limited as long as it can be blended with a hydrocarbon resin. Examples of such diene rubber include diene rubber described in JP-A-2015-189873, and specific examples thereof include natural rubber (NB), isoprene rubber (IR), and butadiene rubber (). BR), styrene-butadiene copolymer rubber (SBR), ethylene-propylene-dienter polymer (EPDM) and the like can be mentioned, and among them, styrene-butadiene copolymer rubber, butadiene rubber and the like are preferable. .. By using the above-mentioned diene-based rubber, it is possible to make the rubber crosslinked product excellent in the balance between rolling resistance and wet grip performance while making the rubber composition excellent in processability. The diene rubber may be used alone or in combination of two or more.
 また、本発明におけるジエン系ゴムは、その分子量やミクロ構造は特に限定されず、アミン、アミド、シリル、アルコキシシリル、カルボキシル、ヒドロキシル基などで末端変性されていても、エポキシ化されていてもよい。また、本発明におけるジエン系ゴムは、水素化されたものであってもよいが、水素化されていないものであることが好ましい。 Further, the diene rubber in the present invention is not particularly limited in its molecular weight and microstructure, and may be terminal-modified with an amine, amide, silyl, alkoxysilyl, carboxyl, hydroxyl group or the like, or may be epoxidized. .. Further, the diene-based rubber in the present invention may be hydrogenated, but is preferably non-hydrogenated.
 本発明のゴム組成物における、ジエン系ゴムと上記炭化水素樹脂との配合割合は、ジエン系ゴム100質量部に対して、炭化水素樹脂が1~200質量部配合されていればよく、1~70質量部配合されることが好ましく、3~35質量部配合されることがより好ましい。炭化水素樹脂の配合量が少なすぎると、ゴム組成物としての加工性に劣るものとなってしまい、一方、多すぎると、得られるゴム架橋物は転がり抵抗およびウェットグリップ性能のバランスに劣るものとなってしまう。 In the rubber composition of the present invention, the blending ratio of the diene-based rubber and the above-mentioned hydrocarbon resin may be 1 to 200 parts by mass of the hydrocarbon resin with respect to 100 parts by mass of the diene-based rubber. It is preferably blended in an amount of 70 parts by mass, more preferably 3 to 35 parts by mass. If the blending amount of the hydrocarbon resin is too small, the processability as a rubber composition will be inferior, while if it is too large, the obtained rubber crosslinked product will have an inferior balance between rolling resistance and wet grip performance. turn into.
 本発明のゴム組成物は、ジエン系ゴムおよび上記炭化水素樹脂のみからなるものであってよいが、さらに、他の成分を含有するものであってもよい。本発明のゴム組成物に含有され得る他の成分としては、例えば、フィラー、シランカップリング剤、架橋剤、架橋促進剤、架橋活性化剤、老化防止剤、酸化防止剤、活性剤、プロセスオイル、可塑剤、滑剤、粘着付与剤などを挙げることができ、これらその他の配合剤をそれぞれ必要量配合できる。 The rubber composition of the present invention may consist only of a diene-based rubber and the above-mentioned hydrocarbon resin, but may further contain other components. Other components that can be contained in the rubber composition of the present invention include, for example, fillers, silane coupling agents, cross-linking agents, cross-linking accelerators, cross-linking activators, antioxidants, antioxidants, activators, process oils. , Plasticizers, lubricants, tackifiers, etc., and other compounding agents can be blended in required amounts.
 本発明のゴム組成物に配合され得るフィラーとしては、ゴム組成物に一般的に使用されるものを用いることができ、例えば、カーボンブラック、クレー、珪藻土、シリカ、タルク、硫酸バリウム、炭酸カルシウム、炭酸マグネシウム、金属酸化物、マイカ、水酸化アルミニウム、各種の金属粉、木粉、ガラス粉、セラミックス粉、ガラスバルーン、シリカバルーン等の無機中空フィラー;ポリスチレン、ポリフッ化ビニリデン、ポリフッ化ビニリデン共重合体等の有機中空フィラー等を挙げることができる。 As the filler that can be blended in the rubber composition of the present invention, those generally used in the rubber composition can be used, for example, carbon black, clay, diatomaceous earth, silica, talc, barium sulfate, calcium carbonate, etc. Inorganic hollow fillers such as magnesium carbonate, metal oxides, mica, aluminum hydroxide, various metal powders, wood powders, glass powders, ceramic powders, glass balloons, silica balloons; polystyrene, vinylidene fluoride, vinylidene fluoride copolymers And the like, organic hollow fillers and the like can be mentioned.
 シリカとしては、例えば、乾式法ホワイトカーボン、湿式法ホワイトカーボン、コロイダルシリカ、沈降シリカなどが挙げられる。これらの中でも、含水ケイ酸を主成分とする湿式法ホワイトカーボンが好ましい。また、カーボンブラック表面にシリカを担持させたカーボン-シリカデュアル・フェイズ・フィラーを用いてもよい。これらのシリカは、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。用いるシリカの窒素吸着比表面積(ASTM D3037-81に準じBET法で測定される)は、好ましくは100~400m/g、より好ましくは150~350m/gである。また、シリカのpHは、pH5~10であることが好ましい。 Examples of silica include dry white carbon, wet white carbon, colloidal silica, and precipitated silica. Among these, a wet method white carbon containing hydrous silicic acid as a main component is preferable. Further, a carbon-silica dual phase filler in which silica is supported on the surface of carbon black may be used. These silicas can be used alone or in combination of two or more. The nitrogen adsorption specific surface area of the silica used (measured by the BET method according to ASTM D3037-81) is preferably 100 to 400 m 2 / g, more preferably 150 to 350 m 2 / g. The pH of silica is preferably pH 5-10.
 本発明のゴム組成物におけるシリカの配合量は、ゴム組成物中のゴム成分100質量部に対して、好ましくは10~200質量部であり、より好ましくは20~150質量部、さらに好ましくは30~75質量部である。シリカの配合量を上記範囲とすることにより、得られるゴム架橋物を転がり抵抗およびウェットグリップ性能により優れたものとすることができる。 The blending amount of silica in the rubber composition of the present invention is preferably 10 to 200 parts by mass, more preferably 20 to 150 parts by mass, and further preferably 30 parts by mass with respect to 100 parts by mass of the rubber component in the rubber composition. ~ 75 parts by mass. By setting the blending amount of silica in the above range, the obtained rubber crosslinked product can be made more excellent in rolling resistance and wet grip performance.
 フィラーとして、シリカを用いる場合には、シランカップリング剤を併用することが好ましい。シランカップリング剤としては、例えば、ビニルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン、3-オクタチオ-1-プロピル-トリエトキシシラン、ビス(3-(トリエトキシシリル)プロピル)ジスルフィド、ビス(3-(トリエトキシシリル)プロピル)テトラスルフィド、γ-トリメトキシシリルプロピルジメチルチオカルバミルテトラスルフィド、およびγ-トリメトキシシリルプロピルベンゾチアジルテトラスルフィドなどを挙げることができる。これらのシランカップリング剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。シランカップリング剤の配合量は、シリカ100質量部に対して、好ましくは0.1~30質量部、より好ましくは1~15質量部である。 When silica is used as the filler, it is preferable to use a silane coupling agent in combination. Examples of the silane coupling agent include vinyl triethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, N- (β-aminoethyl) -γ-aminopropyltrimethoxysilane, and 3-octatio-. 1-propyl-triethoxysilane, bis (3- (triethoxysilyl) propyl) disulfide, bis (3- (triethoxysilyl) propyl) tetrasulfide, γ-trimethoxysilylpropyl dimethylthiocarbamyltetrasulfide, and γ -Trimethoxysilylpropylbenzothiaziltetrasulfide and the like can be mentioned. These silane coupling agents can be used alone or in combination of two or more. The blending amount of the silane coupling agent is preferably 0.1 to 30 parts by mass, and more preferably 1 to 15 parts by mass with respect to 100 parts by mass of silica.
 カーボンブラックとしては、例えば、ファーネスブラック、アセチレンブラック、サーマルブラック、チャンネルブラック、およびグラファイト等を挙げることができる。これらのカーボンブラックは、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。カーボンブラックの配合量は、ゴム組成物中のゴム成分100質量部に対して、通常、120質量部以下である。 Examples of carbon black include furnace black, acetylene black, thermal black, channel black, and graphite. These carbon blacks can be used alone or in combination of two or more. The blending amount of carbon black is usually 120 parts by mass or less with respect to 100 parts by mass of the rubber component in the rubber composition.
 また、フィラーは、1種単独で用いてもよいし、あるいは2種以上を組み合わせて用いてもよい。たとえば、フィラーとして、シリカおよびカーボンブラックを混合して用いることができる。 Further, the filler may be used alone or in combination of two or more. For example, silica and carbon black can be mixed and used as the filler.
 シリカおよびカーボンブラック以外のフィラーの含有量としては、本発明の効果が得られる範囲であればよく、たとえば、ゴム成分100質量部に対して120質量部以下とすることができる。 The content of the filler other than silica and carbon black may be as long as the effect of the present invention can be obtained, and can be, for example, 120 parts by mass or less with respect to 100 parts by mass of the rubber component.
 架橋剤としては、特に限定されないが、例えば、硫黄、ハロゲン化硫黄、有機過酸化物、キノンジオキシム類、有機多価アミン化合物、メチロール基を有するアルキルフェノール樹脂などが挙げられる。これらの中でも、硫黄が好ましく使用される。架橋剤の配合量は、ゴム組成物中のゴム成分100質量部に対して、好ましくは0.1~15質量部、より好ましくは0.5~5質量部、特に好ましくは1~4質量部である。 The cross-linking agent is not particularly limited, and examples thereof include sulfur, sulfur halide, organic peroxides, quinonedioximes, organic polyvalent amine compounds, and alkylphenol resins having a methylol group. Of these, sulfur is preferably used. The amount of the cross-linking agent blended is preferably 0.1 to 15 parts by mass, more preferably 0.5 to 5 parts by mass, and particularly preferably 1 to 4 parts by mass with respect to 100 parts by mass of the rubber component in the rubber composition. Is.
 架橋剤として、硫黄または含硫黄化合物を用いる場合には、架橋促進剤および架橋活性化剤を併用することが好ましい。架橋促進剤としては、例えば、スルフェンアミド系架橋促進剤;グアニジン系架橋促進剤;チオウレア系架橋促進剤;チアゾール系架橋促進剤;チウラム系架橋促進剤;ジチオカルバミン酸系架橋促進剤;キサントゲン酸系架橋促進剤;などが挙げられる。これらのなかでも、スルフェンアミド系架橋促進剤を含むものが好ましい。これらの架橋促進剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いられる。架橋促進剤の配合量は、ゴム組成物中のゴム成分100質量部に対して、好ましくは0.1~15質量部、より好ましくは0.5~5質量部、特に好ましくは1~4質量部である。 When sulfur or a sulfur-containing compound is used as the cross-linking agent, it is preferable to use a cross-linking accelerator and a cross-linking activator together. Examples of the cross-linking accelerator include a sulfenamide-based cross-linking accelerator; a guanidine-based cross-linking accelerator; a thiourea-based cross-linking accelerator; a thiazole-based cross-linking accelerator; a thiuram-based cross-linking accelerator; Crosslink accelerators; and the like. Among these, those containing a sulfenamide-based cross-linking accelerator are preferable. These cross-linking accelerators may be used alone or in combination of two or more. The amount of the cross-linking accelerator to be blended is preferably 0.1 to 15 parts by mass, more preferably 0.5 to 5 parts by mass, and particularly preferably 1 to 4 parts by mass with respect to 100 parts by mass of the rubber component in the rubber composition. It is a department.
 架橋活性化剤としては、例えば、ステアリン酸などの高級脂肪酸;酸化亜鉛;などを挙げることができる。これらの架橋活性化剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いられる。架橋活性化剤の配合量は、ゴム組成物中のゴム成分100質量部に対して、好ましくは0.05~20質量部、特に好ましくは0.5~15質量部である。 Examples of the cross-linking activator include higher fatty acids such as stearic acid; zinc oxide; and the like. These cross-linking activators may be used alone or in combination of two or more. The blending amount of the cross-linking activator is preferably 0.05 to 20 parts by mass, particularly preferably 0.5 to 15 parts by mass with respect to 100 parts by mass of the rubber component in the rubber composition.
 また、本発明のゴム組成物には、所望により、アミン系安定剤、フェノール系安定剤、リン系安定剤、イオウ系安定剤などの老化防止剤を添加してもよい。老化防止剤の添加量は、その種類などに応じて適宜決定すればよい。 Further, if desired, an antiaging agent such as an amine-based stabilizer, a phenol-based stabilizer, a phosphorus-based stabilizer, or a sulfur-based stabilizer may be added to the rubber composition of the present invention. The amount of the anti-aging agent added may be appropriately determined according to the type and the like.
 また、本発明のゴム組成物には、必要に応じて、酸化防止剤を添加してもよい。酸化防止剤としては、特に限定されないが、たとえば、ペンタエリスリトールテトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、2,6-ジ-t-ブチル-p-クレゾール、ジ-t-ブチル-4-メチルフェノールなどのヒンダードフェノール系化合物;ジラウリルチオプロピオネートなどのチオジカルボキシレートエステル類;トリス(ノニルフェニル)ホスファイトなどの亜燐酸塩類;などが挙げられる。酸化防止剤は、1種単独で用いてもよいし、あるいは2種以上を組み合わせて用いてもよい。酸化防止剤の含有量は、特に限定されないが、ゴム組成物中のゴム成分100質量部に対して、好ましくは10質量部以下であり、より好ましくは0.05~5質量部である。 Further, an antioxidant may be added to the rubber composition of the present invention, if necessary. The antioxidant is not particularly limited, but for example, pentaerythritol tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di-t). Hindered phenolic compounds such as -butyl-4-hydroxyphenyl) propionate, 2,6-di-t-butyl-p-cresol, di-t-butyl-4-methylphenol; dilaurylthiopropionate and the like. Thiodicarboxylate esters; phosphites such as tris (nonylphenyl) phosphite; and the like. The antioxidant may be used alone or in combination of two or more. The content of the antioxidant is not particularly limited, but is preferably 10 parts by mass or less, and more preferably 0.05 to 5 parts by mass with respect to 100 parts by mass of the rubber component in the rubber composition.
 また、本発明のゴム組成物には、ジエン系ゴムおよび上記炭化水素樹脂以外に樹脂を配合してもよい。樹脂を配合することにより、ゴム組成物に粘着性を付与させたり、ゴム組成物中の充填剤の分散性を高めることができる。その結果、得られるゴム架橋物の転がり抵抗およびウェットグリップ性能のさらなる向上が期待できる。また、可塑剤と同様な効果として、ゴム組成物の加工性を向上させることもできる。樹脂としては、例えば、C9系石油樹脂、ジシクロペンタジエン系樹脂、テルペン系樹脂、テルペンフェノール樹脂、芳香族変性テルペン樹脂、アルキルフェノール-アセチレン樹脂、ロジン系樹脂、ロジンエステル樹脂、インデン系樹脂、インデンを含有するC9系樹脂、α-メチルスチレン・インデン共重合体樹脂、クマロン-インデン樹脂、ファルネセン系樹脂、ポリリモネン樹脂などが挙げられる。これらの樹脂は、変性されていたり、水素添加されていたりするものであってもよい。これらの樹脂は、それぞれ単独で、あるいは2種以上を組み合わせて用いられる。樹脂の配合量は、ゴム組成物中のゴム成分100質量部に対して、好ましくは25質量部以下である。 Further, the rubber composition of the present invention may contain a resin in addition to the diene-based rubber and the above-mentioned hydrocarbon resin. By blending the resin, it is possible to impart adhesiveness to the rubber composition and enhance the dispersibility of the filler in the rubber composition. As a result, further improvement in rolling resistance and wet grip performance of the obtained rubber crosslinked product can be expected. Further, the processability of the rubber composition can be improved as an effect similar to that of the plasticizer. Examples of the resin include C9-based petroleum resin, dicyclopentadiene-based resin, terpene-based resin, terpene phenol resin, aromatic-modified terpene resin, alkylphenol-acetylene resin, rosin-based resin, rosin ester resin, inden-based resin, and inden. Examples thereof include C9-based resin, α-methylstyrene / inden copolymer resin, kumaron-inden resin, farnesene-based resin, and polylymonen resin contained. These resins may be modified or hydrogenated. These resins may be used alone or in combination of two or more. The blending amount of the resin is preferably 25 parts by mass or less with respect to 100 parts by mass of the rubber component in the rubber composition.
 本発明のゴム組成物の製造方法は、常法に従って各成分を混練すればよく、例えば、架橋剤や架橋促進剤等の熱に不安定な成分を除く成分と、ジエン系ゴムと、炭化水素樹脂とを混練後、その混練物に架橋剤や架橋促進剤等の熱に不安定な成分を混練して目的のゴム組成物を得ることができる。熱に不安定な成分を除く成分と、ジエン系ゴムと、炭化水素樹脂とを混練する際の混練温度は、好ましくは80~200℃、より好ましくは120~180℃であり、その混練時間は、好ましくは30秒~30分である。また、その混練物と熱に不安定な成分との混練は、好ましくは100℃以下、より好ましくは80℃以下まで冷却した後に行われる。 In the method for producing a rubber composition of the present invention, each component may be kneaded according to a conventional method. For example, a component excluding heat-unstable components such as a cross-linking agent and a cross-linking accelerator, a diene-based rubber, and a hydrocarbon may be used. After kneading the resin, a heat-unstable component such as a cross-linking agent or a cross-linking accelerator can be kneaded into the kneaded product to obtain a desired rubber composition. The kneading temperature at the time of kneading the components excluding the heat-unstable component, the diene rubber, and the hydrocarbon resin is preferably 80 to 200 ° C., more preferably 120 to 180 ° C., and the kneading time is It is preferably 30 seconds to 30 minutes. Further, the kneading of the kneaded product and the heat-unstable component is preferably performed after cooling to 100 ° C. or lower, more preferably 80 ° C. or lower.
 本発明のゴム組成物を用いることにより、転がり抵抗およびウェットグリップ性能のバランスにより優れたゴム架橋物を得ることができる。本発明のゴム組成物は、このような特性を活かし、例えば、タイヤの、トレッド(キャップトレッド、ベーストレッド)、カーカス、サイドウォール、ビード部などのタイヤ各部位の材料に用いることが好ましく、なかでも、オールシーズンタイヤ、高性能タイヤ、およびスタッドレスタイヤなどの各種タイヤにおいて、トレッド、カーカス、サイドウォール、およびビード部などのタイヤ各部位に好適に用いることができ、たとえば、タイヤのトレッド用として、特に好適に用いることができ、なかでも特に、キャップトレッドに用いることが好ましい。 By using the rubber composition of the present invention, it is possible to obtain an excellent rubber crosslinked product with a balance between rolling resistance and wet grip performance. Taking advantage of these characteristics, the rubber composition of the present invention is preferably used as a material for each part of a tire such as a tread (cap tread, base tread), carcass, sidewall, and bead part of the tire. However, in various tires such as all-season tires, high-performance tires, and studless tires, it can be suitably used for each part of the tire such as a tread, a carcass, a sidewall, and a bead part. It can be used particularly preferably, and it is particularly preferable to use it for a cap tread.
<ゴム架橋物>
 本発明のゴム架橋物は、上述した本発明のゴム組成物を架橋してなるものである。
 本発明のゴム架橋物は、本発明のゴム組成物を用い、たとえば、所望の形状に対応した成形機、たとえば、押出機、射出成形機、圧縮機、ロールなどにより成形を行い、加熱することにより架橋反応を行い、ゴム架橋物として形状を固定化することにより製造することができる。この場合においては、予め成形した後に架橋しても、成形と同時に架橋を行ってもよい。成形温度は、通常、10~200℃、好ましくは25~120℃である。架橋温度は、通常、100~200℃、好ましくは130~190℃であり、架橋時間は、通常、1分~24時間、好ましくは2分~12時間、特に好ましくは3分~6時間である。
<Rubber cross-linked product>
The rubber crosslinked product of the present invention is obtained by cross-linking the above-mentioned rubber composition of the present invention.
The rubber crosslinked product of the present invention is formed by using the rubber composition of the present invention, for example, by a molding machine corresponding to a desired shape, for example, an extruder, an injection molding machine, a compressor, a roll, or the like, and is heated. It can be produced by carrying out a cross-linking reaction and fixing the shape as a rubber cross-linked product. In this case, cross-linking may be performed after molding in advance, or cross-linking may be performed at the same time as molding. The molding temperature is usually 10 to 200 ° C, preferably 25 to 120 ° C. The crosslinking temperature is usually 100 to 200 ° C., preferably 130 to 190 ° C., and the crosslinking time is usually 1 minute to 24 hours, preferably 2 minutes to 12 hours, particularly preferably 3 minutes to 6 hours. ..
 また、ゴム架橋物の形状、大きさ等によっては、表面が架橋していても内部まで十分に架橋していない場合があるので、さらに加熱して二次架橋を行ってもよい。 Further, depending on the shape, size, etc. of the rubber crosslinked product, even if the surface is crosslinked, it may not be sufficiently crosslinked to the inside, so further heating may be performed for secondary crosslinking.
 加熱方法としては、プレス加熱、スチーム加熱、オーブン加熱、熱風加熱等のゴム組成物の架橋に用いられる一般的な方法を適宜選択すればよい。 As the heating method, a general method used for cross-linking the rubber composition such as press heating, steam heating, oven heating, hot air heating and the like may be appropriately selected.
 このようにして得られる本発明のゴム架橋物は、上述した本発明のゴム組成物を用いて得られるものであるため、転がり抵抗およびウェットグリップ性能のバランスにより優れるものである。 Since the rubber crosslinked product of the present invention thus obtained is obtained by using the rubber composition of the present invention described above, it is more excellent in the balance between rolling resistance and wet grip performance.
 本発明のゴム架橋物は、その優れた転がり抵抗およびウェットグリップ性能を活かし、例えば、タイヤにおいて、トレッド(キャップトレッド、ベーストレッド)、カーカス、サイドウォール、ビード部等のタイヤ各部位の材料に用いることが好ましく、なかでも、オールシーズンタイヤ、高性能タイヤ、およびスタッドレスタイヤ等の各種タイヤにおいて、トレッド、カーカス、サイドウォール、およびビード部等のタイヤ各部位に好適に用いることができ、たとえば、タイヤのトレッド用として、特に好適に用いることができ、なかでも特に、キャップトレッドに用いることが好ましい。 The rubber crosslinked product of the present invention is used as a material for each part of a tire such as a tread (cap tread, base tread), carcass, sidewall, bead part, etc. by utilizing its excellent rolling resistance and wet grip performance. In particular, in various tires such as all-season tires, high-performance tires, and studless tires, the tires can be suitably used for each part of the tire such as a tread, a carcass, a sidewall, and a bead portion. For example, a tire. It can be particularly preferably used for treads, and particularly preferably for cap treads.
 次に、本発明の空気入りタイヤについて説明する。本発明の空気入りタイヤは、上述のゴム組成物をトレッドに使用したことを特徴とするものである。 Next, the pneumatic tire of the present invention will be described. The pneumatic tire of the present invention is characterized in that the above-mentioned rubber composition is used for a tread.
 上記トレッドは、上述のゴム組成物を使用したもの、すなわち、上記ゴム組成物を用いて形成されたものであり、通常、上述した本発明のゴム組成物を架橋してなる本発明のゴム架橋物を含むものである。 The tread is a tread using the above-mentioned rubber composition, that is, one formed by using the above-mentioned rubber composition, and is usually a rubber cross-linking of the present invention formed by cross-linking the above-mentioned rubber composition of the present invention. It includes things.
 上記空気入りタイヤは、そのトレッドが上記ゴム組成物を用いて形成されたものであればよく、他の部位も上記ゴム組成物を用いて形成されたものであってもよい。 The pneumatic tire may have a tread formed by using the rubber composition, and other parts may also be formed by using the rubber composition.
 上記ゴム組成物を用いて形成されるトレッドは、トレッドの一部であってもよくトレッドの全体であってもよいが、少なくともキャップトレッドを含むことが好ましい。 The tread formed by using the above rubber composition may be a part of the tread or the whole tread, but preferably contains at least a cap tread.
 また、本発明の空気入りタイヤの製造方法としては、上記組成物を用いて形成されたトレッドを有する空気入りタイヤを製造できる方法であればよく、公知の空気入りタイヤの製造方法を用いることができる。 Further, as the method for producing a pneumatic tire of the present invention, any method can be used as long as it can produce a pneumatic tire having a tread formed by using the above composition, and a known method for producing a pneumatic tire can be used. it can.
 以下、本発明を、さらに詳細な実施例に基づき説明するが、本発明は、これら実施例に限定されない。なお、以下について、「部」および「%」は、特に断りのない限り質量基準である。
 本実施例および比較例において行った試験方法は以下のとおりである。
Hereinafter, the present invention will be described based on more detailed examples, but the present invention is not limited to these examples. Regarding the following, "parts" and "%" are based on mass unless otherwise specified.
The test methods performed in this example and the comparative example are as follows.
〔軟化点(℃)〕
 試料となる炭化水素樹脂について、JIS K 2207に従い、軟化点を測定した。
[Softening point (° C)]
The softening point of the sample hydrocarbon resin was measured according to JIS K 2207.
〔数平均分子量、重量平均分子量、Z平均分子量、および分子量分布〕
 試料となる炭化水素樹脂について、ゲル・パーミエーション・クロマトグラフィー分析を行い、標準ポリスチレン換算値の数平均分子量(Mn)、重量平均分子量(Mw)、およびZ平均分子量(Mz)を求め、分子量分布はMw/Mnの比およびMz/Mwの比で示した。なお、ゲル・パーミエーション・クロマトグラフィー分析は、測定装置として、東ソー社製「HLC-8320GPC」を使用し、カラムは東ソー社製「TSKgel SuperMultiporeHZ」を3本連結したものを用い、テトラヒドロフランを溶媒として、40℃、1.0ml/minの流量で測定した。
[Number average molecular weight, weight average molecular weight, Z average molecular weight, and molecular weight distribution]
Gel permeation chromatography analysis is performed on the hydrocarbon resin as a sample to obtain the number average molecular weight (Mn), weight average molecular weight (Mw), and Z average molecular weight (Mz) of standard polystyrene conversion values, and the molecular weight distribution. Is shown by the ratio of Mw / Mn and the ratio of Mz / Mw. For gel permeation chromatography analysis, "HLC-8320GPC" manufactured by Tosoh Co., Ltd. was used as a measuring device, and three columns "TSKgel SuperMultipore HZ" manufactured by Tosoh Co., Ltd. were linked, and tetrahydrofuran was used as a solvent. , 40 ° C., at a flow rate of 1.0 ml / min.
〔ムーニー粘度(ML1+4)〕
 試料となるゴム組成物について、JIS K 6300-1:2001に従い、以下の条件で測定した。この特性については、基準サンプル(後述の比較例1)を100とする指数で示した。ムーニー粘度の値が小さいほど、加工性に優れると判断できる。
・試験温度:100℃
・ロータの種類:L形
・使用試験機:島津製作所社製島津ムーニービスコメーターSMV-300J 
[Moony Viscosity (ML1 + 4)]
The rubber composition as a sample was measured under the following conditions according to JIS K 630-1: 2001. This characteristic is shown by an index with the reference sample (Comparative Example 1 described later) as 100. It can be judged that the smaller the value of Mooney viscosity, the better the workability.
-Test temperature: 100 ° C
・ Rotor type: L type ・ Test machine used: Shimadzu Mooney Biscometer SMV-300J manufactured by Shimadzu Corporation
〔引張強さ(MPa)および伸び(%)〕
 試料となるゴム架橋物の試験片について、JIS K 6251:2010に従い、以下の条件で引張強さ(tensile stress(MPa))および伸び(elongation(%))を測定した。これらの特性については、基準サンプル(後述の比較例1)を100とする指数で示した。数値が大きいほど、引張強さおよび伸びに優れると判断できる。
・試験片作製方法:プレス架橋によりシート作製後、打抜き加工
・試験片形状:ダンベル状3号形
・試験片採取方向:列理に対し平行方向
・試験片数:3
・測定温度:23℃
・試験速度:500mm/min
・使用試験機:ALPHA TECHNOLOGIES社製TENSOMETER 10k
・試験機容量:ロードセル式 1kN
[Tensile strength (MPa) and elongation (%)]
With respect to the test piece of the rubber crosslinked product as a sample, the tensile strength (tensile stress (MPa)) and the elongation (elongation (%)) were measured under the following conditions according to JIS K 6251: 2010. These characteristics are shown by an index with the reference sample (Comparative Example 1 described later) as 100. It can be judged that the larger the value, the better the tensile strength and elongation.
-Test piece preparation method: After sheet preparation by press cross-linking, punching processing-Test piece shape: Dumbbell-shaped No. 3 type-Test piece collection direction: Parallel to the row-Number of test pieces: 3
・ Measurement temperature: 23 ° C
-Test speed: 500 mm / min
-Testing machine used: TENSOMETER 10k manufactured by ALPHA TECHNOLOGIES
・ Testing machine capacity: Load cell type 1kN
〔損失正接tanδ〕
 試料となるゴム架橋物の試験片について、JIS K 7244-4に従い、以下の測定条件で、動的歪み0.5%、10Hzの条件で、0℃および60℃での損失正接tanδを測定した。この特性については、基準サンプル(後述の比較例1)を100とする指数で示した。0℃での損失正接tanδが高いほど、ウェットグリップ性能に優れると判断でき、60℃での損失正接tanδが低いほど、転がり抵抗に優れる(60℃での損失正接tanδが低いほど、転がり抵抗が低い)と判断できる。
測定項目:動的貯蔵弾性率E’
    :動的損失弾性率E”
    :損失正接tanδ
・試料作製方法:シートより打抜き加工
・試験片形状:長さ50mm×幅2mm×厚さ2mm
・試験片数:1
・クランプ間距離:20mm
[Loss tangent tan δ]
For the test piece of the rubber crosslinked product as a sample, the loss tangent tan δ at 0 ° C. and 60 ° C. was measured under the conditions of dynamic strain 0.5% and 10 Hz under the following measurement conditions according to JIS K 7244-4. .. This characteristic is shown by an index with the reference sample (Comparative Example 1 described later) as 100. It can be judged that the higher the loss tangent tan δ at 0 ° C, the better the wet grip performance, and the lower the loss tangent tan δ at 60 ° C, the better the rolling resistance (the lower the loss tangent tan δ at 60 ° C, the better the rolling resistance. It can be judged that it is low).
Measurement item: Dynamic storage modulus E'
: Dynamic loss elastic modulus E "
: Loss tangent tan δ
-Sample preparation method: Punching from the sheet-Test piece shape: Length 50 mm x Width 2 mm x Thickness 2 mm
・ Number of test pieces: 1
・ Distance between clamps: 20 mm
〔製造例1〕
 重合反応器に、シクロペンタン42.7部、シクロペンテン14.8部およびトルエン0.5部を仕込み、55℃に昇温した後、塩化アルミニウム1.2部を添加した。引き続き、テトラシクロドデセン(テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン)24.6部、1,3-ペンタジエン41.1部、シクロペンテン15.2部、イソブチレン2.2部、ジイソブチレン1.2部、ジシクロペンダジエン0.4部、C4-C6不飽和炭化水素0.5部、およびC4-C6飽和炭化水素10.3部からなる混合物を、60分間に亘り温度75℃を維持して、重合反応器に連続的に添加しながら重合を行なった。その後、水酸化ナトリウム水溶液を重合反応器に添加して、重合反応を停止した。この時の重合転化率は、85%であり、得られた重合体の組成は、単量体混合物を構成する成分割合とほぼ同じであった。なお、重合反応時の重合反応器中の成分の種類および量は、単量体混合物を構成する成分(付加重合性成分)、溶媒に相当する成分(非付加重合性成分)、および重合触媒に区分して、表1にまとめて示した。重合停止により生成した沈殿物をろ過により除去した後、得られた重合体溶液を蒸留釜に仕込み、窒素雰囲気下で加熱し、重合溶媒と未反応単量体を除去した。次いで、240℃以上で、飽和水蒸気を吹き込みながら、低分子量のオリゴマー成分を留去した。溶融状態の樹脂100部に対して、老化防止剤としてペンタエリスリトールテトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート](BASF社製「イルガノックス1010」)1.25部を添加し、混合した後、蒸留釜から溶融樹脂を取り出し、室温まで放冷して、製造例1の炭化水素樹脂を得た。得られた製造例1の炭化水素樹脂について、軟化点、数平均分子量(Mn)、重量平均分子量(Mw)、Z平均分子量(Mz)および分子量分布(Mw/MnおよびMz/Mw)を測定した。これらの測定結果は、表1にまとめて示した。
[Manufacturing Example 1]
42.7 parts of cyclopentane, 14.8 parts of cyclopentene and 0.5 part of toluene were charged into the polymerization reactor, the temperature was raised to 55 ° C., and then 1.2 parts of aluminum chloride was added. Subsequently, tetracyclododecene (tetracyclo [4.4.0.1 2,5 .1 7,10] dodeca-3-ene) 24.6 parts of 1,3-pentadiene 41.1 parts of cyclopentene 15.2 A mixture consisting of 2.2 parts of isobutylene, 1.2 parts of diisobutylene, 0.4 parts of dicyclopentadiene, 0.5 parts of C4-C6 unsaturated hydrocarbon, and 10.3 parts of C4-C6 saturated hydrocarbon. Was continuously added to the polymerization reactor while maintaining the temperature of 75 ° C. for 60 minutes to carry out the polymerization. Then, an aqueous sodium hydroxide solution was added to the polymerization reactor to stop the polymerization reaction. The polymerization conversion rate at this time was 85%, and the composition of the obtained polymer was almost the same as the proportion of the components constituting the monomer mixture. The types and amounts of the components in the polymerization reactor during the polymerization reaction are the components constituting the monomer mixture (additionally polymerizable component), the components corresponding to the solvent (non-additionally polymerizable components), and the polymerization catalyst. They are classified and shown in Table 1. After removing the precipitate produced by the polymerization termination by filtration, the obtained polymer solution was placed in a distillation pot and heated in a nitrogen atmosphere to remove the polymerization solvent and the unreacted monomer. Then, at 240 ° C. or higher, the low molecular weight oligomer component was distilled off while blowing saturated water vapor. 1. Pentaerythritol tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] (BASF's "Irganox 1010") as an antioxidant for 100 parts of the molten resin. After adding 25 parts and mixing, the molten resin was taken out from the distillation pot and allowed to cool to room temperature to obtain the hydrocarbon resin of Production Example 1. The softening point, number average molecular weight (Mn), weight average molecular weight (Mw), Z average molecular weight (Mz), and molecular weight distribution (Mw / Mn and Mz / Mw) of the obtained hydrocarbon resin of Production Example 1 were measured. .. The results of these measurements are summarized in Table 1.
〔製造例2~8〕
 重合反応器に添加する成分の種類および量、および重合温度を表1に示すとおりにそれぞれ変更したこと以外は、製造例1と同様にして、製造例2~8の炭化水素樹脂をそれぞれ得た。得られた製造例2~8の炭化水素樹脂については、製造例1と同様の測定を行った。これらの測定結果は、表1にまとめて示した。なお、製造例2~8においても、得られた重合体の組成は、単量体混合物を構成する成分割合とほぼ同じであった。
[Manufacturing Examples 2 to 8]
Hydrocarbon resins of Production Examples 2 to 8 were obtained in the same manner as in Production Example 1 except that the types and amounts of the components added to the polymerization reactor and the polymerization temperature were changed as shown in Table 1. .. The obtained hydrocarbon resins of Production Examples 2 to 8 were measured in the same manner as in Production Example 1. The results of these measurements are summarized in Table 1. In Production Examples 2 to 8, the composition of the obtained polymer was almost the same as the proportion of the components constituting the monomer mixture.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
〔実施例1〕
 バンバリー型ミキサー中で、油展された乳化重合スチレンブタジエンゴム(SBR)(商品名「Nipol 1739」、日本ゼオン社製、結合スチレン量:40%、ブタジエン単位部分のビニル結合含有量:13.5モル%、重量平均分子量:690,000、分子量分布(Mw/Mn):3.98、ガラス転移温度(Tg):-35℃、ゴム成分100部に対して37.5部の伸展油を含有)96.3部(ゴム成分の含有量:70部、伸展油の含有量:26.3部)と、溶液重合ブタジエンゴム(BR)(商品名「Nipol BR1220」、日本ゼオン社製、ブタジエン単位部分のビニル結合含有量:2モル%、重量平均分子量:490,000、分子量分布(Mw/Mn):2.52、ムーニー粘度(ML1+4,100℃):44、ガラス転移温度(Tg):-110℃)30部と、を30秒素練りし、次いでシリカ(ローディア社製、商品名「Zeosil1165MP」)46.6部、カーボンブラック(キャボットジャパン社製、商品名「N339」)5部、シランカップリング剤:ビス[3-(トリエトキシシリル)プロピル]テトラスルフィド(テグッサ社製、商品名「Si69」)6部、および製造例1で得た炭化水素樹脂10部を添加して、90秒混練後、シリカ(ローディア社製、商品名「Zeosil1165MP」)23.4部、酸化亜鉛3部、ステアリン酸2部、および老化防止剤:N-フェニル-N’-(1,3-ジメチルブチル)-p-フェニレンジアミン(大内新興化学工業社製、商品名「ノクラック6C」)2部を添加し、更に90秒間混練し、次いで、プロセスオイル(新日本石油社製、商品名「アロマックス T-DAE」)5部を投入した。その後、90℃を開始温度として、145~155℃で60秒間以上混練(一次練り)した後、ミキサーから混練物を排出させた。
[Example 1]
Oil-expanded emulsified polymerized styrene-butadiene rubber (SBR) (trade name "Nipol 1739", manufactured by Nippon Zeon Co., Ltd., amount of bonded styrene: 40%, vinyl bond content of butadiene unit portion: 13.5 Mol%, weight average molecular weight: 690,000, molecular weight distribution (Mw / Mn): 3.98, glass transition temperature (Tg): -35 ° C., containing 37.5 parts of styrene oil with respect to 100 parts of rubber component. ) 96.3 parts (rubber component content: 70 parts, spreading oil content: 26.3 parts) and solution-polymerized butadiene rubber (BR) (trade name "Nipol BR1220", manufactured by Nippon Zeon, butadiene unit Vinyl bond content of the moiety: 2 mol%, weight average molecular weight: 490,000, molecular weight distribution (Mw / Mn): 2.52, Mooney viscosity (ML1 + 4,100 ° C.): 44, glass transition temperature (Tg):- (110 ° C.) 30 parts and kneading for 30 seconds, then silica (manufactured by Rhodia, trade name "Zeosil1165MP") 46.6 parts, carbon black (manufactured by Cabot Japan, trade name "N339") 5 parts, silane Coupling agent: 6 parts of bis [3- (triethoxysilyl) propyl] tetrasulfide (manufactured by Tegussa, trade name "Si69") and 10 parts of the hydrocarbon resin obtained in Production Example 1 are added for 90 seconds. After kneading, 23.4 parts of silica (manufactured by Rhodia, trade name "Zeosil1165MP"), 3 parts of zinc oxide, 2 parts of stearic acid, and anti-aging agent: N-phenyl-N'-(1,3-dimethylbutyl) -P-Phenylenediamine (manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd., trade name "Nocrack 6C") 2 parts is added, kneaded for another 90 seconds, and then process oil (manufactured by Shin Nihon Oil Co., Ltd., trade name "Aromax T" -DAE ") 5 copies were put in. Then, after kneading (primary kneading) at 145 to 155 ° C. for 60 seconds or more with 90 ° C. as a starting temperature, the kneaded product was discharged from the mixer.
 得られた混練物を、室温まで冷却した後、再度バンバリー型ミキサー中で、90℃を開始温度として2分間混練(二次練り)した後、ミキサーから混練物を排出させた。混練終了時の混練物の温度は145℃であった。 The obtained kneaded product was cooled to room temperature, kneaded again in a Banbury type mixer for 2 minutes (secondary kneading) at a starting temperature of 90 ° C., and then the kneaded product was discharged from the mixer. The temperature of the kneaded product at the end of kneading was 145 ° C.
 次いで、50℃の2本のロールで、得られた混練物に、硫黄1.7部、架橋促進剤:N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド(CBS 商品名「ノクセラーCZ-G」、大内新興化学工業社製)1.8部、およびジフェニルグアニジン(DPG 商品名「ノクセラーD」、大内新興化学工業社製)1.7部を加えてこれらを混練(架橋剤混練り)した後、シート状のゴム組成物を取り出した。 Next, in two rolls at 50 ° C., 1.7 parts of sulfur and a cross-linking accelerator: N-cyclohexyl-2-benzothiazolyl sulphenamide (CBS trade name "Noxeller CZ-G") were added to the obtained kneaded product. , 1.8 parts manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd., and 1.7 parts of diphenylguanidine (DPG trade name "Noxeller D", manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd.) are added and kneaded (crosslinker kneading). After that, the sheet-shaped rubber composition was taken out.
 なお、一次練り、二次練り、および架橋剤混練りの混練条件は、以下に示す条件とした。 The kneading conditions for the primary kneading, the secondary kneading, and the cross-linking agent kneading were as shown below.
(一次練りおよび二次練りの混練条件)
・試験機:東洋精機製作所社製ラボプラストミル バンバリー型ミキサーB-600
・充填率:70~75vol%
・ロータ回転数:50rpm
・試験開始設定温度:90℃
(Kneading conditions for primary and secondary kneading)
・ Testing machine: Labplast Mill Banbury Mixer B-600 manufactured by Toyo Seiki Seisakusho Co., Ltd.
-Filling rate: 70-75 vol%
・ Rotor rotation speed: 50 rpm
・ Test start set temperature: 90 ° C
(架橋剤混練りの混練条件)
・試験機:池田機械工業社製電気加熱式高温ロール機
・ロールサイズ:6φ×16
・前ロール回転数:24rpm
・前後ロール回転比:1:1.22
・ロール温度:50±5℃
・切り返し回数:左右2回ずつ
・丸め通し幅:ロール間隔約0.8mm
・丸め通し回数:5回
(Kneading conditions for cross-linking agent kneading)
・ Testing machine: Electric heating type high temperature roll machine manufactured by Ikeda Kikai Kogyo Co., Ltd. ・ Roll size: 6φ × 16
・ Front roll rotation speed: 24 rpm
・ Front-rear roll rotation ratio: 1: 1.22
・ Roll temperature: 50 ± 5 ℃
・ Number of turns: 2 times on each side ・ Rounding width: Roll spacing approx. 0.8 mm
・ Number of rounding: 5 times
〔実施例2~5および比較例1~3〕
 下記表2に示すように、製造例1で得た炭化水素樹脂の代わりに製造例2~8で得た炭化水素樹脂を用いた以外は、実施例1と同様にしてゴム組成物を得た。
[Examples 2 to 5 and Comparative Examples 1 to 3]
As shown in Table 2 below, a rubber composition was obtained in the same manner as in Example 1 except that the hydrocarbon resins obtained in Production Examples 2 to 8 were used instead of the hydrocarbon resins obtained in Production Example 1. ..
〔評価〕
 実施例1~5および比較例1~3で得たゴム組成物を、プレス圧力約8MPa、プレス温度160℃で40分間プレス架橋し、その後さらに23℃の恒温室で一晩熟成した後、150mm×150mm×厚さ2mmのゴム架橋物の試験片を作製した。
[Evaluation]
The rubber compositions obtained in Examples 1 to 5 and Comparative Examples 1 to 3 were press-crosslinked at a press pressure of about 8 MPa and a press temperature of 160 ° C. for 40 minutes, and then aged overnight in a thermostatic chamber at 23 ° C., and then 150 mm. A test piece of a crosslinked rubber product of × 150 mm × thickness 2 mm was prepared.
 実施例1~5および比較例1~3で得られたゴム組成物およびゴム架橋物について、ゴム組成物のムーニー粘度、ゴム架橋物の引張強さ(MPa)、伸び(%)、および損失正接tanδを測定した。結果を下記表2に示す。 With respect to the rubber compositions and rubber crosslinked products obtained in Examples 1 to 5 and Comparative Examples 1 to 3, the Mooney viscosity of the rubber composition, the tensile strength (MPa), the elongation (%), and the loss tangent of the rubber crosslinked products. tan δ was measured. The results are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1および2に示すように、ジエン系ゴムおよび炭化水素樹脂を含有するゴム組成物であって、前記炭化水素樹脂の含有量が、前記ジエン系ゴム100質量部に対して1~200質量部であり、前記炭化水素樹脂は、テトラシクロドデセン化合物由来の単量体単位を0.1~50重量%の割合で含有し、重量平均分子量(Mw)が500~4,000の範囲内であり、軟化点が80~170℃の範囲内であるゴム組成物は、加工性に優れたものであり、かつ、得られるゴム架橋物は、転がり抵抗およびウェットグリップ性能のバランスに優れ、さらには、引張強さおよび伸びにも優れるものであった(実施例1~5)。 As shown in Tables 1 and 2, a rubber composition containing a diene-based rubber and a hydrocarbon resin, wherein the content of the hydrocarbon resin is 1 to 200 parts by mass with respect to 100 parts by mass of the diene-based rubber. The hydrocarbon resin contains a monomer unit derived from a tetracyclododecene compound in a proportion of 0.1 to 50% by weight, and has a weight average molecular weight (Mw) in the range of 500 to 4,000. The rubber composition having a softening point in the range of 80 to 170 ° C. has excellent workability, and the obtained rubber crosslinked product has an excellent balance between rolling resistance and wet grip performance, and further. It was also excellent in tensile strength and elongation (Examples 1 to 5).
 一方、テトラシクロドデセン化合物由来の単量体単位を含有せず、かつ、重量平均分子量(Mw)が大きすぎる炭化水素樹脂を含有するゴム組成物を用いた場合には、得られるゴム架橋物は、転がり抵抗およびウェットグリップ性能に劣るものであった(比較例1,2)。
 また、テトラシクロドデセン化合物由来の単量体単位を含有せず、かつ、軟化点が低すぎる炭化水素樹脂を含有するゴム組成物を用いた場合には、得られるゴム架橋物は、転がり抵抗およびウェットグリップ性能のバランスに劣るものであった(比較例3)。
On the other hand, when a rubber composition containing no monomer unit derived from the tetracyclododecene compound and containing a hydrocarbon resin having an excessively large weight average molecular weight (Mw) is used, the obtained rubber crosslinked product is obtained. Was inferior in rolling resistance and wet grip performance (Comparative Examples 1 and 2).
Further, when a rubber composition containing a hydrocarbon resin having a softening point too low and which does not contain a monomer unit derived from a tetracyclododecene compound is used, the obtained rubber crosslinked product has rolling resistance. And the balance of wet grip performance was inferior (Comparative Example 3).

Claims (10)

  1.  ジエン系ゴムおよび炭化水素樹脂を含有するゴム組成物であって、
     前記炭化水素樹脂の含有量が、前記ジエン系ゴム100質量部に対して1~200質量部であり、
     前記炭化水素樹脂は、
     テトラシクロドデセン化合物由来の単量体単位を0.1~50重量%の割合で含有し、
     重量平均分子量(Mw)が500~4,000の範囲内であり、
     軟化点が80~170℃の範囲内であるゴム組成物。
    A rubber composition containing a diene-based rubber and a hydrocarbon resin.
    The content of the hydrocarbon resin is 1 to 200 parts by mass with respect to 100 parts by mass of the diene rubber.
    The hydrocarbon resin is
    It contains a monomer unit derived from a tetracyclododecene compound in a proportion of 0.1 to 50% by weight.
    The weight average molecular weight (Mw) is in the range of 500 to 4,000.
    A rubber composition having a softening point in the range of 80 to 170 ° C.
  2.  前記炭化水素樹脂は、前記テトラシクロドデセン化合物由来の単量体単位0.1~50重量%に加えて、
     1,3-ペンタジエン単量体単位1~60重量%、
     炭素数4~6の脂環式モノオレフィン単量体単位1~30重量%、
     炭素数4~8の非環式モノオレフィン単量体単位0~50重量%、
     脂環式ジオレフィン単量体単位0~10重量%、
     芳香族モノオレフィン単量体単位0~40重量%、および、
     2以上の環状構造が結合した構造を有する芳香族単量体単位0~50重量%を含有し、
     前記炭化水素樹脂は、
     数平均分子量(Mn)が250~2000の範囲内であり、
     Z平均分子量(Mz)が1,000~10,000の範囲内であり、
     数平均分子量に対する重量平均分子量の比(Mw/Mn)が1.0~4.0の範囲内であり、
     重量平均分子量に対するZ平均分子量の比(Mz/Mw)が1.0~4.0の範囲内である請求項1に記載のゴム組成物。
    In addition to 0.1 to 50% by weight of the monomer unit derived from the tetracyclododecene compound, the hydrocarbon resin is added.
    1,3-Pentadiene monomer unit 1-60% by weight,
    Alicyclic monoolefin monomer unit with 4 to 6 carbon atoms 1 to 30% by weight,
    Acyclic monoolefin monomer unit with 4 to 8 carbon atoms 0 to 50% by weight,
    Alicyclic diolefin monomer unit 0-10% by weight,
    Aromatic monoolefin monomer unit 0-40% by weight, and
    Contains 0 to 50% by weight of an aromatic monomer unit having a structure in which two or more cyclic structures are bonded.
    The hydrocarbon resin is
    The number average molecular weight (Mn) is in the range of 250 to 2000,
    The Z average molecular weight (Mz) is in the range of 1,000 to 10,000.
    The ratio of the weight average molecular weight to the number average molecular weight (Mw / Mn) is in the range of 1.0 to 4.0.
    The rubber composition according to claim 1, wherein the ratio of the Z average molecular weight to the weight average molecular weight (Mz / Mw) is in the range of 1.0 to 4.0.
  3.  前記炭化水素樹脂が、前記テトラシクロドデセン化合物由来の単量体単位として、テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン単位を含有する請求項1または2に記載のゴム組成物。 The hydrocarbon resin, as a monomer unit derived from the tetracyclododecene compound, is tetracyclo [4.4.0.1 2,5 . 1 7, 10 ] The rubber composition according to claim 1 or 2, which contains a dodeca-3-ene unit.
  4.  前記テトラシクロドデセン化合物由来の単量体単位中における、テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン単位の割合が50重量%以上である請求項3に記載のゴム組成物。 In the monomer unit derived from the tetracyclododecene compound, tetracyclo [4.4.0.1 2,5 . 17.10 ] The rubber composition according to claim 3, wherein the ratio of the dodeca-3-ene unit is 50% by weight or more.
  5.  前記炭化水素樹脂が、水素化物である請求項1~4のいずれかに記載のゴム組成物。 The rubber composition according to any one of claims 1 to 4, wherein the hydrocarbon resin is a hydride.
  6.  さらにシリカを含有する、請求項1~5のいずれかに記載のゴム組成物。 The rubber composition according to any one of claims 1 to 5, further containing silica.
  7.  さらにシランカップリング剤を含有する、請求項1~6のいずれかに記載のゴム組成物。 The rubber composition according to any one of claims 1 to 6, further containing a silane coupling agent.
  8.  さらに架橋剤を含有する、請求項1~7のいずれかに記載のゴム組成物。 The rubber composition according to any one of claims 1 to 7, further containing a cross-linking agent.
  9.  請求項1~8のいずれかに記載のゴム組成物を架橋してなるゴム架橋物。 A rubber crosslinked product obtained by cross-linking the rubber composition according to any one of claims 1 to 8.
  10.  請求項1~8のいずれかに記載のゴム組成物または請求項9に記載のゴム架橋物をトレッドに使用したことを特徴とする空気入りタイヤ。 A pneumatic tire using the rubber composition according to any one of claims 1 to 8 or the rubber crosslinked product according to claim 9 for a tread.
PCT/JP2020/039238 2019-10-25 2020-10-19 Rubber composition, and rubber crosslinked product and pneumatic tire using said rubber composition WO2021079844A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021553421A JPWO2021079844A1 (en) 2019-10-25 2020-10-19

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019194047 2019-10-25
JP2019-194047 2019-10-25

Publications (1)

Publication Number Publication Date
WO2021079844A1 true WO2021079844A1 (en) 2021-04-29

Family

ID=75620527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/039238 WO2021079844A1 (en) 2019-10-25 2020-10-19 Rubber composition, and rubber crosslinked product and pneumatic tire using said rubber composition

Country Status (2)

Country Link
JP (1) JPWO2021079844A1 (en)
WO (1) WO2021079844A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005513208A (en) * 2001-12-21 2005-05-12 ピレリ・プネウマティチ・ソチエタ・ペル・アツィオーニ TIRE, TREAD BAND CONTAINING CYCLOFOLEFIN POLYMER AND ELASTOMER COMPOSITION USED FOR THEM
JP2012036229A (en) * 2010-08-03 2012-02-23 Toyo Tire & Rubber Co Ltd Rubber composition and pneumatic tire
JP2013159745A (en) * 2012-02-07 2013-08-19 Bridgestone Corp Rubber composition for tire tread and pneumatic tire using the same
JP2017214509A (en) * 2016-06-01 2017-12-07 横浜ゴム株式会社 Tire rubber composition
WO2018190427A1 (en) * 2017-04-14 2018-10-18 住友ゴム工業株式会社 Rubber composition for tires and pneumatic tire
WO2018198775A1 (en) * 2017-04-25 2018-11-01 住友ゴム工業株式会社 Rubber composition
JP2019507233A (en) * 2015-12-31 2019-03-14 クレイトン・ケミカル・エルエルシー Resin-extended rubber composition and tire rubber composition prepared using the same
WO2019146690A1 (en) * 2018-01-29 2019-08-01 日本ゼオン株式会社 Hydrocarbon resin, hydride of hydrocarbon resin, and hot-melt adhesive composition using hydrocarbon resin and hydride of hydrocarbon resin

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005513208A (en) * 2001-12-21 2005-05-12 ピレリ・プネウマティチ・ソチエタ・ペル・アツィオーニ TIRE, TREAD BAND CONTAINING CYCLOFOLEFIN POLYMER AND ELASTOMER COMPOSITION USED FOR THEM
JP2012036229A (en) * 2010-08-03 2012-02-23 Toyo Tire & Rubber Co Ltd Rubber composition and pneumatic tire
JP2013159745A (en) * 2012-02-07 2013-08-19 Bridgestone Corp Rubber composition for tire tread and pneumatic tire using the same
JP2019507233A (en) * 2015-12-31 2019-03-14 クレイトン・ケミカル・エルエルシー Resin-extended rubber composition and tire rubber composition prepared using the same
JP2017214509A (en) * 2016-06-01 2017-12-07 横浜ゴム株式会社 Tire rubber composition
WO2018190427A1 (en) * 2017-04-14 2018-10-18 住友ゴム工業株式会社 Rubber composition for tires and pneumatic tire
WO2018198775A1 (en) * 2017-04-25 2018-11-01 住友ゴム工業株式会社 Rubber composition
WO2019146690A1 (en) * 2018-01-29 2019-08-01 日本ゼオン株式会社 Hydrocarbon resin, hydride of hydrocarbon resin, and hot-melt adhesive composition using hydrocarbon resin and hydride of hydrocarbon resin

Also Published As

Publication number Publication date
JPWO2021079844A1 (en) 2021-04-29

Similar Documents

Publication Publication Date Title
JP7081495B2 (en) Rubber composition and pneumatic tires
TW201945425A (en) Additive for rubbers, uncrosslinked rubber composition, crosslinked rubber and tire
JP6729085B2 (en) Hydrocarbon resin and elastomer composition for tire
JP7255137B2 (en) Rubber composition and pneumatic tire using the same
JP7452431B2 (en) Rubber composition and pneumatic tire using the same
JP6954305B2 (en) Rubber composition and pneumatic tires
JP7255136B2 (en) Rubber composition and pneumatic tire using the same
JP6780325B2 (en) Modified Hydrocarbon Resins and Elastomer Compositions for Tires
JP7293892B2 (en) rubber composition
JP7081494B2 (en) Rubber composition and pneumatic tires
JP6828737B2 (en) Silane-modified hydrocarbon resin and elastomer composition for tires
JP6954304B2 (en) Rubber composition and pneumatic tires
WO2021079844A1 (en) Rubber composition, and rubber crosslinked product and pneumatic tire using said rubber composition
JP7081496B2 (en) Rubber composition and pneumatic tires
US20240191066A1 (en) Rubber composition, and rubber crosslinked product and pneumatic tire using said rubber composition
JP6954303B2 (en) Rubber composition and pneumatic tires
JP2024154452A (en) Rubber composition
JP2024154451A (en) Rubber composition
WO2024219257A1 (en) Rubber composition
JP2024067610A (en) Rubber composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20878628

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021553421

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20878628

Country of ref document: EP

Kind code of ref document: A1