[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021075551A1 - Resin composition, resin molded article containing same, and method for manufacturing resin molded article - Google Patents

Resin composition, resin molded article containing same, and method for manufacturing resin molded article Download PDF

Info

Publication number
WO2021075551A1
WO2021075551A1 PCT/JP2020/039104 JP2020039104W WO2021075551A1 WO 2021075551 A1 WO2021075551 A1 WO 2021075551A1 JP 2020039104 W JP2020039104 W JP 2020039104W WO 2021075551 A1 WO2021075551 A1 WO 2021075551A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
resin composition
aluminum flake
flake particles
coupling agent
Prior art date
Application number
PCT/JP2020/039104
Other languages
French (fr)
Japanese (ja)
Inventor
信平 岡崎
杉生 大輔
洋 劉
札場 哲哉
秀一 黒井
Original Assignee
本田技研工業株式会社
東洋アルミニウム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社, 東洋アルミニウム株式会社 filed Critical 本田技研工業株式会社
Priority to JP2021552467A priority Critical patent/JP7385671B2/en
Priority to CN202080068560.4A priority patent/CN114514284B/en
Publication of WO2021075551A1 publication Critical patent/WO2021075551A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0001Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor characterised by the choice of material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds

Definitions

  • the present invention relates to a resin composition, a resin molded product containing the same, and a method for producing the resin molded product.
  • a weld line also called a welding line
  • This weld line may cause a poor appearance in the injection molded product and may cause a structural defect.
  • a heat-and-cool method is known in which injection molding is performed by heating the mold temperature to a temperature equal to or higher than the glass transition temperature of the resin used as a raw material for the injection molded product.
  • the resin composition used for producing the injection-molded article is an aluminum pigment for the purpose of giving the injection-molded article a high-class feel and differentiating it from other injection-molded articles. It is known to use a resin composition containing the above. However, when an injection molded product is obtained by using the resin composition as a raw material and performing injection molding using the heat and cool method, the formation of weld lines is prevented, but the aluminum pigment is contained in the mold. It is known that the uneven distribution on the surface of the molten resin causes the resin to adhere to the mold and thus contaminate the mold.
  • JP-A-2016-010957 Patent Document 1
  • JP-A-2014-185328 Patent Document 2
  • Patent Document 1 and Patent Document 2 are required to be further improved in order to suppress mold contamination.
  • the resin coating the aluminum flake particles may melt in the high temperature mold, and the resin melts around the aluminum flake particles. This is because it is presumed that it is insufficient to prevent the aluminum flake particles from being unevenly distributed on the surface of the molten resin by mixing with the molten resin. Therefore, in injection molding in which the formation of weld lines is prevented by using the heat and cool method, a technique for suppressing mold contamination when a resin composition containing an aluminum pigment or the like is used as a raw material is still realized. It has not, and its development is wished.
  • an object of the present invention is to provide a resin composition capable of suppressing mold contamination, a resin molded body containing the resin composition, and a method for producing the resin molded body.
  • the present inventors have completed the present invention through repeated diligent studies in order to solve the above problems. Specifically, although the detailed mechanism is unknown, it was found that the coupling agent acts effectively on suppressing mold contamination among the innumerable additives contained in this type of resin composition. I found out. Based on this finding, when injection molding using the heat and cool method is performed using a resin composition containing a thermoplastic resin and aluminum flake particles having a coupling agent attached to at least a part of the surface, The present invention was reached with the idea that mold contamination can be suppressed.
  • the resin composition according to the present invention is a resin composition used for producing an injection molded product, the resin composition contains a thermoplastic resin and aluminum flake particles, and the aluminum flake particles are the same. Coupling agent is attached to at least a part of the surface.
  • the coupling agent is preferably a silane coupling agent.
  • the coupling agent is more preferably an amino silane coupling agent.
  • the coupling agent is preferably contained in an amount of 0.1 part by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the aluminum flake particles.
  • the aluminum flake particles are preferably contained in an amount of 0.5 parts by mass or more and 230 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin in a state where the coupling agent is attached to the surface.
  • the thermoplastic resin is preferably one or more resins selected from the group consisting of acrylonitrile-butadiene-styrene resin, styrene-acrylonitrile copolymer, polystyrene and polyethylene.
  • the resin molded product according to the present invention contains the above resin composition.
  • the method for producing a resin molded product according to the present invention is a step of preparing the resin composition and maintaining the inner wall surface of the resin composition at a temperature at least 70 ° C. or higher higher than the glass transition temperature of the thermoplastic resin. It includes a step of injection-injecting into a mold and a step of obtaining a resin molded product by cooling the resin composition in the mold.
  • the present invention it is possible to provide a resin composition capable of suppressing mold contamination, a resin molded body containing the resin composition, and a method for producing the resin molded body.
  • the present embodiment will be described in more detail.
  • the notation in the form of "A to B” means the upper and lower limits of the range (that is, A or more and B or less), and when the unit is not described in A and the unit is described only in B, A The unit of and the unit of B are the same.
  • the resin composition according to this embodiment is a resin composition used for producing an injection molded product.
  • the resin composition contains a thermoplastic resin and aluminum flake particles.
  • a coupling agent is attached to at least a part of the surface of the aluminum flake particles.
  • the resin composition having such characteristics can suppress mold contamination when injection molding using the heat and cool method is performed.
  • the resin composition is a resin composition used for producing an injection molded product as described above.
  • the "injection molded product” refers to a molded product obtained by applying a conventionally known injection molding method to a resin composition containing a thermoplastic resin. Specifically, it refers to a molded product obtained by heating and fluidizing the resin composition in a cylinder provided in a conventionally known injection molding machine, injecting the resin composition into a mold, and cooling the resin composition in the mold. .. Further, in the present specification, the “resin molded product” means an injection molded product obtained by applying an injection molding method to the resin composition according to the present embodiment.
  • thermoplastic resin means a resin that can be used in the above-mentioned injection molding method by being softened by heating. Therefore, as long as the resin is softened by heating and can be used in the above-mentioned injection molding method, even a resin generally included in the concept of "thermosetting resin” is treated as "thermoplastic resin” in the present specification. It shall be.
  • thermoplastic resin contained in the above resin composition is, for example, acrylonitrile-butadiene-styrene resin (ABS resin), acrylonitrile-styrene-acrylate resin (ASA resin), acrylonitrile-ethylene-propylene-diene-styrene resin (AES resin).
  • ABS resin acrylonitrile-butadiene-styrene resin
  • ASA resin acrylonitrile-styrene-acrylate resin
  • AES resin acrylonitrile-ethylene-propylene-diene-styrene resin
  • Rubber reinforced resins such as polystyrene (PS resin), styrene-acrylonitrile copolymer (AS resin), styrene-maleic anhydride copolymer, (meth) acrylic acid ester-styrene copolymer and other styrene-based (co) Polymer; Olefin resin such as polyethylene (PE resin) and polypropylene; Cyclic polyolefin resin; Polyester resin; Polyamide resin; Polycarbonate resin; Polyarylate resin; Polyacetal resin; Polyvinyl chloride, Ethylene-vinyl chloride polymer, Poly Vinyl chloride resin such as vinylidene chloride; (meth) acrylic resin such as (co) polymer using one or more (meth) acrylic acid esters such as polymethyl methacrylate (PMMA); polyphenylene ether; polyphenylene sulfide; Fluororesin such as polytetrafluoroethylene and polyvinylidene fluoride; liquid crystal polymer
  • thermoplastic resins may be contained alone in the above-mentioned resin composition, or may be contained by mixing two or more kinds.
  • (meth) acrylic as used herein means at least one of acrylic and methacrylic.
  • (meth) acrylo shall also mean at least one of acrylo and methacrylo.
  • the thermoplastic resin is preferably one or more resins selected from the group consisting of ABS resin, AS resin, PS resin and PE resin.
  • a resin molded product having a desired shape can be molded from the resin composition with good yield, and the resin molded product can be applied to various uses.
  • the weight average molecular weight (Mw) of the thermoplastic resin is preferably 2000 to 7000000, more preferably 2000 to 1000000. Further, as the thermoplastic resin, it is preferable to use a thermoplastic resin having a glass transition temperature of 280 ° C. or lower, and more preferably to use a thermoplastic resin having a glass transition temperature of 150 ° C. or lower. Even when the thermoplastic resin has at least one of the above-mentioned weight average molecular weight and the above-mentioned glass transition temperature, a resin molded product having a desired shape can be molded from the above-mentioned resin composition with good yield. It can be applied to various uses.
  • the resin composition according to the present embodiment contains a thermoplastic resin and aluminum flake particles as described above.
  • a coupling agent is attached to at least a part of the surface of the aluminum flake particles.
  • the term "aluminum flake particles” refers to particles containing aluminum and having a flat flake shape. That is, the aluminum flake particles may be flake-shaped particles made of aluminum or flake-shaped particles made of an aluminum alloy, and may be a base of a metal (such as copper, nickel, iron, tin or an alloy thereof). It may be flaky particles obtained by depositing aluminum on a base material of a material or a non-metal (ceramic particles such as alumina and titania, glass or mica). These aluminum flake particles can be obtained by a conventionally known method.
  • the surface of the aluminum flake particles is preferably smooth from the viewpoint of exhibiting the desired surface glossiness, whiteness and brilliance in the resin composition.
  • the aluminum flake particles are preferably contained in an amount of 0.5 parts by mass or more and 230 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin in a state where the coupling agent described later is attached to the surface thereof. ..
  • the resin composition can more sufficiently suppress mold contamination.
  • the resin composition is not prepared in the form of a masterbatch as described later, in the resin composition, the aluminum flake particles are in a state where the coupling agent described later is attached to the surface thereof, and the thermoplastic resin 100 is attached. It is preferably contained in an amount of 0.5 parts by mass or more and 50 parts by mass or less with respect to parts by mass.
  • the resin composition when the resin composition is not prepared in the form of a masterbatch as described later, when the content of aluminum flake particles is less than 0.5 parts by mass, the desired surface glossiness cannot be obtained in the resin composition. Tend. Further, when the content of the aluminum flake particles exceeds 50 parts by mass, the dispersibility of the aluminum flake particles in the thermoplastic resin deteriorates, so that sufficient strength cannot be obtained in the resin molded product obtained from the above resin composition. Tend. From the viewpoint of more fully exerting the effects of the present invention, when the resin composition is not prepared in the form of a masterbatch as described later, the aluminum flake particles have the thermoplasticity in a state where the coupling agent is attached to the surface thereof. It is more preferable that the resin is contained in an amount of 0.5 parts by mass or more and 25 parts by mass or less with respect to 100 parts by mass of the resin.
  • the above resin composition may be prepared in the form of a masterbatch as described later.
  • the content of the aluminum flake particles is preferably 5 parts by mass or more and 230 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin in a state where the coupling agent described later is attached to the surface thereof.
  • the average particle size (D50) of the aluminum flake particles is preferably 2 to 150 ⁇ m, and more preferably 5 to 50 ⁇ m.
  • the aluminum flake particles preferably have an average thickness (t) of 0.01 to 10 ⁇ m, more preferably 0.08 to 1.6 ⁇ m. Further, the aluminum flake particles preferably have an average aspect ratio of 5 to 2500, and more preferably 10 to 150.
  • the "average aspect ratio” means the ratio of the average particle size (D50) of the aluminum flake particles to the average thickness (t), and specifically, the average particle size (D50) (unit) of the aluminum flake particles. Can be obtained from the formula of ⁇ m) / average thickness (t) of aluminum flake particles (unit: ⁇ m).
  • the average particle size (D50) and average thickness (t) of the aluminum flake particles were obtained by applying an injection molding method to the resin composition when the resin composition was used as a measurement object and by applying an injection molding method to the resin composition. Can be obtained by the following measurement methods, respectively.
  • the average particle size (D50) and average thickness (t) of the aluminum flake particles can be obtained by the following method when the resin composition is used as the measurement target. That is, the particle size of the aluminum flake particles is measured by observing the pellets of the resin composition using a scanning electron microscope (SEM), and the particle size of the aluminum flake particles is measured based on the particle size of the 50 or more particles. Calculate the average particle size.
  • SEM scanning electron microscope
  • a flat surface is formed by polishing the surface of the pellets, or the pellets are made into a film by using a hot press machine, and SEM is used for these.
  • the average particle size of the aluminum flake particles can be calculated.
  • the average thickness of the aluminum flake particles can also be calculated by measuring 50 or more aluminum flake particles using SEM in the same manner as the measurement of the average particle size. Even when it is difficult to observe the thickness of the aluminum flake particles by the pellet, the surface of the pellet is polished or made into a film in the same manner as the measurement of the average particle size, and the average thickness of the aluminum flake particles is measured by SEM. Can be calculated.
  • the average particle size (D50) and average thickness (t) of the aluminum flake particles are calculated by calculating the average particle size and the average thickness of the aluminum flake particles using the resin composition as the measurement target when the resin molded body is the measurement target. It can be the same as the method.
  • the surface of the resin molded product is cut to form a flat cross section, and the cross section is observed by SEM to obtain the above average particle size and average thickness. Can be done.
  • a coupling agent is attached to at least a part of the surface of the aluminum flake particles.
  • the coupling agent has an action of binding the inorganic compound and the organic compound via itself by having a reactive group that chemically bonds with the inorganic compound and a reactive group that chemically bonds with the organic compound in one molecule. Refers to a compound that has.
  • the coupling agent when the coupling agent "adheres" to the surface of the aluminum flake particles, the coupling agent is chemically bonded to the surface of the aluminum flake particles by a reactive group that chemically bonds with the above-mentioned inorganic compound of the coupling agent. Means to do.
  • the coupling agent is preferably a silane coupling agent.
  • the example silane coupling agent, R A -Si (OR B) 3 or R A -SiR B (OR B) 2 (R A,: alkyl group having 2 to 18 carbon atoms, an aryl group or an alkenyl group, R B : It is preferable to use a silane coupling agent represented by the chemical formula (alkyl group having 1 to 3 carbon atoms). Further, RA preferably has a functional group.
  • Examples of the functional group of RA include an amino group, a ureido group, an epoxy group, a sulfide group, a vinyl group, a (meth) acryloxy group, a mercapto group, a ketimino group, a glycidyl group, a phenyl group, an imidazole group and an isocyanate group. can do.
  • the coupling agent is more preferably an amino silane coupling agent.
  • silane coupling agents include ⁇ -methacryloxypropyltrimethoxysilane, vinyltricrolsilane, vinyltriethoxysilane, vinyltrimethoxysilane, vinyl-tris ( ⁇ -methoxyethoxy) silane, and vinylmethoxysilane.
  • titanate-based coupling agents include, for example, isopropylisostearoyl diacrylic titanate, isopropyltriisostearoyl titanate, isopropyltridodecylbenzenesulfonyl titanate, and tetra (2,2-diallyloxymethyl-1-butyl) bis (di-). Tridecyl) phosphite titanate and the like can be mentioned.
  • zirconia-based coupling agent examples include tetranormal propoxyzirconium, tetranormalbutoxyzirconium, zirconium tetraacetylacetone, zirconium tributoxyacetylacetone, zirconium tributoxystearate, and zirconyl acetate.
  • aluminum-based coupling agent examples include acetoalkoxyaluminum diisopropyrate, zircoaluminate, alkylacetate aluminum diisopropirate, and acetoalkoxyaluminum diisopropyrate.
  • the coupling agent is preferably contained in an amount of 0.1 part by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the aluminum flake particles.
  • the coupling agent is more preferably contained in an amount of 0.15 to 3 parts by mass, more preferably 0.2 to 2 parts by mass, based on 100 parts by mass of the aluminum flake particles.
  • the content of the coupling agent is less than 0.1 parts by mass with respect to 100 parts by mass of the aluminum flake particles, the adhesion between the aluminum flake particles and the thermoplastic resin tends to be insufficient.
  • the content of the coupling agent exceeds 10 parts by mass with respect to 100 parts by mass of the aluminum flake particles, the aluminum flake particles tend to easily aggregate.
  • the method of adhering the coupling agent to the surface of the aluminum flake particles is not particularly limited as long as the effect of the present invention is not adversely affected, and a conventionally known method can be used.
  • a conventionally known method can be used.
  • the coupling agent can be adhered to the surface of the aluminum flake particles.
  • an organic solvent can be appropriately added.
  • organic solvent for example, one selected from the group consisting of ethanol, isopropyl alcohol, toluene, xylene, MEK, methanol, hexane, butanol, acetone, ethylene glycol, methyl cellosolve and butyl cellosolve can be used alone. It is also possible to use a mixed solvent in which two or more kinds selected from the group consisting of the above-mentioned organic solvents are mixed.
  • the coupling agent and the aluminum flake particles are kneaded using a conventionally known kneader or the like, it is preferable to add deionized water as needed. This makes it easier for the coupling agent to adhere to the surface of the aluminum flake particles.
  • the amount of deionized water added can be 0.03 to 3 parts by mass with respect to 100 parts by mass of the aluminum flake particles.
  • the temperature inside the cylinder of the kneader containing the coupling agent and the aluminum flake particles is heated to 20 to 80 ° C., or the kneading is performed.
  • the temperature of the kneaded product containing the coupling agent and the aluminum flake particles obtained by using the machine can be heated to 20 to 80 ° C.
  • the aluminum flake particles have one or more organic compounds selected from the group consisting of fatty acids such as oleic acid and stearic acid, aliphatic amines, aliphatic amides, aliphatic alcohols and ester compounds attached to the surface thereof. May be good. These organic compounds can improve the surface glossiness by suppressing unnecessary oxidation of the surface of aluminum flake particles.
  • the organic compound may be added as a grinding aid when obtained by grinding aluminum flake particles from aluminum powder.
  • the content of the organic compound is preferably less than 2 parts by mass with respect to 100 parts by mass of the aluminum flake particles.
  • the coupling agent and the organic compound are mixed on the surface of the aluminum flake particles by a chemical equilibrium. Or it is presumed that it exists as a coexisting layer.
  • the resin composition according to the present embodiment may further contain the following additives depending on the purpose, as long as the effects of the present invention are not adversely affected.
  • Additives include, for example, mica, color pigments, phosphorescent pigments, color dyes, colorants such as fluorescent dyes, fillers, antioxidants, antioxidants, heat stabilizers, weather stabilizers, UV absorbers, infrared absorbers.
  • the resin composition according to this embodiment can be produced by a conventionally known method.
  • the above resin composition can be obtained by the following production method. That is, first, by kneading the coupling agent and the aluminum flake particles using a kneader or the like as described above, the aluminum flake particles to which the coupling agent adheres to the surface (hereinafter, “aluminum flake particles adhering to the coupling agent”). ”) Is prepared.
  • the coupling agent-attached aluminum flake particles and the above-mentioned thermoplastic resin are selected from the group consisting of a Banbury mixer, a single-screw vented extruder, a twin-screw vented extruder, a kneader, a roll, and a feeder ruder.
  • the resin composition can be obtained by melt-kneading using the melt-kneading machine.
  • the temperature at the time of melt-kneading may be appropriately selected based on the glass transition temperature of the resin used as the thermoplastic resin, and may be, for example, 100 to 300 ° C.
  • the resin composition obtained by the above-mentioned production method is a masterbatch in which a predetermined amount of aluminum flake particles is filled in a thermoplastic resin for the purpose of obtaining better dispersibility of aluminum flake particles in a resin molded product described later. It can be prepared as a form of.
  • the content of the aluminum flake particles in the resin composition may be 5 parts by mass or more and 230 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin in a state where the coupling agent is attached to the surface thereof. preferable.
  • the resin molded product according to the present embodiment contains the above resin composition. This makes it possible to provide resin molded products having various shapes having brilliant properties without contaminating the mold. In the resin molded body, the formation of weld lines is also suppressed.
  • the resin molded body is a resin molded body having a brilliant property, for example, a housing of an electronic device such as a notebook computer or a mobile phone, a housing of a household electric machine such as a vacuum cleaner, a fan, a telephone, a printer, or a housing of an office device. It is suitable for applications such as interior and exterior parts of automobiles, miscellaneous goods, and housing equipment.
  • the resin molded product can be applied not only to the final product but also as a part in the product. Therefore, it can be applied not only to the above-mentioned applications but also to a wide range of applications.
  • the method for producing a resin molded product according to the present embodiment includes a step of preparing the resin composition (first step) and a temperature at which the resin composition is at least 70 ° C. higher than the glass transition temperature of the thermoplastic resin. Including a step of injection-injecting into a mold in which the inner wall surface is maintained (second step) and a step of obtaining a resin molded product by cooling the resin composition in the mold (third step).
  • the first step is a step of preparing the resin composition. Specifically, in this step, the resin composition can be prepared by executing the method for producing the resin composition described above.
  • the second step is a step of injecting the resin composition into a mold having an inner wall surface maintained at a temperature at least 70 ° C. or higher higher than the glass transition temperature of the thermoplastic resin.
  • a mold for injection molding is first prepared according to a conventionally known heat and cool method, and the temperature of the inner wall surface of the mold is adjusted by using a conventionally known mold temperature adjusting means. The temperature is at least 70 ° C. higher than the glass transition temperature of the thermoplastic resin.
  • the thermoplastic resin contained in the resin composition is melted by heating in a cylinder of a conventionally known injection molding machine or the like.
  • the resin composition containing the molten thermoplastic resin is injected and injected into the mold whose inner wall surface is maintained at the above temperature.
  • the temperature of the inner wall surface of the mold is preferably a temperature 70 ° C. or higher higher than the glass transition temperature of the thermoplastic resin as described above, and is higher than the glass transition temperature of the thermoplastic resin by 80 ° C. or more. It is more preferable that the temperature is higher than, for example, 90 ° C.
  • the upper limit of the temperature of the inner wall surface of the mold may be the same as the molding temperature of the thermoplastic resin.
  • the glass transition temperature of the thermoplastic resin can be measured by using a differential thermal analysis method (DTA: Differential thermal analysis).
  • the third step is a step of obtaining a resin molded product by cooling the resin composition in the mold. Specifically, in this step, the resin composition injected and injected into the mold is cooled according to a conventionally known heat and cool method. After that, a resin molded product can be obtained by splitting the mold. Since the resin molded product is manufactured by using the heat and cool method, it is possible to prevent the formation of weld lines. Furthermore, since the adhesion between the aluminum flake particles and the thermoplastic resin is improved by the coupling agent, it is possible to prevent the aluminum flake particles from being unevenly distributed on the surface of the molten thermoplastic resin in the mold, and the metal is divided. It is possible to prevent the mold from being contaminated by aluminum flake particles. Since the resin molded product is prevented from being unevenly distributed on the surface of the molten resin of the aluminum flake particles, high smoothness can be obtained on the surface of the resin molded product.
  • Example 1 Aluminum paste prepared in the form of a paste containing aluminum flake particles having an average particle size (d50) of 21 ⁇ m and an average thickness (t) of 0.5 ⁇ m (trade name (product number): “5422NS”, manufactured by Toyo Aluminum Co., Ltd.) , Solid content (500 g) was dispersed in 2 L of mineral spirit to obtain a dispersion. Aluminum flake particles were obtained by filtering and washing this dispersion.
  • Example 2 The resin composition (masterbatch) was obtained by carrying out the same method for producing a resin composition as in Example 1 except that the amount of deionized water contained in the above treatment solution was 1 g and the amount of ⁇ -aminopropyltriethoxysilane was 1 g. ) Was manufactured.
  • Example 3 By executing the same method for producing a resin composition as in Example 1 except that the amount of deionized water contained in the above treatment solution was 25 g and the amount of ⁇ -aminopropyltriethoxysilane was 25 g, the resin composition (masterbatch) was carried out. ) Was manufactured.
  • An aluminum flake particle dispersion having a solid content of 55% by mass was prepared from the above dispersion without kneading.
  • the above aluminum flake particle dispersion (solid content 400 g) and the same ABS resin as in Example 1 are mixed to obtain a mixture, and the above mixture is used in the same extruder as in Example 1 and is the same as in Example 1.
  • a resin composition (masterbatch) formed into pellets was produced by kneading and granulating under the conditions.
  • ⁇ Comparative example 2> A resin-coated aluminum paste containing aluminum flake particles having an average particle size (d50) of 21 ⁇ m and an average thickness (t) of 0.5 ⁇ m, and the surface of the aluminum flake particles coated with an acrylic resin (trade name (product number)). : "FZ5422", manufactured by Toyo Aluminum Co., Ltd.) was prepared. Next, this resin-coated aluminum paste (solid content 400 g) is mixed with the same ABS resin as in Example 1 to obtain a mixture, and the above mixture is used in the same extruder as in Example 1 and under the same conditions as in Example 1. A resin composition (masterbatch) formed into pellets was produced by kneading and granulating with.
  • Second step 42 g of the resin composition (masterbatch) and 800 g of the ABS resin are put into a twin-screw extruder with a vent and a diameter of 20 mm (trade name: "ZSK type twin-screw extruder", manufactured by Coperion Co., Ltd.). Was melt-mixed and extruded at a temperature in the cylinder of 220 ° C. to prepare a molding resin composition having an aluminum flake particle content of 1% by mass (first step).
  • the resin composition for molding has a rectangular shape of width 120 mm ⁇ length 150 mm ⁇ thickness 5 mm and has a plurality of through holes.
  • the resin composition for molding has a rectangular shape of width 120 mm ⁇ length 150 mm ⁇ thickness 5 mm and has a plurality of through holes.
  • the temperature inside the cylinder provided in the injection molding machine was set to 240 ° C.
  • plate molding dies heated to 80 ° C, 120 ° C, 130 ° C, 140 ° C, 150 ° C, 160 ° C, 170 ° C, 180 ° C, 190 ° C and 200 ° C, respectively, are prepared and injected.
  • the above molding resin composition was injection-injected from the molding machine into each plate molding die.
  • each plate molding die is set to 30 ° C. to cool the molding resin composition in the die, and then the molding resin composition is cooled.
  • a resin molded body was manufactured by dividing each plate molding die (third step). That is, for plate molding in which the temperature of the inner wall surface is heated to 80 ° C., 120 ° C., 130 ° C., 140 ° C., 150 ° C., 160 ° C., 170 ° C., 180 ° C., 190 ° C. and 200 ° C. by executing the third step.
  • Each resin molded body (10 pieces in total) molded using a mold was manufactured.
  • the above-mentioned plate molding die has a plurality of through holes, a portion where the molten resin joins is generated in the die. Therefore, when injection molding is performed without using the heat-and-cool method and without heating the inner wall temperature of the mold to at least 70 ° C. or higher than the glass transition temperature of the ABS resin, the molten resin is formed in the mold in the resin molded body. Weld lines may be formed at the points corresponding to the merging parts.
  • a transparent adhesive tape having a length of 80 mm and a width of 24 mm (trade name: "Cellotape (registered trademark)", manufactured by Nichiban Co., Ltd.) on the surfaces of the resin molded bodies of Examples 1 to 3 and Comparative Examples 1 to 2. ), And by rubbing the tape with your fingertips, the transparent adhesive tape is brought into close contact with the surfaces of the resin molded bodies of Examples 1 to 3 and Comparative Examples 1 to 2, and then from the surface. The transparent adhesive tape was peeled off so as to be peeled off at 180 degrees.
  • the transparent adhesive tape peeled off from the surface of the resin molded product was attached to a black mount, and a digital microscope (trade name: "VHX-6000", manufactured by KEYENCE CORPORATION) was used at a magnification of 500 times.
  • the number of aluminum flake particles adhering to the transparent adhesive tape was determined.
  • the evaluation was performed in one field of view (400 ⁇ m ⁇ 600 ⁇ m) and ranked based on the following criteria. The results are shown in Table 1.
  • the number of aluminum flake particles adhering to the transparent adhesive tape shows a positive correlation with the number of aluminum flake particles that cause mold contamination due to uneven distribution on the surface of the molten resin in the mold. Is presumed.
  • the resins of Examples 1 to 3 and Comparative Examples 1 to 2 are obtained by determining the number of aluminum flake particles adhering to the transparent adhesive tape and ranking them based on the following criteria. It is possible to evaluate whether or not the composition can suppress mold contamination when injection molding using the heat and cool method is performed.
  • A It is estimated that the number of aluminum flake particles is 3 or less, and mold contamination can be suppressed more sufficiently.
  • B The number of aluminum flake particles is 4 to 10, and it is estimated that mold contamination can be suppressed.
  • C It is estimated that the number of aluminum flake particles is 11 or more, and the suppression of mold contamination is insufficient.
  • the resin compositions of Examples 1 to 3 and the resin molded product containing the same were injection-molded using a mold heated to at least 70 ° C. or higher than the glass transition temperature of the thermoplastic resin. In this case, the formation of weld lines can be prevented in the same manner as in the conventional (Comparative Examples 1 and 2) resin molded products. Further, according to Table 1, the resin compositions of Examples 1 to 3 and the resin molded product containing the same are injected using a mold heated to at least 70 ° C. or higher than the glass transition temperature of the thermoplastic resin. It is understood that when molding is performed, it is possible to suppress uneven distribution of aluminum flake particles on the surface of the molten resin as compared with Comparative Example 1 and Comparative Example 2, and thus mold contamination can be suppressed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

Provided is a resin composition that is used for manufacturing injection molded articles and that is capable of suppressing tainting of metal molds. This resin composition is used for manufacturing injection molded articles, and contains a thermoplastic resin and aluminum flake particles, wherein the aluminum flake particles have a coupling agent at least partially adhered to the surfaces thereof.

Description

樹脂組成物、それを含む樹脂成形体および樹脂成形体の製造方法A resin composition, a resin molded product containing the resin composition, and a method for producing the resin molded product.
 本発明は、樹脂組成物、それを含む樹脂成形体および樹脂成形体の製造方法に関する。 The present invention relates to a resin composition, a resin molded product containing the same, and a method for producing the resin molded product.
 射出成形体においては、金型内で溶融樹脂が合流する部分と対応する位置に、溶接線とも呼ばれるウエルドラインが形成される場合がある。このウエルドラインは、上記射出成形体において外観不良を引き起こし、かつ構造上の欠陥となる場合がある。ウエルドラインの形成を防止する手段としては、金型温度を上記射出成形体の原料となる樹脂のガラス転移温度以上に加熱することにより射出成形を実行するヒートアンドクール法が公知である。 In an injection molded product, a weld line, also called a welding line, may be formed at a position corresponding to the portion where the molten resin joins in the mold. This weld line may cause a poor appearance in the injection molded product and may cause a structural defect. As a means for preventing the formation of weld lines, a heat-and-cool method is known in which injection molding is performed by heating the mold temperature to a temperature equal to or higher than the glass transition temperature of the resin used as a raw material for the injection molded product.
 一方、上記射出成形体の製造に用いられる樹脂組成物としては、上記射出成形体に高級感を付与したり、他の射出成形体との差別化を図ったりすることなどを目的とし、アルミニウム顔料などが配合された樹脂組成物を用いることが公知である。しかしながら、上記樹脂組成物を原料とし、上記ヒートアンドクール法を用いた射出成形を実行することにより射出成形体を得た場合、ウエルドラインの形成は防止されるものの、上記アルミニウム顔料が金型内で溶融樹脂の表面に偏在することによって金型に付着し、もって金型が汚染されることが知られている。これに対し、特開2016-010957号公報(特許文献1)および特開2014-185328号公報(特許文献2)は、アルミニウム顔料を構成するアルミニウムフレーク粒子を樹脂で被覆することにより、上述した金型汚染を抑制することを提案している。 On the other hand, the resin composition used for producing the injection-molded article is an aluminum pigment for the purpose of giving the injection-molded article a high-class feel and differentiating it from other injection-molded articles. It is known to use a resin composition containing the above. However, when an injection molded product is obtained by using the resin composition as a raw material and performing injection molding using the heat and cool method, the formation of weld lines is prevented, but the aluminum pigment is contained in the mold. It is known that the uneven distribution on the surface of the molten resin causes the resin to adhere to the mold and thus contaminate the mold. On the other hand, JP-A-2016-010957 (Patent Document 1) and JP-A-2014-185328 (Patent Document 2) describe the above-mentioned gold by coating the aluminum flake particles constituting the aluminum pigment with a resin. It proposes to control mold contamination.
特開2016-010957号公報Japanese Unexamined Patent Publication No. 2016-010957 特開2014-185328号公報Japanese Unexamined Patent Publication No. 2014-185328
 ところが上記特許文献1および特許文献2に開示された技術に対し、金型汚染を抑制するための更なる改良が求められている。なぜなら上記特許文献1および特許文献2に開示された技術では、高温の金型内においてアルミニウムフレーク粒子を被覆している樹脂が溶融する可能性があり、上記樹脂が上記アルミニウムフレーク粒子の周囲で溶融している溶融樹脂と混合することにより、アルミニウムフレーク粒子が溶融樹脂の表面に偏在することを抑制することが不十分となると推定されるからである。したがって、ヒートアンドクール法を利用することによってウエルドラインの形成を防止した射出成形において、原料としてアルミニウム顔料などが配合された樹脂組成物を用いた場合に金型汚染を抑制する技術は未だ実現されておらず、その開発が切望されている。 However, the techniques disclosed in Patent Document 1 and Patent Document 2 are required to be further improved in order to suppress mold contamination. This is because, in the techniques disclosed in Patent Document 1 and Patent Document 2, the resin coating the aluminum flake particles may melt in the high temperature mold, and the resin melts around the aluminum flake particles. This is because it is presumed that it is insufficient to prevent the aluminum flake particles from being unevenly distributed on the surface of the molten resin by mixing with the molten resin. Therefore, in injection molding in which the formation of weld lines is prevented by using the heat and cool method, a technique for suppressing mold contamination when a resin composition containing an aluminum pigment or the like is used as a raw material is still realized. It has not, and its development is coveted.
 上記実情に鑑み、本発明は、金型汚染を抑制することができる樹脂組成物、それを含む樹脂成形体および樹脂成形体の製造方法を提供することを目的とする。 In view of the above circumstances, an object of the present invention is to provide a resin composition capable of suppressing mold contamination, a resin molded body containing the resin composition, and a method for producing the resin molded body.
 本発明者らは、上記課題を解決するために鋭意検討を重ね、本発明を完成させた。具体的には、詳細なメカニズムは不明ながら、この種の樹脂組成物に配合される無数の添加物の中でカップリング剤が、金型汚染を抑制することに対して有効に作用することを知見した。この知見に基づき、ヒートアンドクール法を利用した射出成形を、熱可塑性樹脂と、表面の少なくとも一部にカップリング剤を付着させたアルミニウムフレーク粒子とを含む樹脂組成物を用いて実行した場合、金型汚染を抑制できることを想到し、本発明に到達した。 The present inventors have completed the present invention through repeated diligent studies in order to solve the above problems. Specifically, although the detailed mechanism is unknown, it was found that the coupling agent acts effectively on suppressing mold contamination among the innumerable additives contained in this type of resin composition. I found out. Based on this finding, when injection molding using the heat and cool method is performed using a resin composition containing a thermoplastic resin and aluminum flake particles having a coupling agent attached to at least a part of the surface, The present invention was reached with the idea that mold contamination can be suppressed.
 すなわち本発明は、以下のとおりの特徴を有する。
 本発明に係る樹脂組成物は、射出成形体の製造に用いられる樹脂組成物であって、上記樹脂組成物は、熱可塑性樹脂と、アルミニウムフレーク粒子とを含有し、上記アルミニウムフレーク粒子は、その表面の少なくとも一部にカップリング剤が付着している。
That is, the present invention has the following features.
The resin composition according to the present invention is a resin composition used for producing an injection molded product, the resin composition contains a thermoplastic resin and aluminum flake particles, and the aluminum flake particles are the same. Coupling agent is attached to at least a part of the surface.
 上記カップリング剤は、シランカップリング剤であることが好ましい。
 上記カップリング剤は、アミノ系シランカップリング剤であることがより好ましい。
The coupling agent is preferably a silane coupling agent.
The coupling agent is more preferably an amino silane coupling agent.
 上記カップリング剤は、上記アルミニウムフレーク粒子100質量部に対し、0.1質量部以上10質量部以下含まれることが好ましい。 The coupling agent is preferably contained in an amount of 0.1 part by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the aluminum flake particles.
 上記アルミニウムフレーク粒子は、上記表面に上記カップリング剤が付着した状態で、上記熱可塑性樹脂100質量部に対し、0.5質量部以上230質量部以下含まれることが好ましい。 The aluminum flake particles are preferably contained in an amount of 0.5 parts by mass or more and 230 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin in a state where the coupling agent is attached to the surface.
 上記熱可塑性樹脂は、アクリロニトリル-ブタジエン-スチレン樹脂、スチレン-アクリロニトリル共重合体、ポリスチレンおよびポリエチレンからなる群より選ばれる1種以上の樹脂であることが好ましい。 The thermoplastic resin is preferably one or more resins selected from the group consisting of acrylonitrile-butadiene-styrene resin, styrene-acrylonitrile copolymer, polystyrene and polyethylene.
 本発明に係る樹脂成形体は、上記樹脂組成物を含む。
 本発明に係る樹脂成形体の製造方法は、上記樹脂組成物を準備する工程と、上記樹脂組成物を、上記熱可塑性樹脂のガラス転移温度よりも少なくとも70℃以上高い温度に内壁表面が維持された金型へ射出注入する工程と、上記金型内の上記樹脂組成物を冷却することにより樹脂成形体を得る工程とを含む。
The resin molded product according to the present invention contains the above resin composition.
The method for producing a resin molded product according to the present invention is a step of preparing the resin composition and maintaining the inner wall surface of the resin composition at a temperature at least 70 ° C. or higher higher than the glass transition temperature of the thermoplastic resin. It includes a step of injection-injecting into a mold and a step of obtaining a resin molded product by cooling the resin composition in the mold.
 本発明によれば、金型汚染を抑制することができる樹脂組成物、それを含む樹脂成形体および樹脂成形体の製造方法を提供することができる。 According to the present invention, it is possible to provide a resin composition capable of suppressing mold contamination, a resin molded body containing the resin composition, and a method for producing the resin molded body.
 以下、本発明に係る実施形態(以下、「本実施形態」とも記す)について、さらに詳細に説明する。本明細書において「A~B」という形式の表記は、範囲の上限下限(すなわちA以上B以下)を意味し、Aにおいて単位の記載がなく、Bにおいてのみ単位が記載されている場合、Aの単位とBの単位とは同じである。 Hereinafter, an embodiment according to the present invention (hereinafter, also referred to as “the present embodiment”) will be described in more detail. In the present specification, the notation in the form of "A to B" means the upper and lower limits of the range (that is, A or more and B or less), and when the unit is not described in A and the unit is described only in B, A The unit of and the unit of B are the same.
 〔樹脂組成物〕
 本実施形態に係る樹脂組成物は、射出成形体の製造に用いられる樹脂組成物である。上記樹脂組成物は、熱可塑性樹脂と、アルミニウムフレーク粒子とを含有する。上記アルミニウムフレーク粒子は、その表面の少なくとも一部にカップリング剤が付着している。このような特徴を有する樹脂組成物は、ヒートアンドクール法を利用した射出成形を実行した場合に、金型汚染を抑制することができる。以下、本実施形態に係る樹脂組成物の各特徴について説明する。
[Resin composition]
The resin composition according to this embodiment is a resin composition used for producing an injection molded product. The resin composition contains a thermoplastic resin and aluminum flake particles. A coupling agent is attached to at least a part of the surface of the aluminum flake particles. The resin composition having such characteristics can suppress mold contamination when injection molding using the heat and cool method is performed. Hereinafter, each feature of the resin composition according to the present embodiment will be described.
 上記樹脂組成物は、上述のように射出成形体の製造に用いられる樹脂組成物である。「射出成形体」とは、熱可塑性樹脂を含む樹脂組成物に対し、従来公知の射出成形法が適用されることによって得られる成形体をいう。具体的には、上記樹脂組成物を従来公知の射出成形機に備えられたシリンダ内で加熱流動化した後、金型に射出し、かつ金型内で冷却することにより得られる成形体をいう。さらに本明細書において「樹脂成形体」とは、本実施形態に係る樹脂組成物に対し、射出成形法が適用されることによって得られる射出成形体を意味する。 The resin composition is a resin composition used for producing an injection molded product as described above. The "injection molded product" refers to a molded product obtained by applying a conventionally known injection molding method to a resin composition containing a thermoplastic resin. Specifically, it refers to a molded product obtained by heating and fluidizing the resin composition in a cylinder provided in a conventionally known injection molding machine, injecting the resin composition into a mold, and cooling the resin composition in the mold. .. Further, in the present specification, the “resin molded product” means an injection molded product obtained by applying an injection molding method to the resin composition according to the present embodiment.
 <熱可塑性樹脂>
 本実施形態に係る樹脂組成物は、上述のように熱可塑性樹脂と、アルミニウムフレーク粒子とを含有する。本明細書において「熱可塑性樹脂」とは、加熱によって軟化することにより、上述した射出成形法に用いることができる樹脂を意味する。したがって加熱によって軟化し、上述した射出成形法に用いることができる樹脂であれば、一般に「熱硬化性樹脂」の概念に含まれる樹脂であっても、本明細書において「熱可塑性樹脂」として扱うものとする。
<Thermoplastic resin>
The resin composition according to the present embodiment contains a thermoplastic resin and aluminum flake particles as described above. As used herein, the term "thermoplastic resin" means a resin that can be used in the above-mentioned injection molding method by being softened by heating. Therefore, as long as the resin is softened by heating and can be used in the above-mentioned injection molding method, even a resin generally included in the concept of "thermosetting resin" is treated as "thermoplastic resin" in the present specification. It shall be.
 上記樹脂組成物に含有される熱可塑性樹脂は、たとえばアクリロニトリル-ブタジエン-スチレン樹脂(ABS樹脂)、アクリロニトリル-スチレン-アクリレート樹脂(ASA樹脂)、アクリロニトリル-エチレン-プロピレン-ジエン-スチレン樹脂(AES樹脂)などのゴム強化樹脂;ポリスチレン(PS樹脂)、スチレン-アクリロニトリル共重合体(AS樹脂)、スチレン-無水マレイン酸共重合体、(メタ)アクリル酸エステル-スチレン共重合体などのスチレン系(共)重合体;ポリエチレン(PE樹脂)、ポリプロピレンなどのオレフィン系樹脂;環状ポリオレフィン樹脂;ポリエステル系樹脂;ポリアミド系樹脂;ポリカーボネート樹脂;ポリアリレート樹脂;ポリアセタール樹脂;ポリ塩化ビニル、エチレン-塩化ビニル重合体、ポリ塩化ビニリデンなどの塩化ビニル系樹脂;ポリメタクリル酸メチル(PMMA)などの(メタ)アクリル酸エステルを1種以上用いた(共)重合体などの(メタ)アクリル系樹脂;ポリフェニレンエーテル;ポリフェニレンサルファイド;ポリテトラフルオロエチレン、ポリフッ化ビニリデンなどのフッ素樹脂;液晶ポリマー;ポリイミド、ポリアミドイミド、ポリエーテルイミドなどのイミド系樹脂;ポリエーテルケトン、ポリエーテルエーテルケトンなどのケトン系樹脂;ポリスルホン、ポリエーテルスルホンなどのスルホン系樹脂;ウレタン系樹脂;ポリ酢酸ビニル;ポリエチレンオキシド;ポリビニルアルコール;ポリビニルエーテル;ポリビニルブチラール;フェノキシ樹脂;感光性樹脂;生分解性プラスチックなどを挙げることができる。 The thermoplastic resin contained in the above resin composition is, for example, acrylonitrile-butadiene-styrene resin (ABS resin), acrylonitrile-styrene-acrylate resin (ASA resin), acrylonitrile-ethylene-propylene-diene-styrene resin (AES resin). Rubber reinforced resins such as polystyrene (PS resin), styrene-acrylonitrile copolymer (AS resin), styrene-maleic anhydride copolymer, (meth) acrylic acid ester-styrene copolymer and other styrene-based (co) Polymer; Olefin resin such as polyethylene (PE resin) and polypropylene; Cyclic polyolefin resin; Polyester resin; Polyamide resin; Polycarbonate resin; Polyarylate resin; Polyacetal resin; Polyvinyl chloride, Ethylene-vinyl chloride polymer, Poly Vinyl chloride resin such as vinylidene chloride; (meth) acrylic resin such as (co) polymer using one or more (meth) acrylic acid esters such as polymethyl methacrylate (PMMA); polyphenylene ether; polyphenylene sulfide; Fluororesin such as polytetrafluoroethylene and polyvinylidene fluoride; liquid crystal polymer; imide resin such as polyimide, polyamideimide and polyetherimide; ketone resin such as polyetherketone and polyetheretherketone;polysulfone, polyethersulfone and the like Polysulfonate resin; urethane resin; polyvinyl acetate; polyethylene oxide; polyvinyl alcohol; polyvinyl ether; polyvinyl butyral; phenoxy resin; photosensitive resin; biodegradable plastic and the like.
 上述した各種の熱可塑性樹脂については、上記樹脂組成物に単独で含有されてもよく、2種以上が混合されることにより含有されてもよい。ここで本明細書において「(メタ)アクリル」の用語は、アクリルおよびメタクリルの少なくともいずれか一方を意味するものとする。「(メタ)アクリロ」の用語についても、アクリロおよびメタクリロの少なくともいずれか一方を意味するものとする。 The above-mentioned various thermoplastic resins may be contained alone in the above-mentioned resin composition, or may be contained by mixing two or more kinds. Here, the term "(meth) acrylic" as used herein means at least one of acrylic and methacrylic. The term "(meth) acrylo" shall also mean at least one of acrylo and methacrylo.
 上記熱可塑性樹脂は、ABS樹脂、AS樹脂、PS樹脂およびPE樹脂からなる群より選ばれる1種以上の樹脂であることが好ましい。これにより、上記樹脂組成物から所望の形状を有する樹脂成形体を歩留まり良く成形することができ、もって上記樹脂成形体を各種の用途に適用することができる。 The thermoplastic resin is preferably one or more resins selected from the group consisting of ABS resin, AS resin, PS resin and PE resin. As a result, a resin molded product having a desired shape can be molded from the resin composition with good yield, and the resin molded product can be applied to various uses.
 上記熱可塑性樹脂の重量平均分子量(Mw)は、2000~7000000であることが好ましく、2000~1000000であることがより好ましい。さらに上記熱可塑性樹脂としては、ガラス転移温度が280℃以下である熱可塑性樹脂を用いることが好ましく、ガラス転移温度が150℃以下である熱可塑性樹脂を用いることがより好ましい。上記熱可塑性樹脂が上述した重量平均分子量およびガラス転移温度の少なくとも一方を有する場合も、上記樹脂組成物から所望の形状を有する樹脂成形体を歩留まり良く成形することができ、もって上記樹脂成形体を各種の用途に適用することができる。 The weight average molecular weight (Mw) of the thermoplastic resin is preferably 2000 to 7000000, more preferably 2000 to 1000000. Further, as the thermoplastic resin, it is preferable to use a thermoplastic resin having a glass transition temperature of 280 ° C. or lower, and more preferably to use a thermoplastic resin having a glass transition temperature of 150 ° C. or lower. Even when the thermoplastic resin has at least one of the above-mentioned weight average molecular weight and the above-mentioned glass transition temperature, a resin molded product having a desired shape can be molded from the above-mentioned resin composition with good yield. It can be applied to various uses.
<アルミニウムフレーク粒子>
 本実施形態に係る樹脂組成物は、上述のように熱可塑性樹脂と、アルミニウムフレーク粒子とを含有する。上記アルミニウムフレーク粒子は、その表面の少なくとも一部にカップリング剤が付着している。本明細書において「アルミニウムフレーク粒子」とは、アルミニウムを含有し、扁平なフレーク形状を有する粒子をいう。すなわちアルミニウムフレーク粒子は、アルミニウムからなるフレーク状の粒子であってもよく、アルミニウム合金からなるフレーク状の粒子であってもよく、金属(銅、ニッケル、鉄、錫またはこれらの合金など)の基材または非金属(アルミナ、チタニアなどのセラミックス粒子、ガラスまたはマイカなど)の基材にアルミニウムが蒸着されることにより得られるフレーク状の粒子であってもよい。これらのアルミニウムフレーク粒子は、従来公知の方法により得ることができる。アルミニウムフレーク粒子の表面は、上記樹脂組成物において所望の表面光沢性、白度および光輝性を発揮する観点から、平滑であることが好ましい。
<Aluminum flake particles>
The resin composition according to the present embodiment contains a thermoplastic resin and aluminum flake particles as described above. A coupling agent is attached to at least a part of the surface of the aluminum flake particles. As used herein, the term "aluminum flake particles" refers to particles containing aluminum and having a flat flake shape. That is, the aluminum flake particles may be flake-shaped particles made of aluminum or flake-shaped particles made of an aluminum alloy, and may be a base of a metal (such as copper, nickel, iron, tin or an alloy thereof). It may be flaky particles obtained by depositing aluminum on a base material of a material or a non-metal (ceramic particles such as alumina and titania, glass or mica). These aluminum flake particles can be obtained by a conventionally known method. The surface of the aluminum flake particles is preferably smooth from the viewpoint of exhibiting the desired surface glossiness, whiteness and brilliance in the resin composition.
 上記樹脂組成物において上記アルミニウムフレーク粒子は、その表面に後述するカップリング剤が付着した状態で、上記熱可塑性樹脂100質量部に対し、0.5質量部以上230質量部以下含まれることが好ましい。上記樹脂組成物は、熱可塑性樹脂100質量部に対してアルミニウムフレーク粒子が上述した範囲の含有量で含まれる場合、金型汚染をより十分に抑制することができる。ここで上記樹脂組成物が後述するようなマスターバッチの形態として調製されない場合、上記樹脂組成物において上記アルミニウムフレーク粒子は、その表面に後述するカップリング剤が付着した状態で、上記熱可塑性樹脂100質量部に対し、0.5質量部以上50質量部以下含まれることが好ましい。 In the resin composition, the aluminum flake particles are preferably contained in an amount of 0.5 parts by mass or more and 230 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin in a state where the coupling agent described later is attached to the surface thereof. .. When the aluminum flake particles are contained in the above-mentioned range with respect to 100 parts by mass of the thermoplastic resin, the resin composition can more sufficiently suppress mold contamination. Here, when the resin composition is not prepared in the form of a masterbatch as described later, in the resin composition, the aluminum flake particles are in a state where the coupling agent described later is attached to the surface thereof, and the thermoplastic resin 100 is attached. It is preferably contained in an amount of 0.5 parts by mass or more and 50 parts by mass or less with respect to parts by mass.
 上記樹脂組成物が後述するようなマスターバッチの形態として調製されない場合において、アルミニウムフレーク粒子の含有量が0.5質量部未満であるとき、上記樹脂組成物において所望の表面光沢性が得られない傾向がある。またアルミニウムフレーク粒子の含有量が50質量部を超えるとき、熱可塑性樹脂中のアルミニウムフレーク粒子の分散性が悪化することにより、上記樹脂組成物から得られる樹脂成形体において十分な強度が得られない傾向がある。本発明の効果をより十分に奏する観点から、上記樹脂組成物が後述するようなマスターバッチの形態として調製されない場合においてアルミニウムフレーク粒子は、その表面にカップリング剤が付着した状態で、上記熱可塑性樹脂100質量部に対し、0.5質量部以上25質量部以下含まれることがより好ましい。 When the resin composition is not prepared in the form of a masterbatch as described later, when the content of aluminum flake particles is less than 0.5 parts by mass, the desired surface glossiness cannot be obtained in the resin composition. Tend. Further, when the content of the aluminum flake particles exceeds 50 parts by mass, the dispersibility of the aluminum flake particles in the thermoplastic resin deteriorates, so that sufficient strength cannot be obtained in the resin molded product obtained from the above resin composition. Tend. From the viewpoint of more fully exerting the effects of the present invention, when the resin composition is not prepared in the form of a masterbatch as described later, the aluminum flake particles have the thermoplasticity in a state where the coupling agent is attached to the surface thereof. It is more preferable that the resin is contained in an amount of 0.5 parts by mass or more and 25 parts by mass or less with respect to 100 parts by mass of the resin.
 一方、上記樹脂組成物は、後述するようなマスターバッチの形態として調製される場合がある。この場合において上記アルミニウムフレーク粒子の含有量は、その表面に後述するカップリング剤が付着した状態で、上記熱可塑性樹脂100質量部に対し5質量部以上230質量部以下であることが好ましい。 On the other hand, the above resin composition may be prepared in the form of a masterbatch as described later. In this case, the content of the aluminum flake particles is preferably 5 parts by mass or more and 230 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin in a state where the coupling agent described later is attached to the surface thereof.
 アルミニウムフレーク粒子は、平均粒径(D50)が2~150μmであることが好ましく、5~50μmであることがより好ましい。アルミニウムフレーク粒子は、平均厚み(t)が0.01~10μmであることが好ましく、0.08~1.6μmであることがより好ましい。さらにアルミニウムフレーク粒子は、平均アスペクト比が5~2500であることが好ましく、10~150であることがより好ましい。 The average particle size (D50) of the aluminum flake particles is preferably 2 to 150 μm, and more preferably 5 to 50 μm. The aluminum flake particles preferably have an average thickness (t) of 0.01 to 10 μm, more preferably 0.08 to 1.6 μm. Further, the aluminum flake particles preferably have an average aspect ratio of 5 to 2500, and more preferably 10 to 150.
 ここで「平均アスペクト比」とは、アルミニウムフレーク粒子の平均粒径(D50)と平均厚み(t)との比を意味し、具体的には、アルミニウムフレーク粒子の平均粒径(D50)(単位はμm)/アルミニウムフレーク粒子の平均厚み(t)(単位はμm)の式から求めることができる。 Here, the "average aspect ratio" means the ratio of the average particle size (D50) of the aluminum flake particles to the average thickness (t), and specifically, the average particle size (D50) (unit) of the aluminum flake particles. Can be obtained from the formula of μm) / average thickness (t) of aluminum flake particles (unit: μm).
 アルミニウムフレーク粒子の平均粒径(D50)および平均厚み(t)は、樹脂組成物を測定対象物とする場合、および上記樹脂組成物に対して射出成形法を適用することにより得た樹脂成形体を測定対象物とする場合において、それぞれ以下の測定方法により求めることができる。 The average particle size (D50) and average thickness (t) of the aluminum flake particles were obtained by applying an injection molding method to the resin composition when the resin composition was used as a measurement object and by applying an injection molding method to the resin composition. Can be obtained by the following measurement methods, respectively.
 アルミニウムフレーク粒子の平均粒径(D50)および平均厚み(t)は、樹脂組成物を測定対象物とする場合、以下の方法により求めることができる。すなわち樹脂組成物のペレットを走査型電子顕微鏡(SEM)を用いて観察することによりアルミニウムフレーク粒子の粒径を50個以上測定し、もって上記50個以上の粒径に基づいて上記アルミニウムフレーク粒子の平均粒径を算出する。ペレットによるアルミニウムフレーク粒子の粒径の観察が困難な場合、上記ペレットの表面を研磨することによって平らな面を形成し、あるいは熱プレス機を用いて上記ペレットをフィルム状とし、これらを対象としてSEMによって上記アルミニウムフレーク粒子の平均粒径を算出することができる。アルミニウムフレーク粒子の平均厚みについても、平均粒径の測定と同じようにSEMを用いてアルミニウムフレーク粒子を50個以上測定することによって算出することができる。ペレットによるアルミニウムフレーク粒子の厚みの観察が困難な場合も、平均粒径の測定と同じように上記ペレットの表面を研磨し、あるいはフィルム状とし、これらを対象としてSEMによって上記アルミニウムフレーク粒子の平均厚みを算出することができる。 The average particle size (D50) and average thickness (t) of the aluminum flake particles can be obtained by the following method when the resin composition is used as the measurement target. That is, the particle size of the aluminum flake particles is measured by observing the pellets of the resin composition using a scanning electron microscope (SEM), and the particle size of the aluminum flake particles is measured based on the particle size of the 50 or more particles. Calculate the average particle size. When it is difficult to observe the particle size of the aluminum flake particles by the pellets, a flat surface is formed by polishing the surface of the pellets, or the pellets are made into a film by using a hot press machine, and SEM is used for these. The average particle size of the aluminum flake particles can be calculated. The average thickness of the aluminum flake particles can also be calculated by measuring 50 or more aluminum flake particles using SEM in the same manner as the measurement of the average particle size. Even when it is difficult to observe the thickness of the aluminum flake particles by the pellet, the surface of the pellet is polished or made into a film in the same manner as the measurement of the average particle size, and the average thickness of the aluminum flake particles is measured by SEM. Can be calculated.
 アルミニウムフレーク粒子の平均粒径(D50)および平均厚み(t)は、樹脂成形体を測定対象物とする場合、樹脂組成物を測定対象物としたアルミニウムフレーク粒子の平均粒径および平均厚みの算出方法と同じとすることができる。樹脂成形体のままで測定が困難な場合、樹脂成形体の表面を切削して平らな断面を形成した上で、この断面をSEMにより観察することにより上記の平均粒径および平均厚みを求めることができる。 The average particle size (D50) and average thickness (t) of the aluminum flake particles are calculated by calculating the average particle size and the average thickness of the aluminum flake particles using the resin composition as the measurement target when the resin molded body is the measurement target. It can be the same as the method. When it is difficult to measure the resin molded product as it is, the surface of the resin molded product is cut to form a flat cross section, and the cross section is observed by SEM to obtain the above average particle size and average thickness. Can be done.
 (カップリング剤)
 上記アルミニウムフレーク粒子は、その表面の少なくとも一部にカップリング剤が付着している。カップリング剤とは、無機化合物と化学結合する反応基、および有機化合物と化学結合する反応基を一分子中に有することにより、上記無機化合物と上記有機化合物とを自身を介して結合させる作用を有する化合物をいう。これによりアルミニウムフレーク粒子と熱可塑性樹脂との密着性を高めることができ、もって上記樹脂組成物が射出成形に用いられた場合、金型内でアルミニウムフレーク粒子が溶融した熱可塑性樹脂の表面に偏在することを抑制することができる。
(Coupling agent)
A coupling agent is attached to at least a part of the surface of the aluminum flake particles. The coupling agent has an action of binding the inorganic compound and the organic compound via itself by having a reactive group that chemically bonds with the inorganic compound and a reactive group that chemically bonds with the organic compound in one molecule. Refers to a compound that has. As a result, the adhesion between the aluminum flake particles and the thermoplastic resin can be enhanced, and when the above resin composition is used for injection molding, the aluminum flake particles are unevenly distributed on the surface of the molten thermoplastic resin in the mold. Can be suppressed.
 ここでアルミニウムフレーク粒子の表面にカップリング剤が「付着」するとは、カップリング剤の上述した無機化合物と化学結合する反応基により、上記アルミニウムフレーク粒子の表面に、カップリング剤が化学結合によって結合することを意味する。 Here, when the coupling agent "adheres" to the surface of the aluminum flake particles, the coupling agent is chemically bonded to the surface of the aluminum flake particles by a reactive group that chemically bonds with the above-mentioned inorganic compound of the coupling agent. Means to do.
 上記カップリング剤は、シランカップリング剤であることが好ましい。たとえばシランカップリング剤としては、R-Si(OR、またはR-SiR(OR(R:炭素数2~18のアルキル基、アリール基またはアルケニル基、R:炭素数1~3のアルキル基)の化学式で表されるシランカップリング剤を用いることが好ましい。さらに、Rは官能基を有することが好ましい。Rが有する官能基としては、アミノ基、ウレイド基、エポキシ基、スルフィド基、ビニル基、(メタ)アクリロキシ基、メルカプト基、ケチミノ基、グリシジル基、フェニル基、イミダゾール基、イソシアネート基などを例示することができる。上記カップリング剤は、アミノ系シランカップリング剤であることがより好ましい。 The coupling agent is preferably a silane coupling agent. The example silane coupling agent, R A -Si (OR B) 3 or R A -SiR B (OR B) 2 (R A,: alkyl group having 2 to 18 carbon atoms, an aryl group or an alkenyl group, R B : It is preferable to use a silane coupling agent represented by the chemical formula (alkyl group having 1 to 3 carbon atoms). Further, RA preferably has a functional group. Examples of the functional group of RA include an amino group, a ureido group, an epoxy group, a sulfide group, a vinyl group, a (meth) acryloxy group, a mercapto group, a ketimino group, a glycidyl group, a phenyl group, an imidazole group and an isocyanate group. can do. The coupling agent is more preferably an amino silane coupling agent.
 具体的なシランカップリング剤の例としては、たとえばγ-メタクリロキシプロピルトリメトキシシラン、ビニルトリクロルシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、ビニル-トリス(β-メトキシエトキシ)シラン、ビニルメトキシシラン、ビニルトリメトキシシラン、ビニルエトキシシラン、ビニルトリエトキシシラン、3-アミノプロピルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、N-(1,3-ジメチルブチリデン)-3-(トリエトキシシリル)-1-プロパンアミン、N,N’-ビス[3-(トリメトキシシリル)プロピル]エチレンジアミン、テトライソシアネートシラン、モノメチルトリイソシアネートシランなどを挙げることができる。 Specific examples of silane coupling agents include γ-methacryloxypropyltrimethoxysilane, vinyltricrolsilane, vinyltriethoxysilane, vinyltrimethoxysilane, vinyl-tris (β-methoxyethoxy) silane, and vinylmethoxysilane. , Vinyltrimethoxysilane, vinylethoxysilane, vinyltriethoxysilane, 3-aminopropyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxy Silane, 3-mercaptopropyltrimethoxysilane, N- (1,3-dimethylbutylidene) -3- (triethoxysilyl) -1-propaneamine, N, N'-bis [3- (trimethoxysilyl) propyl ] Ethylenediamine, tetraisocyanasilane, monomethyltriisocyanatesilane and the like can be mentioned.
 さらに上記カップリング剤としては、チタン(チタネート)系カップリング剤、ジルコニア系カップリング剤、アルミニウム系カップリング剤などを用いることも可能である。具体的なチタネート系カップリング剤としては、たとえばイソプロピルイソステアロイルジアクリルチタネート、イソプロピルトリイソステアロイルチタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、テトラ(2,2-ジアリルオキシメチル-1-ブチル)ビス(ジ-トリデシル)ホスファイトチタネートなどを挙げることができる。具体的なジルコニア系カップリング剤としては、たとえばテトラノルマルプロポキシジルコニウム、テトラノルマルブトキシジルコニウム、ジルコニウムテトラアセチルアセトネート、ジルコニウムトリブトキシアセチルアセトネート、ジルコニウムトリブトキシステアレート、酢酸ジルコニルなどを挙げることができる。具体的なアルミニウム系カップリング剤としては、たとえばアセトアルコキシアルミニウムジイソプロピレート、ジルコアルミネート、アルキルアセトアセテートアルミニウムジイソプロピレート、アセトアルコキシアルミニウムジイソプロピレートなどを挙げることができる。 Further, as the above-mentioned coupling agent, a titanium (titanate) -based coupling agent, a zirconia-based coupling agent, an aluminum-based coupling agent, or the like can also be used. Specific titanate-based coupling agents include, for example, isopropylisostearoyl diacrylic titanate, isopropyltriisostearoyl titanate, isopropyltridodecylbenzenesulfonyl titanate, and tetra (2,2-diallyloxymethyl-1-butyl) bis (di-). Tridecyl) phosphite titanate and the like can be mentioned. Specific examples of the zirconia-based coupling agent include tetranormal propoxyzirconium, tetranormalbutoxyzirconium, zirconium tetraacetylacetone, zirconium tributoxyacetylacetone, zirconium tributoxystearate, and zirconyl acetate. Specific examples of the aluminum-based coupling agent include acetoalkoxyaluminum diisopropyrate, zircoaluminate, alkylacetate aluminum diisopropirate, and acetoalkoxyaluminum diisopropyrate.
 上記カップリング剤は、上記アルミニウムフレーク粒子100質量部に対し、0.1質量部以上10質量部以下含まれることが好ましい。上記カップリング剤は、上記アルミニウムフレーク粒子100質量部に対し、0.15~3質量部含まれることがより好ましく、0.2~2質量部含まれることがさらに好ましい。上記カップリング剤の含有量が上記範囲であることにより、アルミニウムフレーク粒子と熱可塑性樹脂との密着性をより向上させることができる。 The coupling agent is preferably contained in an amount of 0.1 part by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the aluminum flake particles. The coupling agent is more preferably contained in an amount of 0.15 to 3 parts by mass, more preferably 0.2 to 2 parts by mass, based on 100 parts by mass of the aluminum flake particles. When the content of the coupling agent is in the above range, the adhesion between the aluminum flake particles and the thermoplastic resin can be further improved.
 上記カップリング剤の含有量は、上記アルミニウムフレーク粒子100質量部に対して0.1質量部未満である場合、アルミニウムフレーク粒子と熱可塑性樹脂との密着性が不足する傾向がある。上記カップリング剤の含有量は、上記アルミニウムフレーク粒子100質量部に対して10質量部を超える場合、アルミニウムフレーク粒子が凝集しやすくなる傾向がある。 When the content of the coupling agent is less than 0.1 parts by mass with respect to 100 parts by mass of the aluminum flake particles, the adhesion between the aluminum flake particles and the thermoplastic resin tends to be insufficient. When the content of the coupling agent exceeds 10 parts by mass with respect to 100 parts by mass of the aluminum flake particles, the aluminum flake particles tend to easily aggregate.
 アルミニウムフレーク粒子の表面に上記カップリング剤を付着させる方法は、本発明の効果に悪影響を与えない限り、特に限定されることなく従来公知の方法を用いることができる。たとえば、カップリング剤とアルミニウムフレーク粒子とを従来公知の混練機、ミキサーまたは攪拌機を用いて混練することにより、アルミニウムフレーク粒子の表面に上記カップリング剤を付着させることができる。この場合において、有機溶剤を適宜添加することもできる。上記有機溶剤としては、たとえばエタノール、イソプロピルアルコール、トルエン、キシレン、MEK、メタノール、ヘキサン、ブタノール、アセトン、エチレングリコール、メチルセロソルブおよびブチルセロソルブからなる群より選択される1種を単独で用いることができる。上述した有機溶剤からなる群より選択される2種以上を混合した混合溶剤を用いることも可能である。 The method of adhering the coupling agent to the surface of the aluminum flake particles is not particularly limited as long as the effect of the present invention is not adversely affected, and a conventionally known method can be used. For example, by kneading the coupling agent and the aluminum flake particles using a conventionally known kneader, mixer or stirrer, the coupling agent can be adhered to the surface of the aluminum flake particles. In this case, an organic solvent can be appropriately added. As the organic solvent, for example, one selected from the group consisting of ethanol, isopropyl alcohol, toluene, xylene, MEK, methanol, hexane, butanol, acetone, ethylene glycol, methyl cellosolve and butyl cellosolve can be used alone. It is also possible to use a mixed solvent in which two or more kinds selected from the group consisting of the above-mentioned organic solvents are mixed.
 さらにカップリング剤とアルミニウムフレーク粒子とを従来公知の混練機などを用いて混練する場合、必要に応じて脱イオン水を添加することが好ましい。これによりアルミニウムフレーク粒子の表面にカップリング剤を付着させ易くすることができる。脱イオン水の添加量は、アルミニウムフレーク粒子100質量部に対し、0.03~3質量部とすることができる。アルミニウムフレーク表面へのカップリング剤の付着反応を促進させる目的で、カップリング剤とアルミニウムフレーク粒子とが収容された上記混練機のシリンダ内の温度を20~80℃に加温したり、上記混練機を用いることにより得られたカップリング剤とアルミニウムフレーク粒子とを含む混練物の温度を20~80℃に加温したりすることができる。 Further, when the coupling agent and the aluminum flake particles are kneaded using a conventionally known kneader or the like, it is preferable to add deionized water as needed. This makes it easier for the coupling agent to adhere to the surface of the aluminum flake particles. The amount of deionized water added can be 0.03 to 3 parts by mass with respect to 100 parts by mass of the aluminum flake particles. For the purpose of promoting the adhesion reaction of the coupling agent to the surface of the aluminum flakes, the temperature inside the cylinder of the kneader containing the coupling agent and the aluminum flake particles is heated to 20 to 80 ° C., or the kneading is performed. The temperature of the kneaded product containing the coupling agent and the aluminum flake particles obtained by using the machine can be heated to 20 to 80 ° C.
 (脂肪酸などの有機化合物)
 上記アルミニウムフレーク粒子は、その表面にオレイン酸、ステアリン酸などの脂肪酸、脂肪族アミン、脂肪族アミド、脂肪族アルコールおよびエステル化合物からなる群より選択される1種以上の有機化合物が付着していてもよい。これらの有機化合物は、アルミニウムフレーク粒子表面の不必要な酸化を抑制することより、表面光沢性を改善することができる。上記有機化合物は、アルミニウムフレーク粒子をアルミニウム粉末から磨砕することにより得る場合に磨砕助剤として添加される場合がある。上記有機化合物の含有量は、アルミニウムフレーク粒子100質量部に対し2質量部未満であることが好ましい。
(Organic compounds such as fatty acids)
The aluminum flake particles have one or more organic compounds selected from the group consisting of fatty acids such as oleic acid and stearic acid, aliphatic amines, aliphatic amides, aliphatic alcohols and ester compounds attached to the surface thereof. May be good. These organic compounds can improve the surface glossiness by suppressing unnecessary oxidation of the surface of aluminum flake particles. The organic compound may be added as a grinding aid when obtained by grinding aluminum flake particles from aluminum powder. The content of the organic compound is preferably less than 2 parts by mass with respect to 100 parts by mass of the aluminum flake particles.
 上記アルミニウムフレーク粒子の表面に上記脂肪酸などの有機化合物が付着している場合、上記アルミニウムフレーク粒子の表面においてカップリング剤と上記有機化合物とは、化学平衡によって上記有機化合物とカップリング剤とが混合または共存した層として存すると推定される。 When an organic compound such as a fatty acid is attached to the surface of the aluminum flake particles, the coupling agent and the organic compound are mixed on the surface of the aluminum flake particles by a chemical equilibrium. Or it is presumed that it exists as a coexisting layer.
 (その他の添加剤)
 本実施形態に係る樹脂組成物は、本発明の効果に悪影響を与えない限り、目的に応じて次のような添加剤をさらに含有することができる。添加剤としては、たとえば、マイカ、着色顔料、蓄光顔料、着色染料、蛍光染料などの着色剤、充填剤、酸化防止剤、老化防止剤、熱安定剤、耐候安定剤、紫外線吸収剤、赤外線吸収剤、フォトクロミック剤、防汚剤、帯電防止剤、可塑剤、滑剤、難燃剤、蛍光増白剤、光拡散剤、結晶核剤、流動改質剤、衝撃改質剤、顔料分散剤などを挙げることができる。
(Other additives)
The resin composition according to the present embodiment may further contain the following additives depending on the purpose, as long as the effects of the present invention are not adversely affected. Additives include, for example, mica, color pigments, phosphorescent pigments, color dyes, colorants such as fluorescent dyes, fillers, antioxidants, antioxidants, heat stabilizers, weather stabilizers, UV absorbers, infrared absorbers. Agents, photochromic agents, antifouling agents, antistatic agents, plasticizers, lubricants, flame retardants, optical brighteners, light diffusers, crystal nucleating agents, flow modifiers, impact modifiers, pigment dispersants, etc. be able to.
 〔樹脂組成物の製造方法〕
 本実施形態に係る樹脂組成物は、従来公知の方法により製造することができる。たとえば次の製造方法により上記樹脂組成物を得ることができる。すなわち、まず上述したように混練機などを用いてカップリング剤とアルミニウムフレーク粒子とを混練することにより、上記カップリング剤が表面に付着したアルミニウムフレーク粒子(以下、「カップリング剤付着アルミニウムフレーク粒子」とも記す)を準備する。次いで、上記カップリング剤付着アルミニウムフレーク粒子と上述した熱可塑性樹脂とを、バンバリーミキサー、一軸のベント付押出機、二軸のベント付押出機、ニーダー、ロールおよびフィーダールーダーからなる群より選ばれるいずれかの溶融混練機を用いて溶融混練することにより、上記樹脂組成物を得ることができる。溶融混練時の温度は、熱可塑性樹脂として用いた樹脂のガラス転移温度に基づいて適宜選択すればよく、たとえば100~300℃とすることができる。
[Manufacturing method of resin composition]
The resin composition according to this embodiment can be produced by a conventionally known method. For example, the above resin composition can be obtained by the following production method. That is, first, by kneading the coupling agent and the aluminum flake particles using a kneader or the like as described above, the aluminum flake particles to which the coupling agent adheres to the surface (hereinafter, “aluminum flake particles adhering to the coupling agent”). ”) Is prepared. Next, the coupling agent-attached aluminum flake particles and the above-mentioned thermoplastic resin are selected from the group consisting of a Banbury mixer, a single-screw vented extruder, a twin-screw vented extruder, a kneader, a roll, and a feeder ruder. The resin composition can be obtained by melt-kneading using the melt-kneading machine. The temperature at the time of melt-kneading may be appropriately selected based on the glass transition temperature of the resin used as the thermoplastic resin, and may be, for example, 100 to 300 ° C.
 ここで上述の製造方法により得られる樹脂組成物は、後述する樹脂成形体においてアルミニウムフレーク粒子のより良い分散性を得ることを目的として、所定量のアルミニウムフレーク粒子を熱可塑性樹脂に充填したマスターバッチの形態として調製することが可能である。この場合において樹脂組成物中の上記アルミニウムフレーク粒子の含有量は、その表面にカップリング剤が付着した状態で、上記熱可塑性樹脂100質量部に対し5質量部以上230質量部以下であることが好ましい。 Here, the resin composition obtained by the above-mentioned production method is a masterbatch in which a predetermined amount of aluminum flake particles is filled in a thermoplastic resin for the purpose of obtaining better dispersibility of aluminum flake particles in a resin molded product described later. It can be prepared as a form of. In this case, the content of the aluminum flake particles in the resin composition may be 5 parts by mass or more and 230 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin in a state where the coupling agent is attached to the surface thereof. preferable.
 〔樹脂成形体〕
 本実施形態に係る樹脂成形体は、上記樹脂組成物を含む。これにより金型を汚染することなく、光輝性を有する各種の形状の樹脂成形体を提供することが可能となる。上記樹脂成形体は、ウエルドラインの形成も抑制される。上記樹脂成形体は、光輝性を有する樹脂成形体として、たとえばノートパソコン、携帯電話などの電子機器の筐体、掃除機、扇風機、電話機、プリンターなどの家庭用電気機械器具、事務機器の筐体、自動車の内外装部品、雑貨、住宅用設備などの用途に好適である。上記樹脂成形体は、最終製品に限らず、製品中の部品としても適用することができる。このため上述した用途に限られず、広範な用途に適用することができる。
[Resin molded product]
The resin molded product according to the present embodiment contains the above resin composition. This makes it possible to provide resin molded products having various shapes having brilliant properties without contaminating the mold. In the resin molded body, the formation of weld lines is also suppressed. The resin molded body is a resin molded body having a brilliant property, for example, a housing of an electronic device such as a notebook computer or a mobile phone, a housing of a household electric machine such as a vacuum cleaner, a fan, a telephone, a printer, or a housing of an office device. It is suitable for applications such as interior and exterior parts of automobiles, miscellaneous goods, and housing equipment. The resin molded product can be applied not only to the final product but also as a part in the product. Therefore, it can be applied not only to the above-mentioned applications but also to a wide range of applications.
 〔樹脂成形体の製造方法〕
 本実施形態に係る樹脂成形体の製造方法は、上記樹脂組成物を準備する工程(第1工程)と、上記樹脂組成物を、上記熱可塑性樹脂のガラス転移温度よりも少なくとも70℃以上高い温度に内壁表面が維持された金型へ射出注入する工程(第2工程)と、上記金型内の上記樹脂組成物を冷却することにより樹脂成形体を得る工程(第3工程)とを含む。このような特徴を有する樹脂成形体の製造方法により、金型を汚染することなく、光輝性を有し、かつウエルドラインの形成も抑制された各種の形状の樹脂成形体を得ることが可能となる。以下、第1工程~第3工程の各工程について説明する。
[Manufacturing method of resin molded product]
The method for producing a resin molded product according to the present embodiment includes a step of preparing the resin composition (first step) and a temperature at which the resin composition is at least 70 ° C. higher than the glass transition temperature of the thermoplastic resin. Including a step of injection-injecting into a mold in which the inner wall surface is maintained (second step) and a step of obtaining a resin molded product by cooling the resin composition in the mold (third step). By the method for producing a resin molded product having such characteristics, it is possible to obtain resin molded products having various shapes that have brilliance and suppress the formation of weld lines without contaminating the mold. Become. Hereinafter, each step of the first step to the third step will be described.
 <第1工程>
 第1工程は、樹脂組成物を準備する工程である。本工程では、具体的には上述した樹脂組成物の製造方法を実行することにより、上記樹脂組成物を準備することができる。
<First step>
The first step is a step of preparing the resin composition. Specifically, in this step, the resin composition can be prepared by executing the method for producing the resin composition described above.
 <第2工程>
 第2工程は、上記樹脂組成物を、上記熱可塑性樹脂のガラス転移温度よりも少なくとも70℃以上高い温度に内壁表面が維持された金型へ射出注入する工程である。本工程では、具体的には、従来公知のヒートアンドクール法に従って、まず射出成形用の金型を準備し、当該金型における内壁表面の温度を、従来公知の金型温度調節手段を用いて熱可塑性樹脂のガラス転移温度よりも少なくとも70℃以上高い温度に加熱する。次いで、上記樹脂組成物に含まれる熱可塑性樹脂を、従来公知の射出成形機のシリンダ内などで加熱することにより溶融する。最後に上記の温度に内壁表面が維持された金型へ、溶融した熱可塑性樹脂を含む樹脂組成物を射出注入する。
<Second step>
The second step is a step of injecting the resin composition into a mold having an inner wall surface maintained at a temperature at least 70 ° C. or higher higher than the glass transition temperature of the thermoplastic resin. Specifically, in this step, a mold for injection molding is first prepared according to a conventionally known heat and cool method, and the temperature of the inner wall surface of the mold is adjusted by using a conventionally known mold temperature adjusting means. The temperature is at least 70 ° C. higher than the glass transition temperature of the thermoplastic resin. Next, the thermoplastic resin contained in the resin composition is melted by heating in a cylinder of a conventionally known injection molding machine or the like. Finally, the resin composition containing the molten thermoplastic resin is injected and injected into the mold whose inner wall surface is maintained at the above temperature.
 これにより、本製造方法により得られる樹脂成形体においてウエルドラインの形成を防止することができる。さらにアルミニウムフレーク粒子と熱可塑性樹脂との密着性がカップリング剤により向上しているため、金型内でアルミニウムフレーク粒子が溶融した熱可塑性樹脂の表面に偏在することも抑制される。 This makes it possible to prevent the formation of weld lines in the resin molded product obtained by this production method. Further, since the adhesion between the aluminum flake particles and the thermoplastic resin is improved by the coupling agent, it is possible to prevent the aluminum flake particles from being unevenly distributed on the surface of the molten thermoplastic resin in the mold.
 ここで上記金型の内壁表面の温度は、熱可塑性樹脂のガラス転移温度よりも上述のように70℃以上高い温度であることが好ましく、熱可塑性樹脂のガラス転移温度よりも80℃を超える高い温度、たとえば90℃以上高い温度であることがさらに好ましい。上記金型の内壁表面の温度の上限については、熱可塑性樹脂の成形温度と同等とすればよい。熱可塑性樹脂のガラス転移温度については、示差熱分析法(DTA:Differential thermal analysis)を用いることにより測定することができる。 Here, the temperature of the inner wall surface of the mold is preferably a temperature 70 ° C. or higher higher than the glass transition temperature of the thermoplastic resin as described above, and is higher than the glass transition temperature of the thermoplastic resin by 80 ° C. or more. It is more preferable that the temperature is higher than, for example, 90 ° C. The upper limit of the temperature of the inner wall surface of the mold may be the same as the molding temperature of the thermoplastic resin. The glass transition temperature of the thermoplastic resin can be measured by using a differential thermal analysis method (DTA: Differential thermal analysis).
 <第3工程>
 第3工程は、上記金型内の上記樹脂組成物を冷却することにより樹脂成形体を得る工程である。本工程では、具体的には、従来公知のヒートアンドクール法に従って、金型内に射出注入された樹脂組成物を冷却する。その後、金型を型割りすることにより樹脂成形体を得ることができる。上記樹脂成形体は、ヒートアンドクール法を利用して製造されているため、ウエルドラインの形成を防止することができる。さらにアルミニウムフレーク粒子と熱可塑性樹脂との密着性がカップリング剤により向上しているため、金型内でアルミニウムフレーク粒子が溶融した熱可塑性樹脂の表面に偏在することが抑制され、もって分割した金型が、アルミニウムフレーク粒子によって汚染されることを抑制することができる。上記樹脂成形体は、アルミニウムフレーク粒子の溶融樹脂の表面に偏在することが抑制されるため、上記樹脂成形体の表面において高い平滑性を得ることもできる。
<Third step>
The third step is a step of obtaining a resin molded product by cooling the resin composition in the mold. Specifically, in this step, the resin composition injected and injected into the mold is cooled according to a conventionally known heat and cool method. After that, a resin molded product can be obtained by splitting the mold. Since the resin molded product is manufactured by using the heat and cool method, it is possible to prevent the formation of weld lines. Furthermore, since the adhesion between the aluminum flake particles and the thermoplastic resin is improved by the coupling agent, it is possible to prevent the aluminum flake particles from being unevenly distributed on the surface of the molten thermoplastic resin in the mold, and the metal is divided. It is possible to prevent the mold from being contaminated by aluminum flake particles. Since the resin molded product is prevented from being unevenly distributed on the surface of the molten resin of the aluminum flake particles, high smoothness can be obtained on the surface of the resin molded product.
 以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
 〔樹脂組成物(マスターバッチ)の製造〕
 実施例1~実施例3および比較例1~比較例2の樹脂組成物を、次の方法を用いることにより製造した。
[Manufacturing of resin composition (master batch)]
The resin compositions of Examples 1 to 3 and Comparative Examples 1 to 2 were produced by using the following methods.
 <実施例1>
 平均粒径(d50)が21μm、平均厚み(t)が0.5μmであるアルミニウムフレーク粒子を含み、ペースト状に調製されたアルミニウムペースト(商品名(品番):「5422NS」、東洋アルミニウム株式会社製、固形分500g)をミネラルスピリット2Lに分散して分散液を得た。この分散液をろ過洗浄することによってアルミニウムフレーク粒子を得た。次いで、上記アルミニウムフレーク粒子と、3gの脱イオン水および3gのγ‐アミノプロピルトリエトキシシラン(商品名(品番):「KBE-903」、信越化学工業株式会社製)を60gのイソプロピルアルコールに溶かした処理溶液とを、市販のニーダーミキサーに投入した。さらに、これらを上記ニーダーミキサーにおいて1時間混練することにより、固形分が55質量%であるカップリング剤付着アルミニウムフレーク粒子分散体を得た。
<Example 1>
Aluminum paste prepared in the form of a paste containing aluminum flake particles having an average particle size (d50) of 21 μm and an average thickness (t) of 0.5 μm (trade name (product number): “5422NS”, manufactured by Toyo Aluminum Co., Ltd.) , Solid content (500 g) was dispersed in 2 L of mineral spirit to obtain a dispersion. Aluminum flake particles were obtained by filtering and washing this dispersion. Next, the above aluminum flake particles, 3 g of deionized water and 3 g of γ-aminopropyltriethoxysilane (trade name (product number): "KBE-903", manufactured by Shin-Etsu Chemical Co., Ltd.) were dissolved in 60 g of isopropyl alcohol. The treated solution was put into a commercially available kneader mixer. Further, these were kneaded in the above kneader mixer for 1 hour to obtain a coupling agent-attached aluminum flake particle dispersion having a solid content of 55% by mass.
 上記カップリング剤付着アルミニウムフレーク粒子分散体730g(固形分400g)と、1600gのアクリロニトリル-ブタジエン-スチレン樹脂(ABS樹脂、商品名(品番):「GA‐501」、日本エイアンドエル株式会社製、ガラス転移温度:90℃)とを混合機を用いて混合することにより混合物を得た。この混合物を押出機(商品名:「ZSK型2軸押出機」、コペリオン株式会社製)を用い、シリンダ内の温度を190℃~220℃として混練造粒し、ペレット状に成形された樹脂組成物(マスターバッチ)を製造した。この樹脂組成物は、アルミニウムフレーク粒子の含有量が、表面にカップリング剤が付着した状態において熱可塑性樹脂100質量部に対して25質量部であった。 730 g (solid content 400 g) of the above-mentioned coupling agent-attached aluminum flake particle dispersion and 1600 g of acrylonitrile-butadiene-styrene resin (ABS resin, trade name (product number): "GA-501", manufactured by Nippon A & L Inc., glass transition Temperature: 90 ° C.) was mixed using a mixer to obtain a mixture. A resin composition formed into pellets by kneading and granulating this mixture using an extruder (trade name: "ZSK type twin-screw extruder", manufactured by Coperion Co., Ltd.) at a temperature inside the cylinder of 190 ° C. to 220 ° C. Manufactured a product (masterbatch). The content of the aluminum flake particles in this resin composition was 25 parts by mass with respect to 100 parts by mass of the thermoplastic resin in a state where the coupling agent was attached to the surface.
 <実施例2>
 上記処理溶液に含まれる脱イオン水を1gとし、かつγ‐アミノプロピルトリエトキシシランを1gとしたこと以外、実施例1と同じ樹脂組成物の製造方法を実行することにより樹脂組成物(マスターバッチ)を製造した。
<Example 2>
The resin composition (masterbatch) was obtained by carrying out the same method for producing a resin composition as in Example 1 except that the amount of deionized water contained in the above treatment solution was 1 g and the amount of γ-aminopropyltriethoxysilane was 1 g. ) Was manufactured.
 <実施例3>
 上記処理溶液に含まれる脱イオン水を25gとし、かつγ‐アミノプロピルトリエトキシシランを25gとしたこと以外、実施例1と同じ樹脂組成物の製造方法を実行することにより樹脂組成物(マスターバッチ)を製造した。
<Example 3>
By executing the same method for producing a resin composition as in Example 1 except that the amount of deionized water contained in the above treatment solution was 25 g and the amount of γ-aminopropyltriethoxysilane was 25 g, the resin composition (masterbatch) was carried out. ) Was manufactured.
 <比較例1>
 上記アルミニウムペースト(商品名(品番):「5422NS」、東洋アルミニウム株式会社製、固形分500g)をミネラルスピリットに分散した分散液に含まれるアルミニウムフレーク粒子に対し、上述したカップリング剤を含む処理溶液を用いて混練することなく、上記分散液から固形分が55質量%であるアルミニウムフレーク粒子分散体を調製した。次いで上記アルミニウムフレーク粒子分散体(固形分400g)と、実施例1と同じABS樹脂とを混合することにより混合物を得、かつ上記混合物を実施例1と同じ押出機を用い、実施例1と同じ条件で混練造粒することにより、ペレット状に成形された樹脂組成物(マスターバッチ)を製造した。
<Comparative example 1>
A treatment solution containing the above-mentioned coupling agent for the aluminum flake particles contained in the dispersion liquid in which the above-mentioned aluminum paste (trade name (product number): "5422NS", manufactured by Toyo Aluminum K.K., solid content 500 g) is dispersed in the mineral spirit. An aluminum flake particle dispersion having a solid content of 55% by mass was prepared from the above dispersion without kneading. Next, the above aluminum flake particle dispersion (solid content 400 g) and the same ABS resin as in Example 1 are mixed to obtain a mixture, and the above mixture is used in the same extruder as in Example 1 and is the same as in Example 1. A resin composition (masterbatch) formed into pellets was produced by kneading and granulating under the conditions.
 <比較例2>
 平均粒径(d50)が21μm、平均厚み(t)が0.5μmであるアルミニウムフレーク粒子を含み、上記アルミニウムフレーク粒子の表面がアクリル系樹脂で被覆された樹脂コートアルミニウムペースト(商品名(品番):「FZ5422」、東洋アルミニウム株式会社製)を準備した。次いでこの樹脂コートアルミニウムペースト(固形分400g)と、実施例1と同じABS樹脂とを混合することにより混合物を得、かつ上記混合物を実施例1と同じ押出機を用い、実施例1と同じ条件で混練造粒することにより、ペレット状に成形された樹脂組成物(マスターバッチ)を製造した。
<Comparative example 2>
A resin-coated aluminum paste containing aluminum flake particles having an average particle size (d50) of 21 μm and an average thickness (t) of 0.5 μm, and the surface of the aluminum flake particles coated with an acrylic resin (trade name (product number)). : "FZ5422", manufactured by Toyo Aluminum Co., Ltd.) was prepared. Next, this resin-coated aluminum paste (solid content 400 g) is mixed with the same ABS resin as in Example 1 to obtain a mixture, and the above mixture is used in the same extruder as in Example 1 and under the same conditions as in Example 1. A resin composition (masterbatch) formed into pellets was produced by kneading and granulating with.
 〔樹脂成形体の製造〕
 次に、以下の各工程を実施することにより、実施例1~実施例3および比較例1~比較例2の樹脂組成物から、これに対応する実施例1~実施例3および比較例1~比較例2の樹脂成形体をそれぞれ製造した。
[Manufacturing of resin molded products]
Next, by carrying out each of the following steps, from the resin compositions of Examples 1 to 3 and Comparative Examples 1 to 2, the corresponding Examples 1 to 3 and Comparative Examples 1 to 1 to The resin molded products of Comparative Example 2 were produced respectively.
 まず上記樹脂組成物(マスターバッチ)42gと、上記ABS樹脂800gとをベント付き直径20mmの2軸押出機(商品名:「ZSK型2軸押出機」、コペリオン株式会社製)に投入し、これらをシリンダ内の温度を220℃として溶融混合し押出すことにより、アルミニウムフレーク粒子の含有量が1質量%である成形用樹脂組成物を準備した(第1工程)。次いで、上記成形用樹脂組成物を射出成形機(商品名:「FNX220III」、日精樹脂工業株式会社製)を用い、幅120mm×長さ150mm×厚さ5mmの矩形形状であって複数の貫通孔を有するプレート成形用金型に射出注入した(第2工程)。 First, 42 g of the resin composition (masterbatch) and 800 g of the ABS resin are put into a twin-screw extruder with a vent and a diameter of 20 mm (trade name: "ZSK type twin-screw extruder", manufactured by Coperion Co., Ltd.). Was melt-mixed and extruded at a temperature in the cylinder of 220 ° C. to prepare a molding resin composition having an aluminum flake particle content of 1% by mass (first step). Next, using an injection molding machine (trade name: "FNX220III", manufactured by Nissei Resin Industry Co., Ltd.), the resin composition for molding has a rectangular shape of width 120 mm × length 150 mm × thickness 5 mm and has a plurality of through holes. Was injected into a plate molding die having the above (second step).
 上記第2工程においては、上記射出成形機に備わるシリンダ内の温度を240℃に設定した。一方、内壁表面の温度を80℃、120℃、130℃、140℃、150℃、160℃、170℃、180℃、190℃および200℃に加熱したプレート成形用金型をそれぞれ準備し、射出成形機から各プレート成形用金型へ、上記成形用樹脂組成物を射出注入した。 In the second step, the temperature inside the cylinder provided in the injection molding machine was set to 240 ° C. On the other hand, plate molding dies heated to 80 ° C, 120 ° C, 130 ° C, 140 ° C, 150 ° C, 160 ° C, 170 ° C, 180 ° C, 190 ° C and 200 ° C, respectively, are prepared and injected. The above molding resin composition was injection-injected from the molding machine into each plate molding die.
 さらに市販の低温オイル温調機および水冷温調機を用い、各プレート成形用金型の内壁表面の温度を30℃とすることにより上記金型内の上記成形用樹脂組成物を冷却し、次いで各プレート成形用金型ごとに型割りすることによって樹脂成形体を製造した(第3工程)。すなわち第3工程を実行することにより、内壁表面の温度を80℃、120℃、130℃、140℃、150℃、160℃、170℃、180℃、190℃および200℃に加熱したプレート成形用金型を用いて成形されたそれぞれの樹脂成形体(合計10個)を製造した。 Further, using a commercially available low-temperature oil temperature controller and water-cooled temperature controller, the temperature of the inner wall surface of each plate molding die is set to 30 ° C. to cool the molding resin composition in the die, and then the molding resin composition is cooled. A resin molded body was manufactured by dividing each plate molding die (third step). That is, for plate molding in which the temperature of the inner wall surface is heated to 80 ° C., 120 ° C., 130 ° C., 140 ° C., 150 ° C., 160 ° C., 170 ° C., 180 ° C., 190 ° C. and 200 ° C. by executing the third step. Each resin molded body (10 pieces in total) molded using a mold was manufactured.
 ここで上記プレート成形用金型は、複数の貫通孔を有することから金型内で溶融樹脂が合流する部分が発生する。このためヒートアンドクール法を利用せず、金型の内壁温度をABS樹脂のガラス転移温度よりも少なくとも70℃以上に加熱することなく射出成形した場合、樹脂成形体における金型内で溶融樹脂が合流する部分に対応する箇所にウエルドラインが形成される場合がある。 Here, since the above-mentioned plate molding die has a plurality of through holes, a portion where the molten resin joins is generated in the die. Therefore, when injection molding is performed without using the heat-and-cool method and without heating the inner wall temperature of the mold to at least 70 ° C. or higher than the glass transition temperature of the ABS resin, the molten resin is formed in the mold in the resin molded body. Weld lines may be formed at the points corresponding to the merging parts.
 〔樹脂成形体の評価〕
 <目視によるウエルドライン形成の確認>
 実施例1~実施例3および比較例1~比較例2の各樹脂成形体の表面にウエルドラインが形成されているか否かを目視により観察した。その結果、ABS樹脂のガラス転移温度よりも少なくとも70℃以上となる160℃以上に内壁表面の温度が加熱されたプレート成形用金型を用いて得られた実施例1~実施例3および比較例1~比較例2の各樹脂成形体の表面において、いずれもウエルドラインが観察されなかった。一方、150℃以下に内壁表面の温度が加熱されたプレート成形用金型を用いて得られた実施例1~実施例3および比較例1~比較例2の各樹脂成形体の表面においては、いずれもウエルドラインが観察された。
[Evaluation of resin molded product]
<Visual confirmation of weld line formation>
Whether or not a weld line was formed on the surface of each of the resin molded products of Examples 1 to 3 and Comparative Examples 1 to 2 was visually observed. As a result, Examples 1 to 3 and Comparative Examples obtained by using a plate molding die in which the temperature of the inner wall surface was heated to 160 ° C. or higher, which is at least 70 ° C. or higher than the glass transition temperature of the ABS resin. No weld line was observed on the surface of each of the resin molded products of 1 to 2 of Comparative Example 2. On the other hand, on the surfaces of the resin molded bodies of Examples 1 to 3 and Comparative Examples 1 to 2 obtained by using a plate molding die in which the temperature of the inner wall surface was heated to 150 ° C. or lower, Weld lines were observed in both cases.
 <金型汚染の確認>
 実施例1~実施例3および比較例1~比較例2の各樹脂成形体の表面に、長さ80mm×幅24mmの透明粘着テープ(商品名:「セロテープ(登録商標)」、ニチバン株式会社製)を貼付け、指先でテープをこすることにより、上記透明粘着テープを実施例1~実施例3および比較例1~比較例2の各樹脂成形体の表面にそれぞれ密着させた後、上記表面から上記透明粘着テープを180度で剥離されるように引き剥がした。次いで、上記樹脂成形体の表面から引き剥がした上記透明粘着テープを黒色の台紙に貼付け、デジタルマイクロスコープ(商品名:「VHX-6000」、株式会社キーエンス製)を用いて500倍の倍率により、上記透明粘着テープに付着しているアルミニウムフレーク粒子の数を求めた。評価は1視野(400μm×600μm)で行い、以下の基準に基づいてランク付けした。結果を表1に示す。ここで上記透明粘着テープに付着しているアルミニウムフレーク粒子の数は、金型内で溶融樹脂の表面に偏在することにより金型汚染を引き起こす原因となるアルミニウムフレーク粒子の数と正の相関を示すことが推定される。このため、上記透明粘着テープに付着しているアルミニウムフレーク粒子の数を求め、以下の基準に基づいてランク付けすることにより、実施例1~実施例3および比較例1~比較例2の各樹脂組成物が、ヒートアンドクール法を利用した射出成形を実行した場合に金型汚染を抑制することができるか否かを評価することが可能となる。
<Confirmation of mold contamination>
A transparent adhesive tape having a length of 80 mm and a width of 24 mm (trade name: "Cellotape (registered trademark)", manufactured by Nichiban Co., Ltd.) on the surfaces of the resin molded bodies of Examples 1 to 3 and Comparative Examples 1 to 2. ), And by rubbing the tape with your fingertips, the transparent adhesive tape is brought into close contact with the surfaces of the resin molded bodies of Examples 1 to 3 and Comparative Examples 1 to 2, and then from the surface. The transparent adhesive tape was peeled off so as to be peeled off at 180 degrees. Next, the transparent adhesive tape peeled off from the surface of the resin molded product was attached to a black mount, and a digital microscope (trade name: "VHX-6000", manufactured by KEYENCE CORPORATION) was used at a magnification of 500 times. The number of aluminum flake particles adhering to the transparent adhesive tape was determined. The evaluation was performed in one field of view (400 μm × 600 μm) and ranked based on the following criteria. The results are shown in Table 1. Here, the number of aluminum flake particles adhering to the transparent adhesive tape shows a positive correlation with the number of aluminum flake particles that cause mold contamination due to uneven distribution on the surface of the molten resin in the mold. Is presumed. Therefore, the resins of Examples 1 to 3 and Comparative Examples 1 to 2 are obtained by determining the number of aluminum flake particles adhering to the transparent adhesive tape and ranking them based on the following criteria. It is possible to evaluate whether or not the composition can suppress mold contamination when injection molding using the heat and cool method is performed.
 A:アルミニウムフレーク粒子の数が3個以下であって、金型汚染をより十分に抑制できると推定される。
 B:アルミニウムフレーク粒子の数が4~10個であって、金型汚染を抑制できると推定される。
 C:アルミニウムフレーク粒子の数が11個以上であって、金型汚染の抑制が不十分となると推定される。
A: It is estimated that the number of aluminum flake particles is 3 or less, and mold contamination can be suppressed more sufficiently.
B: The number of aluminum flake particles is 4 to 10, and it is estimated that mold contamination can be suppressed.
C: It is estimated that the number of aluminum flake particles is 11 or more, and the suppression of mold contamination is insufficient.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 〔考察〕
 以上から、実施例1~実施例3の樹脂組成物およびそれを含む樹脂成形体は、熱可塑性樹脂のガラス転移温度よりも少なくとも70℃以上に加熱された金型を用いて射出成形を実行した場合、従来(比較例1および2)の樹脂成形体と同等にウエルドラインの形成を防止することができる。さらに表1によれば、実施例1~実施例3の樹脂組成物およびそれを含む樹脂成形体は、熱可塑性樹脂のガラス転移温度よりも少なくとも70℃以上に加熱された金型を用いて射出成形を実行した場合、比較例1および比較例2に比してアルミニウムフレーク粒子が溶融樹脂の表面に偏在することを抑制することができ、もって金型汚染を抑制できることが理解される。
[Discussion]
From the above, the resin compositions of Examples 1 to 3 and the resin molded product containing the same were injection-molded using a mold heated to at least 70 ° C. or higher than the glass transition temperature of the thermoplastic resin. In this case, the formation of weld lines can be prevented in the same manner as in the conventional (Comparative Examples 1 and 2) resin molded products. Further, according to Table 1, the resin compositions of Examples 1 to 3 and the resin molded product containing the same are injected using a mold heated to at least 70 ° C. or higher than the glass transition temperature of the thermoplastic resin. It is understood that when molding is performed, it is possible to suppress uneven distribution of aluminum flake particles on the surface of the molten resin as compared with Comparative Example 1 and Comparative Example 2, and thus mold contamination can be suppressed.
 以上のように本発明の実施の形態および実施例について説明を行なったが、上述の各実施の形態および実施例の構成を適宜組み合わせることも当初から予定している。 Although the embodiments and examples of the present invention have been described above, it is planned from the beginning that the configurations of the above-described embodiments and examples are appropriately combined.
 今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be considered that the embodiments and examples disclosed this time are exemplary in all respects and are not restrictive. The scope of the present invention is shown by the scope of claims rather than the above description, and it is intended to include all modifications within the meaning and scope equivalent to the scope of claims.

Claims (8)

  1.  射出成形体の製造に用いられる樹脂組成物であって、
     前記樹脂組成物は、熱可塑性樹脂と、アルミニウムフレーク粒子とを含有し、
     前記アルミニウムフレーク粒子は、その表面の少なくとも一部にカップリング剤が付着している、樹脂組成物。
    A resin composition used in the production of injection molded products.
    The resin composition contains a thermoplastic resin and aluminum flake particles.
    The aluminum flake particles are a resin composition in which a coupling agent is attached to at least a part of the surface thereof.
  2.  前記カップリング剤は、シランカップリング剤である、請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the coupling agent is a silane coupling agent.
  3.  前記カップリング剤は、アミノ系シランカップリング剤である、請求項1または請求項2に記載の樹脂組成物。 The resin composition according to claim 1 or 2, wherein the coupling agent is an amino-based silane coupling agent.
  4.  前記カップリング剤は、前記アルミニウムフレーク粒子100質量部に対し、0.1質量部以上10質量部以下含まれる、請求項1から請求項3のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 3, wherein the coupling agent is contained in an amount of 0.1 part by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the aluminum flake particles.
  5.  前記アルミニウムフレーク粒子は、前記表面に前記カップリング剤が付着した状態で、前記熱可塑性樹脂100質量部に対し、0.5質量部以上230質量部以下含まれる、請求項1から請求項4のいずれか1項に記載の樹脂組成物。 Claims 1 to 4, wherein the aluminum flake particles are contained in an amount of 0.5 parts by mass or more and 230 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin in a state where the coupling agent is attached to the surface. The resin composition according to any one of the following items.
  6.  前記熱可塑性樹脂は、アクリロニトリル-ブタジエン-スチレン樹脂、スチレン-アクリロニトリル共重合体、ポリスチレンおよびポリエチレンからなる群より選ばれる1種以上の樹脂である、請求項1から請求項5のいずれか1項に記載の樹脂組成物。 The thermoplastic resin is one or more resins selected from the group consisting of acrylonitrile-butadiene-styrene resin, styrene-acrylonitrile copolymer, polystyrene and polyethylene, according to any one of claims 1 to 5. The resin composition described.
  7.  請求項1から請求項6のいずれか1項に記載の樹脂組成物を含む、樹脂成形体。 A resin molded product containing the resin composition according to any one of claims 1 to 6.
  8.  請求項1から請求項6のいずれか1項に記載の樹脂組成物を準備する工程と、
     前記樹脂組成物を、前記熱可塑性樹脂のガラス転移温度よりも少なくとも70℃以上高い温度に内壁表面が維持された金型へ射出注入する工程と、
     前記金型内の前記樹脂組成物を冷却することにより樹脂成形体を得る工程とを含む、樹脂成形体の製造方法。
    The step of preparing the resin composition according to any one of claims 1 to 6, and the step of preparing the resin composition.
    A step of injecting the resin composition into a mold in which the inner wall surface is maintained at a temperature at least 70 ° C. or higher higher than the glass transition temperature of the thermoplastic resin.
    A method for producing a resin molded product, which comprises a step of obtaining a resin molded product by cooling the resin composition in the mold.
PCT/JP2020/039104 2019-10-18 2020-10-16 Resin composition, resin molded article containing same, and method for manufacturing resin molded article WO2021075551A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021552467A JP7385671B2 (en) 2019-10-18 2020-10-16 Resin composition, resin molded article containing the same, and method for producing resin molded article
CN202080068560.4A CN114514284B (en) 2019-10-18 2020-10-16 Resin composition, resin molded body comprising same, and method for producing resin molded body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-190985 2019-10-18
JP2019190985 2019-10-18

Publications (1)

Publication Number Publication Date
WO2021075551A1 true WO2021075551A1 (en) 2021-04-22

Family

ID=75538261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/039104 WO2021075551A1 (en) 2019-10-18 2020-10-16 Resin composition, resin molded article containing same, and method for manufacturing resin molded article

Country Status (3)

Country Link
JP (1) JP7385671B2 (en)
CN (1) CN114514284B (en)
WO (1) WO2021075551A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59102938A (en) * 1982-12-04 1984-06-14 Toyo Alum Kk Electrically conductive resin composition for shielding electromagnetic wave
JPS62104870A (en) * 1985-10-31 1987-05-15 Fujikura Ltd Electrically conductive resin composition

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59223735A (en) * 1983-06-02 1984-12-15 Mitsui Petrochem Ind Ltd Electroconductive resin composition
JP2637685B2 (en) * 1993-10-25 1997-08-06 新悟 菱田 Colorants and colored molded products for plastic injection molding
KR100737361B1 (en) * 2000-04-06 2007-07-09 데이코쿠 잉키 세이조 가부시키가이샤 Ink for applying a decoration on a molded article simultaneously with molding, and decorated sheet
JP2002256151A (en) * 2001-02-28 2002-09-11 Toyo Aluminium Kk Thermoplastic resin composition and its molded product
CN101875251B (en) * 2009-04-30 2013-06-19 比亚迪股份有限公司 Aluminium alloy complex, preparation method thereof and lithium ion battery cover board
JP5261283B2 (en) * 2009-05-15 2013-08-14 山下電気株式会社 Mold for plastic molding
JP5075191B2 (en) * 2009-12-22 2012-11-14 日立アプライアンス株式会社 Painted parts for home appliances, paints and home appliances
KR101425208B1 (en) * 2011-03-14 2014-08-01 주식회사 나다이노베이션 Method of surface modification for injection molding parts
WO2013021669A1 (en) * 2011-08-09 2013-02-14 東洋アルミニウム株式会社 Thermally conductive resin composition and heat dissipating material containing same
JP2013216729A (en) * 2012-04-05 2013-10-24 Panasonic Corp Colored compound, injection molding and decoration part having metallic feeling, and house electric appliance using decoration part
JP6020822B2 (en) * 2013-04-17 2016-11-02 パナソニックIpマネジメント株式会社 Injection mold and injection molding method
JP6651853B2 (en) * 2013-12-20 2020-02-19 住友ベークライト株式会社 Thermosetting resin composition and metal resin composite
JP6576022B2 (en) * 2014-06-30 2019-09-18 旭化成株式会社 Manufacturing method of molded body
CN104479152B (en) * 2014-11-25 2018-12-11 李强 A kind of gold modeling complex and its manufacturing method
CN105034301A (en) * 2015-08-28 2015-11-11 宁波均胜汽车电子股份有限公司 Injection-mold rapid-cooling and rapid-heating product welding line removing method
JP6835502B2 (en) * 2016-08-18 2021-02-24 旭化成株式会社 Injection molding method
CN108424581A (en) * 2018-04-13 2018-08-21 杭州千石科技有限公司 A kind of preparation method of the injection molding composite material with metal-like

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59102938A (en) * 1982-12-04 1984-06-14 Toyo Alum Kk Electrically conductive resin composition for shielding electromagnetic wave
JPS62104870A (en) * 1985-10-31 1987-05-15 Fujikura Ltd Electrically conductive resin composition

Also Published As

Publication number Publication date
CN114514284A (en) 2022-05-17
JPWO2021075551A1 (en) 2021-04-22
JP7385671B2 (en) 2023-11-22
CN114514284B (en) 2024-09-24

Similar Documents

Publication Publication Date Title
JP6277271B2 (en) Polycarbonate resin composition and method for producing the same
JP4094659B2 (en) Polyphenylene sulfide resin structure
JP6670875B2 (en) Metallic resin composition, molded article and method for producing the same
EP2856497A1 (en) Graphene coated substrates and resulting composites
US20210355294A1 (en) High gloss, abrasion resistant thermoplastic article
JP5922506B2 (en) Transparent resin film
US11008453B2 (en) Polymeric composite articles comprising the heterogeneous surface/bulk distribution of discrete phase
JP7385671B2 (en) Resin composition, resin molded article containing the same, and method for producing resin molded article
JP2015007159A (en) Metallic resin composition and molded product
JP2015214679A (en) Anti-blocking agent for polyolefin or polyester
JP4815822B2 (en) Method for producing composite thermoplastic resin plated molded article
JPWO2004026970A1 (en) Luster pigment for resin addition, resin composition and resin molding containing the same
JPH04359937A (en) Resin composition
US20150344685A1 (en) Thermoplastic Resin Composition and Molded Article Using the Same
KR20110064001A (en) Thermoplastic resin composition with high gloss and anti-scrach propertis
TW201341444A (en) Resin molded body for electrostatic coating
JP6215578B2 (en) Aluminum pigment composition, resin composition containing the same, and molded article thereof
JP2002226628A (en) Brilliant material for resin aditive and thermoelastic resin composition
JP6644106B2 (en) Aluminum pigment composition, a resin composition containing it, and its moldings
JP2009279829A (en) Glass-containing heat transfer sheet
KR20220037545A (en) Thermoplastic resin composition of metal-like texture having good solidification rate suitable for 3D printing and molded article comprising the same
KR101374818B1 (en) Thermoplastic resin composition
JP6316684B2 (en) Aluminum pigment composition, resin composition containing the aluminum pigment composition, and molded article
JPS6375054A (en) Polypropylene resin composition
WO2023210166A1 (en) Alumina-based thermally conductive rounded-disc-shaped particles, production method for same, thermally conductive composition, article, liquid composition, thermally conductive thin film, and electronic device member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20877642

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021552467

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20877642

Country of ref document: EP

Kind code of ref document: A1