WO2021075490A1 - Combustion state evaluation method and combustion control method - Google Patents
Combustion state evaluation method and combustion control method Download PDFInfo
- Publication number
- WO2021075490A1 WO2021075490A1 PCT/JP2020/038880 JP2020038880W WO2021075490A1 WO 2021075490 A1 WO2021075490 A1 WO 2021075490A1 JP 2020038880 W JP2020038880 W JP 2020038880W WO 2021075490 A1 WO2021075490 A1 WO 2021075490A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- combustion
- waste
- flame
- amount
- index
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G5/00—Incineration of waste; Incinerator constructions; Details, accessories or control therefor
- F23G5/50—Control or safety arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23M—CASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
- F23M11/00—Safety arrangements
- F23M11/04—Means for supervising combustion, e.g. windows
Definitions
- the present invention mainly relates to a method of evaluating a combustion state in order to appropriately maintain stable combustion in a grate-type incinerator that incinerates waste while transporting it by a grate.
- the grate-type waste incinerator is divided into a drying section for drying the waste, a combustion section for burning the waste with flame, and a post-combustion section for post-combusting the waste (Oki combustion).
- a drying section for drying the waste
- a combustion section for burning the waste with flame
- a post-combustion section for post-combusting the waste (Oki combustion).
- Patent Documents 1 to 9 disclose methods for acquiring and controlling information on waste.
- Patent Document 1 a visible image of a flame and an infrared image (thermal image) of waste on a grate are acquired by two imaging means provided on the wall of an incinerator, and the visible image and the thermal image are obtained. And are used for combustion control.
- the inside of the incinerator is photographed by using two TV cameras to acquire a visible image, a stereoscopic image is created based on these images, and this stereoscopic image is used for combustion control. ..
- one or a plurality of thermal image capturing units capture a thermal image of waste on a grate, and the one or a plurality of thermal images are used for combustion control.
- Patent Documents 3 and 4 describe that a thermal image imaging unit that detects infrared rays having a specific wavelength is used in order to exclude the influence of flame.
- a radar device is used to acquire the three-dimensional distribution of fuel on the grate, and an infrared camera is used to acquire the temperature distribution of fuel on the grate, and this information is used for combustion control. Used for.
- the height of waste on the grate is obtained by using a stereo camera having an optical filter for removing the wavelength of the flame, the burnout position is estimated, and the burnout position is burned. Used for control.
- the thermal image of the waste moving in the furnace is continuously imaged through the flame, and the boundary line with the inner wall surface of both sides of the furnace body of the waste is detected from the thermal image data.
- the estimated volume of waste in the region is calculated and the estimated volume of waste is used for combustion control.
- Japanese Unexamined Patent Publication No. 10-54532 Japanese Unexamined Patent Publication No. 5-118524 Tokuseki 2017-187228 Japanese Unexamined Patent Publication No. 2018-21686 JP-A-2017-116252 Japanese Unexamined Patent Publication No. 8-355630 JP-A-2018-155411 Japanese Patent No. 6472035
- Patent Documents 1 and 2 When a visible image is used as in Patent Documents 1 and 2, the flame generated in the combustion part becomes an obstacle, and the shape and movement of the waste on the grate cannot be sufficiently obtained.
- Patent Document 2 acquires an image to detect the position of abnormal combustion and creates a stereoscopic image, and does not target waste on the grate.
- Patent Documents 3 to 5 since the thermal images of one or more wastes are used as they are, the detailed shape and movement of the wastes cannot be sufficiently obtained.
- the fuel on the grate is detected by the radar as in Patent Document 6, it is necessary to detect the electromagnetic wave reflected by the waste in a high temperature environment and in the presence of flame, so that the cost of the radar itself is high. It gets higher.
- Patent Document 6 the infrared camera is used to acquire the temperature distribution instead of the shape of the fuel.
- the burnout position is estimated using the waste height information, but since not only the height of the waste but also the feed rate of the waste changes depending on the properties of the waste, the waste It may not be possible to calculate an appropriate burnout position in order to control the combustion state from the height alone.
- Patent Document 8 since only the boundary line with the inner wall surface of both sides of the furnace body of the waste is used as the information used for calculating the estimated volume of the waste, the difference in the height of the waste in the furnace width direction is not considered. As a result, the accuracy of the estimated volume of waste becomes low, and the error may be too large to be used as an index of combustion control.
- the present invention has been made in view of the above circumstances, and its main purpose is to provide a method for calculating appropriate information for use as an index of combustion control.
- this combustion condition evaluation method is divided into a drying part, a burning part, and a post-burning part, and incineration provided with a grate for transporting the waste by operating intermittently in a state where the waste is accumulated. Performed on the furnace.
- This combustion state evaluation method includes a production step, a division step, a first calculation step, a second calculation step, a third calculation step, a specific step, a determination step, and a first evaluation step.
- a plurality of infrared cameras are used to observe at least the waste accumulated in the dry portion and the combustion portion through a filter that selectively transmits light having a wavelength not emitted by the flame.
- a plurality of thermal images having different viewpoints are acquired, and a three-dimensional thermal image is created based on the plurality of thermal images.
- the division step the waste of the three-dimensional thermal image is mesh-divided into a plurality of elements.
- the first calculation step the thickness of the waste and the surface moving speed of the waste are calculated for each of the elements based on the three-dimensional thermal image.
- the second calculation step based on the calculation result of the first calculation step, the thickness elapsed indicating how the thickness of the waste located in the element changed in time series until it was located in the element. Information is calculated for each of the elements.
- volumetric flow rate progress information indicating whether or not the change has occurred is calculated for each of the above elements.
- the volumetric flow rate progress information is analyzed to identify an intermediate combustion element, which is the element after the combustion startable state is reached and before the combustion burnout state is reached.
- the progress of combustion is specified based on the change in the volumetric flow rate from the past to the present time of the waste located in the intermediate combustion element, and the combustion correction coefficient according to the progress is determined.
- the combustion intermediate element is subjected to a process of multiplying the current volume flow rate of the waste by the combustion correction coefficient, and the calculation result for each combustion intermediate element is taken into consideration in the area ratio of the element.
- the calorific value index which is an index of the calorific value generated from the waste, is calculated.
- the calorific value which is an index of the amount of pyrolysis gas generated per hour (the amount of heat generated). The index can be calculated.
- the current calorific value index can be calculated with high accuracy by calculating the calorific value index using the volume flow rate of waste during combustion and the combustion correction coefficient. .. In an incinerator, it is desired to stabilize the amount of heat generated, so such a highly reliable heat amount index is useful as an index of combustion control.
- Functional block diagram of the incinerator A three-dimensional schematic view of an incinerator showing the mounting position of an infrared camera.
- the figure explaining the thickness progress information The figure explaining the volume flow rate progress information and its prediction.
- Schematic diagram to explain the identification result of the current and future combustion mid-combustion elements The plan schematic diagram explaining the specific result of the drying process state and the combustion process state of the 2nd Embodiment.
- the flowchart which shows a part of the control performed by the control device for stabilizing the combustion of the 2nd Embodiment The flowchart which shows the rest of the control performed by the control device for stabilizing the combustion of the 2nd Embodiment.
- the flowchart which shows the rest of the control performed by the control device to stabilize the combustion of 3rd Embodiment The flowchart which shows a part of the control performed by the control device for stabilizing the combustion of 3rd Embodiment.
- FIG. 1 is a schematic configuration diagram of a waste incinerator 100 including an incinerator 10 for performing the method of the present invention.
- upstream and downstream mean upstream and downstream in the direction in which waste, combustion gas, exhaust gas, primary air, secondary air, circulating exhaust gas, etc. flow.
- the waste incineration facility 100 includes an incinerator 10, a boiler 30, and a steam turbine power generation facility 35.
- the incinerator 10 incinerates the supplied waste.
- the detailed configuration of the incinerator 10 will be described later.
- the boiler 30 uses the heat generated by the combustion of waste to generate steam.
- the boiler 30 generates steam (superheated steam) by exchanging heat between high-temperature combustion gas generated in the furnace and water in a large number of water pipes 31 and superheater pipes 32 provided on the flow path wall.
- the steam generated in the water pipe 31 and the superheater pipe 32 is supplied to the steam turbine power generation facility 35.
- the steam turbine power generation facility 35 includes a turbine and a power generation device (not shown).
- the turbine is rotationally driven by steam supplied from the water pipe 31 and the superheater pipe 32.
- the power generation device uses the rotational driving force of the turbine to generate electricity.
- the incinerator 10 is provided with a dust supply device 40 for supplying waste into the furnace.
- the dust supply device 40 includes a waste input hopper 41 and a dust supply device main body 42.
- the waste input hopper 41 is a portion where waste is input from outside the furnace.
- the dust supply device main body 42 is located at the bottom of the waste input hopper 41 and is configured to be movable in the horizontal direction.
- the dust supply device main body 42 supplies the waste charged into the waste input hopper 41 to the downstream side.
- the movement speed of the dust supply device main body 42, the number of movements per unit time, the movement amount (stroke), and the position of the stroke end (movement range) are controlled by the control device 90.
- the dust supply device may be of a type that moves at a slight angle with respect to the horizontal direction.
- the waste supplied into the furnace by the dust supply device 40 is supplied by the transport unit 20 in the order of the drying unit 11, the combustion unit 12, and the post-combustion unit 13.
- the transport unit 20 is composed of a dry grate 21 provided in the drying unit 11, a combustion grate 22 provided in the combustion unit 12, and a post-combustion grate 23 provided in the post-combustion unit 13. There is. Therefore, the transport unit 20 is composed of a plurality of stages of grate. Each grate is provided on the bottom surface of each part, and waste is placed on it.
- the grate is composed of a movable grate and a fixed grate arranged side by side in the waste transport direction, and the movable grate operates in the order of forward, stop, reverse, stop, etc. to dispose of waste.
- the waste can be agitated while being transported to the downstream side.
- By increasing (decelerating) the operating speed of the movable grate it is possible to increase (decelerate) the transport speed of waste.
- the stop time of the movable grate it is possible to increase (decelerate) the transport speed of waste.
- the grate is arranged side by side with a gap large enough for gas to pass through.
- the drying unit 11 is a portion for drying the waste supplied to the incinerator 10.
- the waste of the drying unit 11 is dried by the primary air supplied from under the drying grate 21 and the radiant heat of combustion in the adjacent combustion unit 12. At that time, thermal decomposition gas is generated from the waste of the drying portion 11 by thermal decomposition. Further, the waste of the drying unit 11 is conveyed toward the combustion unit 12 by the drying grate 21.
- the combustion unit 12 is a portion that mainly burns the waste dried in the drying unit 11.
- the waste mainly causes flame combustion to generate a flame.
- the waste in the combustion unit 12, the ash generated by combustion, and the unburned material that cannot be completely burned are conveyed toward the post-combustion unit 13 by the combustion grate 22. Further, the combustion gas and the flame generated in the combustion unit 12 pass through the throttle unit 17 and flow toward the post-combustion unit 13.
- the combustion grate 22 is provided at the same height as the dry grate 21, but may be provided at a position lower than the dry grate 21.
- the post-combustion unit 13 is a portion that burns the waste (unburned material) that could not be completely burned by the combustion unit 12.
- the radiant heat of the combustion gas and the primary air promote the combustion of the unburned material that could not be completely burned in the combustion unit 12.
- most of the unburned matter becomes ash, and the unburned matter decreases.
- the ash generated in the post-combustion unit 13 is conveyed toward the chute 24 by the post-combustion grate 23 provided on the bottom surface of the post-combustion unit 13.
- the ash conveyed to the chute 24 is discharged to the outside of the waste incineration facility 100.
- the rear combustion grate 23 of the present embodiment is provided at a position lower than the combustion grate 22, it may be provided at the same height as the combustion grate 22.
- each wall surface or the like is configured according to the reaction that occurs.
- flame combustion occurs in the combustion unit 12
- a structure having a higher refractory level than the drying unit 11 is adopted.
- the reburning unit 14 is a part that burns the unburned gas contained in the combustion gas.
- the re-combustion unit 14 extends upward from the drying unit 11, the combustion unit 12, and the post-combustion unit 13, and secondary air is supplied in the middle thereof.
- the combustion gas is mixed and agitated with the secondary air, and the unburned gas contained in the combustion gas is burned in the reburning unit 14.
- the combustion generated in the combustion unit 12 and the post-combustion unit 13 is referred to as primary combustion
- the combustion generated in the recombustion unit 14 (that is, the combustion of the unburned gas remaining in the primary combustion) is referred to as secondary combustion.
- the region where the primary combustion occurs is referred to as the primary combustion zone 1
- the region where the secondary combustion occurs is referred to as the secondary combustion zone 2.
- the gas supply device 50 is a device that supplies gas into the furnace.
- the gas supply device 50 of the present embodiment includes a primary air supply unit 51, a secondary air supply unit 52, and an exhaust gas supply unit 53.
- Each supply unit is composed of a blower for attracting or sending out gas.
- the gas supplied for primary combustion is referred to as a primary combustion gas.
- the primary combustion gas includes primary air, circulating exhaust gas, and a mixed gas thereof.
- the primary air is air taken in from the outside and is not used for combustion or the like (that is, excluding circulating exhaust gas). Therefore, the primary air also includes a gas obtained by heating the air taken in from the outside.
- the gas supplied for secondary combustion is referred to as a secondary combustion gas.
- the secondary combustion gas includes secondary air, circulating exhaust gas, and a mixed gas thereof. The definition of secondary air is similar to that of primary air.
- the primary air supply unit 51 supplies the primary air into the furnace via the primary air supply path 71.
- the primary air supply path 71 is branched into a first supply path 71a, a second supply path 71b, and a third supply path 71c.
- a heater may be provided in the primary air supply path 71 so that the temperature of the primary air supplied to each part can be adjusted.
- the first supply path 71a is a path for supplying primary air to the drying step air box 25 provided below the drying grate 21.
- a first damper 81 is provided in the first supply path 71a, and the amount of primary air supplied to the drying stage air box 25 can be adjusted. Further, the first damper 81 is controlled by the control device 90.
- the second supply path 71b is a path for supplying primary air to the combustion stage air box 26 provided below the combustion grate 22.
- a second damper 82 is provided in the second supply path 71b, and the amount of primary air supplied to the combustion stage air box 26 can be adjusted. Further, the second damper 82 is controlled by the control device 90.
- the third supply path 71c is a path for supplying primary air to the post-combustion stage air box 27 provided below the post-combustion grate 23.
- a third damper 83 is provided in the third supply path 71c, and the amount of primary air supplied to the post-combustion stage air box 27 can be adjusted. Further, the third damper 83 is controlled by the control device 90.
- the secondary air supply unit 52 supplies the secondary air to the air gas holding space 16 of the incinerator 10 from the upper part (ceiling part) via the secondary air supply path 72, and the combustion gas is generated by the throttle unit 17. Secondary air is supplied to the portion that changes direction (near the throttle portion 17). Further, the secondary air supply path 72 is provided with a fourth damper 84 controlled by the control device 90, and the amount of secondary air supplied to each part can be adjusted.
- the exhaust gas supply unit 53 supplies (recirculates) the exhaust gas discharged from the waste incineration facility 100 into the furnace via the circulating exhaust gas supply path 73.
- the exhaust gas discharged from the waste incineration facility 100 is purified by a filtration type dust collector 60, and a part of the exhaust gas is incinerated by the exhaust gas supply unit 53 from both side surfaces (front side of the paper surface and the back side of the paper surface) of the combustion unit 12. It is supplied to the furnace 10.
- the position where the exhaust gas is supplied is not particularly limited.
- the exhaust gas may be supplied from above (ceiling portion) of the incinerator 10, or may be supplied from only one side surface.
- the circulating exhaust gas supply path 73 is provided with a fifth damper 85 controlled by the control device 90, and the supply amount of the circulating exhaust gas can be adjusted.
- the incinerator 10 is provided with a plurality of sensors for grasping the combustion state and the like. Specifically, the incinerator gas temperature sensor 91, the incinerator outlet gas temperature sensor 92, the CO gas concentration sensor 93, the NOx gas concentration sensor 94, the secondary combustion temperature sensor 98, and the boiler steam amount sensor 99. And an infrared camera 95.
- the gas temperature sensor 91 in the incinerator is arranged in the incinerator 10 (for example, downstream of the air gas holding space 16 and upstream of the post-combustion unit 13), detects the gas temperature in the incinerator, and controls the control device 90. Output to.
- the incinerator outlet gas temperature sensor 92 is arranged near the outlet of the incinerator 10 (for example, downstream of the reburning unit 14 and upstream of the boiler 30), detects the incinerator outlet gas temperature, and sends it to the control device 90. Output.
- the CO gas concentration sensor 93 is arranged downstream of the dust collector 60, detects the CO gas concentration contained in the exhaust gas (CO gas concentration discharged from the incinerator), and outputs the CO gas concentration sensor 93 to the control device 90.
- the NOx gas concentration sensor 94 is arranged downstream of the dust collector 60, detects the NOx gas concentration contained in the exhaust gas (NOx gas concentration discharged from the incinerator), and outputs the NOx gas concentration sensor 94 to the control device 90.
- the secondary combustion temperature sensor 98 is arranged in the secondary combustion zone 2, detects the secondary combustion temperature which is the temperature of the secondary combustion zone 2, and outputs the secondary combustion temperature to the control device 90.
- the boiler steam amount sensor 99 is arranged in a path from the boiler 30 to the steam turbine power generation facility 35, and detects the amount of steam passing through this path, that is, the amount of steam generated by the boiler 30 (boiler evaporation amount). Output to the control device 90.
- the infrared cameras 95 are provided in pairs. Each infrared camera 95 has the same structure. Further, the infrared camera 95 may be provided as a set of three or more. Since the purpose of the infrared camera 95 is to create a three-dimensional thermal image (an image showing the temperature distribution in three dimensions), a plurality of infrared cameras 95 form a set. Therefore, the relative positions of the plurality of infrared cameras 95 of the same set are stored in advance.
- the infrared camera 95 may be a device whose main purpose is to continuously capture still images at appropriate intervals, or a device whose main purpose is to capture moving images. Since a moving image is a plurality of continuous still images, the function of acquiring a thermal image is the same regardless of the device.
- the infrared camera 95 acquires a thermal image in the furnace by detecting infrared rays radiated from an object in the furnace.
- the thermal image acquired by each infrared camera 95 is an image showing the temperature distribution in the furnace as seen from the viewpoint of the infrared camera 95.
- the viewpoint indicates a position where the infrared camera 95, which is a measuring instrument, is arranged.
- the infrared camera 95 of the present embodiment acquires a thermal image in the furnace via a selective transmission filter (filter) 95a.
- the selective transmission filter 95a is a filter that selectively transmits light having a wavelength (for example, 3.9 ⁇ m band) that the flame does not emit.
- the phrase "flame does not radiate” here means that the light intensity is significantly lower (almost no irradiation) than the light of other wavelengths emitted by the flame, and the flame does not radiate at all. Does not indicate.
- the selective transmission filter 95a is integrally configured with the infrared camera 95, but may be a separate body. That is, the selective transmission filter 95a may be arranged on the path through which the light in the furnace passes, and the transmitted light transmitted through the selective transmission filter 95a may be processed by a normal infrared camera.
- the purpose of the infrared camera 95 is mainly to acquire a thermal image of the waste transported through the dry grate 21 and the combustion grate 22.
- two sets of infrared cameras 95 are provided, and the first set of infrared cameras 95 mainly carries the waste grate 21 (more specifically, the combustion start position is included).
- the purpose is to acquire the waste in the range), and the second set of infrared cameras 95 mainly acquires the waste (waste in the range including the burnout position) that is mainly conveyed to the combustion grate 22.
- the purpose is to do.
- the imaging range of the first set of infrared cameras 95 may include waste to be conveyed by the combustion grate 22, or the post-combustion grate 23 is conveyed to the imaging range of the second set of infrared cameras 95. Waste may be included. Further, in order to observe the waste without omission, it is preferable that the imaging ranges of the first and second sets of the infrared cameras 95 partially overlap.
- the infrared camera 95 may have a configuration in which the imaging range of the image can be changed. In this case, the infrared camera 95 may be able to change the imaging range without stopping the incinerator 10.
- the infrared camera 95 is arranged at a position higher than the grate and the waste for the purpose of appropriately acquiring an image even when the amount of accumulated waste is large. Therefore, the infrared camera 95 is arranged so as to be inclined downward.
- the infrared camera 95 may be arranged without being tilted.
- the first set of infrared cameras 95 is provided on the side wall 11a, which is a wall portion formed at the end portion of the drying portion 11 in the furnace width direction.
- the two infrared cameras 95 acquire a thermal image (infrared ray) of the surface of the waste through the window portion 11b formed on the side wall 11a.
- two infrared cameras 95 are arranged only on one side wall 11a of the left and right side walls 11a, but one or a plurality of infrared cameras 95 may be arranged on both side walls 11a, respectively.
- the second set of infrared cameras 95 is provided on the back wall 13a, which is a wall on the downstream side in the transport direction from the rear combustion unit 13.
- the two infrared cameras 95 acquire a thermal image (infrared ray) of the surface of the waste through the window portion 13b formed on the back wall 13a.
- the positions where the first and second sets of infrared cameras 95 are provided are examples, and for example, the infrared cameras 95 may be provided on a wall or ceiling different from the above.
- the control device 90 is composed of a CPU, RAM, ROM, etc., performs various calculations, and controls the entire waste incineration facility 100.
- the image processing device 96 is composed of a CPU, RAM, ROM, etc., and performs a process (image composition process) of creating a three-dimensional thermal image based on the thermal images acquired by the two infrared cameras 95 of each set. It can be carried out.
- the control device 90 and the image processing device 96 are separate hardware, but one piece of hardware may have the functions of both the control device 90 and the image processing device 96.
- FIGS. 4 and 5 are flowcharts showing the control performed by the control device 90 to stabilize the combustion.
- the control device 90 stores a three-dimensional thermal image created by the image processing device 96 based on the thermal image acquired by the infrared camera 95 (S101).
- the first three-dimensional thermal image is created based on the thermal image acquired by the first set of infrared cameras 95
- the second is based on the thermal image acquired by the second set of infrared cameras 95.
- a three-dimensional thermal image of is created.
- the position range (waste range, imaging range) where the first 3D thermal image is created is called the first range
- the position range (waste range, imaging range) where the second 3D thermal image is created is called the first range.
- ⁇ and ⁇ may be added in order to distinguish the two infrared cameras 95 of each set. Since the thermal image acquired by the infrared camera 95 of the present embodiment does not include a flame, the thermal image acquired by the infrared camera ⁇ shows the temperature distribution of the surface of the waste as seen from the position of the infrared camera ⁇ . ing. The same applies to the infrared camera ⁇ . Then, the specific location A on the surface of the waste is specified where each of the two thermal images is displayed.
- the distance from the infrared camera ⁇ and the infrared camera ⁇ to the specific location A of the waste can be calculated based on the triangular method or the like. By performing this treatment on other parts of the waste surface, the position (three-dimensional coordinates) of the waste surface can be specified.
- the control device 90 mesh-divides the surface of the waste of the three-dimensional thermal image into a plurality of elements (division units), and (1) the thickness of the waste and (2) the surface for each element.
- the movement speed is calculated and stored in association with the control value (S102). This process is performed individually for each of the first three-dimensional thermal image (first range) and the second three-dimensional thermal image (second range).
- the mesh division is to divide the waste of the three-dimensional thermal image into a plurality of regions under predetermined conditions. In the present embodiment, as shown in FIG. 6, the waste is divided into a grid pattern by drawing a plurality of parallel lines in the transport direction and a plurality of parallel lines in the furnace width direction.
- the mesh-divided elements are quadrangular, but may have different shapes.
- the shapes and areas of the plurality of elements may be the same or different. For example, only the parts considered to be important may be finely divided into meshes. Further, since the waste thickness and the surface moving speed are used to correct the control values of the combustion control as described later, these values are referred to as correction data.
- the thickness of the waste is the length along the vertical direction from the grate to the surface of the waste, as shown in FIG.
- the position of the surface (upper surface) of the grate is stored in advance in the control device 90 or the like.
- the position of the surface of the waste can be specified based on the three-dimensional thermal image. Therefore, by comparing these two positions (coordinates), the thickness of the waste can be calculated for each element.
- the distribution of the thickness of waste for each element at a certain time can be calculated based on one three-dimensional thermal image. Since the three-dimensional thermal images are sequentially created, the thickness of the waste is calculated in the same manner for the newly created three-dimensional thermal images. In this way, the control device 90 calculates the thickness of the waste for each element and stores it in a predetermined storage unit in chronological order.
- the significance of calculating the thickness of waste is as follows. That is, the waste accumulated in the drying portion 11 is dried by evaporating the water contained in the waste as the drying operation (feeding operation) of the drying grate 21 is performed, and the mass is reduced and the volume is also reduced. .. That is, the time change of the thickness of the waste indicates the progress of the drying of the waste, and is a kind of index of the progress of the drying operation. Further, the waste accumulated in the combustion unit 12 is thermally decomposed by the combustion operation (feeding operation) of the combustion grate 22, and the thermal decomposition gas is discharged, so that the mass and volume are reduced. That is, the time change of the thickness of the waste indicates the process of thermal decomposition of the waste, and is a kind of index of the progress of the combustion operation.
- the surface moving speed of waste is the speed at which the surface of waste moves in the transport direction, as shown in FIG. In FIG. 6, a thick line is drawn on a relatively thick portion for easy understanding, and a state in which this portion moves is shown. Since the shape of the surface of the waste is shown in the three-dimensional thermal image, it is possible to obtain how the surface of the waste is moving based on the three-dimensional thermal image created in time series. Therefore, the surface moving speed of each mesh-divided element can be calculated based on the moving distance of a specific portion of the surface of the waste, the time interval at which the three-dimensional thermal image is acquired, and the like. As described above, the distribution of the surface moving speed of waste for each element can be calculated.
- the control device 90 calculates the surface moving speed of the waste and stores it in a predetermined storage unit in chronological order.
- the time change of the moving speed of the waste in the drying unit 11 is such that the waste accumulated in the drying unit 11 is sent in the transport direction while reducing the volume by the drying operation (feeding operation) of the drying grate 21. It shows the actual speed, and is an index of how the waste has been "moved” by the drying operation.
- the surface moving speed of the waste in the combustion unit 12 is such that the waste accumulated in the combustion unit 12 is sent in the feed direction while reducing the volume by the combustion operation (feed operation) of the combustion grate 22. It is an indicator of velocity and an indicator of how waste has been "moved” by the combustion operation. Since it is not possible to calculate how the surface other than the surface of the waste moves from the three-dimensional thermal image, in the present embodiment, the "surface movement speed of the waste” indicates the "movement speed of the entire waste". Assuming that, the following calculations are performed.
- the control value is a value changed to control the combustion state of the incinerator 10, and is, for example, the transfer speed of each grate, the supply amount of the primary combustion gas, the supply amount of the secondary combustion gas, and the like. It is a value for determining. The thickness of the waste, the surface moving speed, and the volumetric flow rate described later are affected by this control value. Therefore, in order to perform evaluation and control in consideration of the influence of the control value, the control device 90 stores the thickness of the waste and the surface movement speed in association with the control value set in the incinerator 10.
- control device 90 stores the thickness of the waste and the surface movement speed in association with the control values corresponding to the corresponding elements.
- the control device 90 calculates the thickness progress information for each element based on the thickness of the waste for each element and the surface movement speed, and stores the information in association with the control value (S103). This process is performed separately for the information in the first range and the second range.
- the thickness progress information is information indicating how the thickness changes in time series until the waste located in the element is located in the element.
- the thickness progress information of each element is schematically shown graphically. As shown in this graph, the thickness progress information is information in which "thickness" and "position in the transport direction with the passage of time" are associated with each other.
- the thickness progress information is information indicating, for example, the thickness of the waste in the element A at the present time when the waste in the element A was present at the upstream position in the past when the element A is focused on. ..
- the thickness progress information may be information in which the thickness and the time are associated with each other.
- the thickness progress information can be calculated as follows, for example. For example, when focusing on a certain element A, the progress of transporting the waste at the position of the element A at the present time (that is, at what time and in which element) is the current state of the element A and the element on the upstream side thereof and It can be calculated based on the past surface movement speed. Further, the thickness of the waste for each element and each time is calculated and stored in step S102. Therefore, the thickness progress information can be calculated by associating the time and elements indicated by the waste transportation progress with the thickness of the waste. In this way, the control device 90 calculates the thickness progress information based on the thickness of the waste and the surface moving speed.
- control device 90 Since the three-dimensional thermal images are sequentially created, new thickness progress information of the waste is calculated by performing the same calculation using the newly created three-dimensional thermal images.
- the control device 90 stores the calculated thickness progress information in a predetermined storage unit in chronological order. The process and the reason for associating the thickness progress information with the control value are the same as in step S102.
- the significance of obtaining thickness progress information is as follows. That is, how the thickness progress information of the drying portion 11 is obtained while the waste accumulated in the drying portion 11 is deposited and passed on the grate by the drying operation (feeding operation) of the drying grate 21. It shows the process of being sent in the feeding direction while reducing the volume, and is an index of how the volume of waste has been reduced by the drying operation. Further, the thickness progress information of the combustion unit 12 can be obtained as to how the waste accumulated in the combustion unit 12 is accumulated and passed on the grate by the combustion operation (feed operation) of the combustion grate 22. It shows the process of being sent in the feeding direction while reducing the volume, and is an index of how the volume of waste has been reduced by the combustion operation.
- the control device 90 calculates the volume flow rate progress information for each element based on the surface movement speed and the thickness progress information of the waste for each element, and the volume flow rate progress in the first range and the second range.
- the information is also stored in association with the control value (S104).
- a process of calculating the volume flow rate progress information is performed for each of the first range and the second range.
- the volume flow rate progress information is information indicating how the volume flow rate has changed in time series until the waste located in the element is located in the element.
- the volumetric flow rate progress information of each element is schematically shown graphically.
- the volume flow rate progress information is information in which the “volume flow rate” and the “transportation direction position with the passage of time” are associated with each other. That is, the volumetric flow rate progress information is information indicating what kind of volumetric flow rate the waste in the element A at the present time had when it was present at the upstream position in the past, for example, when focusing on the element A.
- the volume flow rate progress information may be information indicating the correspondence between the volume flow rate and the time.
- volumetric flow rate is the volume of waste that moves per unit time. Therefore, the volumetric flow rate can be calculated by multiplying the "waste thickness”, “waste surface moving speed”, and “furnace width length”, respectively. Further, the furnace width length when calculating the volume flow rate for each element is the furnace width length of each element. Therefore, the volume flow rate progress information is the value obtained by multiplying the "thickness of waste indicated by the thickness progress information" and the "surface movement speed of waste” by combining the elements (positions) and the time, and "the furnace width of each element". It can be calculated by multiplying by "length". In this way, the control device 90 calculates the volume flow rate progress information for each element.
- the control device 90 combines the volume flow rate progress information of the first range and the second range to generate one volume flow rate progress information.
- the first range and the second range partially overlap. Therefore, for the overlapping range, the value is determined by taking an average or using one of the volume flow rate progress information. Thereby, the volume flow rate progress information including the first range and the second range (that is, including the range from the drying section 11 to a part of the post-combustion section 13) can be calculated.
- the control device 90 stores this volume flow rate progress information in a predetermined storage unit. Since the three-dimensional thermal images are sequentially created, new volume flow rate progress information of the waste is calculated by performing the same calculation using the newly created three-dimensional thermal images. The control device 90 stores the calculated volumetric flow rate progress information in a predetermined storage unit in time series in association with the control value. The process and the reason for associating the volume flow rate progress information with the control value are the same as in step S102. Moreover, since the furnace width and length are constant, the volumetric flow rate progress information is a function of only the waste thickness and the surface moving speed. In other words, the volumetric flow rate progress information is conceptual information that includes not only the thickness of waste but also the moving speed.
- the process of multiplying the furnace width length is omitted when calculating the volume flow rate progress information. May be good. This is because what is required for combustion control is not a specific value of the volumetric flow rate, but a variation mode thereof.
- the vertical axis of the graph in the upper figure of FIG. 8 is not limited to a specific volume flow rate, and may be a value proportional (correlated) to the volume flow rate.
- volumetric flow rate progress information indicates the progress of the waste drying, and is a direct index of the degree of progress of the drying operation.
- drying of the waste progresses and the moisture from the waste evaporates (dry state)
- the amount of evaporation of the moisture decreases and the internal temperature of the waste layer rises, so that the waste heats up. It shifts to the state where decomposition gas is generated (thermal decomposition state).
- combustion startable state the state after the transition to the pyrolysis state is referred to as a "combustion startable state". Further, by shifting to the state where combustion can be started, the degree of change in the volume of waste becomes smaller. Therefore, the volumetric flow rate progress information is the most suitable index for evaluating the degree of the state in which combustion can be started.
- the volumetric flow rate progress information indicates the progress of thermal decomposition of waste, and is a direct index of the degree of progress of the combustion operation.
- the pyrolysis gasification reaction of waste reaction with a large degree of change in the volume of waste
- the post-combustion reaction of residual unburned carbon change in volume of waste
- the volumetric flow rate progress information is the most suitable index for evaluating the degree of "burnout state”.
- the control device 90 creates trend data showing the tendency of the volume flow rate to change with time based on the volume flow rate progress information for each element and the time change of the control value associated therewith (S105).
- S105 the control value associated therewith
- Waste is a mixture of substances with various properties in various proportions, and the properties and mixing proportions are unknown.
- the change in the volume of waste also depends on the configuration and control of the incinerator 10. Therefore, in general, it is difficult to grasp the tendency of changes in the volumetric flow rate of waste.
- the waste is divided into meshes and the volume flow rate progress information for each element is calculated, it is difficult to average the change in the volume flow rate.
- the control value that affects the volume flow rate progress information is stored in association with the volume flow rate progress information. From the above, in the present embodiment, it is possible to create trend data capable of specifying the change tendency of the volume flow rate and the influence of the control value on the volume flow rate to some extent.
- the tendency data created here may be a database of volume flow rate progress information and control values stored in the storage unit.
- it may be a model constructed by machine learning the volume flow rate progress information and the control value stored in the storage unit. In order to predict the volume flow rate, it is preferable that this model outputs the change of the volume flow rate in the future by inputting the volume flow rate up to the present time and the control value, for example.
- control device 90 predicts the future change of the volume flow rate for each element based on the trend data (S106). As shown in FIG. 8, for example, when focusing on the element A, it is predicted how the volumetric flow rate of the waste located in the element A will change in the future.
- the control device 90 first reads out the change in the volumetric flow rate and the change in the control value of the element of interest up to the present time.
- the tendency data can be used to determine the future volume flow rate of the waste located in this element. Change can be predicted. By making this prediction for a plurality of elements, it is possible to predict the overall movement of the waste in the incinerator 10. In addition, by predicting future changes in volume flow rate, it is possible to calculate volume flow rate progress information for the period from the past to the future.
- the control device 90 searches for past data similar to, for example, the "change in volume flow rate and control value up to the present time" of the element of interest. Then, the control device 90 extracts one or a plurality of similar past data, and predicts the change in the volume flow rate of the data of interest based on how the volume flow rate changes in the extracted data. ..
- the trend data is a model constructed by machine learning, by inputting the "change in volume flow rate up to the present time and control value" of the element of interest, the future change in volume flow rate of the data of interest is output. Will be done.
- the control device 90 identifies the elements that are in the combustion startable state and the burnout state for the waste at present and in the future (S201).
- the volumetric flow rate of the waste is greatly reduced at the timing of shifting to the combustion startable state. After that, at the timing of shifting to the burnout state, the volumetric flow rate of the waste drops significantly again. Therefore, based on the change in the volumetric flow rate, it is possible to identify the elements that are in the combustion startable state and the burnout state. Since the degree of change in the volumetric flow rate differs depending on the control value of the incinerator 10, it is preferable to specify by using a condition (for example, a threshold value) according to the control value.
- a condition for example, a threshold value
- the control device 90 performs this process on the volume flow rate progress information (information calculated in step S104) up to the present time. As a result, it is possible to identify the elements that are in the state where combustion can be started and the state where combustion is burned out for the current waste. Further, the control device 90 performs this process on, for example, the volume flow rate progress information (information predicted in step S106) after the lapse of the first time. As a result, it is possible to identify the elements that can start combustion and burn out the waste in the future.
- the control device 90 identifies an in-combustion element for the current and future waste (S202).
- the mid-combustion element is an element after the state in which combustion can be started and before the state in which combustion is completely burned out. Therefore, the control device 90 can identify the combustion intermediate element based on the identification result of the combustion startable state and the burnout state.
- FIG. 9 shows a specific result of whether or not the combustion is in progress.
- FIG. 9 is a schematic view of the transport unit 20 viewed in the vertical direction, and each of the squares shown in FIG. 9 is a mesh-divided element. In FIG. 9, diagonal lines are drawn for the elements identified as the in-combustion state.
- the control device 90 calculates the element calorific value index based on (1) volumetric flow rate and (2) combustion correction coefficient for the current and future mid-combustion elements (S203).
- the element calorific value index is an index of the calorific value of each element generated by the combustion of the pyrolysis gas generated from the waste.
- the amount of pyrolysis gas generated is proportional to the volumetric flow rate of the waste at that time. Therefore, for example, the current volumetric flow rate is used when calculating the current element heat quantity index.
- the amount of heat generated by the pyrolysis gas changes according to the progress of combustion. Therefore, a combustion correction coefficient according to the progress of combustion is used. For example, immediately after the start of combustion, the pyrolysis gas having a component that is easily thermally decomposed is preferentially generated, so that the amount of heat generated is lower than the amount of volume reduction. Therefore, the combustion correction coefficient immediately after the start of combustion is a low value. In the middle part between the start of combustion and the burning out, the temperature inside the waste becomes higher and the thermal decomposition progresses, so that the pyrolysis gas with a high calorific value is preferentially generated. Become. Therefore, the combustion correction coefficient between the start of combustion and the burnout is a high value.
- the progress of combustion can be specified based on the volume flow rate progress information. That is, since the volumetric flow rate decreases as the combustion progresses, the progress of combustion can be specified based on the change in the volumetric flow rate from the past to the present time. Further, the progress of combustion may be specified by further using the future change of the volumetric flow rate calculated in step S106. That is, by using the future change of the volumetric flow rate, the timing at which the waste of interest is burned out can be predicted more accurately, so that the progress of combustion can be specified more accurately.
- a table or the like in which the progress of combustion and the combustion correction coefficient are associated with each other is stored in the storage unit in advance, and the control device 90 reads out the combustion correction coefficient according to the progress of combustion to obtain the combustion correction coefficient. decide.
- the relationship between the progress of combustion and the amount of heat generated differs depending on the properties of the waste, the composition of the incinerator 10, the season, and the like. Therefore, in consideration of them, a plurality of tables may be prepared, or a process of correcting the combustion correction coefficient calculated from the tables may be performed.
- the control device 90 calculates the element calorific value index by multiplying the current volumetric flow rate by the combustion correction coefficient according to the current progress of combustion for the combustion mid-combustion element of interest. Further, by performing the same treatment on the future combustion midway element, the future element calorific value index is calculated. In this way, the amount of heat generated can be estimated accurately by performing the weighting calculation according to the progress of combustion.
- the control device 90 considers the area ratio of the elements, adds up the element heat quantity indexes, calculates and stores the current and future heat quantity indexes (S204).
- the calorific value index is an index of the calorific value generated from the inside of the furnace (that is, the entire waste), not for each element. Further, the calorific value index does not indicate a specific calorific value (joule value), but is a value for evaluating a change tendency such as how much the calorific value increases or decreases. Further, although the area of the mid-combustion element is not considered in the above calculation of the element heat quantity index, the amount of heat actually generated is proportional to the area of the mid-combustion element.
- the element calorific value index is added up in consideration of the area ratio of the element in the middle of combustion. For example, when all the elements in the middle of combustion have the same area, the element heat quantity indexes may be added as they are, or the average value of the element heat quantity indexes may be calculated. In addition, for example, if there is an element in the middle of combustion that has an area A times larger than the reference area, the element heat quantity index is multiplied by A and added, or the average value is calculated using the element heat quantity index multiplied by A. do it. From the above, the calorific value index can be calculated. Further, by performing the same processing on the future element heat quantity index, the future heat quantity index can be calculated. The control device 90 calculates the current and future heat quantity indexes as described above, and stores them in a predetermined storage unit in chronological order.
- the control device 90 increases or decreases the transfer speed of the combustion grate 22 based on the comparison result between the past calorific value index and the current calorific value index, and (b) dry fire.
- the control value is calculated (S205).
- the past calorific value index is a calorific value index calculated and stored by performing step S204 at a past time point. As described above, the transport speed of the grate can be changed by changing the operating speed and the stop time of the grate.
- the values related to the operation speed and the stop time are the control values. Further, by adjusting the first damper 81 to the fifth damper 85, the supply amounts of the primary combustion gas and the secondary combustion gas can be adjusted. Therefore, the value related to the opening degree of the first damper 81 to the fifth damper 85 is the control value.
- the transport speed of the combustion grate 22 is reduced in accordance with the increase in the amount of the thermally decomposed gas generated per hour, and the transport speed of the dry grate 21 and the post-combustion grate 23 is also reduced accordingly. Therefore, it is preferable to reduce the supply amount of the primary combustion gas supplied to the drying unit 11, increase the supply amount of the primary combustion gas supplied to the combustion unit 12, and increase the supply amount of the secondary combustion gas. .. As a result, stable combustion can be appropriately maintained. Further, when the calorific value index becomes smaller in the future, it is preferable to control to change each value in the direction opposite to the above.
- the calorific value index used to calculate the control value is information from the past to the present time, the current and future change trends are not fully considered. Therefore, more stable combustion can be maintained by correcting the degree of increase in the transport speed based on the above-mentioned correction data which is further information on the properties of the waste at the present time.
- the correction is performed using at least one of the time change of the thickness of the waste and the time change of the surface movement speed of the waste.
- the actual combustion time is even shorter than the assumed combustion time. Therefore, it may be preferable to further increase the transport speed. Further, when the surface moving speed of the waste is also accelerated, the actual burning time tends to be further shorter than the assumed burning time, so that it may be preferable to further increase the transport speed.
- the calorific value index at one time in the past is compared with the calorific value index at the present time, and it is estimated whether the calorific value index is increasing or decreasing.
- the calorific value index at a plurality of points in the past may be used.
- the increasing tendency or decreasing tendency of the calorific value index can be estimated in more detail, and there is a possibility that more appropriate control can be performed. For example, if the calorific value index has increased over a long period of time from the past to the present, it is considered that the properties of the entire waste have changed and the calorific value generated has increased. Therefore, in such a case, it is preferable to change the control value. On the other hand, if the calorific value index is frequently increased or decreased from the past to the present time, it is considered that the properties of the waste have changed temporarily, so the control value is not changed (the amount of change is small). ) Is preferable.
- the combustion generated in the incinerator 10 greatly differs depending on the shape and structure of the incinerator 10 and the waste to be input.
- the target combustion state greatly differs depending on the required processing amount, the durability of the incinerator 10, the laws and regulations regarding exhaust gas, and the like. Therefore, even if it is predicted that the calorific value index will change, it may be desirable not to change the control values from (a) to (d).
- the control device 90 further uses various detection data (for example, detection data from the incinerator gas temperature sensor 91 to the NOx gas concentration sensor 94, etc.) to control the values (a) to (d). It is preferable to calculate.
- the control device 90 corrects the control values (a) to (d) based on the comparison result between the current calorific value index and the future calorific value index (for example, a temporary point) (S206). ).
- the change in calorific value index from the past to the present is highly reliable because it is based on the fact that it has already been completed. However, it may not be possible to calculate an appropriate control value by itself. For example, if the calorific value index has increased from the past to the present time and the calorific value index has decreased from the present time, it may not be necessary to change the control value. Therefore, in the present embodiment, the control value obtained by the calorific value index from the past to the present time is corrected based on the predicted value of the calorific value index from the present time to the future. Thereby, stable combustion can be maintained more appropriately.
- control value is calculated or corrected based on the magnitude relationship of the calorific value index, but in addition, the control value is calculated or corrected based on the magnitude of the increase / decrease amount of the calorific value index. May be good.
- control value is calculated based on the change in the calorific value index from the past to the present time, and the control value is corrected based on the predicted change in the calorific value index from the present time to the future.
- the change in the calorific value index from the past to the future may be obtained, and the control value may be calculated based on this change.
- the process of correcting the control value based on the calorific value index from the present time to the future may be omitted.
- control device 90 executes the controls (a) to (d) with the control values calculated and corrected in steps S205 and S206 (S207).
- control device 90 performs the processing in step S101 and subsequent steps again after the processing in step S207.
- the control device 90 performs the processing in step S101 and subsequent steps again after the processing in step S207.
- the same reference numerals may be given to the members which are the same as or similar to those of the first embodiment, and the description may be omitted. Further, the description may be omitted for the same or similar processing as that of the first embodiment.
- the second embodiment is different from the first embodiment in that it mainly uses the surface temperature of the waste and calculates an index of not only the amount of heat but also the amount of dryness.
- the control device 90 detects not only the thickness and surface movement speed of the waste but also the surface temperature of the waste for each element and stores them in association with the control value based on the three-dimensional thermal image. (S102').
- the steps S101, S103, and S104 of the second embodiment are the same as those of the first embodiment. Further, since the prediction accuracy of the future change of the surface temperature is low, the future prediction is not performed in the second embodiment. Therefore, in the second embodiment, the process of predicting the change in the volumetric flow rate is omitted. However, since the prediction of the change in the volumetric flow rate is useful for determining the progress of combustion and the progress of drying described later, a process for predicting the change in the volumetric flow rate may be performed.
- control device 90 identifies the elements that are in the combustion startable state and the burnout state for the waste at the present time (S301).
- the specific treatment is the same as step S201 of the first embodiment except that the future waste is not treated.
- the control device 90 identifies a drying intermediate element and a burning intermediate element for the current waste (S302).
- the method of identifying the mid-combustion element is the same as that of the first embodiment.
- the element in the middle of drying is an element before the combustion can be started. Therefore, as shown in FIG. 10, the control device 90 identifies whether each element is a drying intermediate element, a burning intermediate element, or another element.
- the control device 90 calculates an element drying amount index based on (1) volume flow rate, (2) drying correction coefficient, and (3) surface temperature for the current drying intermediate element (S303). ..
- the element dryness index is an index for each element of the amount of water that evaporates from waste. The amount of water that evaporates from the waste is proportional to the volumetric flow rate of the waste.
- the drying correction coefficient is a value corresponding to a change in the amount of generated water with respect to the amount of volume reduction in the progress of drying.
- the method for calculating the progress of drying can be calculated based on the change in the volumetric flow rate from the past to the present (or from the past to the future), similarly to the method for calculating the progress of combustion described above.
- the amount of water that evaporates from the waste changes according to the surface temperature of the waste. That is, the water contained in the waste cools the surface of the waste as it evaporates. Therefore, the surface temperature of the waste is an index of the amount of water that evaporates from the waste. That is, the lower the surface temperature of the waste, the smaller the amount of water that evaporates from the waste.
- the surface temperature of the waste is compared to other parts ( Or locally lower (compared to the past). Therefore, by correcting the drying amount index based on the surface temperature of the waste, for example, even when specific drying occurs, the drying amount index can be calculated in consideration of the influence.
- the control device 90 multiplies the current volume flow rate by the current drying progress coefficient for the element in the process of drying, and further corrects it at the current surface temperature to dry the element. Calculate the quantity index.
- the control device 90 considers the area ratio of the elements, adds up the element drying amount indexes, calculates and stores the current drying amount index (S304).
- the dry amount index is an index of the amount of water that evaporates from the inside of the furnace (that is, the entire waste), not for each element. Further, the dry amount index does not indicate a specific dry amount value, but is a value for evaluating a change tendency such as how much the dry amount increases or decreases.
- the consideration of the area ratio of the elements is the same as the calculation method of the calorific value index.
- the control device 90 calculates the dry amount index as described above, and stores it in a predetermined storage unit in time series in association with, for example, the time.
- control device 90 calculates the element calorific value index for the current burning element in substantially the same manner as in the first embodiment, and calculates the calorific value index by adding them together (S305, S306).
- the difference from the first embodiment is that the surface temperature is further used when calculating the element heat quantity index.
- the surface temperature of waste There is a correlation between the surface temperature of waste and the amount of heat generated by the pyrolysis gas. For example, the higher the surface temperature, the higher the amount of heat generated. Therefore, by correcting the element heat quantity index based on the surface temperature, a more reliable element heat quantity index can be obtained.
- the control device 90 burns based on the comparison result between the past dry amount index and the current dry amount index, and the comparison result between the past calorific value index and the current calorific value index. Increasing or decelerating the transport speed of the grate 22, (b) increasing or decelerating the transport speed of the dry grate 21, post-combustion grate 23, (c) adjusting the supply amount of primary combustion gas, (d) The control value for controlling the adjustment of the supply amount of the secondary combustion gas is calculated and the control is executed (S307).
- the object to be controlled is the same as that of the first embodiment. Further, what kind of control value is calculated based on the past and present heat quantity indexes is the same as that of the first embodiment.
- the main difference from the first embodiment is that future information is not used as described above and that the dryness index is additionally used.
- the dryness index is on the increase, it can be estimated that the properties of the waste supplied to the incinerator 10 have changed and the water content of the waste has increased. Since the amount of heat generated from waste having a high water content is relatively low, the amount of heat generated in the incinerator 10 may decrease in the future. In this way, future changes in calorific value can be predicted based on the actual dryness index.
- the control device 90 calculates a new control value based on, for example, a calorific value index from the past to the present, and corrects this control value based on a prediction of a future change in calorific value based on the actual dryness index. Then, the control device 90 performs control using the corrected control value.
- the second embodiment basically performs the same processing as the first embodiment.
- the description of the first embodiment for example, modification, correction by correction data, storage of each value in association with the control value, consideration of the control value at the time of determination, repeated control, etc.
- the amount of evaporation of the boiler is stabilized by using the current and future calorific value indexes calculated by the method of the first embodiment. Further, in the third embodiment, in order to analyze the flame generated by the primary combustion (flame generated from the waste), a three-dimensional image of the flame (hereinafter, three-dimensional flame image) is created. Hereinafter, a detailed description will be given.
- a set of visible light cameras 97 is further provided.
- the visible light cameras 97 are in pairs, but three or more may be in pairs.
- Each visible light camera 97 has the same structure. Since the visible light camera 97 aims to create a three-dimensional image, the relative positions of the plurality of visible light cameras 97 are stored in advance. Further, the visible light camera 97 is a camera that mainly detects visible light in order to acquire an image such as the color and brightness of the flame, but may be an infrared camera.
- Each visible light camera 97 aims to acquire an image of a flame generated in the primary combustion and reaching the secondary combustion zone 2 from the primary combustion zone 1.
- the visible light camera 97 acquires an image through a window portion 14b formed side by side in the furnace width direction on a back wall 14a provided at an end on the downstream side in the transport direction. Further, the position where the visible light camera 97 is provided, the direction in which the visible light cameras 97 are arranged, and the like may be different.
- the visible light camera 97 may be provided on the side wall 14c, which is the end portion in the furnace width direction. Further, the observation target of the visible light camera 97 may be a flame in the primary combustion zone 1.
- the flame cross-sectional area is calculated based on the three-dimensional flame image, but since the control is performed using the amount of change rather than the specific numerical value of the flame cross-sectional area, the flame is surrounded. It is not necessary to arrange the visible light camera 97 in the. Therefore, the object of the present invention can be achieved even if the visible light camera 97 is arranged only on the back wall 14a as in the present embodiment.
- control device 90 performs the same processing as steps S101 to S106 and S201 to S204 of the first embodiment to calculate a heat quantity index at one time point in the present time and in the future.
- the control device 90 acquires and stores the boiler evaporation amount detected by the boiler steam amount sensor 99 (S401). Since steam is generated in the boiler 30 according to the amount of heat generated in the incinerator 10, there is a high correlation between the amount of heat generated in the incinerator 10 and the amount of evaporation of the boiler. The control device 90 stores the amount of boiler evaporation in the storage unit in chronological order.
- the control device 90 calculates and stores the first correlation information regarding the correlation between the past calorific value index and the past boiler evaporation amount (S402). Since both the calorific value index and the boiler evaporation amount are values related to the calorific value generated in the incinerator 10, there is a correlation. However, there is a time delay before the calorific value evaluated by the calorific value index acts on the boiler 30. Therefore, it is possible to calculate a guideline for the time delay by comparing the behavior in which the calorific value index fluctuates according to the time and the behavior in which the boiler evaporation amount fluctuates according to the time.
- the first correlation information (for example, the calorific value index and the boiler) is compared.
- the relational expression of the amount of evaporation can be calculated.
- the first correlation information may be newly calculated each time a new calorific value index or boiler evaporation amount is acquired, or the first correlation information once calculated may be continuously used for at least a predetermined time.
- the control device 90 predicts the future boiler evaporation amount based on the first correlation information and the future heat quantity index (S403). Since the first correlation information is information showing the relationship between the calorific value index and the boiler evaporation amount, by applying the future calorific value index to the first correlation information (for example, by inputting the future calorific value index in the relational expression), the future Boiler evaporation amount can be predicted.
- the control device 90 calculates the target evaporation amount change based on the current boiler evaporation amount and the future boiler evaporation amount (S404).
- the target evaporation amount change indicates a change in the boiler evaporation amount for stabilizing the boiler evaporation amount.
- the target evaporation amount change may only indicate an increase or decrease of increasing, maintaining, or decreasing the boiler evaporation amount. Alternatively, the target evaporation amount change may indicate a specific increase / decrease amount.
- the target evaporation amount change is calculated as follows, for example. That is, an ideal value of the amount of boiler evaporation is set in the incinerator 10.
- the target evaporation amount change is calculated so that the difference between the future boiler evaporation amount and the ideal value becomes small. For example, when the future boiler evaporation amount is larger than the ideal value, the target evaporation amount change called "decrease" is calculated.
- control device 90 calculates the target evaporation amount change. Next, the control device 90 performs the following processing to analyze the flame generated by the primary combustion.
- the control device 90 acquires and stores the secondary combustion temperature detected by the secondary combustion temperature sensor 98 (S405).
- the secondary combustion temperature is a value related to the amount of heat currently generated in the incinerator 10 (in other words, the amount of heat generated based on the currently occurring flame).
- the control device 90 stores the secondary combustion temperature in the storage unit in chronological order.
- control device 90 stores a three-dimensional flame image created by the image processing device 96 based on the visible images acquired by the plurality of visible light cameras 97 (S406).
- the method of creating a three-dimensional flame image from the visible images acquired by the plurality of visible light cameras 97 is the same as the method of creating a three-dimensional thermal image of the waste of the first embodiment.
- the control device 90 calculates and stores the flame cross-sectional area and the flame flow velocity based on the three-dimensional flame image (S407).
- the flame cross-sectional area is the cross-sectional area when the flame of the three-dimensional flame image is cut by a predetermined virtual plane.
- the virtual plane 101 is a plane that intersects the flow path of the combustion gas (specifically, the primary combustion gas generated in the primary combustion and the secondary combustion gas generated in the secondary combustion).
- the flow path of the combustion gas is the direction in which the combustion gas is directed as a whole (in other words, the direction toward the boiler 30 in the secondary combustion zone 2).
- the virtual plane 101 is orthogonal to the flow path of the combustion gas.
- the outline of the virtual plane 101 is drawn to divide the range of the virtual plane 101.
- the range having a large spread in the furnace width direction and the transport direction should be the virtual plane 101.
- the area of the virtual cross section 102 when the flame of the three-dimensional flame image is cut by this virtual plane 101 is the flame cross-sectional area.
- the control device 90 draws the outline of the virtual cross section 102 in the range of the flame created by the three-dimensional flame image, and performs linear interpolation or the like for the portion not specified by the three-dimensional flame image to perform the virtual cross section 102. To create.
- the flame flow velocity is the gas flow velocity in the direction along the flow path of the combustion gas at the position of the virtual plane 101 described above.
- the more combustion gas is generated in the incinerator 10 that is, the larger the amount of heat generated in the incinerator 10
- the control device 90 calculates the flame flow velocity from the movement of the flame based on the three-dimensional flame image of the virtual plane 101 and its vicinity in the vertical direction.
- the flame flow velocity differs depending on the position of the virtual plane 101 in the horizontal direction.
- the flame flow velocity at the corresponding time is determined by calculating the average flow velocity in a predetermined range.
- the position where the flame flow velocity is calculated coincides with the position where the flame cross-sectional area is calculated, but it may be different. That is, the control device 90 may perform a process of calculating the flame flow velocity on the upstream side or the downstream side of the virtual plane 101.
- the control device 90 stores the flame cross-sectional area and the flame flow velocity in the storage unit in chronological order by performing the above processing on the three-dimensional flame image at each time.
- the flame cross-sectional area and the flame flow velocity indicate the state of the flame and therefore correspond to the flame state information.
- the control device 90 calculates the second correlation information regarding the correlation between the flame cross-sectional area, the flame flow velocity, the secondary combustion temperature, and the boiler evaporation amount (S408).
- the second correlation information can be calculated by the same method as the first correlation information.
- the guideline for the time delay should be calculated by comparing the behavior in which the flame cross-sectional area, flame flow velocity, and secondary combustion temperature fluctuate according to the time and the behavior in which the boiler evaporation amount fluctuates according to the time. Can be done.
- the second correlation information is calculated individually for each of the flame cross-sectional area, the flame flow velocity, and the secondary combustion temperature.
- the second correlation information between the flame cross-sectional area and the boiler evaporation amount is appropriately obtained.
- the second correlation information may be newly calculated each time a new three-dimensional flame image or boiler evaporation amount is acquired, or the second correlation information once calculated may be continuously used for at least a predetermined time. ..
- the control device 90 calculates the target flame change based on the second correlation information and the target evaporation amount change (S409).
- the target flame change indicates how to change the flame (including the secondary combustion temperature) in order to change the boiler evaporation amount according to the target evaporation amount change.
- the target flame change may indicate only an increase or decrease in the amount of heat, such as changing the flame so as to increase, maintain, or decrease the amount of heat generated.
- the target flame change may indicate an increase or decrease in individual information (that is, an increase or decrease in the flame cross-sectional area, an increase or decrease in the flame flow velocity, and an increase or decrease in the secondary combustion temperature).
- the target flame change may indicate an approximate amount of increase or decrease in individual information.
- the second correlation information shows the relationship between the flame cross-sectional area, the flame flow velocity, the secondary combustion temperature, and the amount of boiler evaporation. Therefore, it is possible to calculate how the flame cross-sectional area, the flame flow velocity, and the secondary combustion temperature can be changed according to the change in the target evaporation amount to realize the change in the boiler evaporation amount indicated by the change in the target evaporation amount.
- the control device 90 increases or decreases the transfer speed of the combustion grate 22 based on the target flame change, and (b) the transfer speed of the dry grate 21 and the post-combustion grate 23.
- the control value for speeding up or decelerating, (c) adjusting the supply amount of the primary combustion gas, and (d) adjusting the supply amount of the secondary combustion gas is calculated and controlled (S410). ). Since it is already known how the flame cross-sectional area, the flame flow velocity, and the secondary combustion temperature change when these control values are changed, these control values are based on the information. Should be calculated. By performing this control, the boiler evaporation amount can be brought close to the target evaporation amount.
- the target evaporation amount is a value calculated based on the predicted value of the highly reliable calorific value index. From the above, the amount of boiler evaporation can be stabilized.
- the description of the first embodiment (for example, modification, correction by correction data, storage of each value in association with the control value, consideration of the control value at the time of determination, repeated control, etc.) is inconsistent. As long as the above does not occur, the third embodiment also applies.
- the combustion state evaluation method of the above embodiment is divided into a drying unit 11, a combustion unit 12, and a post-combustion unit 13, and operates intermittently in a state where waste is accumulated. This is done for an incinerator 10 having a grate for transporting the waste.
- This combustion state evaluation method includes a production step, a division step, a first calculation step, a second calculation step, a third calculation step, a specific step, a determination step, and a first evaluation step.
- a plurality of infrared cameras 95 are used to observe at least the waste accumulated in the drying section 11 and the burning section 12 through the selective transmission filter 95a that selectively transmits light having a wavelength not emitted by the flame.
- a plurality of thermal images having different viewpoints are acquired, and a three-dimensional thermal image is created based on the plurality of thermal images.
- the waste of the three-dimensional thermal image is mesh-divided into a plurality of elements.
- the thickness of the waste and the surface movement speed of the waste are calculated for each element based on the three-dimensional thermal image.
- the element includes thickness progress information indicating how the thickness of the waste located in the element changes in time series until it is located in the element. Calculated for each.
- the third calculation step based on the calculation results of the first calculation step and the second calculation step, it is shown how the volume flow rate changes in time series until the waste located in the element is located in the element.
- Volumetric flow rate progress information is calculated for each element.
- the volume flow rate progress information is analyzed to identify an in-combustion element that is an element after the combustion startable state is reached and before the combustion burnout state is reached.
- the determination step the progress of combustion is specified based on the change in the volumetric flow rate from the past to the present time of the waste located in the intermediate combustion element, and the combustion correction coefficient according to the progress is determined.
- the current volume flow rate of waste is multiplied by the combustion correction coefficient for the mid-combustion element, and the calculation result (element calorific value index) for each mid-combustion element is taken into consideration for the area ratio of the element.
- the calorific value index which is an index of the calorific value generated from the waste, is calculated.
- the calorific value which is an index of the amount of pyrolysis gas generated per hour (the amount of heat generated). The index can be calculated.
- the current calorific value index can be calculated with high accuracy by calculating the calorific value index using the volume flow rate of waste during combustion and the combustion correction coefficient. .. In the incinerator 10, it is desired to stabilize the amount of heat generated, so such a highly reliable heat amount index is useful as an index of combustion control.
- the time change of the control value including at least the volume flow rate progress information for each element and the value used for combustion control for setting the transport speed of the grate. And, based on the tendency of the volume flow rate over time obtained based on, includes a prediction step of predicting the future change of the volume flow rate for each element.
- the future calorific value index is calculated by performing the specific step, the determination step, and the first evaluation step based on the future change of the volume flow rate predicted in the prediction step.
- the future calorific value index is useful as an index of combustion control for stabilizing the future calorific value.
- control step of controlling the incinerator 10 is performed based on the comparison result between the past calorific value index and the current calorific value index.
- combustion control can be performed according to how the amount of heat generated in the incinerator 10 has changed from the past to the present. As a result, stable combustion can be appropriately maintained.
- control step of controlling the incinerator 10 is performed based on the comparison result between the current calorific value index and the future calorific value index.
- combustion control can be performed according to how the amount of heat generated in the incinerator 10 will change in the future. As a result, stable combustion can be maintained more appropriately.
- the combustion condition evaluation method of the second embodiment includes a temperature detection step of detecting the surface temperature of waste for each element based on a three-dimensional thermal image.
- the calorific value index is calculated by further using the surface temperature of the waste located in the intermediate combustion element.
- the combustion condition evaluation method of the second embodiment includes a second evaluation step of calculating a dry amount index which is an index of the dry amount of the waste of the drying unit 11.
- the volume flow rate progress information is analyzed to identify an element in the middle of drying, which is an element before the combustion can be started.
- the progress of drying is specified based on the change in volumetric flow rate from the past to the present time of the waste located in the element in the middle of drying, and the drying correction coefficient according to the progress is determined.
- the current volumetric flow rate of the waste is multiplied by the drying correction coefficient for the elements in the middle of drying, and the calculation result for each element in the middle of drying (element drying amount index) is taken into consideration in the area ratio of the elements. By adding up, the dryness index of the waste is calculated.
- the drying amount index is calculated by further using the surface temperature of the waste located in the element in the middle of drying.
- control step of controlling the incinerator 10 is performed based on the comparison result between the past calorific value index and the current calorific value index.
- a control step for controlling the incinerator 10 is performed based on the above.
- the combustion status evaluation method of the third embodiment includes an evaporation amount detection step, a preparation step, and a boiler prediction step.
- the evaporation amount detection step the boiler evaporation amount generated by recovering the heat amount generated in the incinerator 10 by the boiler 30 is detected.
- the preparatory step the first correlation information regarding the correlation between the past calorific value index and the past boiler evaporation amount is calculated.
- the boiler prediction step the future boiler evaporation amount is predicted based on the first correlation information and the future calorific value index.
- the combustion control method of the third embodiment includes an analysis step and a control step.
- the analysis process the flame generated from the waste is analyzed.
- the incinerator 10 is controlled.
- a plurality of visible light cameras 97 are used to observe flames generated from waste, a plurality of images having different viewpoints are acquired, and a three-dimensional flame image is created based on the plurality of images. ..
- the analysis step the three-dimensional flame image is analyzed, and the flame state information which is the information about the state of the flame and is the information for evaluating the change in the amount of heat generated from the flame is calculated.
- the second correlation information regarding the correlation between the flame state information and the detected value of the boiler evaporation amount is calculated.
- the target evaporation amount showing how to change the boiler evaporation amount in order to stabilize the boiler evaporation amount based on the comparison result between the current boiler evaporation amount and the future boiler evaporation amount. Calculate the change.
- how to change the flame for the target evaporation amount change is calculated based on the second correlation information and the target evaporation amount change, and the incinerator 10 is controlled accordingly.
- the flame state information includes a flame cross-sectional area obtained by cutting the flame on a predetermined virtual plane 101 intersecting the flow path of the combustion gas generated in the primary combustion or the secondary combustion.
- the flame flow velocity in the direction along the flow path and.
- the target flame change indicating how the flame cross-sectional area and the flame flow velocity are changed for the target evaporation amount change is specified, and the incinerator 10 is controlled according to the target flame change.
- the flame is analyzed in detail and the combustion control is performed accordingly, so that the amount of boiler evaporation can be further stabilized.
- the second correlation information also includes the correlation between the secondary combustion temperature, which is the temperature of the secondary combustion zone 2, and the amount of boiler evaporation.
- combustion control is performed using not only the shape of the flame but also the secondary combustion temperature related to it, so that the amount of boiler evaporation can be further stabilized.
- control step based on at least one of the thickness of the waste and the surface movement speed of the waste calculated in the first calculation step, (a). ) To (d), the control values used in the four controls are corrected.
- control value can be corrected by using the information on the properties of the waste actually in the drying section 11 or the burning section 12 in addition to the current and past calorific value indexes. It is possible to maintain stable combustion that is more in line with the object.
- two sets of infrared cameras 95 are used to observe the wastes from the drying section 11 to the post-burning section 13, but one set or three or more sets of infrared cameras 95 are used to observe these wastes. It may be.
- the first and second three-dimensional thermal images are created, and the processes of steps S102 to S104 are performed on each of the three-dimensional thermal images.
- one three-dimensional thermal image (a thermal image showing the three-dimensional position of the waste from the drying portion 11 to the post-combustion portion 13) is created based on the thermal images acquired by the two sets of infrared cameras 95. You may. In this case, the processes of steps S102 to S104 are performed on one three-dimensional thermal image.
- the volume flow rate progress information is calculated for each of the first range and the second range, and then the two are combined.
- the thickness and the surface movement speed ( Alternatively, after calculating the thickness progress information), both may be combined.
- the combustion control may be performed by omitting at least one detection data, or by adding detection data other than the above.
- detection data for example, the amount of water for water spray cooling in the case of cooling by water spray can be used.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Incineration Of Waste (AREA)
Abstract
This combustion state evaluation method includes: a formation step; a division step; a first calculation step; a second calculation step; a third calculation step; an identification step: a determination step; and a first evaluation step. In the formation step, a three-dimensional thermal image is formed by observing a waste deposited on at least a combustion unit. In the division step, the waste in the three-dimensional thermal image is mesh-divided into a plurality of elements. In the first calculation step, the thickness of the waste and the surface moving speed of the waste are calculated for each of the elements. In the second calculation step, thickness progress information is calculated for each of the elements. In the third calculation step, volume flowrate progress information is calculated for each of the elements. In the identification step, a combustion-in-progress element is identified. In the determination step, the degree of progress of combustion is identified, and a combustion correction coefficient based on the degree of progress is determined. In the first evaluation step, a heat amount index is calculated.
Description
本発明は、主として、火格子により廃棄物を搬送しながら焼却する火格子式の焼却炉において、安定な燃焼を適切に維持するために燃焼状況を評価する方法に関する。
The present invention mainly relates to a method of evaluating a combustion state in order to appropriately maintain stable combustion in a grate-type incinerator that incinerates waste while transporting it by a grate.
焼却炉には、多種多様な廃棄物が投入されるため、投入された廃棄物の性状が変化した場合であっても、安定な燃焼を適切に維持できることが重要となる。また、火格子式の廃棄物焼却炉では、廃棄物を乾燥させる乾燥部と、廃棄物を火炎燃焼させる燃焼部と、廃棄物を後燃焼(オキ燃焼)させる後燃焼部と、に区分されている。安定な燃焼を適切に維持する燃焼制御を行うためには、例えば、火格子に堆積されている廃棄物に関する十分な情報を取得することが重要となる。特許文献1から9には、廃棄物に関する情報を取得して制御する方法が開示されている。
Since a wide variety of wastes are put into the incinerator, it is important to be able to properly maintain stable combustion even if the properties of the put wastes change. In addition, the grate-type waste incinerator is divided into a drying section for drying the waste, a combustion section for burning the waste with flame, and a post-combustion section for post-combusting the waste (Oki combustion). There is. In order to perform combustion control to properly maintain stable combustion, for example, it is important to obtain sufficient information on the waste deposited on the grate. Patent Documents 1 to 9 disclose methods for acquiring and controlling information on waste.
特許文献1の方法では、焼却炉の壁部に設けた2つの撮像手段により、火炎の可視画像と、火格子上の廃棄物の赤外線画像(熱画像)を取得し、この可視画像と熱画像とを燃焼制御のために用いる。特許文献2の方法では、2台のテレビカメラを用いて焼却炉内を撮影して可視画像を取得し、これらの画像に基づいて立体画像を作成し、この立体画像を燃焼制御のために用いる。特許文献3から5の方法では、1又は複数の熱画像撮像部により、火格子上の廃棄物の熱画像を撮像し、1又は複数の熱画像を燃焼制御のために用いる。特に、特許文献3及び4では、火炎の影響を除外するために、特定の波長の赤外線を検出する熱画像撮像部を用いることが記載されている。特許文献6の方法では、レーダ装置を用いて火格子上の燃料の3次元分布を取得するとともに、赤外線カメラを用いて火格子上の燃料の温度分布を取得し、これらの情報を燃焼制御のために用いる。特許文献7の方法では、火炎の波長を除去する光学フィルタを有しているステレオカメラを用いて火格子上の廃棄物の高さを取得して燃え切り位置を推定し、燃え切り位置を燃焼制御のために用いる。特許文献8の方法では、炉内を移動するごみの熱画像を炎越しに連続的に撮像し、熱画像データからごみの炉本体の両側の内壁面との境界線を検出することで、撮影領域におけるごみの推定体積を算出し、ごみの推定体積を燃焼制御に用いる。
In the method of Patent Document 1, a visible image of a flame and an infrared image (thermal image) of waste on a grate are acquired by two imaging means provided on the wall of an incinerator, and the visible image and the thermal image are obtained. And are used for combustion control. In the method of Patent Document 2, the inside of the incinerator is photographed by using two TV cameras to acquire a visible image, a stereoscopic image is created based on these images, and this stereoscopic image is used for combustion control. .. In the methods of Patent Documents 3 to 5, one or a plurality of thermal image capturing units capture a thermal image of waste on a grate, and the one or a plurality of thermal images are used for combustion control. In particular, Patent Documents 3 and 4 describe that a thermal image imaging unit that detects infrared rays having a specific wavelength is used in order to exclude the influence of flame. In the method of Patent Document 6, a radar device is used to acquire the three-dimensional distribution of fuel on the grate, and an infrared camera is used to acquire the temperature distribution of fuel on the grate, and this information is used for combustion control. Used for. In the method of Patent Document 7, the height of waste on the grate is obtained by using a stereo camera having an optical filter for removing the wavelength of the flame, the burnout position is estimated, and the burnout position is burned. Used for control. In the method of Patent Document 8, the thermal image of the waste moving in the furnace is continuously imaged through the flame, and the boundary line with the inner wall surface of both sides of the furnace body of the waste is detected from the thermal image data. The estimated volume of waste in the region is calculated and the estimated volume of waste is used for combustion control.
特許文献1及び2のように可視画像を用いる場合、燃焼部で発生している火炎が邪魔となり、火格子上の廃棄物の形状及び動きを十分に取得できない。そもそも、特許文献2は、異常燃焼の位置を検出するために画像を取得し立体画像を作成しており、火格子上の廃棄物を検出対象としていない。特許文献3から5は、1又は複数の廃棄物の熱画像をそのまま用いるため、廃棄物の詳細な形状及びその動きを十分に取得できない。また、特許文献6のように火格子上の燃料をレーダで検出する場合、高温環境かつ火炎が存在する状況において、廃棄物で反射された電磁波を検出する必要があるため、レーダ自体のコストが高くなる。また、特許文献6では、赤外線カメラは、燃料の形状ではなく温度分布を取得するために用いられている。特許文献7では、廃棄物高さ情報を用いて燃え切り位置を推定しているが、廃棄物の性状に応じて廃棄物の高さだけでなく廃棄物の送り速度も変化するため、廃棄物高さのみからでは、燃焼状態制御を行うために適切な燃え切り位置を算出できないことがある。特許文献8では、ごみの推定体積の算出に使用する情報として、ごみの炉本体の両側の内壁面との境界線のみを使用するため、炉幅方向のごみ高さの違いが考慮されない。その結果、ごみの推定体積の精度が低くなるため、燃焼制御の指標とするためには、誤差が大き過ぎる可能性がある。
When a visible image is used as in Patent Documents 1 and 2, the flame generated in the combustion part becomes an obstacle, and the shape and movement of the waste on the grate cannot be sufficiently obtained. In the first place, Patent Document 2 acquires an image to detect the position of abnormal combustion and creates a stereoscopic image, and does not target waste on the grate. In Patent Documents 3 to 5, since the thermal images of one or more wastes are used as they are, the detailed shape and movement of the wastes cannot be sufficiently obtained. Further, when the fuel on the grate is detected by the radar as in Patent Document 6, it is necessary to detect the electromagnetic wave reflected by the waste in a high temperature environment and in the presence of flame, so that the cost of the radar itself is high. It gets higher. Further, in Patent Document 6, the infrared camera is used to acquire the temperature distribution instead of the shape of the fuel. In Patent Document 7, the burnout position is estimated using the waste height information, but since not only the height of the waste but also the feed rate of the waste changes depending on the properties of the waste, the waste It may not be possible to calculate an appropriate burnout position in order to control the combustion state from the height alone. In Patent Document 8, since only the boundary line with the inner wall surface of both sides of the furnace body of the waste is used as the information used for calculating the estimated volume of the waste, the difference in the height of the waste in the furnace width direction is not considered. As a result, the accuracy of the estimated volume of waste becomes low, and the error may be too large to be used as an index of combustion control.
本発明は以上の事情に鑑みてされたものであり、その主要な目的は、燃焼制御の指標とするために適切な情報を算出する方法を提供することにある。
The present invention has been made in view of the above circumstances, and its main purpose is to provide a method for calculating appropriate information for use as an index of combustion control.
本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段とその効果を説明する。
The problem to be solved by the present invention is as described above, and next, the means for solving this problem and its effect will be described.
本発明の観点によれば、以下の燃焼状況評価方法が提供される。即ち、この燃焼状況評価方法は、乾燥部と燃焼部と後燃焼部とに区分されており、廃棄物が堆積した状態で間欠的に動作することで当該廃棄物を搬送する火格子を備える焼却炉に対して行われる。この燃焼状況評価方法は、作成工程と、分割工程と、第1算出工程と、第2算出工程と、第3算出工程と、特定工程と、決定工程と、第1評価工程と、を含む。前記作成工程では、複数の赤外線カメラを用いて、火炎が放射しない波長の光を選択的に透過させるフィルタを介して、少なくとも前記乾燥部及び前記燃焼部に堆積した前記廃棄物を観測して、視点が異なる複数の熱画像を取得し、当該複数の熱画像に基づいて、3次元熱画像を作成する。前記分割工程では、前記3次元熱画像の前記廃棄物を複数の要素にメッシュ分割する。前記第1算出工程では、前記3次元熱画像に基づいて、前記廃棄物の厚み、及び、前記廃棄物の表面移動速度を前記要素毎に算出する。前記第2算出工程では、前記第1算出工程の算出結果に基づいて、前記要素に位置する前記廃棄物が当該要素に位置するまでに厚みが時系列でどのように変化したかを示す厚み経過情報を、前記要素毎に算出する。前記第3算出工程では、前記第1算出工程及び前記第2算出工程の算出結果に基づいて、前記要素に位置する前記廃棄物が当該要素に位置するまでに体積流量が時系列でどのように変化したかを示す体積流量経過情報を、前記要素毎に算出する。前記特定工程では、前記体積流量経過情報を解析して、燃焼開始可能状態となった後であって、燃え切り状態となる前の前記要素である燃焼途中要素を特定する。前記決定工程では、前記燃焼途中要素に位置する前記廃棄物の過去から現時点までの体積流量の変化に基づいて、燃焼の進行度を特定して当該進行度に応じた燃焼補正係数を決定する。前記第1評価工程では、前記燃焼途中要素に対して、前記廃棄物の現時点の体積流量と前記燃焼補正係数を掛ける処理を行い、前記燃焼途中要素毎の算出結果を前記要素の面積比率を考慮して合算することで、当該廃棄物から発生する熱量の指標となる熱量指標を算出する。
From the viewpoint of the present invention, the following combustion condition evaluation method is provided. That is, this combustion condition evaluation method is divided into a drying part, a burning part, and a post-burning part, and incineration provided with a grate for transporting the waste by operating intermittently in a state where the waste is accumulated. Performed on the furnace. This combustion state evaluation method includes a production step, a division step, a first calculation step, a second calculation step, a third calculation step, a specific step, a determination step, and a first evaluation step. In the preparation step, a plurality of infrared cameras are used to observe at least the waste accumulated in the dry portion and the combustion portion through a filter that selectively transmits light having a wavelength not emitted by the flame. A plurality of thermal images having different viewpoints are acquired, and a three-dimensional thermal image is created based on the plurality of thermal images. In the division step, the waste of the three-dimensional thermal image is mesh-divided into a plurality of elements. In the first calculation step, the thickness of the waste and the surface moving speed of the waste are calculated for each of the elements based on the three-dimensional thermal image. In the second calculation step, based on the calculation result of the first calculation step, the thickness elapsed indicating how the thickness of the waste located in the element changed in time series until it was located in the element. Information is calculated for each of the elements. In the third calculation step, based on the calculation results of the first calculation step and the second calculation step, how the volume flow rate before the waste located in the element is located in the element is in chronological order. Volumetric flow rate progress information indicating whether or not the change has occurred is calculated for each of the above elements. In the specific step, the volumetric flow rate progress information is analyzed to identify an intermediate combustion element, which is the element after the combustion startable state is reached and before the combustion burnout state is reached. In the determination step, the progress of combustion is specified based on the change in the volumetric flow rate from the past to the present time of the waste located in the intermediate combustion element, and the combustion correction coefficient according to the progress is determined. In the first evaluation step, the combustion intermediate element is subjected to a process of multiplying the current volume flow rate of the waste by the combustion correction coefficient, and the calculation result for each combustion intermediate element is taken into consideration in the area ratio of the element. By adding up, the calorific value index, which is an index of the calorific value generated from the waste, is calculated.
これにより、燃焼途中の廃棄物からは熱分解ガスが発生しているため、燃焼途中の廃棄物を特定することで、熱分解ガスの時間あたりの発生量(発生する熱量)の指標である熱量指標を算出できる。また、熱分解ガスの時間あたりの発生量は常に変化するが、燃焼途中の廃棄物の体積流量と燃焼補正係数を用いて熱量指標を算出することで、現時点の熱量指標を高い精度で算出できる。焼却炉では、発生する熱量を安定させることが望まれるので、このような信頼性の高い熱量指標は、燃焼制御の指標として有用である。
As a result, pyrolysis gas is generated from the waste during combustion. Therefore, by identifying the waste during combustion, the calorific value, which is an index of the amount of pyrolysis gas generated per hour (the amount of heat generated). The index can be calculated. In addition, although the amount of pyrolysis gas generated per hour is constantly changing, the current calorific value index can be calculated with high accuracy by calculating the calorific value index using the volume flow rate of waste during combustion and the combustion correction coefficient. .. In an incinerator, it is desired to stabilize the amount of heat generated, so such a highly reliable heat amount index is useful as an index of combustion control.
本発明によれば、燃焼制御の指標とするために適切な情報を算出することができる。
According to the present invention, it is possible to calculate appropriate information for using it as an index for combustion control.
<廃棄物焼却設備の全体構成>初めに、図1を参照して、第1実施形態の焼却炉(廃棄物焼却炉)10を含む廃棄物焼却設備(廃棄物焼却施設)100について説明する。図1は、本発明の方法を行う対象の焼却炉10を含む廃棄物焼却設備100の概略構成図である。なお、以下の説明では、単に上流、下流と記載したときは、廃棄物、燃焼ガス、排ガス、一次空気、二次空気、循環排ガス等が流れる方向の上流及び下流を意味するものとする。
<Overall configuration of waste incinerator> First, the waste incinerator (waste incinerator) 100 including the incinerator (waste incinerator) 10 of the first embodiment will be described with reference to FIG. FIG. 1 is a schematic configuration diagram of a waste incinerator 100 including an incinerator 10 for performing the method of the present invention. In the following description, when the terms "upstream" and "downstream" are used, they mean upstream and downstream in the direction in which waste, combustion gas, exhaust gas, primary air, secondary air, circulating exhaust gas, etc. flow.
図1に示すように、廃棄物焼却設備100は、焼却炉10と、ボイラ30と、蒸気タービン発電設備35と、を備える。焼却炉10は、供給された廃棄物を焼却する。なお、焼却炉10の詳細な構成は後述する。
As shown in FIG. 1, the waste incineration facility 100 includes an incinerator 10, a boiler 30, and a steam turbine power generation facility 35. The incinerator 10 incinerates the supplied waste. The detailed configuration of the incinerator 10 will be described later.
ボイラ30は、廃棄物の燃焼によって発生した熱を利用して蒸気を生成する。ボイラ30は、流路壁に設けられた多数の水管31及び過熱器管32で、炉内で発生した高温の燃焼ガスと水との熱交換を行うことにより蒸気(過熱蒸気)を生成する。水管31及び過熱器管32で生成された蒸気は、蒸気タービン発電設備35へ供給される。
The boiler 30 uses the heat generated by the combustion of waste to generate steam. The boiler 30 generates steam (superheated steam) by exchanging heat between high-temperature combustion gas generated in the furnace and water in a large number of water pipes 31 and superheater pipes 32 provided on the flow path wall. The steam generated in the water pipe 31 and the superheater pipe 32 is supplied to the steam turbine power generation facility 35.
蒸気タービン発電設備35は、図略のタービン及び発電装置を含んで構成されている。タービンは、水管31及び過熱器管32から供給された蒸気によって回転駆動される。発電装置は、タービンの回転駆動力を用いて発電を行う。
The steam turbine power generation facility 35 includes a turbine and a power generation device (not shown). The turbine is rotationally driven by steam supplied from the water pipe 31 and the superheater pipe 32. The power generation device uses the rotational driving force of the turbine to generate electricity.
ここで、安定した発電を行うには、ボイラ30での蒸気(過熱蒸気)の生成量を安定化させることが必要である。ボイラ30での蒸気(過熱蒸気)の生成量を安定化させるためには、ボイラ30への入熱を安定させる必要がある。つまり、発電量を一定に保つには、焼却炉10からボイラ30へ供給される燃焼ガスの保有熱量を安定させて、ボイラ30への入熱を安定に保つ必要がある。
Here, in order to generate stable power generation, it is necessary to stabilize the amount of steam (superheated steam) generated in the boiler 30. In order to stabilize the amount of steam (superheated steam) generated in the boiler 30, it is necessary to stabilize the heat input to the boiler 30. That is, in order to keep the amount of power generation constant, it is necessary to stabilize the amount of heat possessed by the combustion gas supplied from the incinerator 10 to the boiler 30 and keep the heat input to the boiler 30 stable.
<焼却炉10の構成>焼却炉10は、廃棄物を炉内に供給するための給じん装置40を備える。給じん装置40は、廃棄物投入ホッパ41と、給じん装置本体42と、を備える。廃棄物投入ホッパ41は、炉外から廃棄物が投入される部分である。給じん装置本体42は、廃棄物投入ホッパ41の底部分に位置し、水平方向に移動可能に構成されている。給じん装置本体42は、廃棄物投入ホッパ41に投入された廃棄物を下流側に供給する。この給じん装置本体42の移動速度、単位時間あたりの移動回数、移動量(ストローク)、及びストローク端の位置(移動範囲)は、制御装置90によって制御されている。なお、給じん装置は水平方向に対し多少の角度をもって移動する型式でもよい。
<Structure of incinerator 10> The incinerator 10 is provided with a dust supply device 40 for supplying waste into the furnace. The dust supply device 40 includes a waste input hopper 41 and a dust supply device main body 42. The waste input hopper 41 is a portion where waste is input from outside the furnace. The dust supply device main body 42 is located at the bottom of the waste input hopper 41 and is configured to be movable in the horizontal direction. The dust supply device main body 42 supplies the waste charged into the waste input hopper 41 to the downstream side. The movement speed of the dust supply device main body 42, the number of movements per unit time, the movement amount (stroke), and the position of the stroke end (movement range) are controlled by the control device 90. The dust supply device may be of a type that moves at a slight angle with respect to the horizontal direction.
給じん装置40によって炉内に供給された廃棄物は、搬送部20によって、乾燥部11、燃焼部12、及び後燃焼部13の順に供給されていく。搬送部20は、乾燥部11に設けられた乾燥火格子21と、燃焼部12に設けられた燃焼火格子22と、後燃焼部13に設けられた後燃焼火格子23と、で構成されている。従って、搬送部20は複数段の火格子から構成されている。それぞれの火格子は、各部の底面に設けられており、廃棄物が載置される。
The waste supplied into the furnace by the dust supply device 40 is supplied by the transport unit 20 in the order of the drying unit 11, the combustion unit 12, and the post-combustion unit 13. The transport unit 20 is composed of a dry grate 21 provided in the drying unit 11, a combustion grate 22 provided in the combustion unit 12, and a post-combustion grate 23 provided in the post-combustion unit 13. There is. Therefore, the transport unit 20 is composed of a plurality of stages of grate. Each grate is provided on the bottom surface of each part, and waste is placed on it.
火格子は、廃棄物搬送方向に並べて配置された可動火格子と固定火格子とから構成されており、可動火格子が前進、停止、後進、停止等の順で動作することで、廃棄物を下流側へ搬送するとともに、廃棄物を攪拌することができる。可動火格子の動作速度を増速(減速)させることで、廃棄物の搬送速度を増速(減速)させることができる。また、可動火格子の停止時間を短く(長く)することで、廃棄物の搬送速度を増速(減速)させることができる。また、火格子は、気体が通過可能な大きさの隙間を空けて並べて配置されている。
The grate is composed of a movable grate and a fixed grate arranged side by side in the waste transport direction, and the movable grate operates in the order of forward, stop, reverse, stop, etc. to dispose of waste. The waste can be agitated while being transported to the downstream side. By increasing (decelerating) the operating speed of the movable grate, it is possible to increase (decelerate) the transport speed of waste. Further, by shortening (longening) the stop time of the movable grate, it is possible to increase (decelerate) the transport speed of waste. In addition, the grate is arranged side by side with a gap large enough for gas to pass through.
乾燥部11は、焼却炉10に供給された廃棄物を乾燥させる部分である。乾燥部11の廃棄物は、乾燥火格子21の下から供給される一次空気及び隣接する燃焼部12における燃焼の輻射熱によって乾燥する。その際、熱分解によって乾燥部11の廃棄物から熱分解ガスが発生する。また、乾燥部11の廃棄物は、乾燥火格子21によって燃焼部12に向かって搬送される。
The drying unit 11 is a portion for drying the waste supplied to the incinerator 10. The waste of the drying unit 11 is dried by the primary air supplied from under the drying grate 21 and the radiant heat of combustion in the adjacent combustion unit 12. At that time, thermal decomposition gas is generated from the waste of the drying portion 11 by thermal decomposition. Further, the waste of the drying unit 11 is conveyed toward the combustion unit 12 by the drying grate 21.
燃焼部12は、乾燥部11で乾燥した廃棄物を主に燃焼させる部分である。燃焼部12では、廃棄物が主に火炎燃焼を起こし火炎が発生する。燃焼部12における廃棄物及び燃焼により発生した灰及び燃焼しきれなかった未燃物は、燃焼火格子22によって後燃焼部13に向かって搬送される。また、燃焼部12で発生した燃焼ガス及び火炎は、絞り部17を通過して後燃焼部13に向かって流れる。なお、燃焼火格子22は、乾燥火格子21と同じ高さに設けられているが、乾燥火格子21よりも低い位置に設けられていてもよい。
The combustion unit 12 is a portion that mainly burns the waste dried in the drying unit 11. In the combustion unit 12, the waste mainly causes flame combustion to generate a flame. The waste in the combustion unit 12, the ash generated by combustion, and the unburned material that cannot be completely burned are conveyed toward the post-combustion unit 13 by the combustion grate 22. Further, the combustion gas and the flame generated in the combustion unit 12 pass through the throttle unit 17 and flow toward the post-combustion unit 13. The combustion grate 22 is provided at the same height as the dry grate 21, but may be provided at a position lower than the dry grate 21.
後燃焼部13は、燃焼部12で燃焼しきれなかった廃棄物(未燃物)を燃焼させる部分である。後燃焼部13では、燃焼ガスの輻射熱と一次空気によって、燃焼部12で燃焼しきれなかった未燃物の燃焼が促進される。その結果、未燃物の殆どが灰となって、未燃物は減少する。なお、後燃焼部13で発生した灰は、後燃焼部13の底面に設けられた後燃焼火格子23によってシュート24に向かって搬送される。シュート24に搬送された灰は、廃棄物焼却設備100の外部に排出される。なお、本実施形態の後燃焼火格子23は、燃焼火格子22よりも低い位置に設けられているが、燃焼火格子22と同じ高さに設けられていてもよい。
The post-combustion unit 13 is a portion that burns the waste (unburned material) that could not be completely burned by the combustion unit 12. In the post-combustion unit 13, the radiant heat of the combustion gas and the primary air promote the combustion of the unburned material that could not be completely burned in the combustion unit 12. As a result, most of the unburned matter becomes ash, and the unburned matter decreases. The ash generated in the post-combustion unit 13 is conveyed toward the chute 24 by the post-combustion grate 23 provided on the bottom surface of the post-combustion unit 13. The ash conveyed to the chute 24 is discharged to the outside of the waste incineration facility 100. Although the rear combustion grate 23 of the present embodiment is provided at a position lower than the combustion grate 22, it may be provided at the same height as the combustion grate 22.
上述したように、乾燥部11、燃焼部12、及び後燃焼部13では、生じる反応が異なるため、それぞれの壁面等は、生じる反応に応じた構成となっている。例えば、燃焼部12では火炎燃焼が生じるため、乾燥部11よりも耐火レベルが高い構造が採用されている。
As described above, since the reactions that occur in the drying unit 11, the combustion unit 12, and the post-combustion unit 13 are different, each wall surface or the like is configured according to the reaction that occurs. For example, since flame combustion occurs in the combustion unit 12, a structure having a higher refractory level than the drying unit 11 is adopted.
再燃焼部14は、燃焼ガスに含まれる未燃焼ガスを燃焼させる部分である。再燃焼部14は、乾燥部11、燃焼部12、及び後燃焼部13から上方に向かって延び、その途中に二次空気が供給される。これにより、燃焼ガスは二次空気と混合及び撹拌され、燃焼ガスに含まれる未燃焼ガスが再燃焼部14で燃焼される。なお、燃焼部12及び後燃焼部13で生じる燃焼を一次燃焼と称し、再燃焼部14で生じる燃焼(つまり、一次燃焼で残存した未燃焼ガスの燃焼)を二次燃焼と称する。また、一次燃焼が生じる領域を一次燃焼ゾーン1と称し、二次燃焼が生じる領域を二次燃焼ゾーン2と称する。
The reburning unit 14 is a part that burns the unburned gas contained in the combustion gas. The re-combustion unit 14 extends upward from the drying unit 11, the combustion unit 12, and the post-combustion unit 13, and secondary air is supplied in the middle thereof. As a result, the combustion gas is mixed and agitated with the secondary air, and the unburned gas contained in the combustion gas is burned in the reburning unit 14. The combustion generated in the combustion unit 12 and the post-combustion unit 13 is referred to as primary combustion, and the combustion generated in the recombustion unit 14 (that is, the combustion of the unburned gas remaining in the primary combustion) is referred to as secondary combustion. Further, the region where the primary combustion occurs is referred to as the primary combustion zone 1, and the region where the secondary combustion occurs is referred to as the secondary combustion zone 2.
気体供給装置50は、炉内に気体を供給する装置である。本実施形態の気体供給装置50は、一次空気供給部51と、二次空気供給部52と、排ガス供給部53と、を有している。それぞれの供給部は、気体を誘引又は送出するための送風機によって構成されている。
The gas supply device 50 is a device that supplies gas into the furnace. The gas supply device 50 of the present embodiment includes a primary air supply unit 51, a secondary air supply unit 52, and an exhaust gas supply unit 53. Each supply unit is composed of a blower for attracting or sending out gas.
本明細書では、一次燃焼のために供給する気体を一次燃焼用気体と称する。一次燃焼用気体としては、一次空気、循環排ガス、それらの混合ガスが含まれる。一次空気とは、外部から取り込んだ空気であって、燃焼等に用いられていない(即ち、循環排ガスを除く)気体である。従って、一次空気には、外部から取り込んだ空気を加熱等した気体も含まれる。同様に、本明細書では、二次燃焼のために供給する気体を二次燃焼用気体と称する。二次燃焼用気体としては、二次空気、循環排ガス、それらの混合ガスが含まれる。二次空気の定義は一次空気と同様である。
In this specification, the gas supplied for primary combustion is referred to as a primary combustion gas. The primary combustion gas includes primary air, circulating exhaust gas, and a mixed gas thereof. The primary air is air taken in from the outside and is not used for combustion or the like (that is, excluding circulating exhaust gas). Therefore, the primary air also includes a gas obtained by heating the air taken in from the outside. Similarly, in the present specification, the gas supplied for secondary combustion is referred to as a secondary combustion gas. The secondary combustion gas includes secondary air, circulating exhaust gas, and a mixed gas thereof. The definition of secondary air is similar to that of primary air.
一次空気供給部51は、一次空気供給経路71を介して炉内に一次空気を供給する。一次空気供給経路71は、第1供給経路71aと、第2供給経路71bと、第3供給経路71cと、に分岐されている。なお、一次空気供給経路71にヒータを設け、各部に供給する一次空気の温度を調整できるようにしてもよい。
The primary air supply unit 51 supplies the primary air into the furnace via the primary air supply path 71. The primary air supply path 71 is branched into a first supply path 71a, a second supply path 71b, and a third supply path 71c. A heater may be provided in the primary air supply path 71 so that the temperature of the primary air supplied to each part can be adjusted.
第1供給経路71aは、乾燥火格子21の下方に設けられた乾燥段風箱25に一次空気を供給するための経路である。第1供給経路71aには第1ダンパ81が設けられており、乾燥段風箱25に供給する一次空気の供給量を調整することができる。また、第1ダンパ81は制御装置90によって制御されている。
The first supply path 71a is a path for supplying primary air to the drying step air box 25 provided below the drying grate 21. A first damper 81 is provided in the first supply path 71a, and the amount of primary air supplied to the drying stage air box 25 can be adjusted. Further, the first damper 81 is controlled by the control device 90.
第2供給経路71bは、燃焼火格子22の下方に設けられた燃焼段風箱26に一次空気を供給するための経路である。第2供給経路71bには第2ダンパ82が設けられており、燃焼段風箱26に供給する一次空気の供給量を調整することができる。また、第2ダンパ82は制御装置90によって制御されている。
The second supply path 71b is a path for supplying primary air to the combustion stage air box 26 provided below the combustion grate 22. A second damper 82 is provided in the second supply path 71b, and the amount of primary air supplied to the combustion stage air box 26 can be adjusted. Further, the second damper 82 is controlled by the control device 90.
第3供給経路71cは、後燃焼火格子23の下方に設けられた後燃焼段風箱27に一次空気を供給するための経路である。第3供給経路71cには第3ダンパ83が設けられており、後燃焼段風箱27に供給する一次空気の供給量を調整することができる。また、第3ダンパ83は制御装置90によって制御されている。
The third supply path 71c is a path for supplying primary air to the post-combustion stage air box 27 provided below the post-combustion grate 23. A third damper 83 is provided in the third supply path 71c, and the amount of primary air supplied to the post-combustion stage air box 27 can be adjusted. Further, the third damper 83 is controlled by the control device 90.
二次空気供給部52は、二次空気供給経路72を介して、焼却炉10の空気ガス保有空間16にその上部(天井部)から二次空気を供給するとともに、絞り部17によって燃焼ガスが方向を転換する部分(絞り部17の近傍)に二次空気を供給する。また、二次空気供給経路72には、制御装置90によって制御される第4ダンパ84が設けられており、各部への二次空気の供給量を調整することができる。
The secondary air supply unit 52 supplies the secondary air to the air gas holding space 16 of the incinerator 10 from the upper part (ceiling part) via the secondary air supply path 72, and the combustion gas is generated by the throttle unit 17. Secondary air is supplied to the portion that changes direction (near the throttle portion 17). Further, the secondary air supply path 72 is provided with a fourth damper 84 controlled by the control device 90, and the amount of secondary air supplied to each part can be adjusted.
排ガス供給部53は、循環排ガス供給経路73を介して、廃棄物焼却設備100から排出された排ガスを炉内に供給する(再循環させる)。廃棄物焼却設備100から排出された排ガスはろ過式の集じん器60で浄化され、その一部が排ガス供給部53によって燃焼部12の両側面(紙面手前側及び紙面奥側の面)から焼却炉10へ供給される。なお、排ガスが供給される位置は、特に限定されない。例えば、排ガスは焼却炉10の上方(天井部)から供給されてもよく、一方の側面のみから供給されていてもよい。排ガスを焼却炉10に供給することで、焼却炉10内の酸素濃度が低下し、燃焼温度の局所的な過上昇を抑えることができる。その結果、NOxの発生を抑えることができる。循環排ガス供給経路73には、制御装置90によって制御される第5ダンパ85が設けられており、循環排ガスの供給量を調整することができる。
The exhaust gas supply unit 53 supplies (recirculates) the exhaust gas discharged from the waste incineration facility 100 into the furnace via the circulating exhaust gas supply path 73. The exhaust gas discharged from the waste incineration facility 100 is purified by a filtration type dust collector 60, and a part of the exhaust gas is incinerated by the exhaust gas supply unit 53 from both side surfaces (front side of the paper surface and the back side of the paper surface) of the combustion unit 12. It is supplied to the furnace 10. The position where the exhaust gas is supplied is not particularly limited. For example, the exhaust gas may be supplied from above (ceiling portion) of the incinerator 10, or may be supplied from only one side surface. By supplying the exhaust gas to the incinerator 10, the oxygen concentration in the incinerator 10 is lowered, and the local excessive rise in the combustion temperature can be suppressed. As a result, the generation of NOx can be suppressed. The circulating exhaust gas supply path 73 is provided with a fifth damper 85 controlled by the control device 90, and the supply amount of the circulating exhaust gas can be adjusted.
焼却炉10には、図1及び図2に示すように、燃焼状態等を把握するための複数のセンサが設けられている。具体的には、焼却炉内ガス温度センサ91と、焼却炉出口ガス温度センサ92と、COガス濃度センサ93と、NOxガス濃度センサ94と、二次燃焼温度センサ98と、ボイラ蒸気量センサ99と、赤外線カメラ95と、が設けられている。
As shown in FIGS. 1 and 2, the incinerator 10 is provided with a plurality of sensors for grasping the combustion state and the like. Specifically, the incinerator gas temperature sensor 91, the incinerator outlet gas temperature sensor 92, the CO gas concentration sensor 93, the NOx gas concentration sensor 94, the secondary combustion temperature sensor 98, and the boiler steam amount sensor 99. And an infrared camera 95.
焼却炉内ガス温度センサ91は、焼却炉10内(例えば空気ガス保有空間16よりも下流かつ後燃焼部13よりも上流)に配置されており、焼却炉内ガス温度を検出して制御装置90へ出力する。焼却炉出口ガス温度センサ92は、焼却炉10の出口近傍(例えば再燃焼部14よりも下流かつボイラ30よりも上流)に配置されており、焼却炉出口ガス温度を検出して制御装置90へ出力する。COガス濃度センサ93は、集じん器60の下流に配置されており、排ガスに含まれるCOガス濃度(焼却炉排出COガス濃度)を検出して制御装置90へ出力する。NOxガス濃度センサ94は、集じん器60の下流に配置されており、排ガスに含まれるNOxガス濃度(焼却炉排出NOxガス濃度)を検出して制御装置90へ出力する。二次燃焼温度センサ98は、二次燃焼ゾーン2に配置されており、二次燃焼ゾーン2の温度である二次燃焼温度を検出して制御装置90へ出力する。ボイラ蒸気量センサ99は、ボイラ30から蒸気タービン発電設備35へ向かう経路に配置されており、この経路を通過する蒸気量、即ちボイラ30が発生させた蒸気量(ボイラ蒸発量)を検出して制御装置90へ出力する。
The gas temperature sensor 91 in the incinerator is arranged in the incinerator 10 (for example, downstream of the air gas holding space 16 and upstream of the post-combustion unit 13), detects the gas temperature in the incinerator, and controls the control device 90. Output to. The incinerator outlet gas temperature sensor 92 is arranged near the outlet of the incinerator 10 (for example, downstream of the reburning unit 14 and upstream of the boiler 30), detects the incinerator outlet gas temperature, and sends it to the control device 90. Output. The CO gas concentration sensor 93 is arranged downstream of the dust collector 60, detects the CO gas concentration contained in the exhaust gas (CO gas concentration discharged from the incinerator), and outputs the CO gas concentration sensor 93 to the control device 90. The NOx gas concentration sensor 94 is arranged downstream of the dust collector 60, detects the NOx gas concentration contained in the exhaust gas (NOx gas concentration discharged from the incinerator), and outputs the NOx gas concentration sensor 94 to the control device 90. The secondary combustion temperature sensor 98 is arranged in the secondary combustion zone 2, detects the secondary combustion temperature which is the temperature of the secondary combustion zone 2, and outputs the secondary combustion temperature to the control device 90. The boiler steam amount sensor 99 is arranged in a path from the boiler 30 to the steam turbine power generation facility 35, and detects the amount of steam passing through this path, that is, the amount of steam generated by the boiler 30 (boiler evaporation amount). Output to the control device 90.
赤外線カメラ95は、2つ1組で設けられている。それぞれの赤外線カメラ95は同じ構造である。また、赤外線カメラ95は、3つ以上が1組として設けられていてもよい。赤外線カメラ95は、3次元熱画像(温度分布を3次元的に示す画像)を作成することを目的としているため、複数で1組となっている。そのため、同じ組の複数の赤外線カメラ95の相対位置は予め記憶されている。なお、赤外線カメラ95は、静止画を適切なインターバルで連続して撮像することを主目的とする機器であってもよいし、動画を撮像することを主目的とする機器であってもよい。動画は連続する複数の静止画であるため、何れの機器であっても、熱画像を取得するという機能は同じである。
The infrared cameras 95 are provided in pairs. Each infrared camera 95 has the same structure. Further, the infrared camera 95 may be provided as a set of three or more. Since the purpose of the infrared camera 95 is to create a three-dimensional thermal image (an image showing the temperature distribution in three dimensions), a plurality of infrared cameras 95 form a set. Therefore, the relative positions of the plurality of infrared cameras 95 of the same set are stored in advance. The infrared camera 95 may be a device whose main purpose is to continuously capture still images at appropriate intervals, or a device whose main purpose is to capture moving images. Since a moving image is a plurality of continuous still images, the function of acquiring a thermal image is the same regardless of the device.
赤外線カメラ95は、炉内の物体から放射される赤外線を検出することで、炉内の熱画像を取得する。個々の赤外線カメラ95が取得する熱画像は、赤外線カメラ95の視点から見た炉内の温度分布を示す画像である。視点とは、計測器である赤外線カメラ95が配置されている位置を示す。また、本実施形態の赤外線カメラ95は、選択透過フィルタ(フィルタ)95aを介して、炉内の熱画像を取得する。選択透過フィルタ95aは、火炎が放射しない波長(例えば3.9μm帯)の光を選択的に透過させるフィルタである。なお、ここでの「火炎が放射しない」という文言は、火炎が放射する他の波長の光と比較して大幅に光強度が低い(殆ど照射しない)という意味であり、火炎が全く放射しないことを示すものではない。選択透過フィルタ95aを介して炉内の熱画像を取得することで、火炎以外の物体についての熱画像を取得できる。言い換えれば、火炎を透過して、その奥にある物体の熱画像を取得できる。なお、本実施形態において、選択透過フィルタ95aは、赤外線カメラ95と一体的に構成されているが、別体であってもよい。つまり、炉内の光が通る経路上に選択透過フィルタ95aを配置し、この選択透過フィルタ95aを透過した透過光を通常の赤外線カメラで処理してもよい。
The infrared camera 95 acquires a thermal image in the furnace by detecting infrared rays radiated from an object in the furnace. The thermal image acquired by each infrared camera 95 is an image showing the temperature distribution in the furnace as seen from the viewpoint of the infrared camera 95. The viewpoint indicates a position where the infrared camera 95, which is a measuring instrument, is arranged. Further, the infrared camera 95 of the present embodiment acquires a thermal image in the furnace via a selective transmission filter (filter) 95a. The selective transmission filter 95a is a filter that selectively transmits light having a wavelength (for example, 3.9 μm band) that the flame does not emit. The phrase "flame does not radiate" here means that the light intensity is significantly lower (almost no irradiation) than the light of other wavelengths emitted by the flame, and the flame does not radiate at all. Does not indicate. By acquiring the thermal image in the furnace through the selective transmission filter 95a, it is possible to acquire a thermal image of an object other than the flame. In other words, it can penetrate the flame and obtain a thermal image of the object behind it. In the present embodiment, the selective transmission filter 95a is integrally configured with the infrared camera 95, but may be a separate body. That is, the selective transmission filter 95a may be arranged on the path through which the light in the furnace passes, and the transmitted light transmitted through the selective transmission filter 95a may be processed by a normal infrared camera.
赤外線カメラ95は、主に乾燥火格子21及び燃焼火格子22を搬送される廃棄物の熱画像を取得することを目的としている。具体的には、本実施形態では2組の赤外線カメラ95が設けられており、1組目の赤外線カメラ95が主に乾燥火格子21を搬送される廃棄物(更に言えば燃焼開始位置を含む範囲の廃棄物)を取得することを目的としており、2組目の赤外線カメラ95が主に燃焼火格子22を搬送される廃棄物(更に言えば燃え切り位置を含む範囲の廃棄物)を取得することを目的としている。
The purpose of the infrared camera 95 is mainly to acquire a thermal image of the waste transported through the dry grate 21 and the combustion grate 22. Specifically, in the present embodiment, two sets of infrared cameras 95 are provided, and the first set of infrared cameras 95 mainly carries the waste grate 21 (more specifically, the combustion start position is included). The purpose is to acquire the waste in the range), and the second set of infrared cameras 95 mainly acquires the waste (waste in the range including the burnout position) that is mainly conveyed to the combustion grate 22. The purpose is to do.
また、火炎燃焼開始位置及び燃え切り位置は、供給される廃棄物の性状及び焼却炉10の制御によって位置が変化する。そのため、1組目の赤外線カメラ95の撮像範囲に燃焼火格子22を搬送される廃棄物が含まれてもよいし、2組目の赤外線カメラ95の撮像範囲に後燃焼火格子23を搬送される廃棄物が含まれてもよい。また、廃棄物を漏れなく観察するために、1組目と2組目の赤外線カメラ95の撮像範囲は、一部が重複することが好ましい。
In addition, the flame combustion start position and burnout position change depending on the properties of the supplied waste and the control of the incinerator 10. Therefore, the imaging range of the first set of infrared cameras 95 may include waste to be conveyed by the combustion grate 22, or the post-combustion grate 23 is conveyed to the imaging range of the second set of infrared cameras 95. Waste may be included. Further, in order to observe the waste without omission, it is preferable that the imaging ranges of the first and second sets of the infrared cameras 95 partially overlap.
また、赤外線カメラ95は、画像の撮像範囲を変更可能な構成であってもよい。この場合、この赤外線カメラ95は、焼却炉10を停止させること無しに、撮像範囲を変更可能であってもよい。赤外線カメラ95は、廃棄物の堆積量が多くなった場合でも適切に画像を取得する等の目的で、火格子及び廃棄物よりも高い位置に配置されている。従って、赤外線カメラ95は、下側に向けて傾斜して配置されている。なお、赤外線カメラ95を傾斜させずに配置してもよい。
Further, the infrared camera 95 may have a configuration in which the imaging range of the image can be changed. In this case, the infrared camera 95 may be able to change the imaging range without stopping the incinerator 10. The infrared camera 95 is arranged at a position higher than the grate and the waste for the purpose of appropriately acquiring an image even when the amount of accumulated waste is large. Therefore, the infrared camera 95 is arranged so as to be inclined downward. The infrared camera 95 may be arranged without being tilted.
図3に示すように、廃棄物の搬送方向と上下方向(鉛直方向)に垂直な方向を炉幅方向と称する。1組目の赤外線カメラ95は、乾燥部11の炉幅方向の端部に形成されている壁部である側壁11aに設けられている。2つの赤外線カメラ95は、側壁11aに形成された窓部11bを介して、廃棄物の表面の熱画像(赤外線)を取得する。本実施形態では、左右の側壁11aのうち一方の側壁11aのみに2つの赤外線カメラ95が配置されているが、両方の側壁11aにそれぞれ1又は複数の赤外線カメラ95が配置されていてもよい。
As shown in FIG. 3, the direction perpendicular to the waste transport direction and the vertical direction (vertical direction) is referred to as the furnace width direction. The first set of infrared cameras 95 is provided on the side wall 11a, which is a wall portion formed at the end portion of the drying portion 11 in the furnace width direction. The two infrared cameras 95 acquire a thermal image (infrared ray) of the surface of the waste through the window portion 11b formed on the side wall 11a. In the present embodiment, two infrared cameras 95 are arranged only on one side wall 11a of the left and right side walls 11a, but one or a plurality of infrared cameras 95 may be arranged on both side walls 11a, respectively.
2組目の赤外線カメラ95は、後燃焼部13よりも搬送方向の下流側にある壁である奥壁13aに設けられている。2つの赤外線カメラ95は、奥壁13aに形成された窓部13bを介して、廃棄物の表面の熱画像(赤外線)を取得する。
The second set of infrared cameras 95 is provided on the back wall 13a, which is a wall on the downstream side in the transport direction from the rear combustion unit 13. The two infrared cameras 95 acquire a thermal image (infrared ray) of the surface of the waste through the window portion 13b formed on the back wall 13a.
また、1組目及び2組目の赤外線カメラ95を設ける位置は一例であり、例えば、上記とは異なる壁又は天井に赤外線カメラ95を設けてもよい。
Further, the positions where the first and second sets of infrared cameras 95 are provided are examples, and for example, the infrared cameras 95 may be provided on a wall or ceiling different from the above.
<制御装置が行う処理>制御装置90は、CPU、RAM、ROM等によって構成されており、種々の演算を行うとともに、廃棄物焼却設備100全体を制御する。画像処理装置96も同様に、CPU、RAM、ROM等によって構成されており、各組の2つの赤外線カメラ95が取得した熱画像に基づいて3次元熱画像を作成する処理(画像合成処理)を行うことができる。本実施形態では、制御装置90と画像処理装置96は、個別のハードウェアであるが、1つのハードウェアが制御装置90と画像処理装置96の両方の機能を有していてもよい。以下、制御装置90が行う燃焼制御であって、特に3次元熱画像を解析して行う制御について、図4及び図5のフローチャートに沿って説明する。図4及び図5は、燃焼を安定させるために制御装置90が行う制御を示すフローチャートである。
<Processing performed by the control device> The control device 90 is composed of a CPU, RAM, ROM, etc., performs various calculations, and controls the entire waste incineration facility 100. Similarly, the image processing device 96 is composed of a CPU, RAM, ROM, etc., and performs a process (image composition process) of creating a three-dimensional thermal image based on the thermal images acquired by the two infrared cameras 95 of each set. It can be carried out. In the present embodiment, the control device 90 and the image processing device 96 are separate hardware, but one piece of hardware may have the functions of both the control device 90 and the image processing device 96. Hereinafter, the combustion control performed by the control device 90, particularly the control performed by analyzing the three-dimensional thermal image, will be described with reference to the flowcharts of FIGS. 4 and 5. 4 and 5 are flowcharts showing the control performed by the control device 90 to stabilize the combustion.
<S101>初めに、制御装置90は、赤外線カメラ95が取得した熱画像に基づいて画像処理装置96が作成した3次元熱画像を記憶する(S101)。本実施形態では、1組目の赤外線カメラ95が取得した熱画像に基づいて、第1の3次元熱画像が作成され、2組目の赤外線カメラ95が取得した熱画像に基づいて、第2の3次元熱画像が作成される。第1の3次元熱画像が作成される位置範囲(廃棄物の範囲、撮像範囲)を第1範囲と称し、第2の3次元熱画像が作成される位置範囲(廃棄物の範囲、撮像範囲)を第2範囲と称する。
<S101> First, the control device 90 stores a three-dimensional thermal image created by the image processing device 96 based on the thermal image acquired by the infrared camera 95 (S101). In the present embodiment, the first three-dimensional thermal image is created based on the thermal image acquired by the first set of infrared cameras 95, and the second is based on the thermal image acquired by the second set of infrared cameras 95. A three-dimensional thermal image of is created. The position range (waste range, imaging range) where the first 3D thermal image is created is called the first range, and the position range (waste range, imaging range) where the second 3D thermal image is created is called the first range. ) Is referred to as the second range.
複数の熱画像から3次元熱画像を作成する処理は公知の技術なので簡単に説明する。ここでは、各組の2つの赤外線カメラ95を区別するためにα,βを付けて説明することがある。本実施形態の赤外線カメラ95が取得する熱画像には、火炎は含まれないため、赤外線カメラαが取得する熱画像には、赤外線カメラαの位置から見た廃棄物の表面の温度分布が表れている。赤外線カメラβについても同様である。そして、廃棄物の表面の特定箇所Aが、2つの熱画像のそれぞれ何処に表示されるかを特定する。上述したように赤外線カメラαと赤外線カメラβの位置関係は既知なので、三角法等に基づいて、赤外線カメラα及び赤外線カメラβから、廃棄物の特定箇所Aまでの距離を計算できる。この処理を廃棄物の表面の他の部分についても行うことで、廃棄物の表面の位置(3次元座標)を特定できる。
The process of creating a three-dimensional thermal image from a plurality of thermal images is a known technique, so it will be explained briefly. Here, α and β may be added in order to distinguish the two infrared cameras 95 of each set. Since the thermal image acquired by the infrared camera 95 of the present embodiment does not include a flame, the thermal image acquired by the infrared camera α shows the temperature distribution of the surface of the waste as seen from the position of the infrared camera α. ing. The same applies to the infrared camera β. Then, the specific location A on the surface of the waste is specified where each of the two thermal images is displayed. Since the positional relationship between the infrared camera α and the infrared camera β is known as described above, the distance from the infrared camera α and the infrared camera β to the specific location A of the waste can be calculated based on the triangular method or the like. By performing this treatment on other parts of the waste surface, the position (three-dimensional coordinates) of the waste surface can be specified.
<S102>次に、制御装置90は、3次元熱画像の廃棄物の表面を複数の要素(分割単位)にメッシュ分割して、その要素毎に(1)廃棄物の厚みと(2)表面移動速度を算出して制御値と関連付けて記憶する(S102)。この処理は、第1の3次元熱画像(第1範囲)と第2の3次元熱画像(第2範囲)のそれぞれに対して個別に行われる。メッシュ分割とは、所定の条件で3次元熱画像の廃棄物を複数の領域に分割することである。本実施形態では、図6に示すように、搬送方向の平行線と炉幅方向の平行線をそれぞれ複数引くことで、廃棄物を格子状に分割している。本実施形態では、メッシュ分割された要素は四角形であるが、別の形状であってもよい。なお、複数の要素の形状や面積はそれぞれ同じであってもよいし、異なっていてもよい。例えば、重要と考えられる部分だけを細かくメッシュ分割してもよい。また、廃棄物の厚みと表面移動速度は、後述のように燃焼制御の制御値を補正するために用いられるため、これらの値を補正データと称する。
<S102> Next, the control device 90 mesh-divides the surface of the waste of the three-dimensional thermal image into a plurality of elements (division units), and (1) the thickness of the waste and (2) the surface for each element. The movement speed is calculated and stored in association with the control value (S102). This process is performed individually for each of the first three-dimensional thermal image (first range) and the second three-dimensional thermal image (second range). The mesh division is to divide the waste of the three-dimensional thermal image into a plurality of regions under predetermined conditions. In the present embodiment, as shown in FIG. 6, the waste is divided into a grid pattern by drawing a plurality of parallel lines in the transport direction and a plurality of parallel lines in the furnace width direction. In the present embodiment, the mesh-divided elements are quadrangular, but may have different shapes. The shapes and areas of the plurality of elements may be the same or different. For example, only the parts considered to be important may be finely divided into meshes. Further, since the waste thickness and the surface moving speed are used to correct the control values of the combustion control as described later, these values are referred to as correction data.
上記の(1)に関し、廃棄物の厚みとは、図6に示すように、火格子から廃棄物の表面までの上下方向に沿う長さである。火格子の表面(上面)の位置は、予め制御装置90等に記憶されている。また、3次元熱画像に基づいて、廃棄物の表面の位置を特定できる。従って、この2つの位置(座標)を比較することで、廃棄物の厚みを要素毎に算出できる。以上のようにして、1枚の3次元熱画像に基づいて、ある一時刻における、要素毎の廃棄物の厚みの分布を算出できる。なお、3次元熱画像は順次作成されるので、新たに作成された3次元熱画像に対しても同様に廃棄物の厚みが算出される。このようにして、制御装置90は、要素毎の廃棄物の厚みを算出し、所定の記憶部に時系列で記憶する。
Regarding (1) above, the thickness of the waste is the length along the vertical direction from the grate to the surface of the waste, as shown in FIG. The position of the surface (upper surface) of the grate is stored in advance in the control device 90 or the like. In addition, the position of the surface of the waste can be specified based on the three-dimensional thermal image. Therefore, by comparing these two positions (coordinates), the thickness of the waste can be calculated for each element. As described above, the distribution of the thickness of waste for each element at a certain time can be calculated based on one three-dimensional thermal image. Since the three-dimensional thermal images are sequentially created, the thickness of the waste is calculated in the same manner for the newly created three-dimensional thermal images. In this way, the control device 90 calculates the thickness of the waste for each element and stores it in a predetermined storage unit in chronological order.
廃棄物の厚みを算出する意義は以下のとおりである。即ち、乾燥部11に堆積した廃棄物は、乾燥火格子21の乾燥操作(送り操作)に伴い、この廃棄物に含まれる水分が蒸発することで乾燥し、質量が低減するとともに体積も減少する。つまり、廃棄物の厚みの時間変化は、廃棄物が乾燥していく経過を示すものであり、乾燥操作の進行の程度の一種の指標となる。また、燃焼部12に堆積した廃棄物は、燃焼火格子22の燃焼操作(送り操作)に伴い、熱分解が生じて熱分解ガスが排出されることで、質量及び体積が低減する。つまり、廃棄物の厚みの時間変化は、廃棄物が熱分解していく経過を示すものであり、燃焼操作の進行の程度の一種の指標となる。
The significance of calculating the thickness of waste is as follows. That is, the waste accumulated in the drying portion 11 is dried by evaporating the water contained in the waste as the drying operation (feeding operation) of the drying grate 21 is performed, and the mass is reduced and the volume is also reduced. .. That is, the time change of the thickness of the waste indicates the progress of the drying of the waste, and is a kind of index of the progress of the drying operation. Further, the waste accumulated in the combustion unit 12 is thermally decomposed by the combustion operation (feeding operation) of the combustion grate 22, and the thermal decomposition gas is discharged, so that the mass and volume are reduced. That is, the time change of the thickness of the waste indicates the process of thermal decomposition of the waste, and is a kind of index of the progress of the combustion operation.
上記の(2)に関し、廃棄物の表面移動速度とは、図6に示すように、廃棄物の表面が搬送方向に移動する速度である。図6では、分かり易くするために比較的厚みが大きい部分に太線を描き、この部分が移動する様子を示している。3次元熱画像には、廃棄物の表面の形状が表れているため、時系列で作成された3次元熱画像に基づいて、廃棄物の表面がどのように動いているかを得ることができる。従って、廃棄物の表面の特定部分の移動距離と、3次元熱画像が取得された時間間隔等と、に基づいて、メッシュ分割された要素毎の表面移動速度を算出できる。以上のようにして、要素毎の廃棄物の表面移動速度の分布を算出できる。なお、3次元熱画像は順次作成されるので、新たに作成された3次元熱画像及びその過去の3次元熱画像を用いて、廃棄物の新たな表面移動速度が算出される。このようにして、制御装置90は、廃棄物の表面移動速度を算出し、所定の記憶部に時系列で記憶する。
Regarding (2) above, the surface moving speed of waste is the speed at which the surface of waste moves in the transport direction, as shown in FIG. In FIG. 6, a thick line is drawn on a relatively thick portion for easy understanding, and a state in which this portion moves is shown. Since the shape of the surface of the waste is shown in the three-dimensional thermal image, it is possible to obtain how the surface of the waste is moving based on the three-dimensional thermal image created in time series. Therefore, the surface moving speed of each mesh-divided element can be calculated based on the moving distance of a specific portion of the surface of the waste, the time interval at which the three-dimensional thermal image is acquired, and the like. As described above, the distribution of the surface moving speed of waste for each element can be calculated. Since the three-dimensional thermal images are sequentially created, a new surface movement speed of the waste is calculated using the newly created three-dimensional thermal image and the past three-dimensional thermal image. In this way, the control device 90 calculates the surface moving speed of the waste and stores it in a predetermined storage unit in chronological order.
廃棄物の表面移動速度を算出する意義は以下のとおりである。即ち、乾燥部11の廃棄物の移動速度の時間変化は、乾燥部11に堆積した廃棄物が乾燥火格子21の乾燥操作(送り操作)により、体積を減少させながら、搬送方向に送られていく実速度を示すものであり、乾燥操作によって、廃棄物がどう「動かされてきた」かの指標である。また、燃焼部12の廃棄物の表面移動速度は、燃焼部12に堆積した廃棄物が燃焼火格子22の燃焼操作(送り操作)により、体積を減少させながら、送り方向に送られていく実速度を示すものであり、燃焼操作によって、廃棄物がどう「動かされてきた」かの指標である。なお、廃棄物の表面以外がどのように移動するかは3次元熱画像からは算出できないため、本実施形態では、「廃棄物の表面移動速度」が「廃棄物全体の移動速度」を示すとみなして、以降の計算を行う。
The significance of calculating the surface movement speed of waste is as follows. That is, the time change of the moving speed of the waste in the drying unit 11 is such that the waste accumulated in the drying unit 11 is sent in the transport direction while reducing the volume by the drying operation (feeding operation) of the drying grate 21. It shows the actual speed, and is an index of how the waste has been "moved" by the drying operation. Further, the surface moving speed of the waste in the combustion unit 12 is such that the waste accumulated in the combustion unit 12 is sent in the feed direction while reducing the volume by the combustion operation (feed operation) of the combustion grate 22. It is an indicator of velocity and an indicator of how waste has been "moved" by the combustion operation. Since it is not possible to calculate how the surface other than the surface of the waste moves from the three-dimensional thermal image, in the present embodiment, the "surface movement speed of the waste" indicates the "movement speed of the entire waste". Assuming that, the following calculations are performed.
制御値とは、焼却炉10の燃焼状態を制御するために変更される値であり、例えば、各火格子の搬送速度、一次燃焼用気体の供給量、及び二次燃焼用気体の供給量等を定めるための値である。廃棄物の厚み、表面移動速度、及び後述の体積流量は、この制御値の影響を受ける。そのため、制御値の影響を考慮して評価及び制御を行うために、制御装置90は、廃棄物の厚み及び表面移動速度を、焼却炉10に設定した制御値と関連付けて記憶している。また、メッシュ分割された要素に応じて制御値が異なる場合(例えば乾燥火格子21上の要素と、燃焼火格子22上の要素と、後燃焼火格子23上の要素と、では火格子の搬送速度が異なる)、制御装置90は、対応する要素に応じた制御値と関連付けて廃棄物の厚み及び表面移動速度を記憶する。
The control value is a value changed to control the combustion state of the incinerator 10, and is, for example, the transfer speed of each grate, the supply amount of the primary combustion gas, the supply amount of the secondary combustion gas, and the like. It is a value for determining. The thickness of the waste, the surface moving speed, and the volumetric flow rate described later are affected by this control value. Therefore, in order to perform evaluation and control in consideration of the influence of the control value, the control device 90 stores the thickness of the waste and the surface movement speed in association with the control value set in the incinerator 10. Further, when the control value is different depending on the mesh-divided elements (for example, the element on the dry grate 21, the element on the combustion grate 22, and the element on the post-combustion grate 23, the grate is conveyed. The control device 90 stores the thickness of the waste and the surface movement speed in association with the control values corresponding to the corresponding elements.
<S103>次に、制御装置90は、要素毎の廃棄物の厚みと表面移動速度に基づいて、要素毎の厚み経過情報を算出して制御値と関連付けて記憶する(S103)。この処理は、第1範囲と第2範囲の情報に対して個別に行われる。厚み経過情報とは、図7に示すように、前記要素に位置する前記廃棄物が当該要素に位置するまでに、厚みが時系列でどのように変化したかを示す情報である。図7には、各要素の厚み経過情報がそれぞれグラフで模式的に示されている。このグラフに示すように、厚み経過情報は、「厚み」と「時間経過に伴う搬送方向位置」を対応付けた情報である。つまり、厚み経過情報とは、例えば要素Aに着目した場合、現時点で要素Aにある廃棄物が、過去に上流側の位置に存在していた時点でどのような厚みであったかを示す情報である。なお、厚み経過情報は、厚みと時刻を対応付けた情報であってもよい。
<S103> Next, the control device 90 calculates the thickness progress information for each element based on the thickness of the waste for each element and the surface movement speed, and stores the information in association with the control value (S103). This process is performed separately for the information in the first range and the second range. As shown in FIG. 7, the thickness progress information is information indicating how the thickness changes in time series until the waste located in the element is located in the element. In FIG. 7, the thickness progress information of each element is schematically shown graphically. As shown in this graph, the thickness progress information is information in which "thickness" and "position in the transport direction with the passage of time" are associated with each other. That is, the thickness progress information is information indicating, for example, the thickness of the waste in the element A at the present time when the waste in the element A was present at the upstream position in the past when the element A is focused on. .. The thickness progress information may be information in which the thickness and the time are associated with each other.
厚み経過情報は、例えば以下のようにして算出できる。例えば、ある要素Aに着目した場合、現時点で要素Aの位置にある廃棄物の搬送経過(つまり、どの時刻にどの要素に位置していたか)は、要素A及びその上流側の要素の現時点及び過去の表面移動速度に基づいて算出できる。また、要素毎かつ時刻毎の廃棄物の厚みは、ステップS102で算出されて記憶されている。従って、廃棄物の搬送経過が示す時刻及び要素と、廃棄物の厚みと、を対応付けることで、厚み経過情報を算出できる。このようにして、制御装置90は、廃棄物の厚み及び表面移動速度に基づいて、厚み経過情報を算出する。なお、3次元熱画像は順次作成されるので、新たに作成された3次元熱画像を用いて同様の計算を行うことで、廃棄物の新たな厚み経過情報が算出される。制御装置90は、算出した厚み経過情報を所定の記憶部に時系列で記憶する。なお、厚み経過情報を制御値と関連付ける処理及び理由は、ステップS102と同様である。
The thickness progress information can be calculated as follows, for example. For example, when focusing on a certain element A, the progress of transporting the waste at the position of the element A at the present time (that is, at what time and in which element) is the current state of the element A and the element on the upstream side thereof and It can be calculated based on the past surface movement speed. Further, the thickness of the waste for each element and each time is calculated and stored in step S102. Therefore, the thickness progress information can be calculated by associating the time and elements indicated by the waste transportation progress with the thickness of the waste. In this way, the control device 90 calculates the thickness progress information based on the thickness of the waste and the surface moving speed. Since the three-dimensional thermal images are sequentially created, new thickness progress information of the waste is calculated by performing the same calculation using the newly created three-dimensional thermal images. The control device 90 stores the calculated thickness progress information in a predetermined storage unit in chronological order. The process and the reason for associating the thickness progress information with the control value are the same as in step S102.
厚み経過情報を得る意義は以下のとおりである。即ち、乾燥部11の厚み経過情報は、乾燥部11に堆積した廃棄物が乾燥火格子21の乾燥操作(送り操作)により、火格子上を堆積して通過していくなかで、どのように体積を減少させながら、送り方向に送られていく過程を示すものであり、乾燥操作によって、廃棄物がどう体積を減らしてきたのかの指標である。また、燃焼部12の厚み経過情報は、燃焼部12に堆積した廃棄物が燃焼火格子22の燃焼操作(送り操作)により、火格子上を堆積して通過していくなかで、どのように体積を減少させながら、送り方向に送られていく過程を示すものであり、燃焼操作によって、廃棄物がどう体積を減らしてきたのかの指標である。
The significance of obtaining thickness progress information is as follows. That is, how the thickness progress information of the drying portion 11 is obtained while the waste accumulated in the drying portion 11 is deposited and passed on the grate by the drying operation (feeding operation) of the drying grate 21. It shows the process of being sent in the feeding direction while reducing the volume, and is an index of how the volume of waste has been reduced by the drying operation. Further, the thickness progress information of the combustion unit 12 can be obtained as to how the waste accumulated in the combustion unit 12 is accumulated and passed on the grate by the combustion operation (feed operation) of the combustion grate 22. It shows the process of being sent in the feeding direction while reducing the volume, and is an index of how the volume of waste has been reduced by the combustion operation.
<S104>次に、制御装置90は、要素毎の廃棄物の表面移動速度と厚み経過情報に基づいて、要素毎の体積流量経過情報を算出し、第1範囲と第2範囲の体積流量経過情報を合わせて制御値と関連付けて記憶する(S104)。初めに、第1範囲と第2範囲のそれぞれに対して、体積流量経過情報を算出する処理がそれぞれ行われる。
<S104> Next, the control device 90 calculates the volume flow rate progress information for each element based on the surface movement speed and the thickness progress information of the waste for each element, and the volume flow rate progress in the first range and the second range. The information is also stored in association with the control value (S104). First, a process of calculating the volume flow rate progress information is performed for each of the first range and the second range.
体積流量経過情報とは、図8に示すように、前記要素に位置する前記廃棄物が当該要素に位置するまでに体積流量が時系列でどのように変化したかを示す情報である。図8の上側の図には、各要素の体積流量経過情報がそれぞれグラフで模式的に示されている。このグラフに示すように、体積流量経過情報は、「体積流量」と「時間経過に伴う搬送方向位置」を対応付けた情報である。つまり、体積流量経過情報とは、例えば要素Aに着目した場合、現時点で要素Aにある廃棄物が、過去に上流側の位置に存在していた時点でどのような体積流量であったかを示す情報である。なお、体積流量経過情報は、体積流量と時刻の対応関係を示す情報であってもよい。
As shown in FIG. 8, the volume flow rate progress information is information indicating how the volume flow rate has changed in time series until the waste located in the element is located in the element. In the upper figure of FIG. 8, the volumetric flow rate progress information of each element is schematically shown graphically. As shown in this graph, the volume flow rate progress information is information in which the “volume flow rate” and the “transportation direction position with the passage of time” are associated with each other. That is, the volumetric flow rate progress information is information indicating what kind of volumetric flow rate the waste in the element A at the present time had when it was present at the upstream position in the past, for example, when focusing on the element A. Is. The volume flow rate progress information may be information indicating the correspondence between the volume flow rate and the time.
体積流量は、単位時間に移動する廃棄物の体積である。従って、体積流量は、「廃棄物の厚み」、「廃棄物の表面移動速度」、「炉幅長さ」をそれぞれ掛け合わせることで、算出できる。また、要素毎の体積流量を算出する場合の炉幅長さは、各要素の炉幅長さである。従って、体積流量経過情報は、「厚み経過情報が示す廃棄物の厚み」と「廃棄物の表面移動速度」を要素(位置)及び時刻を合わせて掛け合わせた値に、「各要素の炉幅長さ」を掛けることで算出できる。このようにして、制御装置90は、要素毎の体積流量経過情報を算出する。
Volumetric flow rate is the volume of waste that moves per unit time. Therefore, the volumetric flow rate can be calculated by multiplying the "waste thickness", "waste surface moving speed", and "furnace width length", respectively. Further, the furnace width length when calculating the volume flow rate for each element is the furnace width length of each element. Therefore, the volume flow rate progress information is the value obtained by multiplying the "thickness of waste indicated by the thickness progress information" and the "surface movement speed of waste" by combining the elements (positions) and the time, and "the furnace width of each element". It can be calculated by multiplying by "length". In this way, the control device 90 calculates the volume flow rate progress information for each element.
次に、制御装置90は、第1範囲と第2範囲の体積流量経過情報を合わせて、1つの体積流量経過情報を生成する。また、第1範囲と第2範囲は一部が重複している。従って、重複している範囲については、平均をとったり、何れか一方の体積流量経過情報を用いる等して、値を決定する。これにより、第1範囲と第2範囲を含む(つまり、乾燥部11から後燃焼部13の一部までの範囲を含む)体積流量経過情報が算出できる。
Next, the control device 90 combines the volume flow rate progress information of the first range and the second range to generate one volume flow rate progress information. In addition, the first range and the second range partially overlap. Therefore, for the overlapping range, the value is determined by taking an average or using one of the volume flow rate progress information. Thereby, the volume flow rate progress information including the first range and the second range (that is, including the range from the drying section 11 to a part of the post-combustion section 13) can be calculated.
制御装置90は、この体積流量経過情報を所定の記憶部に記憶する。なお、3次元熱画像は順次作成されるので、新たに作成された3次元熱画像を用いて同様の計算を行うことで、廃棄物の新たな体積流量経過情報が算出される。制御装置90は、算出した体積流量経過情報を制御値と関連付けて所定の記憶部に時系列で記憶する。なお、体積流量経過情報を制御値と関連付ける処理及び理由は、ステップS102と同様である。また、炉幅長さは定数なので、体積流量経過情報は、廃棄物の厚み及び表面移動速度のみの関数である。言い換えれば、体積流量経過情報は、廃棄物の厚みだけでなく、移動速度も含む概念の情報である。
The control device 90 stores this volume flow rate progress information in a predetermined storage unit. Since the three-dimensional thermal images are sequentially created, new volume flow rate progress information of the waste is calculated by performing the same calculation using the newly created three-dimensional thermal images. The control device 90 stores the calculated volumetric flow rate progress information in a predetermined storage unit in time series in association with the control value. The process and the reason for associating the volume flow rate progress information with the control value are the same as in step S102. Moreover, since the furnace width and length are constant, the volumetric flow rate progress information is a function of only the waste thickness and the surface moving speed. In other words, the volumetric flow rate progress information is conceptual information that includes not only the thickness of waste but also the moving speed.
なお、各火格子の炉幅長さが一定であって各要素の炉幅長さが一定である場合は、体積流量経過情報を算出する際に、炉幅長さを掛ける処理を省略してもよい。なぜなら、燃焼制御に必要となるのは、体積流量の具体的な値ではなく、その変化態様だからである。言い換えれば、図8の上側の図のグラフの縦軸は、具体的な体積流量に限られず、体積流量に比例する(相関する)値であってもよい。
If the furnace width length of each grate is constant and the furnace width length of each element is constant, the process of multiplying the furnace width length is omitted when calculating the volume flow rate progress information. May be good. This is because what is required for combustion control is not a specific value of the volumetric flow rate, but a variation mode thereof. In other words, the vertical axis of the graph in the upper figure of FIG. 8 is not limited to a specific volume flow rate, and may be a value proportional (correlated) to the volume flow rate.
体積流量経過情報を取得する意義は以下のとおりである。即ち、乾燥部11に堆積した廃棄物は、乾燥火格子21の乾燥操作(送り操作)に伴い、水分が蒸発することで圧縮されて、質量及び体積が低減する。つまり、体積流量経過情報は、廃棄物が乾燥していく経過を示すものであり、乾燥操作の進行の程度の直接的な指標である。ここで、廃棄物の乾燥が進行し、廃棄物からの水分が蒸発する状態(乾燥状態)から、水分の蒸発量が減少して廃棄物層の内部温度が上昇することで、廃棄物から熱分解ガスが発生する状態(熱分解状態)に移行する。また、熱分解状態となることで燃焼が開始可能となるため、熱分解状態に移行した後の状態を「燃焼開始可能状態」と称する。また、燃焼開始可能状態に移行することで、廃棄物の体積変化の程度が小さくなる。そのため、体積流量経過情報は、燃焼開始可能状態の程度を評価するのに最も適した指標である。
The significance of acquiring volume flow progress information is as follows. That is, the waste accumulated in the drying portion 11 is compressed by the evaporation of water with the drying operation (feeding operation) of the drying grate 21, and the mass and volume are reduced. That is, the volumetric flow rate progress information indicates the progress of the waste drying, and is a direct index of the degree of progress of the drying operation. Here, as the drying of the waste progresses and the moisture from the waste evaporates (dry state), the amount of evaporation of the moisture decreases and the internal temperature of the waste layer rises, so that the waste heats up. It shifts to the state where decomposition gas is generated (thermal decomposition state). Further, since combustion can be started when the pyrolysis state is reached, the state after the transition to the pyrolysis state is referred to as a "combustion startable state". Further, by shifting to the state where combustion can be started, the degree of change in the volume of waste becomes smaller. Therefore, the volumetric flow rate progress information is the most suitable index for evaluating the degree of the state in which combustion can be started.
また、燃焼部12に堆積した廃棄物は、燃焼火格子22の燃焼操作(送り操作)に伴い、熱分解が生じて熱分解ガスが排出されることで、質量及び体積が低減する。つまり、体積流量経過情報は、廃棄物が熱分解していく経過を示すものであり、燃焼操作の進行の程度の直接的な指標である。特に、廃棄物燃焼反応が進行するにつれて、廃棄物の熱分解ガス化反応(廃棄物の体積変化の程度が大きい反応)が減少し、残留する未燃炭素の後燃焼反応(廃棄物の体積変化の程度が小さい反応)に移行する。従って、体積流量経過情報は、「燃え切り状態」の程度を評価するのに最も適した指標である。
Further, the waste accumulated in the combustion unit 12 is thermally decomposed by the combustion operation (feed operation) of the combustion grate 22, and the pyrolysis gas is discharged, so that the mass and volume are reduced. That is, the volumetric flow rate progress information indicates the progress of thermal decomposition of waste, and is a direct index of the degree of progress of the combustion operation. In particular, as the waste combustion reaction progresses, the pyrolysis gasification reaction of waste (reaction with a large degree of change in the volume of waste) decreases, and the post-combustion reaction of residual unburned carbon (change in volume of waste) (Reaction with a small degree of) shifts to. Therefore, the volumetric flow rate progress information is the most suitable index for evaluating the degree of "burnout state".
<S105>次に、制御装置90は、要素毎の体積流量経過情報とそれに関連付けられた制御値の時間変化とに基づいて、体積流量の時間変化の傾向を示す傾向データを作成する(S105)。廃棄物は、様々な性状の物質が様々な割合で混合したものであり、性状及び混合割合は不明である。また、廃棄物の体積変化は、焼却炉10の構成及び制御にも依存する。そのため、一般的には、廃棄物の体積流量の変化の傾向を把握することは困難である。しかし、本実施形態では、廃棄物をメッシュ分割して要素毎の体積流量経過情報を算出しているため、体積流量の変化が平均化されにくい。更に、メッシュ分割することで、体積流量に関する詳細かつ多量の情報を得ることができる。そして、この体積流量経過情報に影響を及ぼす制御値を、体積流量経過情報と関連付けて記憶している。以上により、本実施形態では、体積流量の変化傾向と、制御値が体積流量に及ぼす影響と、をある程度特定することが可能な傾向データを作成できる。
<S105> Next, the control device 90 creates trend data showing the tendency of the volume flow rate to change with time based on the volume flow rate progress information for each element and the time change of the control value associated therewith (S105). .. Waste is a mixture of substances with various properties in various proportions, and the properties and mixing proportions are unknown. The change in the volume of waste also depends on the configuration and control of the incinerator 10. Therefore, in general, it is difficult to grasp the tendency of changes in the volumetric flow rate of waste. However, in the present embodiment, since the waste is divided into meshes and the volume flow rate progress information for each element is calculated, it is difficult to average the change in the volume flow rate. Further, by dividing the mesh, detailed and a large amount of information regarding the volumetric flow rate can be obtained. Then, the control value that affects the volume flow rate progress information is stored in association with the volume flow rate progress information. From the above, in the present embodiment, it is possible to create trend data capable of specifying the change tendency of the volume flow rate and the influence of the control value on the volume flow rate to some extent.
ここで作成される傾向データは、記憶部に蓄積された体積流量経過情報及び制御値をデータベース化したものであってもよい。あるいは、記憶部に蓄積された体積流量経過情報及び制御値を機械学習させて構築されたモデルであってもよい。体積流量の予測を行うために、このモデルは、例えば現時点までの体積流量と制御値を入力として、将来の体積流量の変化を出力するものであることが好ましい。
The tendency data created here may be a database of volume flow rate progress information and control values stored in the storage unit. Alternatively, it may be a model constructed by machine learning the volume flow rate progress information and the control value stored in the storage unit. In order to predict the volume flow rate, it is preferable that this model outputs the change of the volume flow rate in the future by inputting the volume flow rate up to the present time and the control value, for example.
<S106>次に、制御装置90は、傾向データに基づいて、体積流量の将来の変化を要素毎に予測する(S106)。図8に示すように、例えば要素Aに着目した場合、要素Aに位置する廃棄物の体積流量が今後どのように変化するかを予測する。
<S106> Next, the control device 90 predicts the future change of the volume flow rate for each element based on the trend data (S106). As shown in FIG. 8, for example, when focusing on the element A, it is predicted how the volumetric flow rate of the waste located in the element A will change in the future.
具体的には、制御装置90は、初めに、着目した要素の現時点までの体積流量の変化と制御値の変化を読み出す。また、上述した傾向データには、体積流量の変化傾向及び制御値が体積流量に及ぼす影響が含まれているので、傾向データを用いることで、この要素に位置する廃棄物の将来の体積流量の変化を予測できる。この予測を複数の要素に対して行うことで、焼却炉10の廃棄物の全体の動きを予測できる。また、将来の体積流量の変化を予測することで、過去から将来までの期間の体積流量経過情報を算出できる。
Specifically, the control device 90 first reads out the change in the volumetric flow rate and the change in the control value of the element of interest up to the present time. In addition, since the above-mentioned trend data includes the change tendency of the volume flow rate and the influence of the control value on the volume flow rate, the tendency data can be used to determine the future volume flow rate of the waste located in this element. Change can be predicted. By making this prediction for a plurality of elements, it is possible to predict the overall movement of the waste in the incinerator 10. In addition, by predicting future changes in volume flow rate, it is possible to calculate volume flow rate progress information for the period from the past to the future.
なお、傾向データが体積流量経過情報のデータベースである場合、制御装置90は、例えば着目する要素の「現時点までの体積流量の変化及び制御値」に類似する過去のデータを検索する。そして、制御装置90は、類似する1又は複数の過去のデータを抽出し、この抽出したデータにおいて体積流量がどのように変化しているかに基づいて、着目するデータの体積流量の変化を予測する。また、傾向データが機械学習により構築されたモデルである場合、着目する要素の「現時点までの体積流量の変化及び制御値」を入力することで、着目するデータの将来の体積流量の変化が出力される。
When the trend data is a database of volume flow rate progress information, the control device 90 searches for past data similar to, for example, the "change in volume flow rate and control value up to the present time" of the element of interest. Then, the control device 90 extracts one or a plurality of similar past data, and predicts the change in the volume flow rate of the data of interest based on how the volume flow rate changes in the extracted data. .. In addition, when the trend data is a model constructed by machine learning, by inputting the "change in volume flow rate up to the present time and control value" of the element of interest, the future change in volume flow rate of the data of interest is output. Will be done.
<S201>次に、制御装置90は、現時点と将来の廃棄物について、燃焼開始可能状態、燃え切り状態となる要素を特定する(S201)。上述したように、燃焼開始可能状態に移行するタイミングで、廃棄物の体積流量が大きく低下する。その後、燃え切り状態に移行するタイミングにおいて、廃棄物の体積流量が再び大きく低下する。従って、体積流量の変化に基づいて、燃焼開始可能状態、燃え切り状態となる要素を特定できる。なお、体積流量の変化の程度は、焼却炉10の制御値に応じて異なるため、制御値に応じた条件(例えば閾値)を用いて特定を行うことが好ましい。
<S201> Next, the control device 90 identifies the elements that are in the combustion startable state and the burnout state for the waste at present and in the future (S201). As described above, the volumetric flow rate of the waste is greatly reduced at the timing of shifting to the combustion startable state. After that, at the timing of shifting to the burnout state, the volumetric flow rate of the waste drops significantly again. Therefore, based on the change in the volumetric flow rate, it is possible to identify the elements that are in the combustion startable state and the burnout state. Since the degree of change in the volumetric flow rate differs depending on the control value of the incinerator 10, it is preferable to specify by using a condition (for example, a threshold value) according to the control value.
制御装置90は、この処理を、現時点までの体積流量経過情報(ステップS104で算出した情報)に対して行う。これにより、現時点の廃棄物について、燃焼開始可能状態、燃え切り状態となる要素を特定できる。また、制御装置90は、この処理を、例えば第1時間経過後の体積流量経過情報(ステップS106で予測した情報)に対して行う。これにより、将来の廃棄物について、燃焼開始可能状態、燃え切り状態となる要素を特定できる。
The control device 90 performs this process on the volume flow rate progress information (information calculated in step S104) up to the present time. As a result, it is possible to identify the elements that are in the state where combustion can be started and the state where combustion is burned out for the current waste. Further, the control device 90 performs this process on, for example, the volume flow rate progress information (information predicted in step S106) after the lapse of the first time. As a result, it is possible to identify the elements that can start combustion and burn out the waste in the future.
<S202>次に、制御装置90は、現時点と将来の廃棄物について、燃焼途中要素を特定する(S202)。燃焼途中要素とは、燃焼開始可能状態となった後であって燃え切り状態となる前の要素である。従って、制御装置90は、燃焼開始可能状態と燃え切り状態の特定結果に基づいて、燃焼途中要素を特定できる。図9には、燃焼途中状態か否かの特定結果が示されている。図9は、搬送部20を上下方向で見た模式図であり、図9に示す正方形の1つ1つがメッシュ分割された要素である。この図9には、燃焼途中状態と特定された要素には斜線が記載されている。
<S202> Next, the control device 90 identifies an in-combustion element for the current and future waste (S202). The mid-combustion element is an element after the state in which combustion can be started and before the state in which combustion is completely burned out. Therefore, the control device 90 can identify the combustion intermediate element based on the identification result of the combustion startable state and the burnout state. FIG. 9 shows a specific result of whether or not the combustion is in progress. FIG. 9 is a schematic view of the transport unit 20 viewed in the vertical direction, and each of the squares shown in FIG. 9 is a mesh-divided element. In FIG. 9, diagonal lines are drawn for the elements identified as the in-combustion state.
<S203>次に、制御装置90は、現時点と将来の燃焼途中要素について、(1)体積流量、(2)燃焼補正係数に基づいて、要素熱量指標を算出する(S203)。要素熱量指標とは、廃棄物から発生する熱分解ガスの燃焼により発生する要素毎の熱量の指標である。熱分解ガスの発生量は、その時点の廃棄物の体積流量に比例する。そのため、例えば現時点の要素熱量指標を算出する際には現時点の体積流量を用いる。
<S203> Next, the control device 90 calculates the element calorific value index based on (1) volumetric flow rate and (2) combustion correction coefficient for the current and future mid-combustion elements (S203). The element calorific value index is an index of the calorific value of each element generated by the combustion of the pyrolysis gas generated from the waste. The amount of pyrolysis gas generated is proportional to the volumetric flow rate of the waste at that time. Therefore, for example, the current volumetric flow rate is used when calculating the current element heat quantity index.
また、熱分解ガスによる発生熱量は、燃焼の進行度に応じて変化する。そのため、燃焼の進行度に応じた燃焼補正係数を用いる。例えば、燃焼開始直後は、熱分解し易い成分を有する熱分解ガスが優先的に発生するため、体積減少量に対する発生熱量は低めとなる。従って、燃焼開始直後の燃焼補正係数は低い値である。燃焼開始と燃え切りの中間部では、廃棄物内がより高温となって熱分解が進むことで、高い発熱量の熱分解ガスが優先的に発生するため、体積減少量に対する発生熱量は高めとなる。従って、燃焼開始と燃え切りの中間の燃焼補正係数は高い値である。
In addition, the amount of heat generated by the pyrolysis gas changes according to the progress of combustion. Therefore, a combustion correction coefficient according to the progress of combustion is used. For example, immediately after the start of combustion, the pyrolysis gas having a component that is easily thermally decomposed is preferentially generated, so that the amount of heat generated is lower than the amount of volume reduction. Therefore, the combustion correction coefficient immediately after the start of combustion is a low value. In the middle part between the start of combustion and the burning out, the temperature inside the waste becomes higher and the thermal decomposition progresses, so that the pyrolysis gas with a high calorific value is preferentially generated. Become. Therefore, the combustion correction coefficient between the start of combustion and the burnout is a high value.
また、燃焼の進行度は、体積流量経過情報に基づいて特定できる。つまり、燃焼が進行するにつれて体積流量が減少するため、過去から現時点までの体積流量の変化に基づいて、燃焼の進行度を特定できる。また、ステップS106で算出した体積流量の将来の変化を更に用いて燃焼の進行度を特定してもよい。つまり、体積流量の将来の変化を用いることで、着目している廃棄物が燃え切り状態となるタイミングをより正確に予測できるので、燃焼の進行度をより正確に特定できる。
In addition, the progress of combustion can be specified based on the volume flow rate progress information. That is, since the volumetric flow rate decreases as the combustion progresses, the progress of combustion can be specified based on the change in the volumetric flow rate from the past to the present time. Further, the progress of combustion may be specified by further using the future change of the volumetric flow rate calculated in step S106. That is, by using the future change of the volumetric flow rate, the timing at which the waste of interest is burned out can be predicted more accurately, so that the progress of combustion can be specified more accurately.
記憶部には、予め燃焼の進行度と燃焼補正係数を対応付けたテーブル等が記憶されており、制御装置90は、燃焼の進行度に応じた燃焼補正係数を読み出すことで、燃焼補正係数を決定する。ただし、燃焼の進行度と発生熱量の関係は廃棄物の性状、焼却炉10の構成、季節等に応じて異なる。従って、それらを考慮して、複数のテーブルを準備したり、テーブルから算出された燃焼補正係数を補正する処理を行ったりしてもよい。そして、制御装置90は、着目している燃焼途中要素について、現時点の体積流量に、現時点の燃焼の進行度に応じた燃焼補正係数を掛けることで、要素熱量指標を算出する。また、同じ処理を将来の燃焼途中要素に対して行うことで、将来の要素熱量指標を算出する。このように、燃焼の進行度に応じた重み付けの演算を行うことで、発生する熱量を精度良く推測できる。
A table or the like in which the progress of combustion and the combustion correction coefficient are associated with each other is stored in the storage unit in advance, and the control device 90 reads out the combustion correction coefficient according to the progress of combustion to obtain the combustion correction coefficient. decide. However, the relationship between the progress of combustion and the amount of heat generated differs depending on the properties of the waste, the composition of the incinerator 10, the season, and the like. Therefore, in consideration of them, a plurality of tables may be prepared, or a process of correcting the combustion correction coefficient calculated from the tables may be performed. Then, the control device 90 calculates the element calorific value index by multiplying the current volumetric flow rate by the combustion correction coefficient according to the current progress of combustion for the combustion mid-combustion element of interest. Further, by performing the same treatment on the future combustion midway element, the future element calorific value index is calculated. In this way, the amount of heat generated can be estimated accurately by performing the weighting calculation according to the progress of combustion.
<S204>次に、制御装置90は、要素の面積比率を考慮して、要素熱量指標を合算して、現時点と将来の熱量指標を算出して記憶する(S204)。熱量指標とは、要素毎ではなく炉内(即ち廃棄物全体)から発生する熱量の指標である。また、熱量指標は、具体的な熱量の値(ジュール値)を示すものではなく、熱量がどの程度増加又は減少するかといった変化傾向を評価するための値である。また、上記の要素熱量指標の演算では、燃焼途中要素の面積を考慮していないが、実際に発生する熱量は燃焼途中要素の面積に比例する。そのため、燃焼途中要素の面積比率を考慮して要素熱量指標を合算する。例えば、全ての燃焼途中要素で面積が同じである場合は、要素熱量指標をそのまま足し合わせるか、要素熱量指標の平均値を算出すればよい。また、例えば基準となる面積に対して、A倍の面積となる燃焼途中要素がある場合は、要素熱量指標をA倍して足し合わせるか、A倍した要素熱量指標を用いて平均値を算出すればよい。以上により、熱量指標を算出できる。また、同じ処理を将来の要素熱量指標に対して行うことで、将来の熱量指標を算出できる。制御装置90は、以上のようにして現時点と将来の熱量指標を算出して、時系列で所定の記憶部に記憶する。
<S204> Next, the control device 90 considers the area ratio of the elements, adds up the element heat quantity indexes, calculates and stores the current and future heat quantity indexes (S204). The calorific value index is an index of the calorific value generated from the inside of the furnace (that is, the entire waste), not for each element. Further, the calorific value index does not indicate a specific calorific value (joule value), but is a value for evaluating a change tendency such as how much the calorific value increases or decreases. Further, although the area of the mid-combustion element is not considered in the above calculation of the element heat quantity index, the amount of heat actually generated is proportional to the area of the mid-combustion element. Therefore, the element calorific value index is added up in consideration of the area ratio of the element in the middle of combustion. For example, when all the elements in the middle of combustion have the same area, the element heat quantity indexes may be added as they are, or the average value of the element heat quantity indexes may be calculated. In addition, for example, if there is an element in the middle of combustion that has an area A times larger than the reference area, the element heat quantity index is multiplied by A and added, or the average value is calculated using the element heat quantity index multiplied by A. do it. From the above, the calorific value index can be calculated. Further, by performing the same processing on the future element heat quantity index, the future heat quantity index can be calculated. The control device 90 calculates the current and future heat quantity indexes as described above, and stores them in a predetermined storage unit in chronological order.
<S205>次に、制御装置90は、過去の熱量指標と、現時点の熱量指標との比較結果に基づいて、(a)燃焼火格子22の搬送速度の増速又は減速、(b)乾燥火格子21、後燃焼火格子23の搬送速度の増速又は減速、(c)一次燃焼用気体の供給量の調整、(d)二次燃焼用気体の供給量の調整、の制御を行うための制御値を算出する(S205)。過去の熱量指標とは、過去の時点においてステップS204が行われることで算出されて記憶された熱量指標である。上述のように、火格子の動作速度及び停止時間を変更することで、火格子の搬送速度を変更可能である。従って、この動作速度や停止時間に関する値が制御値である。また、第1ダンパ81から第5ダンパ85を調整することで、一次燃焼用気体及び二次燃焼用気体の供給量を調整可能である。従って、第1ダンパ81から第5ダンパ85の開度に関する値が制御値である。
<S205> Next, the control device 90 increases or decreases the transfer speed of the combustion grate 22 based on the comparison result between the past calorific value index and the current calorific value index, and (b) dry fire. To control the increase or decrease of the transport speed of the lattice 21 and the post-combustion grate 23, (c) adjustment of the supply amount of the primary combustion gas, and (d) adjustment of the supply amount of the secondary combustion gas. The control value is calculated (S205). The past calorific value index is a calorific value index calculated and stored by performing step S204 at a past time point. As described above, the transport speed of the grate can be changed by changing the operating speed and the stop time of the grate. Therefore, the values related to the operation speed and the stop time are the control values. Further, by adjusting the first damper 81 to the fifth damper 85, the supply amounts of the primary combustion gas and the secondary combustion gas can be adjusted. Therefore, the value related to the opening degree of the first damper 81 to the fifth damper 85 is the control value.
例えば、過去の熱量指標と比較して、現時点の熱量指標が大きくなっている場合、廃棄物の性状が変化して、熱分解ガス化する成分の量が増加していると推測できる。この場合は、熱分解ガスの時間あたりの発生量の増加に合わせて、燃焼火格子22の搬送速度を減速して、それに応じて乾燥火格子21及び後燃焼火格子23の搬送速度も減速して、乾燥部11に供給する一次燃焼用気体の供給量を低減させ、燃焼部12に供給する一次燃焼用気体の供給量を増加させ、二次燃焼用気体の供給量を増加させることが好ましい。これにより、安定な燃焼を適切に維持できる。また、熱量指標が将来的に小さくなる場合は、上記とは逆の方向に各値を変化させる制御を行うことが好ましい。
For example, if the current calorific value index is larger than the past calorific value index, it can be inferred that the properties of the waste have changed and the amount of components that are pyrolyzed and gasified has increased. In this case, the transport speed of the combustion grate 22 is reduced in accordance with the increase in the amount of the thermally decomposed gas generated per hour, and the transport speed of the dry grate 21 and the post-combustion grate 23 is also reduced accordingly. Therefore, it is preferable to reduce the supply amount of the primary combustion gas supplied to the drying unit 11, increase the supply amount of the primary combustion gas supplied to the combustion unit 12, and increase the supply amount of the secondary combustion gas. .. As a result, stable combustion can be appropriately maintained. Further, when the calorific value index becomes smaller in the future, it is preferable to control to change each value in the direction opposite to the above.
ただし、制御値の算出に用いた熱量指標は、過去から現時点までの情報であるため、現時点及び将来の変化傾向が十分に考慮されている訳ではない。そのため、現時点の廃棄物の性状に関する更なる情報である上記の補正データに基づいて、搬送速度の増速の程度を補正することで、更に安定な燃焼を維持できる。なお、ステップS205において、補正データに基づく補正を行う際は、廃棄物の厚みの時間変化、廃棄物の表面移動速度の時間変化の少なくとも何れかを使用して補正を行う。
However, since the calorific value index used to calculate the control value is information from the past to the present time, the current and future change trends are not fully considered. Therefore, more stable combustion can be maintained by correcting the degree of increase in the transport speed based on the above-mentioned correction data which is further information on the properties of the waste at the present time. When making a correction based on the correction data in step S205, the correction is performed using at least one of the time change of the thickness of the waste and the time change of the surface movement speed of the waste.
具体的には、廃棄物の厚みの減少が加速している場合(即ち、単位時間あたりの厚みの減少量(正)が大きくなっている場合)、実燃焼時間が想定燃焼時間よりも更に短くなる傾向にあるため、搬送速度を更に増速させることが好ましい場合がある。また、廃棄物の表面移動速度が加速している場合も同様に、実燃焼時間が想定燃焼時間よりも更に短くなる傾向にあるため、搬送速度を更に増速させることが好ましい場合がある。
Specifically, when the decrease in the thickness of waste is accelerating (that is, when the amount of decrease in thickness per unit time (positive) is large), the actual combustion time is even shorter than the assumed combustion time. Therefore, it may be preferable to further increase the transport speed. Further, when the surface moving speed of the waste is also accelerated, the actual burning time tends to be further shorter than the assumed burning time, so that it may be preferable to further increase the transport speed.
また、熱量指標が極僅かだけ増加傾向又は減少傾向にある場合は、それに基づいて制御を行う必要性は低い。従って、熱量指標の変化の程度が閾値以上である場合に、(a)から(d)の制御値を変更することが好ましい。
Also, if the calorific value index tends to increase or decrease only slightly, there is little need to control based on it. Therefore, it is preferable to change the control values of (a) to (d) when the degree of change of the calorific value index is equal to or greater than the threshold value.
本実施形態では、過去の一時点の熱量指標と現時点の熱量指標とを比較して、熱量指標が増加傾向にあるか減少経過にあるかを推測している。これに対し、過去の複数時点の熱量指標を用いてもよい。これにより、熱量指標の増加傾向又は減少傾向をより詳細に推測できるので、更に適切な制御を行うことができる可能性がある。例えば、過去から現時点までの長い間にかけて熱量指標が増加している場合、全体の廃棄物について性状が変化して、発生する熱量が増加していると考えられる。従って、このような場合では、制御値を変更することが好ましい。一方、過去から現時点までの間において、熱量指標の増減が頻繁に繰り返されている場合、廃棄物について一時的に性状が変化していると考えられるので、制御値を変更しない(変更量を少なくする)ことが好ましい。
In this embodiment, the calorific value index at one time in the past is compared with the calorific value index at the present time, and it is estimated whether the calorific value index is increasing or decreasing. On the other hand, the calorific value index at a plurality of points in the past may be used. As a result, the increasing tendency or decreasing tendency of the calorific value index can be estimated in more detail, and there is a possibility that more appropriate control can be performed. For example, if the calorific value index has increased over a long period of time from the past to the present, it is considered that the properties of the entire waste have changed and the calorific value generated has increased. Therefore, in such a case, it is preferable to change the control value. On the other hand, if the calorific value index is frequently increased or decreased from the past to the present time, it is considered that the properties of the waste have changed temporarily, so the control value is not changed (the amount of change is small). ) Is preferable.
また、焼却炉10で生じる燃焼は、焼却炉10の形状や構造、及び投入される廃棄物によって大きく異なる。また、要求される処理量、焼却炉10の耐久性、及び排ガスに関する法規制等によっても、目標とする燃焼状態が大きく異なる。そのため、熱量指標が変化すると予測される場合であっても、(a)から(d)の制御値の変更を行わない方が望ましい場合も考えられる。これを判断するために、制御装置90は、各種検出データ(例えば焼却炉内ガス温度センサ91からNOxガス濃度センサ94等の検出データ)を更に用いて、(a)から(d)の制御値を算出することが好ましい。
Further, the combustion generated in the incinerator 10 greatly differs depending on the shape and structure of the incinerator 10 and the waste to be input. In addition, the target combustion state greatly differs depending on the required processing amount, the durability of the incinerator 10, the laws and regulations regarding exhaust gas, and the like. Therefore, even if it is predicted that the calorific value index will change, it may be desirable not to change the control values from (a) to (d). In order to determine this, the control device 90 further uses various detection data (for example, detection data from the incinerator gas temperature sensor 91 to the NOx gas concentration sensor 94, etc.) to control the values (a) to (d). It is preferable to calculate.
<S206>次に、制御装置90は、現時点の熱量指標と、将来の熱量指標(例えば一時点)と、の比較結果に基づいて、(a)から(d)の制御値を補正する(S206)。過去から現時点までの熱量指標の変化は、既に終了している事実に基づいているので、信頼性は高い。しかし、それだけでは適切な制御値を算出できない場合がある。例えば、過去から現時点まで熱量指標が増加しており、仮に現時点から熱量指標が減少する場合、制御値の変更が不要である場合がある。そのため、本実施形態では、過去から現時点までの熱量指標で得られた制御値を、現時点から将来の熱量指標の予測値に基づいて補正する。これにより、安定な燃焼を一層適切に維持することができる。
<S206> Next, the control device 90 corrects the control values (a) to (d) based on the comparison result between the current calorific value index and the future calorific value index (for example, a temporary point) (S206). ). The change in calorific value index from the past to the present is highly reliable because it is based on the fact that it has already been completed. However, it may not be possible to calculate an appropriate control value by itself. For example, if the calorific value index has increased from the past to the present time and the calorific value index has decreased from the present time, it may not be necessary to change the control value. Therefore, in the present embodiment, the control value obtained by the calorific value index from the past to the present time is corrected based on the predicted value of the calorific value index from the present time to the future. Thereby, stable combustion can be maintained more appropriately.
また、ステップS205及びS206では、熱量指標の大小関係に基づいて制御値を算出又は補正するが、これに加えて、熱量指標の増減量の大きさに基づいて、制御値を算出又は補正してもよい。
Further, in steps S205 and S206, the control value is calculated or corrected based on the magnitude relationship of the calorific value index, but in addition, the control value is calculated or corrected based on the magnitude of the increase / decrease amount of the calorific value index. May be good.
なお、本実施形態では、過去から現時点までの熱量指標の変化に基づく制御値の算出と、現時点から将来の熱量指標の予測変化に基づく制御値の補正と、を段階的に行う構成である。これに代えて、過去から将来までの熱量指標の変化を求め、この変化に基づいて制御値を算出してもよい。また、現時点から将来の熱量指標に基づいて制御値を補正する処理を省略してもよい。
In the present embodiment, the control value is calculated based on the change in the calorific value index from the past to the present time, and the control value is corrected based on the predicted change in the calorific value index from the present time to the future. Instead of this, the change in the calorific value index from the past to the future may be obtained, and the control value may be calculated based on this change. Further, the process of correcting the control value based on the calorific value index from the present time to the future may be omitted.
<S207>次に、制御装置90は、ステップS205及びS206で算出及び補正した制御値で(a)から(d)の制御を実行する(S207)。
<S207> Next, the control device 90 executes the controls (a) to (d) with the control values calculated and corrected in steps S205 and S206 (S207).
また、廃棄物の性状は常に変化する可能性があるため、制御装置90は、ステップS207の処理の後に、再びステップS101以降の処理を行う。これにより、廃棄物の性状が変化した場合であっても、廃棄物の乾燥及び燃焼の進行状況が適正になるための将来予測を修正することができるため、焼却炉全体としての熱量指標を継続的に安定化させるので、安定な燃焼を維持することができる。
Further, since the properties of the waste may change at all times, the control device 90 performs the processing in step S101 and subsequent steps again after the processing in step S207. As a result, even if the properties of the waste change, the future forecast for the proper progress of drying and combustion of the waste can be revised, so the calorific value index of the incinerator as a whole will be continued. Since it is stabilized in a stable manner, stable combustion can be maintained.
次に、第2実施形態について説明する。なお、第2実施形態及び後述の第3実施形態の説明においては、第1実施形態と同一又は類似の部材には図面に同一の符号を付し、説明を省略する場合がある。また、第1実施形態と同一又は類似の処理については、説明を省略する場合がある。
Next, the second embodiment will be described. In the description of the second embodiment and the third embodiment described later, the same reference numerals may be given to the members which are the same as or similar to those of the first embodiment, and the description may be omitted. Further, the description may be omitted for the same or similar processing as that of the first embodiment.
第2実施形態では、主として、廃棄物の表面温度を利用する点、及び、熱量だけでなく乾燥量の指標を算出する点において、第1実施形態とは異なる。以下、第1実施形態との相違点について詳細に説明する。
The second embodiment is different from the first embodiment in that it mainly uses the surface temperature of the waste and calculates an index of not only the amount of heat but also the amount of dryness. Hereinafter, the differences from the first embodiment will be described in detail.
制御装置90は、図11に示すように、3次元熱画像に基づいて、廃棄物の厚みと表面移動速度だけでなく、廃棄物の表面温度を要素毎に検出して制御値と関連付けて記憶する(S102´)。なお、第2実施形態のステップS101、S103,S104は第1実施形態と同じである。また、表面温度の将来の変化は予測精度が低いため、第2実施形態では将来の予測を行わない。そのため、第2実施形態では、体積流量の変化を予測する処理を省略している。ただし、体積流量の変化の予測は、燃焼の進行度及び後述の乾燥の進行度を判定するために有用であるので、体積流量の変化を予測する処理を行ってもよい。
As shown in FIG. 11, the control device 90 detects not only the thickness and surface movement speed of the waste but also the surface temperature of the waste for each element and stores them in association with the control value based on the three-dimensional thermal image. (S102'). The steps S101, S103, and S104 of the second embodiment are the same as those of the first embodiment. Further, since the prediction accuracy of the future change of the surface temperature is low, the future prediction is not performed in the second embodiment. Therefore, in the second embodiment, the process of predicting the change in the volumetric flow rate is omitted. However, since the prediction of the change in the volumetric flow rate is useful for determining the progress of combustion and the progress of drying described later, a process for predicting the change in the volumetric flow rate may be performed.
<S301>次に、制御装置90は、現時点の廃棄物について燃焼開始可能状態、燃え切り状態となる要素を特定する(S301)。具体的な処理は、将来の廃棄物について処理を行わないこと以外は、第1実施形態のステップS201と同じである。
<S301> Next, the control device 90 identifies the elements that are in the combustion startable state and the burnout state for the waste at the present time (S301). The specific treatment is the same as step S201 of the first embodiment except that the future waste is not treated.
<S302>次に、制御装置90は、現時点の廃棄物について、乾燥途中要素及び燃焼途中要素を特定する(S302)。燃焼途中要素の特定方法は、第1実施形態と同じである。乾燥途中要素とは、燃焼開始可能状態となる前の要素である。従って、制御装置90は、図10に示すように、それぞれの要素が、乾燥途中要素か、燃焼途中要素か、それ以外の要素かを特定する。
<S302> Next, the control device 90 identifies a drying intermediate element and a burning intermediate element for the current waste (S302). The method of identifying the mid-combustion element is the same as that of the first embodiment. The element in the middle of drying is an element before the combustion can be started. Therefore, as shown in FIG. 10, the control device 90 identifies whether each element is a drying intermediate element, a burning intermediate element, or another element.
<S303>次に、制御装置90は、現時点の乾燥途中要素について、(1)体積流量、(2)乾燥補正係数、(3)表面温度に基づいて、要素乾燥量指標を算出する(S303)。要素乾燥量指標とは、廃棄物から蒸発する水分量の要素毎の指標である。廃棄物から蒸発する水分量は、廃棄物の体積流量に比例する。
<S303> Next, the control device 90 calculates an element drying amount index based on (1) volume flow rate, (2) drying correction coefficient, and (3) surface temperature for the current drying intermediate element (S303). .. The element dryness index is an index for each element of the amount of water that evaporates from waste. The amount of water that evaporates from the waste is proportional to the volumetric flow rate of the waste.
また、廃棄物から蒸発する水分量は、乾燥の進行度に応じて変化する。そのため、乾燥の進行度に応じた乾燥補正係数を用いる。乾燥補正係数は、乾燥の進行度における、体積減少量に対する発生水分量の変化に応じた値である。乾燥の進行度の算出方法は、上述した燃焼の進行度の算出方法と同様に、過去から現時点まで(あるいは過去から将来まで)の体積流量の変化に基づいて算出できる。
Also, the amount of water that evaporates from the waste changes according to the progress of drying. Therefore, a drying correction coefficient according to the progress of drying is used. The drying correction coefficient is a value corresponding to a change in the amount of generated water with respect to the amount of volume reduction in the progress of drying. The method for calculating the progress of drying can be calculated based on the change in the volumetric flow rate from the past to the present (or from the past to the future), similarly to the method for calculating the progress of combustion described above.
また、廃棄物から蒸発する水分量は、廃棄物の表面温度に応じて変化する。つまり、廃棄物に含まれる水分は、蒸発する際に廃棄物の表面を冷却する。従って、廃棄物の表面温度は、廃棄物から蒸発する水分量の指標となる。つまり、廃棄物の表面温度が低いほど、廃棄物から蒸発する水分量が少ない。特に、廃棄物で特異的な乾燥が生じ、他の箇所又は過去と比較して、非常に少ない又は非常に多い水分が蒸発した場合、その廃棄物の表面温度が他の箇所と比較して(又は過去と比較して)局所的に低くなる。従って、廃棄物の表面温度に基づいて乾燥量指標を補正することで、例えば特異的な乾燥が発生している場合であっても、その影響を考慮して乾燥量指標を算出できる。
Also, the amount of water that evaporates from the waste changes according to the surface temperature of the waste. That is, the water contained in the waste cools the surface of the waste as it evaporates. Therefore, the surface temperature of the waste is an index of the amount of water that evaporates from the waste. That is, the lower the surface temperature of the waste, the smaller the amount of water that evaporates from the waste. In particular, when the waste undergoes specific drying and evaporates very little or very much water compared to other parts or in the past, the surface temperature of the waste is compared to other parts ( Or locally lower (compared to the past). Therefore, by correcting the drying amount index based on the surface temperature of the waste, for example, even when specific drying occurs, the drying amount index can be calculated in consideration of the influence.
制御装置90は、着目している乾燥途中要素について、現時点の体積流量と、現時点の乾燥の進行度に応じた乾燥補正係数を掛け、それを現時点の表面温度で更に補正することで、要素乾燥量指標を算出する。
The control device 90 multiplies the current volume flow rate by the current drying progress coefficient for the element in the process of drying, and further corrects it at the current surface temperature to dry the element. Calculate the quantity index.
<S304>次に、制御装置90は、要素の面積比率を考慮して、要素乾燥量指標を合算して、現時点の乾燥量指標を算出して記憶する(S304)。乾燥量指標とは、要素毎ではなく炉内(即ち廃棄物全体)から蒸発する水分量の指標である。また、乾燥量指標は、具体的な乾燥量の値を示すものではなく、乾燥量がどの程度増加又は減少するかといった変化傾向を評価するための値である。要素の面積比率の考慮については、熱量指標の算出方法と同じである。制御装置90は、以上のようにして乾燥量指標を算出して、例えば時刻と関連付けて時系列で所定の記憶部に記憶する。
<S304> Next, the control device 90 considers the area ratio of the elements, adds up the element drying amount indexes, calculates and stores the current drying amount index (S304). The dry amount index is an index of the amount of water that evaporates from the inside of the furnace (that is, the entire waste), not for each element. Further, the dry amount index does not indicate a specific dry amount value, but is a value for evaluating a change tendency such as how much the dry amount increases or decreases. The consideration of the area ratio of the elements is the same as the calculation method of the calorific value index. The control device 90 calculates the dry amount index as described above, and stores it in a predetermined storage unit in time series in association with, for example, the time.
また、制御装置90は、第1実施形態と略同様に、現時点の燃焼途中要素について、要素熱量指標を算出して、それらを合算して熱量指標を算出する(S305,S306)。第1実施形態との相違点は、要素熱量指標の算出時において、更に表面温度を用いることである。廃棄物の表面温度と熱分解ガスによる発生熱量は相関性があり、例えば表面温度が高くなるほど発生熱量も高くなる。従って、表面温度に基づいて要素熱量指標を補正することで、より信頼性の高い要素熱量指標を得ることができる。
Further, the control device 90 calculates the element calorific value index for the current burning element in substantially the same manner as in the first embodiment, and calculates the calorific value index by adding them together (S305, S306). The difference from the first embodiment is that the surface temperature is further used when calculating the element heat quantity index. There is a correlation between the surface temperature of waste and the amount of heat generated by the pyrolysis gas. For example, the higher the surface temperature, the higher the amount of heat generated. Therefore, by correcting the element heat quantity index based on the surface temperature, a more reliable element heat quantity index can be obtained.
<S307>次に、制御装置90は、過去の乾燥量指標と現時点の乾燥量指標との比較結果、及び、過去の熱量指標と現時点の熱量指標との比較結果に基づいて、(a)燃焼火格子22の搬送速度の増速又は減速、(b)乾燥火格子21、後燃焼火格子23の搬送速度の増速又は減速、(c)一次燃焼用気体の供給量の調整、(d)二次燃焼用気体の供給量の調整、の制御を行うための制御値を算出して制御を実行する(S307)。制御を行う対象は第1実施形態と同じである。また、過去と現時点の熱量指標に基づいてどのような制御値を算出するかについても、第1実施形態と同じである。
<S307> Next, the control device 90 (a) burns based on the comparison result between the past dry amount index and the current dry amount index, and the comparison result between the past calorific value index and the current calorific value index. Increasing or decelerating the transport speed of the grate 22, (b) increasing or decelerating the transport speed of the dry grate 21, post-combustion grate 23, (c) adjusting the supply amount of primary combustion gas, (d) The control value for controlling the adjustment of the supply amount of the secondary combustion gas is calculated and the control is executed (S307). The object to be controlled is the same as that of the first embodiment. Further, what kind of control value is calculated based on the past and present heat quantity indexes is the same as that of the first embodiment.
第1実施形態との主な相違点は、上述のように将来の情報を用いないことと、乾燥量指標を追加で用いることである。例えば、乾燥量指標が増加傾向にある場合、焼却炉10に供給される廃棄物の性状が変化して、廃棄物の水分含有率が高くなっていると推定できる。水分含有率が高い廃棄物から発生する熱量は比較的低いため、焼却炉10内で発生する熱量が将来的に減少する可能性がある。このように、実乾燥量指標に基づいて将来の熱量の変化を予測できる。制御装置90は、例えば過去から現時点までの熱量指標に基づいて新たな制御値を算出し、実乾燥量指標に基づく将来の熱量の変化の予測に基づいて、この制御値を補正する。そして、制御装置90は、補正後の制御値を用いて制御を行う。
The main difference from the first embodiment is that future information is not used as described above and that the dryness index is additionally used. For example, when the dryness index is on the increase, it can be estimated that the properties of the waste supplied to the incinerator 10 have changed and the water content of the waste has increased. Since the amount of heat generated from waste having a high water content is relatively low, the amount of heat generated in the incinerator 10 may decrease in the future. In this way, future changes in calorific value can be predicted based on the actual dryness index. The control device 90 calculates a new control value based on, for example, a calorific value index from the past to the present, and corrects this control value based on a prediction of a future change in calorific value based on the actual dryness index. Then, the control device 90 performs control using the corrected control value.
上述した相違点以外は、基本的に第2実施形態は、第1実施形態と同じ処理を行う。そして、第1実施形態に関する説明(例えば、変形例、補正データによる補正、制御値と関連付けて各値を記憶すること、判定時に制御値を考慮すること、繰り返し制御を行うこと等)は、矛盾が生じない限り、第2実施形態にも当てはまる。
Except for the differences described above, the second embodiment basically performs the same processing as the first embodiment. The description of the first embodiment (for example, modification, correction by correction data, storage of each value in association with the control value, consideration of the control value at the time of determination, repeated control, etc.) is inconsistent. The same applies to the second embodiment as long as the above does not occur.
次に、第3実施形態について説明する。
Next, the third embodiment will be described.
第3実施形態では、第1実施形態の方法で算出した現時点及び将来の熱量指標を用いて、ボイラ蒸発量を安定化させる。また、第3実施形態では、一次燃焼で発生した火炎(廃棄物から発生した火炎)を解析するために、火炎の3次元画像(以下、3次元火炎画像)を作成する。以下、詳細に説明する。
In the third embodiment, the amount of evaporation of the boiler is stabilized by using the current and future calorific value indexes calculated by the method of the first embodiment. Further, in the third embodiment, in order to analyze the flame generated by the primary combustion (flame generated from the waste), a three-dimensional image of the flame (hereinafter, three-dimensional flame image) is created. Hereinafter, a detailed description will be given.
図13に示すように、第3実施形態では、第1実施形態で説明した装置に加え、更に、1組の可視光カメラ97が設けられている。可視光カメラ97は、2つ1組であるが、3つ以上が1組であってもよい。それぞれの可視光カメラ97は同じ構造である。可視光カメラ97は、3次元画像を作成することを目的としているため、複数の可視光カメラ97の相対位置は予め記憶されている。また、可視光カメラ97は、火炎の色や輝度等の画像を取得するために主に可視光を検出するカメラであるが、赤外線カメラであってもよい。
As shown in FIG. 13, in the third embodiment, in addition to the apparatus described in the first embodiment, a set of visible light cameras 97 is further provided. The visible light cameras 97 are in pairs, but three or more may be in pairs. Each visible light camera 97 has the same structure. Since the visible light camera 97 aims to create a three-dimensional image, the relative positions of the plurality of visible light cameras 97 are stored in advance. Further, the visible light camera 97 is a camera that mainly detects visible light in order to acquire an image such as the color and brightness of the flame, but may be an infrared camera.
それぞれの可視光カメラ97は、一次燃焼で発生した火炎であって、一次燃焼ゾーン1から二次燃焼ゾーン2に到達した火炎の画像を取得することを目的としている。可視光カメラ97は、搬送方向の下流側の端部に設けられている奥壁14aに炉幅方向に並べて形成された窓部14bを介して、画像を取得する。また、可視光カメラ97を設ける位置、可視光カメラ97を並べる方向等は異なっていても良い。例えば、奥壁14aに代えて、炉幅方向の端部である側壁14cに可視光カメラ97が設けられていてもよい。また、可視光カメラ97の観測対象は一次燃焼ゾーン1にある火炎であってもよい。
Each visible light camera 97 aims to acquire an image of a flame generated in the primary combustion and reaching the secondary combustion zone 2 from the primary combustion zone 1. The visible light camera 97 acquires an image through a window portion 14b formed side by side in the furnace width direction on a back wall 14a provided at an end on the downstream side in the transport direction. Further, the position where the visible light camera 97 is provided, the direction in which the visible light cameras 97 are arranged, and the like may be different. For example, instead of the back wall 14a, the visible light camera 97 may be provided on the side wall 14c, which is the end portion in the furnace width direction. Further, the observation target of the visible light camera 97 may be a flame in the primary combustion zone 1.
後述のように本実施形態では、3次元火炎画像に基づいて火炎断面積を算出するが、火炎断面積の具体的な数値ではなく、その変化量を用いて制御を行うため、火炎を取り囲むように可視光カメラ97を配置する必要はない。そのため、本実施形態のように奥壁14aのみに可視光カメラ97が配置されていても本発明の目的を達成できる。
As will be described later, in the present embodiment, the flame cross-sectional area is calculated based on the three-dimensional flame image, but since the control is performed using the amount of change rather than the specific numerical value of the flame cross-sectional area, the flame is surrounded. It is not necessary to arrange the visible light camera 97 in the. Therefore, the object of the present invention can be achieved even if the visible light camera 97 is arranged only on the back wall 14a as in the present embodiment.
次に、第3実施形態において制御装置90が行う制御について説明する。制御装置90は、初めに、第1実施形態のステップS101~S106,S201~S204と同じ処理を行って、現時点及び将来の一時点の熱量指標を算出する。
Next, the control performed by the control device 90 in the third embodiment will be described. First, the control device 90 performs the same processing as steps S101 to S106 and S201 to S204 of the first embodiment to calculate a heat quantity index at one time point in the present time and in the future.
<S401>次に、制御装置90は、ボイラ蒸気量センサ99が検出したボイラ蒸発量を取得して記憶する(S401)。焼却炉10で発生した熱量に応じてボイラ30で蒸気が発生するため、焼却炉10で発生した熱量とボイラ蒸発量とは高い相関性がある。制御装置90は、ボイラ蒸発量を記憶部に時系列で記憶する。
<S401> Next, the control device 90 acquires and stores the boiler evaporation amount detected by the boiler steam amount sensor 99 (S401). Since steam is generated in the boiler 30 according to the amount of heat generated in the incinerator 10, there is a high correlation between the amount of heat generated in the incinerator 10 and the amount of evaporation of the boiler. The control device 90 stores the amount of boiler evaporation in the storage unit in chronological order.
<S402>次に、制御装置90は、過去の熱量指標と、過去のボイラ蒸発量の相関関係に関する第1相関情報を算出して記憶する(S402)。熱量指標とボイラ蒸発量は、何れも焼却炉10で発生した熱量に関する値であるため相関性がある。ただし、熱量指標で評価した熱量がボイラ30で作用するまでには時間遅れが存在する。そのため、熱量指標が時刻に応じて上下する挙動と、ボイラ蒸発量が時刻に応じて上下する挙動と、を比較することで時間遅れの目安を算出することができる。その後、時間遅れ分だけボイラ蒸発量をオフセットさせて、熱量指標の変化量の大きさと、ボイラ蒸発量の変化量の大きさと、を比較することで、第1相関情報(例えば、熱量指標とボイラ蒸発量の関係式)を算出できる。また、第1相関情報は、新たな熱量指標又はボイラ蒸発量を取得する毎に新たに算出してもよいし、一度算出した第1相関情報を少なくとも所定の時間において使い続けてもよい。
<S402> Next, the control device 90 calculates and stores the first correlation information regarding the correlation between the past calorific value index and the past boiler evaporation amount (S402). Since both the calorific value index and the boiler evaporation amount are values related to the calorific value generated in the incinerator 10, there is a correlation. However, there is a time delay before the calorific value evaluated by the calorific value index acts on the boiler 30. Therefore, it is possible to calculate a guideline for the time delay by comparing the behavior in which the calorific value index fluctuates according to the time and the behavior in which the boiler evaporation amount fluctuates according to the time. After that, by offsetting the amount of boiler evaporation by the time delay and comparing the magnitude of the amount of change in the calorific value index with the magnitude of the amount of change in the amount of boiler evaporation, the first correlation information (for example, the calorific value index and the boiler) is compared. The relational expression of the amount of evaporation) can be calculated. Further, the first correlation information may be newly calculated each time a new calorific value index or boiler evaporation amount is acquired, or the first correlation information once calculated may be continuously used for at least a predetermined time.
<S403>次に、制御装置90は、第1相関情報と、将来の熱量指標と、に基づいて、将来のボイラ蒸発量を予測する(S403)。第1相関情報は、熱量指標とボイラ蒸発量の関係を示す情報なので、第1相関情報に将来の熱量指標を適用することで(例えば関係式に将来の熱量指標を入力することで)、将来のボイラ蒸発量を予測できる。
<S403> Next, the control device 90 predicts the future boiler evaporation amount based on the first correlation information and the future heat quantity index (S403). Since the first correlation information is information showing the relationship between the calorific value index and the boiler evaporation amount, by applying the future calorific value index to the first correlation information (for example, by inputting the future calorific value index in the relational expression), the future Boiler evaporation amount can be predicted.
<S404>次に、制御装置90は、現時点のボイラ蒸発量と将来のボイラ蒸発量とに基づいて、目標蒸発量変化を算出する(S404)。目標蒸発量変化とは、ボイラ蒸発量を安定化させるためのボイラ蒸発量の変化を示す。目標蒸発量変化はボイラ蒸発量を増加、維持、又は減少させるという増減だけを示していてもよい。あるいは、目標蒸発量変化は、具体的な増減量を示していてもよい。目標蒸発量変化は、例えば、以下のようにして算出される。即ち、焼却炉10には、ボイラ蒸発量の理想値が設定されている。そして、将来のボイラ蒸発量と理想値との差異が小さくなるような目標蒸発量変化が算出される。例えば、将来のボイラ蒸発量が理想値よりも多い場合は「減少」という目標蒸発量変化が算出される。
<S404> Next, the control device 90 calculates the target evaporation amount change based on the current boiler evaporation amount and the future boiler evaporation amount (S404). The target evaporation amount change indicates a change in the boiler evaporation amount for stabilizing the boiler evaporation amount. The target evaporation amount change may only indicate an increase or decrease of increasing, maintaining, or decreasing the boiler evaporation amount. Alternatively, the target evaporation amount change may indicate a specific increase / decrease amount. The target evaporation amount change is calculated as follows, for example. That is, an ideal value of the amount of boiler evaporation is set in the incinerator 10. Then, the target evaporation amount change is calculated so that the difference between the future boiler evaporation amount and the ideal value becomes small. For example, when the future boiler evaporation amount is larger than the ideal value, the target evaporation amount change called "decrease" is calculated.
以上のようにして、制御装置90は、目標蒸発量変化を算出する。次に、制御装置90は、以下の処理を行って、一次燃焼で生じた火炎を解析する。
As described above, the control device 90 calculates the target evaporation amount change. Next, the control device 90 performs the following processing to analyze the flame generated by the primary combustion.
<S405>制御装置90は、二次燃焼温度センサ98が検出した二次燃焼温度を取得して記憶する(S405)。二次燃焼温度は、現時点で焼却炉10で発生している熱量(言い換えれば、現在生じている火炎に基づいて発生している熱量)に関する値である。制御装置90は、二次燃焼温度を記憶部に時系列で記憶する。
<S405> The control device 90 acquires and stores the secondary combustion temperature detected by the secondary combustion temperature sensor 98 (S405). The secondary combustion temperature is a value related to the amount of heat currently generated in the incinerator 10 (in other words, the amount of heat generated based on the currently occurring flame). The control device 90 stores the secondary combustion temperature in the storage unit in chronological order.
<S406>次に、制御装置90は、複数の可視光カメラ97が取得した可視画像に基づいて画像処理装置96が作成した3次元火炎画像を記憶する(S406)。複数の可視光カメラ97が取得した可視画像から3次元火炎画像を作成する方法は、第1実施形態の廃棄物の3次元熱画像を作成する方法と同じである。
<S406> Next, the control device 90 stores a three-dimensional flame image created by the image processing device 96 based on the visible images acquired by the plurality of visible light cameras 97 (S406). The method of creating a three-dimensional flame image from the visible images acquired by the plurality of visible light cameras 97 is the same as the method of creating a three-dimensional thermal image of the waste of the first embodiment.
<S407>次に、制御装置90は、3次元火炎画像に基づいて、火炎断面積及び火炎流速を算出して記憶する(S407)。火炎断面積とは、3次元火炎画像の火炎を所定の仮想平面で切ったときの断面積である。一般的に二次燃焼ゾーン2の火炎が大きいほど、焼却炉10で発生している熱量が多くなる。従って、火炎断面積は、現在発生している熱量の指標となる。
<S407> Next, the control device 90 calculates and stores the flame cross-sectional area and the flame flow velocity based on the three-dimensional flame image (S407). The flame cross-sectional area is the cross-sectional area when the flame of the three-dimensional flame image is cut by a predetermined virtual plane. Generally, the larger the flame in the secondary combustion zone 2, the larger the amount of heat generated in the incinerator 10. Therefore, the flame cross-sectional area is an index of the amount of heat currently generated.
図13に示すように、仮想平面101は、燃焼ガス(詳細には、一次燃焼で発生した一次燃焼ガス及び二次燃焼で発生した二次燃焼ガス)の流路に交差する平面である。なお、燃焼ガスの流路とは、燃焼ガスが全体として向かう方向(言い換えれば二次燃焼ゾーン2においてボイラ30へ向かう方向)である。また、仮想平面101は、この燃焼ガスの流路に対して直交することが更に好ましい。また、図13では仮想平面101の位置を分かり易くするために、仮想平面101の輪郭を描画して仮想平面101の範囲を区切っている。しかし、実際には、火炎の位置又は形状が変化しても火炎断面積を適切に算出するために、炉幅方向及び搬送方向に大きな広がりを持った範囲を仮想平面101とすべきであるため、輪郭等を規定せずに無限遠まで広がる仮想平面を設定することが好ましい。
As shown in FIG. 13, the virtual plane 101 is a plane that intersects the flow path of the combustion gas (specifically, the primary combustion gas generated in the primary combustion and the secondary combustion gas generated in the secondary combustion). The flow path of the combustion gas is the direction in which the combustion gas is directed as a whole (in other words, the direction toward the boiler 30 in the secondary combustion zone 2). Further, it is more preferable that the virtual plane 101 is orthogonal to the flow path of the combustion gas. Further, in FIG. 13, in order to make the position of the virtual plane 101 easy to understand, the outline of the virtual plane 101 is drawn to divide the range of the virtual plane 101. However, in reality, in order to properly calculate the flame cross-sectional area even if the position or shape of the flame changes, the range having a large spread in the furnace width direction and the transport direction should be the virtual plane 101. , It is preferable to set a virtual plane that extends to infinity without defining the contour and the like.
3次元火炎画像の火炎をこの仮想平面101で切ったときの仮想断面102の面積が火炎断面積である。ここで、本実施形態では火炎の周囲の全体の映像を取得していないため、例えば絞り部17側の火炎の形状は特定できない。従って、制御装置90は、3次元火炎画像で作成された火炎の範囲において仮想断面102の輪郭を描画し、3次元火炎画像で特定されていない部分については直線補間等を行うことで仮想断面102を作成する。
The area of the virtual cross section 102 when the flame of the three-dimensional flame image is cut by this virtual plane 101 is the flame cross-sectional area. Here, in the present embodiment, since the entire image around the flame is not acquired, for example, the shape of the flame on the diaphragm portion 17 side cannot be specified. Therefore, the control device 90 draws the outline of the virtual cross section 102 in the range of the flame created by the three-dimensional flame image, and performs linear interpolation or the like for the portion not specified by the three-dimensional flame image to perform the virtual cross section 102. To create.
火炎流速とは、上述した仮想平面101の位置における、燃焼ガスの流路に沿う方向のガス流速である。一般的に、焼却炉10で多くの燃焼ガスが発生しているほど(即ち、焼却炉10で発生している熱量が多くなるほど)、火炎流速が速くなり易い。従って、火炎流速は、現在発生している熱量の指標となる。
The flame flow velocity is the gas flow velocity in the direction along the flow path of the combustion gas at the position of the virtual plane 101 described above. In general, the more combustion gas is generated in the incinerator 10 (that is, the larger the amount of heat generated in the incinerator 10), the faster the flame flow velocity tends to be. Therefore, the flame flow velocity is an index of the amount of heat currently generated.
制御装置90は、仮想平面101及びその上下方向の近傍の3次元火炎画像に基づいて火炎の動きから火炎流速を算出する。なお、火炎流速は仮想平面101の水平方向の位置に応じて異なるが、例えば所定の範囲の平均の流速等を算出することで、該当の時刻の火炎流速を決定する。また、本実施形態では火炎流速を算出する位置は、火炎断面積を算出する位置と一致しているが、異なっていてもよい。即ち、制御装置90は、仮想平面101よりも上流側又は下流側で火炎流速を算出する処理を行ってもよい。
The control device 90 calculates the flame flow velocity from the movement of the flame based on the three-dimensional flame image of the virtual plane 101 and its vicinity in the vertical direction. The flame flow velocity differs depending on the position of the virtual plane 101 in the horizontal direction. For example, the flame flow velocity at the corresponding time is determined by calculating the average flow velocity in a predetermined range. Further, in the present embodiment, the position where the flame flow velocity is calculated coincides with the position where the flame cross-sectional area is calculated, but it may be different. That is, the control device 90 may perform a process of calculating the flame flow velocity on the upstream side or the downstream side of the virtual plane 101.
制御装置90は、上記の処理を各時刻の3次元火炎画像に対して行うことで、火炎断面積及び火炎流速を記憶部に時系列で記憶する。この火炎断面積及び火炎流速は、火炎の状態を示すので火炎状態情報に該当する。
The control device 90 stores the flame cross-sectional area and the flame flow velocity in the storage unit in chronological order by performing the above processing on the three-dimensional flame image at each time. The flame cross-sectional area and the flame flow velocity indicate the state of the flame and therefore correspond to the flame state information.
<S408>次に、制御装置90は、火炎断面積、火炎流速、及び二次燃焼温度と、ボイラ蒸発量と、の相関関係に関する第2相関情報を算出する(S408)。第2相関情報は、第1相関情報と同じ方法で算出できる。つまり、火炎断面積、火炎流速、及び二次燃焼温度が時刻に応じて上下する挙動と、ボイラ蒸発量が時刻に応じて上下する挙動と、を比較することで時間遅れの目安を算出することができる。また、第2相関情報は、火炎断面積、火炎流速、及び二次燃焼温度について、それぞれ個別に算出されることが好ましい。具体的には、例えば火炎断面積が変化した時間帯であって、火炎流速及び二次燃焼温度が殆ど変化していない時間帯では、火炎断面積とボイラ蒸発量の第2相関情報を適切に求めることができる。また、第2相関情報は、新たな3次元火炎画像又はボイラ蒸発量を取得する毎に新たに算出してもよいし、一度算出した第2相関情報を少なくとも所定の時間において使い続けてもよい。
<S408> Next, the control device 90 calculates the second correlation information regarding the correlation between the flame cross-sectional area, the flame flow velocity, the secondary combustion temperature, and the boiler evaporation amount (S408). The second correlation information can be calculated by the same method as the first correlation information. In other words, the guideline for the time delay should be calculated by comparing the behavior in which the flame cross-sectional area, flame flow velocity, and secondary combustion temperature fluctuate according to the time and the behavior in which the boiler evaporation amount fluctuates according to the time. Can be done. Further, it is preferable that the second correlation information is calculated individually for each of the flame cross-sectional area, the flame flow velocity, and the secondary combustion temperature. Specifically, for example, in a time zone in which the flame cross-sectional area changes and the flame flow velocity and the secondary combustion temperature hardly change, the second correlation information between the flame cross-sectional area and the boiler evaporation amount is appropriately obtained. Can be sought. Further, the second correlation information may be newly calculated each time a new three-dimensional flame image or boiler evaporation amount is acquired, or the second correlation information once calculated may be continuously used for at least a predetermined time. ..
<S409>次に、制御装置90は、第2相関情報と目標蒸発量変化とに基づいて、目標火炎変化を算出する(S409)。目標火炎変化とは、目標蒸発量変化に応じてボイラ蒸発量を変化させるために、火炎(二次燃焼温度を含む)をどのように変化させるかを示すものである。目標火炎変化は、発生する熱量を増加、維持、又は減少させるように火炎を変化させる等のように熱量の増減だけを示していてもよい。あるいは、目標火炎変化は、個別の情報の増減(即ち、火炎断面積の増減、火炎流速の増減、及び二次燃焼温度の増減)を示すものであってもよい。更には、目標火炎変化は、個別の情報のおおよその増減量を示していてもよい。第2相関情報には、火炎断面積、火炎流速、及び二次燃焼温度と、ボイラ蒸発量と、の関係が示されている。従って、目標蒸発量変化に応じて、火炎断面積、火炎流速、及び二次燃焼温度をどのように変化させれば目標蒸発量変化が示すボイラ蒸発量の変化が実現できるかを算出できる。
<S409> Next, the control device 90 calculates the target flame change based on the second correlation information and the target evaporation amount change (S409). The target flame change indicates how to change the flame (including the secondary combustion temperature) in order to change the boiler evaporation amount according to the target evaporation amount change. The target flame change may indicate only an increase or decrease in the amount of heat, such as changing the flame so as to increase, maintain, or decrease the amount of heat generated. Alternatively, the target flame change may indicate an increase or decrease in individual information (that is, an increase or decrease in the flame cross-sectional area, an increase or decrease in the flame flow velocity, and an increase or decrease in the secondary combustion temperature). Furthermore, the target flame change may indicate an approximate amount of increase or decrease in individual information. The second correlation information shows the relationship between the flame cross-sectional area, the flame flow velocity, the secondary combustion temperature, and the amount of boiler evaporation. Therefore, it is possible to calculate how the flame cross-sectional area, the flame flow velocity, and the secondary combustion temperature can be changed according to the change in the target evaporation amount to realize the change in the boiler evaporation amount indicated by the change in the target evaporation amount.
<S410>次に、制御装置90は、目標火炎変化に基づいて、(a)燃焼火格子22の搬送速度の増速又は減速、(b)乾燥火格子21、後燃焼火格子23の搬送速度の増速又は減速、(c)一次燃焼用気体の供給量の調整、(d)二次燃焼用気体の供給量の調整、の制御を行うための制御値を算出して制御を行う(S410)。なお、これらの制御値を変化させた場合に、火炎断面積、火炎流速、及び二次燃焼温度がどのように変化するかは既に知られているので、その情報に基づいて、これらの制御値を算出すればよい。この制御を行うことにより、ボイラ蒸発量を目標蒸発量に近づけることができる。そして、この目標蒸発量は、信頼性の高い熱量指標の予測値に基づいて算出された値である。以上により、ボイラ蒸発量を安定させることができる。
<S410> Next, the control device 90 increases or decreases the transfer speed of the combustion grate 22 based on the target flame change, and (b) the transfer speed of the dry grate 21 and the post-combustion grate 23. The control value for speeding up or decelerating, (c) adjusting the supply amount of the primary combustion gas, and (d) adjusting the supply amount of the secondary combustion gas is calculated and controlled (S410). ). Since it is already known how the flame cross-sectional area, the flame flow velocity, and the secondary combustion temperature change when these control values are changed, these control values are based on the information. Should be calculated. By performing this control, the boiler evaporation amount can be brought close to the target evaporation amount. The target evaporation amount is a value calculated based on the predicted value of the highly reliable calorific value index. From the above, the amount of boiler evaporation can be stabilized.
また、第1実施形態に関する説明(例えば、変形例、補正データによる補正、制御値と関連付けて各値を記憶すること、判定時に制御値を考慮すること、繰り返し制御を行うこと等)は、矛盾が生じない限り、第3実施形態にも当てはまる。
In addition, the description of the first embodiment (for example, modification, correction by correction data, storage of each value in association with the control value, consideration of the control value at the time of determination, repeated control, etc.) is inconsistent. As long as the above does not occur, the third embodiment also applies.
以上に説明したように、上記実施形態の燃焼状況評価方法は、乾燥部11と燃焼部12と後燃焼部13とに区分されており、廃棄物が堆積した状態で間欠的に動作することで当該廃棄物を搬送する火格子を備える焼却炉10に対して行われる。この燃焼状況評価方法は、作成工程と、分割工程と、第1算出工程と、第2算出工程と、第3算出工程と、特定工程と、決定工程と、第1評価工程と、を含む。作成工程では、複数の赤外線カメラ95を用いて、火炎が放射しない波長の光を選択的に透過させる選択透過フィルタ95aを介して、少なくとも乾燥部11及び燃焼部12に堆積した廃棄物を観測して、視点が異なる複数の熱画像を取得し、当該複数の熱画像に基づいて、3次元熱画像を作成する。分割工程では、3次元熱画像の廃棄物を複数の要素にメッシュ分割する。第1算出工程では、3次元熱画像に基づいて、廃棄物の厚み、及び、廃棄物の表面移動速度を要素毎に算出する。第2算出工程では、第1算出工程の算出結果に基づいて、要素に位置する廃棄物が当該要素に位置するまでに厚みが時系列でどのように変化したかを示す厚み経過情報を、要素毎に算出する。第3算出工程では、第1算出工程及び第2算出工程の算出結果に基づいて、要素に位置する廃棄物が当該要素に位置するまでに体積流量が時系列でどのように変化したかを示す体積流量経過情報を、要素毎に算出する。特定工程では、体積流量経過情報を解析して、燃焼開始可能状態となった後であって、燃え切り状態となる前の要素である燃焼途中要素を特定する。決定工程では、燃焼途中要素に位置する廃棄物の過去から現時点までの体積流量の変化に基づいて、燃焼の進行度を特定して当該進行度に応じた燃焼補正係数を決定する。第1評価工程では、燃焼途中要素に対して、廃棄物の現時点の体積流量と燃焼補正係数を掛ける処理を行い、燃焼途中要素毎の算出結果(要素熱量指標)を要素の面積比率を考慮して合算することで、当該廃棄物から発生する熱量の指標となる熱量指標を算出する。
As described above, the combustion state evaluation method of the above embodiment is divided into a drying unit 11, a combustion unit 12, and a post-combustion unit 13, and operates intermittently in a state where waste is accumulated. This is done for an incinerator 10 having a grate for transporting the waste. This combustion state evaluation method includes a production step, a division step, a first calculation step, a second calculation step, a third calculation step, a specific step, a determination step, and a first evaluation step. In the preparation process, a plurality of infrared cameras 95 are used to observe at least the waste accumulated in the drying section 11 and the burning section 12 through the selective transmission filter 95a that selectively transmits light having a wavelength not emitted by the flame. Therefore, a plurality of thermal images having different viewpoints are acquired, and a three-dimensional thermal image is created based on the plurality of thermal images. In the dividing step, the waste of the three-dimensional thermal image is mesh-divided into a plurality of elements. In the first calculation step, the thickness of the waste and the surface movement speed of the waste are calculated for each element based on the three-dimensional thermal image. In the second calculation step, based on the calculation result of the first calculation step, the element includes thickness progress information indicating how the thickness of the waste located in the element changes in time series until it is located in the element. Calculated for each. In the third calculation step, based on the calculation results of the first calculation step and the second calculation step, it is shown how the volume flow rate changes in time series until the waste located in the element is located in the element. Volumetric flow rate progress information is calculated for each element. In the specific step, the volume flow rate progress information is analyzed to identify an in-combustion element that is an element after the combustion startable state is reached and before the combustion burnout state is reached. In the determination step, the progress of combustion is specified based on the change in the volumetric flow rate from the past to the present time of the waste located in the intermediate combustion element, and the combustion correction coefficient according to the progress is determined. In the first evaluation step, the current volume flow rate of waste is multiplied by the combustion correction coefficient for the mid-combustion element, and the calculation result (element calorific value index) for each mid-combustion element is taken into consideration for the area ratio of the element. By adding up, the calorific value index, which is an index of the calorific value generated from the waste, is calculated.
これにより、燃焼途中の廃棄物からは熱分解ガスが発生しているため、燃焼途中の廃棄物を特定することで、熱分解ガスの時間あたりの発生量(発生する熱量)の指標である熱量指標を算出できる。また、熱分解ガスの時間あたりの発生量は常に変化するが、燃焼途中の廃棄物の体積流量と燃焼補正係数を用いて熱量指標を算出することで、現時点の熱量指標を高い精度で算出できる。焼却炉10では、発生する熱量を安定させることが望まれるので、このような信頼性の高い熱量指標は、燃焼制御の指標として有用である。
As a result, pyrolysis gas is generated from the waste during combustion. Therefore, by identifying the waste during combustion, the calorific value, which is an index of the amount of pyrolysis gas generated per hour (the amount of heat generated). The index can be calculated. In addition, although the amount of pyrolysis gas generated per hour is constantly changing, the current calorific value index can be calculated with high accuracy by calculating the calorific value index using the volume flow rate of waste during combustion and the combustion correction coefficient. .. In the incinerator 10, it is desired to stabilize the amount of heat generated, so such a highly reliable heat amount index is useful as an index of combustion control.
また、第1実施形態の燃焼状況評価方法では、要素毎の体積流量経過情報と、燃焼制御用に用いる値であって火格子の搬送速度を設定するための値を少なくとも含む制御値の時間変化と、に基づいて得られる体積流量の時間経過の傾向に基づいて、体積流量の将来の変化を要素毎に予測する予測工程を含む。予測工程で予測された体積流量の将来の変化に基づいて、特定工程、決定工程、及び第1評価工程を行うことで、将来の熱量指標を算出する。
Further, in the combustion state evaluation method of the first embodiment, the time change of the control value including at least the volume flow rate progress information for each element and the value used for combustion control for setting the transport speed of the grate. And, based on the tendency of the volume flow rate over time obtained based on, includes a prediction step of predicting the future change of the volume flow rate for each element. The future calorific value index is calculated by performing the specific step, the determination step, and the first evaluation step based on the future change of the volume flow rate predicted in the prediction step.
これにより、現時点だけでなく将来の信頼性が高い熱量指標を算出できる。将来の熱量指標は、将来の熱量を安定させるための燃焼制御の指標として有用である。
This makes it possible to calculate a highly reliable calorific value index not only at the present time but also in the future. The future calorific value index is useful as an index of combustion control for stabilizing the future calorific value.
また、第1実施形態の燃焼制御方法では、過去の熱量指標と、現時点の熱量指標と、の比較結果に基づいて、焼却炉10を制御する制御工程を行う。
Further, in the combustion control method of the first embodiment, the control step of controlling the incinerator 10 is performed based on the comparison result between the past calorific value index and the current calorific value index.
これにより、焼却炉10内で発生する熱量が過去から現時点までどのように変化したかに応じて燃焼制御を行うことができる。その結果、安定な燃焼を適切に維持できる。
As a result, combustion control can be performed according to how the amount of heat generated in the incinerator 10 has changed from the past to the present. As a result, stable combustion can be appropriately maintained.
また、第1実施形態の燃焼制御方法では、現時点の熱量指標と、将来の熱量指標と、の比較結果に基づいて、焼却炉10を制御する制御工程を行う。
Further, in the combustion control method of the first embodiment, the control step of controlling the incinerator 10 is performed based on the comparison result between the current calorific value index and the future calorific value index.
これにより、焼却炉10内で発生する熱量が将来どのように変化するかに応じて燃焼制御を行うことができる。その結果、安定な燃焼を一層適切に維持できる。
As a result, combustion control can be performed according to how the amount of heat generated in the incinerator 10 will change in the future. As a result, stable combustion can be maintained more appropriately.
また、第2実施形態の燃焼状況評価方法では、3次元熱画像に基づいて、要素毎に、廃棄物の表面温度を検出する温度検出工程を含む。第1評価工程では、燃焼途中要素に位置する廃棄物の表面温度を更に用いて、熱量指標を算出する。
Further, the combustion condition evaluation method of the second embodiment includes a temperature detection step of detecting the surface temperature of waste for each element based on a three-dimensional thermal image. In the first evaluation step, the calorific value index is calculated by further using the surface temperature of the waste located in the intermediate combustion element.
これにより、廃棄物の表面温度を用いることで、更に信頼性の高い現時点の熱量指標を得ることができる。
This makes it possible to obtain a more reliable current calorific value index by using the surface temperature of the waste.
また、第2実施形態の燃焼状況評価方法では、乾燥部11の廃棄物の乾燥量の指標となる乾燥量指標を算出する第2評価工程を含む。第2評価工程では、体積流量経過情報を解析して、燃焼開始可能状態となる前の要素である乾燥途中要素を特定する。第2評価工程では、乾燥途中要素に位置する廃棄物の過去から現時点までの体積流量の変化に基づいて、乾燥の進行度を特定して当該進行度に応じた乾燥補正係数を定める。第2評価工程では、乾燥途中要素に対して、廃棄物の現時点の体積流量に乾燥補正係数を掛ける処理を行い、乾燥途中要素毎の算出結果(要素乾燥量指標)を要素の面積比率を考慮して合算することで、当該廃棄物の乾燥量指標を算出する。
Further, the combustion condition evaluation method of the second embodiment includes a second evaluation step of calculating a dry amount index which is an index of the dry amount of the waste of the drying unit 11. In the second evaluation step, the volume flow rate progress information is analyzed to identify an element in the middle of drying, which is an element before the combustion can be started. In the second evaluation step, the progress of drying is specified based on the change in volumetric flow rate from the past to the present time of the waste located in the element in the middle of drying, and the drying correction coefficient according to the progress is determined. In the second evaluation step, the current volumetric flow rate of the waste is multiplied by the drying correction coefficient for the elements in the middle of drying, and the calculation result for each element in the middle of drying (element drying amount index) is taken into consideration in the area ratio of the elements. By adding up, the dryness index of the waste is calculated.
これにより、廃棄物の熱量指標だけでなく、乾燥量指標を得ることができるので、廃棄物の性状や燃焼状況をより詳細に評価することができる。
As a result, not only the calorific value index of the waste but also the dry amount index can be obtained, so that the properties of the waste and the combustion state can be evaluated in more detail.
また、第2実施形態の燃焼状況評価方法において、第2評価工程では、乾燥途中要素に位置する廃棄物の表面温度を更に用いて、乾燥量指標を算出する。
Further, in the combustion condition evaluation method of the second embodiment, in the second evaluation step, the drying amount index is calculated by further using the surface temperature of the waste located in the element in the middle of drying.
これにより、廃棄物の表面温度を用いることで、更に信頼性の高い乾燥量指標を得ることができる。
As a result, a more reliable dry amount index can be obtained by using the surface temperature of the waste.
また、第2実施形態の燃焼制御方法では、過去の熱量指標と、現時点の熱量指標と、の比較結果に基づいて、焼却炉10を制御する制御工程を行う。
Further, in the combustion control method of the second embodiment, the control step of controlling the incinerator 10 is performed based on the comparison result between the past calorific value index and the current calorific value index.
これにより、廃棄物の表面温度を用いた信頼性の高い熱量指標を用いて、過去から現時点までの熱量指標の変化に応じた燃焼制御を行うことができる。その結果、安定な燃焼を一層適切に維持できる。
This makes it possible to control combustion according to changes in the calorific value index from the past to the present, using a highly reliable calorific value index that uses the surface temperature of the waste. As a result, stable combustion can be maintained more appropriately.
また、第2実施形態の燃焼制御方法では、過去の熱量指標と、現時点の熱量指標と、の比較結果に加えて、更に、過去の乾燥量指標と、現時点の乾燥量指標と、の比較結果に基づいて、焼却炉10を制御する制御工程を行う。
Further, in the combustion control method of the second embodiment, in addition to the comparison result of the past calorific value index and the present calorific value index, further, the comparison result of the past dry amount index and the present dry amount index. A control step for controlling the incinerator 10 is performed based on the above.
これにより、乾燥量指標に基づいて廃棄物の性状に関する情報をより詳細に得ることができるので、熱量指標だけでなく乾燥量指標に基づいて燃焼制御を行うことで、安定な燃焼を一層適切に維持できる。
As a result, more detailed information on the properties of waste can be obtained based on the dry amount index. Therefore, by performing combustion control based on not only the calorific value index but also the dry amount index, stable combustion can be performed more appropriately. Can be maintained.
また、第1及び第2実施形態の燃焼制御方法において、制御工程では、
(a)燃焼火格子22の搬送速度の増速又は減速
(b)乾燥火格子21及び後燃焼火格子23の搬送速度の増速又は減速
(c)一次燃焼用気体の供給量の調整
(d)二次燃焼用気体の供給量の調整
の4つの制御の少なくとも何れかを制御する。 Further, in the combustion control method of the first and second embodiments, in the control step,
(A) Acceleration or deceleration of the transport speed of the combustion grate 22 (b) Acceleration or deceleration of the transport speed of thedry grate 21 and the post-combustion grate 23 (c) Adjustment of the supply amount of the primary combustion gas (d) ) Control at least one of the four controls for adjusting the supply of secondary combustion gas.
(a)燃焼火格子22の搬送速度の増速又は減速
(b)乾燥火格子21及び後燃焼火格子23の搬送速度の増速又は減速
(c)一次燃焼用気体の供給量の調整
(d)二次燃焼用気体の供給量の調整
の4つの制御の少なくとも何れかを制御する。 Further, in the combustion control method of the first and second embodiments, in the control step,
(A) Acceleration or deceleration of the transport speed of the combustion grate 22 (b) Acceleration or deceleration of the transport speed of the
これにより、焼却炉内で将来的に発生する熱量に応じた適切な制御値を変更する燃焼制御を行うことができる。その結果、安定な燃焼を適切に維持できる。
This makes it possible to perform combustion control that changes an appropriate control value according to the amount of heat generated in the incinerator in the future. As a result, stable combustion can be appropriately maintained.
また、第3実施形態の燃焼状況評価方法は、蒸発量検出工程と、準備工程と、ボイラ予測工程と、を含む。蒸発量検出工程では、焼却炉10で発生した熱量をボイラ30で回収することで発生したボイラ蒸発量を検出する。準備工程では、過去の熱量指標と、過去のボイラ蒸発量と、の相関関係に関する第1相関情報を算出する。ボイラ予測工程では、第1相関情報と、将来の熱量指標と、に基づいて、将来のボイラ蒸発量を予測する。
Further, the combustion status evaluation method of the third embodiment includes an evaporation amount detection step, a preparation step, and a boiler prediction step. In the evaporation amount detection step, the boiler evaporation amount generated by recovering the heat amount generated in the incinerator 10 by the boiler 30 is detected. In the preparatory step, the first correlation information regarding the correlation between the past calorific value index and the past boiler evaporation amount is calculated. In the boiler prediction step, the future boiler evaporation amount is predicted based on the first correlation information and the future calorific value index.
これにより、従来は精度の高い予測が困難であった将来のボイラ蒸発量を精度良く予測することができる。
This makes it possible to accurately predict the amount of boiler evaporation in the future, which was difficult to predict with high accuracy in the past.
また、第3実施形態の燃焼制御方法は、解析工程と、制御工程と、を含む。解析工程では、廃棄物から発生した火炎を解析する。制御工程では、焼却炉10を制御する。解析工程では、複数の可視光カメラ97を用いて、廃棄物から発生した火炎を観測して、視点が異なる複数の画像を取得し、当該複数の画像に基づいて、3次元火炎画像を作成する。解析工程では、3次元火炎画像を解析して、火炎の状態に関する情報であって当該火炎から発生する熱量の変化を評価するための情報である火炎状態情報を算出する。解析工程では、火炎状態情報と、ボイラ蒸発量の検出値と、の相関関係に関する第2相関情報を算出する。制御工程では、現時点のボイラ蒸発量と、将来のボイラ蒸発量と、の比較結果に基づいて、ボイラ蒸発量を安定化させるために当該ボイラ蒸発量をどのように変化させるかを示す目標蒸発量変化を算出する。制御工程では、第2相関情報と目標蒸発量変化とに基づいて、目標蒸発量変化のために火炎をどのように変化させるかを算出し、それに応じて焼却炉10を制御する。
Further, the combustion control method of the third embodiment includes an analysis step and a control step. In the analysis process, the flame generated from the waste is analyzed. In the control process, the incinerator 10 is controlled. In the analysis step, a plurality of visible light cameras 97 are used to observe flames generated from waste, a plurality of images having different viewpoints are acquired, and a three-dimensional flame image is created based on the plurality of images. .. In the analysis step, the three-dimensional flame image is analyzed, and the flame state information which is the information about the state of the flame and is the information for evaluating the change in the amount of heat generated from the flame is calculated. In the analysis step, the second correlation information regarding the correlation between the flame state information and the detected value of the boiler evaporation amount is calculated. In the control process, the target evaporation amount showing how to change the boiler evaporation amount in order to stabilize the boiler evaporation amount based on the comparison result between the current boiler evaporation amount and the future boiler evaporation amount. Calculate the change. In the control step, how to change the flame for the target evaporation amount change is calculated based on the second correlation information and the target evaporation amount change, and the incinerator 10 is controlled accordingly.
これにより、ボイラ蒸発量が将来どのように変化するかの精度の良い予測結果に基づいて火炎を制御することができる。その結果、ボイラ蒸発量を安定させることができる。
This makes it possible to control the flame based on an accurate prediction result of how the amount of boiler evaporation will change in the future. As a result, the amount of boiler evaporation can be stabilized.
また、第3実施形態の燃焼制御方法において、火炎状態情報には、一次燃焼又は二次燃焼で発生した燃焼ガスの流路と交差する所定の仮想平面101で火炎を切った火炎断面積と、流路に沿う方向の火炎流速と、が含まれている。制御工程では、目標蒸発量変化のために、火炎断面積と火炎流速をどのように変化させるかを示す目標火炎変化を特定し、当該目標火炎変化に応じて焼却炉10を制御する。
Further, in the combustion control method of the third embodiment, the flame state information includes a flame cross-sectional area obtained by cutting the flame on a predetermined virtual plane 101 intersecting the flow path of the combustion gas generated in the primary combustion or the secondary combustion. The flame flow velocity in the direction along the flow path and. In the control step, the target flame change indicating how the flame cross-sectional area and the flame flow velocity are changed for the target evaporation amount change is specified, and the incinerator 10 is controlled according to the target flame change.
これにより、火炎を詳細に解析して、それに応じた燃焼制御を行うため、ボイラ蒸発量を更に安定させることができる。
As a result, the flame is analyzed in detail and the combustion control is performed accordingly, so that the amount of boiler evaporation can be further stabilized.
また、第3実施形態の燃焼制御方法において、制御工程では、
(a)燃焼火格子22の搬送速度の増速又は減速
(b)乾燥火格子21及び後燃焼火格子23の搬送速度の増速又は減速
(c)一次燃焼用気体の供給量の調整
(d)二次燃焼用気体の供給量の調整
の4つの制御の少なくとも何れかを制御する。 Further, in the combustion control method of the third embodiment, in the control process,
(A) Acceleration or deceleration of the transport speed of the combustion grate 22 (b) Acceleration or deceleration of the transport speed of thedry grate 21 and the post-combustion grate 23 (c) Adjustment of the supply amount of the primary combustion gas (d) ) Control at least one of the four controls for adjusting the supply of secondary combustion gas.
(a)燃焼火格子22の搬送速度の増速又は減速
(b)乾燥火格子21及び後燃焼火格子23の搬送速度の増速又は減速
(c)一次燃焼用気体の供給量の調整
(d)二次燃焼用気体の供給量の調整
の4つの制御の少なくとも何れかを制御する。 Further, in the combustion control method of the third embodiment, in the control process,
(A) Acceleration or deceleration of the transport speed of the combustion grate 22 (b) Acceleration or deceleration of the transport speed of the
これにより、一次燃焼で発生する火炎に応じた適切な制御値を変更する燃焼制御を行うことができる。その結果、ボイラ蒸発量を更に安定させることができる。
This makes it possible to perform combustion control that changes an appropriate control value according to the flame generated in the primary combustion. As a result, the amount of boiler evaporation can be further stabilized.
また、第3実施形態の燃焼制御方法において、第2相関情報には、二次燃焼ゾーン2の温度である二次燃焼温度とボイラ蒸発量との相関関係も含まれる。
Further, in the combustion control method of the third embodiment, the second correlation information also includes the correlation between the secondary combustion temperature, which is the temperature of the secondary combustion zone 2, and the amount of boiler evaporation.
これにより、火炎の形状だけでなくそれに関連する二次燃焼温度も用いて燃焼制御を行うため、ボイラ蒸発量を更に安定させることができる。
As a result, combustion control is performed using not only the shape of the flame but also the secondary combustion temperature related to it, so that the amount of boiler evaporation can be further stabilized.
また、第1から第3実施形態の燃焼制御方法において、制御工程では、第1算出工程で算出した、廃棄物の厚み、及び、廃棄物の表面移動速度の少なくとも何れかに基づいて、(a)から(d)の4つの制御で用いる制御値を補正する。
Further, in the combustion control method of the first to third embodiments, in the control step, based on at least one of the thickness of the waste and the surface movement speed of the waste calculated in the first calculation step, (a). ) To (d), the control values used in the four controls are corrected.
これにより、現時点及び過去の熱量指標に加え、現に乾燥部11又は燃焼部12にある廃棄物の性状に関する情報を用いて制御値を補正できるので、補正をしないときと比較して、現時点の廃棄物により合致した安定な燃焼を維持することができる。
As a result, the control value can be corrected by using the information on the properties of the waste actually in the drying section 11 or the burning section 12 in addition to the current and past calorific value indexes. It is possible to maintain stable combustion that is more in line with the object.
以上に本発明の好適な実施の形態を説明したが、上記の構成は例えば以下のように変更することができる。
Although the preferred embodiment of the present invention has been described above, the above configuration can be changed as follows, for example.
上記実施形態では、2組の赤外線カメラ95で乾燥部11から後燃焼部13の廃棄物を観察する構成であるが、1組又は3組以上の赤外線カメラ95でこれらの廃棄物を観察する構成であってもよい。
In the above embodiment, two sets of infrared cameras 95 are used to observe the wastes from the drying section 11 to the post-burning section 13, but one set or three or more sets of infrared cameras 95 are used to observe these wastes. It may be.
上記実施形態で示したフローチャートは一例であり、一部の処理を省略したり、一部の処理の内容を変更したり、新たな処理を追加したりしてもよい。
The flowchart shown in the above embodiment is an example, and some processes may be omitted, the contents of some processes may be changed, or new processes may be added.
例えば、上記実施形態では、第1と第2の3次元熱画像を作成し、それぞれの3次元熱画像に対して、ステップS102からS104の処理がそれぞれ行われる。これに代えて、2組の赤外線カメラ95が取得した熱画像に基づいて、1つの3次元熱画像(乾燥部11から後燃焼部13までの廃棄物の3次元位置が表れる熱画像)を作成してもよい。この場合、1つの3次元熱画像に対して、ステップS102からS104の処理が行われる。
For example, in the above embodiment, the first and second three-dimensional thermal images are created, and the processes of steps S102 to S104 are performed on each of the three-dimensional thermal images. Instead of this, one three-dimensional thermal image (a thermal image showing the three-dimensional position of the waste from the drying portion 11 to the post-combustion portion 13) is created based on the thermal images acquired by the two sets of infrared cameras 95. You may. In this case, the processes of steps S102 to S104 are performed on one three-dimensional thermal image.
また、上記実施形態では、(a)から(d)の全ての制御を行うが、(a)から(d)の一部のみを行ってもよいし、(a)から(d)のうち制御を行う対象を選択する処理を行ってもよい。
Further, in the above embodiment, all the controls from (a) to (d) are performed, but only a part of (a) to (d) may be performed, or the control among (a) to (d) may be performed. You may perform the process of selecting the target to perform.
また、上記実施形態では、第1範囲及び第2範囲についてそれぞれ体積流量経過情報を算出してから両者を合成したが、それに代えて、第1範囲及び第2範囲について、厚みと表面移動速度(又は厚み経過情報)を算出した後に、両者を合成してもよい。
Further, in the above embodiment, the volume flow rate progress information is calculated for each of the first range and the second range, and then the two are combined. Instead, for the first range and the second range, the thickness and the surface movement speed ( Alternatively, after calculating the thickness progress information), both may be combined.
上記実施形態では、燃焼制御で用いる検出データとして、焼却炉内ガス温度センサ91、焼却炉出口ガス温度センサ92、COガス濃度センサ93、及びNOxガス濃度センサ94、二次燃焼温度センサ98、ボイラ蒸気量センサ99の検出データを挙げて説明したが、少なくとも1つの検出データを省略して燃焼制御を行ってもよいし、上記とは別の検出データを加えて燃焼制御を行ってもよい。別の検出データとしては、例えば、水噴霧により冷却を行う場合の水噴霧冷却用水量等を用いることができる。
In the above embodiment, as the detection data used in the combustion control, the incinerator gas temperature sensor 91, the incinerator outlet gas temperature sensor 92, the CO gas concentration sensor 93, the NOx gas concentration sensor 94, the secondary combustion temperature sensor 98, and the boiler Although the detection data of the steam amount sensor 99 has been described above, the combustion control may be performed by omitting at least one detection data, or by adding detection data other than the above. As another detection data, for example, the amount of water for water spray cooling in the case of cooling by water spray can be used.
10 焼却炉
11 乾燥部
12 燃焼部
13 後燃焼部
21 乾燥火格子
22 燃焼火格子
23 後燃焼火格子
90 制御装置
95 赤外線カメラ
96 画像処理装置 10Incinerator 11 Drying part 12 Combustion part 13 Post-combustion part 21 Dry grate 22 Combustion grate 23 Post-combustion grate 90 Control device 95 Infrared camera 96 Image processing device
11 乾燥部
12 燃焼部
13 後燃焼部
21 乾燥火格子
22 燃焼火格子
23 後燃焼火格子
90 制御装置
95 赤外線カメラ
96 画像処理装置 10
Claims (16)
- 乾燥部と燃焼部と後燃焼部とに区分されており、廃棄物が堆積した状態で間欠的に動作することで当該廃棄物を搬送する火格子を備える焼却炉に対して、
複数の赤外線カメラを用いて、火炎が放射しない波長の光を選択的に透過させるフィルタを介して、少なくとも前記乾燥部及び前記燃焼部に堆積した前記廃棄物を観測して、視点が異なる複数の熱画像を取得し、当該複数の熱画像に基づいて、3次元熱画像を作成する作成工程と、
前記3次元熱画像の前記廃棄物を複数の要素にメッシュ分割する分割工程と、
前記3次元熱画像に基づいて、前記廃棄物の厚み、及び、前記廃棄物の表面移動速度を前記要素毎に算出する第1算出工程と、
前記第1算出工程の算出結果に基づいて、前記要素に位置する前記廃棄物が当該要素に位置するまでに厚みが時系列でどのように変化したかを示す厚み経過情報を、前記要素毎に算出する第2算出工程と、
前記第1算出工程及び前記第2算出工程の算出結果に基づいて、前記要素に位置する前記廃棄物が当該要素に位置するまでに体積流量が時系列でどのように変化したかを示す体積流量経過情報を、前記要素毎に算出する第3算出工程と、
前記体積流量経過情報を解析して、燃焼開始可能状態となった後であって、燃え切り状態となる前の前記要素である燃焼途中要素を特定する特定工程と、
前記燃焼途中要素に位置する前記廃棄物の過去から現時点までの体積流量の変化に基づいて、燃焼の進行度を特定して当該進行度に応じた燃焼補正係数を決定する決定工程と、
前記燃焼途中要素に対して、前記廃棄物の現時点の体積流量と前記燃焼補正係数を掛ける処理を行い、前記燃焼途中要素毎の算出結果を前記要素の面積比率を考慮して合算することで、当該廃棄物から発生する熱量の指標となる熱量指標を算出する第1評価工程と、
を含む処理を行うことを特徴とする燃焼状況評価方法。 For incinerators equipped with a grate that is divided into a drying section, a combustion section, and a post-combustion section and that transports the waste by operating intermittently in a state where the waste is accumulated.
A plurality of infrared cameras are used to observe at least the waste accumulated in the dry portion and the combustion portion through a filter that selectively transmits light having a wavelength not emitted by the flame, and a plurality of viewpoints are different. A creation process of acquiring a thermal image and creating a three-dimensional thermal image based on the plurality of thermal images,
A division step of mesh-dividing the waste of the three-dimensional thermal image into a plurality of elements, and
A first calculation step of calculating the thickness of the waste and the surface moving speed of the waste for each element based on the three-dimensional thermal image, and
Based on the calculation result of the first calculation step, thickness progress information indicating how the thickness of the waste located in the element changes in time series until it is located in the element is provided for each element. The second calculation process to calculate and
Based on the calculation results of the first calculation step and the second calculation step, the volume flow rate showing how the volume flow rate changed in time series until the waste located in the element was located in the element. The third calculation step of calculating the progress information for each of the elements, and
A specific step of analyzing the volumetric flow rate progress information to identify an intermediate combustion element, which is the element after the combustion startable state is reached and before the combustion burnout state is reached.
A determination step of specifying the progress of combustion and determining a combustion correction coefficient according to the progress based on the change in the volumetric flow rate of the waste located in the intermediate combustion element from the past to the present time.
By multiplying the mid-combustion element by the current volumetric flow rate of the waste and the combustion correction coefficient, and adding up the calculation results for each mid-combustion element in consideration of the area ratio of the element. The first evaluation step of calculating the calorific value index, which is an index of the calorific value generated from the waste, and
A combustion condition evaluation method characterized by performing a process including. - 請求項1に記載の燃焼状況評価方法であって、
前記要素毎の前記体積流量経過情報と、燃焼制御用に用いる値であって前記火格子の搬送速度を設定するための値を少なくとも含む制御値の時間変化と、に基づいて得られる体積流量の時間経過の傾向に基づいて、体積流量の将来の変化を前記要素毎に予測する予測工程を含み、
前記予測工程で予測された前記体積流量の将来の変化に基づいて、前記特定工程、前記決定工程、及び前記第1評価工程を行うことで、将来の前記熱量指標を算出することを特徴とする燃焼状況評価方法。 The combustion condition evaluation method according to claim 1.
The volumetric flow rate obtained based on the volumetric flow rate progress information for each element and the time change of the control value including at least a value used for combustion control for setting the transport speed of the grate. Includes a prediction step that predicts future changes in volumetric flow for each of the factors based on trends over time.
It is characterized in that the future calorific value index is calculated by performing the specific step, the determination step, and the first evaluation step based on the future change of the volume flow rate predicted in the prediction step. Combustion status evaluation method. - 請求項1に記載の燃焼状況評価方法を用いて、前記焼却炉の燃焼を制御する燃焼制御方法であって、
過去の前記熱量指標と、現時点の前記熱量指標と、の比較結果に基づいて、前記焼却炉を制御する制御工程を行うことを特徴とする燃焼制御方法。 A combustion control method for controlling combustion in the incinerator by using the combustion condition evaluation method according to claim 1.
A combustion control method characterized in that a control step for controlling the incinerator is performed based on a comparison result between the past calorific value index and the current calorific value index. - 請求項2に記載の燃焼状況評価方法を用いて、前記焼却炉の燃焼を制御する燃焼制御方法であって、
現時点の前記熱量指標と、将来の前記熱量指標と、の比較結果に基づいて、前記焼却炉を制御する制御工程を行うことを特徴とする燃焼制御方法。 A combustion control method for controlling combustion in the incinerator by using the combustion condition evaluation method according to claim 2.
A combustion control method characterized in that a control step for controlling the incinerator is performed based on a comparison result between the current calorific value index and the future calorific value index. - 請求項1に記載の燃焼状況評価方法であって、
前記3次元熱画像に基づいて、前記要素毎に、前記廃棄物の表面温度を検出する温度検出工程を含み、
前記第1評価工程では、前記燃焼途中要素に位置する前記廃棄物の表面温度を更に用いて、前記熱量指標を算出することを特徴とする燃焼状況評価方法。 The combustion condition evaluation method according to claim 1.
A temperature detection step of detecting the surface temperature of the waste for each of the elements based on the three-dimensional thermal image is included.
In the first evaluation step, a combustion state evaluation method is characterized in that the calorific value index is calculated by further using the surface temperature of the waste located in the mid-combustion element. - 請求項5に記載の燃焼状況評価方法であって、
前記乾燥部の前記廃棄物の乾燥量の指標となる乾燥量指標を算出する第2評価工程を含み、
前記第2評価工程では、
前記体積流量経過情報を解析して、燃焼開始可能状態となる前の要素である乾燥途中要素を特定し、
前記乾燥途中要素に位置する前記廃棄物の過去から現時点までの体積流量の変化に基づいて、乾燥の進行度を特定して当該進行度に応じた乾燥補正係数を定め、
前記乾燥途中要素に対して、前記廃棄物の現時点の体積流量に前記乾燥補正係数を掛ける処理を行い、前記乾燥途中要素毎の算出結果を前記要素の面積比率を考慮して合算することで、当該廃棄物の前記乾燥量指標を算出することを特徴とする燃焼状況評価方法。 The combustion condition evaluation method according to claim 5.
Including a second evaluation step of calculating a dry amount index which is an index of the dry amount of the waste of the dry part.
In the second evaluation step,
By analyzing the volumetric flow rate progress information, an element in the middle of drying, which is an element before the combustion can be started, is identified.
Based on the change in the volumetric flow rate of the waste located in the drying intermediate element from the past to the present time, the progress of drying is specified and the drying correction coefficient according to the progress is determined.
The drying intermediate element is subjected to a process of multiplying the current volume flow rate of the waste by the drying correction coefficient, and the calculation results for each of the drying intermediate elements are added up in consideration of the area ratio of the element. A method for evaluating a combustion state, which comprises calculating the dryness index of the waste. - 請求項6に記載の燃焼状況評価方法であって、
前記第2評価工程では、前記乾燥途中要素に位置する前記廃棄物の表面温度を更に用いて、前記乾燥量指標を算出することを特徴とする燃焼状況評価方法。 The combustion condition evaluation method according to claim 6.
In the second evaluation step, a combustion state evaluation method is characterized in that the drying amount index is calculated by further using the surface temperature of the waste located in the drying intermediate element. - 請求項5に記載の燃焼状況評価方法を用いて、前記焼却炉の燃焼を制御する燃焼制御方法であって、
過去の前記熱量指標と、現時点の前記熱量指標と、の比較結果に基づいて、前記焼却炉を制御する制御工程を行うことを特徴とする燃焼制御方法。 A combustion control method for controlling combustion in the incinerator by using the combustion condition evaluation method according to claim 5.
A combustion control method characterized in that a control step for controlling the incinerator is performed based on a comparison result between the past calorific value index and the current calorific value index. - 請求項6又は7に記載の燃焼状況評価方法を用いて、前記焼却炉の燃焼を制御する燃焼制御方法であって、
過去の前記熱量指標と、現時点の前記熱量指標と、の比較結果に加えて、更に、過去の前記乾燥量指標と、現時点の前記乾燥量指標と、の比較結果に基づいて、前記焼却炉を制御する制御工程を行うことを特徴とする燃焼制御方法。 A combustion control method for controlling the combustion of the incinerator by using the combustion condition evaluation method according to claim 6 or 7.
In addition to the comparison result of the past calorific value index and the present calorific value index, the incinerator is further based on the comparison result of the past dry amount index and the present dry amount index. A combustion control method characterized by performing a control process to be controlled. - 請求項3、4、8、又は9に記載の燃焼制御方法であって、
前記制御工程では、
(a)前記燃焼部の前記火格子による前記廃棄物の搬送速度の増速又は減速
(b)前記乾燥部及び前記後燃焼部の前記火格子による前記廃棄物の搬送速度の増速又は減速
(c)一次燃焼用気体の供給量の調整
(d)一次燃焼で発生した未燃焼ガスを含む一次燃焼ガスを燃焼させる二次燃焼で用いる二次燃焼用気体の供給量の調整
の4つの制御の少なくとも何れかを行うことを特徴とする燃焼制御方法。 The combustion control method according to claim 3, 4, 8, or 9.
In the control step,
(A) Accelerating or decelerating the transport speed of the waste by the grate of the combustion unit (b) Accelerating or decelerating the transport speed of the waste by the grate of the drying portion and the post-combustion portion (b) c) Adjustment of the supply amount of the primary combustion gas (d) Adjustment of the supply amount of the secondary combustion gas used in the secondary combustion for burning the primary combustion gas including the unburned gas generated in the primary combustion. A combustion control method characterized by performing at least one of them. - 請求項2に記載の燃焼状況評価方法であって、
前記焼却炉で発生した熱量をボイラで回収することで発生したボイラ蒸発量を検出する蒸発量検出工程と、
過去の前記熱量指標と、過去の前記ボイラ蒸発量と、の相関関係に関する第1相関情報を算出する準備工程と、
前記第1相関情報と、将来の前記熱量指標と、に基づいて、将来の前記ボイラ蒸発量を予測するボイラ予測工程と、
を含むことを特徴とする燃焼状況評価方法。 The combustion condition evaluation method according to claim 2.
An evaporation amount detection step for detecting the evaporation amount of the boiler generated by recovering the heat amount generated in the incinerator with a boiler, and
A preparatory step for calculating the first correlation information regarding the correlation between the past calorific value index and the past boiler evaporation amount.
A boiler prediction step for predicting the future evaporation amount of the boiler based on the first correlation information and the future calorific value index.
A combustion condition evaluation method characterized by including. - 請求項11に記載の燃焼状況評価方法を用いて、前記焼却炉の燃焼を制御する燃焼制御方法であって、
前記廃棄物から発生した火炎を解析する解析工程と、
前記焼却炉を制御する制御工程と、
を含み、
前記解析工程では、
複数のカメラを用いて、前記廃棄物から発生した火炎を観測して、視点が異なる複数の画像を取得し、当該複数の画像に基づいて、3次元火炎画像を作成し、
前記3次元火炎画像を解析して、火炎の状態に関する情報であって当該火炎から発生する熱量の変化を評価するための情報である火炎状態情報を算出し、
前記火炎状態情報と、前記ボイラ蒸発量の検出値と、の相関関係に関する第2相関情報を算出し、
前記制御工程では、
現時点の前記ボイラ蒸発量と、将来の前記ボイラ蒸発量と、の比較結果に基づいて、前記ボイラ蒸発量を安定化させるために当該ボイラ蒸発量をどのように変化させるかを示す目標蒸発量変化を算出し、
前記第2相関情報と前記目標蒸発量変化とに基づいて、前記目標蒸発量変化のために火炎をどのように変化させるかを算出し、それに応じて前記焼却炉を制御することを特徴とする燃焼制御方法。 A combustion control method for controlling combustion in the incinerator by using the combustion condition evaluation method according to claim 11.
An analysis process for analyzing the flame generated from the waste, and
The control process for controlling the incinerator and
Including
In the analysis step,
A plurality of cameras are used to observe the flame generated from the waste, a plurality of images having different viewpoints are acquired, and a three-dimensional flame image is created based on the plurality of images.
The three-dimensional flame image is analyzed to calculate flame state information, which is information on the state of the flame and is information for evaluating the change in the amount of heat generated from the flame.
The second correlation information regarding the correlation between the flame state information and the detected value of the boiler evaporation amount was calculated.
In the control step,
Target evaporation amount change showing how to change the boiler evaporation amount in order to stabilize the boiler evaporation amount based on the comparison result between the current boiler evaporation amount and the future boiler evaporation amount. Is calculated and
Based on the second correlation information and the target evaporation amount change, how to change the flame due to the target evaporation amount change is calculated, and the incinerator is controlled accordingly. Combustion control method. - 請求項12に記載の燃焼制御方法であって、
前記火炎状態情報には、
一次燃焼又は二次燃焼で発生した燃焼ガスの流路と交差する所定の仮想平面で火炎を切った火炎断面積と、
前記流路に沿う方向の火炎流速と、
が含まれており、
前記制御工程では、前記目標蒸発量変化のために、前記火炎断面積と前記火炎流速をどのように変化させるかを示す目標火炎変化を特定し、当該目標火炎変化に応じて前記焼却炉を制御することを特徴とする燃焼制御方法。 The combustion control method according to claim 12.
The flame state information includes
The flame cross-sectional area where the flame is cut in a predetermined virtual plane that intersects the flow path of the combustion gas generated in the primary combustion or the secondary combustion,
The flame flow velocity in the direction along the flow path and
Is included,
In the control step, the target flame change indicating how the flame cross-sectional area and the flame flow velocity are changed due to the target evaporation amount change is specified, and the incinerator is controlled according to the target flame change. A combustion control method characterized by - 請求項13に記載の燃焼制御方法であって、
前記制御工程では、
(a)前記燃焼部の前記火格子による前記廃棄物の搬送速度の増速又は減速
(b)前記乾燥部及び前記後燃焼部の前記火格子による前記廃棄物の搬送速度の増速又は減速
(c)一次燃焼用気体の供給量の調整
(d)前記一次燃焼で発生した未燃焼ガスを含む一次燃焼ガスを燃焼させる二次燃焼で用いる二次燃焼用気体の供給量の調整
の4つの制御の少なくとも何れかを行うことを特徴とする燃焼制御方法。 The combustion control method according to claim 13.
In the control step,
(A) Accelerating or decelerating the transport speed of the waste by the grate of the combustion unit (b) Accelerating or decelerating the transport speed of the waste by the grate of the drying portion and the post-combustion portion (b) c) Adjustment of the supply amount of the primary combustion gas (d) Four controls of adjustment of the supply amount of the secondary combustion gas used in the secondary combustion for burning the primary combustion gas including the unburned gas generated in the primary combustion. A combustion control method characterized in that at least one of the above is performed. - 請求項12から14までの何れか一項に記載の燃焼制御方法であって、
前記第2相関情報には、二次燃焼ゾーンの温度である二次燃焼温度と前記ボイラ蒸発量との相関関係も含まれることを特徴とする燃焼制御方法。 The combustion control method according to any one of claims 12 to 14.
A combustion control method characterized in that the second correlation information also includes a correlation between the secondary combustion temperature, which is the temperature of the secondary combustion zone, and the amount of evaporation of the boiler. - 請求項10又は14に記載の燃焼制御方法であって、
前記制御工程では、前記第1算出工程で算出した、前記廃棄物の厚み、及び、前記廃棄物の表面移動速度の少なくとも何れかに基づいて、前記4つの制御で用いる制御値を補正することを特徴とする燃焼制御方法。 The combustion control method according to claim 10 or 14.
In the control step, the control values used in the four controls are corrected based on at least one of the thickness of the waste and the surface movement speed of the waste calculated in the first calculation step. Combustion control method as a feature.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019190902A JP6880146B2 (en) | 2019-10-18 | 2019-10-18 | Combustion status evaluation method and combustion control method |
JP2019-190902 | 2019-10-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021075490A1 true WO2021075490A1 (en) | 2021-04-22 |
Family
ID=75538148
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/038880 WO2021075490A1 (en) | 2019-10-18 | 2020-10-15 | Combustion state evaluation method and combustion control method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6880146B2 (en) |
WO (1) | WO2021075490A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023037742A1 (en) * | 2021-09-10 | 2023-03-16 | 三菱重工環境・化学エンジニアリング株式会社 | Control device for incinerator equipment |
CN116700196A (en) * | 2023-07-31 | 2023-09-05 | 湖南隆深氢能科技有限公司 | Real-time control method, system, terminal equipment and medium for GDL sintering production line |
CN116839060A (en) * | 2023-09-01 | 2023-10-03 | 南京盛略科技有限公司 | Method and system for detecting combustion in furnace |
CN117029012A (en) * | 2023-08-11 | 2023-11-10 | 山东亚科环保科技有限公司 | Treatment system for waste liquid in caprolactam production |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7296436B2 (en) | 2021-10-15 | 2023-06-22 | 三菱重工環境・化学エンジニアリング株式会社 | Control device |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004239508A (en) * | 2003-02-05 | 2004-08-26 | Jfe Engineering Kk | Combustion control method of refuse incinerator, and refuse incinerator |
JP2018155411A (en) * | 2017-03-15 | 2018-10-04 | 三菱重工業株式会社 | Stoker type incinerator |
JP2019052822A (en) * | 2017-09-19 | 2019-04-04 | 川崎重工業株式会社 | In-furnace condition determination method, combustion control method, and waste incinerator |
JP6543389B1 (en) * | 2018-06-19 | 2019-07-10 | 川崎重工業株式会社 | Reactor internal condition determination method and combustion control method |
JP2019132485A (en) * | 2018-01-30 | 2019-08-08 | 株式会社タクマ | Combustion-controlling system with function of estimating waste volume in incinerator |
JP2019178849A (en) * | 2018-03-30 | 2019-10-17 | Jfeエンジニアリング株式会社 | Waste incineration method |
-
2019
- 2019-10-18 JP JP2019190902A patent/JP6880146B2/en active Active
-
2020
- 2020-10-15 WO PCT/JP2020/038880 patent/WO2021075490A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004239508A (en) * | 2003-02-05 | 2004-08-26 | Jfe Engineering Kk | Combustion control method of refuse incinerator, and refuse incinerator |
JP2018155411A (en) * | 2017-03-15 | 2018-10-04 | 三菱重工業株式会社 | Stoker type incinerator |
JP2019052822A (en) * | 2017-09-19 | 2019-04-04 | 川崎重工業株式会社 | In-furnace condition determination method, combustion control method, and waste incinerator |
JP2019132485A (en) * | 2018-01-30 | 2019-08-08 | 株式会社タクマ | Combustion-controlling system with function of estimating waste volume in incinerator |
JP2019178849A (en) * | 2018-03-30 | 2019-10-17 | Jfeエンジニアリング株式会社 | Waste incineration method |
JP6543389B1 (en) * | 2018-06-19 | 2019-07-10 | 川崎重工業株式会社 | Reactor internal condition determination method and combustion control method |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023037742A1 (en) * | 2021-09-10 | 2023-03-16 | 三菱重工環境・化学エンジニアリング株式会社 | Control device for incinerator equipment |
JP2023040645A (en) * | 2021-09-10 | 2023-03-23 | 三菱重工環境・化学エンジニアリング株式会社 | Device for controlling incinerator facility |
CN116700196A (en) * | 2023-07-31 | 2023-09-05 | 湖南隆深氢能科技有限公司 | Real-time control method, system, terminal equipment and medium for GDL sintering production line |
CN116700196B (en) * | 2023-07-31 | 2023-10-31 | 湖南隆深氢能科技有限公司 | Real-time control method, system, terminal equipment and medium for GDL sintering production line |
CN117029012A (en) * | 2023-08-11 | 2023-11-10 | 山东亚科环保科技有限公司 | Treatment system for waste liquid in caprolactam production |
CN117029012B (en) * | 2023-08-11 | 2024-03-12 | 山东亚科环保科技有限公司 | Treatment system for waste liquid in caprolactam production |
CN116839060A (en) * | 2023-09-01 | 2023-10-03 | 南京盛略科技有限公司 | Method and system for detecting combustion in furnace |
CN116839060B (en) * | 2023-09-01 | 2023-11-10 | 南京盛略科技有限公司 | Method and system for detecting combustion in furnace |
Also Published As
Publication number | Publication date |
---|---|
JP6880146B2 (en) | 2021-06-02 |
JP2021067381A (en) | 2021-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6880146B2 (en) | Combustion status evaluation method and combustion control method | |
JP6596121B1 (en) | In-furnace situation determination method and combustion control method | |
JP6543389B1 (en) | Reactor internal condition determination method and combustion control method | |
JP6671326B2 (en) | Combustion control method and waste incinerator | |
CZ330394A3 (en) | Control method of individual or all factors influencing combustion on a furnace grate | |
JP6723864B2 (en) | Combustion control device equipped with a garbage moving speed detection function | |
JP6543390B1 (en) | Furnace internal condition judging method and evaporation control method | |
WO2021075488A1 (en) | Combustion state evaluation method and combustion control method | |
JP2022069679A (en) | Device and method for controlling combustion of stoker furnace and device and method for detecting fuel movement amount | |
JP7059955B2 (en) | Waste supply measuring device and method and waste incinerator device and method | |
JP6880145B2 (en) | Combustion status evaluation method and combustion control method | |
WO2023037742A1 (en) | Control device for incinerator equipment | |
JP6880141B2 (en) | Combustion status evaluation method and combustion control method | |
JP6880143B2 (en) | Combustion status evaluation method and combustion control method | |
JP6880142B2 (en) | Combustion status evaluation method and combustion control method | |
JP6803446B1 (en) | Combustion method and combustion control method | |
JP7384078B2 (en) | Waste incineration equipment and waste incineration method | |
TW202323728A (en) | Control apparatus | |
JP2022071891A (en) | Furnace interior image creating method, furnace interior situation determining method and combustion situation evaluating method | |
JP2021103063A (en) | Refuse layer thickness evaluation method of refuse incinerator and combustion control method of refuse incinerator | |
JP7445058B1 (en) | Combustion equipment system and combustion control method | |
JP2021127934A (en) | Method of operating furnace unit | |
JP6744843B2 (en) | Flame end position detection method, automatic combustion control method, and waste incinerator | |
JP2021103062A (en) | Burn-off point estimation method for refuse incinerator and burn-off point adjustment method for refuse incinerator | |
CN115899710A (en) | Method for operating a furnace unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20875872 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20875872 Country of ref document: EP Kind code of ref document: A1 |