[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021075457A1 - 樹脂被覆金属粉末およびその製造方法ならびにこれを用いた水性塗料組成物 - Google Patents

樹脂被覆金属粉末およびその製造方法ならびにこれを用いた水性塗料組成物 Download PDF

Info

Publication number
WO2021075457A1
WO2021075457A1 PCT/JP2020/038757 JP2020038757W WO2021075457A1 WO 2021075457 A1 WO2021075457 A1 WO 2021075457A1 JP 2020038757 W JP2020038757 W JP 2020038757W WO 2021075457 A1 WO2021075457 A1 WO 2021075457A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
metal powder
carbon atoms
linear
group
Prior art date
Application number
PCT/JP2020/038757
Other languages
English (en)
French (fr)
Inventor
翔太郎 青木
清森 歩
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to US17/769,629 priority Critical patent/US20240052172A1/en
Priority to EP20876087.6A priority patent/EP4046729A4/en
Publication of WO2021075457A1 publication Critical patent/WO2021075457A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/02Emulsion paints including aerosols
    • C09D5/024Emulsion paints including aerosols characterised by the additives
    • C09D5/027Dispersing agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/02Compounds of alkaline earth metals or magnesium
    • C09C1/028Compounds containing only magnesium as metal
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/04Compounds of zinc
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/14Compounds of lead
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/22Compounds of iron
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/62Metallic pigments or fillers
    • C09C1/622Comminution, shaping or abrasion of initially uncoated particles, possibly in presence of grinding aids, abrasives or chemical treating or coating agents; Particle solidification from melted or vaporised metal; Classification
    • C09C1/625Comminution, shaping or abrasion of initially uncoated particles, possibly in presence of grinding aids, abrasives or chemical treating or coating agents; Particle solidification from melted or vaporised metal; Classification the particles consisting of zinc or a zinc alloy
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/62Metallic pigments or fillers
    • C09C1/627Copper
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/62Metallic pigments or fillers
    • C09C1/64Aluminium
    • C09C1/644Aluminium treated with organic compounds, e.g. polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/10Treatment with macromolecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/12Treatment with organosilicon compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/02Emulsion paints including aerosols
    • C09D5/024Emulsion paints including aerosols characterised by the additives
    • C09D5/028Pigments; Filters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/10Anti-corrosive paints containing metal dust
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/10Anti-corrosive paints containing metal dust
    • C09D5/106Anti-corrosive paints containing metal dust containing Zn
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F13/00Inhibiting corrosion of metals by anodic or cathodic protection
    • C23F13/02Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
    • C23F13/06Constructional parts, or assemblies of cathodic-protection apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent

Definitions

  • the present invention relates to a resin-coated metal powder, a method for producing the same, and a water-based coating composition using the same.
  • a paint containing a metal powder has been widely used because it can impart metallic luster and corrosion resistance to a coating material.
  • metals having a high ionization tendency such as magnesium, aluminum, and zinc exert an anticorrosion effect on metals having a lower ionization tendency by acting as a sacrificial anode by themselves.
  • metals having a high ionization tendency such as magnesium, aluminum, and zinc exert an anticorrosion effect on metals having a lower ionization tendency by acting as a sacrificial anode by themselves.
  • metals having a high ionization tendency such as magnesium, aluminum, and zinc exert an anticorrosion effect on metals having a lower ionization tendency by acting as a sacrificial anode by themselves.
  • a paint containing a high concentration of metal powder such as zinc powder, magnesium powder, and aluminum powder
  • land steel structures such as bridges, plants, and tanks, and marine steel structures. Widely used as an anticorrosive paint.
  • organic anticorrosion paints are roughly classified into organic anticorrosion paints and inorganic anticorrosion paints according to the type of base resin used as a vehicle.
  • organic anticorrosion paint epoxy resin and amine curing agent are mainly used as vehicles
  • alkyl silicate resin is used as vehicle
  • organic solvent is an essential component in both cases. ing.
  • the water-based anticorrosion paint disclosed in Patent Document 2 is a two-component, one-powder type paint composed of a combination of a main agent containing an epoxy resin emulsion, a pigment containing a metal powder such as zinc, and an amine curing agent. Immediately before, these three are mixed and used. Since this paint is a non-hazardous substance, it is highly safe against fire, and since it has little odor, it has a feature that the load on workers and the surrounding environment is small.
  • the present invention has been made in view of the above circumstances, and is a resin-coated metal powder which has sufficient dispersibility in an aqueous solution and is stable for a relatively long time even when coexisting with water in an aqueous paint.
  • An object of the present invention is to provide a production method and a water-based coating composition using the same.
  • the present inventors temporarily prevent the reaction between the metal and the water even in an environment where the metal powder whose surface is coated with a predetermined hydrolyzable resin coexists with water.
  • the hydrolyzable resin constituting the coating reacts with water after a certain period of time, and at least a part thereof can be decomposed to activate the metal powder, which is useful as an additive for the water-based coating composition.
  • a resin-coated metal powder which is a resin having a polystyrene-equivalent number average molecular weight of 500 to 100,000 by chromatography.
  • R 1 represents a linear or branched monovalent hydrocarbon group having 1 to 10 carbon atoms, and a part or all of the hydrogen atoms of the hydrocarbon group are an alkoxyalkyl group or an alkoxysilyl group.
  • R 3 , R 4 and R 5 each independently represent a linear or branched monovalent hydrocarbon group having 1 to 10 carbon atoms.
  • R 2 and R 6 each independently represent a hydrogen atom or a linear or branched monovalent hydrocarbon group having 1 to 10 carbon atoms.
  • a resin-coated metal powder in which R 3 , R 4 and R 5 are independently linear or branched monovalent hydrocarbon groups having 1 to 4 carbon atoms, respectively. 3.
  • a silane coupling agent having a polymerizable group represented by the above is mixed in advance to obtain a metal powder treated with the silane coupling agent, and then the treated metal powder is prepared by the following general formula (3).
  • R 11 , R 12 and R 13 each independently represent a linear or branched monovalent hydrocarbon group having 1 to 10 carbon atoms
  • R 14 is a hydrogen atom or a carbon number of carbon atoms.
  • R 15 represents a linear or branched monovalent hydrocarbon group having 1 to 10 carbon atoms
  • R 16 is a hydrogen atom or a linear or branched chain having 1 to 10 carbon atoms.
  • An aqueous coating composition containing the resin-coated metal powder according to any one of 1 to 3 and an epoxy resin emulsion is provided.
  • the resin-coated metal powder of the present invention exhibits temporary stability against moisture because a part or all of the surface is coated with a predetermined hydrolyzable resin that gradually decomposes in response to moisture. That is, the hydrolyzable resin coating can suppress the reaction between the metal powder that generates hydrogen gas and the water content in the water-based paint for a certain period of time until the coating film dries, so that a smooth coated surface can be obtained. Further, after a certain period of time, the metal surface covered by the hydrolysis of the hydrolyzable resin is exposed, so that the metal powder is activated.
  • the surface of the metal powder is modified with a resin having a bulky substituent such as a trialkylsilyl group, the steric repulsion between the metal powders becomes large, and the dispersibility in the water-based coating composition is improved.
  • the resin-coated metal powder having the above characteristics can be widely used in paints, inks, pastes and the like. In particular, it can be used for zinc rich paint, decorative paint, magnetic paint, heat shield paint, conductive ink, paste and the like.
  • Resin-coated metal powder has at least a part of the surface of the metal powder having an average composition represented by the following general formula (1), and is converted to polystyrene by gel permeation chromatography. It is characterized in that it is coated with a hydrolyzable resin having a number average molecular weight of 500 to 100,000.
  • R 1 represents a linear or branched monovalent hydrocarbon group having 1 to 10 carbon atoms, preferably 1 to 6 carbon atoms, and more preferably 1 to 4 carbon atoms.
  • Specific examples of the monovalent hydrocarbon group of R 1 include linear chains such as methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl and decyl groups.
  • Alkyl groups examples thereof include branched chain alkyl groups such as isopropyl, isobutyl, sec-butyl, tert-butyl, neopentyl, texyl and 2-ethylhexyl groups.
  • a part or all of the hydrogen atom thereof is an alkoxyalkyl group, an alkoxysilyl group, a hydroxyalkyl group, a polyoxyalkylene (polyalkyleneoxy) group or a terminal alkylpolyoxyalkylene (polyalkylene). It may be substituted with an oxy) group.
  • the total number of carbon atoms of the alkoxyalkyl group is not particularly limited, but is preferably 2 to 10, more preferably 2 to 6, and even more preferably 2 to 4.
  • alkoxyalkyl group examples include linear alkoxyalkyl groups such as methoxymethyl, ethoxymethyl, 2-methoxyethyl, 2-ethoxyethyl, and 3-methoxypropyl group; 1-methoxyethyl, 1-ethoxyethyl, 1 Examples thereof include branched chain alkoxyalkyl groups such as -methoxypropyl and 2-methoxypropyl groups.
  • the total number of carbon atoms of the alkoxysilyl group is not particularly limited, but is preferably 3 to 10, more preferably 3 to 8, and even more preferably 3 to 6.
  • Specific examples of the alkoxysilyl group include trimethoxysilyl, methyldimethoxyryl, dimethylmethoxysilyl, triethoxysilyl, methyldiethoxysilyl, dimethylethoxysilyl group and the like.
  • the alkoxysilyl group can be chemically bonded to the metal surface. Specifically, when a part or all of the hydrogen atom of R 1 is substituted with an alkoxysilyl group, a part or all of the ester silane moiety may be chemically bonded to the surface of the metal powder.
  • the number of carbon atoms of the hydroxyalkyl group is not particularly limited, but is preferably 1 to 10, more preferably 1 to 6, and even more preferably 1 to 4.
  • Specific examples of the hydroxyalkyl group include linear hydroxyalkyl groups such as hydroxymethyl, 2-hydroxyethyl, 3-hydroxypropyl and 4-hydroxybutyl groups; 1-hydroxyethyl, 1-hydroxy-1-methylethyl, Examples thereof include branched chain hydroxyalkyl groups such as 1-hydroxypropyl and 2-hydroxypropyl groups.
  • the total number of carbon atoms of the polyoxyalkylene group is not particularly limited, but is preferably 1 to 40, more preferably 1 to 30, and even more preferably 1 to 20.
  • Specific examples of the polyoxyalkylene group include hydroxymethoxy, 2-hydroxyethoxy, (hydroxymethoxy) methoxy, 2- (2-hydroxyethoxy) ethoxy, ((hydroxymethoxy) methoxy) methoxy, 2- (2- (2). -Hydroxyethoxy) ethoxy) ethoxy group and the like can be mentioned.
  • the total number of carbon atoms of the terminal alkyl polyoxyalkylene (polyalkyleneoxy) group is not particularly limited, but is preferably 2 to 40, more preferably 2 to 30, and even more preferably 2 to 20.
  • Specific examples of the terminal alkyl polyoxyalkylene group include methoxymethoxy, 2-ethoxyethoxy, (methoxymethoxy) methoxy, 2- (2-ethoxyethoxy) ethoxy group and the like.
  • R 1 a methyl group, an ethyl group, a trimethoxysilylpropyl group and a trimethoxysilyloctyl group are preferable from the viewpoint of raw material procurement.
  • R 3 , R 4 and R 5 are independent linear or branched monovalent hydrocarbon groups having 1 to 10 carbon atoms, preferably 1 to 6 carbon atoms, and more preferably 1 to 4 carbon atoms. Represents. Specific examples of this monovalent hydrocarbon group include the same groups as those exemplified in R 1 above, but the substituents R 3 , R 4 and R 5 on the silicon atom are hydrolyzable of the resin. Methyl group, ethyl group, and isopropyl group are preferable from the viewpoint of ensuring an appropriate reactivity, and isopropyl is considered to further enhance the dispersibility of the resin-coated metal powder in water or the coating composition. Groups are more preferred.
  • R 2 and R 6 represent a hydrogen atom or a linear or branched monovalent hydrocarbon group having 1 to 10 carbon atoms, preferably 1 to 6 carbon atoms, and more preferably 1 to 4 carbon atoms.
  • this monovalent hydrocarbon group include the same groups as those exemplified in R 1 above, but from the viewpoint of the adhesion of the hydrolyzable resin to the metal powder, R 2 and R 6 are hydrogen. Atomic or methyl groups are preferred.
  • the proportion of silyl ester contained in the hydrolyzable resin contributes to the hydrolyzability of the resin.
  • a and b are 0.10 ⁇ a ⁇ 0.98, 0.
  • R 3 , R 4 and R 5 are branched monovalent hydrocarbon groups
  • a and b are 0.05 ⁇ a ⁇ 0.98, 0.02 ⁇ b ⁇ 0.95
  • the polystyrene-equivalent number average molecular weight of the hydrolyzable resin having the average composition represented by the general formula (1) by gel permeation chromatography (hereinafter, also referred to as “GPC”) is 500 to 100,000. However, it is preferably 1,000 to 100,000, more preferably 2,000 to 50,000, and even more preferably 2,500 to 20,000.
  • GPC gel permeation chromatography
  • the hydrolyzable resin can be produced by a known radical polymerization using an acrylate monomer that gives each constituent unit.
  • acrylate monomer giving the unit of a above include alkyl groups such as methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, n-butyl acrylate, n-butyl methacrylate, 2-ethylhexyl acrylate, and 2-ethylhexyl methacrylate.
  • Acrylate monomer having: Acrylate monomer having an alkoxyalkyl group such as methoxymethyl acrylate, ethoxymethyl acrylate, methoxymethyl methacrylate, ethoxymethyl methacrylate; 3-trimethoxysilylpropyl acrylate, 3-methyldimethoxysilylpropyl acrylate, 3-dimethylmethoxysilyl Propyl acrylate, 3-triethoxysilylpropyl acrylate, 3-methyldiethoxysilylpropyl acrylate, 3-dimethylethoxysilylpropyl acrylate, 3-trimethoxysilylpropyl methacrylate, 3-methyldimethoxysilylpropyl methacrylate, 3-dimethylmethoxysilylpropyl Methacrylate, 3-triethoxysilylpropyl methacrylate, 3-methyldiethoxysilylpropyl methacrylate, 3-dimethylethoxysilylpropyl methacrylate
  • acrylate monomer giving the unit b above examples include trimethylsilyl acrylate, trimethylsilyl methacrylate, triethylsilyl acrylate, triethylsilyl methacrylate, triisopropylsilyl acrylate, triisopropylsilyl methacrylate, tert-butyldimethylsilyl acrylate, and tert-butyl.
  • examples thereof include an acrylate monomer having a trialkylsilyl group such as dimethylsilylmethacrylate.
  • the metal powder coated with the hydrolyzable resin is not particularly limited, and examples thereof include magnesium powder, aluminum powder, zinc powder, iron powder, nickel powder, tin powder, lead powder, and copper powder. Among these, zinc powder, magnesium powder, aluminum powder, and iron powder are preferable, and zinc powder is more preferable, from the viewpoint of metal toxicity.
  • the average particle size of the metal powder by the laser diffraction / scattering method is not particularly limited, but is preferably 1 to 12 ⁇ m, more preferably 2 to 10 ⁇ m, from the viewpoint of improving the sedimentation resistance of the metal powder.
  • the average particle size of the resin-coated metal powder after being coated with the hydrolyzable resin by the laser diffraction / scattering method is preferably 1 to 20 ⁇ m, more preferably 1 to 15 ⁇ m.
  • the average particle size in the present invention is a volume-based average particle size, and the total volume of the metal powder or the resin-coated metal powder is 100% based on the particle size distribution of the metal powder or the resin-coated metal powder in the dispersion liquid. It means the particle size at the point where the cumulative volume is 50%.
  • the resin-coated metal powder of the present invention contains, for example, a hydrolyzable resin represented by the above general formula (1), a metal powder, and a solvent used as needed in an arbitrary order. It can be mixed and manufactured. In this case, the materials can be efficiently mixed by using a stirring device such as a magnetic stirrer, a mechanical stirrer, a spray dryer, or a rotation / revolution mixer.
  • a stirring device such as a magnetic stirrer, a mechanical stirrer, a spray dryer, or a rotation / revolution mixer.
  • the amount of the hydrolyzable resin added to the metal powder is not particularly limited, but is 0.5 to 10. From the viewpoint of ensuring the stability of the resin-coated metal powder coated with the hydrolyzable resin to water. 0% by mass is preferable, and 1.0 to 5.0% by mass is more preferable.
  • solvent used as required include aliphatic or aromatic hydrocarbon solvents such as pentane, hexane, cyclohexane, heptane, isooctane, benzene, toluene and xylene; ether solvents such as diethyl ether, tetrahydrofuran and dioxane. Solvents; ester solvents such as ethyl acetate and butyl acetate; aproton polar solvents such as acetonitrile, N, N-dimethylformamide and N-methylpyrrolidone; chlorinated hydrocarbon solvents such as dichloromethane and chloroform.
  • aliphatic or aromatic hydrocarbon solvents such as pentane, hexane, cyclohexane, heptane, isooctane, benzene, toluene and xylene
  • ether solvents such as diethyl ether,
  • solvents may be used alone or in combination of two or more.
  • aromatic hydrocarbon solvents such as toluene and xylene are preferable from the viewpoint of solubility of the hydrolyzable resin.
  • the amount used is not particularly limited, but the amount of the hydrolyzable resin is preferably 0.01 to 50% by mass, more preferably 0.1 to 30% by mass.
  • drying conditions are arbitrary and can be carried out under atmospheric pressure or reduced pressure from room temperature under heating.
  • a solvent it is preferable to heat-dry it under reduced pressure from the viewpoint of reducing the residual solvent.
  • the crushing can be performed by a conventionally known method, for example, using a crusher such as a hammer mill, a pin mill, a rotary mill, a vibration mill, a planetary mill, a roller mill, or a jet mill.
  • a crusher such as a hammer mill, a pin mill, a rotary mill, a vibration mill, a planetary mill, a roller mill, or a jet mill.
  • the resin-coated metal powder of the present invention is a metal powder obtained by previously mixing a metal powder and a silane coupling agent having a polymerizable group represented by the following general formula (2) and treating the metal powder with the silane coupling agent. After obtaining, the treated metal powder, the polymerizable monomer represented by the following general formula (3), the silane coupling agent having a polymerizable group represented by the following general formula (2), and / or the following general formula ( It can also be produced by reacting the polymerizable monomer represented by 4) by radical polymerization.
  • R 7 represents a linear or branched divalent hydrocarbon group having 1 to 10 carbon atoms, preferably 1 to 9 carbon atoms, and more preferably 1 to 8 carbon atoms. ..
  • Specific examples of the divalent hydrocarbon group of R 7 include linear alkylene groups such as methylene, ethylene, trimethylene, butylene, pentylene, hexylene and octylene groups; branched alkylene groups such as propylene, isobutylene and isopentylene groups.
  • a linear alkylene group is preferable, and a trimethylene group and an octylene group are more preferable.
  • R 8 and R 9 are linear or branched monovalent hydrocarbons having 1 to 10 carbon atoms, preferably 1 to 5 carbon atoms, and more preferably 1 to 3 carbon atoms. Represents a group. Specific examples of this monovalent hydrocarbon group include the same substituents as those exemplified in R 1 above, but from the viewpoint of ensuring the reactivity between the metal surface and the silane coupling agent, a methyl group and an ethyl group Is preferable.
  • R 10 is a hydrogen atom or a linear or branched monovalent hydrocarbon having 1 to 10 carbon atoms, preferably 1 to 6 carbon atoms, and more preferably 1 to 4 carbon atoms. Represents a hydrogen group. Specific examples of this monovalent hydrocarbon group include the same substituents as those exemplified in R 1 above, but from the viewpoint of ensuring the reactivity of the polymerizable monomer, R 10 is a hydrogen atom or a methyl group. Is preferable.
  • silane coupling agent having the polymerizable group of the general formula (2) examples include 3-trimethoxysilylpropyl acrylate, 3-methyldimethoxysilylpropyl acrylate, 3-dimethylmethoxysilylpropyl acrylate, and 3-triethoxy.
  • the amount of the silane coupling agent having a polymerizable group added is not particularly limited, but is 0.1 to 5.0% by mass with respect to the metal powder from the viewpoint of sufficiently treating the surface of the metal powder. It is preferably 0.5 to 2.0% by mass, more preferably 0.5 to 2.0% by mass.
  • R 11 , R 12 and R 13 are independently linear or branched having 1 to 10 carbon atoms, preferably 1 to 6 carbon atoms, and more preferably 1 to 4 carbon atoms. Represents a chain monovalent hydrocarbon group.
  • R 11 , R 12 and R 13 include the same substituents as those exemplified in R 1 above, but the substituents on the silicon atom, R 11 , R 12 and Since R 13 contributes to the hydrolyzability of the resin, a methyl group, an ethyl group, and an isopropyl group are preferable from the viewpoint of ensuring an appropriate reactivity, and the dispersibility of the resin-coated metal powder in water or in a coating composition.
  • the isopropyl group is more preferable in consideration of increasing the amount of isopropyl group.
  • R 14 is a hydrogen atom or a linear or branched monovalent hydrocarbon having 1 to 10 carbon atoms, preferably 1 to 6 carbon atoms, and more preferably 1 to 4 carbon atoms. Represents a hydrogen group.
  • Specific examples of the monovalent hydrocarbon group of R 14 include the same groups as those exemplified in R 1 above, but from the viewpoint of ensuring the reactivity of the polymerizable monomer, R 14 is a hydrogen atom or methyl. Groups are preferred.
  • polymerizable monomer of the general formula (3) examples include trimethylsilyl acrylate, trimethylsilyl methacrylate, triethylsilyl acrylate, triethylsilyl methacrylate, triisopropylsilyl acrylate, triisopropylsilyl methacrylate, tert-butyldimethylsilyl acrylate, and tert-butyl.
  • examples thereof include an acrylate monomer having a trialkylsilyl group such as dimethylsilylmethacrylate.
  • R 15 represents a linear or branched monovalent hydrocarbon group having 1 to 10 carbon atoms, preferably 1 to 6 carbon atoms, and more preferably 1 to 4 carbon atoms. .. Specific examples of the monovalent hydrocarbon group of R 15 include the same substituents as those exemplified in R 1 above, but from the viewpoint of raw material availability, methyl group, ethyl group, butyl group and octyl group are used. preferable.
  • R 16 is a hydrogen atom or a linear or branched monovalent hydrocarbon having 1 to 10 carbon atoms, preferably 1 to 6 carbon atoms, and more preferably 1 to 4 carbon atoms. Represents a group.
  • Specific examples of the monovalent hydrocarbon group of R 15 include the same substituents as those exemplified in R 1 above, but a hydrogen atom or a methyl group is preferable from the viewpoint of ensuring the reactivity of the polymerizable monomer. ..
  • polymerizable monomer of the general formula (4) examples include methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, n-butyl acrylate, n-butyl methacrylate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate and the like. Be done.
  • the method of mixing the metal powder and the silane coupling agent having a polymerizable group represented by the above general formula (2) is arbitrary, and can be appropriately selected from various known methods.
  • the materials can be efficiently mixed by using a stirring device such as a magnetic stirrer, a mechanical stirrer, a spray dryer, or a rotation / revolution mixer.
  • the treatment with the silane coupling agent may be carried out at room temperature or under heating, but it is preferable that the treatment is carried out at room temperature and then finally heated.
  • the heating temperature is preferably, for example, about 50 to 120 ° C.
  • the radical polymerization method of the metal powder treated with the silane coupling agent and various polymerizable monomers is also optional, and a known method using a radical polymerization initiator can be adopted.
  • the ratio of the monomer of the formula (2) and / or the monomer of the formula (4) to the monomer of the formula (3) is in the range satisfying a and b of the above formula (1).
  • the radical polymerization initiator can also be appropriately selected from known ones, but is 2,2'-azobis (2-methylbutyronitrile), azobisisobutyronitrile, 2,2'-di (2-hydroxyethyl). ) Azo-based compounds such as azobisisobutyronitrile are preferable.
  • the reaction temperature is usually about 60 to 120 ° C, preferably about 70 to 100 ° C.
  • the reaction time is usually about 30 minutes to 10 hours, preferably about 1 to 5 hours.
  • the above-mentioned polymerization reaction proceeds without a solvent, but a solvent can also be used.
  • a solvent that can be used, a hydrocarbon solvent such as pentane, hexane, cyclohexane, heptane, isooctane, toluene, xylene, and mesitylen; aprotonic solvent such as acetonitrile, propionitrile, N, N-dimethylformamide, and N-methylpyrrolidone.
  • a hydrocarbon solvent such as pentane, hexane, cyclohexane, heptane, isooctane, toluene, xylene, and mesitylen
  • aprotonic solvent such as acetonitrile, propionitrile, N, N-dimethylformamide, and N-methylpyrrolidone.
  • Polar solvents halogenated hydrocarbon solvents such as dichloromethane, dichloroethane, chlorobenzene and the like; ether solvents such as diethyl ether, tetrahydrofuran, dioxane, dimethoxyethane and the like can be mentioned, and even if one of these solvents is used alone, 2 You may use a mixture of seeds or more.
  • halogenated hydrocarbon solvents such as dichloromethane, dichloroethane, chlorobenzene and the like
  • ether solvents such as diethyl ether, tetrahydrofuran, dioxane, dimethoxyethane and the like can be mentioned, and even if one of these solvents is used alone, 2 You may use a mixture of seeds or more.
  • toluene, xylene, mesitylene and tetrahydrofuran are particularly preferable.
  • the water-based coating composition of the present invention contains the above-mentioned resin-coated metal powder and epoxy resin emulsion.
  • the epoxy resin emulsion contains an epoxy resin, an emulsifier and a hydrophilic medium, and the epoxy resin is emulsified using the emulsifier and the hydrophilic medium from the viewpoint of prolonging the pot life after mixing and improving the rust prevention property of the coating film. A dispersed one is preferable.
  • the epoxy resin can be appropriately selected from conventionally known resins having at least two epoxy groups in one molecule, and can be used, for example, bisphenol type epoxy resins such as bisphenol A type epoxy resin and bisphenol F type epoxy resin; An alicyclic epoxy resin; a polyglycol type epoxy resin or the like can be used.
  • bisphenol type epoxy resin is preferable from the viewpoint of rust prevention and adhesiveness of the formed coating film.
  • the epoxy equivalent of this epoxy resin is not particularly limited, but is 50 to 5,000 g per solid content from the viewpoint of prolonging the pot life after mixing and improving the rust prevention property of the coating film. / Eq is preferable, and 75 to 2,500 g / eq is more preferable. From the same viewpoint, the polystyrene-equivalent number average molecular weight of the epoxy resin by GPC is preferably 200 to 20,000, more preferably 300 to 10,000.
  • the emulsifier may be either anionic or nonionic, but nonionic is preferable from the viewpoint of prolonging the pot life after mixing and improving the rust preventive property of the coating film.
  • Specific examples of the emulsifier include anionic polyoxyalkylene compounds such as polyoxyethylene alkyl ether sodium sulfate and polyoxyethylene alkyl ether ammonium sulfate; and nonionic polyoxyalkylene compounds such as polyoxyethylene lauryl ether and polyoxyethylene stearyl ether. Can be mentioned.
  • hydrophilic medium examples include water, alcohol having 1 to 5 carbon atoms, or a mixture of water and alcohol having 1 to 5 carbon atoms, but water is preferable from the viewpoint of environmental load.
  • the content of the epoxy resin is determined in consideration of prolonging the pot life after mixing, improving the rust resistance of the coating film, and the like. 20 to 80% by mass is preferable, 30 to 60% by mass is more preferable, the content of the emulsifier is preferably 1 to 50% by mass, more preferably 1 to 30% by mass, and the content of the hydrophilic medium is 20 to 50% by mass. 80% by mass is preferable, and 30 to 60% by mass is more preferable.
  • the epoxy resin emulsion can be obtained as a commercially available product, and such commercially available products include ADEKA REGIN EM101-50 (manufactured by ADEKA Corporation) and jER (registered trademark) series W2821R70 (Mitsubishi Chemical Corporation). And so on.
  • the water-based coating composition of the present invention can be prepared by mixing a resin-coated metal powder and an epoxy resin emulsion by an arbitrary method.
  • the content of the epoxy resin in the water-based coating composition is 5 to 40 parts by mass with respect to 100 parts by mass of the resin-coated metal powder from the viewpoint of prolonging the pot life after mixing and improving the rust prevention property of the coating film. Preferably, 10 to 25 parts by mass is more preferable.
  • the content of the resin-coated metal powder in the water-based coating composition improves the rust resistance and strength of the coating film. From the viewpoint, 70 to 95% by mass is preferable, and 75 to 90% by mass is more preferable.
  • the aqueous coating composition of the present invention may contain other additives such as pigments, curing agents, leveling agents, rocking agents, and dispersants.
  • pigments include silica, calcium carbonate, white carbon and the like.
  • curing agent include ethylenediamine, triethylenetetramine, Fujicure FXI-919 (manufactured by T & K TOKA Co., Ltd.) and the like.
  • leveling agent include KP-323, KP-341, KP-104 (all manufactured by Shin-Etsu Chemical Co., Ltd.) and the like.
  • rocking agent examples include Tixol K-130B and Tixol K-502 (all manufactured by Kyoeisha Chemical Co., Ltd.).
  • dispersant examples include Floren AF-1000 and Floren D-90 (all manufactured by Kyoeisha Chemical Co., Ltd.). These may be used individually or in combination of two or more.
  • Zinc coated with a massive hydrolyzable resin was pulverized with a powerful small pulverizer (Force Mill, manufactured by Osaka Chemical Co., Ltd.) to obtain a resin-coated zinc powder 1 having an average particle diameter of 5 ⁇ m.
  • the average particle size was measured by the laser diffraction / scattering method.
  • Example 1-2 A resin-coated zinc powder 2 having an average particle diameter of 10 ⁇ m was obtained in the same manner as in Example 1-1 except that the amount of the resin 1 used was 600 mg.
  • Example 1-3 A resin-coated zinc powder 3 having an average particle diameter of 5 ⁇ m was obtained in the same manner as in Example 1-1 except that the resin 1 was changed to the resin 2.
  • Example 1-4 A resin-coated zinc powder 4 having an average particle diameter of 10 ⁇ m was obtained in the same manner as in Examples 1-3 except that the amount of the resin 2 used was 600 mg.
  • Example 1-5 A resin-coated zinc powder 5 having an average particle diameter of 5 ⁇ m was obtained in the same manner as in Example 1-1 except that the resin 1 was changed to the resin 3.
  • Example 1-6 A resin-coated zinc powder 6 having an average particle diameter of 5 ⁇ m was obtained in the same manner as in Example 1-1 except that the resin 1 was changed to the resin 4.
  • Example 1-7 A resin-coated zinc powder 7 having an average particle diameter of 10 ⁇ m was obtained in the same manner as in Example 1-6 except that the amount of the resin 4 used was 600 mg.
  • Example 1-8 A resin-coated zinc powder 8 having an average particle diameter of 5 ⁇ m was obtained in the same manner as in Example 1-1 except that the resin 1 was changed to the resin 5.
  • Example 1-9 A resin-coated zinc powder 9 having an average particle diameter of 10 ⁇ m was obtained in the same manner as in Example 1-8 except that the amount of the resin 5 used was 600 mg.
  • Example 1-10 A resin-coated zinc powder 10 having an average particle diameter of 5 ⁇ m was obtained in the same manner as in Example 1-1 except that the resin 1 was changed to the resin 6.
  • Example 1-11 A resin-coated zinc powder 11 having an average particle diameter of 10 ⁇ m was obtained in the same manner as in Example 1-10 except that the amount of the resin 6 used was 600 mg.
  • Example 1-12 A resin-coated zinc powder 12 having an average particle diameter of 5 ⁇ m was obtained in the same manner as in Example 1-1 except that the resin 1 was changed to the resin 7.
  • Example 1-13 A resin-coated zinc powder 13 having an average particle diameter of 10 ⁇ m was obtained in the same manner as in Example 1-12 except that the amount of the resin 7 used was 600 mg.
  • Example 1-14 A resin-coated zinc powder 14 having an average particle diameter of 5 ⁇ m was obtained in the same manner as in Example 1-1 except that the resin 1 was changed to the resin 8.
  • Example 1-15 A resin-coated zinc powder 15 having an average particle diameter of 10 ⁇ m was obtained in the same manner as in Examples 1-14 except that the amount of the resin 8 used was 679 mg.
  • [2] Dispersibility evaluation Add 3 g of resin-coated zinc powder 1 to 15 or untreated zinc powder for zinc rich paint, 3 g of pure water, and 300 mg of triethylenetetramine as an amine curing agent to a test tube, and stir at room temperature until uniform. did. Subsequently, the test tube was immersed in an oil bath at 50 ° C. and stirred for 1 hour, and then the dispersibility of the zinc powder was evaluated. In this dispersibility evaluation, "good” means that the zinc powder is not agglomerated, and “poor” means that the zinc powder is agglomerated.
  • Example 1-16 To a 30 mL screw tube, 30 g of zinc powder for zinc rich paint (average particle size 4.0 ⁇ m) and 300 mg of 3-trimethoxysilylpropyl methacrylate were added. Silane coupling by stirring for 60 minutes using a rotation / revolution mixer (Awatori Rentaro, ARE-310, manufactured by Shinky Co., Ltd.), allowing to stand at 25 ° C for 1 hour, and heating at 100 ° C for 1 hour. A zinc powder treated with the agent was obtained.
  • Example 1-17 The average particle size was 4. In the same manner as in Example 1-16, except that the amount of triisopropylsilyl acrylate used was 0.6 g (2.6 mmol) and the amount of methyl methacrylate used was 2.4 g (24.0 mmol). A resin-coated zinc powder 17 having a thickness of 0 ⁇ m was obtained.
  • Example 1-18 A resin-coated zinc powder 18 having an average particle size of 4.0 ⁇ m was obtained in the same manner as in Example 1-16 except that 3-trimethoxysilylpropyl methacrylate was changed to 8-trimethoxysilyl octyl methacrylate.
  • Example 1-19 A resin-coated zinc powder 19 having an average particle size of 4.0 ⁇ m was obtained in the same manner as in Example 1-16 except that the amount of 3-trimethoxysilylpropyl methacrylate used was 600 mg.
  • Example 1-20 A resin-coated zinc powder 20 having an average particle size of 4.0 ⁇ m was obtained in the same manner as in Example 1-16 except that the amount of triisopropylsilyl acrylate used was 3.0 g (13.1 mmol) and methyl methacrylate was not used. It was.
  • the stability and dispersibility of the resin-coated zinc powders 16 to 20 in water were evaluated by the following methods. As a control, the same evaluation was performed on the untreated zinc powder for zinc rich paint, and no amine curing agent was used. The results are also shown in Table 2.
  • [3] Stability Evaluation 25 g of resin-coated zinc powder 16 to 20 or untreated zinc powder for zinc rich paint and 50 g of pure water were added to an eggplant flask and stirred at room temperature until uniform. After the mixture became uniform, stirring was stopped and the eggplant flask was immersed in a water bath at 40 ° C. The amount of hydrogen generated in 48 hours was measured by the water replacement method.
  • Example 2-1 24.4 parts by mass of an epoxy resin emulsion (ADEKA Resin EM101-50, manufactured by ADEKA Corporation) and 100 parts by mass of the resin-coated zinc powder obtained in Example 1-2 were mixed and stirred until uniform.
  • a water-based coating composition was obtained. After applying the water-based coating composition prepared above to a steel plate (dimensions: 100 mm ⁇ 50 mm ⁇ 0.3 mm) of SPCC-SB whose surface has been polished and degreased as a base material with a brush at a coating rate of 400 g / m 2. , Cured and dried at room temperature. No bubbles were generated during the drying of the coating film. The obtained coating film had excellent smoothness.
  • the test piece was allowed to stand for 500 hours during saltwater spraying after having a scratch cut portion attached to the test piece according to the neutral salt spray resistance of JIS K5600-7-1.
  • the degree of rust and swelling generated on the test piece was evaluated, it was confirmed that the test piece had no abnormalities such as red rust and swelling.
  • Example 2-2 24.4 parts by mass of an epoxy resin emulsion (ADEKA Resin EM101-50, manufactured by ADEKA Corporation) and 100 parts by mass of the resin-coated zinc powder 16 obtained in Example 1-16 were mixed and stirred until uniform.
  • a water-based coating composition was obtained. After applying the water-based coating composition prepared above to a steel plate (dimensions: 100 mm ⁇ 50 mm ⁇ 0.3 mm) of SPCC-SB whose surface has been polished and degreased as a base material with a brush at a coating rate of 400 g / m 2. , Cured and dried at room temperature. No bubbles were generated during the drying of the coating film. The obtained coating film had excellent smoothness.
  • the test piece was allowed to stand for 500 hours during saltwater spraying after having a scratch cut portion attached to the test piece according to the neutral salt spray resistance of JIS K5600-7-1.
  • the degree of rust and swelling generated on the test piece was evaluated, it was confirmed that the test piece had no abnormalities such as red rust and swelling.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Metallurgy (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Paints Or Removers (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Powder Metallurgy (AREA)

Abstract

金属粉末の表面の少なくとも一部が加水分解性樹脂で被覆され、加水分解性樹脂が、一般式(1)の平均組成を有し、数平均分子量500~100,000の樹脂である樹脂被覆金属粉末は、水溶液中で十分な分散性を有し、水性塗料中で水分と共存した状態であっても比較的長時間安定である。 (R1は、ヒドロキシアルキル基等の所定の置換基を有していてもよい、炭素数1~10の直鎖状または分岐鎖状の1価炭化水素基を表し、R3、R4およびR5は、それぞれ独立して炭素数1~10の直鎖状または分岐鎖状の1価炭化水素基を表し、R2およびR6は、それぞれ独立して水素原子または炭素数1~10の直鎖状もしくは分岐鎖状の1価炭化水素基を表し、aおよびbは、0≦a<1、0<b≦1、a+b=1を満たす数を表す。)

Description

樹脂被覆金属粉末およびその製造方法ならびにこれを用いた水性塗料組成物
 本発明は、樹脂被覆金属粉末およびその製造方法ならびにこれを用いた水性塗料組成物に関する。
 従来、金属粉末を含む塗料は、被覆物に金属光沢や耐食性を付与できることから、広く用いられている。
 例えば、マグネシウム、アルミニウム、亜鉛等のイオン化傾向の大きい金属は、自身が犠牲アノードとして働くことによって、よりイオン化傾向の小さい金属に対する防食効果を示すことが知られている。
 この防食効果を利用したものの一つに、亜鉛粉末、マグネシウム粉末、アルミニウム粉末等の金属粉末を高濃度で含有する塗料があり、橋梁、プラント、タンク等の陸上鋼構造物や海洋鋼構造物の防食塗料として広く使用されている。
 従来使用されている防食塗料は、ビヒクルとして使用される基体樹脂の種類により、有機系防食塗料と無機系防食塗料に大別される。
 前者の有機系防食塗料では、主にエポキシ樹脂とアミン硬化剤がビヒクルとして使用され、後者の無機系防食塗料では、アルキルシリケート樹脂がビヒクルとして使用され、いずれも溶媒として有機溶剤が必須成分とされている。
 その一方で、近年の大気汚染や海洋汚染等の環境問題に鑑み、有機溶剤等のVOCを削減した水性塗料が開発されている(特許文献1,2参照)。
 例えば、特許文献2で開示されている水性防食塗料は、エポキシ樹脂エマルションを含む主剤、亜鉛等の金属粉末を含む顔料およびアミン硬化剤の組み合わせからなる2液1粉型の塗料であり、施工の直前にこれら3つを混合して使用する。
 この塗料は、非危険物であるため、火災に対する安全性が高く、また、臭気が少ないため、作業者や近隣環境への負荷が小さいという特徴も有する。
特開平10-130545号公報 特開2008-272666号公報
 しかし、水性防食塗料では、塗膜から水分が抜け切る前に、亜鉛等の金属粉末と塗料中の水分が反応して水素ガスが発生する場合がある。この様な現象が起きた場合、塗膜に気泡が生じる結果、塗膜表面の平滑性が不十分となって外観が悪化してしまう。このため、亜鉛粉末等の金属粉末と水分との反応を一時的に防ぎ、一定時間経過後に金属粉末を活性化させる方法が求められている。
 また、塗料調製時および塗布時の作業性を向上させる等の理由から、水溶液中での金属粉末の分散性向上も望まれている。
 本発明は、上記事情を鑑みなされたものであり、水溶液中で十分な分散性を有し、水性塗料中で水分と共存した状態であっても比較的長時間安定な樹脂被覆金属粉末およびその製造方法ならびにこれを用いた水性塗料組成物を提供することを目的とする。
 本発明者らは、上記課題を解決するため鋭意検討した結果、所定の加水分解性樹脂で表面を被覆した金属粉末が、水分と共存する環境下でも金属と水分との反応を一時的に防ぐことができるうえ、被覆を構成する加水分解性樹脂が一定時間経過後に水分と反応し、少なくともその一部が分解して金属粉末を活性化できることから、水性塗料組成物の添加剤として有用であることを見出し、本発明を完成した。
 すなわち、本発明は、
1. 金属粉末の表面の少なくとも一部が加水分解性樹脂で被覆された樹脂被覆金属粉末であって、前記加水分解性樹脂が、下記一般式(1)で示される平均組成を有し、ゲルパーミエーションクロマトグラフィーによるポリスチレン換算の数平均分子量500~100,000の樹脂であることを特徴とする樹脂被覆金属粉末、
Figure JPOXMLDOC01-appb-C000005
(式中、R1は、炭素数1~10の直鎖状または分岐鎖状の1価炭化水素基を表し、炭化水素基の水素原子の一部または全部が、アルコキシアルキル基、アルコキシシリル基、ヒドロキシアルキル基、ポリオキシアルキレン基または末端アルキルポリオキシアルキレン基で置換されていてもよく、
 R3、R4およびR5は、それぞれ独立して炭素数1~10の直鎖状または分岐鎖状の1価炭化水素基を表し、
 R2およびR6は、それぞれ独立して水素原子または炭素数1~10の直鎖状もしくは分岐鎖状の1価炭化水素基を表し、
 aおよびbは、0≦a<1、0<b≦1、a+b=1を満たす数を表す。)
2. 前記R3、R4およびR5が、それぞれ独立して炭素数1~4の直鎖状または分岐鎖状の1価炭化水素基である1の樹脂被覆金属粉末、
3. 前記金属粉末が、亜鉛粉末である1または2の樹脂被覆金属粉末、
4. 金属粉末と、前記一般式(1)で示される加水分解性樹脂を含む溶液とを混合し、前記金属粉末の表面の少なくとも一部を前記加水分解性樹脂で被覆する1~3のいずれかの樹脂被覆金属粉末の製造方法、
5. 金属粉末と、下記一般式(2)
Figure JPOXMLDOC01-appb-C000006
(式中、R7は、炭素数1~10の直鎖状または分岐鎖状の2価炭化水素基を表し、R8およびR9は、炭素数1~10の直鎖状または分岐鎖状の1価炭化水素基を表し、nは、0~2の整数を表し、R10は、水素原子、または炭素数1~10の直鎖状もしくは分岐鎖状の1価炭化水素基を表す。)
で示される重合性基を有するシランカップリング剤とを予め混合して、シランカップリング剤により処理された金属粉末を得た後、この処理された金属粉末、下記一般式(3)
Figure JPOXMLDOC01-appb-C000007
(式中、R11、R12およびR13は、それぞれ独立して炭素数1~10の直鎖状または分岐鎖状の1価炭化水素基を表し、R14は、水素原子、または炭素数1~10の直鎖状もしくは分岐鎖状の1価炭化水素基を表す。)
で示される重合性モノマー、前記一般式(2)で示される重合性基を有するシランカップリング剤および/または下記一般式(4)
Figure JPOXMLDOC01-appb-C000008
(式中、R15は、炭素数1~10の直鎖状もしくは分岐鎖状の1価炭化水素基を表し、R16は、水素原子、または炭素数1~10の直鎖状もしくは分岐鎖状の1価炭化水素基を表す。)
で示される重合性モノマーをラジカル重合により反応させて、前記処理された金属表面の少なくとも一部を前記加水分解性樹脂で被覆する請求項1~3のいずれか1項記載の樹脂被覆金属粉末の製造方法、
6. 1~3のいずれかの樹脂被覆金属粉末およびエポキシ樹脂エマルションを含む水性塗料組成物
を提供する。
 本発明の樹脂被覆金属粉末は、水分と反応して徐々に分解する所定の加水分解性樹脂によって表面の一部または全部が被覆されているため、水分に対する一時的な安定性を示す。すなわち、加水分解性樹脂被覆によって、水素ガスを発生させる金属粉末と水性塗料中の水分との反応を、塗膜が乾燥するまでの一定時間抑制することができるため平滑な塗装面が得られ、さらに、一定時間が経過すると、加水分解性樹脂の加水分解によって被覆されていた金属表面が露出してくるため、金属粉末が活性化される。
 また、金属粉末表面が、トリアルキルシリル基等の嵩高い置換基を有する樹脂で修飾されているため、金属粉末同士の立体反発が大きくなり、水性塗料組成物中での分散性が向上する。
 以上のような特性を有する樹脂被覆金属粉末は、塗料やインク、ペースト等に広く使用することができる。特に、ジンクリッチペイントや加飾塗料、磁性塗料、遮熱塗料、導電性インクおよびペースト等に使用することができる。
 以下、本発明について具体的に説明する。
[1]樹脂被覆金属粉末
 本発明に係る樹脂被覆金属粉末は、金属粉末の表面の少なくとも一部が下記一般式(1)で示される平均組成を有し、ゲルパーミエーションクロマトグラフィーによるポリスチレン換算の数平均分子量500~100,000の加水分解性樹脂で被覆されていることを特徴とする。
Figure JPOXMLDOC01-appb-C000009
 一般式(1)において、R1は、炭素数1~10、好ましくは炭素数1~6、より好ましくは炭素数1~4の直鎖状または分岐鎖状の1価炭化水素基を表す。
 R1の1価炭化水素基の具体例としては、メチル、エチル、n-プロピル、n-ブチル、n-ペンチル、n-ヘキシル、n-へプチル、n-オクチル、デシル基等の直鎖状アルキル基;イソプロピル、イソブチル、sec-ブチル、tert-ブチル、ネオペンチル、テキシル、2-エチルヘキシル基等の分岐鎖状アルキル基が挙げられる。
 また、上記1価炭化水素基は、その水素原子の一部または全部が、アルコキシアルキル基、アルコキシシリル基、ヒドロキシアルキル基、ポリオキシアルキレン(ポリアルキレンオキシ)基または末端アルキルポリオキシアルキレン(ポリアルキレンオキシ)基で置換されていてもよい。
 上記アルコキシアルキル基の総炭素数は特に限定されるものではないが、2~10が好ましく、2~6がより好ましく、2~4がより一層好ましい。
 アルコキシアルキル基の具体例としては、メトキシメチル、エトキシメチル、2-メトキシエチル、2-エトキシエチル、3-メトキシプロピル基等の直鎖状アルコキシアルキル基;1-メトキシエチル、1-エトキシエチル、1-メトキシプロピル、2-メトキシプロピル基等の分岐鎖状アルコキシアルキル基等が挙げられる。
 アルコキシシリル基の総炭素数は特に限定されるものではないが、3~10が好ましく、3~8がより好ましく、3~6がより一層好ましい。
 アルコキシシリル基の具体例としては、トリメトキシシリル、メチルジメトキシリル、ジメチルメトキシシリル、トリエトキシシリル、メチルジエトキシシリル、ジメチルエトキシシリル基等が挙げられる。
 なお、アルコキシシリル基は、金属表面と化学的に結合することができる。具体的には、R1の水素原子の一部または全部がアルコキシシリル基で置換された場合、エステルシラン部位の一部または全てが、金属粉末表面と化学的に結合していてもよい。
 ヒドロキシアルキル基の炭素数は特に限定されるものではないが、1~10が好ましく、1~6がより好ましく、1~4がより一層好ましい。
 ヒドロキシアルキル基の具体例としては、ヒドロキシメチル、2-ヒドロキシエチル、3-ヒドロキシプロピル、4-ヒドロキシブチル基等の直鎖状ヒドロキシアルキル基;1-ヒドロキシエチル、1-ヒドロキシ-1-メチルエチル、1-ヒドロキシプロピル、2-ヒドロキシプロピル基等の分岐鎖状ヒドロキシアルキル基等が挙げられる。
 ポリオキシアルキレン基の総炭素数は特に限定されるものではないが、1~40が好ましく、1~30がより好ましく、1~20がより一層好ましい。
 ポリオキシアルキレン基の具体例としては、ヒドロキシメトキシ、2-ヒドロキシエトキシ、(ヒドロキシメトキシ)メトキシ、2-(2-ヒドロキシエトキシ)エトキシ、((ヒドロキシメトキシ)メトキシ)メトキシ、2-(2-(2-ヒドロキシエトキシ)エトキシ)エトキシ基等が挙げられる。
 末端アルキルポリオキシアルキレン(ポリアルキレンオキシ)基の総炭素数は特に限定されるものではないが、2~40が好ましく、2~30がより好ましく、2~20がより一層好ましい。
 末端アルキルポリオキシアルキレン基の具体例としては、メトキシメトキシ、2-エトキシエトキシ、(メトキシメトキシ)メトキシ、2-(2-エトキシエトキシ)エトキシ基等が挙げられる。
 これらの中でも、R1としては、原料調達性の観点から、メチル基、エチル基、トリメトキシシリルプロピル基およびトリメトキシシリルオクチル基が好ましい。
 R3、R4およびR5は、それぞれ独立して炭素数1~10、好ましくは炭素数1~6、より好ましくは炭素数1~4の直鎖状または分岐鎖状の1価炭化水素基を表す。
 この1価炭化水素基の具体例は、上記R1で例示した基と同様のものが挙げられるが、ケイ素原子上の置換基であるR3、R4およびR5は、樹脂の加水分解性に寄与するため、適度な反応性を担保する観点から、メチル基、エチル基、イソプロピル基が好ましく、樹脂被覆金属粉末の水中や塗料組成物中での分散性をより高めることを考慮すると、イソプロピル基がより好ましい。
 R2およびR6は、水素原子、または炭素数1~10、好ましくは炭素数1~6、より好ましくは炭素数1~4の直鎖状もしくは分岐鎖状の1価炭化水素基を表す。
 この1価炭化水素基の具体例としては、上記R1で例示した基と同様のものが挙げられるが、金属粉末に対する加水分解性樹脂の密着性の観点から、R2およびR6は、水素原子またはメチル基が好ましい。
 一般式(1)において、aおよびbは、0≦a<1、0<b≦1、a+b=1を満たす数を表すが、0.02<a<0.98、0.02<b<0.98、a+b=1を満たす数が好ましく、0.02≦a<0.50、0.50<b≦0.98、a+b=1を満たす数がより好ましく、0.02≦a<0.40、0.60<b≦0.98、a+b=1を満たす数がより一層好ましく、0.02≦a<0.30、0.70<b≦0.98、a+b=1を満たす数が特に好ましい。
 加水分解性樹脂中に含まれるシリルエステルの割合は、その樹脂の加水分解性に寄与する。適度な反応性を担保する観点から、R3、R4およびR5が、直鎖状の1価炭化水素基である場合、aおよびbは、0.10<a<0.98、0.02<b<0.90、a+b=1を満たす数がより好ましく、0.10≦a<0.50、0.50<b≦0.90、a+b=1を満たす数がより好ましく、0.10≦a<0.40、0.60<b≦0.90、a+b=1を満たす数がより一層好ましく、0.10≦a<0.30、0.70<b≦0.90、a+b=1を満たす数が特に好ましい。
 一方、R3、R4およびR5が、分岐鎖状の1価炭化水素基である場合、aおよびbは、0.05<a<0.98、0.02<b<0.95、a+b=1を満たす数がより好ましく、0.05≦a<0.50、0.50<b≦0.95、a+b=1を満たす数がより好ましく、0.05≦a<0.40、0.60<b≦0.95、a+b=1を満たす数がより一層好ましく、0.05≦a<0.30、0.70<b≦0.95、a+b=1を満たす数が特に好ましい。
 上記のとおり、一般式(1)で示される平均組成を有する加水分解性樹脂のゲルパーミエーションクロマトグラフィー(以下、「GPC」ともいう。)によるポリスチレン換算の数平均分子量は500~100,000であるが、好ましくは1,000~100,000、より好ましくは2,000~50,000、より一層好ましくは2,500~20,000である。GPC条件は、実施例記載のとおりである。
 上記加水分解性樹脂は、それぞれの構成単位を与えるアクリレートモノマーを用い、公知のラジカル重合により製造することができる。
 上記aの単位を与えるアクリレートモノマーの具体例としては、メチルアクリレート、メチルメタクリレート、エチルアクリレート、エチルメタクリレート、n-ブチルアクリレート、n-ブチルメタクリレート、2-エチルヘキシルアクリレート、2-エチルヘキシルメタクリレート等のアルキル基を有するアクリレートモノマー;メトキシメチルアクリレート、エトキシメチルアクリレート、メトキシメチルメタクリレート、エトキシメチルメタクリレート等のアルコキシアルキル基を有するアクリレートモノマー;3-トリメトキシシリルプロピルアクリレート、3-メチルジメトキシシリルプロピルアクリレート、3-ジメチルメトキシシリルプロピルアクリレート、3-トリエトキシシリルプロピルアクリレート、3-メチルジエトキシシリルプロピルアクリレート、3-ジメチルエトキシシリルプロピルアクリレート、3-トリメトキシシリルプロピルメタクリレート、3-メチルジメトキシシリルプロピルメタクリレート、3-ジメチルメトキシシリルプロピルメタクリレート、3-トリエトキシシリルプロピルメタクリレート、3-メチルジエトキシシリルプロピルメタクリレート、3-ジメチルエトキシシリルプロピルメタクリレート、3-トリメトキシシリルオクチルアクリレート、3-メチルジメトキシシリルオクチルアクリレート、3-ジメチルメトキシシリルオクチルアクリレート、3-トリエトキシシリルオクチルアクリレート、3-メチルジエトキシシリルオクチルアクリレート、3-ジメチルエトキシシリルオクチルアクリレート、3-トリメトキシシリルオクチルメタクリレート、3-メチルジメトキシシリルオクチルメタクリレート、3-ジメチルメトキシシリルオクチルメタクリレート、3-トリエトキシシリルオクチルメタクリレート、3-メチルジエトキシシリルオクチルメタクリレート、3-ジメチルエトキシシリルオクチルメタクリレート等のアルコキシシリル基を有するアクリレートモノマー;ヒドロキシメチルアクリレート、2-ヒドロキシエチルアクリレート、ヒドロキシメチルメタクリレート、2-ヒドロキシエチルメタクリレート等のヒドロキシアルキル基を有するアクリレートモノマー;ヒドロキシメトキシアクリレート、ヒドロキシメトキシメタクリレート等のポリオキシアルキレン基を有するアクリレートモノマー;メトキシメトキシアクリレート、メトキシメトキシメタクリレート等の末端アルキルポリオキシアルキレン基を有するアクリレートモノマー等が挙げられる。
 一方、上記bの単位を与えるアクリレートモノマーの具体例としては、トリメチルシリルアクリレート、トリメチルシリルメタクリレート、トリエチルシリルアクリレート、トリエチルシリルメタクリレート、トリイソプロピルシリルアクリレート、トリイソプロピルシリルメタクリレート、tert-ブチルジメチルシリルアクリレート、tert-ブチルジメチルシリルメタクリレート等のトリアルキルシリル基を有するアクリレートモノマー等が挙げられる。
 上記加水分解性樹脂で被覆される金属粉末は特に限定されるものではなく、例えば、マグネシウム粉末、アルミニウム粉末、亜鉛粉末、鉄粉末、ニッケル粉末、スズ粉末、鉛粉末、銅粉末等が挙げられる。これらの中でも、金属毒性の観点から、亜鉛粉末、マグネシウム粉末、アルミニウム粉末、鉄粉末が好ましく、亜鉛粉末がより好ましい。
 金属粉末のレーザー回析・散乱法による平均粒子径は、特に限定されるものではないが、金属粉末の耐沈降性向上の観点から、1~12μmが好ましく、2~10μmがより好ましい。
 また、加水分解性樹脂で被覆された後の樹脂被覆金属粉末のレーザー回析・散乱法による平均粒子径は、1~20μmが好ましく、1~15μmがより好ましい。
 なお、本発明における平均粒子径は、体積基準の平均粒子径であり、金属粉末または樹脂被覆金属粉末の分散液中での粒度分布に基づき、金属粉末または樹脂被覆金属粉末の全体積を100%として累積を求めたとき、その累積体積が50%となる点の粒径を意味する。
[2]樹脂被覆金属粉末の製造方法
 本発明の樹脂被覆金属粉末は、例えば、上記一般式(1)で示される加水分解性樹脂、金属粉末および必要に応じて用いられる溶剤を任意の順序で混合して製造することができる。
 この場合、マグネチックスターラー、メカニカルスターラー、スプレードライヤー、自転公転ミキサー等の撹拌装置を使用することによって、効率良く材料を混合することができる。
 金属粉末に対する加水分解性樹脂の添加量は、特に限定されるものではないが、加水分解性樹脂によって被覆された樹脂被覆金属粉末の水に対する安定性を担保する観点から、0.5~10.0質量%が好ましく、1.0~5.0質量%がより好ましい。
 必要に応じて用いられる溶剤の具体例としては、ペンタン、ヘキサン、シクロヘキサン、ヘプタン、イソオクタン、ベンゼン、トルエン、キシレン等の脂肪族または芳香族炭化水素系溶剤;ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル系溶剤;酢酸エチル、酢酸ブチル等のエステル系溶剤;アセトニトリル、N,N-ジメチルホルムアミド、N-メチルピロリドン等の非プロトン性極性溶剤;ジクロロメタン、クロロホルム等の塩素化炭化水素系溶剤等が挙げられる。これらの溶剤は1種を単独で使用しても、2種以上を混合して使用してもよい。
 これらの中でも、加水分解性樹脂の溶解性の観点から、トルエン、キシレン等の芳香族炭化水素系溶剤が好ましい。
 溶剤を用いる場合、その使用量に特に制限はないが、加水分解性樹脂の濃度が0.01~50質量%となる量が好ましく、0.1~30質量%となる量がより好ましい。
 各成分の混合後、溶剤を除去する等の目的で必要に応じて乾燥してもよい。
 乾燥条件は任意であり、大気圧下または減圧下で、室温から加熱下で行うことができる。溶剤を用いる場合は、残存溶媒低減の観点から、減圧下で加熱乾燥させることが好ましい。
 さらに、各成分の混合後、必要に応じて乾燥を行った後、上述した平均粒子径に調製する等の目的で粉砕を行ってもよい。
 粉砕は、従来公知の手法によって行うことができ、例えば、ハンマーミル、ピンミル、回転ミル、振動ミル、遊星ミル、ローラーミル、ジェットミル等の粉砕機を用いて行うことができる。
 また、本発明の樹脂被覆金属粉末は、金属粉末と、下記一般式(2)で示される重合性基を有するシランカップリング剤とを予め混合して、シランカップリング剤により処理された金属粉末を得た後、この処理された金属粉末、下記一般式(3)で示される重合性モノマー、下記一般式(2)で示される重合性基を有するシランカップリング剤および/または下記一般式(4)で示される重合性モノマーをラジカル重合により反応させて製造することによってもできる。
Figure JPOXMLDOC01-appb-C000010
 上記一般式(2)において、R7は、炭素数1~10、好ましくは炭素数1~9、より好ましくは炭素数1~8の直鎖状または分岐鎖状の2価炭化水素基を表す。
 R7の2価炭化水素基の具体例としては、メチレン、エチレン、トリメチレン、ブチレン、ペンチレン、へキシレン、オクチレン基等の直鎖状アルキレン基;プロピレン、イソブチレン、イソペンチレン基等の分岐状アルキレン基等が挙げられるが、原料調達性の観点から、直鎖状アルキレン基が好ましく、トリメチレン基、オクチレン基がより好ましい。
 上記一般式(2)において、R8およびR9は、炭素数1~10、好ましくは炭素数1~5、より好ましくは炭素数1~3の直鎖状もしくは分岐鎖状の1価炭化水素基を表す。
 この1価炭化水素基の具体例としては、上記R1で例示した置換基と同様のものが挙げられるが、金属表面とシランカップリング剤の反応性を担保する観点から、メチル基、エチル基が好ましい。
 上記一般式(2)において、R10は、水素原子、または炭素数1~10、好ましくは炭素数1~6、より好ましくは炭素数1~4の直鎖状もしくは分岐鎖状の1価炭化水素基を表す。
 この1価炭化水素基の具体例としては、上記R1で例示した置換基と同様のものが挙げられるが、重合性モノマーの反応性を担保する観点から、R10は、水素原子またはメチル基が好ましい。
 上記一般式(2)の重合性基を有するシランカップリング剤の具体例としては、3-トリメトキシシリルプロピルアクリレート、3-メチルジメトキシシリルプロピルアクリレート、3-ジメチルメトキシシリルプロピルアクリレート、3-トリエトキシシリルプロピルアクリレート、3-メチルジエトキシシリルプロピルアクリレート、3-ジメチルエトキシシリルプロピルアクリレート、3-トリメトキシシリルプロピルメタクリレート、3-メチルジメトキシシリルプロピルメタクリレート、3-ジメチルメトキシシリルプロピルメタクリレート、3-トリエトキシシリルプロピルメタクリレート、3-メチルジエトキシシリルプロピルメタクリレート、3-ジメチルエトキシシリルプロピルメタクリレート、3-トリメトキシシリルオクチルアクリレート、3-メチルジメトキシシリルオクチルアクリレート、3-ジメチルメトキシシリルオクチルアクリレート、3-トリエトキシシリルオクチルアクリレート、3-メチルジエトキシシリルオクチルアクリレート、3-ジメチルエトキシシリルオクチルアクリレート、3-トリメトキシシリルオクチルメタクリレート、3-メチルジメトキシシリルオクチルメタクリレート、3-ジメチルメトキシシリルオクチルメタクリレート、3-トリエトキシシリルオクチルメタクリレート、3-メチルジエトキシシリルオクチルメタクリレート、3-ジメチルエトキシシリルオクチルメタクリレート等が挙げられる。
 重合性基を有するシランカップリング剤の添加量は、特に限定されるものではないが、金属粉末表面を十分に処理するという観点から、金属粉末に対し、0.1~5.0質量%が好ましく、0.5~2.0質量%がより好ましい。
 上記一般式(3)において、R11、R12およびR13は、それぞれ独立して炭素数1~10、好ましくは炭素数1~6、より好ましくは炭素数1~4の直鎖状または分岐鎖状の1価炭化水素基を表す。
 R11、R12およびR13の1価炭化水素基の具体例は、上記R1で例示した置換基と同様のものが挙げられるが、ケイ素原子上の置換基であるR11、R12およびR13は、樹脂の加水分解性に寄与するため、適度な反応性を担保する観点から、メチル基、エチル基、イソプロピル基が好ましく、樹脂被覆金属粉末の水中や塗料組成物中での分散性をより高めることを考慮すると、イソプロピル基がより好ましい。
 上記一般式(3)において、R14は、水素原子、または炭素数1~10、好ましくは炭素数1~6、より好ましくは炭素数1~4の直鎖状もしくは分岐鎖状の1価炭化水素基を表す。
 R14の1価炭化水素基の具体例としては、上記R1で例示した基と同様のものが挙げられるが、重合性モノマーの反応性を担保する観点から、R14は、水素原子またはメチル基が好ましい。
 上記一般式(3)の重合性モノマーの具体例としては、トリメチルシリルアクリレート、トリメチルシリルメタクリレート、トリエチルシリルアクリレート、トリエチルシリルメタクリレート、トリイソプロピルシリルアクリレート、トリイソプロピルシリルメタクリレート、tert-ブチルジメチルシリルアクリレート、tert-ブチルジメチルシリルメタクリレート等のトリアルキルシリル基を有するアクリレートモノマー等が挙げられる。
 上記一般式(4)において、R15は、炭素数1~10、好ましくは炭素数1~6、より好ましくは炭素数1~4の直鎖状または分岐鎖状の1価炭化水素基を表す。
 R15の1価炭化水素基の具体例としては、上記R1で例示した置換基と同様のものが挙げられるが、原料調達性の観点から、メチル基、エチル基、ブチル基、オクチル基が好ましい。
 上記一般式(4)において、R16は、水素原子または炭素数1~10、好ましくは炭素数1~6、より好ましくは炭素数1~4の直鎖状もしくは分岐鎖状の1価炭化水素基を表す。
 R15の1価炭化水素基の具体例としては、上記R1で例示した置換基と同様のものが挙げられるが、重合性モノマーの反応性を担保する観点から、水素原子またはメチル基が好ましい。
 上記一般式(4)の重合性モノマーの具体例としては、メチルアクリレート、メチルメタクリレート、エチルアクリレート、エチルメタクリレート、n-ブチルアクリレート、n-ブチルメタクリレート、2-エチルヘキシルアクリレート、2-エチルヘキシルメタクリレート等が挙げられる。
 金属粉末と、上記一般式(2)で示される重合性基を有するシランカップリング剤とを混合する手法は任意であり、公知の各種手法から適宜選択できる。
 混合に際し、マグネチックスターラー、メカニカルスターラー、スプレードライヤー、自転公転ミキサー等の撹拌装置を使用することによって、効率良く材料を混合することができる。
 シランカップリング剤による処理は、室温で行っても加熱下で行ってもよいが、室温で混合後、最終的に加熱することが好ましい。
 加熱温度は、例えば、50~120℃程度が好ましい。
 シランカップリング剤により処理された金属粉末と各種重合性モノマーとのラジカル重合法も任意であり、ラジカル重合開始剤を用いた公知の手法を採用できる。
 この場合、式(2)および/または式(4)のモノマーと、式(3)のモノマーとの使用比率は、上記式(1)のa,bを満たす範囲である。
 ラジカル重合開始剤も公知のものから適宜選択することができるが、2,2’-アゾビス(2-メチルブチロニトリル)、アゾビスイソブチロニトリル、2,2’-ジ(2-ヒドロキシエチル)アゾビスイソブチロニトリル等のアゾ系化合物が好ましい。
 反応温度は、通常、60~120℃程度、好ましくは70~100℃程度である。
 反応時間は、通常、30分~10時間程度、好ましくは1~5時間程度である。
 上記重合反応は、無溶媒でも進行するが、溶媒を用いることもできる。
 使用できる溶媒としては、ペンタン、ヘキサン、シクロヘキサン、ヘプタン、イソオクタン、トルエン、キシレン、メシチレン等の炭化水素系溶媒;アセトニトリル、プロピオニトリル、N,N-ジメチルホルムアミド、N-メチルピロリドン等の非プロトン性極性溶媒、ジクロロメタン、ジクロロエタン、クロロベンゼン等のハロゲン化炭化水素溶媒;ジエチルエーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタン等のエーテル系溶媒等が挙げられ、これらの溶媒は1種を単独で使用しても、2種以上を混合して使用してもよい。上記溶媒の中でも、特にトルエン、キシレン、メシチレン、テトラヒドロフランが好ましい。
 反応終了後は、室温まで冷却後、濾過、洗浄、乾燥等の公知の後処理を施して樹脂被覆金属粉末を得ることができる。
[3]水性塗料組成物
 本発明の水性塗料組成物は、上述した樹脂被覆金属粉末およびエポキシ樹脂エマルションを含む。
 エポキシ樹脂エマルションは、エポキシ樹脂、乳化剤および親水性媒体を含み、混合後における可使時間の長期化、塗膜の防錆性向上の観点から、乳化剤および親水性媒体を用いて、エポキシ樹脂を乳化分散したものが好ましい。
 エポキシ樹脂は、1分子中に少なくとも2個のエポキシ基を有する従来公知の樹脂から適宜選択して用いることができ、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂等のビスフェノール型エポキシ樹脂;脂環式エポキシ樹脂;ポリグリコール型エポキシ樹脂等を用いることができる。これらの中でも、形成塗膜の防錆性、付着性等の観点から、ビスフェノール型エポキシ樹脂が好ましい。
 このエポキシ樹脂のエポキシ当量は、特に限定されるものではないが、混合後における可使時間の長期化、塗膜の防錆性向上の観点から、固形分当りの換算で、50~5,000g/eqが好ましく、75~2,500g/eqがより好ましい。
 また、エポキシ樹脂のGPCによるポリスチレン換算の数平均分子量は、同様の観点から、200~20,000が好ましく、300~10,000がより好ましい。
 乳化剤は、アニオン性またはノニオン性のいずれの乳化剤であってもよいが、混合後における可使時間の長期化、塗膜の防錆性向上の観点から、ノニオン性が好ましい。
 乳化剤の具体例としては、ポリオキシエチレンアルキルエーテル硫酸ナトリウム、ポリオキシエチレンアルキルエーテル硫酸アンモニウム等のアニオン性ポリオキシアルキレン化合物;ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル等のノニオン性ポリオキシアルキレン化合物等が挙げられる。
 親水性媒体の具体例としては、水、炭素数1~5のアルコール、または水と炭素数1~5のアルコールとの混合物等が挙げられるが、環境負荷の観点から、水が好ましい。
 エポキシ樹脂エマルションにおける当該エポキシ樹脂、乳化剤および親水性媒体の総量100質量%中において、混合後における可使時間の長期化、塗膜の防錆性向上等を考慮すると、エポキシ樹脂の含有量は、20~80質量%が好ましく、30~60質量%がより好ましく、乳化剤の含有量は、1~50質量%が好ましく、1~30質量%がより好ましく、親水性媒体の含有量は、20~80質量%が好ましく、30~60質量%がより好ましい。
 なお、エポキシ樹脂エマルションは、市販品として入手することができ、そのような市販品としては、アデカレジンEM101-50((株)ADEKA製)、jER(登録商標)シリーズW2821R70(三菱ケミカル(株))等が挙げられる。
 本発明の水性塗料組成物は、樹脂被覆金属粉末とエポキシ樹脂エマルションとを任意の手法で混合して調製することができる。
 水性塗料組成物中におけるエポキシ樹脂の含有量は、混合後における可使時間の長期化、塗膜の防錆性向上の観点から、樹脂被覆金属粉末100質量部に対し、5~40質量部が好ましく、10~25質量部がより好ましい。
 水性塗料組成物中における樹脂被覆金属粉末の含有量(エポキシ樹脂エマルションと樹脂被覆金属粉末の合計固形分質量に対する樹脂被覆金属粉末の固形分質量)は、塗膜の防錆性および強度の向上の観点から、70~95質量%が好ましく、75~90質量%がより好ましい。
 なお、本発明の水性塗料組成物は、顔料、硬化剤、レべリング剤、揺変剤、分散剤等のその他の添加剤を含んでいてもよい。
 顔料の具体例としては、シリカ、炭酸カルシウム、ホワイトカーボン等が挙げられる。
 硬化剤の具体例としては、エチレンジアミン、トリエチレンテトラミン、フジキュアーFXI-919((株)T&K TOKA製)等が挙げられる。
 レべリング剤の具体例としては、KP-323、KP-341、KP-104(以上、信越化学工業(株)製)等が挙げられる。
 揺変剤の具体例としては、チクゾールK-130B、チクゾールK-502(以上、共栄社化学(株)製)等が挙げられる。
 分散剤の具体例としては、フローレンAF-1000、フローレンD-90(以上、共栄社化学(株)製)等が挙げられる。
 これらは、それぞれ単独で用いても、2種以上組み合わせて用いてもよい。
 以下、合成例および実施例を挙げて本発明をより具体的に説明するが、本発明は下記の実施例に制限されるものではない。
(1)加水分解性樹脂の合成
[合成例1]トリイソプロピルシリルアクリレート/メチルメタクリレート=60/40(質量比)共重合樹脂の合成
 撹拌機、還流器、滴下ロートおよび温度計を備えた四つ口フラスコに、その内部を窒素で置換し、還流冷却器上部の開放端に窒素ガスを通気させて外気が混入しないようにしながら、キシレン78gを仕込み、90℃にて撹拌した。そこに、トリイソプロピルシリルアクリレート46.8g(0.20mol)、メチルメタクリレート31.2g(0.31mol)、2,2’-アゾビス(2-メチルブチロニトリル)(V-59、富士フイルム和光純薬(株)製、以下同様)0.8g(4.16mmol)の混合物を滴下し、90℃にて1時間撹拌した。
 その後、2,2’-アゾビス(2-メチルブチロニトリル)0.8g(4.16mmol)を追加し、さらに90℃にて1時間撹拌して50質量%キシレン溶液の反応物157.6gを得た(以下、「樹脂1」ともいう)。下記条件によりGPC分析を行ったところ、樹脂1の数平均分子量(Mn)は7,606であった。
GPC条件
装置:HLC-8420GPC
カラム:Shodex GPC KF-402 HQ ×2
溶離液:テトラヒドロフラン(THF)
流速:0.35mL/min
検出器:RI
カラム恒温槽温度:40℃
標準物質:ポリスチレン
[合成例2]トリイソプロピルシリルアクリレート/メチルメタクリレート=40/60(質量比)共重合樹脂の合成
 トリイソプロピルシリルアクリレートの使用量を31.2g(0.14mol)に、メチルメタクリレートの使用量を46.8g(0.47mol)に変更した以外は、合成例1と同様に反応を行い、50質量%キシレン溶液の反応物157.6gを得た(以下、「樹脂2」ともいう)。
 上記条件によりGPC分析を行ったところ、樹脂2の数平均分子量(Mn)は6,105であった。
[合成例3]トリイソプロピルシリルアクリレート/メチルメタクリレート=20/80(質量比)共重合樹脂の合成
 トリイソプロピルシリルアクリレートの使用量を15.6g(0.07mol)に、メチルメタクリレートの使用量を62.4g(0.62mol)に変更した以外は、合成例1と同様に反応を行い、50質量%キシレン溶液の反応物157.6gを得た(以下、「樹脂3」ともいう)。
 上記条件によりGPC分析を行ったところ、樹脂3の数平均分子量(Mn)は8,819であった。
[合成例4]トリイソプロピルシリルメタクリレート/メチルメタクリレート=60/40(質量比)共重合樹脂の合成
 撹拌機、還流器、滴下ロートおよび温度計を備えた四つ口フラスコに、その内部を窒素で置換し、還流冷却器上部の開放端に窒素ガスを通気させて外気が混入しないようにしながら、キシレン78gを仕込み、90℃にて撹拌した。そこに、トリイソプロピルシリルメタクリレート46.8g(0.19mol)、メチルメタクリレート31.2g(0.31mol)、2,2’-アゾビス(2-メチルブチロニトリル)0.8g(4.16mmol)の混合物を滴下し、90℃にて1時間撹拌した。
 その後、2,2’-アゾビス(2-メチルブチロニトリル)0.8g(4.16mmol)を追加し、さらに90℃にて1時間撹拌して50質量%キシレン溶液の反応物157.6gを得た(以下、「樹脂4」ともいう)。
 上記条件によりGPC分析を行ったところ、樹脂4の数平均分子量(Mn)は4,762であった。
[合成例5]トリイソプロピルシリルメタクリレート/メチルメタクリレート=40/60(質量比)共重合樹脂の合成
 トリイソプロピルシリルメタクリレートの使用量を31.2g(0.13mol)に、メチルメタクリレートの使用量を46.8g(0.47mol)に変更した以外は、合成例4と同様に反応を行い、50質量%キシレン溶液の反応物157.6gを得た(以下、「樹脂5」ともいう)。
 上記条件によりGPC分析を行ったところ、樹脂5の数平均分子量(Mn)は5,431であった。
[合成例6]トリイソプロピルシリルアクリレート/メチルアクリレート=40/60(質量比)共重合樹脂の合成
 メチルメタクリレートをメチルアクリレートに変更した以外は、合成例2と同様に反応を行い、50質量%キシレン溶液の反応物157.6gを得た(以下、「樹脂6」ともいう)。
 上記条件によりGPC分析を行ったところ、樹脂6の数平均分子量(Mn)は3,489であった。
[合成例7]トリイソプロピルシリルメタクリレート/メチルアクリレート=60/40(質量比)共重合樹脂の合成
 メチルメタクリレートをメチルアクリレートに変更した以外は、合成例4と同様に反応を行い、50質量%キシレン溶液の反応物157.6gを得た(以下、「樹脂7」ともいう)。
 上記条件によりGPC分析を行ったところ、樹脂7の数平均分子量(Mn)は4,985であった。
[合成例8]トリイソプロピルシリルメタクリレート/メチルアクリレート=40/60(質量比)共重合樹脂の合成
 メチルメタクリレートをメチルアクリレートに変更した以外は、合成例5と同様に反応を行い、50質量%キシレン溶液の反応物157.6gを得た(以下、「樹脂8」ともいう)。
 上記条件によりGPC分析を行ったところ、樹脂8の数平均分子量(Mn)は5,035であった。
(2)樹脂被覆亜鉛粉末の製造および評価
[実施例1-1]
 20mLスクリュー管に、合成例1で得られた(樹脂1)120mgとジンクリッチペイント用亜鉛粉末(平均粒子径5.0μm)6gを加えた。自転公転ミキサー(あわとり練太郎、ARE-310、(株)シンキー製)を用いて60分間撹拌した後、得られた混合物を20Pa、90℃の条件にて2時間加熱乾燥させ、亜鉛と加水分解性樹脂の混合物からキシレンを留去した。
 塊状の加水分解性樹脂によって被覆された亜鉛を強力小型粉砕機(Force Mill、大阪ケミカル(株)製)で粉砕し、平均粒子径5μmの樹脂被覆亜鉛粉末1を得た。なお、平均粒子径はレーザー回析・散乱法により測定した。
[実施例1-2]
 樹脂1の使用量を600mgとした以外は、実施例1-1と同様にして平均粒子径10μmの樹脂被覆亜鉛粉末2を得た。
[実施例1-3]
 樹脂1を樹脂2に変更した以外は、実施例1-1と同様にして平均粒子径5μmの樹脂被覆亜鉛粉末3を得た。
[実施例1-4]
 樹脂2の使用量を600mgとした以外は、実施例1-3と同様にして平均粒子径10μmの樹脂被覆亜鉛粉末4を得た。
[実施例1-5]
 樹脂1を樹脂3に変更した以外は、実施例1-1と同様にして平均粒子径5μmの樹脂被覆亜鉛粉末5を得た。
[実施例1-6]
 樹脂1を樹脂4に変更した以外は、実施例1-1と同様にして平均粒子径5μmの樹脂被覆亜鉛粉末6を得た。
[実施例1-7]
 樹脂4の使用量を600mgとした以外は、実施例1-6と同様にして平均粒子径10μmの樹脂被覆亜鉛粉末7を得た。
[実施例1-8]
 樹脂1を樹脂5に変更した以外は実施例1-1と同様にして平均粒子径5μmの樹脂被覆亜鉛粉末8を得た。
[実施例1-9]
 樹脂5の使用量を600mgとした以外は、実施例1-8と同様にして平均粒子径10μmの樹脂被覆亜鉛粉末9を得た。
[実施例1-10]
 樹脂1を樹脂6に変更した以外は、実施例1-1と同様にして平均粒子径5μmの樹脂被覆亜鉛粉末10を得た。
[実施例1-11]
 樹脂6の使用量を600mgとした以外は、実施例1-10と同様にして平均粒子径10μmの樹脂被覆亜鉛粉末11を得た。
[実施例1-12]
 樹脂1を樹脂7に変更した以外は、実施例1-1と同様にして平均粒子径5μmの樹脂被覆亜鉛粉末12を得た。
[実施例1-13]
 樹脂7の使用量を600mgとした以外は、実施例1-12と同様にして平均粒子径10μmの樹脂被覆亜鉛粉末13を得た。
[実施例1-14]
 樹脂1を樹脂8に変更した以外は、実施例1-1と同様にして平均粒子径5μmの樹脂被覆亜鉛粉末14を得た。
[実施例1-15]
 樹脂8の使用量を679mgとした以外は、実施例1-14と同様にして平均粒子径10μmの樹脂被覆亜鉛粉末15を得た。
 上記樹脂被覆亜鉛粉末について、水に対する安定性および分散性を下記手法によって評価した。なお、対照として、未処理のジンクリッチペイント用亜鉛粉末についても同様の評価を行った。結果を表1に併せて示す。
[1]安定性評価
 樹脂被覆亜鉛粉末1~15または未処理のジンクリッチペイント用亜鉛粉末3g、純水3g、アミン硬化剤としてトリエチレンテトラミン300mgを試験管に加え、均一になるまで室温で撹拌した。均一になった後に撹拌を止めて、試験管を50℃のオイルバスに浸け、気体が発生するまでの時間を計測した。
[2]分散性評価
 樹脂被覆亜鉛粉末1~15または未処理のジンクリッチペイント用亜鉛粉末3g、純水3g、アミン硬化剤としてトリエチレンテトラミン300mgを試験管に加え、均一になるまで室温で撹拌した。続いて、試験管を50℃のオイルバスに浸け、1時間撹拌した後の亜鉛粉末の分散性を評価した。この分散性評価において、「良好」とは、亜鉛粉末が凝集していない様子を表し、「不良」とは、亜鉛粉末が凝集している様子を表す。
Figure JPOXMLDOC01-appb-T000011
[実施例1-16]
 30mLスクリュー管に、ジンクリッチペイント用亜鉛粉末(平均粒子径4.0μm)30g、3-トリメトキシシリルプロピルメタクリレート300mgを加えた。自転公転ミキサー(あわとり練太郎、ARE-310、(株)シンキー製)を用いて60分間撹拌した後、25℃で1時間静置し、100℃で1時間加熱することによって、シランカップリング剤により処理された亜鉛粉末を得た。
 続いて、撹拌機、還流器、滴下ロートおよび温度計を備えた四つ口フラスコに、その内部を窒素で置換し、還流冷却器上部の開放端に窒素ガスを通気させて外気が混入しないようにしながら、上記処理済の亜鉛粉末30g、キシレン27gを仕込み、90℃にて撹拌した。そこに、トリイソプロピルシリルアクリレート2.4g(10.5mmol)、メチルメタクリレート0.6g(6.0mmol)、2,2’-アゾビス(2-メチルブチロニトリル)(V-59、富士フイルム和光純薬(株)製、以下同様)30mg(0.2mmol)の混合物を滴下し、90℃にて1時間撹拌した。
 その後、2,2’-アゾビス(2-メチルブチロニトリル)30mg(0.2mmol)を追加し、さらに90℃にて1時間撹拌した。反応液を室温まで冷却し、濾過、キシレン洗浄(30mL×2)、乾燥を順次行うことにより、平均粒子径4.0μmの樹脂被覆亜鉛粉末16を得た。
[実施例1-17]
 トリイソプロピルシリルアクリレートの使用量を0.6g(2.6mmol)、メチルメタクリレートの使用量を2.4g(24.0mmol)とした以外は、実施例1-16と同様にして平均粒子径4.0μmの樹脂被覆亜鉛粉末17を得た。
[実施例1-18]
 3-トリメトキシシリルプロピルメタクリレートを8-トリメトキシシリルオクチルメタクリレートとした以外は、実施例1-16と同様にして平均粒子径4.0μmの樹脂被覆亜鉛粉末18を得た。
[実施例1-19]
 3-トリメトキシシリルプロピルメタクリレートの使用量を600mgとした以外は、実施例1-16と同様にして平均粒子径4.0μmの樹脂被覆亜鉛粉末19を得た。
[実施例1-20]
 トリイソプロピルシリルアクリレートの使用量を3.0g(13.1mmol)とし、メチルメタクリレートを用いなかった以外は、実施例1-16と同様にして平均粒子径4.0μmの樹脂被覆亜鉛粉末20を得た。
 上記樹脂被覆亜鉛粉末16~20について、水に対する安定性および分散性を下記手法によって評価した。なお、対照として、未処理のジンクリッチペイント用亜鉛粉末についても同様の評価を行い、アミン硬化剤は用いなかった。結果を表2に併せて示す。
[3]安定性評価
 樹脂被覆亜鉛粉末16~20または未処理のジンクリッチペイント用亜鉛粉末25g、純水50gをナスフラスコに加え、均一になるまで室温で撹拌した。均一になった後に撹拌を止め、ナスフラスコを40℃の水浴に浸けた。水上置換法にて48時間で発生する水素量を測定した。
[4]分散性評価
 樹脂被覆亜鉛粉末16~20または未処理のジンクリッチペイント用亜鉛粉末25g、純水50gをナスフラスコに加え、均一になるまで室温で撹拌した。均一になった後に撹拌を止め、ナスフラスコを40℃の水浴に浸けて、48時間後の亜鉛粉末の分散性を評価した。この分散性評価において、「良好」とは、亜鉛粉末が凝集していない様子を表し、「不良」とは、亜鉛粉末が凝集している様子を表す。
Figure JPOXMLDOC01-appb-T000012
 表1および表2に示されるように、加水分解性樹脂で被覆された樹脂被覆亜鉛粉末は、水に対する安定性、水溶液中での分散性が、未処理のジンクリッチペイント用亜鉛粉末に比べて、有意に高いことがわかる。また、一定時間が経過すると、加水分解性樹脂が亜鉛粉末表面から剥がれ、亜鉛粉末が活性化していることもわかった。
(3)水性塗料組成物の製造および評価
[実施例2-1]
 エポキシ樹脂エマルション(アデカレジンEM101-50、(株)ADEKA製)24.4質量部、実施例1-2で得られた樹脂被覆亜鉛粉末2 100質量部を混合し、均一になるまで撹拌して、水性塗料組成物を得た。
 基材として表面を磨いて脱脂したSPCC-SBの鋼板(寸法:100mm×50mm×0.3mm)に、上記で調製した水性塗料組成物を塗工量400g/m2で刷毛にて塗装した後、室温で硬化乾燥させた。塗膜の乾燥中に気泡は生じなかった。得られた塗膜は優れた平滑性を有していた。
 上記塗膜を試験体として用い、JIS K5600-7-1の耐中性塩水噴霧性に準じて、上記試験体にスクラッチカット部を付けた上で塩水噴霧中に500時間静置させた後、試験体に生じたさび、および膨れの発生程度を評価したところ、試験体に赤錆、膨れ等の異常が無いことが確認された。
[実施例2-2]
 エポキシ樹脂エマルション(アデカレジンEM101-50、(株)ADEKA製)24.4質量部、実施例1-16で得られた樹脂被覆亜鉛粉末16 100質量部を混合し、均一になるまで撹拌して、水性塗料組成物を得た。
 基材として表面を磨いて脱脂したSPCC-SBの鋼板(寸法:100mm×50mm×0.3mm)に、上記で調製した水性塗料組成物を塗工量400g/m2で刷毛にて塗装した後、室温で硬化乾燥させた。塗膜の乾燥中に気泡は生じなかった。得られた塗膜は優れた平滑性を有していた。
 上記塗膜を試験体として用い、JIS K5600-7-1の耐中性塩水噴霧性に準じて、上記試験体にスクラッチカット部を付けた上で塩水噴霧中に500時間静置させた後、試験体に生じたさび、および膨れの発生程度を評価したところ、試験体に赤錆、膨れ等の異常が無いことが確認された。

Claims (6)

  1.  金属粉末の表面の少なくとも一部が加水分解性樹脂で被覆された樹脂被覆金属粉末であって、
     前記加水分解性樹脂が、下記一般式(1)で示される平均組成を有し、ゲルパーミエーションクロマトグラフィーによるポリスチレン換算の数平均分子量500~100,000の樹脂であることを特徴とする樹脂被覆金属粉末。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1は、炭素数1~10の直鎖状または分岐鎖状の1価炭化水素基を表し、炭化水素基の水素原子の一部または全部が、アルコキシアルキル基、アルコキシシリル基、ヒドロキシアルキル基、ポリオキシアルキレン基または末端アルキルポリオキシアルキレン基で置換されていてもよく、
     R3、R4およびR5は、それぞれ独立して炭素数1~10の直鎖状または分岐鎖状の1価炭化水素基を表し、
     R2およびR6は、それぞれ独立して水素原子または炭素数1~10の直鎖状もしくは分岐鎖状の1価炭化水素基を表し、
     aおよびbは、0≦a<1、0<b≦1、a+b=1を満たす数を表す。)
  2.  前記R3、R4およびR5が、それぞれ独立して炭素数1~4の直鎖状または分岐鎖状の1価炭化水素基である請求項1記載の樹脂被覆金属粉末。
  3.  前記金属粉末が、亜鉛粉末である請求項1または2記載の樹脂被覆金属粉末。
  4.  金属粉末と、前記一般式(1)で示される加水分解性樹脂を含む溶液とを混合し、前記金属粉末の表面の少なくとも一部を前記加水分解性樹脂で被覆する請求項1~3のいずれか1項記載の樹脂被覆金属粉末の製造方法。
  5.  金属粉末と、下記一般式(2)
    Figure JPOXMLDOC01-appb-C000002
    (式中、R7は、炭素数1~10の直鎖状または分岐鎖状の2価炭化水素基を表し、R8およびR9は、炭素数1~10の直鎖状または分岐鎖状の1価炭化水素基を表し、nは、0~2の整数を表し、R10は、水素原子、または炭素数1~10の直鎖状もしくは分岐鎖状の1価炭化水素基を表す。)
    で示される重合性基を有するシランカップリング剤とを予め混合して、シランカップリング剤により処理された金属粉末を得た後、この処理された金属粉末、下記一般式(3)
    Figure JPOXMLDOC01-appb-C000003
    (式中、R11、R12およびR13は、それぞれ独立して炭素数1~10の直鎖状または分岐鎖状の1価炭化水素基を表し、R14は、水素原子、または炭素数1~10の直鎖状もしくは分岐鎖状の1価炭化水素基を表す。)
    で示される重合性モノマー、前記一般式(2)で示される重合性基を有するシランカップリング剤および/または下記一般式(4)
    Figure JPOXMLDOC01-appb-C000004
    (式中、R15は、炭素数1~10の直鎖状もしくは分岐鎖状の1価炭化水素基を表し、R16は、水素原子、または炭素数1~10の直鎖状もしくは分岐鎖状の1価炭化水素基を表す。)
    で示される重合性モノマーをラジカル重合により反応させて、前記処理された金属表面の少なくとも一部を前記加水分解性樹脂で被覆する請求項1~3のいずれか1項記載の樹脂被覆金属粉末の製造方法。
  6.  請求項1~3のいずれか1項記載の樹脂被覆金属粉末およびエポキシ樹脂エマルションを含む水性塗料組成物。
PCT/JP2020/038757 2019-10-18 2020-10-14 樹脂被覆金属粉末およびその製造方法ならびにこれを用いた水性塗料組成物 WO2021075457A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/769,629 US20240052172A1 (en) 2019-10-18 2020-10-14 Resin-coated metal powder, method for producing same and aqueous coating composition using same
EP20876087.6A EP4046729A4 (en) 2019-10-18 2020-10-14 RESIN-COATED METAL POWDER, PRODUCTION METHOD THEREOF, AND AQUEOUS COATING COMPOSITION USING SAME

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-190949 2019-10-18
JP2019190949 2019-10-18
JP2020-148736 2020-09-04
JP2020148736 2020-09-04

Publications (1)

Publication Number Publication Date
WO2021075457A1 true WO2021075457A1 (ja) 2021-04-22

Family

ID=75537495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/038757 WO2021075457A1 (ja) 2019-10-18 2020-10-14 樹脂被覆金属粉末およびその製造方法ならびにこれを用いた水性塗料組成物

Country Status (5)

Country Link
US (1) US20240052172A1 (ja)
EP (1) EP4046729A4 (ja)
JP (1) JP7371601B2 (ja)
TW (1) TW202124477A (ja)
WO (1) WO2021075457A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116284571A (zh) * 2021-12-20 2023-06-23 凯斯科技股份有限公司 用于有机-无机复合组合物的表面处理剂

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62275113A (ja) * 1986-05-22 1987-11-30 Chugoku Toryo Kk ケイ素含有共重合体
JPH10130545A (ja) 1996-10-29 1998-05-19 Asahi Chem Ind Co Ltd 水性アルミニウム顔料組成物
JP2005194490A (ja) * 2003-12-12 2005-07-21 Hoden Seimitsu Kako Kenkyusho Ltd 水性金属防錆塗料用鱗片状亜鉛粉末とその製造方法及びその鱗片状亜鉛粉末を分散した非クロム水性金属防錆塗料
JP2008272666A (ja) 2007-04-27 2008-11-13 Kansai Paint Co Ltd 水性エポキシ樹脂ジンクリッチペイントを用いた防食塗装方法
JP2014037558A (ja) * 2012-08-11 2014-02-27 Nippon Shokubai Co Ltd 樹脂被覆金属粒子の製造方法
JP2017508016A (ja) * 2013-12-11 2017-03-23 エッカルト ゲゼルシャフト ミット ベシュレンクテル ハフツングEckart GmbH 被覆金属顔料、それを製造および使用するための方法、被覆剤、ならびに物品

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0768467B2 (ja) * 1986-08-28 1995-07-26 中国塗料株式会社 防汚塗料
MY115462A (en) * 1995-06-01 2003-06-30 Chugoku Marine Paints Antifouling coating composition, coating film formed from said antifouling coating composition, antifouling method using said antifouling coating composition and hull or underwater structure coated with said coating film
JP4633224B2 (ja) * 2000-04-03 2011-02-16 中国塗料株式会社 防汚塗料組成物、防汚塗膜、該防汚塗膜で被覆された船舶または水中構造物ならびに船舶外板または水中構造物の防汚方法
US7638172B2 (en) * 2005-03-23 2009-12-29 Shin-Etsu Chemical Co., Ltd. Non-chromate aqueous metal surface treating composition, surface-treated steel, painted steel, steel surface treatment method, and painted steel preparing method
WO2010070728A1 (ja) * 2008-12-16 2010-06-24 日本パーカライジング株式会社 金属材料用表面処理剤
JP5815730B2 (ja) * 2011-11-14 2015-11-17 中国塗料株式会社 防汚塗料組成物、防汚塗膜および防汚基材、ならびに防汚基材の製造方法
KR102222814B1 (ko) * 2016-02-25 2021-03-03 주고꾸 도료 가부시키가이샤 방식도료 조성물, 방식도막, 방식도막 부착 기재 및 그의 제조방법
JP6757220B2 (ja) * 2016-09-27 2020-09-16 日本パーカライジング株式会社 金属材料用表面処理剤及びその製造方法、並びに、表面処理被膜付き金属材料及びその製造方法
KR102092402B1 (ko) * 2018-02-28 2020-03-23 주식회사 케이씨씨 방청도료 조성물
JP6624664B1 (ja) * 2018-04-20 2019-12-25 日東化成株式会社 防汚塗料組成物用共重合体、該共重合体を含む防汚塗料組成物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62275113A (ja) * 1986-05-22 1987-11-30 Chugoku Toryo Kk ケイ素含有共重合体
JPH10130545A (ja) 1996-10-29 1998-05-19 Asahi Chem Ind Co Ltd 水性アルミニウム顔料組成物
JP2005194490A (ja) * 2003-12-12 2005-07-21 Hoden Seimitsu Kako Kenkyusho Ltd 水性金属防錆塗料用鱗片状亜鉛粉末とその製造方法及びその鱗片状亜鉛粉末を分散した非クロム水性金属防錆塗料
JP2008272666A (ja) 2007-04-27 2008-11-13 Kansai Paint Co Ltd 水性エポキシ樹脂ジンクリッチペイントを用いた防食塗装方法
JP2014037558A (ja) * 2012-08-11 2014-02-27 Nippon Shokubai Co Ltd 樹脂被覆金属粒子の製造方法
JP2017508016A (ja) * 2013-12-11 2017-03-23 エッカルト ゲゼルシャフト ミット ベシュレンクテル ハフツングEckart GmbH 被覆金属顔料、それを製造および使用するための方法、被覆剤、ならびに物品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4046729A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116284571A (zh) * 2021-12-20 2023-06-23 凯斯科技股份有限公司 用于有机-无机复合组合物的表面处理剂
JP2023091758A (ja) * 2021-12-20 2023-06-30 ケーシーテック カンパニー リミテッド 有無機ハイブリッド組成物用表面処理剤{surface treatment agent for organic-inorganic hybrid composition}

Also Published As

Publication number Publication date
JP2022007869A (ja) 2022-01-13
TW202124477A (zh) 2021-07-01
EP4046729A4 (en) 2023-11-15
JP7371601B2 (ja) 2023-10-31
US20240052172A1 (en) 2024-02-15
EP4046729A1 (en) 2022-08-24

Similar Documents

Publication Publication Date Title
CN107286798B (zh) 一种耐盐雾、耐老化水性涂料及其制备方法
CN105838195B (zh) 一种含有氧化石墨烯的水性环氧防腐涂料及其制备方法
CN104098972B (zh) 一种水性金属防锈防腐漆及其制备方法
CN105295645B (zh) 一种耐高温改性环氧漆及其制备方法和应用
TWI482739B (zh) 水性經矽烷化之矽石分散液
CN1777700B (zh) 以含至少两种硅烷的混合物涂布金属表面的方法
JP2729935B2 (ja) 溶射被膜の封孔処理方法及び封孔材料
JP6907856B2 (ja) (メタ)アクリル酸トリイソプロピルシリルと(メタ)アクリル酸誘導体の共重合体およびその製造方法
JP4260454B2 (ja) アルミニウム顔料
CN104356884A (zh) 一种用于电梯轨道的低温快干型水性底面合一防护漆及其制备方法
CN102863874B (zh) 水性环氧富锌底漆及其制备方法
JP7371601B2 (ja) 樹脂被覆金属粉末およびその製造方法ならびにこれを用いた水性塗料組成物
CN108929581A (zh) 水性金属用环保防腐涂料及其制备方法
US20140076201A1 (en) Coating of metal pigments using phosphonic acid-based compounds
KR100848671B1 (ko) 수계 방식 도료용 조성물 및 이를 이용한 복합 도금층의형성 방법
CN105238230A (zh) 一种含水性环氧树脂的陶瓷防腐耐磨涂料及制备方法
JP5086744B2 (ja) 粘性改良剤を含有する自動車用水系塗料
CN110437696A (zh) 单组份水性石墨烯防腐涂料、其制备方法及应用
CN109868033A (zh) 一种无重金属水性环氧底漆及其制备方法
JP5130438B2 (ja) 粘性改良剤
JP2018165404A (ja) 封孔処理剤
CN114085580A (zh) 一种水性金属烤漆及其制备方法
JP2009114351A (ja) 粘性改良剤
JP5343194B2 (ja) 粘性改良剤
JP2006257235A (ja) 減衰性塗料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20876087

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 17769629

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020876087

Country of ref document: EP

Effective date: 20220518