[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021065173A1 - 非水電解質二次電池 - Google Patents

非水電解質二次電池 Download PDF

Info

Publication number
WO2021065173A1
WO2021065173A1 PCT/JP2020/028826 JP2020028826W WO2021065173A1 WO 2021065173 A1 WO2021065173 A1 WO 2021065173A1 JP 2020028826 W JP2020028826 W JP 2020028826W WO 2021065173 A1 WO2021065173 A1 WO 2021065173A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
composite oxide
aqueous electrolyte
transition metal
secondary battery
Prior art date
Application number
PCT/JP2020/028826
Other languages
English (en)
French (fr)
Inventor
孝哉 杤尾
勝哉 井之上
毅 小笠原
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to EP20873084.6A priority Critical patent/EP4040527A4/en
Priority to US17/764,004 priority patent/US20220393165A1/en
Priority to CN202080067582.9A priority patent/CN114503308B/zh
Priority to JP2021550377A priority patent/JPWO2021065173A1/ja
Publication of WO2021065173A1 publication Critical patent/WO2021065173A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This disclosure relates to a non-aqueous electrolyte secondary battery.
  • non-aqueous electrolyte secondary batteries having a positive electrode, a negative electrode, and a non-aqueous electrolyte and charging / discharging by moving lithium ions or the like between the positive electrode and the negative electrode have become widespread. It's being used. Since the secondary battery is repeatedly charged and discharged, it is required to improve the charge / discharge cycle characteristics.
  • Patent Document 1 discloses a lithium ion secondary battery in which charge / discharge cycle characteristics and the like are improved by containing two types of positive electrode active materials having different particle sizes, which contain Co, in the positive electrode.
  • Patent Document 2 discloses a lithium ion secondary battery in which a charge / discharge cycle characteristic and the like are improved by providing an electrolyte containing a lithium imide compound and a positive electrode containing a positive electrode active material containing Co. ing.
  • Patent Document 1 and Patent Document 2 disclose a positive electrode active material containing Co.
  • the Ni content is increased in order to obtain a high battery capacity.
  • a design is conceivable in which the Co content is reduced in order to reduce the manufacturing cost.
  • the high Ni-containing lithium transition metal composite oxide that does not substantially contain Co when the positive electrode is compressed to increase the density of the positive electrode active material, cracks occur in the positive electrode active material, resulting in a charge / discharge cycle. The characteristics may deteriorate and the battery resistance may increase.
  • the non-aqueous electrolyte secondary battery includes a positive electrode, a negative electrode, and a non-aqueous electrolyte.
  • the positive electrode has a positive electrode current collector and a positive electrode mixture layer formed on the surface of the positive electrode current collector, and the positive electrode active material contained in the positive electrode mixture layer is based on the total number of moles of metal elements excluding Li.
  • a lithium transition metal containing 85 mol% or more of Ni and 1 mol% or more and 15 mol% or less of Al, and having a total content of Ni, Al, and Mn of 99.9 mol% or more.
  • the density of the positive electrode active material in the positive electrode mixture layer containing the composite oxide is 3.45 g / cm 3 or more, and the lithium transition metal composite oxide exposed in the cross section when observed with a scanning electron microscope of the cross section of the positive electrode.
  • the ratio of the cross-sectional area of the lithium transition metal composite oxide without cracks to the cross-sectional area is 51% or more.
  • the positive electrode active material for a non-aqueous electrolyte secondary battery which is one aspect of the present disclosure, it is possible to reduce the battery resistance while suppressing a decrease in battery capacity due to charging and discharging of the secondary battery.
  • FIG. 1 is a vertical sectional view of a non-aqueous electrolyte secondary battery which is an example of the embodiment.
  • FIG. 2 is a diagram schematically showing the vicinity of the interface between the positive electrode current collector and the positive electrode mixture layer in the cross section of the positive electrode in an example of the embodiment.
  • the lithium transition metal composite oxide contained as a positive electrode active material in the positive electrode of a secondary battery may crack when the positive electrode is compressed to increase the density of the positive electrode active material.
  • a crack occurs in the lithium transition metal composite oxide, a conductive path cannot be taken inside the lithium transition metal composite oxide and a portion that cannot contribute to charging / discharging is generated, which may reduce the battery capacity.
  • the lithium transition metal composite oxide is cracked, the area in contact with the conductive material is reduced, so that the battery resistance may increase. Even in this case, if the lithium transition metal composite oxide is a lithium transition metal composite oxide containing Co, Co has high electron conductivity, so that the influence of an increase in resistance due to cracks can be reduced.
  • the present inventors adjusted the composition of the high Ni-containing positive electrode active material containing no Co to a specific composition to increase the particle strength of the positive electrode active material, thereby reducing the charge / discharge cycle characteristics. And it was found that the increase in battery resistance can be suppressed.
  • a cylindrical battery in which a wound electrode body is housed in a cylindrical battery case is illustrated, but the electrode body is not limited to the wound type, and a plurality of positive electrodes and a plurality of negative electrodes are interposed via a separator. It may be a laminated type in which one sheet is alternately laminated one by one.
  • the battery case is not limited to a cylindrical shape, and may be, for example, a square shape, a coin shape, or the like, or may be a battery case made of a laminated sheet including a metal layer and a resin layer.
  • FIG. 1 is a vertical sectional view of the non-aqueous electrolyte secondary battery 10 which is an example of the embodiment.
  • the non-aqueous electrolyte secondary battery 10 includes an electrode body 14, a non-aqueous electrolyte (not shown), and a battery case 15 that houses the electrode body 14 and the non-aqueous electrolyte.
  • the electrode body 14 has a winding structure in which a positive electrode 11 and a negative electrode 12 are wound via a separator 13.
  • the battery case 15 is composed of a bottomed cylindrical outer can 16 and a sealing body 17 that closes the opening of the outer can 16.
  • the electrode body 14 includes a long positive electrode 11, a long negative electrode 12, two long separators 13, a positive electrode tab 20 bonded to the positive electrode 11, and a negative electrode bonded to the negative electrode 12. It is composed of tabs 21.
  • the negative electrode 12 is formed to have a size one size larger than that of the positive electrode 11 in order to prevent the precipitation of lithium. That is, the negative electrode 12 is formed longer than the positive electrode 11 in the longitudinal direction and the width direction (short direction).
  • the two separators 13 are formed to have a size at least one size larger than that of the positive electrode 11, and are arranged so as to sandwich the positive electrode 11, for example.
  • the non-aqueous electrolyte secondary battery 10 includes insulating plates 18 and 19 arranged above and below the electrode body 14, respectively.
  • the positive electrode tab 20 attached to the positive electrode 11 extends to the sealing body 17 side through the through hole of the insulating plate 18, and the negative electrode tab 21 attached to the negative electrode 12 passes through the outside of the insulating plate 19. It extends to the bottom side of the outer can 16.
  • the positive electrode tab 20 is connected to the lower surface of the bottom plate 23 of the sealing body 17 by welding or the like, and the cap 27 of the sealing body 17 electrically connected to the bottom plate 23 serves as the positive electrode terminal.
  • the negative electrode tab 21 is connected to the inner surface of the bottom of the outer can 16 by welding or the like, and the outer can 16 serves as a negative electrode terminal.
  • the outer can 16 is, for example, a bottomed cylindrical metal container.
  • a gasket 28 is provided between the outer can 16 and the sealing body 17, and the internal space of the battery case 15 is sealed.
  • the outer can 16 has a grooved portion 22 that supports the sealing body 17, for example, formed by pressing a side surface portion from the outside.
  • the grooved portion 22 is preferably formed in an annular shape along the circumferential direction of the outer can 16, and the sealing body 17 is supported on the upper surface thereof.
  • the sealing body 17 has a structure in which a bottom plate 23, a lower valve body 24, an insulating member 25, an upper valve body 26, and a cap 27 are laminated in this order from the electrode body 14 side.
  • Each member constituting the sealing body 17 has, for example, a disk shape or a ring shape, and each member except the insulating member 25 is electrically connected to each other.
  • the lower valve body 24 and the upper valve body 26 are connected to each other at the central portion thereof, and an insulating member 25 is interposed between the peripheral portions thereof.
  • the positive electrode 11, the negative electrode 12, the separator 13, and the non-aqueous electrolyte constituting the non-aqueous electrolyte secondary battery 10 will be described in detail, and in particular, the positive electrode active material contained in the positive electrode mixture layer 31 constituting the positive electrode 11 will be described in detail.
  • the positive electrode 11 has a positive electrode current collector 30 and a positive electrode mixture layer 31 formed on the surface of the positive electrode current collector 30.
  • the positive electrode mixture layer 31 may be formed on both surfaces of the positive electrode current collector 30.
  • a foil of a metal such as stainless steel, aluminum, an aluminum alloy, or titanium, or a film in which the metal is arranged on the surface layer can be used.
  • the positive electrode current collector 30 may further include a protective layer containing inorganic particles and a binder.
  • the positive electrode mixture layer 31 contains a positive electrode active material, a conductive material, and a binder.
  • the thickness of the positive electrode mixture layer 31 is, for example, 10 ⁇ m to 150 ⁇ m.
  • the positive electrode mixture layer 31 can be formed by applying the positive electrode mixture slurry to the surface of the positive electrode current collector 30 and drying and compressing the surface.
  • the positive electrode mixture slurry includes, for example, a conductive material, a binder, a positive electrode active material, and a dispersion medium.
  • the positive electrode mixture slurry may be mixed with the positive electrode active material after preparing a conductive material paste containing a conductive material, a binder and a dispersion medium.
  • the positive electrode mixture slurry and the conductive material paste may contain a dispersant.
  • Examples of the conductive material contained in the positive electrode mixture layer 31 include carbon powders such as carbon black, acetylene black, ketjen black, graphite, and carbon nanotubes. These may be used alone or in combination of two or more.
  • Examples of the binder contained in the positive electrode mixture layer 31 include a fluorine-based polymer and a rubber-based polymer. Examples of the fluorine-based polymer include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), and modified products thereof, and examples of the rubber-based polymer include ethylene-propylene-isoprene copolymer weight. Examples thereof include coalescing, ethylene-propylene-butadiene copolymer and the like. These may be used alone or in combination of two or more.
  • the dispersion medium of the positive electrode mixture slurry is, for example, N-methyl-2-pyrrolidone (NMP).
  • the positive electrode active material contained in the positive electrode mixture layer 31 contains 85 mol% or more of Ni and 1 mol% or more and 15 mol% or less of Al with respect to the total number of moles of metal elements excluding Li, and , Ni, Al, and Mn include a lithium transition metal composite oxide having a total content of 99.9 mol% or more. Since the Ni content is high, a high capacity battery can be obtained. Further, since the total content of Ni, Al, and Mn accounts for most of 99.9 mol% or more, the lithium transition metal composite oxide has 0 Co with respect to the total number of moles of metal elements excluding Li. It may contain less than 1 mol% and may be substantially free of Co. Here, the fact that Co is substantially not contained means that Co is contained in an amount of 0.01 mol% or less.
  • the density of the positive electrode active material in the positive electrode mixture layer 31 is 3.45 g / cm 3 or more.
  • the positive electrode mixture layer 31 formed on the surface of the positive electrode current collector 30 is compressed by a rolling roller or the like in order to increase the energy density. By compressing the positive electrode mixture layer 31, cracks may occur in the lithium transition metal composite oxide.
  • the ratio of the cross-sectional area of the lithium transition metal composite oxide without cracks to the cross-sectional area of the lithium transition metal composite oxide exposed on the cross section (hereinafter, crack-free particles). (Sometimes referred to as the area ratio of) is 51% or more.
  • the observation magnification by SEM may be 700 times, and the observation area may be about 20000 ⁇ m 2.
  • the crack means a crack having a length of 3 ⁇ m or more that can be visually observed when SEM is observed at the above magnification. If the lithium transition metal composite oxide having the above composition is used, the number of crack-free lithium transition metal composite oxides can be increased. As a result, the battery resistance can be reduced while suppressing the decrease in battery capacity due to charging and discharging of the secondary battery.
  • the lithium transition metal composite oxide contained in the positive electrode mixture layer 31 bites into the surface of the positive electrode current collector 30, and becomes the positive electrode mixture layer 31 of the positive electrode current collector 30.
  • the contacting surface may have a concave shape.
  • the contact area between the lithium transition metal composite oxide and the positive electrode current collector 30 is increased, so that the battery resistance can be reduced.
  • the length of the surface of the positive electrode current collector 30 in contact with the positive electrode mixture layer 31 may be 1.32 times or more the linear length of the corresponding portion. .. For example, in FIG.
  • FIG. 2 shows the vicinity of the interface between the positive electrode current collector 30 and the positive electrode mixture layer 31 in the cross section of the positive electrode 11, the length of the surface of the positive electrode current collector 30 in contact with the positive electrode mixture layer 31 is a straight line a-. It is the total length of b, the curve bc, the straight line cd, the straight line d-e, and the straight line ef, and the straight line length of the corresponding portion is the straight line AF indicated by the arrow of the virtual line. Is. In the cross section, the length of the surface of the positive electrode current collector 30 in contact with the positive electrode mixture layer 31 is longer than the linear length of the corresponding portion due to the presence of the concave portion.
  • FIG. 2 is a diagram schematically showing a cross section of the positive electrode 11, and the observation magnification by SEM may be 700 times, and the measurement length in the cross section may be about 200 ⁇ m.
  • the lithium transition metal composite oxide has a layered structure.
  • the layered structure of the lithium transition metal composite oxide include a layered structure belonging to the space group R-3m and a layered structure belonging to the space group C2 / m.
  • a layered structure belonging to the space group R-3m is preferable in terms of increasing capacity, stability of crystal structure, and the like.
  • the lithium transition metal composite oxide has a general formula of Li a Ni x Al y Mn z M v Nb w O 2-b (in the formula, 0.9 ⁇ a ⁇ 1.1, x ⁇ 0.85, 0.01 ⁇ ).
  • y ⁇ 0.15, 0 ⁇ z ⁇ 0.14, 0 ⁇ v ⁇ 0.001, 0 ⁇ w ⁇ 0.005, 0 ⁇ b ⁇ 0.05, x + y + z + v + w 1,
  • M is Co, Fe, Ti , Si, Zr, Mo and Zn
  • M is Co, Fe, Ti , Si, Zr, Mo and Zn
  • the positive electrode active material may contain a lithium transition metal composite oxide other than that represented by the above general formula, or other compounds, as long as the object of the present disclosure is not impaired.
  • the mole fraction of the metal element contained in the entire particle of the lithium transition metal composite oxide is measured by inductively coupled plasma (ICP) emission spectroscopy.
  • a indicating the ratio of Li in the lithium transition metal composite oxide preferably satisfies 0.9 ⁇ a ⁇ 1.1, and more preferably 0.97 ⁇ a ⁇ 1.03.
  • a is less than 0.9, the battery capacity may decrease as compared with the case where a satisfies the above range.
  • a is 1.1 or more, a larger amount of Li compound is added as compared with the case where a satisfies the above range, so that it may not be economical from the viewpoint of production cost.
  • Y which indicates the ratio of Al to the total number of moles of metal elements other than Li in the lithium transition metal composite oxide, preferably satisfies 0.01 ⁇ y ⁇ 0.15, and 0.01 ⁇ y ⁇ 0.07. It is more preferable to satisfy. Since the oxidation number of Al does not change during charging and discharging, it is considered that the structure of the transition metal layer is stabilized by being contained in the transition metal layer. On the other hand, when y> 0.15, Al impurities are generated and the battery capacity is lowered. Al may be uniformly dispersed in the layered structure of the lithium transition metal composite oxide, for example, or may be present in a part of the layered structure.
  • Mn is an optional component.
  • Z which indicates the ratio of Mn to the total number of moles of metal elements other than Li in the lithium transition metal composite oxide, preferably satisfies 0 ⁇ z ⁇ 0.14, and preferably 0 ⁇ z ⁇ 0.05. More preferred.
  • Nb and M are optional components.
  • W which indicates the ratio of Nb to the total number of moles of metal elements other than Li in the lithium transition metal composite oxide, preferably satisfies 0 ⁇ w ⁇ 0.005, and preferably 0.001 ⁇ w ⁇ 0.005. Is even more preferable.
  • Nb in this range, the charge / discharge efficiency of the battery is improved.
  • v indicating the ratio of M to the total number of moles of the metal element excluding Li in the lithium transition metal composite oxide preferably satisfies 0 ⁇ v ⁇ 0.001.
  • the lithium transition metal composite oxide is, for example, secondary particles formed by aggregating a plurality of primary particles.
  • the particle size of the primary particles constituting the secondary particles is, for example, 0.02 ⁇ m to 2 ⁇ m.
  • the particle size of the primary particles is measured as the diameter of the circumscribed circle in the particle image observed by SEM.
  • the lithium transition metal composite oxide is a particle having a volume-based median diameter (D50) of, for example, 2 ⁇ m to 30 ⁇ m, preferably 2 ⁇ m to 20 ⁇ m, and more preferably 6 ⁇ m to 15 ⁇ m.
  • D50 means a particle size in which the cumulative frequency is 50% from the smallest particle size in the volume-based particle size distribution, and is also called a median diameter.
  • the particle size distribution of the lithium transition metal composite oxide can be measured using water as a dispersion medium using a laser diffraction type particle size distribution measuring device (for example, MT3000II manufactured by Microtrac Bell Co., Ltd.).
  • the content of the lithium transition metal composite oxide in the positive electrode active material is, for example, the total mass of the positive electrode active material in terms of improving the capacity of the battery and effectively suppressing the deterioration of the charge / discharge cycle characteristics. On the other hand, it is preferably 90% by mass or more, and more preferably 99% by mass or more.
  • the positive electrode active material of the present embodiment may contain other lithium transition metal composite oxides in addition to the lithium transition metal composite oxide of the present embodiment.
  • examples of other lithium transition metal composite oxides include lithium transition metal composite oxides having a Ni content of 0 mol% or more and less than 85 mol%.
  • a first step of obtaining a composite oxide containing Ni, Al and an arbitrary metal element and a mixture of the composite oxide obtained in the first step and a lithium compound are obtained to obtain a mixture. It includes a second step and a third step of firing the mixture.
  • the first step for example, while stirring a solution of a metal salt containing Ni, Al and an arbitrary metal element (Mn, Fe, etc.), an alkaline solution such as sodium hydroxide is added dropwise to adjust the pH to the alkaline side (for example, Fe). By adjusting to 8.5 to 12.5), a composite hydroxide containing Ni, Al and any metal element is precipitated (co-precipitated), and the composite hydroxide is calcined to form Ni, Al. And obtain a composite oxide containing any metal element.
  • the firing temperature is not particularly limited, but is, for example, in the range of 300 ° C. to 600 ° C.
  • the composite oxide obtained in the first step and the lithium compound are mixed to obtain a mixture.
  • the lithium compound include Li 2 CO 3 , LiOH, Li 2 O 2 , Li 2 O, LiNO 3 , LiNO 2 , Li 2 SO 4 , LiOH ⁇ H 2 O, LiH, LiF and the like.
  • the niobium compound may be further mixed.
  • the niobium compound include Nb 2 O 5 , Nb 2 O 5 , nH 2 O, LiNbO 3 , NbCl 5, and the like.
  • the mixing ratio of the above composite oxide, the Li compound, and the Nb compound may be appropriately determined so that each element in the finally obtained Li transition metal oxide has a desired ratio.
  • the molar ratio of Li to metal elements other than Li is, for example, 0.9 mol% or more and 1.1 mol% or less, preferably 0.95 or more and 1.05 or less.
  • the molar ratio of Nb to the metal element other than Li is, for example, 0.005 mol% or less, preferably 0.001 mol% or more and 0.005 mol% or less.
  • another metal raw material may be added if necessary.
  • Other metal raw materials are oxides containing metal elements other than the metal elements constituting the composite oxide obtained in the first step.
  • the mixture obtained in the second step is calcined in an oxygen atmosphere to obtain a lithium transition metal composite oxide according to the present embodiment.
  • the heating rate at 450 ° C. or higher and 680 ° C. or lower is in the range of more than 1.0 ° C./min and 5.5 ° C./min or lower, and the maximum temperature reached is in the range of 700 ° C. or higher and 850 ° C. or lower. Is.
  • the rate of temperature rise from over 680 ° C. to the maximum temperature reached is, for example, 0.1 to 3.5 ° C./min.
  • the maximum temperature reached is held for 1 hour or more and 10 hours or less.
  • the third step may be multi-step firing, and a plurality of first temperature rising rate and second temperature rising rate may be set for each temperature region as long as they are within the above-defined ranges.
  • the lithium metal composite oxide powder may be washed with water after the third step in order to improve the battery capacity and safety.
  • This washing with water may be carried out by a known method and conditions, and may be carried out within a range in which lithium is not eluted from the lithium metal composite oxide and the battery characteristics are not deteriorated.
  • the tungsten compound may be mixed before and after this washing with water.
  • This tungsten compound is, for example, tungsten oxide, lithium tungstate, ammonium tungstate, and the like.
  • either method may be used, that is, the mixture may be mixed after being dried, or may be mixed only by solid-liquid separation without drying.
  • the negative electrode 12 has a negative electrode current collector 40 and a negative electrode mixture layer 41 formed on the surface of the negative electrode current collector 40.
  • the negative electrode mixture layer 41 may be formed on both surfaces of the negative electrode current collector 40.
  • a non-porous conductive substrate metal foil or the like
  • a porous conductive substrate mesh body, net body, punching sheet or the like
  • a film or the like in which a metal is arranged on the surface layer can be used.
  • the material of the negative electrode current collector include stainless steel, nickel, nickel alloy, copper, and copper alloy.
  • the thickness of the negative electrode current collector is not particularly limited, but may be, for example, 1 to 50 ⁇ m and 5 to 20 ⁇ m.
  • the negative electrode mixture layer 41 includes a negative electrode active material, a conductive material, a thickener, and a binder.
  • the thickness of the negative electrode mixture layer 41 is, for example, 10 ⁇ m to 150 ⁇ m on one side of the negative electrode current collector 40.
  • the negative electrode mixture layer 41 can be formed by applying the negative electrode mixture slurry to the surface of the negative electrode current collector 40 and drying it. The dried coating film may be rolled if necessary.
  • the negative electrode mixture slurry includes, for example, a conductive material, a binder, a thickener, a negative electrode active material, and a dispersion medium.
  • the first negative electrode slurry is applied to the surface of the negative electrode current collector 40, the second negative electrode slurry is applied on the coating film of the first negative electrode slurry, and the coating films of the first negative electrode slurry and the second negative electrode slurry are dried. May be good.
  • the negative electrode active material is not particularly limited as long as it is a material capable of occluding and releasing lithium ions, and includes, for example, a carbon material, a metal capable of forming an alloy with lithium, or a metal thereof. Alloy compounds and the like can be mentioned. Further, a mixture of a carbon material and an alloy compound or the like can be used. In addition to the above, a material having a charge / discharge potential for metallic lithium such as lithium titanate higher than that of a carbon material or the like can also be used.
  • the ratio of the mass of the carbon material contained in the negative electrode active material layer to the mass of the alloy compound contained in the negative electrode active material layer may be, for example, 1 to 99, and may be 4 to 99.
  • the carbon material natural graphite, non-graphitizable carbon, graphites such as artificial graphite, cokes and the like can be used.
  • the carbon material one type may be used alone, or two or more types may be used in combination.
  • a graphite-based material conventionally used as a negative electrode active material of a non-aqueous electrolyte secondary battery may be used, for example, natural graphite such as massive graphite and earthy graphite, and massive.
  • Artificial graphite such as artificial graphite and graphitized mesophase carbon microbeads can be used.
  • the BET specific surface area of the graphite particles may be 0.1 m 2 / g or more, or 1 m 2 / g or more.
  • the alloy compound examples include those containing at least one kind of metal capable of forming an alloy with lithium.
  • a silicon-containing material using silicon or a tin-containing material using tin can be used.
  • Silicon oxide, tin oxide, etc., in which these are combined with oxygen, can also be used.
  • the alloy compound may be in the form of particles or may be directly bonded to the current collector. When it is in the form of particles, the particle size may be about 1 ⁇ m to 20 ⁇ m.
  • a lithium ion conductive phase and silicon composite particles in which silicon particles are dispersed in the lithium ion conductive phase can be used.
  • the lithium ion conductive phase for example, a silicon oxide phase, a silicate phase and / or a carbon phase can be used.
  • the main component of the silicon oxide phase (eg, 95% to 100% by weight) can be silicon dioxide.
  • the silicate phase may include, for example, at least one selected from the group consisting of Group 1 elements and Group 2 elements in the long periodic table.
  • Group 1 elements in the Long Periodic Table and Group 2 elements in the Long Periodic Table include lithium (Li), potassium (K), sodium (Na), magnesium (Mg), and calcium (Ca).
  • Strontium (Sr), barium (Ba) and the like can be used.
  • Other elements include aluminum (Al), boron (B), lanthanum (La), phosphorus (P), zirconium (Zr), titanium (Ti), iron (Fe), chromium (Cr), nickel (Ni), etc. It may be included.
  • a silicate phase containing lithium hereinafter, may be referred to as a lithium silicate phase) is preferable because the irreversible capacity is small and the initial charge / discharge efficiency is high.
  • the lithium silicate phase may be an oxide phase containing lithium (Li), silicon (Si), and oxygen (O), and may contain other elements.
  • the atomic ratio of O to Si in the lithium silicate phase: O / Si is, for example, greater than 2 and less than 4.
  • O / Si is greater than 2 and less than 3.
  • the atomic ratio of Li to Si in the lithium silicate phase: Li / Si is, for example, greater than 0 and less than 4.
  • Elements other than Li, Si, and O that can be contained in the lithium silicate phase include, for example, iron (Fe), chromium (Cr), nickel (Ni), manganese (Mn), copper (Cu), and molybdenum (Mo). , Zinc (Zn), Aluminum (Al), Zirconium (Zr) and the like.
  • the negative electrode 12 preferably contains silicon dioxide and an oxide phase containing at least Li, Si, and O.
  • the carbon phase may be composed of, for example, amorphous carbon having low crystallinity (that is, amorphous carbon).
  • amorphous carbon may be, for example, hard carbon, soft carbon, or other carbon.
  • Examples of the conductive material contained in the negative electrode mixture layer 41 include carbon black such as acetylene black, carbon nanotubes, metal fibers, carbon fluoride, metal powder, conductive whiskers such as zinc oxide and potassium titanate, and titanium oxide. Examples thereof include conductive metal oxides such as graphene and organic conductive materials such as phenylene derivatives. These may be used individually by 1 type, and may be used in combination of 2 or more type.
  • Examples of the thickener contained in the negative electrode mixture layer 41 include carboxymethyl cellulose (CMC) and its modified products (including salts such as Na salt), cellulose derivatives such as methyl cellulose (cellulose ether and the like); and polyvinyl alcohol and the like.
  • CMC carboxymethyl cellulose
  • its modified products including salts such as Na salt
  • cellulose derivatives such as methyl cellulose (cellulose ether and the like)
  • polyvinyl alcohol and the like examples thereof include polymer saponified products having a vinyl acetate unit; polyethers (polyalkylene oxides such as polyethylene oxide, etc.) and the like. These may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the binder contained in the negative electrode mixture layer 41 includes a resin material, for example, a fluororesin such as polytetrafluoroethylene and polyvinylidene fluoride (PVDF); a polyolefin resin such as polyethylene and polypropylene; and a polyamide resin such as an aramid resin; Polyimide resin such as polyimide and polyamideimide; Acrylic resin such as polyacrylic acid, methyl polyacrylate, ethylene-acrylic acid copolymer; vinyl resin such as polyacrylonitrile and polyvinyl acetate; polyvinylpyrrolidone; polyether sulfone; styrene -A rubber-like material such as butadiene copolymer rubber (SBR) can be exemplified. These may be used individually by 1 type, and may be used in combination of 2 or more type. As the polyacrylate, a Li salt or a Na salt is preferably used. Of these, it is preferable to use crosslinked lithium polyacrylate.
  • a porous sheet having ion permeability and insulating property is used for the separator 13.
  • the porous sheet include a microporous thin film, a woven fabric, and a non-woven fabric.
  • olefin resins such as polyethylene (PE) and polypropylene (PP), cellulose and the like are suitable.
  • the separator may be a laminate having a cellulose fiber layer and a thermoplastic resin fiber layer such as an olefin resin.
  • the laminate may be a laminate of a polyolefin resin and a cellulose fiber layer, a PE / PP two-layer structure in which different polyolefin resins are laminated, or a PE / PP / PE three-layer structure.
  • the non-aqueous electrolyte contains a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent.
  • the non-aqueous electrolyte may be in the form of a liquid or in the form of a gel.
  • a liquid non-aqueous electrolyte (non-aqueous electrolyte solution) is prepared by dissolving an electrolyte salt in a non-aqueous solvent.
  • the gel-like non-aqueous electrolyte may be a solid electrolyte containing a non-aqueous electrolyte solution and a matrix polymer.
  • the matrix polymer for example, a polymer material that absorbs a solvent and gels is used. Examples of such polymer materials include fluororesins, acrylic resins, and / or polyether resins.
  • non-aqueous solvent for example, amides such as esters, ethers, nitriles and dimethylformamide, and a mixed solvent of two or more of these can be used.
  • the non-aqueous solvent may contain a halogen substituent in which at least a part of hydrogen in these solvents is substituted with a halogen atom such as fluorine.
  • a halogen substituent such as fluorine.
  • one type may be used alone, or two or more types may be used in combination.
  • the amount of these non-aqueous solvents in the non-aqueous electrolytic solution is, for example, 5 to 100% by mass.
  • esters examples include cyclic carbonate esters (excluding unsaturated cyclic carbonates described later), chain carbonate esters, cyclic carboxylic acid esters, and chain carboxylic acid esters.
  • examples of the cyclic carbonate include propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate and the like.
  • Examples of the chain carbonate ester include diethyl carbonate (DEC), ethyl methyl carbonate (EMC), dimethyl carbonate (DMC), methyl propyl carbonate, ethyl propyl carbonate, methyl isopropyl carbonate and the like.
  • Examples of the cyclic carboxylic acid ester include ⁇ -butyrolactone (GBL) and ⁇ -valerolactone (GVL).
  • Examples of the chain carboxylic acid ester include methyl formate, ethyl formate, propyl formate, methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate, methyl pivalate and the like.
  • Examples of the above ethers include cyclic ethers and chain ethers.
  • Examples of the cyclic ether include 1,3-dioxolane, 4-methyl-1,3-dioxolane, tetrahydrofuran, 2-methyltetrahydrofuran, propylene oxide, 1,2-butylene oxide, 1,3-dioxane, 1,4-dioxane, and the like. Examples thereof include 1,3,5-trioxane, furan, 2-methylfuran, 1,8-cineole and crown ether.
  • Chain ethers include 1,2-dimethoxyethane, diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, dihexyl ether, ethyl vinyl ether, butyl vinyl ether, methyl phenyl ether, ethyl phenyl ether, butyl phenyl ether, and pentyl phenyl ether.
  • nitriles examples include acetonitrile, propionitrile, butylnitrile, valeronitrile, n-heptanenitrile, succinonitrile, glutaronitrile, adipoynitrile, pimeronitrile, 1,2,3-propanetricarbonyl, 1,3. , 5-Pentane tricarbonitrile and the like.
  • halogen substituents include fluorinated ethers, fluorinated cyclic carbonates, fluorinated chain carbonates, fluorinated chain carboxylic acid esters such as methyl fluoropropionate (FMP), and the like.
  • fluorinated ether examples include 2,2,2-trifluoroethyl methyl ether, 1,1,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl and the like.
  • fluorinated cyclic carbonate examples include 4-fluoroethylene carbonate (FEC), 4,5-difluoroethylene carbonate, 4,4-difluoroethylene carbonate, 4,4,5-trifluoroethylene carbonate, 4,4,5, Examples thereof include 5-tetrafluoroethylene carbonate.
  • fluorinated chain carboxylic acid ester examples include ethyl fluorinated propionate, methyl fluorinated acetate, ethyl fluorinated acetate, propyl fluorinated acetate, ethyl 2,2,2-trifluoroacetate, and 3,3,3-trifluoro. Examples thereof include methyl propionate and methyl pentafluoropropionate.
  • the electrolyte salt a lithium salt or the like can be used.
  • concentration of the lithium salt in the non-aqueous electrolyte is, for example, 0.5 to 3 mol / L, preferably 0.8 to 1.5 mol / L.
  • lithium salt examples include LiClO 4 , LiBF 4 , LiPF 6 , LiAlCl 4 , LiSbF 6 , LiSCN, LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiB 10 Cl 10 , LiB 10 Cl 10, LiCl. , LiBr, LiILi (P (C 2 O 4 ) F 4 ), LiPF 6-x (C n F 2n + 1 ) x (1 ⁇ x ⁇ 6, n is 1 or 2), lithium chloroborane, borates, phosphorus Examples thereof include acid salts and imide salts.
  • the borates include Li [B (C 2 O 4 ) 2 ], Li [B (C 2 O 4 ) F 2 ], Li 2 B 4 O 7 , and bis (1,2-benzenegeolate (2-benzene)).
  • Examples of the phosphates include Li [P (C 2 O 4 ) F 4 ], Li [P (C 2 O 4 ) 2 F 2 ], Li [P (C 2 O 4 ) 3 ] and the like.
  • Examples of imide salts include bisfluorosulfonylimide lithium (LiN (FSO 2 ) 2 : hereinafter also referred to as LiFSI), imidelithium bistrifluoromethanesulfonate (LiN (CF 3 SO 2 ) 2 ), and nonafluorobutane trifluoromethanesulfonate.
  • lithium LiN (CF 3 SO 2) (C 4 F 9 SO 2)
  • bispentafluoroethanesulfonyl imide LiN (C 2 F 5 SO 2) 2)
  • m are integers of 0 or more ⁇ and the like.
  • One type of lithium salt may be used alone, or two or more types may be used in combination.
  • the electrolyte salt is particularly preferably used in combination with LiPF 6 and LiFSI.
  • the concentration of LiFSI in the electrolytic solution is preferably 0.1 mol / L or more and 1.0 mol / L or less.
  • the concentration of LiPF 6 in the electrolytic solution is preferably 0.5 mol / L or more and 1.5 mol / L or less.
  • the total concentration of LiFSI and LiPF 6 in the electrolytic solution is preferably 1 mol / L or more and 2 mol / L or less.
  • the electrolytic solution may contain additives.
  • the amount of these additives in the non-aqueous electrolyte is, for example, 0.01 to 20% by mass.
  • the additive include unsaturated carbonate ester, acid anhydride, phenol compound, benzene compound, nitrile compound, isocyanate compound, sulton compound, sulfuric acid compound, borate ester compound, phosphoric acid ester compound, phosphite ester compound and the like. Be done.
  • unsaturated cyclic carbonates examples include vinylene carbonate, 4-methylvinylene carbonate, 4,5-dimethylvinylene carbonate, 4-ethylvinylene carbonate, 4,5-diethylvinylene carbonate, 4-propylvinylene carbonate, 4,5. -Dipropylvinylene carbonate, 4-phenylvinylene carbonate, 4,5-diphenylvinylene carbonate, vinylethylene carbonate, divinylethylene carbonate and the like can be mentioned.
  • the unsaturated cyclic carbonate may be used alone or in combination of two or more. In the unsaturated cyclic carbonate, a part of hydrogen atom may be replaced with a fluorine atom.
  • the acid anhydride may be an anhydride in which a plurality of carboxylic acid molecules are condensed between molecules, but is preferably an acid anhydride of a polycarboxylic acid.
  • the acid anhydride of the polycarboxylic acid include succinic anhydride, maleic anhydride, phthalic anhydride and the like.
  • phenol compound examples include phenol and hydroxytoluene.
  • benzene compound examples include fluorobenzene, hexafluorobenzene, cyclohexylbenzene (CHB) and the like.
  • nitrile compound examples include adiponitrile, pimeronitrile, propionitrile, succinonitrile and the like.
  • isocyanate compound examples include methyl isocyanate (MIC), diphenylmethane diisocyanate (MDI), hexamethylene diisocyanate (HDI), toluene diisocyanate (TDI), isophorone diisocyanate (IPDI), and bisisocyanate methylcyclohexane (BIMCH).
  • MIC methyl isocyanate
  • MDI diphenylmethane diisocyanate
  • HDI hexamethylene diisocyanate
  • TDI toluene diisocyanate
  • IPDI isophorone diisocyanate
  • BIMCH bisisocyanate methylcyclohexane
  • sultone compound examples include propane sultone and propene sultone.
  • sulfuric acid compound examples include ethylene sulfate, ethylene sulfate, dimethyl sulfate, lithium fluorosulfate and the like.
  • borate ester compound examples include trimethylborate and tris (trimethylsilyl) borate.
  • Examples of the phosphoric acid ester compound include trimethyl phosphate, tris (trimethylsilyl) phosphate and the like.
  • Examples of the phosphite ester compound include trimethylphosphite and tris (trimethylsilyl) phosphite.
  • the non-aqueous electrolyte contains a non-aqueous solvent, an electrolyte salt, and an additive, and the additive contains 1% by mass to 5% by mass of vinylene carbonate and 5 by mass with respect to the total mass of the non-aqueous solvent and the electrolyte salt. It preferably contains from% to 15% by weight of fluoroethylene carbonate.
  • Example 1 The composite hydroxide represented by [Ni 0.92 Al 0.05 Mn 0.03 ] (OH) 2 obtained by the coprecipitation method was fired at 500 ° C. for 8 hours, and the composite oxide (Ni 0.92) was fired. Al 0.05 Mn 0.03 O 2 ) was obtained. LiOH and the above composite oxide were mixed so that the molar ratio of Li to the total amount of Ni, Al, and Mn was 1.03: 1 to obtain a mixture. The mixture is heated from room temperature to 650 ° C. at a heating rate of 2.0 ° C./min in an oxygen stream, and then calcined from 650 ° C. to 730 ° C.
  • the composition of the positive electrode active material obtained above using an ICP emission spectroscopic analyzer (manufactured by Thermo Fisher Scientific, trade name "iCAP6300"), the composition was LiNi 0.92 Al 0.05 Mn 0.03. It was O 2. This was used as the positive electrode active material of Example 1.
  • Example 2 [Ni 0.91 Al 0.06 Mn 0.03 ] (OH) Using the composite hydroxide represented by 2 , a composite oxide (Ni 0.91 Al 0.06 Mn 0.03 O 2 ) is obtained. The same as in Example 1 except that LiOH and the above composite oxide were mixed so that the molar ratio of Li to the total amount of Ni, Al, and Mn was 1.03: 1 to obtain a mixture. To obtain a positive electrode active material. The composition of the obtained positive electrode active material was LiNi 0.91 Al 0.06 Mn 0.03 O 2 . This was used as the positive electrode active material of Example 2.
  • Example 3 [Ni 0.92 Al 0.05 Mn 0.03 ] (OH) Using the composite hydroxide represented by 2 , a composite oxide (Ni 0.92 Al 0.05 Mn 0.03 O 2 ) is obtained. Then, LiOH, the above composite oxide, and Nb 2 O 5 are mixed so that the molar ratio of Li, the total amount of Ni, Al, and Mn to Nb is 1.03: 1: 0.002. A positive electrode active material was obtained in the same manner as in Example 1 except that the mixture was obtained. The composition of the obtained positive electrode active material was LiNi 0.92 Al 0.05 Mn 0.03 Nb 0.002 O 2 . This was used as the positive electrode active material of Example 3.
  • Example 4 [Ni 0.91 Al 0.06 Mn 0.03 ] (OH) Using the composite hydroxide represented by 2 , a composite oxide (Ni 0.91 Al 0.06 Mn 0.03 O 2 ) is obtained. Then, LiOH, the above composite oxide, and Nb 2 O 5 are mixed so that the molar ratio of Li, the total amount of Ni, Al, and Mn to Nb is 1.03: 1: 0.002. A positive electrode active material was obtained in the same manner as in Example 1 except that the mixture was obtained. The composition of the obtained positive electrode active material was LiNi 0.91 Al 0.06 Mn 0.03 Nb 0.002 O 2 . This was used as the positive electrode active material of Example 4.
  • Example 5 Using the composite hydroxide represented by [Ni 0.94 Al 0.06 ] (OH) 2 , a composite oxide (Ni 0.94 Al 0.06 O 2 ) is obtained, and LiOH and the above composite oxidation are obtained. The material was mixed so that the molar ratio of Li to the total amount of Ni and Al was 1.03: 1 to obtain a mixture, and a positive electrode active material was obtained in the same manner as in Example 1. The composition of the obtained positive electrode active material was LiNi 0.94 Al 0.06 O 2 . This was used as the positive electrode active material of Example 5.
  • ⁇ Comparison example> Using the composite hydroxide represented by [Ni 0.80 Mn 0.20 ] (OH) 2 , a composite oxide (Ni 0.80 Mn 0.20 O 2 ) is obtained, and LiOH and the above composite oxidation are obtained. The material was mixed so that the molar ratio of Li to the total amount of Ni and Mn was 1.03: 1 to obtain a mixture, and a positive electrode active material was obtained in the same manner as in Example 1. The composition of the obtained positive electrode active material was LiNi 0.80 Mn 0.20 O 2 . This was used as the positive electrode active material of the comparative example.
  • test cells were prepared as follows.
  • a positive electrode mixture slurry was prepared by mixing with N-methyl-2-pyrrolidone (NMP). Next, the slurry is applied to a positive electrode current collector made of aluminum foil having a thickness of 15 ⁇ m, the coating film is dried, and then the coating film is rolled by a rolling roller and cut into a predetermined electrode size to collect the positive electrode.
  • a positive electrode having positive electrode mixture layers formed on both sides of the body was obtained.
  • Positive electrodes were prepared in the same manner in Examples 2 to 5, Comparative Examples, and Reference Examples. In each of the positive electrodes, the density of the positive electrode active material in the positive electrode mixture layer was 3.6 g / cm 3 .
  • Natural graphite was used as the negative electrode active material.
  • the negative electrode active material sodium carboxymethyl cellulose (CMC-Na), and styrene-butadiene rubber (SBR) were mixed in an aqueous solution at a solid content mass ratio of 100: 1: 1 to prepare a negative electrode mixture slurry.
  • the negative electrode mixture slurry is applied to both sides of a negative electrode current collector made of copper foil, the coating film is dried, and then the coating film is rolled using a rolling roller and cut to a predetermined electrode size to collect the negative electrode.
  • a negative electrode having negative electrode mixture layers formed on both sides of the electric body was obtained. An exposed portion where the surface of the negative electrode current collector was exposed was provided on a part of the negative electrode.
  • Ethylene carbonate (EC), methyl ethyl carbonate (MEC), and dimethyl carbonate (DMC) were mixed in a volume ratio of 3: 3: 4.
  • a non-aqueous electrolyte was prepared by dissolving lithium hexafluorophosphate (LiPF 6) in the mixed solvent at a concentration of 1.2 mol / liter.
  • An aluminum lead is attached to the exposed portion of the positive electrode containing the positive electrode active material of Examples 1 to 5, Comparative Example, and the reference example, and a nickel lead is attached to the exposed portion of the negative electrode, and the positive electrode and the negative electrode are attached via a polyolefin separator. After being wound in a spiral shape, it was press-molded in the radial direction to prepare a flat wound electrode body. This electrode body was housed in the exterior body, the non-aqueous electrolytic solution was injected, and then the opening of the exterior body was sealed to obtain a test cell.
  • Table 1 shows the composition of the positive electrode active materials of Examples 1 to 5, Comparative Examples, and Reference Examples, the area ratio of the particles without cracks, and the positive electrode of the positive electrode current collector with respect to the linear length of the corresponding portion.
  • the ratio of the surface length in contact with the mixture layer (hereinafter, may be referred to as the ratio of the surface length of the positive electrode current collector to the straight line) is also shown.
  • Capacity retention rate (%) (100th cycle discharge capacity ⁇ 1st cycle discharge capacity) x 100 ⁇ Cycle test>
  • the test cell is charged at a constant current of 0.3 It at a constant current of 0.3 It at a constant current of 4.2 V under a temperature environment of 25 ° C., and charged at a constant current of 4.2 V until the current value reaches 0.02 It. went. Then, constant current discharge was performed with a constant current of 0.5 It until the battery voltage became 2.5 V. This charge / discharge cycle was repeated 100 cycles.
  • Example 1 to 5 the capacity retention rate was higher and the DC resistance was smaller than in Comparative Examples. Further, in Examples 1 to 5, the values of the capacity retention rate and the DC resistance were substantially the same as those of the reference example containing Co. From this result, by using the positive electrode active material in which the occurrence of cracks is suppressed by adjusting the composition, the decrease in battery capacity due to charging and discharging is suppressed to the same extent as the positive electrode active material containing Co, and It was found that the battery resistance can be lowered.
  • Non-aqueous electrolyte secondary battery 11 Positive electrode 12 Negative electrode 13 Separator 14 Electrode body 15 Battery case 16 Exterior can 17 Sealing body 18, 19 Insulating plate 20 Positive electrode tab 21 Negative electrode tab 22 Grooving part 23 Bottom plate 24 Lower valve body 25 Insulating member 26 Valve body 27 Cap 28 Gasket 30 Positive electrode current collector 31 Positive electrode mixture layer 40 Negative electrode current collector 41 Negative electrode mixture layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

非水電解質二次電池は、正極と、負極と、非水電解質とを備える。正極は、正極集電体と、正極集電体の表面に形成された正極合材層を有し、正極合材層は、Liを除く金属元素の総モル数に対して、85モル%以上のNiと、1モル%以上15モル%以下のAlとを含有し、且つ、Ni、Al、及びMnの含有量の合計が99.9モル%以上であるリチウム遷移金属複合酸化物を含み、正極合材層における正極活物質の密度は、3.45g/cm以上であり、正極の断面の走査電子顕微鏡による観察において、断面に露出したリチウム遷移金属複合酸化物の断面積に対する、クラックの無いリチウム遷移金属複合酸化物の断面積の割合が51%以上である。

Description

非水電解質二次電池
 本開示は、非水電解質二次電池に関する。
 近年、高出力、高容量の二次電池として、正極、負極、及び非水電解質を備え、正極と負極との間でリチウムイオン等を移動させて充放電を行う非水電解質二次電池が広く利用されている。二次電池は、繰り返し充放電を行うので、充放電サイクル特性の向上が求められている。
 例えば、特許文献1には、Coを含有する、粒子径の異なる2種類の正極活物質を正極に含むことで、充放電サイクル特性等を向上させたリチウムイオン二次電池が開示されている。また、特許文献2には、リチウムイミド系化合物を含む電解質と、Coを含有する正極活物質を含む正極とを備えることで、充放電サイクル特性等を向上させたリチウムイオン二次電池が開示されている。
特開2017-188466号公報 特開2008-210767号公報
 特許文献1及び特許文献2にはCoを含有する正極活物質が開示されているが、正極活物質に含まれるリチウム遷移金属複合酸化物において、高い電池容量を得るためにNiの含有率を多くしつつ、製造コストを低減するためにCoの含有率を少なくするという設計が考えられる。しかし、Coを実質的に含まない高Ni含有リチウム遷移金属複合酸化物においては、正極活物質の高密度化のために正極を圧縮した際に、正極活物質にクラックが生じて、充放電サイクル特性が悪くなり、電池抵抗も高くなることがある。
 本開示の一態様である非水電解質二次電池は、正極と、負極と、非水電解質とを備える。正極は、正極集電体と、正極集電体の表面に形成された正極合材層を有し、正極合材層に含まれる正極活物質は、Liを除く金属元素の総モル数に対して、85モル%以上のNiと、1モル%以上15モル%以下のAlとを含有し、且つ、Ni、Al、及びMnの含有量の合計が99.9モル%以上であるリチウム遷移金属複合酸化物を含み、正極合材層における正極活物質の密度は、3.45g/cm以上であり、正極の断面の走査電子顕微鏡による観察において、断面に露出したリチウム遷移金属複合酸化物の断面積に対する、クラックの無いリチウム遷移金属複合酸化物の断面積の割合が51%以上であることを特徴とする。
 本開示の一態様である非水電解質二次電池用正極活物質によれば、二次電池の充放電に伴う電池容量の低下を抑制しつつ、電池抵抗を小さくすることができる。
図1は、実施形態の一例である非水電解質二次電池の縦方向断面図である。 図2は、実施形態の一例において、正極の断面における正極集電体と正極合材層との界面近傍を模式的に表した図である。
 二次電池の正極に正極活物質として含まれるリチウム遷移金属複合酸化物は、正極活物質の高密度化のために正極を圧縮した際に、クラックが発生することがある。リチウム遷移金属複合酸化物にクラックが発生すると、リチウム遷移金属複合酸化物の内部で導電パスが取れずに充放電に寄与できない部分が生じることになり、電池容量が低下してしまうことがある。また、リチウム遷移金属複合酸化物にクラックが発生すると、導電材と接している面積が減少するため、電池抵抗が上昇してしまうことがある。この場合であっても、リチウム遷移金属複合酸化物がCoを含むリチウム遷移金属複合酸化物であれば、Coは電子伝導性が高いので、クラックによる抵抗上昇の影響を小さくすることができる。しかし、高い電池容量を得るためにNiの含有率を多くしつつ、製造コストを低減するためにCoの含有率を少なくする場合には、充放電サイクル特性の低下及び電池抵抗の上昇を抑制する必要がある。本発明者らは、かかる課題について鋭意検討した結果、Coを含まない高Ni含有正極活物質において、特定の組成に調整して正極活物質の粒子強度を高めることで、充放電サイクル特性の低下及び電池抵抗の上昇を抑制できることを見出した。
 以下、本開示に係る非水電解質二次電池の実施形態の一例について詳細に説明する。以下では、巻回型の電極体が円筒形の電池ケースに収容された円筒形電池を例示するが、電極体は、巻回型に限定されず、複数の正極と複数の負極がセパレータを介して交互に1枚ずつ積層されてなる積層型であってもよい。また、電池ケースは円筒形に限定されず、例えば角形、コイン形等であってもよく、金属層及び樹脂層を含むラミネートシートで構成された電池ケースであってもよい。
 図1は、実施形態の一例である非水電解質二次電池10の縦方向断面図である。図1に例示するように、非水電解質二次電池10は、電極体14と、非水電解質(図示せず)と、電極体14及び非水電解質を収容する電池ケース15とを備える。電極体14は、正極11と負極12とがセパレータ13を介して巻回された巻回構造を有する。電池ケース15は、有底円筒形状の外装缶16と、外装缶16の開口部を塞ぐ封口体17とで構成されている。
 電極体14は、長尺状の正極11と、長尺状の負極12と、長尺状の2枚のセパレータ13と、正極11に接合された正極タブ20と、負極12に接合された負極タブ21とで構成される。負極12は、リチウムの析出を防止するために、正極11よりも一回り大きな寸法で形成される。即ち、負極12は、正極11より長手方向及び幅方向(短手方向)に長く形成される。2枚のセパレータ13は、少なくとも正極11よりも一回り大きな寸法で形成され、例えば正極11を挟むように配置される。
 非水電解質二次電池10は、電極体14の上下にそれぞれ配置された絶縁板18,19を備える。図1に示す例では、正極11に取り付けられた正極タブ20が絶縁板18の貫通孔を通って封口体17側に延び、負極12に取り付けられた負極タブ21が絶縁板19の外側を通って外装缶16の底部側に延びている。正極タブ20は封口体17の底板23の下面に溶接等で接続され、底板23と電気的に接続された封口体17のキャップ27が正極端子となる。負極タブ21は外装缶16の底部内面に溶接等で接続され、外装缶16が負極端子となる。
 外装缶16は、例えば有底円筒形状の金属製容器である。外装缶16と封口体17との間にはガスケット28が設けられ、電池ケース15の内部空間が密閉される。外装缶16は、例えば側面部を外部からプレスして形成された、封口体17を支持する溝入部22を有する。溝入部22は、外装缶16の周方向に沿って環状に形成されることが好ましく、その上面で封口体17を支持する。
 封口体17は、電極体14側から順に、底板23、下弁体24、絶縁部材25、上弁体26、及びキャップ27が積層された構造を有する。封口体17を構成する各部材は、例えば円板形状又はリング形状を有し、絶縁部材25を除く各部材は互いに電気的に接続されている。下弁体24と上弁体26は各々の中央部で互いに接続され、各々の周縁部の間には絶縁部材25が介在している。異常発熱で電池の内圧が上昇すると、下弁体24が上弁体26をキャップ27側に押し上げるように変形して破断し、下弁体24と上弁体26の間の電流経路が遮断される。さらに内圧が上昇すると、上弁体26が破断し、キャップ27の開口部からガスが排出される。
 以下、非水電解質二次電池10を構成する正極11、負極12、セパレータ13及び非水電解質について、特に正極11を構成する正極合材層31に含まれる正極活物質について詳説する。
 [正極]
 正極11は、正極集電体30と、正極集電体30の表面に形成された正極合材層31とを有する。正極合材層31は、正極集電体30の両方の表面に形成してもよい。正極集電体30の材質としては、例えば、ステンレス鋼、アルミニウム、アルミニウム合金、チタンなどの金属の箔、及び、当該金属を表層に配置したフィルムなどを用いることができる。正極集電体30は、さらに、無機粒子及び結着材を含む保護層を備えていても良い。
 正極合材層31は、正極活物質、導電材、及び結着材を含む。正極合材層31の厚みは、例えば、10μm~150μmである。正極合材層31は、正極合材スラリーを、正極集電体30の表面に塗布し、乾燥及び圧縮することにより形成できる。正極合材スラリーは、例えば、導電材、結着材、正極活物質及び分散媒を含む。正極合材スラリーは、導電材、結着材及び分散媒を含む導電材ペーストを作製してから、正極活物質と混合しても良い。正極合材スラリー及び導電材ペーストは、分散材を含んでいても良い。
 正極合材層31に含まれる導電材としては、例えば、カーボンブラック、アセチレンブラック、ケッチェンブラック、黒鉛、カーボンナノチューブ等の炭素粉末等が挙げられる。これらは、1種単独でもよいし、2種以上を組み合わせて用いてもよい。正極合材層31に含まれる結着材としては、例えば、フッ素系高分子、ゴム系高分子等が挙げられる。フッ素系高分子としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、またはこれらの変性体等が挙げられ、ゴム系高分子としては、例えば、エチレンープロピレンーイソプレン共重合体、エチレンープロピレンーブタジエン共重合体等が挙げられる。これらは、1種単独でもよいし、2種以上を組み合わせて使用してもよい。正極合材スラリーの分散媒は、例えば、N-メチル-2-ピロリドン(NMP)である。
 正極合材層31に含まれる正極活物質は、Liを除く金属元素の総モル数に対して、85モル%以上のNiと、1モル%以上15モル%以下のAlとを含有し、且つ、Ni、Al、及びMnの含有量の合計が99.9モル%以上であるリチウム遷移金属複合酸化物を含む。Niの含有量が多いので、高容量の電池が得られる。また、Ni、Al、及びMnの含有量の合計が99.9モル%以上とほとんどを占めるので、リチウム遷移金属複合酸化物は、Liを除く金属元素の総モル数に対して、Coを0.1モル%以下しか含有せず、Coを実質的に含まなくてもよい。ここで、Coを実質的に含まないとは、Coを0.01モル%以下しか含有しないことをいう。
 正極合材層31における正極活物質の密度は、3.45g/cm以上である。上述のように正極集電体30の表面に形成された正極合材層31は、高エネルギー密度化のために、圧延ローラー等により圧縮される。正極合材層31を圧縮することで、リチウム遷移金属複合酸化物にクラックが発生することがある。
 正極の断面の走査電子顕微鏡(SEM)による観察において、断面に露出したリチウム遷移金属複合酸化物の断面積に対する、クラックの無いリチウム遷移金属複合酸化物の断面積の割合(以下、クラックの無い粒子の面積比率という場合がある)は、51%以上である。この時、SEMによる観察倍率は、700倍で、観察面積は約20000μmとしてもよい。また、ここで、クラックとは、上記倍率でSEM観察した際に、目視できる程度の3μm以上の長さのクラックをいう。上述の組成のリチウム遷移金属複合酸化物であれば、クラックの無いリチウム遷移金属複合酸化物を多くすることができる。これにより、二次電池の充放電に伴う電池容量の低下を抑制しつつ、電池抵抗を小さくすることができる。
 また、正極合材層31を圧縮することで、正極合材層31に含まれるリチウム遷移金属複合酸化物が正極集電体30の表面に食い込み、正極集電体30の正極合材層31に接する表面が凹形状を有することがある。リチウム遷移金属複合酸化物が正極集電体30に食い込むことで、リチウム遷移金属複合酸化物と正極集電体30との接触面積が大きくなるので、電池抵抗を小さくすることができる。正極11の断面のSEMによる観察において、正極集電体30の正極合材層31に接する表面の長さは、対応する部分の直線長さに対して、1.32倍以上であってもよい。例えば、正極11の断面における正極集電体30と正極合材層31との界面近傍を表す図2において、正極集電体30の正極合材層31に接する表面の長さは、直線a-b、曲線b-c、直線c-d、曲線d-e、及び直線e-fの合計の長さであり、対応する部分の直線長さは、仮想線の矢印で示した直線A-Fである。断面において、正極集電体30の正極合材層31に接する表面の長さは、凹形状部分があることで、対応する部分の直線長さよりも長くなる。図2は、正極11の断面を模式的に表した図であり、SEMによる観察倍率は、700倍で、断面における測定長さは約200μmとしてもよい。
 リチウム遷移金属複合酸化物は、層状構造を有する。リチウム遷移金属複合酸化物の層状構造は、例えば、空間群R-3mに属する層状構造、空間群C2/mに属する層状構造等が挙げられる。これらの中では、高容量化、結晶構造の安定性等の点で、空間群R-3mに属する層状構造であることが好ましい。
 リチウム遷移金属複合酸化物は、一般式LiNiAlMnNb2-b(式中、0.9<a<1.1、x≧0.85、0.01≦y≦0.15、0≦z≦0.14、0≦v≦0.001、0≦w≦0.005、0≦b<0.05、x+y+z+v+w=1、Mは、Co、Fe、Ti、Si、Zr、Mo及びZnから選ばれる少なくとも1種の元素)で表される複合酸化物とすることができる。なお、正極活物質には、本開示の目的を損なわない範囲で、上記の一般式で表される以外のリチウム遷移金属複合酸化物、或いはその他の化合物が含まれてもよい。リチウム遷移金属複合酸化物の粒子全体に含有される金属元素のモル分率は、誘導結合プラズマ(ICP)発光分光分析により測定される。
 リチウム遷移金属複合酸化物中のLiの割合を示すaは、0.9≦a<1.1を満たすことが好ましく、0.97≦a≦1.03を満たすことがより好ましい。aが0.9未満の場合、aが上記範囲を満たす場合と比較して、電池容量が低下する場合がある。aが1.1以上の場合、aが上記範囲を満たす場合と比較して、Li化合物をより多く添加することになるため、生産コストの観点から経済的ではない場合がある。
 リチウム遷移金属複合酸化物中のLiを除く金属元素の総モル数に対するAlの割合を示すyは、0.01≦y≦0.15を満たすことが好ましく、0.01≦y≦0.07を満たすことがより好ましい。Alは、充放電中にも酸化数変化が生じないため、遷移金属層に含有されることで遷移金属層の構造が安定化すると考えられる。一方、y>0.15では、Al不純物が生成され電池容量が低下してしまう。Alは、例えば、リチウム遷移金属複合酸化物の層状構造内に均一に分散していてもよいし、層状構造内の一部に存在していてもよい。
 Mnは、任意成分である。リチウム遷移金属複合酸化物中のLiを除く金属元素の総モル数に対するMnの割合を示すzは、0≦z≦0.14を満たすことが好ましく、0≦z≦0.05を満たすことがより好ましい。
 y>zを満たすことが好ましい。これにより、充放電サイクル特性が向上する。
 Nb及びM(Mは、Co、Fe、Ti、Si、Zr、Mo及びZnから選ばれる少なくとも1種の元素)は、任意成分である。リチウム遷移金属複合酸化物中のLiを除く金属元素の総モル数に対するNbの割合を示すwは、0≦w≦0.005を満たすことが好ましく、0.001≦w≦0.005を満たすことがさらに好ましい。この範囲でNbを含有することで、電池の充放電効率が向上する。また、リチウム遷移金属複合酸化物中のLiを除く金属元素の総モル数に対するMの割合を示すvは、0≦v≦0.001を満たすことが好ましい。
 リチウム遷移金属複合酸化物は、例えば、複数の一次粒子が凝集してなる二次粒子である。二次粒子を構成する一次粒子の粒径は、例えば0.02μm~2μmである。一次粒子の粒径は、SEMにより観察される粒子画像において外接円の直径として測定される。
 リチウム遷移金属複合酸化物は、体積基準のメジアン径(D50)が、例えば2μm~30μm、好ましくは2μm~20μm、より好ましくは6μm~15μmの粒子である。D50は、体積基準の粒度分布において頻度の累積が粒径の小さい方から50%となる粒径を意味し、中位径とも呼ばれる。リチウム遷移金属複合酸化物の粒度分布は、レーザー回折式の粒度分布測定装置(例えば、マイクロトラック・ベル株式会社製、MT3000II)を用い、水を分散媒として測定できる。
 正極活物質におけるリチウム遷移金属複合酸化物の含有率は、例えば、電池の容量を向上させることや充放電サイクル特性の低下を効果的に抑制すること等の点で、正極活物質の総質量に対して90質量%以上であることが好ましく、99質量%以上であることがより好ましい。
 また、本実施形態の正極活物質は、本実施形態のリチウム遷移金属複合酸化物以外に、その他のリチウム遷移金属複合酸化物を含んでいても良い。その他のリチウム遷移金属複合酸化物としては、例えば、Niの含有率が0モル%以上85モル%未満のリチウム遷移金属複合酸化物が挙げられる。
 次に、リチウム遷移金属複合酸化物の製造方法の一例について説明する。
 正極活物質の製造方法は、例えば、Ni、Al及び任意の金属元素を含む複合酸化物を得る第1工程と、第1工程で得られた複合酸化物とリチウム化合物を混合して混合物を得る第2工程と、当該混合物を焼成する第3工程と、を備える。
 第1工程においては、例えば、Ni、Al及び任意の金属元素(Mn、Fe等)を含む金属塩の溶液を撹拌しながら、水酸化ナトリウム等のアルカリ溶液を滴下し、pHをアルカリ側(例えば8.5~12.5)に調整することにより、Ni、Al及び任意の金属元素を含む複合水酸化物を析出(共沈)させ、当該複合水酸化物を焼成することにより、Ni、Al及び任意の金属元素を含む複合酸化物を得る。焼成温度は、特に制限されるものではないが、例えば、300℃~600℃の範囲である。
 第2工程においては、第1工程で得られた複合酸化物と、リチウム化合物とを混合して、混合物を得る。リチウム化合物としては、例えば、LiCO、LiOH、Li、LiO、LiNO、LiNO、LiSO、LiOH・HO、LiH、LiF等が挙げられる。また、ニオブ化合物をさらに混合してもよい。ニオブ化合物としては、Nb、Nb・nHO、LiNbO、NbCl等が挙げられる。上記の複合酸化物と、Li化合物と、Nb化合物との混合割合は、最終的に得られるLi遷移金属酸化物における各元素が所望の割合となるように適宜決定されればよい。Liを除く金属元素に対するLiのモル比は、例えば、0.9モル%以上1.1モル%以下であり、好ましくは0.95以上1.05以下である。また、Nbを添加する場合には、Liを除く金属元素に対するNbのモル比は、例えば、0.005モル%以下であり、好ましくは0.001モル%以上0.005モル%以下である。第2工程では、第1工程で得られた複合酸化物とリチウム化合物を混合する際、必要に応じて他の金属原料を添加してもよい。他の金属原料は、第1工程で得られた複合酸化物を構成する金属元素以外の金属元素を含む酸化物等である。
 第3工程においては、第2工程で得られた混合物を酸素雰囲気下で焼成し、本実施形態に係るリチウム遷移金属複合酸化物を得る。第3工程においては、450℃以上680℃以下での昇温速度が1.0℃/分超5.5℃/分以下の範囲であり、且つ到達最高温度が700℃以上850℃以下の範囲である。680℃超から到達最高温度までの昇温速度は、例えば、0.1~3.5℃/分である。また、到達最高温度の保持時間は1時間以上10時間以下である。また、第3工程は、多段階焼成であってもよく、第1昇温速度、第2昇温速度は、上記規定した範囲内であれば、温度領域毎に複数設定してもよい。
 本実施形態の製造方法においては、電池容量および安全性を向上させるために、第3工程の後に、リチウム金属複合酸化物粉末を水洗してもよい。この水洗は、公知の方法および条件でよく、リチウム金属複合酸化物からリチウムが溶出して電池特性が劣化しない範囲で行えばよい。また、この水洗前後にタングステン化合物を混合してもよい。このタングステン化合物は、例えば、酸化タングステン、タングステン酸リチウム、タングステン酸アンモニウムなどである。水洗後に混合した場合には、乾燥してから混合しても、固液分離のみで乾燥せずに混合しても、いずれの方法でもよい。
 [負極]
 負極12は、負極集電体40と、負極集電体40の表面に形成された負極合材層41とを有する。負極合材層41は、負極集電体40の両方の表面に形成してもよい。負極集電体40としては、無孔の導電性基板(金属箔等)、多孔性の導電性基板(メッシュ体、ネット体、パンチングシート等)が使用される。また、金属を表層に配置したフィルム等を用いることができる。負極集電体の材質としては、ステンレス鋼、ニッケル、ニッケル合金、銅、銅合金等が例示できる。負極集電体の厚みは、特に限定されないが、例えば、1~50μmであり、5~20μmであってもよい。
 負極合材層41は、負極活物質、導電材、増粘材、及び結着材を含む。負極合材層41の厚みは、例えば負極集電体40の片側で10μm~150μmである。負極合材層41は、負極合材スラリーを、負極集電体40の表面に塗布し、乾燥することにより形成できる。乾燥後の塗膜を、必要により圧延してもよい。負極合材スラリーは、例えば、導電材、結着材、増粘材、負極活物質及び分散媒を含む。負極集電体40の表面に第1負極スラリーを塗布し、第1負極スラリーの塗膜の上に第2負極スラリーを塗布し、第1負極スラリーおよび第2負極スラリーの塗膜を乾燥させてもよい。
 負極活物質としては、リチウムイオンを吸蔵・放出することが可能な材料であれば特に制限されるものではなく、例えば、炭素材料、リチウムと合金を形成することが可能な金属またはその金属を含む合金化合物等が挙げられる。また、炭素材料と合金化合物等とを混合したものを用いることができる。上記の他、チタン酸リチウム等の金属リチウムに対する充放電の電位が、炭素材料等より高いものも用いることができる。負極活物質層に含まれる炭素材料の質量の、負極活物質層に含まれる合金化合物の質量に対する比は、例えば、1~99であればよく、4~99であってもよい。
 炭素材料としては、天然黒鉛、難黒鉛化性炭素、人造黒鉛等のグラファイト類、コークス類等を用いることができる。炭素材料としては、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。炭素材料として黒鉛粒子を用いる場合は、非水電解質二次電池の負極活物質として従来使用されている黒鉛系材料を使用すればよく、例えば塊状黒鉛、土状黒鉛等の天然黒鉛、並びに、塊状人造黒鉛、黒鉛化メソフェーズカーボンマイクロビーズ等の人造黒鉛を用いることができる。黒鉛粒子のBET比表面積は、0.1m/g以上であってもよく、1m/g以上であってもよい。
 合金化合物としては、リチウムと合金形成可能な金属を少なくとも1種類含むものが挙げられる。リチウムと合金形成可能な元素として、ケイ素を用いたケイ素含有材料や、スズを用いたスズ含有材料を用いることができる。これらが酸素と結合した、酸化ケイ素や酸化スズ等も用いることもできる。合金化合物は、粒子状であってもよいし、集電体に直接結合していてもよい。粒子状である場合、粒子径は1μm~20μm程度であってもよい。
 ケイ素含有材料としては、例えば、リチウムイオン導電相と、リチウムイオン導電相にケイ素粒子が分散したケイ素複合粒子を用いることができる。リチウムイオン導電相としては、例えば、ケイ素酸化物相、シリケート相および/または炭素相等を用いることができる。ケイ素酸化物相の主成分(例えば95質量%~100質量%)は二酸化ケイ素であり得る。
 シリケート相は、例えば、長周期型周期表の第1族元素および第2族元素からなる群より選択される少なくとも1種を含んでよい。長周期型周期表の第1族元素および長周期型周期表の第2族元素としては、例えば、リチウム(Li)、カリウム(K)、ナトリウム(Na)、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)等を用い得る。その他の元素としてアルミニウム(Al)、ホウ素(B)、ランタン(La)、リン(P)、ジルコニウム(Zr)、チタン(Ti)、鉄(Fe)、クロム(Cr)、ニッケル(Ni)等を含んでも良い。中でも、不可逆容量が小さく、初期の充放電効率が高いことから、リチウムを含むシリケート相(以下、リチウムシリケート相という場合がある)が好ましい。
 リチウムシリケート相は、リチウム(Li)と、ケイ素(Si)と、酸素(O)とを含む酸化物相であればよく、他の元素を含んでもよい。リチウムシリケート相におけるSiに対するOの原子比:O/Siは、例えば、2より大きく、4未満である。好ましくは、O/Siは、2より大きく、3未満である。リチウムシリケート相におけるSiに対するLiの原子比:Li/Siは、例えば、0より大きく、4未満である。リチウムシリケート相は、式:Li2zSiO2+z(0<z<2)で表される組成を有し得る。zは、0<z<1の関係を満たすことが好ましく、z=1/2がより好ましい。リチウムシリケート相に含まれ得るLi、Si、及びO以外の元素としては、例えば、鉄(Fe)、クロム(Cr)、ニッケル(Ni)、マンガン(Mn)、銅(Cu)、モリブデン(Mo)、亜鉛(Zn)、アルミニウム(Al)、ジルコニウム(Zr)等が挙げられる。
 負極12は、二酸化ケイ素、並びに、Li、Si、及びOを少なくとも含有する酸化物相を含むことが好ましい。
 炭素相は、例えば、結晶性の低い無定形炭素(すなわちアモルファス炭素)で構成され得る。無定形炭素は、例えばハードカーボンでもよく、ソフトカーボンでもよく、それ以外でもよい。
 負極合材層41に含まれる導電材としては、例えば、アセチレンブラック等のカーボンブラック、カーボンナノチューブ、金属繊維、フッ化カーボン、金属粉末、酸化亜鉛やチタン酸カリウム等の導電性ウィスカー、酸化チタン、グラフェン等の導電性金属酸化物、フェニレン誘導体等の有機導電性材料などが例示できる。これらは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 負極合材層41に含まれる増粘材としては、例えば、カルボキシメチルセルロース(CMC)およびその変性体(Na塩などの塩も含む)、メチルセルロースなどのセルロース誘導体(セルロースエーテルなど);ポリビニルアルコールなどの酢酸ビニルユニットを有するポリマーのケン化物;ポリエーテル(ポリエチレンオキシドなどのポリアルキレンオキサイドなど)などが挙げられる。これらは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 負極合材層41に含まれる結着材としては、樹脂材料、例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン(PVDF)等のフッ素樹脂;ポリエチレン、ポリプロピレン等のポリオレフィン樹脂;アラミド樹脂等のポリアミド樹脂;ポリイミド、ポリアミドイミド等のポリイミド樹脂;ポリアクリル酸、ポリアクリル酸メチル、エチレン-アクリル酸共重合体等のアクリル樹脂;ポリアクリロニトリル、ポリ酢酸ビニル等のビニル樹脂;ポリビニルピロリドン;ポリエーテルサルフォン;スチレン-ブタジエン共重合ゴム(SBR)等のゴム状材料等が例示できる。これらは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。ポリアクリル酸塩としては、Li塩若しくはNa塩が好ましく用いられる。中でも架橋型ポリアクリル酸リチウムを用いることが好ましい。
 [セパレータ]
 セパレータ13には、例えば、イオン透過性及び絶縁性を有する多孔性シートが用いられる。多孔性シートの具体例としては、微多孔薄膜、織布、不織布等が挙げられる。セパレータの材質としては、ポリエチレン(PE)、ポリプロピレン(PP)等のオレフィン系樹脂、セルロースなどが好適である。セパレータは、セルロース繊維層及びオレフィン系樹脂等の熱可塑性樹脂繊維層を有する積層体であってもよい。積層体としては、ポリオレフィン樹脂とセルロース繊維層の積層体でも良いし、異なるポリオレフィン樹脂を積層するPE/PPの二層構造やPE/PP/PEの三層構造でも良い。
 [非水電解質]
 非水電解質は、非水溶媒と、非水溶媒に溶解した電解質塩とを含む。非水電解質は、液状であってもよいし、ゲル状であってもよい。液状の非水電解質(非水電解液)は、電解質塩を非水溶媒に溶解させることにより調製される。ゲル状の非水電解質は、非水電解液と、マトリックスポリマーとを含む固体電解質であってもよい。マトリックスポリマーとしては、例えば、溶媒を吸収してゲル化するポリマー材料が使用される。このようなポリマー材料としては、フッ素樹脂、アクリル樹脂、および/またはポリエーテル樹脂等が挙げられる。
 非水溶媒には、例えば、エステル類、エーテル類、ニトリル類、ジメチルホルムアミド等のアミド類、及びこれらの2種以上の混合溶媒等を用いることができる。非水溶媒は、これら溶媒の水素の少なくとも一部をフッ素等のハロゲン原子で置換したハロゲン置換体を含有していてもよい。非水溶媒は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。非水電解液に占めるこれらの非水溶媒の量は、例えば、5~100質量%である。
 上記エステル類の例としては、環状炭酸エステル(後述の不飽和環状炭酸エステルを除く)、鎖状炭酸エステル、環状カルボン酸エステル、鎖状カルボン酸エステルなどが挙げられる。環状炭酸エステルとしては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネートなどが挙げられる。鎖状炭酸エステルとしては、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)、メチルプロピルカーボネート、エチルプロピルカーボネート、メチルイソプロピルカーボネートなどが挙げられる。環状カルボン酸エステルとしては、γ-ブチロラクトン(GBL)、γ-バレロラクトン(GVL)などが挙げられる。鎖状カルボン酸エステルとしては、ギ酸メチル、ギ酸エチル、ギ酸プロピル、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、ピバリン酸メチルなどが挙げられる。
 上記エーテル類の例としては、環状エーテル、鎖状エーテルなどが挙げられる。環状エーテルとしては、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、テトラヒドロフラン、2-メチルテトラヒドロフラン、プロピレンオキシド、1,2-ブチレンオキシド、1,3-ジオキサン、1,4-ジオキサン、1,3,5-トリオキサン、フラン、2-メチルフラン、1,8-シネオール、クラウンエーテルなどが挙げられる。鎖状エーテルとしては、1,2-ジメトキシエタン、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、エチルビニルエーテル、ブチルビニルエーテル、メチルフェニルエーテル、エチルフェニルエーテル、ブチルフェニルエーテル、ペンチルフェニルエーテル、メトキシトルエン、ベンジルエチルエーテル、ジフェニルエーテル、ジベンジルエーテル、o-ジメトキシベンゼン、1,2-ジエトキシエタン、1,2-ジブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、1,1-ジメトキシメタン、1,1-ジエトキシエタン、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテルなどが挙げられる。
 上記ニトリル類の例としては、アセトニトリル、プロピオニトリル、ブチルニトリル、バレロニトリル、n-ヘプタンニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル、ピメロニトリル、1,2,3-プロパントリカルボニル、1,3,5-ペンタントリカルボニトリルなどが挙げられる。
 上記ハロゲン置換体の例としては、フッ素化エーテル、フッ素化環状炭酸エステル、フッ素化鎖状炭酸エステル、フルオロプロピオン酸メチル(FMP)等のフッ素化鎖状カルボン酸エステルなどが挙げられる。フッ素化エーテルとしては、2,2,2-トリフルオロエチルメチルエーテル、1,1,2,2-テトラフルオロエチルー2,2,2-トリフルオロエチル等が挙げられる。フッ素化環状炭酸エステルとしては、4-フルオロエチレンカーボネート(FEC)、4,5-ジフルオロエチレンカーボネート、4,4-ジフルオロエチレンカーボネート、4,4,5-トリフルオロエチレンカーボネート、4,4,5,5-テトラフルオロエチレンカーボネート等が挙げられる。フッ素化鎖状カルボン酸エステルとしては、フッ素化プロピオン酸エチル、フッ素化酢酸メチル、フッ素化酢酸エチル、フッ素化酢酸プロピル、2,2,2-トリフルオロ酢酸エチル、3,3,3-トリフルオロプロピオン酸メチル、ペンタフルオロプロピオン酸メチル等が挙げられる。
 電解質塩としては、リチウム塩などを用いることができる。非水電解質におけるリチウム塩の濃度は、例えば、0.5~3mol/Lであり、0.8~1.5mol/Lであることが好ましい。
 リチウム塩としては、例えば、LiClO、LiBF、LiPF、LiAlCl、LiSbF、LiSCN、LiCFSO、LiCFCO、LiAsF、LiB10Cl10、低級脂肪族カルボン酸リチウム、LiCl、LiBr、LiILi(P(C)F)、LiPF6-x(C2n+1(1<x<6,nは1又は2)、クロロボランリチウム、ホウ酸塩類、リン酸塩類、イミド塩類等が挙げられる。ホウ酸塩類としては、Li[B(C]、Li[B(C)F]、Li、ビス(1,2-ベンゼンジオレート(2-)-O,O’)ホウ酸リチウム、ビス(2,3-ナフタレンジオレート(2-)-O,O’)ホウ酸リチウム、ビス(2,2’-ビフェニルジオレート(2-)-O,O’)ホウ酸リチウム、ビス(5-フルオロ-2-オレート-1-ベンゼンスルホン酸-O,O’)ホウ酸リチウム等が挙げられる。リン酸塩類としては、Li[P(C)F]、Li[P(C]、Li[P(C]等が挙げられる。イミド塩類としては、ビスフルオロスルホニルイミドリチウム(LiN(FSO:以下、LiFSIとも称する)、ビストリフルオロメタンスルホン酸イミドリチウム(LiN(CFSO)、トリフルオロメタンスルホン酸ノナフルオロブタンスルホン酸イミドリチウム(LiN(CFSO)(CSO))、ビスペンタフルオロエタンスルホン酸イミドリチウム(LiN(CSO)、LiN(C2l+1SO)(C2m+1SO){l,mは0以上の整数}等が挙げられる。リチウム塩は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 電解質塩は、特に、LiPFおよびLiFSIを組み合わせて使用することが好ましい。電解液中のLiFSIの濃度は、0.1mol/L以上1.0mol/L以下であることが好ましい。電解液中のLiPFの濃度は、0.5mol/L以上1.5mol/L以下であることが好ましい。電解液中のLiFSIおよびLiPFの合計濃度は、1mol/L以上2mol/L以下であることが好ましい。上記範囲の濃度のLiFSIおよびLiPFを併用する場合、上記のLiFSIおよびLiPFによる効果がバランス良く得られ、電池の初回充放電効率が更に高められる。
 電解液は、添加剤を含んでもよい。非水電解質に占めるこれらの添加剤の量は、例えば、0.01~20質量%である。添加剤としては、不飽和炭酸エステル、酸無水物、フェノール化合物、ベンゼン化合物、ニトリル化合物、イソシアネート化合物、スルトン化合物、硫酸化合物、ホウ酸エステル化合物、リン酸エステル化合物、亜リン酸エステル化合物等が挙げられる。
 不飽和環状炭酸エステルとしては、例えば、ビニレンカーボネート、4-メチルビニレンカーボネート、4,5-ジメチルビニレンカーボネート、4-エチルビニレンカーボネート、4,5-ジエチルビニレンカーボネート、4-プロピルビニレンカーボネート、4,5-ジプロピルビニレンカーボネート、4-フェニルビニレンカーボネート、4,5-ジフェニルビニレンカーボネート、ビニルエチレンカーボネート、ジビニルエチレンカーボネート等が挙げられる。不飽和環状炭酸エステルは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。不飽和環状炭酸エステルは、水素原子の一部がフッ素原子で置換されていてもよい。
 酸無水物は、複数のカルボン酸分子が分子間で縮合した無水物であってもよいが、ポリカルボン酸の酸無水物であることが好ましい。ポリカルボン酸の酸無水物としては、例えば、無水コハク酸、無水マレイン酸、無水フタル酸などが挙げられる。
 フェノール化合物として、例えば、フェノール、ヒドロキシトルエンなどが挙げられる。
 ベンゼン化合物として、フルオロベンゼン、ヘキサフルオロベンゼン、シクロヘキシルベンゼン(CHB)などが挙げられる。
 ニトリル化合物としては、アジポニトリル、ピメロニトリル、プロピオニトリル、スクシノニトリル等が挙げられる。
 イソシアネート化合物として、イソシアン酸メチル(MIC)、ジフェニルメタンジイソシアネート(MDI)、ヘキサメチレンジイソシアネート(HDI)、トルエンジイソシアネート(TDI)、イソホロンジイソシアネート(IPDI)、ビスイソシアネートメチルシクロヘキサン(BIMCH)等が挙げられる。
 スルトン化合物としては、プロパンスルトン、プロペンスルトン等が挙げられる。
 硫酸化合物としては、エチレンサルフェート、エチレンサルファイト、硫酸ジメチル、フルオロ硫酸リチウム等が挙げられる。
 ホウ酸エステル化合物としては、トリメチルボレート、トリス(トリメチルシリル)ボレート等が挙げられる。
 リン酸エステル化合物としては、トリメチルフォスフェート、トリス(トリメチルシリル)フォスフェート等が挙げられる。
 亜リン酸エステル化合物としては、トリメチルフォスファイト、トリス(トリメチルシリル)フォスファイト等が挙げられる。
 非水電解質は、非水溶媒と、電解質塩と、添加剤とを含み、添加剤が、非水溶媒及び電解質塩の合計した質量に対して、1質量%~5質量%のビニレンカーボネート及び5質量%~15質量%のフルオロエチレンカーボネートを含むことが好ましい。
 <実施例>
 以下、実施例及び比較例により本開示をさらに説明するが、本開示は以下の実施例に限定されるものではない。
 [正極活物質の作製]
 <実施例1>
 共沈法により得られた[Ni0.92Al0.05Mn0.03](OH)で表される複合水酸化物を500℃で8時間焼成し、複合酸化物(Ni0.92Al0.05Mn0.03)を得た。LiOH及び上記複合酸化物を、Liと、Ni、Al、及びMnの総量とのモル比が1.03:1になるように混合して混合物を得た。当該混合物を、酸素気流中にて、昇温速度2.0℃/分で、室温から650℃まで昇温した後、昇温速度0.5℃/分で、650℃から730℃まで焼成して焼成物を得た。当該焼成物を水洗し、固液分離後に当該焼成物中のNi、Al、及びMnの総モル量に対して0.01モル%になるように酸化タングステンを混合した後乾燥し、リチウム遷移金属化合物を得た。ICP発光分光分析装置(Thermo Fisher Scientific社製、商品名「iCAP6300」)を用いて、上記得られた正極活物質の組成を測定した結果、組成はLiNi0.92Al0.05Mn0.03であった。これを実施例1の正極活物質とした。
 <実施例2>
 [Ni0.91Al0.06Mn0.03](OH)で表される複合水酸化物を使用して複合酸化物(Ni0.91Al0.06Mn0.03)を得て、LiOH及び上記複合酸化物を、Liと、Ni、Al、及びMnの総量とのモル比が1.03:1になるように混合して混合物を得た以外は実施例1と同様にして正極活物質を得た。得られた正極活物質の組成はLiNi0.91Al0.06Mn0.03であった。これを実施例2の正極活物質とした。
 <実施例3>
 [Ni0.92Al0.05Mn0.03](OH)で表される複合水酸化物を使用して複合酸化物(Ni0.92Al0.05Mn0.03)を得て、LiOH、上記複合酸化物、及びNbを、Liと、Ni、Al、Mnの総量と、Nbとのモル比が1.03:1:0.002になるように混合して混合物を得た以外は実施例1と同様にして正極活物質を得た。得られた正極活物質の組成はLiNi0.92Al0.05Mn0.03Nb0.002であった。これを実施例3の正極活物質とした。
 <実施例4>
 [Ni0.91Al0.06Mn0.03](OH)で表される複合水酸化物を使用して複合酸化物(Ni0.91Al0.06Mn0.03)を得て、LiOH、上記複合酸化物、及びNbを、Liと、Ni、Al、Mnの総量と、Nbとのモル比が1.03:1:0.002になるように混合して混合物を得た以外は実施例1と同様にして正極活物質を得た。得られた正極活物質の組成はLiNi0.91Al0.06Mn0.03Nb0.002であった。これを実施例4の正極活物質とした。
 <実施例5>
 [Ni0.94Al0.06](OH)で表される複合水酸化物を使用して複合酸化物(Ni0.94Al0.06)を得て、LiOH及び上記複合酸化物を、Liと、Ni及びAlの総量とのモル比が1.03:1になるように混合して混合物を得た以外は実施例1と同様にして正極活物質を得た。得られた正極活物質の組成はLiNi0.94Al0.06であった。これを実施例5の正極活物質とした。
 <比較例>
 [Ni0.80Mn0.20](OH)で表される複合水酸化物を使用して複合酸化物(Ni0.80Mn0.20)を得て、LiOH及び上記複合酸化物を、Liと、Ni及びMnの総量とのモル比が1.03:1になるように混合して混合物を得た以外は実施例1と同様にして正極活物質を得た。得られた正極活物質の組成はLiNi0.80Mn0.20であった。これを比較例の正極活物質とした。
 <参考例>
 [Ni0.91Co0.05Al0.04](OH)で表される複合水酸化物を使用して複合酸化物(Ni0.91Co0.05Al0.04)を得て、LiOH及び上記複合酸化物を、Liと、Ni、Co、及びAlの総量とのモル比が1.03:1になるように混合して混合物を得た以外は実施例1と同様にして正極活物質を得た。得られた正極活物質の組成はLiNi0.91Co0.05Al0.04であった。これを参考例の正極活物質とした。
 次に、実施例1~5、比較例、及び参考例の正極活物質を用いて、以下のように試験セルを作製した。
 [正極の作製]
 実施例1~5、比較例、及び参考例の正極活物質を91質量部、導電材としてアセチレンブラックを7質量部、結着材としてポリフッ化ビニリデンを2質量部の割合で混合し、これをN-メチル-2-ピロリドン(NMP)と混合して正極合材スラリーを調製した。次いで、当該スラリーを厚み15μmのアルミニウム箔からなる正極集電体に塗布し、塗膜を乾燥した後、圧延ローラーにより、塗膜を圧延して、所定の電極サイズに切断して、正極集電体の両面に正極合材層が形成された正極を得た。なお、正極の一部に正極集電体の表面が露出した露出部を設けた。実施例2~5、比較例、及び参考例も同様にして正極を作製した。いずれの正極においても、正極合材層における正極活物質の密度は、3.6g/cmであった。
 [負極の作製]
 負極活物質として天然黒鉛を用いた。負極活物質と、カルボキシメチルセルロースナトリウム(CMC-Na)と、スチレン-ブタジエンゴム(SBR)を、100:1:1の固形分質量比で水溶液中において混合し、負極合材スラリーを調製した。当該負極合材スラリーを銅箔からなる負極集電体の両面に塗布し、塗膜を乾燥させた後、圧延ローラーを用いて塗膜を圧延し、所定の電極サイズに切断して、負極集電体の両面に負極合材層が形成された負極を得た。なお、負極の一部に負極集電体の表面が露出した露出部を設けた。
 [非水電解質の調製]
 エチレンカーボネート(EC)と、メチルエチルカーボネート(MEC)と、ジメチルカーボネート(DMC)とを、3:3:4の体積比で混合した。当該混合溶媒に対して、六フッ化リン酸リチウム(LiPF)を1.2モル/リットルの濃度となるように溶解させて、非水電解質を調製した。
 [試験セルの作製]
 実施例1~5、比較例、及び参考例の正極活物質を含む正極の露出部にアルミニウムリードを、上記負極の露出部にニッケルリードをそれぞれ取り付け、ポリオレフィン製のセパレータを介して正極と負極を渦巻き状に巻回した後、径方向にプレス成形して扁平状の巻回型電極体を作製した。この電極体を外装体内に収容し、上記非水電解液を注入した後、外装体の開口部を封止して試験セルを得た。
 各試験セルについて、サイクル試験前後での容量維持率、及び電池の直流抵抗の評価を行った。その結果を表1に示す。また、表1には、実施例1~5、比較例、及び参考例の正極活物質の組成、クラックの無い粒子の面積比率、及び、対応する部分の直線長さに対する正極集電体の正極合材層に接する表面の長さの比率(以下、正極集電体表面長さの直線に対する比率という場合もある)も示す。
 [容量維持率の評価]
 実施例1~5、比較例、及び参考例の正極活物質を含む正極を組み込んで作製した電池について、下記サイクル試験を行なった。サイクル試験の1サイクル目の放電容量と、100サイクル目の放電容量を求め、下記式により容量維持率を算出した。
  容量維持率(%)=(100サイクル目放電容量÷1サイクル目放電容量)×100
 <サイクル試験>
 試験セルを、25℃の温度環境下、0.3Itの定電流で電池電圧が4.2Vになるまで定電流充電を行い、4.2Vで電流値が0.02Itになるまで定電圧充電を行った。その後、0.5Itの定電流で電池電圧が2.5Vになるまで定電流放電を行った。この充放電サイクルを100サイクル繰り返した。
 [直流抵抗の評価]
 25℃の環境下で、0.3Itの定電流で電池電圧が4.2Vになるまで定電流充電を行い、4.2Vで電流値が0.02Itになるまで定電圧充電を行った。その後、25℃の環境下で1時間保管した後に、0.5Itの定電流で電池電圧が2.5Vとなるまで定電流放電を行った。直流抵抗は、以下の式のように、開回路電圧(OCV)と、放電から10秒後の閉回路電圧(CCV)との差を、放電から10秒後の放電電流で除すことで算出した。
   直流抵抗=[OCV-CCV(放電10秒後)]/放電電流(放電10秒後)
Figure JPOXMLDOC01-appb-T000001
 実施例1~5では、比較例よりも、容量維持率が高く、直流抵抗が小さかった。また、実施例1~5では、Coを含有する参考例に対しても、容量維持率及び直流抵抗の値が略同等であった。この結果から、組成を調整することでクラックの発生を抑制した正極活物質を用いることで、Coを含有する正極活物質と同等程度に、充放電に伴う電池容量の低下を抑制し、且つ、電池抵抗を低くできることが分かった。
10  非水電解質二次電池
11  正極
12  負極
13  セパレータ
14  電極体
15  電池ケース
16  外装缶
17  封口体
18,19  絶縁板
20  正極タブ
21  負極タブ
22  溝入部
23  底板
24  下弁体
25  絶縁部材
26  上弁体
27  キャップ
28  ガスケット
30  正極集電体
31  正極合材層
40  負極集電体
41  負極合材層

Claims (9)

  1.  正極と、負極と、非水電解質とを備える、非水電解質二次電池であって、
     前記正極は、正極集電体と、前記正極集電体の表面に形成された正極合材層を有し、
     前記正極合材層に含まれる正極活物質は、Liを除く金属元素の総モル数に対して、85モル%以上のNiと、1モル%以上15モル%以下のAlとを含有し、且つ、Ni、Al、及びMnの含有量の合計が99.9モル%以上であるリチウム遷移金属複合酸化物を含み、
     前記正極合材層における正極活物質の密度は、3.45g/cm以上であり、
     前記正極の断面の走査電子顕微鏡による観察において、前記断面に露出した前記リチウム遷移金属複合酸化物の断面積に対する、クラックの無い前記リチウム遷移金属複合酸化物の断面積の割合が51%以上である、非水電解質二次電池。
  2.  前記リチウム遷移金属複合酸化物は、一般式LiNiAlMnNb2-b(式中、0.9<a<1.1、x≧0.85、0.01≦y≦0.15、0≦z≦0.14、0≦v≦0.001、0≦w≦0.005、0≦b<0.05、x+y+z+v+w=1、Mは、Co、Fe、Ti、Si、Zr、Mo及びZnから選ばれる少なくとも1種の元素)で表される、請求項1に記載の非水電解質二次電池。
  3.  前記リチウム遷移金属複合酸化物を表す前記一般式において、0.01≦y≦0.07、0≦z≦0.05である、請求項2に記載の非水電解質二次電池。
  4.  前記リチウム遷移金属複合酸化物を表す前記一般式において、y>zである、請求項2又は3に記載の非水電解質二次電池。
  5.  前記リチウム遷移金属複合酸化物を表す前記一般式において、0.001≦w≦0.005である、請求項2~4のいずれか1項に記載の非水電解質二次電池。
  6.  前記リチウム遷移金属複合酸化物は、Coを実質的に含まない、請求項1~5のいずれか1項に記載の非水電解質二次電池。
  7.  前記正極集電体の前記正極合材層に接する表面は、凹形状を有し、
     前記正極の断面の走査電子顕微鏡による観察において、前記正極集電体の前記正極合材層に接する表面の長さは、対応する部分の直線長さに対して、1.32倍以上である、請求項1~6のいずれか1項に記載の非水電解質二次電池。
  8.  前記非水電解質は、非水溶媒と、電解質塩と、添加剤とを含み、
     前記添加剤は、前記非水溶媒及び前記電解質塩の合計した質量に対して、1質量%~5質量%のビニレンカーボネート及び5質量%~15質量%のフルオロエチレンカーボネートを含む、請求項1~7のいずれか1項に記載の非水電解質二次電池。
  9.  前記負極は、二酸化ケイ素、並びに、Li、Si、及びOを少なくとも含有する酸化物相を含む、請求項1~8のいずれか1項に記載の非水電解質二次電池。
PCT/JP2020/028826 2019-09-30 2020-07-28 非水電解質二次電池 WO2021065173A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20873084.6A EP4040527A4 (en) 2019-09-30 2020-07-28 SECONDARY NON-AQUEOUS ELECTROLYTE BATTERY
US17/764,004 US20220393165A1 (en) 2019-09-30 2020-07-28 Non-aqueous electrolyte secondary battery
CN202080067582.9A CN114503308B (zh) 2019-09-30 2020-07-28 非水电解质二次电池
JP2021550377A JPWO2021065173A1 (ja) 2019-09-30 2020-07-28

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-179819 2019-09-30
JP2019179819 2019-09-30

Publications (1)

Publication Number Publication Date
WO2021065173A1 true WO2021065173A1 (ja) 2021-04-08

Family

ID=75336953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/028826 WO2021065173A1 (ja) 2019-09-30 2020-07-28 非水電解質二次電池

Country Status (5)

Country Link
US (1) US20220393165A1 (ja)
EP (1) EP4040527A4 (ja)
JP (1) JPWO2021065173A1 (ja)
CN (1) CN114503308B (ja)
WO (1) WO2021065173A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023140428A1 (ko) * 2022-01-20 2023-07-27 삼성에스디아이 주식회사 리튬 이차 전지

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240143152A (ko) * 2023-03-23 2024-10-02 삼성에스디아이 주식회사 리튬 이차 전지

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102091A (ja) * 1999-07-29 2001-04-13 Toshiba Corp 非水電解質二次電池
JP2004356092A (ja) * 2003-05-02 2004-12-16 Sony Corp 電池
JP2008124038A (ja) * 1997-03-28 2008-05-29 Ube Ind Ltd リチウムイオン非水電解質二次電池用正極活物質及びその製造方法
JP2008210767A (ja) 2007-02-26 2008-09-11 Samsung Sdi Co Ltd リチウム二次電池
WO2015012086A1 (ja) * 2013-07-23 2015-01-29 中央電気工業株式会社 複合粒子及びその製造方法並びに電極及び非水電解質二次電池
JP2015122269A (ja) * 2013-12-25 2015-07-02 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、及びこれを用いた非水系電解質二次電池
WO2015186752A1 (ja) * 2014-06-06 2015-12-10 株式会社Uacj 集電体用金属箔、集電体及び集電体用金属箔の製造方法
WO2016017093A1 (ja) * 2014-07-30 2016-02-04 三洋電機株式会社 非水電解質二次電池用正極活物質
WO2016031147A1 (ja) * 2014-08-26 2016-03-03 三洋電機株式会社 非水電解質二次電池用正極活物質
JP2016091762A (ja) * 2014-11-04 2016-05-23 中央電気工業株式会社 ケイ素黒鉛複合粒子およびその製造方法
JP2017183121A (ja) * 2016-03-31 2017-10-05 日立造船株式会社 全固体二次電池の製造方法
JP2017188466A (ja) 2014-07-07 2017-10-12 日立金属株式会社 リチウムイオン二次電池用正極材、それを用いたリチウムイオン二次電池用正極及びリチウムイオン二次電池
WO2017208624A1 (ja) * 2016-05-30 2017-12-07 信越化学工業株式会社 負極活物質、混合負極活物質材料、及び負極活物質の製造方法
JP2017216149A (ja) * 2016-05-31 2017-12-07 株式会社村田製作所 非水電解質二次電池
JP2018067549A (ja) * 2017-11-17 2018-04-26 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質、及びこれを用いた非水系電解質二次電池
WO2018101072A1 (ja) * 2016-11-30 2018-06-07 パナソニックIpマネジメント株式会社 負極材料および非水電解質二次電池
JP2019140054A (ja) * 2018-02-15 2019-08-22 Tdk株式会社 正極及び非水電解液二次電池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3425719B1 (en) * 2016-02-29 2024-09-18 Hitachi Zosen Corporation All-solid state secondary battery and method for manufacturing same
CN109155407B (zh) * 2016-05-30 2021-07-30 信越化学工业株式会社 负极活性物质、混合负极活性物质材料、及负极活性物质的制备方法
JP6815977B2 (ja) * 2016-12-08 2021-01-20 三星エスディアイ株式会社Samsung SDI Co., Ltd. リチウム二次電池用ニッケル系活物質、その製造方法、及びそれを含む正極を含んだリチウム二次電池
CN107742717A (zh) * 2017-09-27 2018-02-27 荆门市格林美新材料有限公司 一种铌掺杂的镍钴铝锂离子电池正极材料

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008124038A (ja) * 1997-03-28 2008-05-29 Ube Ind Ltd リチウムイオン非水電解質二次電池用正極活物質及びその製造方法
JP2001102091A (ja) * 1999-07-29 2001-04-13 Toshiba Corp 非水電解質二次電池
JP2004356092A (ja) * 2003-05-02 2004-12-16 Sony Corp 電池
JP2008210767A (ja) 2007-02-26 2008-09-11 Samsung Sdi Co Ltd リチウム二次電池
WO2015012086A1 (ja) * 2013-07-23 2015-01-29 中央電気工業株式会社 複合粒子及びその製造方法並びに電極及び非水電解質二次電池
JP2015122269A (ja) * 2013-12-25 2015-07-02 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、及びこれを用いた非水系電解質二次電池
WO2015186752A1 (ja) * 2014-06-06 2015-12-10 株式会社Uacj 集電体用金属箔、集電体及び集電体用金属箔の製造方法
JP2017188466A (ja) 2014-07-07 2017-10-12 日立金属株式会社 リチウムイオン二次電池用正極材、それを用いたリチウムイオン二次電池用正極及びリチウムイオン二次電池
WO2016017093A1 (ja) * 2014-07-30 2016-02-04 三洋電機株式会社 非水電解質二次電池用正極活物質
WO2016031147A1 (ja) * 2014-08-26 2016-03-03 三洋電機株式会社 非水電解質二次電池用正極活物質
JP2016091762A (ja) * 2014-11-04 2016-05-23 中央電気工業株式会社 ケイ素黒鉛複合粒子およびその製造方法
JP2017183121A (ja) * 2016-03-31 2017-10-05 日立造船株式会社 全固体二次電池の製造方法
WO2017208624A1 (ja) * 2016-05-30 2017-12-07 信越化学工業株式会社 負極活物質、混合負極活物質材料、及び負極活物質の製造方法
JP2017216149A (ja) * 2016-05-31 2017-12-07 株式会社村田製作所 非水電解質二次電池
WO2018101072A1 (ja) * 2016-11-30 2018-06-07 パナソニックIpマネジメント株式会社 負極材料および非水電解質二次電池
JP2018067549A (ja) * 2017-11-17 2018-04-26 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質、及びこれを用いた非水系電解質二次電池
JP2019140054A (ja) * 2018-02-15 2019-08-22 Tdk株式会社 正極及び非水電解液二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4040527A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023140428A1 (ko) * 2022-01-20 2023-07-27 삼성에스디아이 주식회사 리튬 이차 전지

Also Published As

Publication number Publication date
EP4040527A1 (en) 2022-08-10
US20220393165A1 (en) 2022-12-08
CN114503308A (zh) 2022-05-13
JPWO2021065173A1 (ja) 2021-04-08
EP4040527A4 (en) 2022-11-09
CN114503308B (zh) 2024-05-07

Similar Documents

Publication Publication Date Title
WO2019239652A1 (ja) 非水電解質二次電池
CN112335079B (zh) 非水电解质二次电池用正极活性物质和非水电解质二次电池
CN111194501B (zh) 非水电解质二次电池
WO2016103657A1 (ja) 非水電解質二次電池
CN108713265B (zh) 非水电解质二次电池
CN115943504A (zh) 非水电解质二次电池用正极及非水电解质二次电池
WO2022070649A1 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2021065162A1 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2021039239A1 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
CN114762167A (zh) 非水电解液二次电池
JP2019145204A (ja) 正極活物質、正極、及び非水電解質二次電池
WO2021065173A1 (ja) 非水電解質二次電池
CN113994508B (zh) 非水电解质二次电池用正极活性物质、非水电解质二次电池及非水电解质二次电池用正极活性物质的制造方法
CN114008823B (zh) 非水电解质二次电池用正极活性物质、非水电解质二次电池及非水电解质二次电池用正极活性物质的制造方法
WO2019207933A1 (ja) 非水電解質二次電池
JPWO2020174794A1 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2021153350A1 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2021111932A1 (ja) 非水電解液二次電池
WO2021152997A1 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
CN115868042A (zh) 非水电解质二次电池用正极活性物质和非水电解质二次电池
JP7584048B2 (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池、及び非水電解質二次電池用正極活物質の製造方法
JP7584063B2 (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池、及び非水電解質二次電池用正極活物質の製造方法
WO2023100748A1 (ja) 非水電解質二次電池
US20230155126A1 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
WO2023181848A1 (ja) 非水電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20873084

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021550377

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020873084

Country of ref document: EP

Effective date: 20220502