WO2021065028A1 - Blade and method for manufacturing blade - Google Patents
Blade and method for manufacturing blade Download PDFInfo
- Publication number
- WO2021065028A1 WO2021065028A1 PCT/JP2020/004945 JP2020004945W WO2021065028A1 WO 2021065028 A1 WO2021065028 A1 WO 2021065028A1 JP 2020004945 W JP2020004945 W JP 2020004945W WO 2021065028 A1 WO2021065028 A1 WO 2021065028A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- blade
- cutting
- alloy
- blades
- free
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B26—HAND CUTTING TOOLS; CUTTING; SEVERING
- B26D—CUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
- B26D1/00—Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor
- B26D1/0006—Cutting members therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B26—HAND CUTTING TOOLS; CUTTING; SEVERING
- B26D—CUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
- B26D1/00—Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor
- B26D1/01—Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work
- B26D1/12—Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work having a cutting member moving about an axis
- B26D1/14—Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work having a cutting member moving about an axis with a circular cutting member, e.g. disc cutter
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B26—HAND CUTTING TOOLS; CUTTING; SEVERING
- B26D—CUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
- B26D1/00—Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor
- B26D1/01—Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work
- B26D1/12—Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work having a cutting member moving about an axis
- B26D1/14—Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work having a cutting member moving about an axis with a circular cutting member, e.g. disc cutter
- B26D1/22—Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work having a cutting member moving about an axis with a circular cutting member, e.g. disc cutter coacting with a movable member, e.g. a roller
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B26—HAND CUTTING TOOLS; CUTTING; SEVERING
- B26D—CUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
- B26D1/00—Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor
- B26D1/01—Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work
- B26D1/12—Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work having a cutting member moving about an axis
- B26D1/14—Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work having a cutting member moving about an axis with a circular cutting member, e.g. disc cutter
- B26D1/24—Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work having a cutting member moving about an axis with a circular cutting member, e.g. disc cutter coacting with another disc cutter
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B26—HAND CUTTING TOOLS; CUTTING; SEVERING
- B26D—CUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
- B26D1/00—Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor
- B26D1/0006—Cutting members therefor
- B26D2001/002—Materials or surface treatments therefor, e.g. composite materials
Definitions
- the blades used in these cutting devices have a problem that the durability of the blade is low and it is difficult to use it for a long period of time because the width of the blade edge is narrow and the angle of the blade edge is also small in order to improve the cutting accuracy. was there.
- the blades according to the present embodiment are a plurality of blades 30 formed on the outer peripheral portion of the cylindrical main body 20.
- the blade 30 according to the present embodiment is entirely made of a free-cutting alloy.
- the durability of the cutting edge can be greatly improved, and since the free-cutting alloy is used, the workability of the blade is high.
- the sharpness and cutting accuracy of the blade deteriorate with the passage of time, the sharpness and cutting accuracy can be improved again by reshape processing, so that the blade can be used for a long period of time.
- the blades 30 according to the present embodiment each have a small blade tip 30a and high dimensional accuracy from the viewpoint of enabling high-precision cutting.
- the blade 30 has an average tip width of 0.005 mm or less, a cutting edge angle of 30 ° or less, a variation in the height of the blade 30 within ⁇ 0.001 mm, and a cutting edge pitch accuracy of ⁇ 0.001. It is preferably within mm, the average tip width is 0.002 mm or less, the cutting edge angle is 25 ° or less, the height variation of the blade 30 is within ⁇ 0.0005 mm, and the cutting edge pitch accuracy is within ⁇ 0.001 mm. Is more preferable.
- the blade 30 preferably has a hook portion 33 on the inner peripheral side of the blade edge 34.
- the hog portion 33 is a part of the blade 30, has an extension angle (hog angle ⁇ ) different from the cutting edge angle ⁇ , and is on the inner peripheral side (lower side in FIG. 9) of the cutting edge 34. ) Is the part located.
- the hog length U is smaller than the height H of the blade and the hog angle ⁇ is less than 30 °.
- the method for confirming the various dimensions of the blade 30 described above is not particularly limited, but a transfer product of the blade is obtained by dropping an ultraviolet curable resin on the surface of the blade and then irradiating it with ultraviolet rays to cure it. be able to. After that, the cured transcript can be appropriately cut out, and various dimensions can be confirmed by observing with a microscope and measuring the dimensions. This does not mean that the dimensions of the blade are directly measured, but it is simple because the shape of the intermediate product can be transferred accurately by curing the UV curable resin following the surface shape of the blade. It is effective for confirming the shape of the blade.
- the blade 30 according to the present embodiment is entirely made of a free-cutting alloy, but as shown in FIG. 1, the base portion 32 on which the blade is formed is also referred to as the blade 30. Similarly, it can be composed of a free-cutting alloy. Since the blade 31 and the base portion 32 are integrated, the strength of the blade 30 can be further increased. However, in the present invention, the formation of the base portion 32 is not particularly limited, and the blade 30 may be directly placed on the main body 20.
- the blade 30 according to this embodiment has a disk-shaped shape.
- FIG. 3 schematically shows a state of the blade 30 according to the present embodiment as viewed from the direction of the rotation axis.
- the blade 30 according to the present embodiment is not particularly limited except that it has a disk shape.
- the cutting edge can be shaped to draw an arc.
- the main body 20 is not particularly limited as long as it has a cylindrical shape and the blade 30 according to the present embodiment can be formed on the outer peripheral surface.
- a material having high strength and durability such as stainless steel, steel, a high-strength alloy, and a high-strength metal can be used.
- the dimensions of the main body 20 can be appropriately selected according to the type of the cutting device, the required performance, and the like.
- a known alloy such as stainless steel or high-strength carbon steel can be used as the material, and rigidity, cost, machinability, adhesion to free-cutting alloy plating, and the like can be taken into consideration. It is possible to select as appropriate.
- the blade manufacturing method according to the present embodiment includes a step of cutting the plating layer 31 of the free-cutting alloy to form the blade 30.
- the blade 30 can be formed on the master roll base material 21 (main body 20).
- a step of cutting the plating layer 31 into a columnar shape (columnar processing step) and as shown in FIG. 4D,
- the plating layer 31 that has been machined into a columnar shape can be further cut and further divided into a step of forming a blade 30 (shape machining step).
- the surface of the cylinder is processed, if the surface of the plating layer 31 is cut too much, the surface of the master roll base material 21 is exposed or the blade becomes so thin that the blade cannot be formed from the plating layer. It is necessary to consider the thickness of the plating layer 31, the height of the formed blade 30, and the thickness of the plating layer after processing the surface of the cylinder. For example, when the height of the formed blade 30 is 0.24 mm, the plating thickness is 0.35 mm or more, and when machining the surface of a cylinder, the surface of about 0.05 mm is ground with a cutting tool to achieve a thickness of about 0.3 mm. Cylindrical processing can be performed so as to form the plating layer 31.
- the surface of the cylindrically processed plating layer 31 is further machined to form a plurality of target blades 30.
- the surface shape is not uniform only by forming the plating layer 31, and it is difficult to form the blade 30 with high dimensional accuracy as it is.
- any method can control the blade tip width W, the blade edge angle ⁇ , the blade-to-blade pitch P, etc. with high accuracy.
- shape machining can be performed by a precision cutting apparatus using a diamond tool.
- a diamond tool for example, as shown in FIG. 4D, a tool 42 having a trapezoidal cross section and a tapered shape can be used.
- the taper angle of the tool 42 is preferably an angle close to the cutting edge angle from the viewpoint of improving the dimensional accuracy of the cutting edge angle of the blade 30.
- known conditions for example, a surface treatment step of the formed blade
- a surface treatment step of the formed blade can be appropriately carried out in addition to the above-mentioned steps.
- Example 1 Prepare a stainless master roll base material (SUS440C, diameter: 98 mm, axial length: 70 mm (blades are formed in the length range of 12 mm)), electrolessly plating the base material, and average thickness. Formed a layer of 0.35 mm nickel-phosphorus alloy. Then, the alloy layer was surface-processed into a columnar shape with an R-shaped cutting tool, and then the shape was processed using a diamond tool with a taper angle of 25 degrees to obtain a sample blade. The number of blades obtained was 31, the average tip width was 0.002 mm, the cutting edge angle was 25 °, and the Vickers hardness was 550.
- Example 2 After producing the blade under the same conditions as in Example 1, the blade was heat-treated at 300 ° C. for 1 hour to obtain a sample blade.
- the number of blades obtained was 31, the average tip width was 0.002 mm, the cutting edge angle was 25 °, and the Vickers hardness was 900.
- Example 3 Prepare a stainless master roll base material (SUS304, diameter: 98 mm, axial length: 70 mm (blades are formed in a length range of 4 mm)), electrolessly plating the base material, and average thickness. Formed a layer of 0.35 mm nickel-phosphorus alloy. Then, the alloy layer was surface-processed into a columnar shape with an R-shaped cutting tool, and then the shape was processed using a diamond tool with a taper angle of 25 degrees to obtain a sample blade. The number of blades obtained was 11, the average tip width was 0.005 mm, the cutting edge angle was 25 °, and the Vickers hardness was 550.
- Example 5 Prepare a stainless master roll base material (SUS304, diameter: 98 mm, axial length: 70 mm (blades are formed in a length range of 3 mm)), electrolessly plating the base material, and average thickness. Formed a layer of 0.35 mm nickel-phosphorus alloy. After that, the alloy layer is surface-processed into a columnar shape with an R-shaped cutting tool, and then the shape of the cutting edge is processed using a diamond tool with a taper angle of 25 degrees. Was processed to obtain a sample blade. The number of blades obtained was 11, the average tip width was 0.002 mm, the cutting edge angle was 25 °, the hog angle was 8 °, the hog length was 0.15 mm, and the Vickers hardness was 550.
- a blade that can be cut with high precision, has high durability, and can be used for a long period of time. Further, according to the present invention, it is possible to provide a method for manufacturing a blade, which is capable of cutting with high accuracy, has high durability, and can be used for a long period of time.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Forests & Forestry (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Nonmetal Cutting Devices (AREA)
- Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)
- Knives (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
Abstract
The purpose of the present invention is to provide a blade which allows for high-precision cutting, has high durability, and can be used for a long period of time. To solve the above problem, the blade according to the present invention comprises a plurality of blades 30 formed on an outer circumference of a cylindrical body 20, and is characterized by being made entirely of a free-machining alloy.
Description
本発明は、高精度な切断が可能であるとともに、耐久性が高く、長期間使用できる刃、及び、高精度な切断が可能であるとともに、耐久性が高く、長期間使用できる刃を得ることができる刃の製造方法に関するものである。
The present invention obtains a blade capable of cutting with high precision and having high durability and can be used for a long period of time, and a blade capable of cutting with high precision and having high durability and can be used for a long period of time. It relates to a method of manufacturing a blade capable of forming a blade.
フィルム状の材料を多条に切断する装置の手法として、シェア刃方式、ギャング刃方式等が使われている。シェア刃方式は2枚の丸刃の外周を僅かに交差させ、その2枚の刃の間を、フィルム状被切断材を通してせん断により切断する方式である。
また、その他の切断手法として、スコアカット方式が知られている(例えば、特許文献1を参照。)。スコアカット方式は外周に丸刃をもつ刃付ローラーと円柱形の下ロールを平行に配置し、この2つのロール刃の間に被切断材を挟んだ状態で押付け、両ロールを回転させることにより、被切断材を押し切る方式である。
さらに、別の切断手法として、上刃と下刃を同じ刃を用いる技術(例えば、特許文献2に記載の切断装置を参照。)が挙げられる。この手法では、刃先を接触させるか又はわずかに隙間を空けた状態で、被切断材を挟むことで、金属板等の切断を行った場合でもカエリがなく、高精度な切断を行うことができる。 A shear blade method, a gang blade method, and the like are used as a method of a device for cutting a film-like material into multiple strips. The shared blade method is a method in which the outer circumferences of two round blades are slightly intersected, and the space between the two blades is cut by shearing through a film-shaped material to be cut.
Further, as another cutting method, a score cutting method is known (see, for example, Patent Document 1). In the score cut method, a roller with a blade having a round blade on the outer circumference and a cylindrical lower roll are arranged in parallel, pressed with the material to be cut sandwiched between these two roll blades, and both rolls are rotated. , It is a method to push through the material to be cut.
Further, as another cutting method, there is a technique of using the same blade for the upper blade and the lower blade (see, for example, the cutting device described in Patent Document 2). In this method, by sandwiching the material to be cut with the cutting edge in contact or with a slight gap, even when cutting a metal plate or the like, there is no burring and high-precision cutting can be performed. ..
また、その他の切断手法として、スコアカット方式が知られている(例えば、特許文献1を参照。)。スコアカット方式は外周に丸刃をもつ刃付ローラーと円柱形の下ロールを平行に配置し、この2つのロール刃の間に被切断材を挟んだ状態で押付け、両ロールを回転させることにより、被切断材を押し切る方式である。
さらに、別の切断手法として、上刃と下刃を同じ刃を用いる技術(例えば、特許文献2に記載の切断装置を参照。)が挙げられる。この手法では、刃先を接触させるか又はわずかに隙間を空けた状態で、被切断材を挟むことで、金属板等の切断を行った場合でもカエリがなく、高精度な切断を行うことができる。 A shear blade method, a gang blade method, and the like are used as a method of a device for cutting a film-like material into multiple strips. The shared blade method is a method in which the outer circumferences of two round blades are slightly intersected, and the space between the two blades is cut by shearing through a film-shaped material to be cut.
Further, as another cutting method, a score cutting method is known (see, for example, Patent Document 1). In the score cut method, a roller with a blade having a round blade on the outer circumference and a cylindrical lower roll are arranged in parallel, pressed with the material to be cut sandwiched between these two roll blades, and both rolls are rotated. , It is a method to push through the material to be cut.
Further, as another cutting method, there is a technique of using the same blade for the upper blade and the lower blade (see, for example, the cutting device described in Patent Document 2). In this method, by sandwiching the material to be cut with the cutting edge in contact or with a slight gap, even when cutting a metal plate or the like, there is no burring and high-precision cutting can be performed. ..
ただし、これらの切断装置に用いられる刃は、切断の精度を高めるべく、刃先の幅が狭く、刃先の角度も小さくしているため、刃の耐久性が低く、長期間の使用が難しいという問題があった。
However, the blades used in these cutting devices have a problem that the durability of the blade is low and it is difficult to use it for a long period of time because the width of the blade edge is narrow and the angle of the blade edge is also small in order to improve the cutting accuracy. was there.
刃の耐久性向上を図るため、例えば、刃先の角度を大きめにする技術や、刃先に強度の高い金属のめっきを施す技術(例えば特許文献3を参照。)等が知られている。
しかしながら、刃先の角度を大きくした場合には、切断の精度が低下するおそれがあり、刃先に強度の高い金属のめっきを施す技術については、使用期間が長くなると、めっきが剥がれて刃の耐久性が低下し、同じ刃を長期間使い続けることは難しい。 In order to improve the durability of the blade, for example, a technique of increasing the angle of the cutting edge and a technique of plating the cutting edge with a high-strength metal (see, for example, Patent Document 3) are known.
However, if the angle of the cutting edge is increased, the cutting accuracy may decrease, and with regard to the technique of plating the cutting edge with high-strength metal, the plating peels off and the durability of the blade is extended over a long period of use. It is difficult to continue using the same blade for a long period of time.
しかしながら、刃先の角度を大きくした場合には、切断の精度が低下するおそれがあり、刃先に強度の高い金属のめっきを施す技術については、使用期間が長くなると、めっきが剥がれて刃の耐久性が低下し、同じ刃を長期間使い続けることは難しい。 In order to improve the durability of the blade, for example, a technique of increasing the angle of the cutting edge and a technique of plating the cutting edge with a high-strength metal (see, for example, Patent Document 3) are known.
However, if the angle of the cutting edge is increased, the cutting accuracy may decrease, and with regard to the technique of plating the cutting edge with high-strength metal, the plating peels off and the durability of the blade is extended over a long period of use. It is difficult to continue using the same blade for a long period of time.
本発明は、かかる事情に鑑みてなされたものであって、高精度な切断が可能であるとともに、耐久性が高く、長期間使用できる刃、及び、高精度な切断が可能であるとともに、耐久性が高く、長期間使用できる刃の製造方法を提供することを目的とする。
The present invention has been made in view of such circumstances, and is capable of cutting with high precision, has high durability, can be used for a long period of time, and is capable of cutting with high precision and is durable. An object of the present invention is to provide a method for manufacturing a blade that has high properties and can be used for a long period of time.
本発明者らは、円筒状の本体の外周部に形成された複数の刃について、上記の課題を解決するべく検討を重ねた結果、刃に快削性合金を用いることで、刃先の強度をある程度高めることができる点に着目した。そして、さらに鋭意研究を重ねた結果、刃先の表面に合金めっき等を施すのではなく、刃の全体を快削性合金から形成することによって、刃先の強度を高めることができるとともに、刃の加工性が高くなるため刃先の寸法精度が向上し、精度の高い切断が可能になり、長期間の使用も可能となることを見出した。
As a result of repeated studies to solve the above problems with respect to a plurality of blades formed on the outer peripheral portion of a cylindrical main body, the present inventors have improved the strength of the cutting edge by using a free-cutting alloy for the blades. We focused on the fact that it can be increased to some extent. As a result of further diligent research, the strength of the blade edge can be increased and the blade processing can be performed by forming the entire blade edge from a free-cutting alloy instead of applying alloy plating or the like to the surface of the blade edge. It has been found that the dimensional accuracy of the cutting edge is improved due to the high property, the cutting with high accuracy is possible, and the blade can be used for a long period of time.
本発明は、上記知見に基づきなされたものであり、その要旨は以下の通りである。
(1)円筒状の本体の外周部に形成された複数の刃であって、前記刃の全体が快削性合金からなることを特徴とする、刃。
(2)前記快削性合金が、ニッケル-リン合金であることを特徴とする、(1)に記載の刃。
(3)前記刃のビッカース硬度が、475以上であることを特徴とする、(1)又は(2)に記載の刃。
(4)前記刃は、先端平均幅が0.005mm以下であり、刃先角度が30°以下であり、刃の高さのばらつきが±0.001mm以内であり、刃先ピッチ精度が±0.001mm以内であることを特徴とする、(1)~(3)のいずれか1項に記載の刃。
(5)前記刃は、刃先の内周側に鎬部を有し、該鎬部は、鎬長が前記刃の高さより小さく、且つ、鎬角度が30°未満であることを特徴とする、(4)に記載の刃。
(6)円筒状の本体の外周部に形成される複数の刃の製造方法であって、原盤ロール母材上に、快削性合金のめっき層を形成する工程と、前記快削性合金のめっき層を切削加工し、刃を形成する工程と、を備え、形成された刃のピッチが0.5mm以下となることを特徴とする、刃の製造方法。 The present invention has been made based on the above findings, and the gist thereof is as follows.
(1) A plurality of blades formed on the outer peripheral portion of a cylindrical main body, wherein the entire blade is made of a free-cutting alloy.
(2) The blade according to (1), wherein the free-cutting alloy is a nickel-phosphorus alloy.
(3) The blade according to (1) or (2), wherein the Vickers hardness of the blade is 475 or more.
(4) The blade has an average tip width of 0.005 mm or less, a blade edge angle of 30 ° or less, a variation in blade height within ± 0.001 mm, and a blade edge pitch accuracy of ± 0.001 mm or less. The blade according to any one of (1) to (3).
(5) The blade has a hook portion on the inner peripheral side of the cutting edge, and the hook portion is characterized in that the length of the blade is smaller than the height of the blade and the angle of the blade is less than 30 °. The blade according to (4).
(6) A method for manufacturing a plurality of blades formed on the outer peripheral portion of a cylindrical main body, wherein a plating layer of a free-cutting alloy is formed on a master roll base material, and the free-cutting alloy. A method for manufacturing a blade, which comprises a process of cutting a plating layer to form a blade, and the pitch of the formed blade is 0.5 mm or less.
(1)円筒状の本体の外周部に形成された複数の刃であって、前記刃の全体が快削性合金からなることを特徴とする、刃。
(2)前記快削性合金が、ニッケル-リン合金であることを特徴とする、(1)に記載の刃。
(3)前記刃のビッカース硬度が、475以上であることを特徴とする、(1)又は(2)に記載の刃。
(4)前記刃は、先端平均幅が0.005mm以下であり、刃先角度が30°以下であり、刃の高さのばらつきが±0.001mm以内であり、刃先ピッチ精度が±0.001mm以内であることを特徴とする、(1)~(3)のいずれか1項に記載の刃。
(5)前記刃は、刃先の内周側に鎬部を有し、該鎬部は、鎬長が前記刃の高さより小さく、且つ、鎬角度が30°未満であることを特徴とする、(4)に記載の刃。
(6)円筒状の本体の外周部に形成される複数の刃の製造方法であって、原盤ロール母材上に、快削性合金のめっき層を形成する工程と、前記快削性合金のめっき層を切削加工し、刃を形成する工程と、を備え、形成された刃のピッチが0.5mm以下となることを特徴とする、刃の製造方法。 The present invention has been made based on the above findings, and the gist thereof is as follows.
(1) A plurality of blades formed on the outer peripheral portion of a cylindrical main body, wherein the entire blade is made of a free-cutting alloy.
(2) The blade according to (1), wherein the free-cutting alloy is a nickel-phosphorus alloy.
(3) The blade according to (1) or (2), wherein the Vickers hardness of the blade is 475 or more.
(4) The blade has an average tip width of 0.005 mm or less, a blade edge angle of 30 ° or less, a variation in blade height within ± 0.001 mm, and a blade edge pitch accuracy of ± 0.001 mm or less. The blade according to any one of (1) to (3).
(5) The blade has a hook portion on the inner peripheral side of the cutting edge, and the hook portion is characterized in that the length of the blade is smaller than the height of the blade and the angle of the blade is less than 30 °. The blade according to (4).
(6) A method for manufacturing a plurality of blades formed on the outer peripheral portion of a cylindrical main body, wherein a plating layer of a free-cutting alloy is formed on a master roll base material, and the free-cutting alloy. A method for manufacturing a blade, which comprises a process of cutting a plating layer to form a blade, and the pitch of the formed blade is 0.5 mm or less.
本発明によれば、高精度な切断が可能であるとともに、耐久性が高く、長期間使用できる刃を提供することが可能となる。また、本発明によれば、高精度な切断が可能であるとともに、耐久性が高く、長期間使用できる刃の製造方法を提供することが可能となる。
According to the present invention, it is possible to provide a blade that can be cut with high precision, has high durability, and can be used for a long period of time. Further, according to the present invention, it is possible to provide a method for manufacturing a blade, which is capable of cutting with high accuracy, has high durability, and can be used for a long period of time.
以下、本発明の実施形態について、図面を用いて具体的に説明する。なお、図面では、説明の便宜のため、実際の寸法とは異なる比率で、各構成部材の寸法を示している。
ここで、図1は、本発明の刃の一実施形態を正面から見た状態を、模式的に示したものであり、図2は、図1の刃の一部を拡大して見た状態を、模式的に示したものである。図3は、本発明の一実施形態に係る刃を回転軸方向から見た状態を模式的に示したものである。図4は、本発明の刃の製造方法の一実施形態の流れを説明するための図である。図9は、本発明の刃の他の実施形態について、刃の一部を拡大してみた状態を模式的に示したものである。 Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings. In the drawings, for convenience of explanation, the dimensions of each component are shown at a ratio different from the actual dimensions.
Here, FIG. 1 schematically shows a state in which one embodiment of the blade of the present invention is viewed from the front, and FIG. 2 is a state in which a part of the blade of FIG. 1 is viewed in an enlarged manner. Is schematically shown. FIG. 3 schematically shows a state in which the blade according to the embodiment of the present invention is viewed from the direction of the rotation axis. FIG. 4 is a diagram for explaining the flow of one embodiment of the blade manufacturing method of the present invention. FIG. 9 schematically shows a state in which a part of the blade is enlarged with respect to another embodiment of the blade of the present invention.
ここで、図1は、本発明の刃の一実施形態を正面から見た状態を、模式的に示したものであり、図2は、図1の刃の一部を拡大して見た状態を、模式的に示したものである。図3は、本発明の一実施形態に係る刃を回転軸方向から見た状態を模式的に示したものである。図4は、本発明の刃の製造方法の一実施形態の流れを説明するための図である。図9は、本発明の刃の他の実施形態について、刃の一部を拡大してみた状態を模式的に示したものである。 Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings. In the drawings, for convenience of explanation, the dimensions of each component are shown at a ratio different from the actual dimensions.
Here, FIG. 1 schematically shows a state in which one embodiment of the blade of the present invention is viewed from the front, and FIG. 2 is a state in which a part of the blade of FIG. 1 is viewed in an enlarged manner. Is schematically shown. FIG. 3 schematically shows a state in which the blade according to the embodiment of the present invention is viewed from the direction of the rotation axis. FIG. 4 is a diagram for explaining the flow of one embodiment of the blade manufacturing method of the present invention. FIG. 9 schematically shows a state in which a part of the blade is enlarged with respect to another embodiment of the blade of the present invention.
(刃)
まず、本実施形態の刃について説明する。
本実施形態に係る刃は、図1に示すように、円筒状の本体20の外周部に形成された複数の刃30である。
そして、本実施形態に係る刃30は、その全体が快削性合金からなる。
刃30の刃先や表面だけでなく、全体を快削性合金から形成することによって、刃先の耐久性を大きく高めることができるとともに、快削性合金を用いているため、刃の加工性が高く、刃先の寸法精度を高めることが可能となる結果、高精度な切断と、耐久性とを両立することができる。さらに、時間の経過により刃の切れ味や切断精度が低下した際には、再び形状加工することによって再び切れ味や切断精度を再び高めることができるため、長期間の使用も可能となる。 (blade)
First, the blade of the present embodiment will be described.
As shown in FIG. 1, the blades according to the present embodiment are a plurality ofblades 30 formed on the outer peripheral portion of the cylindrical main body 20.
Theblade 30 according to the present embodiment is entirely made of a free-cutting alloy.
By forming not only the cutting edge and surface of theblade 30 but also the entire surface from a free-cutting alloy, the durability of the cutting edge can be greatly improved, and since the free-cutting alloy is used, the workability of the blade is high. As a result of being able to improve the dimensional accuracy of the cutting edge, it is possible to achieve both high-precision cutting and durability. Further, when the sharpness and cutting accuracy of the blade deteriorate with the passage of time, the sharpness and cutting accuracy can be improved again by reshape processing, so that the blade can be used for a long period of time.
まず、本実施形態の刃について説明する。
本実施形態に係る刃は、図1に示すように、円筒状の本体20の外周部に形成された複数の刃30である。
そして、本実施形態に係る刃30は、その全体が快削性合金からなる。
刃30の刃先や表面だけでなく、全体を快削性合金から形成することによって、刃先の耐久性を大きく高めることができるとともに、快削性合金を用いているため、刃の加工性が高く、刃先の寸法精度を高めることが可能となる結果、高精度な切断と、耐久性とを両立することができる。さらに、時間の経過により刃の切れ味や切断精度が低下した際には、再び形状加工することによって再び切れ味や切断精度を再び高めることができるため、長期間の使用も可能となる。 (blade)
First, the blade of the present embodiment will be described.
As shown in FIG. 1, the blades according to the present embodiment are a plurality of
The
By forming not only the cutting edge and surface of the
ここで、前記快削性合金とは、切削性に優れる合金のことであり、例えば、ニッケル-リン合金、硬質銅合金が挙げられる。また、これらの快削性合金の中でも、ニッケル-リン合金を用いることが好ましい。強度が高いため、刃の加工性だけでなく、刃の耐久性についてもより高めることができるためである。
なお、「刃30の全体が快削性合金からなる」とは、前記刃30の全て(表面だけでなく内部まで)が快削性合金のみで構成されていることをいう。ただし、前記快削性合金からなる場合であっても、不可避的不純物を含むことは許容される。ここで、不可避的不純物については、前記刃30の製造時に不可避的に含まれる成分であり、その含有量は合計で1質量%以下となる。 Here, the free-cutting alloy is an alloy having excellent machinability, and examples thereof include a nickel-phosphorus alloy and a hard copper alloy. Further, among these free-cutting alloys, it is preferable to use a nickel-phosphorus alloy. This is because the strength is high, so that not only the workability of the blade but also the durability of the blade can be further improved.
The phrase "theentire blade 30 is made of a free-cutting alloy" means that all of the blade 30 (not only the surface but also the inside) is made of only a free-cutting alloy. However, even when it is made of the free-cutting alloy, it is permissible to contain unavoidable impurities. Here, the unavoidable impurities are components that are unavoidably contained at the time of manufacturing the blade 30, and the total content thereof is 1% by mass or less.
なお、「刃30の全体が快削性合金からなる」とは、前記刃30の全て(表面だけでなく内部まで)が快削性合金のみで構成されていることをいう。ただし、前記快削性合金からなる場合であっても、不可避的不純物を含むことは許容される。ここで、不可避的不純物については、前記刃30の製造時に不可避的に含まれる成分であり、その含有量は合計で1質量%以下となる。 Here, the free-cutting alloy is an alloy having excellent machinability, and examples thereof include a nickel-phosphorus alloy and a hard copper alloy. Further, among these free-cutting alloys, it is preferable to use a nickel-phosphorus alloy. This is because the strength is high, so that not only the workability of the blade but also the durability of the blade can be further improved.
The phrase "the
また、前記快削性合金からなる刃30は、そのビッカース硬度が、475以上であることが好ましく、500以上であることがより好ましく、550以上であることが特に好ましい。前記ビッカース硬度を475以上とすることで、刃の耐久性をより高めることができるためである。
なお、前記刃30のビッカース硬度の測定は、市販のビッカース硬度計を用いて計測された値である。 Further, theblade 30 made of the free-cutting alloy preferably has a Vickers hardness of 475 or more, more preferably 500 or more, and particularly preferably 550 or more. This is because the durability of the blade can be further enhanced by setting the Vickers hardness to 475 or more.
The Vickers hardness of theblade 30 is measured using a commercially available Vickers hardness tester.
なお、前記刃30のビッカース硬度の測定は、市販のビッカース硬度計を用いて計測された値である。 Further, the
The Vickers hardness of the
さらに、本実施形態に係る刃30は、刃の耐久性を維持しつつ、高精度な切断を行える観点から、その高さが0.3mm以下であることが好ましい。
なお、前記刃30の高さTとは、図2に示すように、後述する土台部分32(刃以外の基盤部分)から突出した刃先の長さのことである。 Further, theblade 30 according to the present embodiment preferably has a height of 0.3 mm or less from the viewpoint of being able to perform high-precision cutting while maintaining the durability of the blade.
As shown in FIG. 2, the height T of theblade 30 is the length of the cutting edge protruding from the base portion 32 (base portion other than the blade) described later.
なお、前記刃30の高さTとは、図2に示すように、後述する土台部分32(刃以外の基盤部分)から突出した刃先の長さのことである。 Further, the
As shown in FIG. 2, the height T of the
さらにまた、本実施形態に係る刃30は、高精度な切断を可能とする観点から、それぞれ刃の先端30aが小さく、寸法精度が高いことが好ましい。
具体的には、前記刃30は、先端平均幅が0.005mm以下であり、刃先角度が30°以下であり、刃30の高さのばらつきが±0.001mm以内であり、刃先ピッチ精度が±0.001mm以内であることが好ましく、先端平均幅が0.002mm以下であり、刃先角度が25°以下であり、刃30の高さのばらつきが±0.0005mm以内であり、刃先ピッチ精度が±0.001mm以内であることがより好ましい。 Furthermore, it is preferable that theblades 30 according to the present embodiment each have a small blade tip 30a and high dimensional accuracy from the viewpoint of enabling high-precision cutting.
Specifically, theblade 30 has an average tip width of 0.005 mm or less, a cutting edge angle of 30 ° or less, a variation in the height of the blade 30 within ± 0.001 mm, and a cutting edge pitch accuracy of ± 0.001. It is preferably within mm, the average tip width is 0.002 mm or less, the cutting edge angle is 25 ° or less, the height variation of the blade 30 is within ± 0.0005 mm, and the cutting edge pitch accuracy is within ± 0.001 mm. Is more preferable.
具体的には、前記刃30は、先端平均幅が0.005mm以下であり、刃先角度が30°以下であり、刃30の高さのばらつきが±0.001mm以内であり、刃先ピッチ精度が±0.001mm以内であることが好ましく、先端平均幅が0.002mm以下であり、刃先角度が25°以下であり、刃30の高さのばらつきが±0.0005mm以内であり、刃先ピッチ精度が±0.001mm以内であることがより好ましい。 Furthermore, it is preferable that the
Specifically, the
前記刃30の先端平均幅については、図2に示すように、刃の先端30aの前記本体の回転軸方向に沿った幅Wのことであり、それぞれの刃における全周の最大先端幅Wについて測定し、全ての刃の平均値を先端平均幅としている。
前記刃30の刃先角度については、図2に示すように、前記刃30の刃先が形成する角度αのことである。
前記刃の高さのばらつきについては、狙いとする刃の高さ値Xに対して、任意に選択した5個の刃のうち、最も高い刃の高さ値X1との差、最も低い刃の高さ値X2との差のことであり、具体的には、狙いとする高さ値Xに対して、X1が+0.001mm以内、X2が-0.001mm以内であることを、±0.001 mmと表現している。
前記刃先ピッチ精度については、図1に示すように、前記刃30の形成されるピッチPについて、狙いとする刃先ピッチPに対して、幅方向に任意に選択した5個の刃を周方向4カ所計測し、そのうち、最も大きなピッチP1との差、最も小さなピッチP2との差のことであり、具体的には、狙いとする刃先ピッチPに対して、P1が+0.001mm以内、P2が-0.001mm以内であることを、±0.001mmと表現している。 As shown in FIG. 2, the average tip width of theblade 30 is the width W of the tip 30a of the blade along the rotation axis direction of the main body, and the maximum tip width W of the entire circumference of each blade. The average value of all blades is taken as the tip average width.
As shown in FIG. 2, the cutting edge angle of theblade 30 is the angle α formed by the cutting edge of the blade 30.
Regarding the variation in the height of the blade, the difference between the height value X of the target blade and the height value X1 of the highest blade among the five blades arbitrarily selected, and the lowest blade It is the difference from the height value X2. Specifically, it is ± 0.001 mm that X1 is within +0.001 mm and X2 is within -0.001 mm with respect to the target height value X. expressing.
Regarding the cutting edge pitch accuracy, as shown in FIG. 1, with respect to the pitch P on which theblade 30 is formed, five blades arbitrarily selected in the width direction with respect to the target cutting edge pitch P are selected in the circumferential direction 4 It is the difference between the largest pitch P1 and the smallest pitch P2, and specifically, P1 is within +0.001 mm and P2 is within +0.001 mm with respect to the target blade edge pitch P. Within -0.001 mm is expressed as ± 0.001 mm.
前記刃30の刃先角度については、図2に示すように、前記刃30の刃先が形成する角度αのことである。
前記刃の高さのばらつきについては、狙いとする刃の高さ値Xに対して、任意に選択した5個の刃のうち、最も高い刃の高さ値X1との差、最も低い刃の高さ値X2との差のことであり、具体的には、狙いとする高さ値Xに対して、X1が+0.001mm以内、X2が-0.001mm以内であることを、±0.001 mmと表現している。
前記刃先ピッチ精度については、図1に示すように、前記刃30の形成されるピッチPについて、狙いとする刃先ピッチPに対して、幅方向に任意に選択した5個の刃を周方向4カ所計測し、そのうち、最も大きなピッチP1との差、最も小さなピッチP2との差のことであり、具体的には、狙いとする刃先ピッチPに対して、P1が+0.001mm以内、P2が-0.001mm以内であることを、±0.001mmと表現している。 As shown in FIG. 2, the average tip width of the
As shown in FIG. 2, the cutting edge angle of the
Regarding the variation in the height of the blade, the difference between the height value X of the target blade and the height value X1 of the highest blade among the five blades arbitrarily selected, and the lowest blade It is the difference from the height value X2. Specifically, it is ± 0.001 mm that X1 is within +0.001 mm and X2 is within -0.001 mm with respect to the target height value X. expressing.
Regarding the cutting edge pitch accuracy, as shown in FIG. 1, with respect to the pitch P on which the
また、前記刃30は、図9に示すように、刃先34の内周側に鎬部33を有することが好ましい。前記鎬部33とは、前記刃30の一部であって、前記刃先角度αとは異なる延在角度(鎬角度β)を有し、且つ、刃先34の内周側(図9では下側)に位置する部分のことである。前記刃30が鎬部33を有することによって、刃と刃の間を通る切断品への接触抵抗を軽減することができる。
さらに、前記鎬部は、図9に示すように、鎬長Uが前記刃の高さHより小さく、且つ、鎬角度βが30°未満であることが好ましい。前記刃先34を形成する点からは、前記鎬長Uは、前記刃の高さHより小さくする必要があり、前記鎬角度βを30°未満とすることで、切断品を通過させる空間が広がり、切断品への接触抵抗を減らすことができるためである。同様の観点から、前記刃の高さHに対する前記鎬長U(鎬長U/刃の高さH×100%)は、35%~90%であることがより好ましく60%~90%であることがさらに好ましく、また、前記鎬角度βは、0~10°であることがより好ましい。 Further, as shown in FIG. 9, theblade 30 preferably has a hook portion 33 on the inner peripheral side of the blade edge 34. The hog portion 33 is a part of the blade 30, has an extension angle (hog angle β) different from the cutting edge angle α, and is on the inner peripheral side (lower side in FIG. 9) of the cutting edge 34. ) Is the part located. When the blade 30 has the hook portion 33, the contact resistance to the cut product passing between the blades can be reduced.
Further, as shown in FIG. 9, it is preferable that the hog length U is smaller than the height H of the blade and the hog angle β is less than 30 °. From the point of forming thecutting edge 34, the hog length U needs to be smaller than the height H of the blade, and by setting the hog angle β to less than 30 °, the space through which the cut product passes is widened. This is because the contact resistance to the cut product can be reduced. From the same viewpoint, the hoe length U (the hoe length U / blade height H × 100%) with respect to the blade height H is more preferably 35% to 90%, more preferably 60% to 90%. It is more preferable that the hog angle β is 0 to 10 °.
さらに、前記鎬部は、図9に示すように、鎬長Uが前記刃の高さHより小さく、且つ、鎬角度βが30°未満であることが好ましい。前記刃先34を形成する点からは、前記鎬長Uは、前記刃の高さHより小さくする必要があり、前記鎬角度βを30°未満とすることで、切断品を通過させる空間が広がり、切断品への接触抵抗を減らすことができるためである。同様の観点から、前記刃の高さHに対する前記鎬長U(鎬長U/刃の高さH×100%)は、35%~90%であることがより好ましく60%~90%であることがさらに好ましく、また、前記鎬角度βは、0~10°であることがより好ましい。 Further, as shown in FIG. 9, the
Further, as shown in FIG. 9, it is preferable that the hog length U is smaller than the height H of the blade and the hog angle β is less than 30 °. From the point of forming the
上述した刃30の各種寸法を確認する方法については、特に限定はされないが、当該刃の表面に紫外線硬化型樹脂を滴下した後、紫外線を照射し硬化させることで、当該刃の転写物を得ることができる。その後、硬化させた転写物を適宜切り出し、顕微鏡観察や寸法測定することで各種寸法を確認することが可能である。これは、直接的に刃の寸法を測定している訳ではないが、紫外線硬化樹脂が当該刃の表面形状に倣い硬化することで当該中間品の形状を精度よく転写できているため、簡易的に当該刃の形状を確認することに有効である。
The method for confirming the various dimensions of the blade 30 described above is not particularly limited, but a transfer product of the blade is obtained by dropping an ultraviolet curable resin on the surface of the blade and then irradiating it with ultraviolet rays to cure it. be able to. After that, the cured transcript can be appropriately cut out, and various dimensions can be confirmed by observing with a microscope and measuring the dimensions. This does not mean that the dimensions of the blade are directly measured, but it is simple because the shape of the intermediate product can be transferred accurately by curing the UV curable resin following the surface shape of the blade. It is effective for confirming the shape of the blade.
なお、本実施形態に係る刃30は、上述したように刃30の全体が快削性合金からなるが、図1に示すように、前記刃が形成される土台部分32についても、刃30と同様に快削性合金から構成することもできる。刃31と土台部分32とが一体化するため、刃30の強度をより高めることができる。
ただし、本発明では、前記土台部分32の形成については特に限定はされず、前記本体20上に刃30が直接される構成とすることもできる。 As described above, theblade 30 according to the present embodiment is entirely made of a free-cutting alloy, but as shown in FIG. 1, the base portion 32 on which the blade is formed is also referred to as the blade 30. Similarly, it can be composed of a free-cutting alloy. Since the blade 31 and the base portion 32 are integrated, the strength of the blade 30 can be further increased.
However, in the present invention, the formation of thebase portion 32 is not particularly limited, and the blade 30 may be directly placed on the main body 20.
ただし、本発明では、前記土台部分32の形成については特に限定はされず、前記本体20上に刃30が直接される構成とすることもできる。 As described above, the
However, in the present invention, the formation of the
本実施形態に係る刃30は、図1に示すように、刃つきローラー10の一部として、円筒状の本体20の外周部に形成された状態で、対象物の切断が行われる。
前記円筒状の本体20を、回転軸Cを中心に回転させることで、本実施形態に係る刃30についても回転する。そして、回転している本実施形態に係る刃30に対象物を接触させることで、対象物の切断が行われる。 As shown in FIG. 1, theblade 30 according to the present embodiment is formed on the outer peripheral portion of the cylindrical main body 20 as a part of the bladed roller 10, and the object is cut.
By rotating the cylindricalmain body 20 about the rotation axis C, the blade 30 according to the present embodiment is also rotated. Then, by bringing the object into contact with the rotating blade 30 according to the present embodiment, the object is cut.
前記円筒状の本体20を、回転軸Cを中心に回転させることで、本実施形態に係る刃30についても回転する。そして、回転している本実施形態に係る刃30に対象物を接触させることで、対象物の切断が行われる。 As shown in FIG. 1, the
By rotating the cylindrical
本実施形態に係る刃30は、円盤状の形状を有する。図3は、本実施形態に係る刃30の回転軸方向から見た状態を模式的に示したものである。本実施形態に係る刃30については、円盤状であること以外に特に限定はされない。例えば、図3に示すように、刃先が円弧を描くような形状とすることができる。
The blade 30 according to this embodiment has a disk-shaped shape. FIG. 3 schematically shows a state of the blade 30 according to the present embodiment as viewed from the direction of the rotation axis. The blade 30 according to the present embodiment is not particularly limited except that it has a disk shape. For example, as shown in FIG. 3, the cutting edge can be shaped to draw an arc.
なお、前記本体20については、円筒状であり、本実施形態に係る刃30が外周面に形成できるものであれば特に限定はされない。
例えば、前記本体20として、ステンレスや、鋼、高強度の合金、高強度の金属等、の強度及び耐久性の高い材料を用いることがきる。
また、前記本体20の寸法についても、切断装置の種類や要求される性能等に応じて適宜選択することができる。 Themain body 20 is not particularly limited as long as it has a cylindrical shape and the blade 30 according to the present embodiment can be formed on the outer peripheral surface.
For example, as themain body 20, a material having high strength and durability such as stainless steel, steel, a high-strength alloy, and a high-strength metal can be used.
Further, the dimensions of themain body 20 can be appropriately selected according to the type of the cutting device, the required performance, and the like.
例えば、前記本体20として、ステンレスや、鋼、高強度の合金、高強度の金属等、の強度及び耐久性の高い材料を用いることがきる。
また、前記本体20の寸法についても、切断装置の種類や要求される性能等に応じて適宜選択することができる。 The
For example, as the
Further, the dimensions of the
(刃の製造方法)
次に、本実施形態に係る刃の製造方法について説明する。
本実施形態に係る刃の製造方法は、図4に示すように、円筒状の本体20の外周部に形成される複数の刃30の製造方法であって、原盤ロール母材21上に、快削性合金のめっき層31を形成する工程(図4(a)、(b))と、前記快削性合金のめっき層31を切削加工し、刃30を形成する工程(図4(c)、(d))と、を備え、形成された刃30のピッチPが0.5mm以下となる。
上述の工程(図4(a)~(d))を経ることによって、刃30の形成ピッチPが0.5mm以下と細かい場合であっても、全ての刃30の寸法精度が高く、高精度な切断が可能な刃を得ることができる。また、得られた刃30は、全てが快削合金からなることから、加工がしやすい上に、耐久性が高く、長期間の使用も可能となる。 (Blade manufacturing method)
Next, a method for manufacturing the blade according to the present embodiment will be described.
As shown in FIG. 4, the blade manufacturing method according to the present embodiment is a method for manufacturing a plurality ofblades 30 formed on the outer peripheral portion of the cylindrical main body 20, and is comfortable on the master roll base material 21. A step of forming the plating layer 31 of the workable alloy (FIGS. 4A and 4B) and a step of cutting the plating layer 31 of the free-cutting alloy to form a blade 30 (FIG. 4C). , (D)), and the pitch P of the formed blade 30 is 0.5 mm or less.
By going through the above steps (FIGS. 4A to 4D), even when the forming pitch P of theblades 30 is as fine as 0.5 mm or less, the dimensional accuracy of all the blades 30 is high and high accuracy. A blade capable of cutting can be obtained. Further, since the obtained blade 30 is entirely made of a free-cutting alloy, it is easy to process, has high durability, and can be used for a long period of time.
次に、本実施形態に係る刃の製造方法について説明する。
本実施形態に係る刃の製造方法は、図4に示すように、円筒状の本体20の外周部に形成される複数の刃30の製造方法であって、原盤ロール母材21上に、快削性合金のめっき層31を形成する工程(図4(a)、(b))と、前記快削性合金のめっき層31を切削加工し、刃30を形成する工程(図4(c)、(d))と、を備え、形成された刃30のピッチPが0.5mm以下となる。
上述の工程(図4(a)~(d))を経ることによって、刃30の形成ピッチPが0.5mm以下と細かい場合であっても、全ての刃30の寸法精度が高く、高精度な切断が可能な刃を得ることができる。また、得られた刃30は、全てが快削合金からなることから、加工がしやすい上に、耐久性が高く、長期間の使用も可能となる。 (Blade manufacturing method)
Next, a method for manufacturing the blade according to the present embodiment will be described.
As shown in FIG. 4, the blade manufacturing method according to the present embodiment is a method for manufacturing a plurality of
By going through the above steps (FIGS. 4A to 4D), even when the forming pitch P of the
本実施形態に係る刃の製造方法は、図4(a)、(b)に示すように、原盤ロール母材21上に、快削性合金のめっき層31を形成する工程を備える。
本工程(図4(a)、(b))によって、前記刃30の元となるめっき層31を形成することができる。 As shown in FIGS. 4A and 4B, the method for manufacturing a blade according to the present embodiment includes a step of forming a free-cuttingalloy plating layer 31 on a master roll base material 21.
By this step (FIGS. 4A and 4B), theplating layer 31 which is the base of the blade 30 can be formed.
本工程(図4(a)、(b))によって、前記刃30の元となるめっき層31を形成することができる。 As shown in FIGS. 4A and 4B, the method for manufacturing a blade according to the present embodiment includes a step of forming a free-cutting
By this step (FIGS. 4A and 4B), the
前記原盤ロール母材21は、前記めっき層31の下地となる部材であり、後に刃つきローラー10の本体20となる(図4(d))。
なお、前記原盤ロール母材21は、ロール(円筒)状の形状を有しているが、例えば、母材の表面を切削加工したり、研削加工することによって形成することができる。 The masterroll base material 21 is a member that serves as a base for the plating layer 31, and later becomes the main body 20 of the bladed roller 10 (FIG. 4D).
The masterroll base material 21 has a roll (cylindrical) shape, but can be formed by, for example, cutting or grinding the surface of the base material.
なお、前記原盤ロール母材21は、ロール(円筒)状の形状を有しているが、例えば、母材の表面を切削加工したり、研削加工することによって形成することができる。 The master
The master
前記原盤ロール母材21については、材料として、例えばステンレスや高強度炭素鋼等の公知の合金を用いることができ、剛性、コスト、切削性、快削性合金めっきとの密着性等を考慮して、適宜選択することが可能である。
As the master roll base material 21, a known alloy such as stainless steel or high-strength carbon steel can be used as the material, and rigidity, cost, machinability, adhesion to free-cutting alloy plating, and the like can be taken into consideration. It is possible to select as appropriate.
また、前記めっき層は、前記刃30の元となるものであり、快削性合金からなる。
なお、前記めっき層は、組成成分として快削性合金のみからなるが、不可避的不純物は含有し得る。 Further, the plating layer is a base of theblade 30, and is made of a free-cutting alloy.
The plating layer is composed of only a free-cutting alloy as a composition component, but may contain unavoidable impurities.
なお、前記めっき層は、組成成分として快削性合金のみからなるが、不可避的不純物は含有し得る。 Further, the plating layer is a base of the
The plating layer is composed of only a free-cutting alloy as a composition component, but may contain unavoidable impurities.
前記めっき層を形成するためのめっき方法については、特に限定はされない。例えば、無電解めっきや、電気めっき等の公知のめっき方法を適宜用いることができる。
また、前記めっき層の快削性合金については、ニッケル-リン合金、硬質銅合金が挙げられ、これらの中でも、ニッケル-リン合金を用いることが好ましい。刃の加工性や、刃の耐久性をより高めることができるためである。 The plating method for forming the plating layer is not particularly limited. For example, known plating methods such as electroless plating and electroplating can be appropriately used.
Examples of the free-cutting alloy of the plating layer include nickel-phosphorus alloys and hard copper alloys, and among these, nickel-phosphorus alloys are preferably used. This is because the workability of the blade and the durability of the blade can be further improved.
また、前記めっき層の快削性合金については、ニッケル-リン合金、硬質銅合金が挙げられ、これらの中でも、ニッケル-リン合金を用いることが好ましい。刃の加工性や、刃の耐久性をより高めることができるためである。 The plating method for forming the plating layer is not particularly limited. For example, known plating methods such as electroless plating and electroplating can be appropriately used.
Examples of the free-cutting alloy of the plating layer include nickel-phosphorus alloys and hard copper alloys, and among these, nickel-phosphorus alloys are preferably used. This is because the workability of the blade and the durability of the blade can be further improved.
また、本実施形態に係る刃の製造方法は、図4(c)、(d)に示すように、前記快削性合金のめっき層31を切削加工し、刃30を形成する工程を備える。
本工程(図4(c)、(d))によって、前記原盤ロール母材21(本体20)上に、刃30を形成することができる。 Further, as shown in FIGS. 4C and 4D, the blade manufacturing method according to the present embodiment includes a step of cutting theplating layer 31 of the free-cutting alloy to form the blade 30.
By this step (FIGS. 4C and 4D), theblade 30 can be formed on the master roll base material 21 (main body 20).
本工程(図4(c)、(d))によって、前記原盤ロール母材21(本体20)上に、刃30を形成することができる。 Further, as shown in FIGS. 4C and 4D, the blade manufacturing method according to the present embodiment includes a step of cutting the
By this step (FIGS. 4C and 4D), the
本工程については、特に限定はされないが、図4(c)に示すように、前記めっき層31を円柱状に切削加工する工程(円柱加工工程)と、図4(d)に示すように、円柱状に切削加工されためっき層31をさらに切削加工し、刃30を形成する工程(形状加工工程)とに、さらに分けることができる。
Although this step is not particularly limited, as shown in FIG. 4C, a step of cutting the plating layer 31 into a columnar shape (columnar processing step) and as shown in FIG. 4D, The plating layer 31 that has been machined into a columnar shape can be further cut and further divided into a step of forming a blade 30 (shape machining step).
前記円柱加工工程(図4(c))では、形成されためっき層31の表面を切削加工し、めっき層31が円柱状の形状となるようにする。図4(b)に示すように、めっき層31を形成しただけでは、表面形状が均一ではなく、そのまま高い寸法精度で刃30を形成することは困難である。そのため、前記めっき層31を、一旦、均一な円筒状に加工することによって、その後に続く形状加工工程(図4(d))をより高精度に行うことができる。
In the columnar processing step (FIG. 4C), the surface of the formed plating layer 31 is machined so that the plating layer 31 has a columnar shape. As shown in FIG. 4B, the surface shape is not uniform only by forming the plating layer 31, and it is difficult to form the blade 30 with high dimensional accuracy as it is. Therefore, once the plating layer 31 is processed into a uniform cylindrical shape, the subsequent shape processing step (FIG. 4D) can be performed with higher accuracy.
前記円柱加工工程(図4(c))において前記めっき層31を切削加工する方法については、めっき層31を円柱状に形成できる方法であれば、特に限定はされない。例えば、図4(c)に示すように、旋盤によるバイト加工により切削加工を行うことができ、その際のバイト41の先端は、R形状のダイヤモンドバイト等を用いることができる。ただし、前記バイト加工の種類については、特に限定はされず、その他の公知のバイト加工を適宜選択することができる。
The method of cutting the plating layer 31 in the columnar processing step (FIG. 4C) is not particularly limited as long as the plating layer 31 can be formed into a columnar shape. For example, as shown in FIG. 4C, cutting can be performed by cutting with a lathe, and an R-shaped diamond bite or the like can be used as the tip of the cutting tool 41 at that time. However, the type of the tool processing is not particularly limited, and other known tool processing can be appropriately selected.
なお、前記円柱表面加工の際は、前記めっき層31の表面を切削しすぎると、前記原盤ロール母材21の表面が露出したり、めっき層から刃を形成することができないくらいに薄くなるため、めっき層31の厚さと、形成される刃30の高さと、円柱表面加工後のめっき層の厚さを考慮する必要がある。例えば、形成される刃30の高さを0.24mmとする場合には、めっき厚さを0.35mm以上とし、円柱表面加工時には0.05mm程度の表面をバイトで研削することで、0.3mm程度の厚さのめっき層31となるように円柱状加工できる。
When the surface of the cylinder is processed, if the surface of the plating layer 31 is cut too much, the surface of the master roll base material 21 is exposed or the blade becomes so thin that the blade cannot be formed from the plating layer. It is necessary to consider the thickness of the plating layer 31, the height of the formed blade 30, and the thickness of the plating layer after processing the surface of the cylinder. For example, when the height of the formed blade 30 is 0.24 mm, the plating thickness is 0.35 mm or more, and when machining the surface of a cylinder, the surface of about 0.05 mm is ground with a cutting tool to achieve a thickness of about 0.3 mm. Cylindrical processing can be performed so as to form the plating layer 31.
前記形状加工工程(図4(d))では、円柱加工されためっき層31の表面をさらに切削加工し、対象とする複数の刃30を形成する。図4(d)に示すように、めっき層31を形成しただけでは、表面形状が均一ではなく、そのまま高い寸法精度で刃30を形成することは困難である。
In the shape processing step (FIG. 4 (d)), the surface of the cylindrically processed plating layer 31 is further machined to form a plurality of target blades 30. As shown in FIG. 4D, the surface shape is not uniform only by forming the plating layer 31, and it is difficult to form the blade 30 with high dimensional accuracy as it is.
前記形状加工工程(図4(d))において前記めっき層31を切削加工する方法については、刃の先端幅W、刃先角度α、刃間ピッチP等を、高い精度で制御できる方法であれば、特に限定はされない。例えば、ダイヤモンド工具を用いた精密切削加工装置によって形状加工を実施できる。
前記ダイヤモンド工具については、例えば図4(d)に示すように、断面が台形でテーパー形状の工具42を用いることができる。前記工具42のテーパー角度は刃30の刃先角度の寸法精度を高める観点から、該刃先角度に近い角度を有することが好ましい。 Regarding the method of cutting theplating layer 31 in the shape processing step (FIG. 4D), any method can control the blade tip width W, the blade edge angle α, the blade-to-blade pitch P, etc. with high accuracy. , There is no particular limitation. For example, shape machining can be performed by a precision cutting apparatus using a diamond tool.
As the diamond tool, for example, as shown in FIG. 4D, atool 42 having a trapezoidal cross section and a tapered shape can be used. The taper angle of the tool 42 is preferably an angle close to the cutting edge angle from the viewpoint of improving the dimensional accuracy of the cutting edge angle of the blade 30.
前記ダイヤモンド工具については、例えば図4(d)に示すように、断面が台形でテーパー形状の工具42を用いることができる。前記工具42のテーパー角度は刃30の刃先角度の寸法精度を高める観点から、該刃先角度に近い角度を有することが好ましい。 Regarding the method of cutting the
As the diamond tool, for example, as shown in FIG. 4D, a
また、本実施形態の製造方法によって得られた刃30は、全てが快削性合金から構成されているため、長期間の使用により刃先が摩耗したり、変形した場合等には、再度、前記形状加工を実施することで、前記刃先を摩耗前の状態へ戻すことができる。
Further, since the blade 30 obtained by the manufacturing method of the present embodiment is entirely made of a free-cutting alloy, if the blade edge is worn or deformed due to long-term use, the above-mentioned By performing shape processing, the cutting edge can be returned to the state before wear.
なお、本実施形態の製造方法は、必要に応じて、刃30の硬度を調整するために、熱処理工程をさらに実施することもできる。
熱処理の条件は、特に限定はされない。例えば、300~350℃、で60分以上の熱処理とすることができる。 In the manufacturing method of the present embodiment, if necessary, a heat treatment step can be further carried out in order to adjust the hardness of theblade 30.
The heat treatment conditions are not particularly limited. For example, the heat treatment can be performed at 300 to 350 ° C. for 60 minutes or more.
熱処理の条件は、特に限定はされない。例えば、300~350℃、で60分以上の熱処理とすることができる。 In the manufacturing method of the present embodiment, if necessary, a heat treatment step can be further carried out in order to adjust the hardness of the
The heat treatment conditions are not particularly limited. For example, the heat treatment can be performed at 300 to 350 ° C. for 60 minutes or more.
また、本実施形態の製造方法は、上述した工程以外にも、公知の条件(例えば、形成された刃の表面処理工程等)を適宜実施することが可能である。
Further, in the manufacturing method of the present embodiment, known conditions (for example, a surface treatment step of the formed blade) can be appropriately carried out in addition to the above-mentioned steps.
(切断装置)
次に、本実施形態に係る切断装置について説明する。
本実施形態の切断装置は、上述した本発明の刃を有する。本発明の刃を用いることによって、高精度な切断が可能であるとともに、刃の耐久性が高く、長期間の使用が可能となる。 (Cutting device)
Next, the cutting device according to the present embodiment will be described.
The cutting device of the present embodiment has the blade of the present invention described above. By using the blade of the present invention, high-precision cutting is possible, the blade is highly durable, and it can be used for a long period of time.
次に、本実施形態に係る切断装置について説明する。
本実施形態の切断装置は、上述した本発明の刃を有する。本発明の刃を用いることによって、高精度な切断が可能であるとともに、刃の耐久性が高く、長期間の使用が可能となる。 (Cutting device)
Next, the cutting device according to the present embodiment will be described.
The cutting device of the present embodiment has the blade of the present invention described above. By using the blade of the present invention, high-precision cutting is possible, the blade is highly durable, and it can be used for a long period of time.
本実施形態に係る切断装置の種類については、特に限定はされない。例えば、シェア刃方式、ギャング刃方式、スコアカット方式等の切断装置とすることができる。
これらの切断装置の中でも、本発明の刃による効果をより発揮できる観点からは、スコアカット方式の切断装置とすることが好ましい。 The type of cutting device according to this embodiment is not particularly limited. For example, a cutting device such as a share blade method, a gang blade method, or a score cut method can be used.
Among these cutting devices, a score-cut type cutting device is preferable from the viewpoint that the effect of the blade of the present invention can be more exerted.
これらの切断装置の中でも、本発明の刃による効果をより発揮できる観点からは、スコアカット方式の切断装置とすることが好ましい。 The type of cutting device according to this embodiment is not particularly limited. For example, a cutting device such as a share blade method, a gang blade method, or a score cut method can be used.
Among these cutting devices, a score-cut type cutting device is preferable from the viewpoint that the effect of the blade of the present invention can be more exerted.
なお、本発明の刃を、スコアカット方式の切断装置に用いる場合には、刃つきローラーの刃として用いることが好ましく、シェア刃方式又はギャング刃方式の切断装置に用いる場合には、上刃及び/又は下刃として用いることが好ましい。
When the blade of the present invention is used in a score-cut type cutting device, it is preferably used as a blade of a roller with a blade, and when used in a share blade type or gang blade type cutting device, the upper blade and / Or preferably used as a lower blade.
次に、本発明を実施例に基づき具体的に説明する。ただし、本発明は下記の実施例に何ら限定されるものではない。
Next, the present invention will be specifically described based on examples. However, the present invention is not limited to the following examples.
(実施例1)
ステンレスの原盤ロール母材(SUS440C、直径:98mm、軸方向の長さ:70mm(そのうち12mmの長さ範囲に刃を形成))を用意し、該母材に無電解めっきを施し、平均厚さが0.35mmのニッケル-リン合金の層を形成した。その後、R形状のバイトによって、合金層を円柱状に表面加工した後、テーパー角度25度のダイヤモンド工具を用いて形状加工を行い、サンプルとなる刃を得た。
得られた刃の数は31個、先端平均幅は0.002mm、刃先角度は25°、ビッカース硬度は550である。 (Example 1)
Prepare a stainless master roll base material (SUS440C, diameter: 98 mm, axial length: 70 mm (blades are formed in the length range of 12 mm)), electrolessly plating the base material, and average thickness. Formed a layer of 0.35 mm nickel-phosphorus alloy. Then, the alloy layer was surface-processed into a columnar shape with an R-shaped cutting tool, and then the shape was processed using a diamond tool with a taper angle of 25 degrees to obtain a sample blade.
The number of blades obtained was 31, the average tip width was 0.002 mm, the cutting edge angle was 25 °, and the Vickers hardness was 550.
ステンレスの原盤ロール母材(SUS440C、直径:98mm、軸方向の長さ:70mm(そのうち12mmの長さ範囲に刃を形成))を用意し、該母材に無電解めっきを施し、平均厚さが0.35mmのニッケル-リン合金の層を形成した。その後、R形状のバイトによって、合金層を円柱状に表面加工した後、テーパー角度25度のダイヤモンド工具を用いて形状加工を行い、サンプルとなる刃を得た。
得られた刃の数は31個、先端平均幅は0.002mm、刃先角度は25°、ビッカース硬度は550である。 (Example 1)
Prepare a stainless master roll base material (SUS440C, diameter: 98 mm, axial length: 70 mm (blades are formed in the length range of 12 mm)), electrolessly plating the base material, and average thickness. Formed a layer of 0.35 mm nickel-phosphorus alloy. Then, the alloy layer was surface-processed into a columnar shape with an R-shaped cutting tool, and then the shape was processed using a diamond tool with a taper angle of 25 degrees to obtain a sample blade.
The number of blades obtained was 31, the average tip width was 0.002 mm, the cutting edge angle was 25 °, and the Vickers hardness was 550.
(実施例2)
実施例1と同様の条件で刃を作製した後、300℃で1時間の熱処理を施すことで、サンプルとなる刃を得た。
得られた刃の数は31個、先端平均幅は0.002mm、刃先角度は25°、ビッカース硬度は900である。 (Example 2)
After producing the blade under the same conditions as in Example 1, the blade was heat-treated at 300 ° C. for 1 hour to obtain a sample blade.
The number of blades obtained was 31, the average tip width was 0.002 mm, the cutting edge angle was 25 °, and the Vickers hardness was 900.
実施例1と同様の条件で刃を作製した後、300℃で1時間の熱処理を施すことで、サンプルとなる刃を得た。
得られた刃の数は31個、先端平均幅は0.002mm、刃先角度は25°、ビッカース硬度は900である。 (Example 2)
After producing the blade under the same conditions as in Example 1, the blade was heat-treated at 300 ° C. for 1 hour to obtain a sample blade.
The number of blades obtained was 31, the average tip width was 0.002 mm, the cutting edge angle was 25 °, and the Vickers hardness was 900.
(実施例3)
ステンレスの原盤ロール母材(SUS304、直径:98mm、軸方向の長さ:70mm(そのうち4mmの長さ範囲に刃を形成))を用意し、該母材に無電解めっきを施し、平均厚さが0.35mmのニッケル-リン合金の層を形成した。その後、R形状のバイトによって、合金層を円柱状に表面加工した後、テーパー角度25度のダイヤモンド工具を用い、形状加工を行い、サンプルとなる刃を得た。
得られた刃の数は11個、先端平均幅は0.005mm、刃先角度は25°、ビッカース硬度は550である。 (Example 3)
Prepare a stainless master roll base material (SUS304, diameter: 98 mm, axial length: 70 mm (blades are formed in a length range of 4 mm)), electrolessly plating the base material, and average thickness. Formed a layer of 0.35 mm nickel-phosphorus alloy. Then, the alloy layer was surface-processed into a columnar shape with an R-shaped cutting tool, and then the shape was processed using a diamond tool with a taper angle of 25 degrees to obtain a sample blade.
The number of blades obtained was 11, the average tip width was 0.005 mm, the cutting edge angle was 25 °, and the Vickers hardness was 550.
ステンレスの原盤ロール母材(SUS304、直径:98mm、軸方向の長さ:70mm(そのうち4mmの長さ範囲に刃を形成))を用意し、該母材に無電解めっきを施し、平均厚さが0.35mmのニッケル-リン合金の層を形成した。その後、R形状のバイトによって、合金層を円柱状に表面加工した後、テーパー角度25度のダイヤモンド工具を用い、形状加工を行い、サンプルとなる刃を得た。
得られた刃の数は11個、先端平均幅は0.005mm、刃先角度は25°、ビッカース硬度は550である。 (Example 3)
Prepare a stainless master roll base material (SUS304, diameter: 98 mm, axial length: 70 mm (blades are formed in a length range of 4 mm)), electrolessly plating the base material, and average thickness. Formed a layer of 0.35 mm nickel-phosphorus alloy. Then, the alloy layer was surface-processed into a columnar shape with an R-shaped cutting tool, and then the shape was processed using a diamond tool with a taper angle of 25 degrees to obtain a sample blade.
The number of blades obtained was 11, the average tip width was 0.005 mm, the cutting edge angle was 25 °, and the Vickers hardness was 550.
(実施例4)
ステンレスの原盤ロール母材(SUS304、直径:98mm、軸方向の長さ:70mm(そのうち3mmの長さ範囲に刃を形成))を用意し、該母材に無電解めっきを施し、平均厚さが0.35mmのニッケル-リン合金の層を形成した。その後、R形状のバイトによって、合金層を円柱状に表面加工した後、テーパー角度25度のダイヤモンド工具を用いて刃先の形状加工を行った後、テーパー角度8度のダイヤモンド工具を用いて鎬部の加工を行い、サンプルとなる刃を得た。
得られた刃の数は11個、先端平均幅は0.002mm、刃先角度は25°、鎬角度は8°、鎬長さは0.2mm、ビッカース硬度は550である。 (Example 4)
Prepare a stainless master roll base material (SUS304, diameter: 98 mm, axial length: 70 mm (blades are formed in a length range of 3 mm)), electrolessly plating the base material, and average thickness. Formed a layer of 0.35 mm nickel-phosphorus alloy. After that, the alloy layer is surface-processed into a columnar shape with an R-shaped cutting tool, and then the shape of the cutting edge is processed using a diamond tool with a taper angle of 25 degrees. Was processed to obtain a sample blade.
The number of blades obtained was 11, the average tip width was 0.002 mm, the cutting edge angle was 25 °, the hog angle was 8 °, the hog length was 0.2 mm, and the Vickers hardness was 550.
ステンレスの原盤ロール母材(SUS304、直径:98mm、軸方向の長さ:70mm(そのうち3mmの長さ範囲に刃を形成))を用意し、該母材に無電解めっきを施し、平均厚さが0.35mmのニッケル-リン合金の層を形成した。その後、R形状のバイトによって、合金層を円柱状に表面加工した後、テーパー角度25度のダイヤモンド工具を用いて刃先の形状加工を行った後、テーパー角度8度のダイヤモンド工具を用いて鎬部の加工を行い、サンプルとなる刃を得た。
得られた刃の数は11個、先端平均幅は0.002mm、刃先角度は25°、鎬角度は8°、鎬長さは0.2mm、ビッカース硬度は550である。 (Example 4)
Prepare a stainless master roll base material (SUS304, diameter: 98 mm, axial length: 70 mm (blades are formed in a length range of 3 mm)), electrolessly plating the base material, and average thickness. Formed a layer of 0.35 mm nickel-phosphorus alloy. After that, the alloy layer is surface-processed into a columnar shape with an R-shaped cutting tool, and then the shape of the cutting edge is processed using a diamond tool with a taper angle of 25 degrees. Was processed to obtain a sample blade.
The number of blades obtained was 11, the average tip width was 0.002 mm, the cutting edge angle was 25 °, the hog angle was 8 °, the hog length was 0.2 mm, and the Vickers hardness was 550.
(実施例5)
ステンレスの原盤ロール母材(SUS304、直径:98mm、軸方向の長さ:70mm(そのうち3mmの長さ範囲に刃を形成))を用意し、該母材に無電解めっきを施し、平均厚さが0.35mmのニッケル-リン合金の層を形成した。その後、R形状のバイトによって、合金層を円柱状に表面加工した後、テーパー角度25度のダイヤモンド工具を用いて刃先の形状加工を行った後、テーパー角度8度のダイヤモンド工具を用いて鎬部の加工を行い、サンプルとなる刃を得た。
得られた刃の数は11個、先端平均幅は0.002mm、刃先角度は25°、鎬角度は8°、鎬長さは0.15mm、ビッカース硬度は550である。 (Example 5)
Prepare a stainless master roll base material (SUS304, diameter: 98 mm, axial length: 70 mm (blades are formed in a length range of 3 mm)), electrolessly plating the base material, and average thickness. Formed a layer of 0.35 mm nickel-phosphorus alloy. After that, the alloy layer is surface-processed into a columnar shape with an R-shaped cutting tool, and then the shape of the cutting edge is processed using a diamond tool with a taper angle of 25 degrees. Was processed to obtain a sample blade.
The number of blades obtained was 11, the average tip width was 0.002 mm, the cutting edge angle was 25 °, the hog angle was 8 °, the hog length was 0.15 mm, and the Vickers hardness was 550.
ステンレスの原盤ロール母材(SUS304、直径:98mm、軸方向の長さ:70mm(そのうち3mmの長さ範囲に刃を形成))を用意し、該母材に無電解めっきを施し、平均厚さが0.35mmのニッケル-リン合金の層を形成した。その後、R形状のバイトによって、合金層を円柱状に表面加工した後、テーパー角度25度のダイヤモンド工具を用いて刃先の形状加工を行った後、テーパー角度8度のダイヤモンド工具を用いて鎬部の加工を行い、サンプルとなる刃を得た。
得られた刃の数は11個、先端平均幅は0.002mm、刃先角度は25°、鎬角度は8°、鎬長さは0.15mm、ビッカース硬度は550である。 (Example 5)
Prepare a stainless master roll base material (SUS304, diameter: 98 mm, axial length: 70 mm (blades are formed in a length range of 3 mm)), electrolessly plating the base material, and average thickness. Formed a layer of 0.35 mm nickel-phosphorus alloy. After that, the alloy layer is surface-processed into a columnar shape with an R-shaped cutting tool, and then the shape of the cutting edge is processed using a diamond tool with a taper angle of 25 degrees. Was processed to obtain a sample blade.
The number of blades obtained was 11, the average tip width was 0.002 mm, the cutting edge angle was 25 °, the hog angle was 8 °, the hog length was 0.15 mm, and the Vickers hardness was 550.
(実施例6)
ステンレスの原盤ロール母材(SUS304、直径:98mm、軸方向の長さ:70mm(そのうち3mmの長さ範囲に刃を形成))を用意し、該母材に無電解めっきを施し、平均厚さが0.35mmのニッケル-リン合金の層を形成した。その後、R形状のバイトによって、合金層を円柱状に表面加工した後、テーパー角度25度のダイヤモンド工具を用いて刃先の形状加工を行った後、テーパー角度8度のダイヤモンド工具を用いて鎬部の加工を行い、サンプルとなる刃を得た。
得られた刃の数は11個、先端平均幅は0.002mm、刃先角度は25°、鎬角度は8°、鎬長さは0.1mm、ビッカース硬度は550である。 (Example 6)
Prepare a stainless master roll base material (SUS304, diameter: 98 mm, axial length: 70 mm (blades are formed in a length range of 3 mm)), electrolessly plating the base material, and average thickness. Formed a layer of 0.35 mm nickel-phosphorus alloy. After that, the alloy layer is surface-processed into a columnar shape with an R-shaped cutting tool, and then the shape of the cutting edge is processed using a diamond tool with a taper angle of 25 degrees. Was processed to obtain a sample blade.
The number of blades obtained was 11, the average tip width was 0.002 mm, the cutting edge angle was 25 °, the hog angle was 8 °, the hog length was 0.1 mm, and the Vickers hardness was 550.
ステンレスの原盤ロール母材(SUS304、直径:98mm、軸方向の長さ:70mm(そのうち3mmの長さ範囲に刃を形成))を用意し、該母材に無電解めっきを施し、平均厚さが0.35mmのニッケル-リン合金の層を形成した。その後、R形状のバイトによって、合金層を円柱状に表面加工した後、テーパー角度25度のダイヤモンド工具を用いて刃先の形状加工を行った後、テーパー角度8度のダイヤモンド工具を用いて鎬部の加工を行い、サンプルとなる刃を得た。
得られた刃の数は11個、先端平均幅は0.002mm、刃先角度は25°、鎬角度は8°、鎬長さは0.1mm、ビッカース硬度は550である。 (Example 6)
Prepare a stainless master roll base material (SUS304, diameter: 98 mm, axial length: 70 mm (blades are formed in a length range of 3 mm)), electrolessly plating the base material, and average thickness. Formed a layer of 0.35 mm nickel-phosphorus alloy. After that, the alloy layer is surface-processed into a columnar shape with an R-shaped cutting tool, and then the shape of the cutting edge is processed using a diamond tool with a taper angle of 25 degrees. Was processed to obtain a sample blade.
The number of blades obtained was 11, the average tip width was 0.002 mm, the cutting edge angle was 25 °, the hog angle was 8 °, the hog length was 0.1 mm, and the Vickers hardness was 550.
(比較例1)
金属製の円形刃(材質:SKH51)を5枚準備した。刃軸に対し、ディスタンスピース(又は、スペーサ)、刃、ディスタンスピースの順に積層し、所定の刃の間隔で、ローラー状の本体に組み付けた。
刃の寸法は、円の直径が98mm、厚さが0.5mmであった。 (Comparative Example 1)
Five metal circular blades (material: SKH51) were prepared. The distance piece (or spacer), the blade, and the distance piece were laminated in this order on the blade shaft, and assembled to the roller-shaped main body at predetermined blade intervals.
The dimensions of the blade were a circle with a diameter of 98 mm and a thickness of 0.5 mm.
金属製の円形刃(材質:SKH51)を5枚準備した。刃軸に対し、ディスタンスピース(又は、スペーサ)、刃、ディスタンスピースの順に積層し、所定の刃の間隔で、ローラー状の本体に組み付けた。
刃の寸法は、円の直径が98mm、厚さが0.5mmであった。 (Comparative Example 1)
Five metal circular blades (material: SKH51) were prepared. The distance piece (or spacer), the blade, and the distance piece were laminated in this order on the blade shaft, and assembled to the roller-shaped main body at predetermined blade intervals.
The dimensions of the blade were a circle with a diameter of 98 mm and a thickness of 0.5 mm.
(比較例2~4)
銅からなる原盤ロール母材(直径:98mm、軸方向の長さ:70mm(そのうち4mmの長さ範囲に刃を形成))を用意し、R形状のバイトによって、母材を円柱状に表面加工した後、テーパー角度25度のダイヤモンド工具を用い、形状加工を行い、サンプルとなる刃を得た。
比較例2のサンプルでは、得られた刃の数は11個、先端平均幅は0.005mm、刃先角度は25°、ビッカース硬度は180である。
比較例3のサンプルでは、得られた刃の数は11個、先端平均幅は0.035mm、刃先角度は25°、ビッカース硬度は180である。
比較例4のサンプルでは、得られた刃の数は11個、先端平均幅は0.002mm、刃先角度は25°、ビッカース硬度は180である。 (Comparative Examples 2 to 4)
Prepare a master roll base material made of copper (diameter: 98 mm, axial length: 70 mm (blade is formed in the length range of 4 mm)), and surface-process the base material into a columnar shape with an R-shaped cutting tool. After that, a diamond tool with a taper angle of 25 degrees was used to perform shape processing to obtain a sample blade.
In the sample of Comparative Example 2, the number of blades obtained was 11, the average tip width was 0.005 mm, the cutting edge angle was 25 °, and the Vickers hardness was 180.
In the sample of Comparative Example 3, the number of blades obtained was 11, the average tip width was 0.035 mm, the cutting edge angle was 25 °, and the Vickers hardness was 180.
In the sample of Comparative Example 4, the number of blades obtained was 11, the average tip width was 0.002 mm, the cutting edge angle was 25 °, and the Vickers hardness was 180.
銅からなる原盤ロール母材(直径:98mm、軸方向の長さ:70mm(そのうち4mmの長さ範囲に刃を形成))を用意し、R形状のバイトによって、母材を円柱状に表面加工した後、テーパー角度25度のダイヤモンド工具を用い、形状加工を行い、サンプルとなる刃を得た。
比較例2のサンプルでは、得られた刃の数は11個、先端平均幅は0.005mm、刃先角度は25°、ビッカース硬度は180である。
比較例3のサンプルでは、得られた刃の数は11個、先端平均幅は0.035mm、刃先角度は25°、ビッカース硬度は180である。
比較例4のサンプルでは、得られた刃の数は11個、先端平均幅は0.002mm、刃先角度は25°、ビッカース硬度は180である。 (Comparative Examples 2 to 4)
Prepare a master roll base material made of copper (diameter: 98 mm, axial length: 70 mm (blade is formed in the length range of 4 mm)), and surface-process the base material into a columnar shape with an R-shaped cutting tool. After that, a diamond tool with a taper angle of 25 degrees was used to perform shape processing to obtain a sample blade.
In the sample of Comparative Example 2, the number of blades obtained was 11, the average tip width was 0.005 mm, the cutting edge angle was 25 °, and the Vickers hardness was 180.
In the sample of Comparative Example 3, the number of blades obtained was 11, the average tip width was 0.035 mm, the cutting edge angle was 25 °, and the Vickers hardness was 180.
In the sample of Comparative Example 4, the number of blades obtained was 11, the average tip width was 0.002 mm, the cutting edge angle was 25 °, and the Vickers hardness was 180.
<評価>
実施例1~3及び比較例1~4のサンプルについて、使用前の、刃の寸法状態(刃先角度、刃先ピッチ精度、先端平均幅、硬度)について、顕微鏡及び拡大撮影した写真を用いて、寸法状態の確認及び測定を行った。結果を表2に示す。
さらに、実施例及び比較例の各サンプルについては、上述した刃の寸法状態の測定に加えて、以下(1)及び(2)の評価も行った。 <Evaluation>
For the samples of Examples 1 to 3 and Comparative Examples 1 to 4, the dimensional state of the blade (blade angle, blade pitch accuracy, tip average width, hardness) before use was measured using a microscope and magnified photographs. The condition was confirmed and measured. The results are shown in Table 2.
Further, for each sample of Examples and Comparative Examples, in addition to the above-mentioned measurement of the dimensional state of the blade, the following evaluations (1) and (2) were also performed.
実施例1~3及び比較例1~4のサンプルについて、使用前の、刃の寸法状態(刃先角度、刃先ピッチ精度、先端平均幅、硬度)について、顕微鏡及び拡大撮影した写真を用いて、寸法状態の確認及び測定を行った。結果を表2に示す。
さらに、実施例及び比較例の各サンプルについては、上述した刃の寸法状態の測定に加えて、以下(1)及び(2)の評価も行った。 <Evaluation>
For the samples of Examples 1 to 3 and Comparative Examples 1 to 4, the dimensional state of the blade (blade angle, blade pitch accuracy, tip average width, hardness) before use was measured using a microscope and magnified photographs. The condition was confirmed and measured. The results are shown in Table 2.
Further, for each sample of Examples and Comparative Examples, in addition to the above-mentioned measurement of the dimensional state of the blade, the following evaluations (1) and (2) were also performed.
(1)刃の高さのばらつき
比較例2~4及び実施例1~3のサンプルについて、それぞれ、5つの刃(n1~n5)を任意に選択し、刃の表面に紫外線硬化型樹脂を滴下した後に紫外線を照射し硬化させることで、当該刃の転写物を得ることにより、選択した刃の高さについて観察及び測定を行った。測定結果を表1に示す。
表1の結果から、実施例の各サンプルについては、刃の高さのばらつきがないことがわかった。一方、比較例2~4については、0.004mm程度のばらつきが生じることがわかった。 (1) Variation in blade height For the samples of Comparative Examples 2 to 4 and Examples 1 to 3, five blades (n1 to n5) are arbitrarily selected, and an ultraviolet curable resin is dropped on the surface of the blades. After that, the height of the selected blade was observed and measured by obtaining a transfer product of the blade by irradiating it with ultraviolet rays and curing it. The measurement results are shown in Table 1.
From the results in Table 1, it was found that there was no variation in the height of the blade for each sample of the example. On the other hand, in Comparative Examples 2 to 4, it was found that a variation of about 0.004 mm occurred.
比較例2~4及び実施例1~3のサンプルについて、それぞれ、5つの刃(n1~n5)を任意に選択し、刃の表面に紫外線硬化型樹脂を滴下した後に紫外線を照射し硬化させることで、当該刃の転写物を得ることにより、選択した刃の高さについて観察及び測定を行った。測定結果を表1に示す。
表1の結果から、実施例の各サンプルについては、刃の高さのばらつきがないことがわかった。一方、比較例2~4については、0.004mm程度のばらつきが生じることがわかった。 (1) Variation in blade height For the samples of Comparative Examples 2 to 4 and Examples 1 to 3, five blades (n1 to n5) are arbitrarily selected, and an ultraviolet curable resin is dropped on the surface of the blades. After that, the height of the selected blade was observed and measured by obtaining a transfer product of the blade by irradiating it with ultraviolet rays and curing it. The measurement results are shown in Table 1.
From the results in Table 1, it was found that there was no variation in the height of the blade for each sample of the example. On the other hand, in Comparative Examples 2 to 4, it was found that a variation of about 0.004 mm occurred.
(2)刃先ピッチ精度
サンプルごとに、5つの刃(n1~n5)を任意に選択し、狙った刃先ピッチ(表2の平均刃先ピッチ)からのばらつきを刃先ピッチの精度として測定した。測定結果を表2に示す。また、刃先ピッチのばらつきは、刃の周方向に沿って4カ所(0°、90°、180°、270°)の位置で測定しており、その測定結果をグラフにプロットして図5及び図6に示している。表2では、全20個のデータ(5つの刃×周方向の4カ所)のうち、最も大きなピッチと最も小さなピッチとの差を刃先ピッチ精度として表示している。
表2、図5及び図6の結果から、実施例の各サンプルのピッチのばらつきは、比較例2~4のサンプルのピッチのばらつきに比べて、半分以下であり、刃先ピッチ精度が大きく改善されていることがわかった。 (2) Cutting edge pitch accuracy Five blades (n1 to n5) were arbitrarily selected for each sample, and the variation from the target cutting edge pitch (average cutting edge pitch in Table 2) was measured as the cutting edge pitch accuracy. The measurement results are shown in Table 2. In addition, the variation in the cutting edge pitch is measured at four positions (0 °, 90 °, 180 °, 270 °) along the circumferential direction of the blade, and the measurement results are plotted on a graph in FIG. 5 and FIG. It is shown in FIG. In Table 2, the difference between the largest pitch and the smallest pitch among all 20 data (5 blades x 4 locations in the circumferential direction) is displayed as the cutting edge pitch accuracy.
From the results of Table 2, FIG. 5 and FIG. 6, the variation in the pitch of each sample in the examples is less than half that of the variation in the pitch of the samples in Comparative Examples 2 to 4, and the cutting edge pitch accuracy is greatly improved. It turned out that.
サンプルごとに、5つの刃(n1~n5)を任意に選択し、狙った刃先ピッチ(表2の平均刃先ピッチ)からのばらつきを刃先ピッチの精度として測定した。測定結果を表2に示す。また、刃先ピッチのばらつきは、刃の周方向に沿って4カ所(0°、90°、180°、270°)の位置で測定しており、その測定結果をグラフにプロットして図5及び図6に示している。表2では、全20個のデータ(5つの刃×周方向の4カ所)のうち、最も大きなピッチと最も小さなピッチとの差を刃先ピッチ精度として表示している。
表2、図5及び図6の結果から、実施例の各サンプルのピッチのばらつきは、比較例2~4のサンプルのピッチのばらつきに比べて、半分以下であり、刃先ピッチ精度が大きく改善されていることがわかった。 (2) Cutting edge pitch accuracy Five blades (n1 to n5) were arbitrarily selected for each sample, and the variation from the target cutting edge pitch (average cutting edge pitch in Table 2) was measured as the cutting edge pitch accuracy. The measurement results are shown in Table 2. In addition, the variation in the cutting edge pitch is measured at four positions (0 °, 90 °, 180 °, 270 °) along the circumferential direction of the blade, and the measurement results are plotted on a graph in FIG. 5 and FIG. It is shown in FIG. In Table 2, the difference between the largest pitch and the smallest pitch among all 20 data (5 blades x 4 locations in the circumferential direction) is displayed as the cutting edge pitch accuracy.
From the results of Table 2, FIG. 5 and FIG. 6, the variation in the pitch of each sample in the examples is less than half that of the variation in the pitch of the samples in Comparative Examples 2 to 4, and the cutting edge pitch accuracy is greatly improved. It turned out that.
また、実施例1~6及び比較例2~4のサンプルの刃については、ステンレス製のローラー(S45C、直径30mm)に組み付け、スコアカット方式の切断装置内の刃付ローラーとして用いた。なお、比較例1については、そのサンプルをスコアカット方式の切断装置内の刃付ローラーとして用いた。
そして、各サンプルの刃を用いたスコアカット方式の切断装置によって、PETフィルム(東洋紡A4300、厚さ:50μm、幅:4mm)を切断した。なお、切断装置によるフィルムの切断は、100mの長さまで実施した。フィルム切断を行った後、以下(3)~(5)の評価を行った。 The blades of the samples of Examples 1 to 6 and Comparative Examples 2 to 4 were assembled to a stainless steel roller (S45C,diameter 30 mm) and used as a roller with a blade in a score-cut type cutting device. For Comparative Example 1, the sample was used as a roller with a blade in a score-cut type cutting device.
Then, a PET film (Toyobo A4300, thickness: 50 μm, width: 4 mm) was cut by a score-cut type cutting device using the blade of each sample. The film was cut by the cutting device up to a length of 100 m. After cutting the film, the following evaluations (3) to (5) were performed.
そして、各サンプルの刃を用いたスコアカット方式の切断装置によって、PETフィルム(東洋紡A4300、厚さ:50μm、幅:4mm)を切断した。なお、切断装置によるフィルムの切断は、100mの長さまで実施した。フィルム切断を行った後、以下(3)~(5)の評価を行った。 The blades of the samples of Examples 1 to 6 and Comparative Examples 2 to 4 were assembled to a stainless steel roller (S45C,
Then, a PET film (Toyobo A4300, thickness: 50 μm, width: 4 mm) was cut by a score-cut type cutting device using the blade of each sample. The film was cut by the cutting device up to a length of 100 m. After cutting the film, the following evaluations (3) to (5) were performed.
(3)フィルム切断の可否
各サンプルの刃を用いた切断装置によるフィルムの切断を、100mまで実施できたか否かについて目視にて確認を行った。
評価については、100mのフィルムの切断を確認できた場合には○、100mのフィルムの切断を確認できたものの切りにくかった場合には▲、100mのフィルムの切断を確認できなかった場合には×とし、結果を表2に示す。また、実施例1~3及び比較例2~4のサンプルについては、切断後のフィルムの状態を撮影し、図7及び8に示す。 (3) Whether or not the film can be cut It was visually confirmed whether or not the film could be cut up to 100 m by a cutting device using the blade of each sample.
Regarding the evaluation, ○ if 100m film cutting can be confirmed, ▲ if 100m film cutting can be confirmed but difficult to cut, × if 100m film cutting cannot be confirmed. The results are shown in Table 2. For the samples of Examples 1 to 3 and Comparative Examples 2 to 4, the state of the film after cutting was photographed and shown in FIGS. 7 and 8.
各サンプルの刃を用いた切断装置によるフィルムの切断を、100mまで実施できたか否かについて目視にて確認を行った。
評価については、100mのフィルムの切断を確認できた場合には○、100mのフィルムの切断を確認できたものの切りにくかった場合には▲、100mのフィルムの切断を確認できなかった場合には×とし、結果を表2に示す。また、実施例1~3及び比較例2~4のサンプルについては、切断後のフィルムの状態を撮影し、図7及び8に示す。 (3) Whether or not the film can be cut It was visually confirmed whether or not the film could be cut up to 100 m by a cutting device using the blade of each sample.
Regarding the evaluation, ○ if 100m film cutting can be confirmed, ▲ if 100m film cutting can be confirmed but difficult to cut, × if 100m film cutting cannot be confirmed. The results are shown in Table 2. For the samples of Examples 1 to 3 and Comparative Examples 2 to 4, the state of the film after cutting was photographed and shown in FIGS. 7 and 8.
(4)フィルム切断後の刃のダメージ
各サンプルの刃を用いた切断装置によるフィルムの切断を行った後、刃のダメージがあるか否かをマイクロスコープによって観察した。
評価については、フィルムの切断を行った後に刃の損傷がなかった場合には○、フィルムの切断を行った後に刃の損傷があった場合には×とし、結果を表2に示す。また、実施例1~3及び比較例2~4のサンプルについては、切断前後の刃の状態を撮影し、図7及び8に示す。 (4) Damage to the blade after cutting the film After cutting the film with a cutting device using the blade of each sample, it was observed with a microscope whether or not there was damage to the blade.
Regarding the evaluation, if there was no damage to the blade after cutting the film, it was evaluated as ◯, and if there was damage to the blade after cutting the film, it was evaluated as x, and the results are shown in Table 2. For the samples of Examples 1 to 3 and Comparative Examples 2 to 4, the state of the blade before and after cutting was photographed and shown in FIGS. 7 and 8.
各サンプルの刃を用いた切断装置によるフィルムの切断を行った後、刃のダメージがあるか否かをマイクロスコープによって観察した。
評価については、フィルムの切断を行った後に刃の損傷がなかった場合には○、フィルムの切断を行った後に刃の損傷があった場合には×とし、結果を表2に示す。また、実施例1~3及び比較例2~4のサンプルについては、切断前後の刃の状態を撮影し、図7及び8に示す。 (4) Damage to the blade after cutting the film After cutting the film with a cutting device using the blade of each sample, it was observed with a microscope whether or not there was damage to the blade.
Regarding the evaluation, if there was no damage to the blade after cutting the film, it was evaluated as ◯, and if there was damage to the blade after cutting the film, it was evaluated as x, and the results are shown in Table 2. For the samples of Examples 1 to 3 and Comparative Examples 2 to 4, the state of the blade before and after cutting was photographed and shown in FIGS. 7 and 8.
(5)フィルムの切断精度
各サンプルの刃を用いた切断装置によるフィルムの切断を行った後、切断されたフィルムの状態を、顕微鏡によって観察した。
評価については、100mのフィルムの中で、切断幅のばらつきが0.002mm以下の場合には○、切断幅のばらつきが0.002mmを超える場合には×とし、表2に示す。また、実施例1~3及び比較例2~4のサンプルについては、切断されたフィルムの一部の状態を撮影し、図7及び8に示す。 (5) Film cutting accuracy After cutting the film with a cutting device using the blade of each sample, the state of the cut film was observed with a microscope.
Regarding the evaluation, in a 100 m film, when the variation in cutting width is 0.002 mm or less, it is evaluated as ◯, and when the variation in cut width exceeds 0.002 mm, it is evaluated as ×, and is shown in Table 2. For the samples of Examples 1 to 3 and Comparative Examples 2 to 4, a part of the cut film was photographed and shown in FIGS. 7 and 8.
各サンプルの刃を用いた切断装置によるフィルムの切断を行った後、切断されたフィルムの状態を、顕微鏡によって観察した。
評価については、100mのフィルムの中で、切断幅のばらつきが0.002mm以下の場合には○、切断幅のばらつきが0.002mmを超える場合には×とし、表2に示す。また、実施例1~3及び比較例2~4のサンプルについては、切断されたフィルムの一部の状態を撮影し、図7及び8に示す。 (5) Film cutting accuracy After cutting the film with a cutting device using the blade of each sample, the state of the cut film was observed with a microscope.
Regarding the evaluation, in a 100 m film, when the variation in cutting width is 0.002 mm or less, it is evaluated as ◯, and when the variation in cut width exceeds 0.002 mm, it is evaluated as ×, and is shown in Table 2. For the samples of Examples 1 to 3 and Comparative Examples 2 to 4, a part of the cut film was photographed and shown in FIGS. 7 and 8.
表2及び図5~8の結果から、実施例の各サンプルの刃を用いた場合には、フィルム切断前の刃の寸法精度に優れ、フィルム切断後の刃の耐久性にも優れ、フィルムの切断精度についても優れる結果が得られることがわかった。
一方、比較例1のサンプルの刃を用いた場合には、切断前の刃の寸法精度及びフィルムの切断精度について、劣る結果を示すことがわかった。これは、刃の寸法精度が低いことに加えて、刃をロールに組み付けた際の精度に問題があったと思われる。
また、比較例2~4のサンプルの刃を用いた場合には、切断前の寸法精度には優れるものの、フィルム切断を十分に行うことができず、耐久性が低い結果となった。 From the results of Table 2 and FIGS. 5 to 8, when the blades of each sample of the examples were used, the dimensional accuracy of the blades before cutting the film was excellent, the durability of the blades after cutting the film was also excellent, and the film It was found that excellent results were also obtained for cutting accuracy.
On the other hand, when the blade of the sample of Comparative Example 1 was used, it was found that the dimensional accuracy of the blade before cutting and the cutting accuracy of the film were inferior. It seems that there was a problem with the accuracy when the blade was assembled to the roll, in addition to the low dimensional accuracy of the blade.
Further, when the blades of the samples of Comparative Examples 2 to 4 were used, although the dimensional accuracy before cutting was excellent, the film could not be sufficiently cut, resulting in low durability.
一方、比較例1のサンプルの刃を用いた場合には、切断前の刃の寸法精度及びフィルムの切断精度について、劣る結果を示すことがわかった。これは、刃の寸法精度が低いことに加えて、刃をロールに組み付けた際の精度に問題があったと思われる。
また、比較例2~4のサンプルの刃を用いた場合には、切断前の寸法精度には優れるものの、フィルム切断を十分に行うことができず、耐久性が低い結果となった。 From the results of Table 2 and FIGS. 5 to 8, when the blades of each sample of the examples were used, the dimensional accuracy of the blades before cutting the film was excellent, the durability of the blades after cutting the film was also excellent, and the film It was found that excellent results were also obtained for cutting accuracy.
On the other hand, when the blade of the sample of Comparative Example 1 was used, it was found that the dimensional accuracy of the blade before cutting and the cutting accuracy of the film were inferior. It seems that there was a problem with the accuracy when the blade was assembled to the roll, in addition to the low dimensional accuracy of the blade.
Further, when the blades of the samples of Comparative Examples 2 to 4 were used, although the dimensional accuracy before cutting was excellent, the film could not be sufficiently cut, resulting in low durability.
本発明によれば、高精度な切断が可能であるとともに、耐久性が高く、長期間使用できる刃を提供することが可能となる。また、本発明によれば、高精度な切断が可能であるとともに、耐久性が高く、長期間使用できる刃の製造方法を提供することが可能となる。
According to the present invention, it is possible to provide a blade that can be cut with high precision, has high durability, and can be used for a long period of time. Further, according to the present invention, it is possible to provide a method for manufacturing a blade, which is capable of cutting with high accuracy, has high durability, and can be used for a long period of time.
10 刃付ローラー
20 本体
21 原盤ロール母材
30 刃
31 めっき層
32 土台部分
33 鎬部
32 刃先
41 バイト
42 工具
P 刃先ピッチ
W 刃の先端の幅
T 刃の高さ
α 刃先角度
β 鎬角度
U 鎬長 10 Roller withblade 20 Main body 21 Master roll base material 30 Blade 31 Plating layer 32 Base part 33 Hoe part 32 Blade tip 41 bite 42 Tool P Blade tip pitch W Blade tip width T Blade height α Blade angle β Ho Long
20 本体
21 原盤ロール母材
30 刃
31 めっき層
32 土台部分
33 鎬部
32 刃先
41 バイト
42 工具
P 刃先ピッチ
W 刃の先端の幅
T 刃の高さ
α 刃先角度
β 鎬角度
U 鎬長 10 Roller with
Claims (6)
- 円筒状の本体の外周部に形成された複数の刃であって、
前記刃の全体が快削性合金からなることを特徴とする、刃。 Multiple blades formed on the outer circumference of a cylindrical body
A blade characterized in that the entire blade is made of a free-cutting alloy. - 前記快削性合金が、ニッケル-リン合金であることを特徴とする、請求項1に記載の刃。 The blade according to claim 1, wherein the free-cutting alloy is a nickel-phosphorus alloy.
- 前記刃のビッカース硬度が、475以上であることを特徴とする、請求項1又は2に記載の刃。 The blade according to claim 1 or 2, wherein the Vickers hardness of the blade is 475 or more.
- 前記刃は、先端平均幅が0.005mm以下であり、刃先角度が30°以下であり、刃の高さのばらつきが±0.001mm以内であり、刃先ピッチ精度が±0.001mm以内であることを特徴とする、請求項1~3のいずれか1項に記載の刃。 The blade is characterized in that the average tip width is 0.005 mm or less, the blade edge angle is 30 ° or less, the blade height variation is within ± 0.001 mm, and the blade edge pitch accuracy is within ± 0.001 mm. The blade according to any one of claims 1 to 3.
- 前記刃は、刃先の内周側に鎬部を有し、
該鎬部は、鎬長が前記刃の高さより小さく、且つ、鎬角度が30°未満であることを特徴とする、請求項4に記載の刃。 The blade has a hook portion on the inner peripheral side of the cutting edge.
The blade according to claim 4, wherein the hoe portion has a hoe length smaller than the height of the blade and a hoe angle of less than 30 °. - 円筒状の本体の外周部に形成される複数の刃の製造方法であって、
原盤ロール母材上に、快削性合金のめっき層を形成する工程と、
前記快削性合金のめっき層を切削加工し、刃を形成する工程と、を備え、
形成された刃のピッチが0.5mm以下となることを特徴とする、刃の製造方法。 A method for manufacturing a plurality of blades formed on the outer periphery of a cylindrical main body.
The process of forming a free-cutting alloy plating layer on the master roll base material and
The process of cutting the plating layer of the free-cutting alloy to form a blade is provided.
A method for manufacturing a blade, characterized in that the pitch of the formed blade is 0.5 mm or less.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202080012755.7A CN113453856B (en) | 2019-02-12 | 2020-02-07 | Knife and method for manufacturing knife |
KR1020217024633A KR102585121B1 (en) | 2019-02-12 | 2020-02-07 | Blade and blade manufacturing method |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019022637 | 2019-02-12 | ||
JP2019180314A JP7297627B2 (en) | 2019-02-12 | 2019-09-30 | Blade and method of manufacturing the blade |
JP2019-180314 | 2019-09-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021065028A1 true WO2021065028A1 (en) | 2021-04-08 |
Family
ID=72277345
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/004945 WO2021065028A1 (en) | 2019-02-12 | 2020-02-07 | Blade and method for manufacturing blade |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP7297627B2 (en) |
KR (1) | KR102585121B1 (en) |
CN (1) | CN113453856B (en) |
WO (1) | WO2021065028A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3409050B2 (en) * | 2000-03-07 | 2003-05-19 | 三陽金属株式会社 | Rotating disk blade |
WO2016097155A1 (en) * | 2014-12-17 | 2016-06-23 | Kampf Schneid- Und Wickeltechnik Gmbh & Co. Kg | Cutting roller for roller cutting machines |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52125177U (en) * | 1976-03-22 | 1977-09-22 | ||
JPS6091323U (en) * | 1983-11-29 | 1985-06-22 | 日本油脂株式会社 | cutlery |
JP2001179682A (en) * | 1999-12-27 | 2001-07-03 | Tdk Corp | Round tooth for cutting, tool for cutting, and cutting device |
JP3196934B1 (en) | 2000-04-28 | 2001-08-06 | 株式会社ゴードーキコー | Slitting equipment |
DE10111112B4 (en) * | 2001-03-08 | 2005-12-22 | Vaw Aluminium Ag | Underblade shaft for a slitter-winder |
JP4123804B2 (en) | 2002-03-27 | 2008-07-23 | 日立化成工業株式会社 | Score cut slitter apparatus and slitting method using the same |
CN2547472Y (en) * | 2002-06-11 | 2003-04-30 | 刘汉祥 | Domestic universal hobbing cutter |
JP2006187855A (en) * | 2004-12-08 | 2006-07-20 | Fuji Photo Film Co Ltd | Film cutting device and film cutting method |
CN201389870Y (en) * | 2008-12-05 | 2010-01-27 | 浙江一胜特工模具股份有限公司 | Large-diameter circular paper knife |
CN103710575A (en) * | 2012-10-09 | 2014-04-09 | 鸿富锦精密工业(深圳)有限公司 | Nickel-phosphorous alloy and mould insert |
TWM478598U (en) * | 2013-02-18 | 2014-05-21 | Every Right Internat Corp | A cutting tool of rolling type with a blade having a specific angle |
CN203665582U (en) * | 2013-12-24 | 2014-06-25 | 东莞市科建检测仪器有限公司 | Manual sample cutter equipment |
WO2017002582A1 (en) * | 2015-07-01 | 2017-01-05 | 東レ株式会社 | Device for manufacturing chopped fiber bundle and method for manufacturing same |
CN205526946U (en) * | 2016-01-30 | 2016-08-31 | 浙江欧特电子科技有限公司 | High -efficient film slitter |
CN205997039U (en) * | 2016-08-20 | 2017-03-08 | 九豪精密陶瓷(昆山)有限公司 | Cutting device |
CN207386704U (en) * | 2017-09-14 | 2018-05-22 | 昆山凯士昌金属材料有限公司 | A kind of quick slitting equipment of stainless steel substrates |
CN208680656U (en) * | 2018-09-07 | 2019-04-02 | 江西省耐力科技股份有限公司 | A kind of poly-lithium battery slitting knife is away from adjustable cutting roller |
-
2019
- 2019-09-30 JP JP2019180314A patent/JP7297627B2/en active Active
-
2020
- 2020-02-07 CN CN202080012755.7A patent/CN113453856B/en active Active
- 2020-02-07 KR KR1020217024633A patent/KR102585121B1/en active IP Right Grant
- 2020-02-07 WO PCT/JP2020/004945 patent/WO2021065028A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3409050B2 (en) * | 2000-03-07 | 2003-05-19 | 三陽金属株式会社 | Rotating disk blade |
WO2016097155A1 (en) * | 2014-12-17 | 2016-06-23 | Kampf Schneid- Und Wickeltechnik Gmbh & Co. Kg | Cutting roller for roller cutting machines |
Also Published As
Publication number | Publication date |
---|---|
KR102585121B1 (en) | 2023-10-06 |
KR20210111285A (en) | 2021-09-10 |
CN113453856A (en) | 2021-09-28 |
CN113453856B (en) | 2023-10-20 |
JP7297627B2 (en) | 2023-06-26 |
JP2020131422A (en) | 2020-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
de Oliveira Junior et al. | Correlating tool wear, surface roughness and corrosion resistance in the turning process of super duplex stainless steel | |
JP5766870B2 (en) | Indium cylindrical sputtering target and method for manufacturing the same | |
US20120155501A1 (en) | Angular extrusion of copper alloy anodes | |
EP2402476A1 (en) | Shearing die and method for manufacturing the same | |
CN102794622A (en) | Machining method of precise inner gear | |
EP2589353B1 (en) | Medical cutting instrument | |
Skoczylas et al. | Effect of centrifugal shot peening on the surface properties of laser-cut C45 steel parts | |
TW201518012A (en) | Drilling tool and method for producing the same | |
WO2021065028A1 (en) | Blade and method for manufacturing blade | |
Silva et al. | Multilayer diamond coatings applied to micro-end-milling of cemented carbide | |
Nogueira et al. | A Comparative Study on the Wear Mechanisms of Uncoated and TiAlTaN-Coated Tools Used in Machining AMPCO® Alloy | |
Wu et al. | Experimental investigation on direct micro milling of cemented carbide | |
Zhao et al. | Microstructure and Wear Behavior of Ti-xFe-SiC In Situ Composite Ceramic Coatings on TC4 Substrate from Laser Cladding | |
Yang et al. | Experimental investigation of the effects of super-elasticity on the machinability of NiTi alloys | |
CN110404967A (en) | The manufacturing method of the ultra-thin superhard stainless steel belt of ultra-wide and its steel band of manufacture | |
JP2006051702A (en) | Method for manufacturing mold for molding optical element, mold for molding optical element, and optical element | |
JP6385233B2 (en) | Coated cutting tool | |
US20200332403A1 (en) | Iron-based sintered alloy and method for producing the same | |
JP2009072900A (en) | Sheet cutting device | |
JP2010042480A (en) | Rolled bar surface polishing method | |
JP2014037011A (en) | Slitter knife | |
JP6602550B2 (en) | Material for sputtering target | |
JP5567792B2 (en) | High hardness corrosion resistant wear resistant alloy material, wear resistant member using the same, and method for producing the same | |
Ritesh et al. | An investigation of molybdenum surface reinforcement on the hardness and wear properties of AISI 630 | |
Jurči | Effect of Different Surface Conditions on Toughness of Vanadis 6 Cold Work Die Steel—A Review |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20871297 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20217024633 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20871297 Country of ref document: EP Kind code of ref document: A1 |