WO2021062819A1 - 一种harq信息指示方法、通信装置及通信系统 - Google Patents
一种harq信息指示方法、通信装置及通信系统 Download PDFInfo
- Publication number
- WO2021062819A1 WO2021062819A1 PCT/CN2019/109745 CN2019109745W WO2021062819A1 WO 2021062819 A1 WO2021062819 A1 WO 2021062819A1 CN 2019109745 W CN2019109745 W CN 2019109745W WO 2021062819 A1 WO2021062819 A1 WO 2021062819A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- harq process
- terminal
- process number
- indication information
- harq
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
Definitions
- the embodiments of the present application relate to the field of communications, and in particular to a hybrid automatic repeat request (HARQ) information indicating method, communication device, and communication system.
- HARQ hybrid automatic repeat request
- LTE long term evolution, LTE
- 5G fifth generation
- SL uplink between devices
- devices sidelink, SL
- NR new radio
- V2X vehicle to everything
- NR-V2X new radio
- the HARQ-based retransmission scheme is supported.
- the sender terminal can use the HARQ process to send a block (transport block, TB), receive HARQ feedback, and retransmit the TB; the receiver terminal can use the HARQ process to receive TB and send HARQ feedback.
- the base station can schedule a data transmission between the sending end UE and the receiving end UE through downlink control information (DCI), for example, indicating The side link resource used for this data transmission.
- DCI downlink control information
- the sending end UE can select the HARQ process number for this data transmission, and send data to the receiving end UE through the side link resource indicated by the base station.
- the base station and the sending end UE may have inconsistent understanding of the HARQ process number of the same data transmission, which affects the transmission reliability between the terminals.
- the embodiments of the present application provide a HARQ information indication method, communication device and communication system, which solve the problem of inconsistent understanding of the HARQ process number of the same data transmission by the base station and the sending end UE, thereby improving the transmission reliability between terminals .
- a HARQ information indication method including: a first terminal receives first indication information from a network device, the first indication information is used to indicate a first HARQ process ID, and the first HARQ process ID is used for the first terminal Data transmission with the second terminal; the first terminal sends side-line control information to the second terminal, the side-line control information includes second indication information, and the second indication information is used to indicate the first HARQ process number.
- the first terminal receives first information from the network device, and the first information indicates that the network device allocates a HARQ process number (for example, the aforementioned first HARQ process number) for a data transmission between the terminals.
- a HARQ process number for example, the aforementioned first HARQ process number
- Associate a HARQ process number with one data transmission including initial transmission and retransmission.
- the first terminal can clarify the HARQ process number selected by the network device for a transmission according to the first information, which solves the problem that the base station and the sending end UE have inconsistent understanding of the HARQ process number for the same data transmission, and can improve the reliability of transmission between terminals Sex.
- the side-line control information is also used to indicate the first data
- the method further includes: the first terminal sends the first data to the second terminal, and the first data is related to the first HARQ process ID.
- the first terminal uses the HARQ process ID to transmit data: the first terminal sends the first data to the second terminal, and the first data is related to the first HARQ process ID, that is, the first terminal can Directly use the first HARQ process number indicated by the network device to transmit data.
- the first terminal maintains a first HARQ process ID set, the first HARQ process ID belongs to the first HARQ process ID set, and the first HARQ process ID set includes at least one HARQ used for data transmission in the first mode Process ID; the first mode is a mode in which the network device schedules side link resources; and the first HARQ process ID belongs to the second HARQ process ID set, and the second HARQ process ID set is maintained by the network device.
- the HARQ process number maintained by the base station can be used for mode-1 (that is, the above-mentioned first mode).
- mode-1 that is, the above-mentioned first mode.
- the terminal supports mode-1
- the HARQ process number maintained by the terminal can be used for mode-1.
- the HARQ process numbers maintained by the base station and the terminal can be the same, and the terminal can directly use the process number indicated by the base station for data transmission.
- the first HARQ process ID set also includes at least one HARQ process ID used for data transmission in the second mode, and the second mode is a mode in which the terminal determines the side link resource by itself; at least one is used for the first HARQ process ID.
- the HARQ process ID of the data transmission in the second mode is different from at least one HARQ process ID used for the data transmission in the first mode.
- the HARQ process number maintained by the base station can be used for mode-1
- the HARQ process number maintained by the terminal can be used for mode-1, mode-2 (the second mode above), and HARQ in the two modes
- the process numbers are different from each other, but the HARQ process numbers used by the base station and the terminal for mode-1 are the same, so the terminal can directly use the process number indicated by the base station for data transmission.
- the first indication information is carried in the downlink control information DCI.
- a HARQ information indication method includes: a first terminal receives first indication information from a network device, the first indication information is used to indicate a first HARQ process ID, and the first HARQ process ID is used for the first HARQ process ID.
- the second indication information is used to indicate the first HARQ process ID; in the case that the first HARQ process ID is occupied by the first terminal, the first terminal sends side-line control information to the second terminal, and the side-line control information includes the third indication information ,
- the third indication information is used to indicate the second HARQ process ID, the second HARQ process ID is an unoccupied HARQ process ID in the first HARQ process ID set, and the first HARQ process ID set is the HARQ process maintained by the first terminal Number collection.
- the HARQ process number maintained by the base station can be used for mode-1, and the HARQ process number maintained by the terminal can be used for mode-1, mode-2 (the second mode mentioned above), and the two modes maintained by the terminal
- the HARQ process number is not distinguished, that is, the HARQ process number maintained by the terminal is mixed with the data in the two modes of mode-1 and mode-2.
- the HARQ process number selected by the network device for a data transmission of the terminal ( mode-1) may be occupied. If the HARQ process number indicated by the first information is occupied by the mode-2 data transmission being performed by the first terminal, the first terminal can select another HARQ process number for this data transmission.
- the terminal side avoids the HARQ process number conflict of the side line data transmission in the mode-1 and mode-2 modes.
- the first terminal may also send third indication information to the second terminal, indicating the HARQ process number determined by the first terminal, that is, the second HARQ process number.
- the second HARQ process number is actually used for communication between the first terminal and the second terminal.
- the HARQ process ID of the data in the two modes of mode-1 and mode-2 can be used to support the data transmission in the two modes more flexibly, avoiding that the number of HARQ process IDs is not supported when the data transmission in one mode is too frequent. Status.
- the first terminal does not need to reselect the HARQ process number for this transmission, and directly uses the HARQ process number indicated by the network device.
- the network equipment, the base station, and the sending end UE have the same understanding of the HARQ process number of the same data transmission, which can improve the transmission reliability between the terminals.
- the first HARQ process number is not occupied by the first terminal, including: the HARQ entity of the first terminal does not include the HARQ process corresponding to the first HARQ process number; the first HARQ process number is occupied by the first terminal, It includes: the HARQ entity of the first terminal includes the HARQ process corresponding to the first HARQ process number.
- the side-line control information is also used to indicate the first data
- the method further includes: the first terminal sends the first data to the second terminal, the first data and the first HARQ process number or the second HARQ process number Related.
- the first terminal sends the first data to the second terminal, and the first data is related to the first HARQ process ID or the second HARQ process ID . That is, the first HARQ process number is not occupied by the ongoing data transmission of the first terminal, and the first terminal directly uses the first HARQ process number to transmit the first data. If the first HARQ process number is occupied by the ongoing data transmission of the first terminal, the first terminal re-selects the second HARQ process number to transmit the first data.
- the first indication information is carried in the downlink control information DCI.
- a communication device including: a transceiving unit, configured to receive first indication information from a network device, the first indication information is used to indicate a first HARQ process number, and the first HARQ process number is used for a first terminal Data transmission with the second terminal; the transceiver unit is further configured to send side-line control information to the second terminal, the side-line control information includes second indication information, and the second indication information is used to indicate the first HARQ process number.
- the side-line control information is further used to indicate the first data
- the transceiver unit is further used to send the first data to the second terminal, where the first data is related to the first HARQ process ID.
- the first terminal maintains a first HARQ process ID set, the first HARQ process ID belongs to the first HARQ process ID set, and the first HARQ process ID set includes at least one HARQ used for data transmission in the first mode Process ID; the first mode is a mode in which the network device schedules side link resources; and the first HARQ process ID belongs to the second HARQ process ID set, and the second HARQ process ID set is maintained by the network device.
- the first HARQ process ID set also includes at least one HARQ process ID used for data transmission in the second mode, and the second mode is a mode in which the terminal determines the side link resource by itself; at least one is used for the first HARQ process ID.
- the HARQ process ID of the data transmission in the second mode is different from at least one HARQ process ID used for the data transmission in the first mode.
- the first indication information is carried in the downlink control information DCI.
- an apparatus including: a transceiving unit, configured to receive first indication information from a network device, the first indication information is used to indicate a first HARQ process number, and the first HARQ process number is used for the first terminal and Data transmission between the second terminals; a processing unit to determine whether the first HARQ process number is occupied by the first terminal; the transceiver unit is also used to, when the processing unit determines that the first HARQ process number is not occupied by the first terminal, The first terminal sends side-line control information to the second terminal.
- the side-line control information includes second indication information.
- the second indication information is used to indicate the first HARQ process number; the transceiver unit is also used to determine the first HARQ process in the processing unit.
- the first terminal sends side-line control information to the second terminal.
- the side-line control information includes the third indication information, and the third
- the indication information is used to indicate the second HARQ process ID, the second HARQ process ID is an unoccupied HARQ process ID in the first HARQ process ID set, and the first HARQ process ID set is the HARQ process ID set maintained by the first terminal.
- the processing unit is specifically configured to: if the HARQ entity of the first terminal does not include the HARQ process corresponding to the first HARQ process number, determine that the HARQ process corresponding to the first HARQ process number is not occupied; if the first terminal The HARQ entity includes the HARQ process corresponding to the first HARQ process number, and it is determined that the first HARQ process number is occupied by the first terminal.
- the side-line control information is also used to indicate the first data
- the transceiver unit is also used to send the first data to the second terminal.
- the first data is related to the first HARQ process number or the second HARQ process number. .
- the first indication information is carried in the downlink control information DCI.
- a communication device including a processor, the processor is coupled with a memory; the memory is used to store a computer program; the processor is used to execute the computer program stored in the memory, so that the The communication device implements the method described in the first aspect and any one of the implementations of the first aspect, the second aspect and any one of the second aspects, the communication device may be a baseband chip, and the baseband chip reads the computer program , So that the device for installing the baseband chip implements the method described in any one of the foregoing aspects.
- a computer-readable storage medium including: instructions are stored in the computer-readable storage medium; when the computer-readable storage medium is implemented in any one of the above-mentioned third aspect and the third aspect, the fourth aspect And when running on the communication device described in any one of the implementation manners of the fourth aspect, the communication device is enabled to implement the foregoing first aspect and any one of the implementation manners of the first aspect, the second aspect, and any one of the implementation manners of the second aspect. The method described.
- a wireless communication device including: instructions are stored in the wireless communication device; when the wireless communication device is implemented in any one of the foregoing third aspect and the third aspect, or any of the foregoing fourth aspect and the fourth aspect
- the communication device described in an implementation manner runs on the communication device, the communication device implements the method described in any one of the foregoing first aspect and the first aspect, and the second aspect and any one of the second aspect.
- the wireless communication device is a chip.
- a communication system including: a network device, a first terminal, and a second terminal;
- the network device is used to send first indication information to the first terminal, the first indication information is used to indicate the first HARQ process number, and the first HARQ process number is used for data transmission between the first terminal and the second terminal;
- the first terminal is configured to receive first indication information from the network device and send side-line control information to the second terminal, where the side-line control information includes second indication information, and the second indication information is used to indicate the first HARQ process number;
- the second terminal is configured to receive second indication information from the first terminal
- the network device is configured to send first indication information to the first terminal, the first indication information is used to indicate the first HARQ process number, and the first HARQ process number is used for data transmission between the first terminal and the second terminal;
- the first terminal receives the first indication information from the network device, and when the first HARQ process number is not occupied by the first terminal, the first terminal sends side-line control information to the second terminal, and the side-line control information includes the second indication information ,
- the second indication information is used to indicate the first HARQ process number; in the case that the first HARQ process number is occupied by the first terminal, the first terminal sends sideline control information to the second terminal, and the sideline control information includes the third indication Information, the third indication information is used to indicate the second HARQ process ID, the second HARQ process ID is an unoccupied HARQ process ID in the first HARQ process ID set, and the first HARQ process ID set is the HARQ maintained by the first terminal Process number set;
- the second terminal is used to receive side control information from the first terminal.
- Figure 1 is a schematic diagram of mode-1 scheduling provided by an embodiment of the application.
- FIG. 2 is an architecture diagram of a communication system provided by an embodiment of the application
- Fig. 3a is a structural block diagram of a communication device provided by an embodiment of the application.
- FIG. 3b is another structural block diagram of a communication device provided by an embodiment of this application.
- FIG. 4 is a schematic flowchart of a HARQ information indication method provided by an embodiment of this application.
- FIG. 5 is a schematic diagram of HARQ process number set provided by an embodiment of this application.
- FIG. 6 is another schematic diagram of the HARQ process ID set provided by an embodiment of this application.
- FIG. 7 is a schematic flowchart of another HARQ information indication method provided by an embodiment of this application.
- FIG. 8 is another schematic diagram of the HARQ process ID set provided by an embodiment of this application.
- FIG. 9 is another schematic diagram of a HARQ information indication method provided by an embodiment of this application.
- FIG. 10 is a schematic diagram of a HARQ information indication method provided by an embodiment of this application.
- FIG. 11 is another schematic diagram of a HARQ information indication method provided by an embodiment of this application.
- FIG. 12 is another structural block diagram of a communication device provided by an embodiment of this application.
- FIG. 13 is another structural block diagram of a communication device provided by an embodiment of this application.
- FIG. 14 is another structural block diagram of a communication device provided by an embodiment of this application.
- FIG. 15 is another structural block diagram of a communication device provided by an embodiment of this application.
- the HARQ process can be used for data transmission, and a HARQ process number can be assigned to a data transmission.
- the HARQ process number can be used for this data transmission. It can be considered that the HARQ process number corresponds to this data transmission. .
- one data transmission may include: the sender uses the HARQ process to send the TB, and the receiver uses the HARQ process to receive the TB.
- the HARQ process also corresponds to a HARQ feedback.
- the HARQ feedback can be an acknowledgement (acknowledgement, ACK) or a negative acknowledgement (negative acknowledgement, NACK).
- the HARQ process number can be regarded as the HARQ identification (identification, ID), and the HARQ process can be identified through the HARQ ID.
- ID identification
- the HARQ process number can be Arabic numerals: 0, 1, 2, 3, 4... and so on.
- the HARQ process uses a stop-and-wait protocol to transmit data, that is, after the sender sends a TB, the data transmission on the HARQ process is suspended, and the sender waits for confirmation information (that is, the above HARQ feedback).
- the receiving end can use 1-bit information to confirm the TB. For example, if the TB is successfully received, it will reply "1" (ACK) to the sender; if the TB is not successfully received, it will reply "0" ( NACK).
- the HARQ process stops at the sender after each transmission and waits for the confirmation message, which will cause the system throughput to be very low. Therefore, multiple parallel HARQ processes need to be used for data transmission. While a HARQ process is waiting for confirmation information, the sender can use another HARQ process to continue sending data.
- Both the sender and receiver maintain HARQ buffers.
- each HARQ process corresponds to a HARQ buffer, and the HARQ buffer stores data.
- the receiving end can soft-combine data in the same HARQ buffer to improve decoding performance.
- the sender and receiver use HARQ process 1 for data transmission.
- the sender can take out the data from the HARQ buffer corresponding to HARQ process 1 that is maintained locally and send the data.
- the receiver After receiving the data, the receiver stores the data in the HARQ maintained locally. In the HARQ buffer corresponding to process 1.
- the receiving end can reply "NACK" to the sending end.
- the sender uses HARQ process 1 to retransmit the data.
- the receiver stores the retransmitted data in the HARQ buffer corresponding to HARQ process 1 that is maintained locally, which can be used for the HARQ buffer corresponding to HARQ process 1.
- the initial transmission data and retransmission data are softly combined.
- Each terminal maintains a HARQ entity (HARQ entity), and multiple HARQ processes that are being used for data transmission constitute the HARQ entity.
- HARQ entity HARQ entity
- the HARQ entity includes a certain HARQ process, it indicates that the HARQ process is being used for data transmission, that is, the HARQ process is being occupied by the terminal.
- the terminal can release the HARQ process. For example, the sender clears the HARQ buffer after receiving the ACK from the receiver and releases the HARQ process; or, when the sender receives NACK from the receiver, and the current number of retransmissions has exceeded the maximum number of transmissions, the sender clears the HARQ buffer and releases the HARQ process.
- the HARQ entity When the HARQ entity does not include a certain HARQ process, it indicates that the HARQ process is not being used for data transmission, that is, the HARQ process is not currently occupied by the terminal.
- sidelink resources can be configured in two ways, one is the base station allocation mode (referred to as mode-1) and the other is the user-selected mode (referred to as mode-2) .
- Mode-1 is mainly suitable for side-line communication in scenarios with base station network coverage, that is, when the terminal is located in the coverage area of the base station network, the base station can allocate side-link resources to the terminal for side-line communication according to the BSR reported by the terminal. Specifically, it includes dynamic scheduling (dynamic grant) and pre-configured scheduling (configured grant).
- the terminal in the dynamic scheduling mode, when a new data packet arrives, the terminal will first send a scheduling request (SR) to the base station, and the base station will notify the terminal to report the resources of the BSR through DCI1.
- the terminal reports the BSR to the base station in the corresponding resource, and the base station informs the terminal to send the side link resource through DCI2.
- the terminal After receiving the DCI2, the terminal performs side-line communication through the side link resource indicated by the terminal.
- SR scheduling request
- the base station In SPS mode, the base station will configure related side link resources through high-level signaling, and the terminal will directly send data (type-1) on the configured side link resources, or the base station will send a DCI message to activate the terminal to use the configuration
- the side link resource sends data (type-2).
- Mode-2 is mainly used for side-line communication in scenarios where there is no base station network coverage. Because there is no unified resource management of the base station, the terminal can only choose the side-line link resources for side-line communication.
- FIG. 2 shows a schematic diagram of a communication system to which the technical solution provided by this application is applicable.
- the communication system may include multiple network devices (only network device 100 is shown) and multiple terminals (only shown in the figure). Terminal 201 and terminal 202).
- FIG. 2 is only a schematic diagram, and does not constitute a limitation on the applicable scenarios of the technical solutions provided in this application.
- the communication system supports side-line communication, such as: device-to-device (D2D) communication, vehicle-to-everything (V2X) communication, etc.
- D2D device-to-device
- V2X vehicle-to-everything
- the network equipment and the terminal can perform uplink and downlink transmission through the cellular link (Uu link), and the terminal can communicate through the sidelink link, such as D2D communication, V2X communication, and machine type communication. (machine type communication, MTC), etc.
- the network equipment may be a transmission reception point (TRP), a base station, a relay station, or an access point.
- the network device can be a network device in a 5G communication system or a network device in a future evolution network; it can also be a wearable device or a vehicle-mounted device.
- BTS base transceiver station
- GSM global system for mobile communication
- CDMA code division multiple access
- the NB (NodeB) in wideband code division multiple access (WCDMA) may also be the eNB or eNodeB (evolutional NodeB) in long term evolution (LTE).
- the network device may also be a wireless controller in a cloud radio access network (cloud radio access network, CRAN) scenario.
- cloud radio access network, CRAN cloud radio access network
- the terminal can be user equipment (UE), access terminal equipment, UE unit, UE station, mobile station, mobile station, remote station, remote terminal equipment, mobile equipment, UE terminal equipment, wireless communication equipment, UE agent or UE devices, etc.
- the access terminal equipment can be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), and a wireless Communication function handheld devices, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in 5G networks, or future evolution of public land mobile network (PLMN) networks Terminal equipment, etc.
- SIP session initiation protocol
- WLL wireless local loop
- PDA personal digital assistant
- PLMN public land mobile network
- the terminal device of the present application may also be a vehicle-mounted module, vehicle-mounted module, vehicle-mounted component, vehicle-mounted chip, or vehicle-mounted unit built into a vehicle as one or more components or units.
- the vehicle passes through the built-in vehicle-mounted module, vehicle-mounted module, On-board components, on-board chips, or on-board units can implement the method of the present application.
- the first terminal, the second terminal, and the network device of the present application may all be one or more chips, or may be a system on chip (SOC) or the like.
- SOC system on chip
- the terminal 201 and the terminal 202 may perform side-line communication, and the data transmitted between the terminal 201 and the terminal 202 may be referred to as side-line data, that is, the data transmitted on the side-line link.
- side-line data that is, the data transmitted on the side-line link.
- the terminal 201 can report the BSR to the network device 101, and the network device 101 can assign the terminal 201 a side link for transmission Resources, the terminal 201 selects the HARQ process number for this data transmission, and indicates the selected HARQ process number to the terminal 202 through sidelink control information (SCI).
- SCI sidelink control information
- the network device 101 does not understand the behavior of the terminal 201, and does not distinguish between different HARQ process numbers when indicating resources to the terminal 201.
- the resources allocated by the network device 101 for a certain data transmission may be used by the sending UE for other HARQ processes.
- the terminal 201 is not sure which HARQ process number corresponding to the side link resource indicated by the DCI is used for data transmission. That is to say, the base station and the sending end UE have inconsistent understanding of the HARQ process number of the same data transmission, which affects the communication between the terminals. Transmission reliability.
- the network device 101 may indicate the retransmission resource through the DCI.
- the terminal 201 is not sure which HARQ process ID the retransmission resource is used for, and may use the retransmission resource to retransmit other HARQ process IDs. For example, use the retransmission resource to retransmit the HARQ process ID "5" to the terminal 202
- the network device sends DCI 1 to the terminal 201 to indicate the side link resource 1, and the side link resource 1 is used to transmit TB1.
- the terminal 201 receives DCI 1, and allocates HARQ process number 3 for this data transmission.
- the terminal 201 may also send SCI 1 to the terminal 202 to indicate the HARQ process number 3.
- the terminal 202 may store the initial transmission data (TB1) in the HARQ buffer corresponding to the HARQ process number 3.
- the terminal 202 When the terminal 202 fails to decode the initial transmission data in the HARQ buffer, it sends "NACK" to the terminal 201.
- the terminal 201 may also send "NACK” to the network device 101. After receiving it, the network device sends DCI 2 to the terminal 201, and the DCI 2 indicates retransmission resources.
- the terminal 201 After receiving the DCI 2, the terminal 201 cannot determine which data the resource indicated by the DCI 2 is specifically used for the retransmission of data, and may send the redundancy version of TB2 (that is, the retransmission data of TB2) on the resource indicated by the DCI 2. Assuming that the service corresponding to TB1 has a higher priority, for example, it is a delay-sensitive service. Retransmitting the redundancy version of TB2 on the resource indicated by DCI 2 will cause the terminal 202 to fail to receive the redundancy version of TB1 (that is, the redundancy version of TB1) for a long time. Retransmit data), the terminal 202 cannot soft-combine the redundant version of TB1 and the initial transmission version of TB1 for a long time, which cannot meet the delay requirements of delay-sensitive services, and seriously affects the transmission performance.
- the embodiment of the application provides a HARQ information indication method.
- a first terminal receives first indication information from a network device.
- the first indication information is used to indicate a first HARQ process number.
- the first HARQ process number is used for the first terminal and the second terminal. Data transmission between terminals.
- the first terminal may also send sideline control information to the second terminal, where the sideline control information includes second indication information, and the second indication information is used to indicate the first HARQ process number.
- the sender terminal (for example, the first terminal described in the embodiment of the present application) receives the first indication information from the network device, and determines the first HARQ process number related to this data transmission according to the first indication information.
- It is also possible to send second indication information to the receiving terminal for example, the second terminal described in this embodiment of the application), indicating the first HARQ process number related to this data transmission.
- the first terminal can clarify the HARQ process number selected by the network device for a transmission according to the first information, which solves the problem that the base station and the sending end UE have inconsistent understanding of the HARQ process number for the same data transmission, and can improve the communication between the terminals. Transmission reliability.
- FIG. 3a shows a schematic diagram of the hardware structure of a communication device 310 provided by an embodiment of the application.
- the communication device 310 includes a processor 3101, a memory 3102, and at least one communication interface (in FIG. 3a, the communication interface 3103 is included as an example for illustration).
- the processor 3101, the memory 3102, and the communication interface 3103 are connected to each other.
- the processor 3101 can be a general-purpose central processing unit (central processing unit, CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more programs for controlling the execution of the program of this application. integrated circuit.
- CPU central processing unit
- ASIC application-specific integrated circuit
- Communication interface 3103 using any device such as a transceiver to communicate with other devices or communication networks, such as Ethernet, radio access network (RAN), wireless local area networks (WLAN), etc. .
- RAN radio access network
- WLAN wireless local area networks
- the memory 3102 may be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), or other types that can store information and instructions
- the dynamic storage device can also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM) or other optical disk storage, optical disc storage (Including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program codes in the form of instructions or data structures and can be used by a computer Any other media accessed, but not limited to this.
- the memory can exist independently, and is connected to the processor through a communication line 3102. The memory can also be integrated with the processor.
- the memory 3102 is used to store computer-executable instructions for executing the solution of the present application, and the processor 3101 controls the execution.
- the processor 3101 is configured to execute computer-executable instructions stored in the memory 3102, so as to implement the intention processing method provided in the following embodiments of the present application.
- the computer-executable instructions in the embodiments of the present application may also be referred to as application program codes, which are not specifically limited in the embodiments of the present application.
- the processor 3101 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 3a.
- the communication device 310 may include multiple processors, such as the processor 3101 and the processor 3106 in FIG. 3a.
- processors can be a single-CPU (single-CPU) processor or a multi-core (multi-CPU) processor.
- the processor here may refer to one or more devices, circuits, and/or processing cores for processing data (for example, computer program instructions).
- the communication apparatus 310 may further include an output device 3104 and an input device 3105.
- the output device 3104 communicates with the processor 3101 and can display information in a variety of ways.
- the output device 3104 may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector (projector) Wait.
- the input device 3105 communicates with the processor 3101, and can receive user input in a variety of ways.
- the input device 3105 may be a mouse, a keyboard, a touch screen device, or a sensor device.
- the aforementioned communication device 310 may be a general-purpose device or a special-purpose device.
- the communication device 310 may be a desktop computer, a portable computer, a network server, a personal digital assistant (PDA), a mobile phone, a tablet computer, a wireless terminal device, an embedded device, or a similar structure in Figure 3a. equipment.
- PDA personal digital assistant
- the embodiment of the present application does not limit the type of the communication device 310.
- the communication device 310 may be a complete terminal machine, may also be a functional component or component that implements the terminal, or may be a communication chip, such as a baseband chip.
- the communication interface may be a radio frequency module.
- the communication interface 3103 may be an input and output interface circuit of the chip, and the input and output interface circuit is used to read in and output baseband signals.
- Figure 3b is a schematic diagram of the structure of a network device.
- the structure of the network device 320 can refer to the structure shown in FIG. 3b.
- the network device includes at least one processor 3201, at least one memory 3202, at least one transceiver 3203, at least one network interface 3204, and one or more antennas 3205.
- the processor 3201, the memory 3202, the transceiver 3203, and the network interface 3204 are connected, for example, by a bus.
- the antenna 3205 is connected to the transceiver 3203.
- the network interface 3204 is used to connect the network device to other communication devices through the communication link, for example, the network device is connected to the core network element through the S1 interface.
- the connection may include various interfaces, transmission lines, or buses, etc., which is not limited in this embodiment.
- the processor in the embodiment of the present application may include at least one of the following types: a general-purpose central processing unit (Central Processing Unit, CPU), a digital signal processor (Digital Signal Processor, DSP), a microprocessor, Application-Specific Integrated Circuit (ASIC), Microcontroller Unit (MCU), Field Programmable Gate Array (FPGA), or integrated circuit used to implement logic operations .
- the processor 3201 may be a single-CPU processor or a multi-CPU processor.
- the at least one processor 3201 may be integrated in one chip or located on multiple different chips.
- the memory in the embodiment of the present application may include at least one of the following types: read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory Random access memory (RAM) or other types of dynamic storage devices that can store information and instructions, or electrically erasable programmable read-only memory (EEPROM).
- ROM read-only memory
- RAM random access memory Random access memory
- EEPROM electrically erasable programmable read-only memory
- the memory can also be a compact disc read-only memory (CD-ROM) or other optical disc storage, optical disc storage (including compact discs, laser discs, optical discs, digital universal discs, Blu-ray discs, etc.) , A magnetic disk storage medium or other magnetic storage device, or any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but is not limited thereto.
- CD-ROM compact disc read-only memory
- optical disc storage including compact discs, laser discs, optical discs, digital universal discs, Blu-ray discs, etc.
- a magnetic disk storage medium or other magnetic storage device or any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but is not limited thereto.
- the memory 3202 may exist independently and is connected to the processor 3201.
- the memory 3202 may also be integrated with the processor 3201, for example, integrated in one chip.
- the memory 3202 can store program codes for executing the technical solutions of the embodiments of the present application, and the processor 3201 controls the execution.
- Various types of computer program codes executed can also be regarded as driver programs of the processor 3201.
- the processor 3201 is configured to execute computer program codes stored in the memory 3202, so as to implement the technical solutions in the embodiments of the present application.
- the transceiver 3203 may be used to support the reception or transmission of radio frequency signals between the network device and the terminal, and the transceiver 3203 may be connected to the antenna 3205.
- one or more antennas 3205 can receive radio frequency signals
- the transceiver 3203 can be used to receive the radio frequency signals from the antennas, convert the radio frequency signals into digital baseband signals or digital intermediate frequency signals, and convert the digital baseband signals or
- the digital intermediate frequency signal is provided to the processor 3201, so that the processor 3201 performs further processing on the digital baseband signal or digital intermediate frequency signal, such as demodulation processing and decoding processing.
- the transceiver 3203 can be used to receive a modulated digital baseband signal or digital intermediate frequency signal from the processor 3201, and convert the modulated digital baseband signal or digital intermediate frequency signal into a radio frequency signal, and pass it through one or more antennas 3205 Sending the radio frequency signal.
- the transceiver 3203 may selectively perform one or more stages of down-mixing processing and analog-to-digital conversion processing on the radio frequency signal to obtain a digital baseband signal or a digital intermediate frequency signal.
- the order of precedence is adjustable.
- the transceiver 3203 can selectively perform one or more stages of up-mixing processing and digital-to-analog conversion processing on the modulated digital baseband signal or digital intermediate frequency signal to obtain a radio frequency signal.
- the up-mixing processing and the digital-to-analog conversion processing The order of precedence is adjustable.
- Digital baseband signals and digital intermediate frequency signals can be collectively referred to as digital signals.
- the transceiver may be called a transceiver circuit, a transceiver unit, a transceiver device, a transmission circuit, a transmission unit, or a transmission device, and so on.
- the communication device 320 may be a complete network device, a component or component that realizes the function of the network device, or a communication chip.
- the transceiver 3203 may be an interface circuit of the chip, and the interface circuit is used to read in and output baseband signals.
- the embodiment of the present application provides a HARQ information indication method. As shown in FIG. 4, the method includes the following steps:
- Step 401 The network device receives the BSR from the first terminal device, and allocates the first HARQ process number to the first terminal according to the BSR.
- the network device may be the network device 101 in the communication system shown in FIG. 2.
- the first terminal is a receiver of side-line communication, and the receiver of side-line communication may be referred to as a second terminal.
- the first terminal when the first terminal needs to send data (for example, the first data described in the embodiment of the present application) to the second terminal, it first reports an SR to the network device to indicate its own transmission requirements. In response to the SR reported by the first terminal, the network device sends the time-frequency resource used for reporting the BSR to the first terminal.
- the first terminal may use the time-frequency resource allocated by the base station to report the BSR, and the BSR includes a buffer size.
- the buffer size is used to indicate the size of the first data, and the network device can allocate the side link resources for sending the first data to the first terminal according to the buffer size in the BSR and the HARQ process number used for this data transmission. .
- the network device itself maintains a set of HARQ process IDs, and the network device can select a HARQ process ID as the HARQ process ID related to the first terminal's current data transmission, for example, as described in the embodiment of this application The number of the first HARQ process.
- the first HARQ process number is used for data transmission between the first terminal and the second terminal, that is, the process number of the HARQ process through which the first terminal sends the first data is the first HARQ process number.
- the "first terminal's current data transmission" refers to the data transmission process related to the first data, for example, the first terminal sends the first data, the second terminal receives the first data, and the second terminal sends the first data to the first terminal.
- the terminal sends HARQ feedback, the first terminal receives HARQ feedback, and the first terminal retransmits the first data.
- the HARQ process number set maintained by the network device may be referred to as the second HARQ process number set, and the first HARQ process number described in the embodiment of the present application belongs to the second HARQ process number set.
- the second HARQ process number set maintained by the network device is ⁇ 1, 2, 3...15 ⁇ , including 15 HARQ process numbers.
- the network device can select a HARQ process number as the HARQ process number related to the first terminal's current data transmission. For example, the network device selects "3" as the HARQ process number related to the first terminal's current data transmission.
- step 401 is an optional step, and step 401 may not be executed, and step 402 and subsequent steps may be executed directly. That is, the method provided in this embodiment of the present application includes steps 402 to 404.
- Step 402 The network device sends the DCI to the first terminal, including the first indication information.
- the DCI sent by the network device to the first terminal in step 402 instructs the first terminal to send the side link resource allocated by the first data and the first HARQ process number.
- the DCI includes time-frequency resource information and first indication information.
- the time-frequency resource information is used to indicate the side link resource for the first terminal to send the first data
- the first indication information is used to indicate the first HARQ process number.
- the second HARQ process ID set maintained by the network device includes n HARQ process IDs, and the length can be To represent the HARQ process ID in the second HARQ process ID set.
- the 15 HARQ process numbers maintained by the network equipment can be represented by a 4-bit binary sequence.
- the first HARQ process number "1" in the second HARQ process number set is represented by the binary sequence "0000”
- the second HARQ process number "2" in the second HARQ process number set is represented by the binary sequence "0001”
- the third HARQ process number "3" in the second HARQ process number set is represented by the binary sequence "0010”
- the 15th HARQ process number "15” in the second HARQ process number set is represented by binary The sequence "1110" indicates.
- the network device selects the third HARQ process number "3" in the second HARQ process number set as the HARQ process number related to the data transmission of the first terminal, that is, the first indication information may be the binary sequence "0010". ".
- the first indication information may be a binary sequence, and the binary sequence is converted into a decimal value to obtain the first HARQ process number.
- the first indication information is "111", that is, the indicated first HARQ process number is "7".
- Step 403 The first terminal receives first indication information from the network device, where the first indication information indicates the first HARQ process ID.
- the first indication information may be carried in the DCI (the DCI sent by the network device in step 402).
- the first terminal receives the DCI from the network device, and parses the DCI to obtain the first indication information therefrom.
- Step 404 The first terminal sends sideline control information to the second terminal, where the sideline control information includes second indication information, and the second indication information is used to indicate the first HARQ process number.
- the first terminal itself also maintains a HARQ process ID set, for example, the first HARQ process ID set described in the embodiment of the present application.
- the first HARQ process ID set includes at least all HARQ process IDs in the second HARQ process ID set, for example, includes the first HARQ process ID.
- the first terminal may also send second indication information to the second terminal, where the second indication information is used to indicate the first HARQ process ID. That is, the first terminal can inform the second terminal that the HARQ process number related to this data transmission is the first HARQ process number through the second indication information.
- the first HARQ process ID set maintained by the first terminal includes m HARQ process IDs, and the length may be To represent the HARQ process ID in the first HARQ process ID set.
- m is an integer greater than or equal to n.
- the second HARQ process number set maintained by the network device includes HARQ process number "1” to HARQ process number "15”
- the first HARQ process number set maintained by the first terminal includes at least HARQ process number "1” to HARQ process. No. "15”.
- the first HARQ process number "1” in the first HARQ process number set is represented by the binary sequence "000”
- the second HARQ process number "2" in the first HARQ process number set is represented by the binary sequence " 001” indicates that the third HARQ process number "3" in the first HARQ process number set is represented by the binary sequence "010”, and so on.
- the HARQ process number indicated by the first indication information is "3"
- "3" is the third HARQ process number among the HARQ process numbers maintained by the first terminal
- the second indication information may be a binary sequence "010”.
- the first indication information may be a binary sequence, and the binary sequence is converted into a decimal value to obtain the first HARQ process number.
- the second indication information is also a binary sequence, and the binary sequence is converted into a decimal value to obtain the first HARQ process number indicated by the second indication information.
- the first indication information is “111", that is, the first HARQ process number indicated by the first information is "7".
- the second indication information indicates the first HARQ process number "7", and the second indication information is "111".
- the HARQ process ID set maintained locally by the first terminal has the following two possible implementations:
- the first terminal only supports mode-1, the first terminal does not select the side link resources by itself, and the HARQ process number maintained locally by the first terminal is only used for mode-1.
- the first HARQ process ID set locally maintained by the first terminal includes at least one HARQ process ID used for data transmission in the first mode.
- the first HARQ process number set may be the same as the second HARQ process number set maintained by the network device, the first HARQ process number set includes the first HARQ process number indicated by the first indication information;
- the first mode is The mode in which the network device schedules side link resources is the mode-1 described in the embodiment of the present application.
- the HARQ process numbers maintained by the first terminal are all used for mode-1, and the HARQ process numbers selected by the network device for this data transmission will not be occupied by mode-2.
- the first terminal receives the first indication information from the network equipment, and determines the first HARQ process number indicated by the first indication information.
- the first HARQ process number will not be occupied by mode-2, and the first terminal can directly use the network equipment for this time
- the HARQ process number selected for data transmission that is, the second indication information is sent to the second terminal to indicate the first HARQ process number.
- the second terminal receives the second indication information from the first terminal, and may determine, according to the first indication information, that the HARQ process number associated with this data transmission between the first terminal and the second terminal is the first HARQ process number.
- the first terminal supports two side link resource configuration modes, mode-1 and mode-2.
- the HARQ process ID in the first HARQ process ID set can be used for mode-1 or mode-2.
- the HARQ process ID for mode-1 and the HARQ process ID for mode-2 are completely different.
- the first terminal maintains a first HARQ process number set
- the second HARQ process number set maintained by the network device is a subset of the first HARQ process number set.
- the first HARQ process ID set includes at least one HARQ process ID used for data transmission in the first mode.
- the first HARQ process ID set includes the first HARQ process ID indicated by the first indication information.
- the first HARQ process number set also includes at least one HARQ process number used for data transmission in the second mode, the at least one HARQ process number used for data transmission in the second mode and the at least one HARQ process number used for data transmission in the second mode
- the HARQ process numbers of data transmission in the first mode are different.
- the second mode is a mode in which the terminal determines the side link resources by itself, that is, mode-2 described in the embodiment of the present application.
- the HARQ process ID used in the first mode in the first HARQ process ID set is completely different from the HARQ process ID used in the second mode in the first HARQ process ID set.
- the first HARQ process number set includes HARQ process number "0" to HARQ process number "N". Among them, the HARQ process number "0" to the HARQ process number "m” are used for data transmission in the first mode, and the HARQ process number "m+1" to the HARQ process number "n” are used for data transmission in the second mode.
- the HARQ process ID maintained by the first terminal is used for mode-1 or mode-2, but the HARQ process ID for mode-1 and the HARQ process ID for mode-2 are completely different, and the network device is based
- the HARQ process number selected for this data transmission will not be occupied by mode-2.
- the first terminal receives the first indication information from the network equipment, and determines the first HARQ process number indicated by the first indication information.
- the first HARQ process number will not be occupied by mode-2, and the first terminal can directly use the network equipment for this data
- the selected HARQ process ID is transmitted, that is, the second indication information is sent to the second terminal to indicate the first HARQ process ID.
- the second terminal receives the second indication information from the first terminal, and may determine, according to the first indication information, that the HARQ process number associated with this data transmission between the first terminal and the second terminal is the first HARQ process number.
- the sideline control information is also used to indicate the first data, that is, the data transmitted between the first terminal and the second terminal using the first HARQ process ID.
- the method shown in FIG. 4 further includes: the first terminal sending the first data to the second terminal. Wherein, the first data is related to the first HARQ process number.
- the first data is related to the first HARQ process ID, that is, the HARQ process corresponding to the first HARQ process ID is used to transmit the first data.
- the first terminal uses the HARQ process corresponding to the first HARQ process number to send the first data
- the second terminal uses the HARQ process corresponding to the first HARQ process number to receive the first data.
- the data in the HARQ buffer corresponding to the first HARQ process number is combined and decoded to obtain the first data.
- the HARQ process numbers of mode-1 and mode-2 are completely distinguished. There will be no conflicts in the HARQ process numbers when using different modes.
- the network equipment and the terminal are maintained for the same data transmission.
- the HARQ process number can be the same, and one HARQ process number is associated with one data transmission (including initial transmission and retransmission).
- the network device sends the first indication information to the first terminal to indicate the HARQ process number selected for one data transmission.
- the first terminal can clarify the HARQ process number selected by the network device for one transmission according to the first information, which solves the problem of the base station and the sending end UE.
- the problem of inconsistent understanding of HARQ process numbers for the same data transmission can improve transmission reliability between terminals.
- the network device can schedule the HARQ process ID.
- the first terminal can distinguish the resources allocated by the network device according to the process ID.
- the resources allocated by the network device for a certain data transmission will not be used by the first terminal for other HARQ process IDs.
- Corresponding data transmission improves the accuracy of network equipment scheduling, reduces the impact on this data transmission, and improves transmission performance.
- the first terminal receives DCI from the network device, and the DCI indicates the HARQ process number and the side link resource.
- the first terminal can determine the resource indicated by the DCI to be used for data transmission corresponding to which HARQ process number, so as to avoid the side link
- the path resources are used for data transmission corresponding to other HARQ process numbers, which improves the transmission reliability between terminals.
- the embodiment of the present application also provides a HARQ information indication method. As shown in FIG. 7, the method includes the following steps:
- Step 701 The network device receives the BSR from the first terminal device, and allocates the first HARQ process number to the first terminal according to the BSR.
- the network device may be the network device 101 in the communication system shown in FIG. 2.
- the first terminal is a receiver of side-line communication, and the receiver of side-line communication may be referred to as a second terminal.
- the first terminal when the first terminal needs to send data (for example, the first data described in the embodiment of the present application) to the second terminal, it first reports an SR to the network device to indicate its own transmission requirements. In response to the SR reported by the first terminal, the network device sends the time-frequency resource used for reporting the BSR to the first terminal.
- the first terminal may use the time-frequency resource allocated by the base station to report the BSR, and the BSR includes a buffer size.
- the buffer size is used to indicate the size of the first data, and the network device can allocate the side link resources for sending the first data to the first terminal according to the buffer size in the BSR and the HARQ process number used for this data transmission. .
- the network device itself maintains a set of HARQ process IDs, and the network device can select a HARQ process ID as the HARQ process ID related to the first terminal's current data transmission, for example, as described in the embodiment of this application The number of the first HARQ process.
- the first HARQ process number is used for data transmission between the first terminal and the second terminal, that is, the process number of the HARQ process through which the first terminal sends the first data is the first HARQ process number.
- the data transmission process related to the first data indicated by the first terminal in this data transmission for example, the first terminal sends the first data, the second terminal receives the first data, the second terminal sends HARQ feedback to the first terminal, The first terminal receives the HARQ feedback, and the first terminal retransmits the first data.
- the HARQ process number set maintained by the network device may be referred to as the second HARQ process number set, and the first HARQ process number described in the embodiment of the present application belongs to the second HARQ process number set.
- the second HARQ process number set maintained by the network device is ⁇ 1, 2, 3...15 ⁇ , including 15 HARQ process numbers.
- the network device can select a HARQ process number as the HARQ process number related to the first terminal's current data transmission. For example, the network device selects "3" as the HARQ process number related to the first terminal's current data transmission.
- step 701 is an optional step, and step 701 may not be performed, and step 702 and subsequent steps may be performed directly. That is, the method provided in this embodiment of the present application includes steps 702 to 705.
- Step 702 The network device sends the DCI to the first terminal, including the first indication information.
- the DCI sent by the network device to the first terminal in step 702 instructs the first terminal to send the side link resource allocated by the first data and the first HARQ process number.
- the DCI includes time-frequency resource information and first indication information.
- the time-frequency resource information is used to indicate the side link resource for the first terminal to send the first data
- the first indication information is used to indicate the first HARQ process number.
- the second HARQ process ID set maintained by the network device includes n HARQ process IDs, and the length can be To represent the HARQ process ID in the second HARQ process ID set.
- the 15 HARQ process numbers maintained by the network equipment can be represented by a 4-bit binary sequence.
- the first HARQ process number "1" in the second HARQ process number set is represented by the binary sequence "0000”
- the second HARQ process number "2" in the second HARQ process number set is represented by the binary sequence "0001”
- the third HARQ process number "3" in the second HARQ process number set is represented by the binary sequence "0010”
- the 15th HARQ process number "15” in the second HARQ process number set is represented by binary The sequence "1110" indicates.
- the first indication information may be the binary sequence "0010".
- the first indication information may be a binary sequence, and the binary sequence is converted into a decimal value to obtain the first HARQ process number.
- the first indication information is "111", that is, the indicated first HARQ process number is "7".
- Step 703 The first terminal receives first indication information from the network device, where the first indication information is used to indicate the first HARQ process number.
- the first indication information is carried in the DCI (the DCI sent by the network device in step 702).
- the first terminal receives the DCI from the network device, and parses the DCI to obtain the first indication information therefrom.
- Step 704 When the first HARQ process ID is not occupied by the first terminal, the first terminal sends side-line control information to the second terminal, where the side-line control information includes second indication information, and the second terminal The indication information is used to indicate the first HARQ process ID.
- the first terminal itself maintains a set of HARQ process IDs, for example, the first set of HARQ process IDs described in the embodiment of the present application.
- the first terminal can support two side link resource configuration modes, mode-1 and mode-2, and does not limit which HARQ process numbers are used for mode-1 and which HARQ process numbers are used for mode-2.
- a certain HARQ process ID in the first HARQ process ID set may be used for both mode-1 and mode-2. That is to say, when the network device is assigning the HARQ process number to the first terminal for this data transmission, the network device does not know the behavior of the first terminal itself. It is assumed that the network device has assigned the HARQ process number to the first terminal for this data transmission. "X", in fact, the HARQ process number "x" may have been assigned to other HARQ processes by the first terminal.
- the first terminal maintains a first HARQ process ID set, and a certain HARQ process ID in the set can be used for mode-1 or mode-2. That is, the HARQ process number "x" in the first HARQ process number set can be the HARQ process number selected by the network device in mode-1 for the terminal's side link data transmission, or the terminal in mode-2 can be its own side. Optional HARQ process number for uplink data transmission.
- the first HARQ process ID set and the second HARQ process ID set maintained by the network device may be the same.
- the first HARQ process number set includes HARQ process number "0" to HARQ process number "N".
- any HARQ process number can be used for side-link data transmission in mode-1, and can also be used for side-link data transmission in mode-2.
- the HARQ process number maintained by the first terminal is used for mode-1 or mode-2, and the HARQ process number selected by the network device for this data transmission may be occupied by mode-2.
- the first terminal receives the first indication information from the network device, and determines the first HARQ process ID indicated by the first indication information. Assuming that the first HARQ process ID is not occupied, the first terminal can directly use the network device selected for this data transmission
- the HARQ process number that is, the second indication information is sent to the second terminal to indicate the first HARQ process number.
- the second terminal receives the second indication information from the first terminal, and may determine, according to the first indication information, that the HARQ process number associated with this data transmission between the first terminal and the second terminal is the first HARQ process number.
- the HARQ entity of the first terminal does not include the HARQ process corresponding to the first HARQ process number, and it is considered that the first HARQ process number is not occupied by the first terminal.
- Step 705 When the first HARQ process ID is occupied by the first terminal, the first terminal sends side-line control information to the second terminal, where the side-line control information includes third indication information, and the first terminal The third indication information is used to indicate the second HARQ process number.
- the second HARQ process number is an unoccupied HARQ process number in the first HARQ process number set maintained by the first terminal.
- the HARQ process number maintained by the first terminal is used for mode-1 or mode-2, and the HARQ process number selected by the network device for this data transmission may be occupied by mode-2.
- the first terminal receives the first indication information from the network device, and determines the first HARQ process number indicated by the first indication information. Assuming that the first HARQ process ID is occupied, the first terminal selects an unoccupied HARQ process ID (for example, the second HARQ process ID described in the embodiment of this application) as the first HARQ process ID in the first HARQ process ID set. The HARQ process ID related to this data transmission of the terminal.
- the first terminal may also send third indication information to the second terminal, indicating the second HARQ process number.
- the second terminal receives the third indication information from the first terminal, and may determine, according to the third indication information, that the HARQ process number associated with this data transmission between the first terminal and the second terminal is the second HARQ process number.
- the HARQ entity of the first terminal includes the HARQ process corresponding to the first HARQ process number, and it is considered that the first HARQ process number is occupied by the first terminal.
- the sideline control information is also used to indicate the first data, that is, the data transmitted between the first terminal and the second terminal using the first HARQ process ID.
- the method shown in FIG. 7 further includes: the first terminal sending the first data to the second terminal. Wherein, the first data is related to the first HARQ process number.
- the first data is related to the first HARQ process ID, that is, the HARQ process corresponding to the first HARQ process ID is used to transmit the first data.
- the first terminal uses the HARQ process corresponding to the first HARQ process number to send the first data
- the second terminal uses the HARQ process corresponding to the first HARQ process number to receive the first data.
- the HARQ process number maintained by the base station can be used for mode-1, and the HARQ process number maintained by the terminal can be used for mode-1, mode-2 (the second mode mentioned above), and the two modes maintained by the terminal
- the HARQ process number is not distinguished, that is, the HARQ process number maintained by the terminal is mixed with the data in the two modes of mode-1 and mode-2.
- the HARQ process number selected by the network device for a data transmission of the terminal ( mode-1) may be occupied. If the HARQ process number indicated by the first information is occupied by the mode-2 data transmission being performed by the first terminal, the first terminal can select another HARQ process number for this data transmission.
- the terminal side avoids the HARQ process number conflict of the side line data transmission in the mode-1 and mode-2 modes.
- the first terminal may also send third indication information to the second terminal, indicating the HARQ process number determined by the first terminal, that is, the second HARQ process number.
- the second HARQ process number is actually used for communication between the first terminal and the second terminal.
- the HARQ process ID of the data in the two modes of mode-1 and mode-2 can be used to support the data transmission in the two modes more flexibly, avoiding that the number of HARQ process IDs is not supported when the data transmission in one mode is too frequent. Status.
- the first terminal does not need to reselect the HARQ process number for this transmission, and directly uses the network device selected by the network device, the base station,
- the sending end UE has the same understanding of the HARQ process number of the same data transmission, which can improve the transmission reliability between the terminals.
- the network device can also schedule the HARQ process number.
- the first terminal can distinguish the resources allocated by the network device according to the process number.
- the resources allocated by the network device for a certain data transmission will not be used by the first terminal for other HARQ processes
- the data transmission corresponding to the number improves the accuracy of network equipment scheduling, and can also reduce the impact on this data transmission and improve the transmission performance.
- the first terminal receives DCI from the network device, and the DCI indicates the HARQ process number and the side link resource.
- the first terminal can determine the resource indicated by the DCI to be used for data transmission corresponding to which HARQ process number, so as to avoid the side link
- the path resources are used for data transmission corresponding to other HARQ process numbers, which improves the transmission reliability between terminals.
- the sender of side-line communication is called the sending UE
- the receiver of side-line communication is called the receiving UE.
- the sending UE only supports mode-1, and the HARQ process ID maintained by the network device and the sending UE is the same. For example, as shown in FIG. 9, suppose that the HARQ process number maintained by the network device for the side link is 0 to M, and the HARQ process number maintained by the sending UE is 0 to M.
- the HARQ process number field is required in the DCI sent by the base station to the sending UE, and this field is used to indicate the HARQ process number selected by the network device for this data transmission of the sending UE.
- the SCI sent by the sending UE to the receiving UE also needs to include the HARQ process number field, which is used to indicate the HARQ process number on the UE side. It should be noted that the HARQ process number indicated by the DCI is consistent with the HARQ process number indicated by the SCI.
- the sending UE only needs to decode the HARQ process number field of the DCI from the base station, and then directly load it in the SCI and send it to the receiving UE without any modification. For example, referring to FIG. 9, it is assumed that the HARQ process number field in the DCI sent by the network device is "110", indicating the HARQ process number 6.
- the sending UE receives the DCI, parses the DCI to obtain the HARQ process number field "110”, and then directly loads the HARQ process number field to "110" in the SCI and sends it to the receiving UE.
- the sending UE supports both mode-1 and mode-2.
- the HARQ process numbers maintained by the network equipment and the sending UE are not exactly the same.
- the set of HARQ process numbers maintained by the network equipment is the HARQ process maintained by the sending UE.
- a subset of the number set Specifically, as shown in FIG. 10, the HARQ process number maintained by the network device is 0 to N, the HARQ process number maintained by the sending UE side is 0 to M, N and M are configurable parameters, and M is greater than N.
- the HARQ process numbers 0 to N maintained by the sending UE side can be used for mode-1, and the HARQ process numbers N+1 to M can be used for mode-2.
- the HARQ process number field is required in the DCI sent by the base station to the sending UE, and this field is used to indicate the HARQ process number selected by the network device for this data transmission of the sending UE.
- the SCI sent by the sending UE to the receiving UE also needs to include the HARQ process number field, which is used to indicate the HARQ process number on the UE side. It should be noted that the HARQ process number indicated by the DCI is consistent with the HARQ process number indicated by the SCI.
- the sending UE only needs to decode the HARQ process number field of the DCI from the base station, and then directly load it in the SCI and send it to the receiving UE without any modification. For example, referring to FIG. 10, it is assumed that the HARQ process number field in the DCI sent by the network device is "110", indicating the HARQ process number 6.
- the sending UE receives the DCI, parses the DCI to obtain the HARQ process number field "110”, and then directly loads the HARQ process number field to "110" in the SCI and sends it to the receiving UE.
- the sending UE supports both mode-1 and mode-2.
- the HARQ process numbers maintained by the network equipment and the sending UE are the same, and the HARQ process numbers on the network equipment side and the HARQ process numbers on the UE side may conflict. , That is, the HARQ process number selected by the network device for the data transmission of the sending UE in mode-1 may have been occupied by the sending UE.
- the HARQ process number field is required in the DCI sent by the base station to the sending UE, and this field is used to indicate the HARQ process number selected by the network device for this data transmission of the sending UE.
- the SCI sent by the sending UE to the receiving UE also needs to include the HARQ process number field, which is used to indicate the HARQ process number on the UE side.
- the HARQ process number indicated by DCI and the HARQ process number indicated by SCI may be different, as follows:
- the sending UE After the sending UE receives the DCI from the network device, and finds that the HARQ process number indicated by the HARQ process number field of the DCI is occupied, it selects one of the unoccupied HARQ process numbers, and sends the SCI, the HARQ process number of the SCI to the receiving UE
- the field indicates the HARQ process ID selected by the sending UE in the unoccupied HARQ process ID.
- the HARQ process ID has been occupied, including: the sending UE in the mode-2 mode has allocated the HARQ process ID for data transmission. However, if the data corresponding to the HARQ process ID has not been sent yet, the sending UE can still preempt the HARQ process ID, carry it in the DCI and send it to the receiving UE. If the data corresponding to the HARQ process ID has been sent, the sending UE abandons the HARQ process ID, selects other unoccupied HARQ process IDs and sends the HARQ process ID in the DCI to the receiving UE.
- the sending UE receives the DCI from the network device and finds that the HARQ process number indicated by the HARQ process number field of the DCI is not occupied, the SCI is sent to the receiving UE, and the HARQ process number field of the SCI indicates the same HARQ process number.
- the HARQ process number for the side link maintained by the sending UE is 0 to 15, and the sending UE sequentially receives DCI1, DCI2, and DCI3 sent by the network device, where the HARQ process number of DCI1
- the HARQ process number indicated by the field is 0, the HARQ process number indicated by the HARQ process number field of DCI1 is 1, and the HARQ process number indicated by the HARQ process number field of DCI2 is 2.
- the HARQ process number on the UE side has not been occupied by mode-2, so the HARQ process numbers 0, 1, and 2 from the mode-1 mode of the base station are sequentially mapped to the HARQ process numbers 0, 1, and 2 on the UE side.
- the sending UE sends SCI1 to the receiving UE after receiving DCI1, the HARQ process number indicated by the HARQ process number field of SCI1 is 0; the sending UE sends SCI2 to the receiving UE after receiving DCI2, and the HARQ process number indicated by the HARQ process number field of SCI2 is 1.
- the sending UE receives DCI3, it sends SCI3 to the receiving UE.
- the HARQ process number indicated by the HARQ process number field of SCI3 is 2.
- the sending UE receives DCI4 from the network device, and the HARQ process number indicated by the HARQ process number field of DCI4 is 3. Since the HARQ process numbers 3 and 4 maintained by the sending UE side are occupied, the sending UE maps the HARQ process number indicated by DCI4 to HARQ process number 5. The sending UE sends SCI4 to the receiving UE, and the HARQ process number indicated by the HARQ process number field of SCI4 is 5.
- the HARQ process numbers occupied by mode-1 and mode-2 are not distinguished.
- the network device allocates side link resources, it also allocates a HARQ process number for one transmission, but this HARQ process number may be occupied by mode-2. If the sending end UE still uses the occupied HARQ process ID to transmit data, it will cause the sending end UE to obtain data in the wrong HARQ buffer, resulting in the transmission of wrong data.
- the sending end UE recognizes that the HARQ process number selected by the base station is occupied, the sending end UE reassigns an unoccupied HARQ process number for this data transmission to ensure the correctness of the transmission.
- one transmission may be associated with one HARQ process number or two process numbers.
- the base station can indicate the corresponding HARQ process number when allocating retransmission resources, and the terminal can be based on the HARQ process number.
- the mapping relationship determines the redundancy version of which data the retransmission resource is used to transmit, so as to avoid transmission confusion.
- the base station can accurately schedule the retransmission data through the HARQ process number, which improves the accuracy of the base station scheduling and improves the transmission performance.
- the process number selected by the base station for one transmission is "2". Assuming that the process number "2" is occupied, that is, there is data in the HARQ buffer corresponding to the process number "2". If the first terminal still uses the process number "2" In this data transmission, the data in the HARQ buffer corresponding to the process number "2" will be sent to the second terminal, and the wrong data will be transmitted.
- the first terminal recognizes that the process number "2" is occupied, it reassigns the unoccupied process number "5" for this data transmission.
- the first terminal can put the data to be transmitted into the HARQ buffer corresponding to the process number "5", and can also obtain the data in the HARQ buffer corresponding to the process number "5", and send the obtained data to the second terminal to ensure data transmission The correctness.
- the first terminal maintains a mapping relationship between the first HARQ process ID and the second HARQ process ID.
- the first terminal receives the DCI from the network device, the DCI indicates retransmission resources, and the DCI includes the first HARQ process number.
- the first terminal puts the retransmitted data into the HARQ buffer corresponding to the second HARQ process number, and may also indicate the second HARQ process number to the second terminal through the SCI.
- the first terminal retransmits the data on the retransmission resource indicated by the DCI, stores the retransmitted data in the HARQ buffer corresponding to the second HARQ process number, and compares the initial transmission data in the HARQ buffer corresponding to the second HARQ process number. Retransmit the data for combined decoding.
- the network device selects the HARQ process number "3" for a transmission corresponding to TB1.
- the first terminal reassigns the HARQ process number "5" for this data transmission, and the first terminal maintains The mapping relationship between HARQ process number "3” and HARQ process number "5".
- the second terminal stores TB1 in the HARQ buffer corresponding to the HARQ process number "5".
- the network device allocates retransmission resources and indicates the process number "3" at the same time.
- the first terminal stores TB2 (the redundant version of TB1) in the HARQ buffer of HARQ process number "5", and then obtains TB2 from it and sends it to the The second terminal sends TB2.
- the second terminal stores TB2 in the HARQ buffer with the HARQ process number "5", and can also combine and decode TB1 and TB2 in the HARQ buffer with the HARQ process number "5".
- FIG. 12 shows a possible schematic structural diagram of the communication device involved in the foregoing embodiment.
- the communication device shown in FIG. 12 may be the first terminal described in the embodiment of the present application, or may be a component in the first terminal that implements the foregoing method.
- the communication device includes a processing unit 1201 and a transceiver unit 1202.
- the processing unit may be one or more processors, and the transceiving unit may be a transceiver.
- the processing unit 1201 is configured to support the first terminal to generate the second indication information, and/or other processes used in the technology described herein.
- the transceiver unit 1202 is used for the terminal to perform step 402, step 403, step 404, step 702, step 703, step 704, and/or other processes used in the technology described herein.
- the communication device shown in FIG. 12 may also be a chip applied to a terminal.
- the chip may be a System-On-a-Chip (SOC) or a baseband chip with communication function.
- SOC System-On-a-Chip
- the above transceiver unit 1202 for receiving/sending may be an interface circuit of the device for receiving signals from other devices.
- the transceiver unit 1202 is an interface circuit of the chip, and the interface circuit is used to read in or output baseband signals.
- the communication device includes: a processing module 1301 and a communication module 1302.
- the processing module 1301 is used to control and manage the actions of the communication device, for example, to perform the steps performed by the above-mentioned processing unit 1401, and/or to perform other processes of the technology described herein.
- the communication module 1302 is configured to perform the steps performed by the above-mentioned transceiving unit 1402, and supports interaction between the communication device and other devices, such as interaction with other terminal devices.
- the communication device may further include a storage module 1303, and the storage module 1303 is used to store the program code and data of the communication device.
- the processing module 1301 is a processor
- the communication module 1302 is a transceiver
- the storage module 1303 is a memory
- the communication device is the communication device shown in FIG. 3a.
- FIG. 14 shows a possible structural schematic diagram of the communication device involved in the foregoing embodiment.
- the communication device shown in FIG. 14 may be the network device described in the embodiment of the present application, or may be a component of the network device that implements the foregoing method.
- the communication device includes a processing unit 1401 and a transceiving unit 1402.
- the processing unit may be one or more processors, and the transceiving unit may be a transceiver.
- the processing unit 1401 is configured to support the network device to perform step 701 and step 401, generate first indication information, and/or other processes used in the technology described herein.
- the transceiver unit 1402 is used to support communication between the network device and other communication devices, for example, to support the network device to perform step 402 and step 702, and/or other processes used in the technology described herein.
- the communication device shown in FIG. 14 may also be a chip applied to a network device.
- the chip may be a System-On-a-Chip (SOC) or a baseband chip with communication function.
- SOC System-On-a-Chip
- the above transceiver unit 1402 for receiving/sending may be an interface circuit of the device for reading in baseband signals.
- the transceiver unit 1402 is an interface circuit for the chip to read in baseband signals, or the transceiver unit 1402 is an interface circuit for the chip to output baseband signals.
- the communication device includes: a processing module 1501 and a communication module 1502.
- the processing module 1501 is used to control and manage the actions of the communication device, for example, to perform the steps performed by the above-mentioned processing unit 1601, and/or to perform other processes of the technology described herein.
- the communication module 1502 is configured to perform the steps performed by the above-mentioned transceiver unit 1602, and supports interaction between the communication device and other devices, such as interaction with other terminal devices.
- the communication device may further include a storage module 1503, and the storage module 1503 is used to store the program code and data of the communication device.
- the processing module 1501 is a processor
- the communication module 1502 is a transceiver
- the storage module 1503 is a memory
- the communication device is the communication device shown in FIG. 3b.
- the embodiment of the present application provides a computer-readable storage medium, and the computer-readable storage medium stores instructions; the instructions are used to execute the method shown in FIG. 4 or FIG. 7.
- the embodiment of the present application provides a computer program product including instructions, which when running on a communication device, enables the communication device to implement the method shown in FIG. 4 or FIG. 7.
- a wireless communication device includes: instructions stored in the wireless communication device; when the wireless communication device runs on the communication device shown in FIG. 3a, FIG. 3b, and FIG. The method shown in Figure 4 or Figure 7.
- the wireless communication device may be a chip or the like.
- the disclosed database access device and method can be implemented in other ways.
- the embodiments of the database access device described above are only illustrative.
- the division of the modules or units is only a logical function division, and there may be other division methods in actual implementation, such as multiple units or
- the components can be combined or integrated into another device, or some features can be omitted or not implemented.
- the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, database access devices or units, and may be in electrical, mechanical or other forms.
- the units described as separate parts may or may not be physically separate.
- the parts displayed as units may be one physical unit or multiple physical units, that is, they may be located in one place, or they may be distributed to multiple different places. . Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
- the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
- the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
- the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a readable storage medium.
- the technical solutions of the embodiments of the present application are essentially or the part that contributes to the prior art, or all or part of the technical solutions can be embodied in the form of a software product, and the software product is stored in a storage medium. It includes several instructions to make a device (which may be a single-chip microcomputer, a chip, etc.) or a processor execute all or part of the steps of the method described in each embodiment of the present application.
- the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请实施例提供了一种HARQ信息指示方法、通信装置及通信系统,涉及通信领域,通过HARQ进程号保证基站调度的准确性,从而尽可能避免终端发生传输混乱,提高传输性能,可以应用于车联网,例如V2X、LTE-V、V2V等,或可以用于D2D,智能驾驶,智能网联车等领域。包括:第一终端从网络设备接收第一指示信息,第一指示信息用于指示第一HARQ进程号,第一HARQ进程号用于第一终端和第二终端之间的数据传输;第一终端向第二终端发送侧行控制信息,侧行控制信息包括第二指示信息,第二指示信息用于指示第一HARQ进程号。
Description
本申请实施例涉通信领域,尤其涉及一种混合式自动重传请求(hybrid automatic repeat request,HARQ)信息指示方法、通信装置及通信系统。
长期演进(long term evolution,LTE)通信系统、第五代(5
th generation,5G)通信系统还支持设备间的侧行链路(sidelink,SL)通信,如:设备到设备(device to device,D2D)通信、车对一切(vehicle to everything,V2X)通信等,这种通信可以称为新空口(new radio,NR)-车辆对一切(vehicle to everthing,V2X)通信。在NR-V2X通信中,支持基于HARQ的重传方案。具体地,发送方终端可以使用HARQ进程发送块(transport block,TB)、接收HARQ反馈、重传TB;接收方终端可以使用HARQ进程接收TB、发送HARQ反馈。
当发送端用户设备(user equipment,UE)位于基站的网络覆盖范围中,基站可以通过下行控制信息(downlink control information,DCI)调度发送端UE、接收端UE之间的一次数据传输,例如,指示用于本次数据传输的侧行链路资源。发送端UE可以为本次数据传输选择HARQ进程号,并通过基站指示的侧行链路资源向接收端UE发送数据。基站、发送端UE对于同一次数据传输的HARQ进程号的理解可能不一致,影响终端之间的传输可靠性。
发明内容
本申请实施例提供一种HARQ信息指示方法、通信装置及通信系统,解决了基站、发送端UE对于同一次数据传输的HARQ进程号的理解不一致的问题,从而提高了终端之间的传输可靠性。
第一方面,提供了一种HARQ信息指示方法,包括:第一终端从网络设备接收第一指示信息,第一指示信息用于指示第一HARQ进程号,第一HARQ进程号用于第一终端和第二终端之间的数据传输;第一终端向第二终端发送侧行控制信息,侧行控制信息包括第二指示信息,第二指示信息用于指示第一HARQ进程号。
第一方面中,第一终端从网络设备接收第一信息,第一信息指示网络设备为终端之间的一次数据传输分配HARQ进程号(例如,上述第一HARQ进程号)。将一次数据传输(包括初传、重传)关联一个HARQ进程号。第一终端可以根据第一信息明确网络设备为一次传输选择的HARQ进程号,解决了基站、发送端UE对于同一次数据传输的HARQ进程号的理解不一致的问题,可以提高终端之间的传输可靠性。
一种可能的设计中,侧行控制信息还用于指示第一数据,方法还包括:第一终端向第二终端发送第一数据,第一数据与第一HARQ进程号相关。
上述第一方面中,还提供了第一终端使用HARQ进程号传输数据的具体实现:第一终端向第二终端发送第一数据,第一数据与第一HARQ进程号相关,即第一终端可以直接使用网络设备指示的第一HARQ进程号传输数据。
一种可能的设计中,第一终端维护第一HARQ进程号集合,第一HARQ进程号属于第一HARQ进程号集合,第一HARQ进程号集合包括至少一个用于第一模式的数据传输的HARQ进程号;第一模式为网络设备调度侧行链路资源的模式;且第一HARQ进程号属于第二HARQ进程号集合,第二HARQ进程号集合是由网络设备维护的。
上述第一方面中,基站维护的HARQ进程号可以用于mode-1(即上述第一模式),当终端支持mode-1,终端维护的HARQ进程号可以用于mode-1。基站、终端维护的HARQ进程号可以相同,终端可以直接使用基站指示的进程号进行数据传输。
一种可能的设计中,第一HARQ进程号集合还包括至少一个用于第二模式的数据传输的HARQ进程号,第二模式为终端自行确定侧行链路资源的模式;至少一个用于第二模式的数据传输的HARQ进程号与至少一个用于第一模式的数据传输的HARQ进程号不相同。
在上述第一方面中,基站维护的HARQ进程号可以用于mode-1,终端维护的HARQ进程号可以用于mode-1、mode-2(上述第二模式),且两个模式下的HARQ进程号互不相同,但基站、终端用于mode-1的HARQ进程号相同,因此终端可以直接使用基站指示的进程号进行数据传输。
一种可能的设计中,第一指示信息承载在下行控制信息DCI中。
本申请实施例中,提供了发送第一信息的一种可能。
第二方面,提供了一种HARQ信息指示方法,方法包括:第一终端从网络设备接收第一指示信息,第一指示信息用于指示第一HARQ进程号,第一HARQ进程号用于第一终端和第二终端之间的数据传输;在第一HARQ进程号未被第一终端占用的情况下,第一终端向第二终端发送侧行控制信息,侧行控制信息包括第二指示信息,第二指示信息用于指示第一HARQ进程号;在第一HARQ进程号被第一终端占用的情况下,第一终端向第二终端发送侧行控制信息,侧行控制信息包括第三指示信息,第三指示信息用于指示第二HARQ进程号,第二HARQ进程号为第一HARQ进程号集合中未被占用的一个HARQ进程号,第一HARQ进程号集合为第一终端维护的HARQ进程号集合。
第二方面中,基站维护的HARQ进程号可以用于mode-1,终端维护的HARQ进程号可以用于mode-1、mode-2(上述第二模式),且终端维护的两个模式下的HARQ进程号不做区分,即终端维护的HARQ进程号是由mode-1、mode-2两个模式下的数据混用的,这种情况下网络设备为终端的一次数据传输选择的HARQ进程号(mode-1)可能会被占用,若第一信息指示的HARQ进程号被第一终端正在进行的mode-2数据传输占用,第一终端可以为本次数据传输再选择一个HARQ进程号。因此,终端侧避免了mode-1与mode-2两种模式下的侧行数据传输的HARQ进程号冲突。第一终端还可以向第二终端发送第三指示信息,指示第一终端确定的HARQ进程号,即第二HARQ进程号,第二HARQ进程号实际用于第一终端和第二终端之间的一次数据传输。且mode-1、mode-2两个模式下的数据混用HARQ进程号可以更灵活地支持两种模式下的数据传输,避免一种模式下的数据传输过于频繁的情况下HARQ进程号数量不支持的状况。
此外,如果网络设备为终端的一次数据传输选择的HARQ进程号(mode-1)未被 占用,第一终端不用为本次传输重新选择HARQ进程号,直接使用网络设备指示的HARQ进程号。网络设备,基站、发送端UE对于同一次数据传输的HARQ进程号的理解一致,可以提高终端之间的传输可靠性。
一种可能的设计中,第一HARQ进程号未被第一终端占用,包括:第一终端的HARQ实体不包括第一HARQ进程号对应的HARQ进程;第一HARQ进程号被第一终端占用,包括:第一终端的HARQ实体包括第一HARQ进程号对应的HARQ进程。
上述第二方面中,还提供了确定HARQ进程是否被占用的具体方案。
一种可能的设计中,侧行控制信息还用于指示第一数据,方法还包括:第一终端向第二终端发送第一数据,第一数据与第一HARQ进程号或第二HARQ进程号相关。
上述第二方面中,还提供了第一终端使用HARQ进程号传输数据的具体方案:第一终端向第二终端发送第一数据,第一数据与第一HARQ进程号或第二HARQ进程号相关。即第一HARQ进程号未被第一终端正在进行的数据传输占用,第一终端直接使用第一HARQ进程号传输第一数据。如果第一HARQ进程号被第一终端正在进行的数据传输占用,第一终端重新选择第二HARQ进程号传输第一数据。
一种可能的设计中,第一指示信息承载在下行控制信息DCI中。
第三方面,提供了一种通信装置,包括:收发单元,用于从网络设备接收第一指示信息,第一指示信息用于指示第一HARQ进程号,第一HARQ进程号用于第一终端和第二终端之间的数据传输;收发单元还用于,向第二终端发送侧行控制信息,侧行控制信息包括第二指示信息,第二指示信息用于指示第一HARQ进程号。
一种可能的设计中,侧行控制信息还用于指示第一数据,收发单元还用于,向第二终端发送第一数据,第一数据与第一HARQ进程号相关。
一种可能的设计中,第一终端维护第一HARQ进程号集合,第一HARQ进程号属于第一HARQ进程号集合,第一HARQ进程号集合包括至少一个用于第一模式的数据传输的HARQ进程号;第一模式为网络设备调度侧行链路资源的模式;且第一HARQ进程号属于第二HARQ进程号集合,第二HARQ进程号集合是由网络设备维护的。
一种可能的设计中,第一HARQ进程号集合还包括至少一个用于第二模式的数据传输的HARQ进程号,第二模式为终端自行确定侧行链路资源的模式;至少一个用于第二模式的数据传输的HARQ进程号与至少一个用于第一模式的数据传输的HARQ进程号不相同。
一种可能的设计中,第一指示信息承载在下行控制信息DCI中。
第四方面,提供了一种装置,包括:收发单元,用于从网络设备接收第一指示信息,第一指示信息用于指示第一HARQ进程号,第一HARQ进程号用于第一终端和第二终端之间的数据传输;处理单元,确定第一HARQ进程号是否被第一终端占用;收发单元还用于,在处理单元确定第一HARQ进程号未被第一终端占用的情况下,第一终端向第二终端发送侧行控制信息,侧行控制信息包括第二指示信息,第二指示信息用于指示第一HARQ进程号;收发单元还用于,在处理单元确定第一HARQ进程号被第一终端占用的情况下,在第一HARQ进程号被第一终端占用的情况下,第一终端向第二终端发送侧行控制信息,侧行控制信息包括第三指示信息,第三指示信息用于指示第二HARQ进程号,第二HARQ进程号为第一HARQ进程号集合中未被占用的一 个HARQ进程号,第一HARQ进程号集合为第一终端维护的HARQ进程号集合。
一种可能的设计中,处理单元具体用于,若第一终端的HARQ实体不包括第一HARQ进程号对应的HARQ进程,确定第一HARQ进程号对应的HARQ进程未被占用;若第一终端的HARQ实体包括第一HARQ进程号对应的HARQ进程,确定第一HARQ进程号被第一终端占用。
一种可能的设计中,侧行控制信息还用于指示第一数据,收发单元还用于,向第二终端发送第一数据,第一数据与第一HARQ进程号或第二HARQ进程号相关。
一种可能的设计中,第一指示信息承载在下行控制信息DCI中。
第五方面,提供了一种通信装置,包括处理器,所述处理器与存储器耦合;存储器,用于存储计算机程序;处理器,用于执行所述存储器中存储的计算机程序,以使得所述通信装置实现如上述第一方面以及第一方面任意一种实现方式、第二方面以及第二方面任意一种实现方式所述的方法,该通信装置可以是基带芯片,该基带芯片读取计算机程序,使得安装该基带芯片的装置实现上述方面任一种实现方式所述的方法。
第六方面,提供了一种计算机可读存储介质,包括:计算机可读存储介质中存储有指令;当计算机可读存储介质在上述第三方面以及第三方面任意一种实现方式、第四方面以及第四方面任意一种实现方式所述的通信装置上运行时,使得通信装置实现如上述第一方面以及第一方面任意一种实现方式、第二方面以及第二方面任意一种实现方式所述的方法。
第七方面,提供了一种无线通信装置,包括:无线通信装置中存储有指令;当无线通信装置在上述第三方面以及第三方面任意一种实现方式、上述第四方面以及第四方面任意一种实现方式所述的通信装置上运行时,使得通信装置实现如上述第一方面以及第一方面任意一种实现方式、第二方面以及第二方面任意一种实现方式所述的方法。该无线通信装置为芯片。
第八方面,提供了一种通信系统,包括:网络设备、第一终端以及第二终端;
其中,网络设备用于向第一终端发送第一指示信息,第一指示信息用于指示第一HARQ进程号,第一HARQ进程号用于第一终端和第二终端之间的数据传输;
第一终端用于从网络设备接收第一指示信息,向第二终端发送侧行控制信息,侧行控制信息包括第二指示信息,第二指示信息用于指示第一HARQ进程号;
第二终端用于从第一终端接收第二指示信息;
或者,
网络设备用于向第一终端发送第一指示信息,第一指示信息用于指示第一HARQ进程号,第一HARQ进程号用于第一终端和第二终端之间的数据传输;
第一终端从网络设备接收第一指示信息,在第一HARQ进程号未被第一终端占用的情况下,第一终端向第二终端发送侧行控制信息,侧行控制信息包括第二指示信息,第二指示信息用于指示第一HARQ进程号;在第一HARQ进程号被第一终端占用的情况下,第一终端向第二终端发送侧行控制信息,侧行控制信息包括第三指示信息,第三指示信息用于指示第二HARQ进程号,第二HARQ进程号为第一HARQ进程号集合中未被占用的一个HARQ进程号,第一HARQ进程号集合为第一终端维护的HARQ进程号集合;
第二终端用于从第一终端接收侧行控制信息。
图1为本申请实施例提供的mode-1调度示意图;
图2为本申请实施例提供的通信系统的架构图;
图3a为本申请实施例提供的通信装置的结构框图;
图3b为本申请实施例提供的通信装置的另一结构框图;
图4为本申请实施例提供的HARQ信息指示方法的流程示意图;
图5为本申请实施例提供的HARQ进程号集合示意图;
图6为本申请实施例提供的HARQ进程号集合的另一示意图;
图7为本申请实施例提供的HARQ信息指示方法的另一流程示意图;
图8为本申请实施例提供的HARQ进程号集合的另一示意图;
图9为本申请实施例提供的HARQ信息指示方法的另一示意图;
图10为本申请实施例提供的HARQ信息指示方法的示意图;
图11为本申请实施例提供的HARQ信息指示方法的另一示意图;
图12为本申请实施例提供的通信装置的另一结构框图;
图13为本申请实施例提供的通信装置的另一结构框图;
图14为本申请实施例提供的通信装置的另一结构框图;
图15为本申请实施例提供的通信装置的另一结构框图。
下面将结合附图,对本申请中的技术方案进行描述。
首先,对本发明实施例涉及的术语进行解释说明。
(1)HARQ进程
目前,可以使用HARQ进程(process)在进行数据传输,还可以为一次数据传输分配一个HARQ进程号,该HARQ进程号可以用于本次数据传输,可以认为该HARQ进程号与本次数据传输对应。
此外,一次数据传输可以包括:发送端使用HARQ进程发送TB,接收端使用该HARQ进程接收TB。
HARQ进程还对应一个HARQ反馈。其中,HARQ反馈可以是肯定应答(acknowledgement,ACK)或否定应答(negative acknowledgement,NACK)。
(2)HARQ进程号
HARQ进程号可以认为是HARQ的标识(identification,ID),通过HARQ ID可以识别HARQ进程。例如,HARQ进程号可以是阿拉伯数字:0、1、2、3、4…等等。
具体地,HARQ进程使用停等协议(stop-and-wait protocol)来传输数据,即发送端发送一个TB后,这个HARQ进程上的数据传输暂停,发送端等待确认信息(即上述HARQ反馈)。接收端可以使用1比特的信息对该TB进行确认,例如,如果成功接收该TB,则向发送端回复“1”(ACK);如果未成功接收该TB,则向发送端回复“0”(NACK)。
HARQ进程在每次传输后发送端就停下来等待确认信息,会导致系统吞吐量很低。因此需要使用多个并行的HARQ进程进行数据传输。在一个HARQ进程等待确认信息 时,发送端可以使用另一个HARQ进程来继续发送数据。
(3)HARQ缓存(buffer)
收发双方都维护有HARQ buffer,对于发送端或接收端来说,每一个HARQ进程对应一个HARQ buffer,HARQ buffer存储有数据。接收端可以对同一个HARQ buffer内的数据进行软合并,提高解码性能。
示例的,发送端、接收端使用HARQ进程1进行数据传输,发送端可以从本地维护的HARQ进程1对应的HARQ buffer中取出数据后发送数据,接收端接收数据后将数据存储在本地维护的HARQ进程1对应的HARQ buffer中。
假设接收端未成功解码数据,可以向发送端回复“NACK”。发送端接收“NACK”后使用HARQ进程1重传数据,接收端接收重传数据后将重传数据存储在本地维护的HARQ进程1对应的HARQ buffer中,可以对HARQ进程1对应的HARQ buffer中的初传数据和重传数据进行软合并。
(4)HARQ实体
每个终端都维护一个HARQ实体(HARQ entity),正在用于数据传输的多个HARQ进程构成了HARQ实体包括。
可以理解的是,当HARQ实体中包括某个HARQ进程,说明该HARQ进程正在被用于数据传输,即该HARQ进程正在被终端占用。
具体实现中,某个HARQ进程对应的HARQ buffer被占用时,说明该HARQ进程正在被用于数据传输,即该HARQ进程正在被占用,HARQ实体包括该HARQ进程。在该HARQ进程的数据传输结束后,终端可以释放该HARQ进程。例如,发送端从接收端接收ACK后清空HARQ buffer,释放HARQ进程;或者,发送端从接收端接收NACK,并且已经当前重传次数传输已经超过最大传输次数时,清空HARQ buffer,释放HARQ进程。
当HARQ实体中不包括某个HARQ进程,说明该HARQ进程没有正在被用于数据传输,即该HARQ进程当前未被终端占用。
(5)侧行链路(sidelink)资源分配模式
在新空口(new radio,NR)-V2X中,可以通过两种方式配置侧行链路资源,一种是基站分配模式(简称mode-1),一种是用户自选模式(简称mode-2)。
mode-1主要适用于有基站网络覆盖场景下的侧行通信,即当终端位于基站网络覆盖区域内,基站可以根据终端上报的BSR,为终端分配侧行链路资源以进行侧行通信。具体地,包括动态调度(dynamic grant)和预配置调度(configured grant)。
参考图1,在动态调度模式下,当终端有新的数据包到来时,会先发送调度请求(scheduling request,SR)给基站,基站会通过DCI1告知终端上报BSR的资源。终端接着在相应的资源上报BSR给基站,基站再通过DCI2告知终端发送侧行链路资源,终端接收DCI2后通过终端指示的侧行链路资源进行侧行通信。
SPS模式下,基站会通过高层信令配置相关的侧行链路资源,终端直接在配置的侧行链路资源上发送数据(type-1),或者基站会发送一个DCI消息激活终端使用配置的侧行链路资源发送数据(type-2)。
mode-2主要应用于没有基站网络覆盖场景下的侧行通信,因为没有基站统一的资 源管理,终端只能自己选择侧行链路资源进行侧行通信。
图2给出了本申请提供的技术方案所适用的一种通信系统的示意图,该通信系统可以包括多个网络设备(仅示出了网络设备100)以及多个终端(图中仅示出了终端201和终端202)。图2仅为示意图,并不构成对本申请提供的技术方案的适用场景的限定。该通信系统支持侧行通信,如:设备到设备(device to device,D2D)通信、车对一切(vehicle to everything,V2X)通信等。
其中,网络设备和终端之间可以通过蜂窝链路(Uu链路)进行上下行传输,终端之间可以通过侧行链路(sidelink链路)进行通信,例如D2D通信、V2X通信、机器类型通信(machine type communication,MTC)等。
网络设备可以是传输接收节点(transmission reception point,TRP)、基站、中继站或接入点等。网络设备可以是5G通信系统中的网络设备或未来演进网络中的网络设备;还可以是可穿戴设备或车载设备等。另外还可以是:全球移动通信系统(global system for mobile communication,GSM)或码分多址(code division multiple access,CDMA)网络中的基站收发信台(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)中的NB(NodeB),还可以是长期演进(long term evolution,LTE)中的eNB或eNodeB(evolutional NodeB)。网络设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器。本申请实施例将以基站为例进行说明。
终端可以是用户设备(user equipment,UE)、接入终端设备、UE单元、UE站、移动站、移动台、远方站、远程终端设备、移动设备、UE终端设备、无线通信设备、UE代理或UE装置等。接入终端设备可以是蜂窝电话、无绳电话、会话发起协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备或未来演进的公共陆地移动网络(public land mobile network,PLMN)网络中的终端设备等。本申请的终端设备还可以是作为一个或多个部件或者单元而内置于车辆的车载模块、车载模组、车载部件、车载芯片或者车载单元,车辆通过内置的所述车载模块、车载模组、车载部件、车载芯片或者车载单元可以实施本申请的方法。本申请的第一终端、第二终端以及网络设备都可以为一个或多个芯片,也可以为片上系统(System on Chip,SOC)等。
图2所示的通信系统中,终端201和终端202之间可以进行侧行通信,终端201和终端202之间传输的数据可以称为侧行数据,即侧行链路上传输的数据。以终端201为发送方,终端202为接收方作为示例,当终端201需要向终端202发送数据,终端201可以向网络设备101上报BSR,网络设备101可以为终端201分配一次传输的侧行链路资源,终端201为本次数据传输选择HARQ进程号,并通过侧行链路控制信息(sidelink control information,SCI)将选择的HARQ进程号指示给终端202。但是,网络设备101不了解终端201的行为,在向终端201指示资源时也不会区分不同的HARQ进程号,网络设备101为某次数据传输分配的资源可能被发送端UE用于其他HARQ进程号对应的数据传输。终端201不确定DCI指示的侧行链路资源用于哪个 HARQ进程号对应的数据传输,也就是说,基站、发送端UE对于同一次数据传输的HARQ进程号的理解不一致,影响终端之间的传输可靠性。
例如,当HARQ进程号“2”对应的初传数据解码失败,网络设备101可以通过DCI指示重传资源。终端201接收DCI后不确定该重传资源用于哪个HARQ进程号,可能将该重传资源用于重传其他HARQ进程号,例如,利用该重传资源向终端202重传HARQ进程号“5”对应的数据,导致终端202暂时无法接收到HARQ进程号“2”对应的重传数据,影响传输可靠性。
示例的,网络设备向终端201发送DCI 1指示侧行链路资源1,侧行链路资源1用于传输TB1。终端201接收DCI 1,为本次数据传输分配HARQ进程号3。终端201还可以向终端202发送SCI 1,指示HARQ进程号3。终端202可以将初传数据(TB1)存储在HARQ进程号3对应的HARQ buffer中。
当终端202未成功解码HARQ buffer中的初传数据,向终端201发送“NACK”。终端201还可以将“NACK”发送给网络设备101。网络设备收到后,向终端201发送DCI 2,DCI 2指示重传资源。
终端201接收DCI 2后不能确定DCI 2指示的资源具体用于哪个数据的重传,可能在DCI 2指示的资源上发送TB2的冗余版本(即TB2的重传数据)。假设TB1对应的业务优先级较高,例如,为时延敏感业务,在DCI 2指示的资源上重传TB2的冗余版本将导致终端202长时间接收不到TB1的冗余版本(即TB1的重传数据),终端202长时间不能对TB1的冗余版本、TB1的初传版本进行软合,无法满足时延敏感业务的时延需求,严重影响传输性能。
可见,现有技术仅给出了NR-V2X中HARQ重传的框架,并未给出相关的具体设计。基站维护的HARQ进程号与终端维护的HARQ进程号的映射关系尚不明确,基站和终端的行为不一致。
本申请实施例提供一种HARQ信息指示方法,第一终端从网络设备接收第一指示信息,第一指示信息用于指示第一HARQ进程号,第一HARQ进程号用于第一终端和第二终端之间的数据传输。第一终端还可以向第二终端发送侧行控制信息,所述侧行控制信息包括第二指示信息,第二指示信息用于指示第一HARQ进程号。本申请实施例中,发送方终端(例如,本申请实施例所述的第一终端)从网络设备接收第一指示信息,根据第一指示信息确定本次数据传输相关的第一HARQ进程号后,还可以向接收方终端(例如,本申请实施例所述的第二终端),发送第二指示信息,指示与本次数据传输相关的第一HARQ进程号。
可见,第一终端可以根据第一信息明确网络设备为一次传输选择的HARQ进程号,解决了基站、发送端UE对于同一次数据传输的HARQ进程号的理解不一致的问题,可以提高终端之间的传输可靠性。
本申请实施例所述的终端,可以通过图3a中的通信装置310来实现。图3a所示为本申请实施例提供的通信装置310的硬件结构示意图。该通信装置310包括处理器3101、存储器3102以及至少一个通信接口(图3a中仅是示例性的以包括通信接口3103为例进行说明)。其中,处理器3101、存储器3102以及通信接口3103之间互相连接。
处理器3101可以是一个通用中央处理器(central processing unit,CPU),微处理 器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信接口3103,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN)等。
存储器3102可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路3102与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器3102用于存储执行本申请方案的计算机执行指令,并由处理器3101来控制执行。处理器3101用于执行存储器3102中存储的计算机执行指令,从而实现本申请下述实施例提供的意图处理方法。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器3101可以包括一个或多个CPU,例如图3a中的CPU0和CPU1。
在具体实现中,作为一种实施例,通信装置310可以包括多个处理器,例如图3a中的处理器3101和处理器3106。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
在具体实现中,作为一种实施例,通信装置310还可以包括输出设备3104和输入设备3105。输出设备3104和处理器3101通信,可以以多种方式来显示信息。例如,输出设备3104可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备3105和处理器3101通信,可以以多种方式接收用户的输入。例如,输入设备3105可以是鼠标、键盘、触摸屏设备或传感设备等。
上述的通信装置310可以是一个通用设备或者是一个专用设备。在具体实现中,通信装置310可以是台式机、便携式电脑、网络服务器、掌上电脑(personal digital assistant,PDA)、移动手机、平板电脑、无线终端装置、嵌入式设备或有图3a中类似结构的设备。本申请实施例不限定通信装置310的类型。
需要说明的是,通信装置310可以是终端整机,也可以是实现终端上的功能部件或组件,也可以是通信芯片,例如基带芯片等。通信装置310是终端整机时,通信接口可以是射频模块。当通信装置310为通信芯片,通信接口3103可以是该芯片的输入输出接口电路,输入输出接口电路用于读入和输出基带信号。
图3b是一种网络设备的结构示意图。网络设备320的结构可以参考图3b所示的结构。
网络设备包括至少一个处理器3201、至少一个存储器3202、至少一个收发器3203、至少一个网络接口3204和一个或多个天线3205。处理器3201、存储器3202、收发器3203和网络接口3204相连,例如通过总线相连。天线3205与收发器3203相连。网络接口3204用于使得网络设备通过通信链路,与其它通信设备相连,例如网络设备通过S1接口,与核心网网元相连。在本申请实施例中,所述连接可包括各类接口、传输线或总线等,本实施例对此不做限定。
本申请实施例中的处理器,例如处理器3201,可以包括如下至少一种类型:通用中央处理器(Central Processing Unit,CPU)、数字信号处理器(Digital Signal Processor,DSP)、微处理器、特定应用集成电路专用集成电路(Application-Specific Integrated Circuit,ASIC)、微控制器(Microcontroller Unit,MCU)、现场可编程门阵列(Field Programmable Gate Array,FPGA)、或者用于实现逻辑运算的集成电路。例如,处理器3201可以是一个单核(single-CPU)处理器或多核(multi-CPU)处理器。至少一个处理器3201可以是集成在一个芯片中或位于多个不同的芯片上。
本申请实施例中的存储器,例如存储器3202,可以包括如下至少一种类型:只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically erasable programmabler-only memory,EEPROM)。在某些场景下,存储器还可以是只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。
存储器3202可以是独立存在,与处理器3201相连。可选的,存储器3202也可以和处理器3201集成在一起,例如集成在一个芯片之内。其中,存储器3202能够存储执行本申请实施例的技术方案的程序代码,并由处理器3201来控制执行,被执行的各类计算机程序代码也可被视为是处理器3201的驱动程序。例如,处理器3201用于执行存储器3202中存储的计算机程序代码,从而实现本申请实施例中的技术方案。
收发器3203可以用于支持网络设备与终端之间射频信号的接收或者发送,收发器3203可以与天线3205相连。具体地,一个或多个天线3205可以接收射频信号,该收发器3203可以用于从天线接收所述射频信号,并将射频信号转换为数字基带信号或数字中频信号,并将该数字基带信号或数字中频信号提供给所述处理器3201,以便处理器3201对该数字基带信号或数字中频信号做进一步的处理,例如解调处理和译码处理。此外,收发器3203可以用于从处理器3201接收经过调制的数字基带信号或数字中频信号,并将该经过调制的数字基带信号或数字中频信号转换为射频信号,并通过一个或多个天线3205发送所述射频信号。具体地,收发器3203可以选择性地对射频信号进行一级或多级下混频处理和模数转换处理以得到数字基带信号或数字中频信号,所述下混频处理和模数转换处理的先后顺序是可调整的。收发器3203可以选择性地对经 过调制的数字基带信号或数字中频信号时进行一级或多级上混频处理和数模转换处理以得到射频信号,所述上混频处理和数模转换处理的先后顺序是可调整的。数字基带信号和数字中频信号可以统称为数字信号。收发器可以称为收发电路、收发单元、收发器件、发送电路、发送单元或者发送器件等等。
需要说明的是,通信装置320可以是网络设备整机,也可以是实现网络设备功能的部件或组件,也可以是通信芯片。当通信装置320为通信芯片,收发器3203可以是该芯片的接口电路,该接口电路用于读入和输出基带信号。
本申请实施例提供一种HARQ信息指示方法,如图4所示,所述方法包括以下步骤:
步骤401、网络设备从第一终端设备接收BSR,根据所述BSR为第一终端分配第一HARQ进程号。
其中,网络设备可以是图2所示通信系统中的网络设备101。第一终端是侧行通信的接收方,侧行通信的接收方可以称为第二终端。
具体地,第一终端需要向第二终端发送数据(例如,本申请实施例所述的第一数据)时,先向网络设备上报SR表明自己的传输需求。响应于第一终端上报的SR,网络设备向第一终端发送用于上报BSR的时频资源。第一终端可以利用基站分配的时频资源上报BSR,该BSR包括buffer size。其中,buffer size用于指示第一数据的大小,网络设备可以根据BSR中的buffer size为第一终端分配用于发送第一数据的侧行链路资源以及用于本次数据传输的HARQ进程号。
一种可能的实现方式中,网络设备本身维护了一个HARQ进程号集合,网络设备可以从中选择一个HARQ进程号作为第一终端本次数据传输相关的HARQ进程号,例如,本申请实施例所述的第一HARQ进程号。
可以理解的是,所述第一HARQ进程号用于所述第一终端和第二终端之间的数据传输,即第一终端发送第一数据的HARQ进程的进程号为所述第一HARQ进程号。此外,所述“第一终端本次数据传输”指的是与第一数据相关的数据传输过程,例如,第一终端发送第一数据、第二终端接收第一数据、第二终端向第一终端发送HARQ反馈、第一终端接收HARQ反馈、第一终端重传第一数据。
需要说明的是,网络设备维护的HARQ进程号集合可以称为第二HARQ进程号集合,本申请实施例所述的第一HARQ进程号属于所述第二HARQ进程号集合。
示例的,网络设备维护的第二HARQ进程号集合为{1,2,3…15},包括15个HARQ进程号。网络设备可以在其中选择一个HARQ进程号作为第一终端本次数据传输相关的HARQ进程号,例如,网络设备选择“3”作为第一终端本次数据传输相关的HARQ进程号。
需要说明的是,步骤401为可选步骤,可以不执行步骤401,直接执行步骤402以及后续步骤,即本申请实施例提供的方法包括步骤402~步骤404。
步骤402、网络设备向第一终端发送DCI,包括第一指示信息。
具体地,网络设备在步骤402向第一终端发送的DCI指示第一终端发送第一数据分配的侧行链路资源、第一HARQ进程号。
示例的,该DCI包括时频资源信息和第一指示信息。其中,时频资源信息用于指 示第一终端发送第一数据的侧行链路资源;第一指示信息用于指示第一HARQ进程号。
例如,参考表1,网络设备维护的15个HARQ进程号可以用4比特的二进制序列来表示。其中,第二HARQ进程号集合中的第一个HARQ进程号“1”用二进制序列“0000”表示,第二HARQ进程号集合中的第二个HARQ进程号“2”用二进制序列“0001”表示,第二HARQ进程号集合中的第三个HARQ进程号“3”用二进制序列“0010”表示,以此类推,第二HARQ进程号集合中的第15个HARQ进程号“15”用二进制序列“1110”表示。
表1
参考上述示例,假设网络设备选择第二HARQ进程号集合中的第三个HARQ进程号“3”作为第一终端本次数据传输相关的HARQ进程号,即第一指示信息可以是二进制序列“0010”。
另一种可能的实现方式中,第一指示信息可以是二进制序列,将二进制序列转化成十进制数值,得到第一HARQ进程号。示例的,第一指示信息为“111”,即指示的第一HARQ进程号为“7”。
步骤403、第一终端从网络设备接收第一指示信息,第一指示信息指示第一HARQ进程号。
具体实现中,所述第一指示信息可以承载在DCI(网络设备在步骤402中发送的DCI)中。第一终端从网络设备接收DCI,解析DCI可以从中获取第一指示信息。
步骤404、所述第一终端向所述第二终端发送侧行控制信息,所述侧行控制信息 包括第二指示信息,所述第二指示信息用于指示所述第一HARQ进程号。
具体地,第一终端本身也维护了一个HARQ进程号集合,例如,本申请实施例所述的第一HARQ进程号集合。此外,第一HARQ进程号集合至少包括第二HARQ进程号集合中的所有HARQ进程号,例如,包括第一HARQ进程号。第一终端还可以向第二终端发送第二指示信息,第二指示信息用于指示第一HARQ进程号。即第一终端可以通过第二指示信息告知第二终端本次数据传输相关的HARQ进程号为第一HARQ进程号。
一种可能的实现方式中,一种可能的实现方式中,第一终端维护的第一HARQ进程号集合包括m个HARQ进程号,可以用长度为
的二进制序列来表示第一HARQ进程号集合中的HARQ进程号。m为大于等于n的整数。
例如,假设网络设备维护的第二HARQ进程号集合包括HARQ进程号“1”~HARQ进程号“15”,第一终端维护的第一HARQ进程号集合至少包括HARQ进程号“1”~HARQ进程号“15”。参考表2,第一HARQ进程号集合中的第一个HARQ进程号“1”用二进制序列“000”表示,第一HARQ进程号集合中的第二个HARQ进程号“2”用二进制序列“001”表示,第一HARQ进程号集合中的第三个HARQ进程号“3”用二进制序列“010”表示,以此类推。
表2
例如,第一指示信息指示的HARQ进程号为“3”,“3”是第一终端维护的HARQ进程号中的第三个HARQ进程号,第二指示信息可以是二进制序列“010”。
另一种可能的实现方式中,第一指示信息可以是二进制序列,将二进制序列转化成十进制数值,得到第一HARQ进程号。同样,第二指示信息也是二进制序列,将二 进制序列转化成十进制数值,得到第二指示信息所指示的第一HARQ进程号。
示例的,第一指示信息为“111”,即第一信息指示的第一HARQ进程号为“7”。第二指示信息指示第一HARQ进程号“7”,第二指示信息为“111”。
区别于第一终端支持的资源配置模式,第一终端本地维护的HARQ进程号集合有以下两种可能的实现:
第一种、第一终端仅支持mode-1,第一终端不会自行选择侧行链路资源,第一终端本地维护的HARQ进程号仅用于mode-1。
示例的,参考图5,第一终端本地维护的第一HARQ进程号集合包括至少一个用于第一模式的数据传输的HARQ进程号。且所述第一HARQ进程号集合可以与网络设备维护的第二HARQ进程号集合相同,第一HARQ进程号集合包括所述第一指示信息指示的第一HARQ进程号;所述第一模式为网络设备调度侧行链路资源的模式,即本申请实施例所述的mode-1。
需要说明的是,第一终端维护的HARQ进程号均用于mode-1,网络设备为本次数据传输选择的HARQ进程号不会被mode-2占用。第一终端从网络设备接收第一指示信息,确定第一指示信息指示的第一HARQ进程号,第一HARQ进程号不会被mode-2占用,第一终端可以可以直接使用网络设备为本次数据传输选择的HARQ进程号,即向第二终端发送第二指示信息,指示第一HARQ进程号。第二终端从第一终端接收第二指示信息,可以根据第一指示信息确定第一终端与第二终端之间的本次数据传输关联的HARQ进程号为第一HARQ进程号。
第二种、第一终端支持mode-1和mode-2两种侧行链路资源配置方式,第一HARQ进程号集合中的HARQ进程号可以用于mode-1,也可以用于mode-2,但是用于mode-1的HARQ进程号和用于mode-2的HARQ进程号完全不同。
示例的,参考图6,所述第一终端维护第一HARQ进程号集合,网络设备维护的第二HARQ进程号集合是第一HARQ进程号集合的子集。第一HARQ进程号集合包括至少一个用于第一模式的数据传输的HARQ进程号。所述第一HARQ进程号集合包括所述第一指示信息指示的第一HARQ进程号。此外,所述第一HARQ进程号集合还包括至少一个用于第二模式的数据传输的HARQ进程号,所述至少一个用于第二模式的数据传输的HARQ进程号与所述至少一个用于第一模式的数据传输的HARQ进程号不相同。
需要说明的是,所述第二模式为终端自行确定侧行链路资源的模式,即本申请实施例所述的mode-2。第一HARQ进程号集合中用于第一模式的HARQ进程号和其中用于第二模式的HARQ进程号完全不相同。示例的,参考图6,第一HARQ进程号集合包括HARQ进程号“0”~HARQ进程号“N”。其中,HARQ进程号“0”~HARQ进程号“m”用于第一模式的数据传输,HARQ进程号“m+1”~HARQ进程号“n”用于第二模式的数据传输。
可以理解的是,第一终端维护的HARQ进程号用于mode-1或mode-2,但是用于mode-1的HARQ进程号和用于mode-2的HARQ进程号完全不同,网络设备为本次数据传输选择的HARQ进程号不会被mode-2占用。第一终端从网络设备接收第一指示信息,确定第一指示信息指示的第一HARQ进程号,第一HARQ进程号不会被mode-2 占用,第一终端可以直接使用网络设备为本次数据传输选择的HARQ进程号,即向第二终端发送第二指示信息,指示第一HARQ进程号。第二终端从第一终端接收第二指示信息,可以根据第一指示信息确定第一终端与第二终端之间的本次数据传输关联的HARQ进程号为第一HARQ进程号。
可选的,所述侧行控制信息还用于指示第一数据,即第一终端、第二终端之间使用第一HARQ进程号传输的数据。图4所示的方法还包括:所述第一终端向所述第二终端发送所述第一数据。其中,所述第一数据与所述第一HARQ进程号相关。
需要说明的是,所述第一数据与所述第一HARQ进程号相关,即第一HARQ进程号对应的HARQ进程用于传输第一数据。例如,第一终端使用第一HARQ进程号对应的HARQ进程发送第一数据,第二终端使用第一HARQ进程号对应的HARQ进程接收第一数据。例如,对第一HARQ进程号对应的HARQ buffer中的数据进行合并译码,获得第一数据。
本申请实施例图4所示的方法中,mode-1、mode-2的HARQ进程号完全区分,不同模式使用时的HARQ进程号不会存在冲突,网络设备、终端为同一次数据传输维护的HARQ进程号可以相同,将一次数据传输(包括初传、重传)关联一个HARQ进程号。网络设备向第一终端发送第一指示信息指示为一次数据传输选择的HARQ进程号,第一终端可以根据第一信息明确网络设备为一次传输选择的HARQ进程号,解决了基站、发送端UE对于同一次数据传输的HARQ进程号的理解不一致的问题,可以提高终端之间的传输可靠性。
此外,网络设备可以针对HARQ进程号进行调度,第一终端可以根据进程号对网络设备分配的资源进行区分,网络设备为某次数据传输分配的资源不会被第一终端用于其他HARQ进程号对应的数据传输,提高了网络设备调度的准确性,还可以减少对这次数据传输的影响,提高传输性能。
示例的,第一终端从网络设备接收DCI,DCI指示HARQ进程号以及侧行链路资源,第一终端可以确定DCI指示的资源用于哪个HARQ进程号对应的数据传输,避免将该侧行链路资源用于其他HARQ进程号对应的数据传输,提高了终端之间的传输可靠性。
本申请实施例还提供一种HARQ信息指示方法,如图7所示,所述方法包括以下步骤:
步骤701、网络设备从第一终端设备接收BSR,根据所述BSR为第一终端分配第一HARQ进程号。
其中,网络设备可以是图2所示通信系统中的网络设备101。第一终端是侧行通信的接收方,侧行通信的接收方可以称为第二终端。
具体地,第一终端需要向第二终端发送数据(例如,本申请实施例所述的第一数据)时,先向网络设备上报SR表明自己的传输需求。响应于第一终端上报的SR,网络设备向第一终端发送用于上报BSR的时频资源。第一终端可以利用基站分配的时频资源上报BSR,该BSR包括buffer size。其中,buffer size用于指示第一数据的大小,网络设备可以根据BSR中的buffer size为第一终端分配用于发送第一数据的侧行链路资源以及用于本次数据传输的HARQ进程号。
一种可能的实现方式中,网络设备本身维护了一个HARQ进程号集合,网络设备可以从中选择一个HARQ进程号作为第一终端本次数据传输相关的HARQ进程号,例如,本申请实施例所述的第一HARQ进程号。
可以理解的是,所述第一HARQ进程号用于所述第一终端和第二终端之间的数据传输,即第一终端发送第一数据的HARQ进程的进程号为所述第一HARQ进程号。此外,第一终端本次数据传输指示的与第一数据相关的数据传输过程,例如,第一终端发送第一数据、第二终端接收第一数据、第二终端向第一终端发送HARQ反馈、第一终端接收HARQ反馈、第一终端重传第一数据。
需要说明的是,网络设备维护的HARQ进程号集合可以称为第二HARQ进程号集合,本申请实施例所述的第一HARQ进程号属于所述第二HARQ进程号集合。
示例的,网络设备维护的第二HARQ进程号集合为{1,2,3…15},包括15个HARQ进程号。网络设备可以在其中选择一个HARQ进程号作为第一终端本次数据传输相关的HARQ进程号,例如,网络设备选择“3”作为第一终端本次数据传输相关的HARQ进程号。
需要说明的是,步骤701为可选步骤,可以不执行步骤701,直接执行步骤702以及后续步骤,即本申请实施例提供的方法包括步骤702~步骤705。
步骤702、网络设备向第一终端发送DCI,包括第一指示信息。
具体地,网络设备在步骤702向第一终端发送的DCI指示第一终端发送第一数据分配的侧行链路资源、第一HARQ进程号。
示例的,该DCI包括时频资源信息和第一指示信息。其中,时频资源信息用于指示第一终端发送第一数据的侧行链路资源;第一指示信息用于指示第一HARQ进程号。
例如,参考表1,网络设备维护的15个HARQ进程号可以用4比特的二进制序列来表示。其中,第二HARQ进程号集合中的第一个HARQ进程号“1”用二进制序列“0000”表示,第二HARQ进程号集合中的第二个HARQ进程号“2”用二进制序列“0001”表示,第二HARQ进程号集合中的第三个HARQ进程号“3”用二进制序列“0010”表示,以此类推,第二HARQ进程号集合中的第15个HARQ进程号“15”用二进制序列“1110”表示。
假设网络设备选择第二HARQ进程号集合中的第三个HARQ进程号“3”作为第一终端本次数据传输相关的HARQ进程号,即第一指示信息可以是二进制序列“0010”。
另一种可能的实现方式中,第一指示信息可以是二进制序列,将二进制序列转化成十进制数值,得到第一HARQ进程号。示例的,第一指示信息为“111”,即指示的第一HARQ进程号为“7”。
步骤703、第一终端从网络设备接收第一指示信息,所述第一指示信息用于指示第一HARQ进程号。
具体实现中,所述第一指示信息承载在DCI(网络设备在步骤702中发送的DCI)中。第一终端从网络设备接收DCI,解析DCI可以从中获取第一指示信息。
步骤704、在第一HARQ进程号未被第一终端占用的情况下,第一终端向所述第二终端发送侧行控制信息,所述侧行控制信息包括第二指示信息,所述第二指示信息用于指示所述第一HARQ进程号。
具体地,第一终端本身维护了一个HARQ进程号集合,例如,本申请实施例所述的第一HARQ进程号集合。同时,第一终端可以支持mode-1和mode-2两种侧行链路资源配置方式,且不限制哪些HARQ进程号用于mode-1,哪些HARQ进程号用于mode-2。第一HARQ进程号集合中的某个HARQ进程号既有可能用于mode-1,又有可能用于mode-2。也就是说,当网络设备在为第一终端本次数据传输分配HARQ进程号时,网络设备并不了解第一终端本身的行为,假设网络设备为第一终端本次数据传输分配了HARQ进程号“x”,实际上HARQ进程号“x”有可能已经被第一终端分配给了其他HARQ进程。
所述第一终端维护第一HARQ进程号集合,集合中的某个HARQ进程号可以用于mode-1,也可以用于mode-2。即第一HARQ进程号集合中的HARQ进程号“x”,可以是mode-1下网络设备为终端的侧行链路数据传输选择的HARQ进程号,也可以mode-2下终端为自身的侧行链路数据传输自选的HARQ进程号。
示例的,参考图8,第一HARQ进程号集合、网络设备维护的第二HARQ进程号集合可以相同。第一HARQ进程号集合包括HARQ进程号“0”~HARQ进程号“N”。其中,任意一个HARQ进程号即可用于mode-1的侧行链路数据传输,也可以用于mode-2下的侧行链路数据传输。
可以理解的是,第一终端维护的HARQ进程号用于mode-1或mode-2,网络设备为本次数据传输选择的HARQ进程号可能会被mode-2占用。第一终端从网络设备接收第一指示信息,确定第一指示信息指示的第一HARQ进程号,假设第一HARQ进程号未被占用,第一终端可以直接使用网络设备为本次数据传输选择的HARQ进程号,即向第二终端发送第二指示信息,指示第一HARQ进程号。第二终端从第一终端接收第二指示信息,可以根据第一指示信息确定第一终端与第二终端之间的本次数据传输关联的HARQ进程号为第一HARQ进程号。
一种可能的实现方式中,所述第一终端的HARQ实体不包括所述第一HARQ进程号对应的HARQ进程,认为所述第一HARQ进程号未被所述第一终端占用。
步骤705、在第一HARQ进程号被所述第一终端占用的情况下,第一终端向所述第二终端发送侧行控制信息,所述侧行控制信息包括第三指示信息,所述第三指示信息用于指示第二HARQ进程号。
其中,第二HARQ进程号为第一终端维护的第一HARQ进程号集合中未被占用的一个HARQ进程号。
可以理解的是,第一终端维护的HARQ进程号用于mode-1或mode-2,网络设备为本次数据传输选择的HARQ进程号可能会被mode-2占用。第一终端从网络设备接收第一指示信息,确定第一指示信息指示的第一HARQ进程号。假设第一HARQ进程号被占用,第一终端则在第一HARQ进程号集合中,选择一个未被占用的HARQ进程号(例如,本申请实施例所述的第二HARQ进程号)作为第一终端本次数据传输相关的HARQ进程号。第一终端还可以向第二终端发送第三指示信息,指示第二HARQ进 程号。第二终端从第一终端接收第三指示信息,可以根据第三指示信息确定第一终端与第二终端之间的本次数据传输关联的HARQ进程号为第二HARQ进程号。
一种可能的实现方式中,所述第一终端的HARQ实体包括所述第一HARQ进程号对应的HARQ进程,认为所述第一HARQ进程号被所述第一终端占用。
可选的,所述侧行控制信息还用于指示第一数据,即第一终端、第二终端之间使用第一HARQ进程号传输的数据。图7所示的方法还包括:所述第一终端向所述第二终端发送所述第一数据。其中,所述第一数据与所述第一HARQ进程号相关。
需要说明的是,所述第一数据与所述第一HARQ进程号相关,即第一HARQ进程号对应的HARQ进程用于传输第一数据。例如,第一终端使用第一HARQ进程号对应的HARQ进程发送第一数据,第二终端使用第一HARQ进程号对应的HARQ进程接收第一数据。
第二方面中,基站维护的HARQ进程号可以用于mode-1,终端维护的HARQ进程号可以用于mode-1、mode-2(上述第二模式),且终端维护的两个模式下的HARQ进程号不做区分,即终端维护的HARQ进程号是由mode-1、mode-2两个模式下的数据混用的,这种情况下网络设备为终端的一次数据传输选择的HARQ进程号(mode-1)可能会被占用,若第一信息指示的HARQ进程号被第一终端正在进行的mode-2数据传输占用,第一终端可以为本次数据传输再选择一个HARQ进程号。因此,终端侧避免了mode-1与mode-2两种模式下的侧行数据传输的HARQ进程号冲突。第一终端还可以向第二终端发送第三指示信息,指示第一终端确定的HARQ进程号,即第二HARQ进程号,第二HARQ进程号实际用于第一终端和第二终端之间的一次数据传输。且mode-1、mode-2两个模式下的数据混用HARQ进程号可以更灵活地支持两种模式下的数据传输,避免一种模式下的数据传输过于频繁的情况下HARQ进程号数量不支持的状况。
此外,如果网络设备为终端的一次数据传输选择的HARQ进程号(mode-1)未被占用,第一终端不用为本次传输重新选择HARQ进程号,直接使用网络设备选择的网络设备,基站、发送端UE对于同一次数据传输的HARQ进程号的理解一致,可以提高终端之间的传输可靠性。
此外,网络设备还可以针对HARQ进程号进行调度,第一终端可以根据进程号对网络设备分配的资源进行区分,网络设备为某次数据传输分配的资源不会被第一终端用于其他HARQ进程号对应的数据传输,提高了网络设备调度的准确性,还可以减少对这次数据传输的影响,提高传输性能。
示例的,第一终端从网络设备接收DCI,DCI指示HARQ进程号以及侧行链路资源,第一终端可以确定DCI指示的资源用于哪个HARQ进程号对应的数据传输,避免将该侧行链路资源用于其他HARQ进程号对应的数据传输,提高了终端之间的传输可靠性。
以下结合具体示例,详细介绍本申请实施例提供的方法。其中,侧行通信的发送方称为发送UE,侧行通信的接收方称为接收UE。
一种可能的实现方式中,发送UE仅支持mode-1,网络设备和发送UE维护的HARQ进程号相同。示例的,如图9所示,假设网络设备维护的用于侧行链路的HARQ 进程号为0至M,发送UE维护的HARQ进程号为0至M。
基站向发送UE发送的DCI中需要HARQ process number字段,该字段用于指示网络设备为发送UE本次数据传输选择的HARQ进程号。发送UE向接收UE发送的SCI中也需要包括HARQ process number字段,该字段用于指示UE侧HARQ进程号。需要说明的是,DCI所指示的HARQ进程号与SCI所指示的HARQ进程号保持一致。
发送UE只需要译码来自基站的DCI的HARQ process number字段,再将其直接加载在SCI中发送给接收UE,并不需要对其做任何修改。例如,参考图9,假设网络设备发送的DCI中的HARQ process number字段为“110”,指示HARQ进程号6。发送UE接收DCI,解析DCI获取HARQ process number字段“110”,再将HARQ process number字段为“110”直接加载在SCI中发送给接收UE。
另一种可能的实现方式中,发送UE同时支持mode-1和mode-2,网络设备和发送UE维护的HARQ进程号不完全相同,网络设备维护的HARQ进程号集合是发送UE维护的HARQ进程号集合的子集。具体如图10所示,网络设备维护的HARQ进程号为0~N,发送UE侧维护的HARQ进程号为0~M,N、M为可配置的参数,且M大于N。发送UE侧维护的HARQ进程号0~N可用于mode-1,HARQ进程号N+1~M可用于mode-2。
基站向发送UE发送的DCI中需要HARQ process number字段,该字段用于指示网络设备为发送UE本次数据传输选择的HARQ进程号。发送UE向接收UE发送的SCI中也需要包括HARQ process number字段,该字段用于指示UE侧的HARQ进程号。需要说明的是,DCI所指示的HARQ进程号与SCI所指示的HARQ进程号保持一致。
发送UE只需要译码来自基站的DCI的HARQ process number字段,再将其直接加载在SCI中发送给接收UE,并不需要对其做任何修改。例如,参考图10,假设网络设备发送的DCI中的HARQ process number字段为“110”,指示HARQ进程号6。发送UE接收DCI,解析DCI获取HARQ process number字段“110”,再将HARQ process number字段为“110”直接加载在SCI中发送给接收UE。
另一种可能的实现方式中,发送UE同时支持mode-1和mode-2,网络设备和发送UE维护的HARQ进程号相同,网络设备侧的HARQ进程号、UE侧的HARQ进程号可能产生冲突,即mode-1下网络设备为发送UE的数据传输选择的HARQ进程号可能已经被发送UE占用。
基站向发送UE发送的DCI中需要HARQ process number字段,该字段用于指示网络设备为发送UE本次数据传输选择的HARQ进程号。发送UE向接收UE发送的SCI中也需要包括HARQ process number字段,该字段用于指示UE侧的HARQ进程号。DCI所指示的HARQ进程号与SCI所指示的HARQ进程号可能不同,具体如下:
发送UE从网络设备接收DCI后,发现DCI的HARQ process number字段指示的HARQ进程号已被占用,则在未被占用的HARQ进程号中选择一个,并向接收UE发送SCI,SCI的HARQ process number字段指示发送UE在未被占用的HARQ进程号选择的那个HARQ进程号。
需要说明的是,HARQ进程号已被占用包括:在mode-2模式下发送UE为数据传 输分配了该HARQ进程号。但是,如果该HARQ进程号相应的数据还并未发送,发送UE在仍可以抢占该HARQ进程号,将其携带在DCI中发送给接收UE。如果该HARQ进程号相应的数据已经发送,发送UE则放弃该HARQ进程号,选择其他未被占用的将HARQ进程号携带在DCI中发送给接收UE。
当然,如果发送UE从网络设备接收DCI后,发现DCI的HARQ process number字段指示的HARQ进程号未被占用,向接收UE发送SCI,SCI的HARQ process number字段指示同一个HARQ进程号。
示例的,参考图11,假设发送UE侧维护的用于侧行链路的HARQ进程号为0至15,发送UE依次接收到网络设备发送的DCI1、DCI2、DCI3,其中,DCI1的HARQ process number字段指示的HARQ进程号为0,DCI1的HARQ process number字段指示的HARQ进程号为1,DCI2的HARQ process number字段指示的HARQ进程号为2。并且此时UE侧的HARQ进程号还未被mode-2占用,因此来自基站mode-1模式下的HARQ进程号0、1、2依次映射为UE侧的HARQ进程号0、1、2。即,发送UE接收DCI1后向接收UE发送SCI1,SCI1的HARQ process number字段指示的HARQ进程号为0;发送UE接收DCI2后向接收UE发送SCI2,SCI2的HARQ process number字段指示的HARQ进程号为1;发送UE接收DCI3后向接收UE发送SCI3,SCI3的HARQ process number字段指示的HARQ进程号为2。
随后假设发送UE侧维护的HARQ进程号3、4被mode-2占用,发送UE从网络设备接收DCI4,DCI4的HARQ process number字段指示的HARQ进程号为3。由于发送UE侧维护的HARQ进程号3、4被占用,发送UE将DCI4指示的HARQ进程号映射为HARQ进程号5。发送UE向接收UE发送SCI4,SCI4的HARQ process number字段指示的HARQ进程号为5。
本申请实施例中,mode-1、mode-2占用的HARQ进程号不作区分。网络设备在分配侧行链路资源时,同时为一次传输分配了HARQ进程号,但是这个HARQ进程号有可能被mode-2占用。如果发送端UE仍使用被占用的HARQ进程号传输数据,会导致发送端UE在错误的HARQ buffer中获取数据,从而导致传输了错误的数据。为避免这个问题,当发送端UE识别基站选择的HARQ进程号被占用时,发送端UE为本次数据传输重新分配一个未被占用的HARQ进程号,保证传输的正确性。也就是说,一次传输(包括初传、重传)可能关联一个HARQ进程号也可能关联两个进程号,基站在分配重传资源时可以指示相应的HARQ进程号,终端可以根据HARQ进程号的映射关系确定重传资源用于传输哪个数据的冗余版本,避免发生传输混乱,通过HARQ进程号基站可以精准地调度重传数据,提高了基站调度的准确性,提高传输性能。
示例的,基站为一次传输选择的进程号是“2”,假设进程号“2”被占用,即进程号“2”对应的HARQ buffer中已有数据,如果第一终端仍使用进程号“2”进行本次数据传输,就会向第二终端发送进程号“2”对应的HARQ buffer中的数据,传输了错误的数据。
相反地,如果第一终端识别到进程号“2”被占用,为本次数据传输重新分配未被占用的进程号“5”。第一终端可以将待传输的数据放入进程号“5”对应的HARQ buffer中,还可以在进程号“5”对应的HARQ buffer中获取数据,向第二终端发送获取的数 据,保证数据传输的正确性。
可选的,第一终端维护第一HARQ进程号和第二HARQ进程号的映射关系。第一终端从网络设备接收DCI,该DCI指示重传资源,该DCI包括第一HARQ进程号。第一终端将重传数据放入第二HARQ进程号对应的HARQ buffer,还可以通过SCI向第二终端指示第二HARQ进程号。随后,第一终端在该DCI指示的重传资源上重传数据,将重传数据存储在第二HARQ进程号对应的HARQ buffer,对第二HARQ进程号对应的HARQ buffer中的初传数据和重传数据进行合并解码。
示例的,网络设备为TB1对应的一次传输选择HARQ进程号“3”,当HARQ进程号“3”被占用,第一终端为本次数据传输重新分配HARQ进程号“5”,第一终端维护HARQ进程号“3”、HARQ进程号“5”的映射关系。第二终端将TB1存储在HARQ进程号“5”对应的HARQ buffer中。
假设第二终端未成功解码TB1,网络设备分配重传资源,同时指示进程号“3”。第一终端根据HARQ进程号“3”、HARQ进程号“5”的映射关系,将TB2(TB1的冗余版本)存储在HARQ进程号“5”的HARQ buffer中,随后在其中获取TB2并向第二终端发送TB2。第二终端将TB2存储在HARQ进程号“5”的HARQ buffer,还可以对HARQ进程号“5”的HARQ buffer中的TB1、TB2进行合并解码。
在采用对应各个功能划分各个功能模块的情况下,图12示出上述实施例中所涉及的通信装置的一种可能的结构示意图。图12所示的通信装置可以是本申请实施例所述的第一终端,也可以是第一终端中实现上述方法的部件。如图12所示,通信装置包括处理单元1201以及收发单元1202。处理单元可以是一个或多个处理器,收发单元可以是收发器。
处理单元1201,用于支持第一终端生成第第二指示信息,和/或用于本文所描述的技术的其它过程。
收发单元1202,用于终端执行步骤402、步骤403、步骤404、步骤702、步骤703、步骤704,和/或用于本文所描述的技术的其它过程。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
一种可能的实现方式中,图12所示的通信装置也可以是应用于终端中的芯片。所述芯片可以是片上系统(System-On-a-Chip,SOC)或者是具备通信功能的基带芯片等。
其中,以上用于接收/发送的收发单元1202可以是该装置的一种接口电路,用于从其它装置接收信号。例如,当该装置以芯片的方式实现时,该收发单元1202是该芯片的接口电路,该接口电路用于读入或输出基带信号。
示例性的,在采用集成的单元的情况下,本申请实施例提供的通信装置的结构示意图如图13所示。在图13中,该通信装置包括:处理模块1301和通信模块1302。处理模块1301用于对通信装置的动作进行控制管理,例如,执行上述处理单元1401执行的步骤,和/或用于执行本文所描述的技术的其它过程。通信模块1302用于执行上述收发单元1402执行的步骤,支持通信装置与其他设备之间的交互,如与其他终端装置之间的交互。如图13所示,通信装置还可以包括存储模块1303,存储模块1303用于存储通信装置的程序代码和数据。
当处理模块1301为处理器,通信模块1302为收发器,存储模块1303为存储器时,通信装置为图3a所示的通信装置。
在采用对应各个功能划分各个功能模块的情况下,图14示出上述实施例中所涉及的通信装置的一种可能的结构示意图。图14所示的通信装置可以是本申请实施例所述的网络设备,也可以是网络设备中实现上述方法的部件。如图14所示,通信装置包括处理单元1401以及收发单元1402。处理单元可以是一个或多个处理器,收发单元可以是收发器。
处理单元1401,用于支持网络设备执行步骤701、步骤401,生成第一指示信息,和/或用于本文所描述的技术的其它过程。
收发单元1402,用于支持该网络设备与其他通信装置之间的通信,例如,支持网络设备执行步骤402以及步骤702,和/或用于本文所描述的技术的其它过程。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
一种可能的实现方式中,图14所示的通信装置也可以是应用于网络设备中的芯片。所述芯片可以是片上系统(System-On-a-Chip,SOC)或者是具备通信功能的基带芯片等。
其中,以上用于接收/发送的收发单元1402可以是该装置的一种接口电路,用于读入基带信号。例如,当该装置以芯片的方式实现时,该收发单元1402是该芯片用于读入基带信号的接口电路,或,收发单元1402是该芯片用于输出基带信号的接口电路。
示例性的,在采用集成的单元的情况下,本申请实施例提供的通信装置的结构示意图如图15所示。在图15中,该通信装置包括:处理模块1501和通信模块1502。处理模块1501用于对通信装置的动作进行控制管理,例如,执行上述处理单元1601执行的步骤,和/或用于执行本文所描述的技术的其它过程。通信模块1502用于执行上述收发单元1602执行的步骤,支持通信装置与其他设备之间的交互,如与其他终端装置之间的交互。如图15所示,通信装置还可以包括存储模块1503,存储模块1503用于存储通信装置的程序代码和数据。
当处理模块1501为处理器,通信模块1502为收发器,存储模块1503为存储器时,通信装置为图3b所示的通信装置。
本申请实施例提供一种计算机可读存储介质,计算机可读存储介质中存储有指令;指令用于执行如图4或图7所示的方法。
本申请实施例提供一种包括指令的计算机程序产品,当其在通信装置上运行时,使得通信装置实现如图4或图7所示的方法。
本申请实施例一种无线通信装置,包括:无线通信装置中存储有指令;当无线通信装置在图3a、图3b、图12~图15所示的通信装置上运行时,使得通信装置实现如图4或图7所示的方法。该无线通信装置可以为芯片等。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将数据库访问装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
在本申请所提供的几个实施例中,应该理解到,所揭露的数据库访问装置和方法,可以通过其它的方式实现。例如,以上所描述的数据库访问装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,数据库访问装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁盘或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。
Claims (21)
- 一种混合式自动重传请求HARQ信息指示方法,其特征在于,第一终端从网络设备接收第一指示信息,所述第一指示信息用于指示第一HARQ进程号,所述第一HARQ进程号用于所述第一终端和第二终端之间的数据传输;所述第一终端向所述第二终端发送侧行控制信息,所述侧行控制信息包括第二指示信息,所述第二指示信息用于指示所述第一HARQ进程号。
- 根据权利要求1所述的方法,其特征在于,所述侧行控制信息还用于指示第一数据,所述方法还包括:所述第一终端向所述第二终端发送所述第一数据,所述第一数据与所述第一HARQ进程号相关。
- 根据权利要求1或2所述的方法,其特征在于,所述第一终端维护第一HARQ进程号集合,所述第一HARQ进程号属于所述第一HARQ进程号集合,所述第一HARQ进程号集合包括至少一个用于第一模式的数据传输的HARQ进程号;所述第一模式为网络设备调度侧行链路资源的模式;且所述第一HARQ进程号属于第二HARQ进程号集合,所述第二HARQ进程号集合是由所述网络设备维护的。
- 根据权利要求3所述的方法,其特征在于,所述第一HARQ进程号集合还包括至少一个用于第二模式的数据传输的HARQ进程号,所述第二模式为终端自行确定侧行链路资源的模式;所述至少一个用于第二模式的数据传输的HARQ进程号与所述至少一个用于第一模式的数据传输的HARQ进程号不相同。
- 根据权利要求1-4任一项所述的方法,其特征在于,所述第一指示信息承载在下行控制信息DCI中。
- 一种混合式自动重传请求HARQ信息指示方法,其特征在于,所述方法包括:第一终端从网络设备接收第一指示信息,所述第一指示信息用于指示第一HARQ进程号,所述第一HARQ进程号用于所述第一终端和第二终端之间的数据传输;在所述第一HARQ进程号未被所述第一终端占用的情况下,所述第一终端向所述第二终端发送侧行控制信息,所述侧行控制信息包括第二指示信息,所述第二指示信息用于指示所述第一HARQ进程号;在所述第一HARQ进程号被所述第一终端占用的情况下,所述第一终端向所述第二终端发送侧行控制信息,所述侧行控制信息包括第三指示信息,所述第三指示信息用于指示第二HARQ进程号,所述第二HARQ进程号为第一HARQ进程号集合中未被占用的一个HARQ进程号,所述第一HARQ进程号集合为所述第一终端维护的HARQ进程号集合。
- 根据权利要求6所述的方法,其特征在于,所述第一HARQ进程号未被所述第一终端占用,包括:所述第一终端的HARQ实体不包括所述第一HARQ进程号对应的HARQ进程;所述第一HARQ进程号被所述第一终端占用,包括:所述第一终端的HARQ实体包括所述第一HARQ进程号对应的HARQ进程。
- 根据权利要求6或7所述的方法,其特征在于,所述侧行控制信息还用于指示 第一数据,所述方法还包括:所述第一终端向所述第二终端发送所述第一数据,所述第一数据与所述第一HARQ进程号或所述第二HARQ进程号相关。
- 根据权利要求6-7任一项所述的方法,其特征在于,所述第一指示信息承载在下行控制信息DCI中。
- 一种通信装置,其特征在于,包括:收发单元,用于从网络设备接收第一指示信息,所述第一指示信息用于指示第一HARQ进程号,所述第一HARQ进程号用于所述第一终端和第二终端之间的数据传输;所述收发单元还用于,向所述第二终端发送侧行控制信息,所述侧行控制信息包括第二指示信息,所述第二指示信息用于指示所述第一HARQ进程号。
- 根据权利要求10所述的装置,其特征在于,所述侧行控制信息还用于指示第一数据,所述收发单元还用于,向所述第二终端发送所述第一数据,所述第一数据与所述第一HARQ进程号相关。
- 根据权利要求10或11所述的装置,其特征在于,所述第一终端维护第一HARQ进程号集合,所述第一HARQ进程号属于所述第一HARQ进程号集合,所述第一HARQ进程号集合包括至少一个用于第一模式的数据传输的HARQ进程号;所述第一模式为网络设备调度侧行链路资源的模式;且所述第一HARQ进程号属于第二HARQ进程号集合,所述第二HARQ进程号集合是由所述网络设备维护的。
- 根据权利要求12所述的装置,其特征在于,所述第一HARQ进程号集合还包括至少一个用于第二模式的数据传输的HARQ进程号,所述第二模式为终端自行确定侧行链路资源的模式;所述至少一个用于第二模式的数据传输的HARQ进程号与所述至少一个用于第一模式的数据传输的HARQ进程号不相同。
- 根据权利要求10-13任一项所述的装置,其特征在于,所述第一指示信息承载在下行控制信息DCI中。
- 一种装置,其特征在于,包括:收发单元,用于从网络设备接收第一指示信息,所述第一指示信息用于指示第一HARQ进程号,所述第一HARQ进程号用于所述第一终端和第二终端之间的数据传输;处理单元,确定所述第一HARQ进程号是否被所述第一终端占用;所述收发单元还用于,在所述处理单元确定所述第一HARQ进程号未被所述第一终端占用的情况下,所述第一终端向所述第二终端发送侧行控制信息,所述侧行控制信息包括第二指示信息,所述第二指示信息用于指示所述第一HARQ进程号;所述收发单元还用于,在所述处理单元确定所述第一HARQ进程号被所述第一终端占用的情况下,在所述第一HARQ进程号被所述第一终端占用的情况下,所述第一终端向所述第二终端发送侧行控制信息,所述侧行控制信息包括第三指示信息,所述第三指示信息用于指示第二HARQ进程号,所述第二HARQ进程号为第一HARQ进程号集合中未被占用的一个HARQ进程号,所述第一HARQ进程号集合为所述第一终端维护的HARQ进程号集合。
- 根据权利要求15所述的装置,其特征在于,所述处理单元具体用于,若所述 第一终端的HARQ实体不包括所述第一HARQ进程号对应的HARQ进程,确定所述第一HARQ进程号对应的HARQ进程未被占用;若所述第一终端的HARQ实体包括所述第一HARQ进程号对应的HARQ进程,确定所述第一HARQ进程号被所述第一终端占用。
- 根据权利要求15或16所述的装置,其特征在于,所述侧行控制信息还用于指示第一数据,所述收发单元还用于,向所述第二终端发送所述第一数据,所述第一数据与所述第一HARQ进程号或所述第二HARQ进程号相关。
- 根据权利要求15-17任一项所述的装置,其特征在于,所述第一指示信息承载在下行控制信息DCI中。
- 一种通信装置,其特征在于,包括至少一个处理器和存储器,所述至少一个处理器与所述存储器耦合;所述存储器,用于存储计算机程序;所述至少一个处理器,用于执行所述存储器中存储的计算机程序,以使得所述装置执行如权利要求1至9中任一项所述的方法。
- 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序或指令,当所述计算机程序或指令被运行时,实现如权利要求1至9中任一项所述的方法。
- 一种通信系统,其特征在于,包括:网络设备、第一终端以及第二终端;其中,网络设备用于向第一终端发送第一指示信息,所述第一指示信息用于指示第一HARQ进程号,所述第一HARQ进程号用于所述第一终端和第二终端之间的数据传输;所述第一终端用于从所述网络设备接收第一指示信息,向所述第二终端发送侧行控制信息,所述侧行控制信息包括第二指示信息,所述第二指示信息用于指示所述第一HARQ进程号;所述第二终端用于从所述第一终端接收所述第二指示信息;或者,网络设备用于向第一终端发送第一指示信息,所述第一指示信息用于指示第一HARQ进程号,所述第一HARQ进程号用于所述第一终端和第二终端之间的数据传输;所述第一终端从网络设备接收第一指示信息,在所述第一HARQ进程号未被所述第一终端占用的情况下,所述第一终端向所述第二终端发送侧行控制信息,所述侧行控制信息包括第二指示信息,所述第二指示信息用于指示所述第一HARQ进程号;在所述第一HARQ进程号被所述第一终端占用的情况下,所述第一终端向所述第二终端发送侧行控制信息,所述侧行控制信息包括第三指示信息,所述第三指示信息用于指示第二HARQ进程号,所述第二HARQ进程号为第一HARQ进程号集合中未被占用的一个HARQ进程号,所述第一HARQ进程号集合为所述第一终端维护的HARQ进程号集合;所述第二终端用于从所述第一终端接收所述侧行控制信息。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980100481.4A CN114402555B (zh) | 2019-09-30 | 2019-09-30 | 一种harq信息指示方法、通信装置及通信系统 |
PCT/CN2019/109745 WO2021062819A1 (zh) | 2019-09-30 | 2019-09-30 | 一种harq信息指示方法、通信装置及通信系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2019/109745 WO2021062819A1 (zh) | 2019-09-30 | 2019-09-30 | 一种harq信息指示方法、通信装置及通信系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021062819A1 true WO2021062819A1 (zh) | 2021-04-08 |
Family
ID=75336754
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/109745 WO2021062819A1 (zh) | 2019-09-30 | 2019-09-30 | 一种harq信息指示方法、通信装置及通信系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114402555B (zh) |
WO (1) | WO2021062819A1 (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170353819A1 (en) * | 2016-06-06 | 2017-12-07 | Asustek Computer Inc. | Method and apparatus for resource allocation on relay channel in a wireless communication system |
CN108923894A (zh) * | 2017-03-23 | 2018-11-30 | 中兴通讯股份有限公司 | 一种信息传输的方法、装置和系统 |
WO2019027304A1 (en) * | 2017-08-04 | 2019-02-07 | Samsung Electronics Co., Ltd. | METHODS AND APPARATUS FOR RESOURCE AND FEEDBACK ALLOCATION IN VEHICLE VEHICLE COMMUNICATION |
CN109792594A (zh) * | 2018-12-29 | 2019-05-21 | 北京小米移动软件有限公司 | 直连通信的数据传输方法、装置、设备及系统 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017017871A1 (ja) * | 2015-07-29 | 2017-02-02 | 日本電気株式会社 | 端末及び基地局並びにこれらの方法 |
EP3206321B1 (en) * | 2016-02-15 | 2020-07-08 | Panasonic Intellectual Property Corporation of America | Improved uplink harq operation for prose-enabled ues participating in sidelink discovery operation |
-
2019
- 2019-09-30 WO PCT/CN2019/109745 patent/WO2021062819A1/zh active Application Filing
- 2019-09-30 CN CN201980100481.4A patent/CN114402555B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170353819A1 (en) * | 2016-06-06 | 2017-12-07 | Asustek Computer Inc. | Method and apparatus for resource allocation on relay channel in a wireless communication system |
CN108923894A (zh) * | 2017-03-23 | 2018-11-30 | 中兴通讯股份有限公司 | 一种信息传输的方法、装置和系统 |
WO2019027304A1 (en) * | 2017-08-04 | 2019-02-07 | Samsung Electronics Co., Ltd. | METHODS AND APPARATUS FOR RESOURCE AND FEEDBACK ALLOCATION IN VEHICLE VEHICLE COMMUNICATION |
CN109792594A (zh) * | 2018-12-29 | 2019-05-21 | 北京小米移动软件有限公司 | 直连通信的数据传输方法、装置、设备及系统 |
Non-Patent Citations (2)
Title |
---|
HUAWEI, HISILICON: "Discussion on HARQ support for NR sidelink", 3GPP DRAFT; R2-1907414 DISCUSSION ON HARQ SUPPORT FOR NR SIDELINK, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Reno, USA; 20190513 - 20190517, 2 May 2019 (2019-05-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, pages 1 - 6, XP051711696 * |
LENOVO, MOTOROLA MOBILITY: "SL HARQ operation", 3GPP DRAFT; R2-1906733, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Reno, USA; 20190513 - 20190517, 2 May 2019 (2019-05-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051711039 * |
Also Published As
Publication number | Publication date |
---|---|
CN114402555B (zh) | 2024-06-18 |
CN114402555A (zh) | 2022-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020088540A1 (zh) | 传输方法和装置 | |
WO2019192596A1 (zh) | 传输数据的方法及其装置和系统 | |
WO2018059173A1 (zh) | 免授权的传输上行信息的方法、网络设备和终端设备 | |
WO2020244599A1 (zh) | 一种反馈指示方法及通信装置 | |
US20220216946A1 (en) | Communication Method and Apparatus | |
WO2019028916A1 (zh) | 数据传输方法和装置 | |
JP7194835B2 (ja) | 制御情報送信及び受信方法並びに装置 | |
WO2021159464A1 (zh) | 信息发送和接收的方法及装置 | |
WO2021155554A1 (zh) | 信息接收的方法、发送的方法、装置和设备 | |
CN109478958A (zh) | 一种数据传输方法、设备及系统 | |
JP7352647B2 (ja) | リソース割り当て方法ならびにデバイス、記憶媒体および端末 | |
WO2021134639A1 (zh) | 一种数据的反馈方法及装置 | |
WO2021062819A1 (zh) | 一种harq信息指示方法、通信装置及通信系统 | |
US20230188267A1 (en) | Indication information receiving method, and apparatus | |
JP2023520688A (ja) | サイドリンク伝送方法及び装置 | |
WO2019095971A1 (zh) | 一种通信方法及设备 | |
WO2020164134A1 (zh) | 通信方法、装置及系统 | |
WO2020221070A1 (zh) | 拥塞控制方法及设备 | |
WO2020103633A1 (zh) | 一种控制信息的发送和接收方法及终端设备 | |
WO2021035541A1 (zh) | 一种数据传输方法及相关设备 | |
WO2021062834A1 (zh) | 一种信息处理方法和终端设备以及网络设备 | |
WO2021062780A1 (zh) | 一种反馈信息的复用方法、通信装置及系统 | |
JP2023525249A (ja) | サイドリンクフィードバック情報の送受信方法及び装置 | |
WO2021147110A1 (zh) | 一种数据传输方法及装置 | |
US20230262838A1 (en) | Method and apparatus for processing sidelink process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19947903 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19947903 Country of ref document: EP Kind code of ref document: A1 |