[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021062783A1 - 随机接入信道类型选择方法和装置 - Google Patents

随机接入信道类型选择方法和装置 Download PDF

Info

Publication number
WO2021062783A1
WO2021062783A1 PCT/CN2019/109707 CN2019109707W WO2021062783A1 WO 2021062783 A1 WO2021062783 A1 WO 2021062783A1 CN 2019109707 W CN2019109707 W CN 2019109707W WO 2021062783 A1 WO2021062783 A1 WO 2021062783A1
Authority
WO
WIPO (PCT)
Prior art keywords
bwp
rach
random access
resource
currently activated
Prior art date
Application number
PCT/CN2019/109707
Other languages
English (en)
French (fr)
Inventor
石聪
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2019/109707 priority Critical patent/WO2021062783A1/zh
Priority to EP19948026.0A priority patent/EP3972375A4/en
Priority to CN201980097193.8A priority patent/CN113950864A/zh
Publication of WO2021062783A1 publication Critical patent/WO2021062783A1/zh
Priority to US17/554,115 priority patent/US20220110170A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/02Hybrid access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0866Non-scheduled access, e.g. ALOHA using a dedicated channel for access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • This application relates to the field of mobile communication technology, and in particular to a method and device for selecting a random access channel type.
  • the fifth generation mobile communication technology (5th Generation Mobile Networks, 5G) is the latest generation of cellular mobile communication technology, which is also an extension of 4G, 3G and 2G systems.
  • the performance goals of 5G are high data rates, reduced latency, energy savings, cost reduction, increased system capacity and large-scale device connections.
  • This application aims to solve the technical problem of the lack of flexible configuration of the two-step random access channel in related technologies at least to a certain extent.
  • An embodiment of the present application provides a method for selecting a random access channel type, including: when the currently activated first BWP of the user equipment UE is configured with two-step random access 2-step RA resources but not configured with 4-step RA Resource, the UE determines whether the measured received power RSRP value of the downlink path loss reference signal is higher than the RSRP threshold selected by the RACH type pre-configured in the currently activated uplink BWP; if the downlink path measured by the user equipment The received power RSRP value of the loss reference signal is higher than the RSRP threshold pre-configured for RACH type selection in the currently activated uplink BWP, and the UE performs a 2-step RA process on the currently activated uplink BWP.
  • the random access channel type selection method in the embodiment of the present application includes at least the following additional technical features:
  • the UE determines whether the measured received power RSRP value of the downlink path loss reference signal is higher than the RSRP threshold for the RACH type selection pre-configured in the currently activated uplink BWP, further Including: if the received power RSRP value of the downlink path loss reference signal measured by the UE is lower than or equal to the RSRP threshold of the RACH type selection pre-configured in the currently activated uplink BWP, the UE switches to the configured two-step random The RACH type is selected on the second BWP for accessing 2-step RA resources and four-step random accessing 4-step RA resources. ⁇
  • the UE switches to the second WP configured with two-step random access 2-step RA resources and four-step random access 4-step RA resources to select the RACH type, including: The UE determines whether the measured received power RSRP value of the downlink path loss reference signal is higher than the RSRP threshold for the RACH type selection pre-configured in the second BWP; if the received power RSRP of the downlink path loss reference signal measured by the user equipment If the value is higher than the RSRP threshold for RACH type selection pre-configured in the second BWP, the UE performs the 2-step RA process on the second BWP.
  • the method further includes:
  • the UE executes the 4-step RACH process.
  • the UE switches to the second BWP configured with two-step random access 2-step RA resources and four-step random access 4-step RA resources to select the RACH type, including:
  • the UE executes the 4-step RACH process on the second BWP.
  • the second BWP includes: an initial uplink BWP configured with a two-step random access 2-step RA resource and a four-step random access 4-step RA resource.
  • the UE determines whether the measured received power RSRP value of the downlink path loss reference signal is higher than the RSRP threshold for the RACH type selection pre-configured in the currently activated uplink BWP, further Including: if the received power RSRP value of the downlink path loss reference signal measured by the user equipment is lower than or equal to the RSRP threshold of the RACH type selection pre-configured in the currently activated uplink BWP, the UE switches to the configured four-step random The 4-step RACH process is executed on the second BWP where the 2-step random access 2-step RA resource is not configured to access the 4-step RA resource.
  • the second BWP includes: configuring 4-step RA resources without configuring the initial uplink BWP with two-step random access 2-step RA resources.
  • it further includes: when the currently activated first BWP of the UE is configured with two-step random access 2-step RA resources, and there is no pre-configured RACH in the currently activated uplink BWP RSRP threshold for type selection, the UE directly executes the 2-step RA process on the currently activated uplink BWP.
  • it further includes: when the currently activated first BWP of the UE is configured with two-step random access 2-step RA resources, the 4-step RA resources are not configured, and the current activated uplink
  • the pre-configured RSRP threshold for RACH type selection in the BWP the UE ignores the RSRP threshold and directly executes the 2-step RA process on the currently activated uplink BWP, or refers to the measured downlink path loss
  • a 2-step RA process is performed on the currently activated first BWP.
  • it further includes: when the currently activated first BWP of the UE is configured with a four-step random access 4-step RA resource, the two-step random access 2-step RA resource is not configured, so The UE judges whether it has a target uplink BWP configured with a two-step random access 2-step RA resource; if the UE has a target uplink BWP configured with a two-step random access 2-step RA resource, the UE judges to measure Whether the received power RSRP value of the downlink path loss reference signal is higher than the RSRP threshold for RACH type selection configured in the 2-step RA resource of the target uplink BWP; if the received power RSRP of the downlink path loss reference signal measured by the UE If the value is higher than the RSRP threshold for RACH type selection configured in the 2-step RA resource of the target uplink BWP, the UE switches to the target uplink BWP to perform the 2-step RA process.
  • the UE determines whether the measured received power RSRP value of the downlink path loss reference signal is higher than the RSRP threshold for RACH type selection configured in the 2-step RA resource of the target uplink BWP . Further including: if the received power RSRP value of the downlink path loss reference signal measured by the UE is lower than or equal to the RSRP threshold for RACH type selection configured in the 2-step RA resource of the target uplink BWP, the UE is in the The currently activated upstream BWP executes the 4-step RACH process.
  • the UE determines whether it has a target uplink BWP configured with two-step random access 2-step RA resources, it further includes: if the UE does not have a two-step random access configured The target uplink BWP of the 2-step RA resource, and the UE performs a 4-step RACH process on the currently activated uplink BWP.
  • the target uplink BWP includes: an initial uplink BWP with a 2-step RA resource configured with two-step random access.
  • the UE when the UE does not perform BWP handover, after performing the 2-step RA process on the currently activated uplink BWP, it also includes: after N times 2-step RA msgA retransmission occurs, where , N is a preset threshold, and the UE directly triggers the RACH problem to be reported to the RRC layer, so that the RRC layer triggers the RRC re-establishment process or triggers the UE to return to the IDLE state.
  • it further includes: configuring the threshold value of N in the 2-step RA resource in advance.
  • the method further includes: the UE switches to a second BWP configured with 4-step RA resources to perform a 4-step RACH process, And the state of the RACH counter is not reset, and counting continues from N, where the RACH counter is a counter that records the number of random access preamble transmissions; when the RACH counter displays the number of random access preamble transmissions When it is greater than or equal to the threshold configured in the 4-step RA resource, the UE triggers the RACH problem.
  • the method further includes: the UE switches to a second BWP configured with 4-step RA resources to perform a 4-step RACH process, And reset the state of the RACH counter, and continue counting from 0, where the RACH counter is a counter that records the number of random access preamble transmissions; when the RACH counter shows that the number of random access preamble transmissions is greater than When it is equal to the threshold configured in the 4-step RA resource, the UE triggers an RRC re-establishment process of the RACH problem.
  • the method further includes: the UE switches to a 2-step RA resource configured with two-step random access and a four-step random access.
  • the RACH type is selected on the second BWP of the 4-step RA resource; the UE judges whether the measured received power RSRP value of the downlink path loss reference signal is higher than the RSRP threshold for RACH type selection pre-configured in the second BWP If the received power RSRP value of the downlink path loss reference signal measured by the user equipment is higher than the RSRP threshold pre-configured in the second BWP for RACH type selection, the UE performs 2- step RA process; if the received power RSRP value of the downlink path loss reference signal measured by the user equipment is lower than or equal to the RSRP threshold of the RACH type selection pre-configured in the second BWP, the UE is in the second BWP Execute the 4-step RACH process.
  • the second BWP includes an initial uplink BWP.
  • the pre-configured RSRP threshold for RACH type selection includes: the UE receives the RSRP threshold for RACH type selection configured by the network side in an uplink BWP with 2-step RA resources; Alternatively, the UE receives the RSRP threshold selected by the RACH type broadcast configured in the system broadcast message.
  • the apparatus for selecting a random access channel type is applied to user equipment.
  • the BWP is configured with two-step random access 2-step RA resources but not 4-step RA resources.
  • the UE determines whether the measured downlink path loss reference signal received power RSRP value is higher than the currently activated uplink BWP RSRP threshold for the pre-configured RACH type selection in the module; the execution module is used to measure the received power RSRP value of the downlink path loss reference signal in the user equipment higher than the RACH type selection pre-configured in the currently activated uplink BWP
  • the 2-step RA process is executed on the currently activated uplink BWP.
  • random access channel type selection device of the embodiment of the present application includes at least the following additional technical features:
  • the execution module is specifically configured to: the received power RSRP value of the downlink path loss reference signal measured by the UE is lower than or equal to the RACH pre-configured in the currently activated uplink BWP When the RSRP threshold for type selection is selected, the RACH type is selected on the second BWP configured with two-step random access 2-step RA resources and four-step random access 4-step RA resources.
  • the first determining module is specifically configured to determine whether the measured received power RSRP value of the downlink path loss reference signal is higher than the pre-configured RACH type selection in the second BWP RSRP threshold; if the received power RSRP value of the downlink path loss reference signal measured by the user equipment is higher than the RSRP threshold selected by the RACH type pre-configured in the second BWP, execute the 2 on the second BWP -step RA process.
  • the execution module is specifically configured to: the received power RSRP value of the downlink path loss reference signal measured at the user equipment is lower than or equal to the RACH type pre-configured in the second BWP When the RSRP threshold is selected, the 4-step RACH process is executed on the second BWP.
  • the execution module is specifically configured to execute the 4-step RACH process on the second BWP.
  • the execution module is specifically configured to: the received power RSRP value of the downlink path loss reference signal measured by the user equipment is lower than or equal to the RACH pre-configured in the currently activated uplink BWP When the RSRP threshold of the type selection is selected, the 4-step RACH process is executed on the second BWP configured with the 4-step random access 4-step RA resource but not configured with the 2-step random access 2-step RA resource.
  • the execution module is specifically configured to: when the currently activated first BWP of the UE is configured with two-step random access 2-step RA resources but not configured with four-step random access 4 -step RA resources, and the RSRP threshold for RACH type selection pre-configured in the currently activated uplink BWP, ignore the RSRP threshold, and directly execute the 2-step RA process on the currently activated uplink BWP, or, After comparing the measured RSRP value of the downlink path loss reference signal with the RSRP threshold, perform a 2-step RA process on the currently activated first BWP.
  • the execution module is specifically configured to: when the first BWP of the UE currently activated is configured with four-step random access 4-step RA resources but not configured with two-step random access 2 -step RA resources, determine whether there is a target uplink BWP configured with two-step random access 2-step RA resources; the execution module is specifically used for: when the UE measures the received power RSRP of the downlink path loss reference signal When the value is higher than the RSRP threshold for RACH type selection configured in the 2-step RA resource of the target uplink BWP, switch to the target uplink BWP to perform the 2-step RA process.
  • the execution module is specifically configured to configure in the 2-step RA resource of the target uplink BWP that the received power RSRP value of the downlink path loss reference signal measured by the UE is lower than or equal to the target uplink BWP
  • the 4-step RACH process is executed on the currently activated uplink BWP.
  • a reporting module which is used for when N 2-step RA msgA retransmissions occur, where N is a preset threshold, and the UE directly triggers the RACH problem to be reported to The RRC layer, so that the RRC layer triggers the RRC re-establishment process or triggers the UE to return to the IDLE state.
  • the reporting module is specifically configured to: switch to the second BWP configured with 4-step RA resources to execute the 4-step RACH process, and not reset the RACH counter state, from N starts to count, where the RACH counter is a counter that records the number of random access preamble transmissions; when the RACH counter shows that the number of random access preamble transmissions is greater than or equal to the threshold configured in the 4-step RA resource When the RACH problem is triggered.
  • the reporting module is specifically configured to: switch to the second BWP configured with 4-step RA resources to execute the 4-step RACH process, and reset the RACH counter state from 0 Start counting, where the RACH counter is a counter that records the number of random access preamble transmissions; when the RACH counter shows that the number of random access preamble transmissions is greater than or equal to the threshold configured in the 4-step RA resource , The RRC re-establishment process is triggered when the RACH problem occurs.
  • the execution module is further configured to: after N times of 2-step RA msgA retransmission occurs, switch to the two-step random access 2-step RA resource and four Select the RACH type on the second BWP for random access to the 4-step RA resource; determine whether the measured received power RSRP value of the downlink path loss reference signal is higher than the RSRP threshold for the RACH type selection pre-configured in the second BWP When the received power RSRP value of the downlink path loss reference signal measured by the user equipment is higher than the RSRP threshold pre-configured in the second BWP for RACH type selection, perform 2-step RA on the second BWP Process;
  • the 4- step RACH process When the received power RSRP value of the downlink path loss reference signal measured by the user equipment is lower than or equal to the RSRP threshold of the RACH type selection pre-configured in the second BWP, the 4- step RACH process.
  • the pre-configured RSRP threshold for RACH type selection includes: the UE receives the RSRP threshold for RACH type selection configured by the network side in an uplink BWP with 2-step RA resources; Alternatively, the UE receives the RSRP threshold selected by the RACH type broadcast configured in the system broadcast message.
  • An embodiment of another aspect of the present application provides a user equipment, including: a memory, a processor, and a computer program stored on the memory and running on the processor, and when the processor executes the computer program , To implement the random access channel type selection method described in the foregoing embodiment.
  • a non-transitory computer-readable storage medium has a computer program stored thereon, and the computer program implements the random access channel type selection method described in the foregoing embodiment when the computer program is executed by a processor.
  • the currently activated first BWP of the user equipment UE is only configured with two-step random access 2-step RA resources, and the reference signal received power RSRP threshold selected by the RACH type is pre-configured in the currently activated uplink BWP, if the user equipment The measured received power RSRP value of the downlink path loss reference signal is higher than the RSRP threshold of the pre-configured RACH type selection in the currently activated uplink BWP, and the UE performs the 2-step RA process on the currently activated uplink BWP, thereby achieving Under the new generation of mobile communication technology, the flexible configuration of the RACH type of user equipment is realized based on 2-step RA resources.
  • Figure 1-1 is a schematic diagram of a four-step random access channel access process according to an embodiment of the present application
  • Figure 1-2 is a schematic diagram of a four-step random access channel access process according to another embodiment of the present application.
  • Fig. 2 is a flowchart of a method for selecting a random access channel type according to an embodiment of the present application
  • Fig. 3 is a flowchart of a method for selecting a random access channel type according to another embodiment of the present application.
  • Fig. 4 is a schematic structural diagram of an apparatus for selecting a random access channel type according to an embodiment of the present application.
  • Fig. 5 is a schematic structural diagram of an apparatus for selecting a random access channel type according to another embodiment of the present application.
  • C-RNTI is a dynamic identifier assigned to the UE by the base station.
  • Evolved Node B (Evolved Node B, eNodeB): The name of the base station.
  • RSRP Reference Signal Receiving Power
  • Random Access Channel It is an uplink transmission channel. RACH is received in the entire cell and is often used for PAGING answer and MS caller/login access.
  • Bandwidth Part (Band Width Part, BWP): It is a subset of the total bandwidth of the cell. It uses the bandwidth in NR to adapt and flexibly adjust the UE receiving and sending bandwidth, so that the UE receiving and sending bandwidth does not need to be the same as the bandwidth of the cell Big.
  • Initial uplink BWP When the UE enters the RRC connected state from the RRC idle state, the BWP of the cell where it resides.
  • Two-step random access (2-step RA): The UE sends an Msg1 message; if the UE identity carried in the Msg1 message is the cell radio network temporary identification C-RNTI, and the terminal receives the physical layer scheduling information addressed to the C-RNTI When ordering, it is determined that the two-step random access of the terminal is successful.
  • 4-step RACH (4-step RACH): divided into competing random access channels and non-competitive random access channels, as shown in Figure 1-1, the four-step process in non-competitive random access channels Divided into: the first step: the e-NodeB (eNB in the figure) configures the preamble and PRA resources used by the UE in the random access process through RRC signaling or PDCCH, and the second step is that the UE sends the preamble according to the configured preamble.
  • the e-NodeB responds with random access according to the received preamble information.
  • the e-NodeB will send RAR MAC PDU, where the SDU includes the preamble index used by the UE .
  • the UE receives the RAR MAC PDU consistent with the preamble information in the second step, and completes the random access.
  • the four-step process in the competing random access channel is divided into: the first step: the user equipment UE randomly selects the preamble and selects the available random access channel resources for transmission, and the second Step: The e-NodeB responds with random access according to the load situation. If the preamble information used by the UE is included in the RAR MAC PDU that is fed back, the third step can be performed. The third step: the UE according to the uplink received in the second step Authorize to send a MAC PDU. According to the reason for initiating random access, the PDU may contain RRC signaling or C-RNT1 before the UE.
  • Step 4 For contention resolution, the MAC entities of the UE and e-NodeB should support both types. In the random access method, the random access process is closely connected with the uplink synchronization process and the downlink authorization process. The e-NodeB side needs to consider the allocation of uplink resources and random access resources in a unified manner.
  • FIG. 2 is a flowchart of a method for selecting a random access channel type according to an embodiment of the present application. As shown in FIG. 2, the method includes:
  • Step 101 When the currently activated first BWP of the user equipment UE is configured with a two-step random access 2-step RA resource but not configured with a 4-step RA resource, the UE determines whether the measured received power RSRP value of the downlink path loss reference signal is It is higher than the RSRP threshold selected by the pre-configured random access channel RACH type in the currently activated uplink BWP.
  • the first BWP currently activated by the user equipment UE in this embodiment is configured with two-step random access 2-step RA resources but not configured with 4-step RA resources.
  • the incoming channel is more efficient than the four-step access channel.
  • the two-step random access channel is a way to improve the efficiency of random channel access. Therefore, the 2-step RA resource configuration random access channel RACH type is preferred.
  • the pre-configured RSRP threshold for RACH type selection can be configured in two ways.
  • One configuration method is that the UE receives the RSRP threshold for RACH type selection configured by the network side in the uplink BWP with 2-step RA resources. In this way, the RSRP threshold selected by the RACH type corresponding to each BWP can be the same or different from each other.
  • Another way is that the UE receives the RSRP threshold selected by the RACH type broadcast configured in the system broadcast message, no matter where it is switched to An uplink BWP is based on the RSRP threshold selected by the RACH type configured in the broadcast message as the RSRP threshold selected by the current RACH type. Therefore, the RSRP threshold selected by the RACH type corresponding to each uplink BWP is the same.
  • Step 102 If the received power RSRP value of the downlink path loss reference signal measured by the user equipment is higher than the RSRP threshold of the RACH type selection pre-configured in the currently activated uplink BWP, the UE executes the 2- step RA process.
  • the 2-step RA process is executed on the currently activated upstream BWP.
  • the second BWP can be used to realize the selection of the RACH type.
  • the UE is handed over to the second BWP configured with two-step random access 2-step RA resources and four-step random access channel 4-step RA resources to select the RACH type to select the RACH type in the second BWP. Select the RACH type above to ensure that the RACH type can be selected normally.
  • the second BWP includes: the initial uplink BWP configured with two-step random access 2-step RA resources and four-step random access 4-step RA resources, or arbitrarily configured with two-step random access 2-step RA Resources and non-initial uplink BWP for 4-step RA resources with four-step random access.
  • the following example illustrates how to switch the UE to the second BWP configured with the two-step random access 2-step RA resource and the four-step random access channel 4-step RA resource to select the RACH type.
  • the RSRP threshold of the pre-configured RACH type selection in the second BWP it is determined whether the received power RSRP value of the downlink path loss reference signal measured by the UE is higher than the RSRP threshold of the pre-configured RACH type selection in the second BWP, that is, the 2- step Whether there are any RA resources that can be executed based on current network resources to give priority to the efficiency of RACH type selection.
  • the RSRP threshold for pre-configured RACH type selection in each BWP is different.
  • the UE executes the 2-step RA process on the second BWP, that is, it satisfies execution 2
  • the 2-step RA process is executed on the corresponding BWP to ensure that the 2-step RA process can be selected as much as possible.
  • the UE directly switches to a specific UL BWP, such as the initial UL BWP, and 2-step RA resources and 4-step RA resources are configured on the UL BWP, and the UE judges whether 2-step RA can be performed on the UL BWP If it can, the UE executes the 2-step RA process, if not, the UE executes the 4-step RA process.
  • a specific UL BWP such as the initial UL BWP
  • 2-step RA resources and 4-step RA resources are configured on the UL BWP
  • all or the initial UL BWP 2-step RA process cannot meet the channel quality requirements, that is, return to the 4-step RACH process for RACH
  • the selection of the type is to ensure the normal determination of the random channel and the normal execution of the communication.
  • the UE performs the 4-step RACH process on the second BWP.
  • other UL BWP refers to the initial UL BWP.
  • the UE in order to improve the efficiency of RACH selection, the UE directly executes a 4-step RACH process on the second BWP to ensure rapid selection of the RACH type.
  • the RACH type of the UE is determined.
  • the UE directly switches to the initial UL BWP, and performs the 4-step RA process on the initial uplink BWP.
  • the initial UL BWP may only be configured with 4-step RA resources, or the initial UL BWP configuration may be configured with both 4-step RA resources and 2-step RA resources. Even if 2-step RA resources and 4-step RA resources are configured, the UE will not perform RACH type selection, but directly select the 4-step RA process.
  • the UE switches to configure only the four-step random access channel 4 -step
  • the 4-step RACH process is executed on the second BWP of the RA resource.
  • the second BWP in this embodiment includes: an initial uplink BWP configured with only 4-step RA resources, or any non-initial uplink BWP configured with only 4-step RA resources.
  • the currently activated first BWP is only configured with two-step random access 2-step RA resources, and the currently activated uplink BWP is pre-configured with the RSRP threshold for RACH type selection.
  • the above embodiment is based on the RSRP threshold
  • the relationship with the received power RSRP value of the downlink path loss reference signal measured by the user equipment is used to determine different strategies for configuring the RACH type.
  • the UE may also ignore the pre-configured RSRP threshold for the RACH type selection in the currently activated uplink BWP, and directly execute the 2-step RA process on the currently activated uplink BWP.
  • the RSRP threshold for RACH type selection is pre-configured in the currently activated uplink BWP, a relatively small value is preset
  • the RSRP threshold makes the RSRP threshold smaller than the RSRP value of the downlink path loss reference signal measured by the UE under any circumstances. Therefore, even if the UE performs the RACH type selection process (measures RSRP and determines the relationship between RSRP and the threshold), it can only choose to execute 2-step RA process.
  • the measured downlink path After comparing the RSRP value of the loss reference signal with the RSRP threshold, a 2-step RA process is performed on the currently activated first BWP. Ignore the result of the comparison and directly execute the corresponding 2-step RA process.
  • the comparison result can be used as a reference and directly on the first BWP currently activated Perform the 2-step RA process.
  • some ignorable restrictions can also be set, for example, when the transmission is to be sent.
  • the UE can be controlled to ignore the pre-configured RSRP threshold of the RACH type selection in the currently activated uplink BWP, etc.
  • the BWP resource is the selection of RACH when other types are used to ensure the flexibility of the RACH type selection in this application.
  • only the four-step random access channel 4-step RA resource is configured for the first BWP currently activated of the UE.
  • the UE’s currently activated first BWP is only configured with 4-step random access channel 4-step RA resources, in order to ensure the efficiency of RACH type selection, it is determined whether the UE has configured 2-step random access 2- step The target uplink BWP of the RA resource.
  • the UE If the UE has a target uplink BWP configured with two-step random access 2-step RA resources, it is determined whether the received power RSRP value of the downlink path loss reference signal measured by the UE is higher than that of the target uplink BWP
  • the RSRP threshold for RACH type selection configured in the 2-step RA resource if the received power RSRP value of the downlink path loss reference signal measured by the UE is higher than the RSRP threshold for RACH type selection configured in the 2-step RA resource of the target uplink BWP, The UE switches to the target uplink BWP to perform the 2-step RA process.
  • the above-mentioned target uplink BWP includes an initial uplink BWP configured with a two-step random access 2-step RA resource, or any non-initial uplink BWP configured with a two-step random access 2-step RA resource.
  • the UE executes the 4-step RACH process on the currently activated uplink BWP.
  • the UE does not have a target uplink BWP configured with a two-step random access 2-step RA resource.
  • the UE performs a 4-step RACH process on the currently activated uplink BWP.
  • the RACH type access can be realized, which balances the communication efficiency and the communication success rate.
  • the UE when the currently activated first BWP of the user equipment UE is configured with two-step random access 2-step RA resources but not configured with 4-step RA resources, the UE is judged Whether the measured received power RSRP value of the downlink path loss reference signal is higher than the RSRP threshold of the RACH type selection pre-configured in the currently activated uplink BWP, if the received power RSRP value of the downlink path loss reference signal measured by the user equipment is higher than The RSRP threshold of the pre-configured RACH type selection in the currently activated uplink BWP, the UE executes the 2-step RA process on the currently activated uplink BWP, thus realizing the 2-step RA resource under the new generation of mobile communication technology Realize the flexible configuration of the RACH type of the user equipment.
  • the method further includes: after N 2-step RA msgA retransmissions occur, where N is the preset
  • N is the preset
  • the UE directly triggers the RACH problem to report to the RRC layer, so that the RRC layer triggers the RRC re-establishment process or triggers the UE to return to the IDLE state.
  • the N times of 2-step RA msgA retransmission in the embodiment of this application can be understood as the first message in the 2-step RA process that is sent after MSGA when the 2-step RA process is executed.
  • the UE does not receive any network response, or even if it receives the network response, the UE considers that 2-step RA is not completed (such as receiving a fallback to msg3 transmission response, random fallback indication or response decoding failure), this is MSGA transmission failure.
  • the UE sends MSGA again on the next available MSGA resource. After N MSGA attempts, the UE will not switch the BWP, but will report the RACH problem to the upper layer.
  • N is the preset threshold value, which can be calibrated according to a large amount of experimental data.
  • the threshold of N can be configured in the 2-step RA resource in advance. Of course, it can also be configured in other locations, which is not limited here.
  • the UE directly triggers the RACH problem to be reported to the RRC layer, so that the RRC layer triggers the RRC re-establishment process or triggers the UE to return to the IDLE state to release related information, for example, RRC connection release, RL release; BIU port release, RL release, RRC connection release, etc.
  • the retransmission status can be counted based on the RACH counter, and in different application scenarios, the RACH processing method based on the RACH counter is different. Examples are as follows:
  • the UE switches to the second BWP configured with 4-step RA resources to perform the 4-step RACH process, and the RACH counter state is not reset, and from N starts to count.
  • the RACH counter shows that the number of random access preamble transmissions is greater than or equal to the threshold configured in the 4-step RA resource, it is considered that a RACH process problem has indeed occurred. Therefore, the UE triggers the RACH problem. Send an alarm or send alarm information to related technicians to quickly repair the problem.
  • the RACH counter is a counter that records the number of random access preamble transmissions.
  • the counter is that when PREAMBLE_TRANSMISSION_COUNTER is greater than or equal to the threshold configured in the 4-step RA resource, the UE triggers the RACH problem.
  • the UE switches to the second BWP configured with 4-step RA resources to perform the 4-step RACH process, and resets the RACH counter state from 0 Start counting.
  • the RACH counter shows that the number of random access preamble transmissions is greater than or equal to the threshold configured in the 4-step RA resource
  • the UE triggers the RACH problem and the RRC re-establishment process, that is, re-establishes RRC at this time.
  • the counter is PREAMBLE_TRANSMISSION_COUNTER.
  • PREAMBLE_TRANSMISSION_COUNTER is greater than or equal to the threshold configured in the 4-step RA resource, the UE triggers the RACH problem, that is, the RRC re-establishment process occurs.
  • the configuration of the RACH type can also be implemented. Specifically, as shown in FIG. 3, the above method further includes:
  • step 201 the UE switches to the second BWP configured with the two-step random access 2-step RA resource and the four-step random access channel 4-step RA resource to select the RACH type.
  • the second BWP includes the initial uplink BWP, and may also include other non-initial uplink BWPs arbitrarily configured with two-step random access 2-step RA resources and four-step random access channel 4-step RA resources.
  • the UE switches to the second BWP configured with a two-step random access 2-step RA resource and a four-step random access channel 4-step RA resource to select the RACH type.
  • Step 202 Determine whether the received power RSRP value of the downlink path loss reference signal measured by the UE is higher than the RSRP threshold for the RACH type selection pre-configured in the second BWP.
  • the received power RSRP value of the downlink path loss reference signal measured by the UE is higher than the RSRP threshold for RACH type selection pre-configured in the second BWP, to preliminarily determine whether the current RACH selection failure is due to network resource requirements Caused by too high.
  • Step 203 If the received power RSRP value of the downlink path loss reference signal measured by the user equipment is higher than the RSRP threshold for the RACH type selection pre-configured in the second BWP, the UE performs the 2-step RA process on the second BWP.
  • the UE performs the 2-step RA process on the second BWP, that is, select A 2-step RA process executed on the second BWP with relatively low requirements for network resources to take into account the success rate and efficiency of communication.
  • Step 204 If the received power RSRP value of the downlink path loss reference signal measured by the user equipment is lower than or equal to the RSRP threshold pre-configured in the second BWP for RACH type selection, the UE performs a 4-step RACH process on the second BWP.
  • the communication success rate is prioritized to ensure rapid selection of the RACH type .
  • the UE executes a 4-step RACH process with lower requirements on network resources on the second BWP.
  • this application also proposes a random access channel type selection device, which is applied to user equipment.
  • Fig. 4 is a schematic structural diagram of an apparatus for selecting a random access channel type according to an embodiment of the present application. As shown in Fig. 4, the apparatus includes: a judgment module 10 and an execution module 20, wherein:
  • the determining module 10 is used to determine the received power of the measured downlink path loss reference signal when the two-step random access 2-step RA resource is configured but the 4-step RA resource is not configured for the first BWP currently activated of the user equipment UE Whether the RSRP value is higher than the RSRP threshold selected by the RACH type pre-configured in the currently activated uplink BWP.
  • the execution module 20 is configured to execute 2 on the currently activated uplink BWP when the received power RSRP value of the downlink path loss reference signal measured by the user equipment is higher than the RSRP threshold selected by the RACH type pre-configured in the currently activated uplink BWP -step RA process.
  • the execution module 20 is specifically configured to: the received power RSRP value of the downlink path loss reference signal measured by the UE is lower than or equal to the RSRP gate selected by the RACH type pre-configured in the currently activated uplink BWP Within a limited time, switch to the second BWP configured with two-step random access 2-step RA resources and four-step random access 4-step RA resources to select the RACH type.
  • the judgment module 10 is specifically used for the first judgment module, and is specifically used for:
  • the 2-step RA process is performed on the second BWP.
  • the execution module 10 is specifically used for:
  • the execution module 20 is specifically configured to:
  • the execution module 20 is specifically configured to:
  • the received power RSRP value of the downlink path loss reference signal measured by the user equipment is lower than or equal to the RSRP threshold of the pre-configured RACH type selection in the currently activated uplink BWP, it switches to the 4-step RA resource configured with four-step random access.
  • the 4-step RACH process is executed on the second BWP where the 2-step random access 2-step RA resource is not configured.
  • the execution module 20 is specifically configured to:
  • the execution module 20 is specifically configured to: when the currently activated first BWP of the UE is configured with only two-step random access 2-step RA resources, and pre-configured in the currently activated uplink BWP RSRP threshold selected by the RACH type, where the RSRP threshold is less than the RSRP value of the downlink path loss reference signal measured by the UE in any case, and the RSRP threshold is ignored, and the 2-step RA process is directly executed on the currently activated uplink BWP, or After the measured RSRP value of the downlink path loss reference signal is compared with the RSRP threshold, a 2-step RA process is performed on the currently activated first BWP.
  • the judging module 10 is specifically used for: when the UE's currently activated first BWP is configured with four-step random access 4-step RA resources but not configured with two-step random access 2-step RA In the case of resources, determine whether there is a target uplink BWP configured with two-step random access 2-step RA resources;
  • Execution module specifically used for:
  • the received power RSRP value of the downlink path loss reference signal measured by the UE is higher than the RSRP threshold of the RACH type selection configured in the 2-step RA resource of the target uplink BWP, it switches to the target uplink BWP to perform the 2-step RA process.
  • the execution module 20 is specifically configured to:
  • the 4-step RACH process is executed on the currently activated uplink BWP.
  • the execution module 20 is specifically configured to:
  • a 4-step RACH process is performed on the currently activated uplink BWP.
  • the UE when the currently activated first BWP of the user equipment UE is configured with two-step random access 2-step RA resources but not configured with 4-step RA resources, the UE is judged Whether the measured received power RSRP value of the downlink path loss reference signal is higher than the RSRP threshold of the RACH type selection pre-configured in the currently activated uplink BWP, if the received power RSRP value of the downlink path loss reference signal measured by the user equipment is higher than The RSRP threshold of the pre-configured RACH type selection in the currently activated uplink BWP, the UE executes the 2-step RA process on the currently activated uplink BWP, thus realizing the 2-step RA resource under the new generation of mobile communication technology Realize the flexible configuration of the RACH type of the user equipment.
  • the device further includes: a reporting module 30, wherein:
  • the reporting module 30 is used for when N 2-step RA msgA retransmissions occur, where N is the preset threshold, the UE directly triggers the RACH problem to be reported to the RRC layer, so that the RRC layer triggers the RRC re-establishment process or triggers The UE returns to the IDLE state.
  • the reporting module 30 is specifically used for:
  • the second BWP configured with 4-step RA resources to execute the 4-step RACH process without resetting the state of the RACH counter, and continue counting from N, where the RACH counter is a counter that records the number of random access preamble transmissions ;
  • the RACH counter shows that the number of random access preamble transmissions is greater than or equal to the threshold configured in the 4-step RA resource, the RACH problem is triggered.
  • the reporting module 30 is specifically used for:
  • Switch to the second BWP configured with the 4-step RA resource to execute the 4-step RACH process, and reset the RACH counter state, and continue counting from 0, where the RACH counter is a counter that records the number of random access preamble transmissions;
  • the RACH counter shows that the number of random access preamble transmissions is greater than or equal to the threshold configured in the 4-step RA resource
  • the RACH problem is triggered and the RRC reconstruction process occurs.
  • the execution module 20 is also used for:
  • the 4-step RACH process is executed on the second BWP.
  • the successful connection to the RA resource can still be achieved, which ensures the success rate of communication.
  • this application also proposes a user equipment, including: a memory, a processor, and a computer program stored on the memory and running on the processor.
  • a user equipment including: a memory, a processor, and a computer program stored on the memory and running on the processor. The random access channel type selection method described.
  • this application also proposes a non-transitory computer-readable storage medium.
  • the instructions in the storage medium are executed by the processor, the random access channel type selection method described in the preceding embodiments can be implemented. .
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include at least one of the features. In the description of the present application, "a plurality of” means at least two, such as two, three, etc., unless specifically defined otherwise.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提出了一种随机接入信道类型选择方法和装置,其中,方法包括:当用户设备UE的当前激活的第一BWP只配置了两步随机接入2-step RA资源,且在当前激活的上行BWP中预先配置的RACH类型选择的参考信号接收功率RSRP门限,判断UE测量的下行路损参考信号的接收功率RSRP值是否高于在当前激活的上行BWP中预先配置的RACH类型选择的RSRP门限;若用户设备测量的下行路损参考信号的接收功率RSRP值高于在当前激活的上行BWP中预先配置的RACH类型选择的RSRP门限,UE在当前激活的上行BWP上执行2-step RA流程。由此,实现了在新一代移动通信技术下,根据2-step RA资源实现对用户设备的RACH类型的灵活配置。

Description

随机接入信道类型选择方法和装置 技术领域
本申请涉及移动通信技术领域,尤其涉及一种随机接入信道类型选择方法和装置。
背景技术
第五代移动通信技术(5th Generation Mobile Networks,5G)是最新一代蜂窝移动通信技术,也是即4G、3G和2G系统之后的延伸。5G的性能目标是高数据速率、减少延迟、节省能源、降低成本、提高系统容量和大规模设备连接。
随着5G技术的应用,用户设备的随机信道接入技术也随之发展,在5G技术下,实现两步随机接入信道成为普遍需要,然而,这种两步随机接入信道在实际操作中,应用情况较为多样化,因而,如何实现两步随机接入信道的灵活配置成为亟待解决的问题。
发明内容
本申请旨在至少在一定程度上解决相关技术中,缺乏两步随机接入信道的灵活配置的技术问题。
本申请一方面实施例提供了一种随机接入信道类型选择方法,包括:当用户设备UE的当前激活的第一BWP配置了两步随机接入2-step RA资源但未配置4-step RA资源,所述UE判断测量的下行路损参考信号的接收功率RSRP值,是否高于在所述当前激活的上行BWP中预先配置的RACH类型选择的RSRP门限;若所述用户设备测量的下行路损参考信号的接收功率RSRP值高于在所述当前激活的上行BWP中预先配置的RACH类型选择的RSRP门限,所述UE在所述当前激活的上行BWP上执行2-step RA流程。
另外,本申请实施例的随机接入信道类型选择方法,至少包括如下附加的技术特征:
在本申请的一个实施例中,在所述UE判断测量的下行路损参考信号的接收功率RSRP值是否高于在所述当前激活的上行BWP中预先配置的RACH类型选择的RSRP门限之后,还包括:若所述UE测量的下行路损参考信号的接收功率RSRP值低于等于在所述当前激活的上行BWP中预先配置的RACH类型选择的RSRP门限,所述UE切换到配置了两步随机接入2-step RA资源和四步随机接入4-step RA资源的第二BWP上选择RACH类型。·
在本申请的一个实施例中,所述UE切换到配置了两步随机接入2-step RA资源和四步随机接入4-step RA资源的第二WP上选择RACH类型,包括:所述UE判断测量的下行路损参考信号的接收功率RSRP值是否高于在所述第二BWP中预先配置的RACH类型选择的RSRP门限;若所述用户设备测量的下行路损参考信号的接收功率RSRP值高于在所述 第二BWP中预先配置的RACH类型选择的RSRP门限,所述UE在所述第二BWP上执行所述2-step RA流程。
在本申请的一个实施例中,在所述UE判断测量的下行路损参考信号的接收功率RSRP值是否高于在所述第二BWP中预先配置的RACH类型选择的RSRP门限之后,还包括:
若所述用户设备测量的下行路损参考信号的接收功率RSRP值低于等于在所述第二BWP中预先配置的RACH类型选择的RSRP门限,所述UE在所述第二BWP上执行所述4-step RACH流程。
在本申请的一个实施例中,所述UE切换到配置了两步随机接入2-step RA资源和四步随机接入4-step RA资源的第二BWP上选择RACH类型,包括:所述UE在所述第二BWP上执行所述4-step RACH流程。
在本申请的一个实施例中,所述第二BWP包括:配置了两步随机接入2-step RA资源和四步随机接入4-step RA资源的初始上行BWP。
在本申请的一个实施例中,在所述UE判断测量的下行路损参考信号的接收功率RSRP值是否高于在所述当前激活的上行BWP中预先配置的RACH类型选择的RSRP门限之后,还包括:若所述用户设备测量的下行路损参考信号的接收功率RSRP值低于等于所述当前激活的上行BWP中预先配置的RACH类型选择的RSRP门限,所述UE切换到配置了四步随机接入4-step RA资源未配置两步随机接入2-step RA资源的第二BWP上执行所述4-step RACH流程。
在本申请的一个实施例中,所述第二BWP包括:配置4-step RA资源未配置了两步随机接入2-step RA资源的初始上行BWP。
在本申请的一个实施例中,还包括:当所述UE的当前激活的第一BWP配置两步随机接入2-step RA资源,且在所述当前激活的上行BWP中没有预先配置的RACH类型选择的RSRP门限,所述UE在所述当前激活的上行BWP上直接执行所述2-step RA流程。
在本申请的一个实施例中,还包括:当所述UE的当前激活的第一BWP配置两步随机接入2-step RA资源未配置4-step RA资源,且在所述当前激活的上行BWP中预先配置的RACH类型选择的RSRP门限,,所述UE忽略所述RSRP门限,直接在所述当前激活的上行BWP上执行2-step RA过程,或者,将所述测量的下行路损参考信号的RSRP值与所述RSRP门限比较后在所述当前激活的第一BWP上执行2-step RA过程。
在本申请的一个实施例中,还包括:当所述UE的当前激活的第一BWP配置了四步随机接入4-step RA资源未配置了两步随机接入2-step RA资源,所述UE判断是否具有配置了两步随机接入2-step RA资源的目标上行BWP;若所述UE具有配置了两步随机接入2-step RA资源的目标上行BWP,则所述UE判断测量的下行路损参考信号的接收功率RSRP 值是否高于所述目标上行BWP的2-step RA资源中配置的RACH类型选择的RSRP门限;若所述UE测量的下行路损参考信号的接收功率RSRP值高于所述目标上行BWP的2-step RA资源中配置的RACH类型选择的RSRP门限,所述UE切换到所述目标上行BWP上执行2-step RA流程。
在本申请的一个实施例中,在所述UE判断测量的下行路损参考信号的接收功率RSRP值是否高于所述目标上行BWP的2-step RA资源中配置的RACH类型选择的RSRP门限之后,还包括:若所述UE测量的下行路损参考信号的接收功率RSRP值低于等于所述目标上行BWP的2-step RA资源中配置的RACH类型选择的RSRP门限,所述UE在所述当前激活的上行BWP执行4-step RACH流程。
在本申请的一个实施例中,在所述UE判断是否具有配置了两步随机接入2-step RA资源的目标上行BWP之后,还包括:若所述UE不具有配置了两步随机接入2-step RA资源的目标上行BWP,所述UE在所述当前激活的上行BWP执行4-step RACH流程。
在本申请的一个实施例中,所述目标上行BWP包括:具有配置了两步随机接入2-step RA资源的初始上行BWP。
在本申请的一个实施例中,当所述UE没有执行BWP切换,在当前激活的上行BWP上执行2-step RA流程之后,还包括:当发生N次2-step RA msgA重传之后,其中,N为预设的门限值,所述UE直接触发RACH问题上报给RRC层,以使所述RRC层触发RRC重建过程或者触发UE回到IDLE态。
在本申请的一个实施例中,还包括:预先在所述2-step RA资源中配置所述N的门限值。
在本申请的一个实施例中,在所述当发生N次2-step RA msgA重传之后,还包括:所述UE切换到配置4-step RA资源的第二BWP执行4-step RACH流程,且对所述RACH计数器状态不进行重置,从N开始继续计数,其中,所述RACH计数器是记录随机接入前导码传输次数的计数器;当所述RACH计数器显示随机接入前导码传输的次数大于等于4-step RA资源中配置的门限值时,所述UE触发RACH问题。
在本申请的一个实施例中,在所述当发生N次2-step RA msgA重传之后,还包括:所述UE切换到配置4-step RA资源的第二BWP执行4-step RACH流程,且对所述RACH计数器状态进行重置,从0开始继续计数,其中,所述RACH计数器是记录随机接入前导码传输次数的计数器;当所述RACH计数器显示随机接入前导码传输的次数大于等于4-step RA资源中配置的门限值时,所述UE触发RACH问题发生RRC重建过程。
在本申请的一个实施例中,在所述当发生N次2-step RA msgA重传之后,还包括:所述UE切换到配置了两步随机接入2-step RA资源和四步随机接入4-step RA资源的第二 BWP上选择RACH类型;所述UE判断测量的下行路损参考信号的接收功率RSRP值是否高于在所述第二BWP中预先配置的RACH类型选择的RSRP门限;若所述用户设备测量的下行路损参考信号的接收功率RSRP值高于在所述第二BWP中预先配置的RACH类型选择的RSRP门限,所述UE在所述第二BWP上执行2-step RA流程;若所述用户设备测量的下行路损参考信号的接收功率RSRP值低于等于在所述第二BWP中预先配置的RACH类型选择的RSRP门限,所述UE在所述第二BWP上执行4-step RACH流程。
在本申请的一个实施例中,所述第二BWP包括初始上行BWP。
在本申请的一个实施例中,所述预先配置的RACH类型选择的RSRP门限,包括:所述UE接收网络侧在具有2-step RA资源中的上行BWP中配置的RACH类型选择的RSRP门限;或者,所述UE接收通过系统广播消息中广播配置的RACH类型选择的RSRP门限。
本申请另一方面实施例提供了一种随机接入信道类型选择装置,所述随机接入信道类型选择装置应用于用户设备,包括:判断模块,用于当用户设备UE的当前激活的第一BWP配置了两步随机接入2-step RA资源但未配置4-step RA资源,所述UE判断测量的下行路损参考信号的接收功率RSRP值,是否高于在所述当前激活的上行BWP中预先配置的RACH类型选择的RSRP门限;执行模块,用于在所述用户设备测量的下行路损参考信号的接收功率RSRP值高于在所述当前激活的上行BWP中预先配置的RACH类型选择的RSRP门限时,在所述当前激活的上行BWP上执行所述2-step RA流程。
另外,本申请实施例的随机接入信道类型选择装置,至少包括如下附加的技术特征:
在本申请的一个实施例中,所述执行模块,具体用于:在所述UE测量的下行路损参考信号的接收功率RSRP值低于等于在所述当前激活的上行BWP中预先配置的RACH类型选择的RSRP门限时,切换到配置了两步随机接入2-step RA资源和四步随机接入4-step RA资源的第二BWP上选择RACH类型。
在本申请的一个实施例中,所述第一判断模块,具体用于:判断测量的下行路损参考信号的接收功率RSRP值是否高于在所述第二BWP中预先配置的RACH类型选择的RSRP门限;若所述用户设备测量的下行路损参考信号的接收功率RSRP值高于在所述第二BWP中预先配置的RACH类型选择的RSRP门限,在所述第二BWP上执行所述2-step RA流程。
在本申请的一个实施例中,所述执行模块,具体用于:在所述用户设备测量的下行路损参考信号的接收功率RSRP值低于等于在所述第二BWP中预先配置的RACH类型选择的RSRP门限时,在所述第二BWP上执行所述4-step RACH流程。
在本申请的一个实施例中,所述执行模块,具体用于:在所述第二BWP上执行所述4-step RACH流程。在本申请的一个实施例中,所述执行模块,具体用于:在所述用户设备测量的下行路损参考信号的接收功率RSRP值低于等于所述当前激活的上行BWP中预先 配置的RACH类型选择的RSRP门限时,切换到配置了四步随机接入4-step RA资源但未配置两步随机接入2-step RA资源的第二BWP上执行所述4-step RACH流程。
在本申请的一个实施例中,所述执行模块,具体用于:当所述UE的当前激活的第一BWP配置了两步随机接入2-step RA资源但未配置四步随机接入4-step RA资源,且在所述当前激活的上行BWP中预先配置的RACH类型选择的RSRP门限,忽略所述RSRP门限,直接在所述当前激活的上行BWP上执行2-step RA过程,或者,将所述测量的下行路损参考信号的RSRP值与所述RSRP门限比较后在所述当前激活的第一BWP上执行2-step RA过程。
在本申请的一个实施例中,所述执行模块,具体用于:当所述UE的当前激活的第一BWP配置了四步随机接入4-step RA资源但未配置两步随机接入2-step RA资源时,判断是否具有配置了两步随机接入2-step RA资源的目标上行BWP;所述执行模块,具体用于:当所述UE测量的下行路损参考信号的接收功率RSRP值高于所述目标上行BWP的2-step RA资源中配置的RACH类型选择的RSRP门限时,切换到所述目标上行BWP上执行2-step RA流程。
在本申请的一个实施例中,所述执行模块,具体用于:在所述UE测量的下行路损参考信号的接收功率RSRP值低于等于所述目标上行BWP的2-step RA资源中配置的RACH类型选择的RSRP门限时,在所述当前激活的上行BWP执行4-step RACH流程。
在本申请的一个实施例中,还包括:上报模块,用于当发生N次2-step RA msgA重传之后,其中,N为预设的门限值,所述UE直接触发RACH问题上报给RRC层,以使所述RRC层触发RRC重建过程或者触发UE回到IDLE态。
在本申请的一个实施例中,所述上报模块,具体用于:切换到配置4-step RA资源的第二BWP执行4-step RACH流程,且对所述RACH计数器状态不进行重置,从N开始继续计数,其中,所述RACH计数器是记录随机接入前导码传输次数的计数器;当所述RACH计数器显示随机接入前导码传输的次数大于等于4-step RA资源中配置的门限值时,触发RACH问题。
在本申请的一个实施例中,所述上报模块,具体用于:切换到配置4-step RA资源的第二BWP执行4-step RACH流程,且对所述RACH计数器状态进行重置,从0开始继续计数,其中,所述RACH计数器是记录随机接入前导码传输次数的计数器;当所述RACH计数器显示随机接入前导码传输的次数大于等于4-step RA资源中配置的门限值时,触发RACH问题发生RRC重建过程。
在本申请的一个实施例中,所述执行模块,还用于:在所述当发生N次2-step RA msgA重传之后,切换到配置了两步随机接入2-step RA资源和四步随机接入4-step RA资源的第 二BWP上选择RACH类型;判断测量的下行路损参考信号的接收功率RSRP值是否高于在所述第二BWP中预先配置的RACH类型选择的RSRP门限;在所述用户设备测量的下行路损参考信号的接收功率RSRP值高于在所述第二BWP中预先配置的RACH类型选择的RSRP门限时,在所述第二BWP上执行2-step RA流程;
在所述用户设备测量的下行路损参考信号的接收功率RSRP值低于等于在所述第二BWP中预先配置的RACH类型选择的RSRP门限时,在所述第二BWP上执行所述4-step RACH流程。
在本申请的一个实施例中,所述预先配置的RACH类型选择的RSRP门限,包括:所述UE接收网络侧在具有2-step RA资源中的上行BWP中配置的RACH类型选择的RSRP门限;或者,所述UE接收通过系统广播消息中广播配置的RACH类型选择的RSRP门限。
本申请又一方面实施例提供了一种用户设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时,实现如前述实施例描述的随机接入信道类型选择方法。
在本申请的一个实施例中,非临时性计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如前述实施例描述的随机接入信道类型选择方法。
本申请提供的实施例,至少包括如下有益技术效果:
当用户设备UE的当前激活的第一BWP只配置了两步随机接入2-step RA资源,且在当前激活的上行BWP中预先配置的RACH类型选择的参考信号接收功率RSRP门限,若用户设备测量的下行路损参考信号的接收功率RSRP值高于在当前激活的上行BWP中预先配置的RACH类型选择的RSRP门限,UE在当前激活的上行BWP上执行2-step RA流程,由此,实现了在新一代移动通信技术下,根据2-step RA资源实现对用户设备的RACH类型的灵活配置。
本申请附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1-1是根据本申请一个实施例的四步随机接入信道的接入过程示意图;
图1-2是根据本申请另一个实施例的四步随机接入信道的接入过程示意图;
图2是根据本申请一个实施例的随机接入信道类型选择方法的流程图;
图3是根据本申请另一个实施例的随机接入信道类型选择方法的流程图;
图4是根据本申请一个实施例的随机接入信道类型选择装置的结构示意图;以及
图5是根据本申请另一个实施例的随机接入信道类型选择装置的结构示意图。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
下面参考附图描述本申请实施例的随机接入信道类型选择方法和装置。
为了更好的应用5G技术提高通信效率,随机信道接入技术也应当随之优化,本申请中,具体描述如何基于2-step RA资源实现对用户设备的RACH类型的灵活配置。
在对本申请的随机接入信道类型选择方法进行说明之前,首先对本申请中涉及的一些技术名词进行解释说明,说明如下:
小区无线网络临时标识(Cell-RadioNetworkTemporaryIdentifier,C-RNTI):是由基站分配给UE的动态标识。
演进型Node B(Evolved Node B,eNodeB):基站的名称。
参考信号接收功率(Reference Signal Receiving Power,RSRP):是LTE网络中可以代表无线信号强度的关键参数以及物理层测量需求之一。
随机接入信道(Random Access Channel,RACH):是一种上行传输信道。RACH在整个小区内进行接收,常用于PAGING回答和MS主叫/登录的接入等。
带宽部分(Band Width Part,BWP):是小区总带宽的一个子集带宽,其通过NR中的带宽自适应灵活调整UE接收和发送带宽大小,使得UE接收和发送带宽不需要与小区的带宽一样大。
初始上行BWP:UE从RRC空闲状态进入到RRC连接状态的时候,所驻留的小区的BWP。
两步随机接入(2-step RA):UE发送Msg1消息;如果Msg1消息中携带的UE标识是小区无线网络临时标识C-RNTI,且终端接收到针对C-RNTI寻址的物理层调度信令时,判定终端的两步随机接入成功。
四步随机接入(4-step RACH):分为竞争的随机接入信道和非竞争的随机接入信道,如图1-1所示,在非竞争的随机接入信道中的四步过程分为:第一步:e-NodeB(图中的eNB)通过RRC信令或者PDCCH配置随机接入过程中UE使用的前导码和PRA资源,第二步UE根据配置的前导信息发送前导码,进行随机接入,第三部,e-NodeB根据接收到的前导信息进行随机接入响应,若当前负载允许,则e-NodeB将发送RAR MAC PDU,其中的SDU 包括UE的使用的前导码索引。UE收到与第二步中前导信息一致的RAR MAC PDU,就完成了随机接入。
如图1-2所示,对于竞争的随机接入信道中的四步过程分为:第一步:用户设备UE随机选择前导码,并选择可以用的随机接入信道资源进行发送,第二步,e-NodeB根据负载情况进行随机接入响应,如果UE使用的前导信息包含在反馈的RAR MAC PDU中,则可以进行第三步,第三步:UE根据第二步中收到的上行授权发送一个MAC PDU,根据发起随机接入的原因,该PDU可能包含RRC信令或者UE之前的C-RNT1,第四步:进行竞争解决,UE和e-NodeB的MAC实体均应支持两种随机接入方式,随机接入过程与上行同步过程、下行授权过程紧密相连,e-NodeB端需要统一考虑上行资源与随机接入资源的分配。
具体而言,图2是根据本申请一个实施例的随机接入信道类型选择方法的流程图,如图2所示,该方法包括:
步骤101,当用户设备UE的当前激活的第一BWP配置了两步随机接入2-step RA资源但未配置4-step RA资源,UE判断测量的下行路损参考信号的接收功率RSRP值是否高于在当前激活的上行BWP中预先配置的随机接入信道RACH类型选择的RSRP门限。
应当理解,本实施例中的用户设备UE当前激活的第一BWP配置了两步随机接入2-step RA资源但未配置4-step RA资源,显然,正如以上分析的,由于两步随机接入信道相对于四步接入信道的效率更高,能够实现两步随机接入信道是可以提高随机信道接入效率的方式,因而,优先考虑2-step RA资源配置随机接入信道RACH类型。
因此,首先判断当前激活的第一BWP的2-step RA资源的可用性,判断UE测量的下行路损参考信号的接收功率RSRP值是否高于在当前激活的上行BWP中预先配置的RACH类型选择的RSRP门限。
其中,预先配置的RACH类型选择的RSRP门限可以有两种配置方式,一种配置方式为UE接收网络侧在具有2-step RA资源中的上行BWP中配置的RACH类型选择的RSRP门限,这种方式下,每一个BWP对应的RACH类型选择的RSRP门限可以相同,也可以互不相同,另一种方式为,UE接收通过系统广播消息中广播配置的RACH类型选择的RSRP门限,无论切换到哪一个上行BWP,都是基于广播消息中广播配置的RACH类型选择的RSRP门限作为当前的RACH类型选择的RSRP门限,因此,每个上行BWP对应的RACH类型选择的RSRP门限相同。
步骤102,若用户设备测量的下行路损参考信号的接收功率RSRP值高于在当前激活的上行BWP中预先配置的RACH类型选择的RSRP门限,UE在当前激活的上行BWP上执行所述2-step RA流程。
具体的,若用户设备测量的下行路损参考信号的接收功率RSRP值高于在当前激活的 上行BWP中预先配置的RACH类型选择的RSRP门限,则显然当前用户设备可以执行高效率的2-step RA流程,从而,在当前激活的上行BWP上执行2-step RA流程。
若UE测量的下行路损参考信号的接收功率RSRP值低于等于在当前激活的上行BWP中预先配置的RACH类型选择的RSRP门限,则认为当前服务小区配置的上行BWP的不适合执行对应的2-step RA流程等,因而,可以采用第二BWP实现RACH类型的选择。
下面结合具体的实施例,说明如何采用第二BWP实现RACH类型的选择:
作为一种可能的实现方式,将UE切换到配置了两步随机接入2-step RA资源和四步随机接入信道4-step RA资源的第二BWP上选择RACH类型,以在第二BWP上选择RACH类型,保证RACH类型可以正常选择。
其中,第二BWP包括:配置了两步随机接入2-step RA资源和四步随机接入4-step RA资源的初始上行BWP,也可以是任意配置了两步随机接入2-step RA资源和四步随机接入4-step RA资源的非初始上行BWP。
下面示例说明,如何将UE切换到配置了两步随机接入2-step RA资源和四步随机接入信道4-step RA资源的第二BWP上选择RACH类型。
示例一:
具体而言,在本实施例中,判断UE测量的下行路损参考信号的接收功率RSRP值是否高于在第二BWP中预先配置的RACH类型选择的RSRP门限,即确定其他的BWP的2-step RA资源中是否有可以基于当前网络资源执行的,以优先考虑RACH类型选择效率,此时,可以理解,每个BWP中预先配置的RACH类型选择的RSRP门限是不同的。若用户设备测量的下行路损参考信号的接收功率RSRP值高于在第二BWP中预先配置的RACH类型选择的RSRP门限,UE在第二BWP上执行2-step RA流程,即存在满足执行2-step RA流程的UL BWP时,基于对应BWP上执行2-step RA流程,以确保尽量能选择2-step RA流程。或者,UE直接切换到一个特定的UL BWP,比如初始UL BWP,在该UL BWP上配置了2-step RA资源和4-step RA资源,UE在该UL BWP上判断是否能执行2-step RA,如果能,则UE执行2-step RA流程,如果不能则UE执行4-step RA流程。
在本实施例中,可能由于当前服务小区的信道质量较差,所有的或者是初始的UL BWP的2-step RA流程对信道质量的要求都无法满足,即退回到4-step RACH流程进行RACH类型的选择,以确保随机通道的正常确定,保证通信的正常执行。
具体而言,若用户设备测量的下行路损参考信号的接收功率RSRP值低于等于在第二BWP中预先配置的RACH类型选择的RSRP门限,UE在第二BWP上执行4-step RACH流程。这里,其他UL BWP是指初始UL BWP。
示例二:
在本实施例中,为了提高RACH的选择效率,UE直接在第二BWP上执行4-step RACH流程,以确保快速选择RACH类型。
作为另一种可能的实现方式,不难理解的是,与UE对应的多个BWP中,除了包含配置了两步随机接入2-step RA资源的BMP以及配置了两步随机接入2-step RA资源和四步随机接入信道4-step RA资源的第二BWP外,还可以包括仅仅配置4-step RA资源的第二BWP,仅仅配置4-step RA资源的第二BWP同样也可以在当前服务小区的的信道质量不符合当前激活的第一BWP的选择2-step RA流程的条件时,确定UE的RACH类型。
作为另一种可能的实现方式,UE直接切换到初始UL BWP,并在初始上行BWP上执行4-step RA流程。这里,初始UL BWP可以只配置了4-step RA资源,也可以是初始UL BWP配置既配置4-step RA资源,也配置了2-step RA资源。即便配置了2-step RA资源和4-step RA资源,UE也不会执行RACH type选择,而是直接选择4-step RA流程。
具体而言,若用户设备测量的下行路损参考信号的接收功率RSRP值低于等于当前激活的上行BWP中预先配置的RACH类型选择的RSRP门限,UE切换到只配置四步随机接入信道4-step RA资源的第二BWP上执行4-step RACH流程。其中,本实施例中的第二BWP包括:只配置4-step RA资源的初始上行BWP,或者,任意只配置4-step RA资源的非初始上行BWP。
在上述实施例中,当前激活的第一BWP只配置两步随机接入2-step RA资源,且在当前激活的上行BWP中预先配置的有RACH类型选择的RSRP门限,上述实施例基于RSRP门限和用户设备测量的下行路损参考信号的接收功率RSRP值的大小关系,来确定不同的配置RACH类型的策略。
在实际执行过程中,为了进一步提高配置RACH类型的效率,当基于上述当UE的当前激活的第一BWP只配置两步随机接入2-step RA资源,且在当前激活的上行BWP中预先配置的RACH类型选择的RSRP门限时,也可以在UE忽略在当前激活的上行BWP中预先配置的RACH类型选择的RSRP门限,直接在当前激活的上行BWP上执行2-step RA过程。
或者,当UE的当前激活的第一BWP只配置两步随机接入2-step RA资源,且在当前激活的上行BWP中预先配置的RACH类型选择的RSRP门限时,预先设置一个相对较小的RSRP门限,使得RSRP门限小于UE在任何情况下测量的下行路损参考信号的RSRP值,从而,UE即便执行RACH type选择流程(测量RSRP,并判断RSRP与门限的关系),也只能选择执行2-step RA过程。
亦或者,在当UE的当前激活的第一BWP只配置两步随机接入2-step RA资源,且在 当前激活的上行BWP中预先配置的RACH类型选择的RSRP门限时,将测量的下行路损参考信号的RSRP值与RSRP门限比较后在当前激活的第一BWP上执行2-step RA过程。忽略掉比较的结果,直接执行对应的2-step RA过程,当然,若是测量的下行路损参考信号的RSRP值大于RSRP门限,则该比较结果可以作为参考,直接在当前激活的第一BWP上执行2-step RA过程。
需要强调的是,为了保证通信的成功率,针对UE忽略在当前激活的上行BWP中预先配置的RACH类型选择的RSRP门限的操作,也可以设置一些可以忽略的限制条件,比如,当待发送的信息数据量较小时,可以控制UE忽略在当前激活的上行BWP中预先配置的RACH类型选择的RSRP门限等。
不难理解的是,UE的当前激活的第一BWP配置的资源具有多样性,在实际执行过程中,上行工作带宽BWP配置的资源具有其他的可能,本申请同样支持UE的当前激活的第一BWP的资源为其他类型时的RACH的选择,以保证本申请中RACH类型选择的灵活性。
在本申请的一个实施例中,UE的当前激活的第一BWP只配置四步随机接入信道4-step RA资源。在本实施例中,当UE的当前激活的第一BWP只配置四步随机接入信道4-step RA资源,则为了保证RACH类型选择效率,判断UE是否具有配置了两步随机接入2-step RA资源的目标上行BWP,若UE具有配置了两步随机接入2-step RA资源的目标上行BWP,则判断UE测量的下行路损参考信号的接收功率RSRP值是否高于目标上行BWP的2-step RA资源中配置的RACH类型选择的RSRP门限,若UE测量的下行路损参考信号的接收功率RSRP值高于目标上行BWP的2-step RA资源中配置的RACH类型选择的RSRP门限,UE切换到目标上行BWP上执行2-step RA流程。
其中,上述目标上行BWP包括具有配置了两步随机接入2-step RA资源的初始上行BWP,或者,任意具有配置了两步随机接入2-step RA资源的非初始上行BWP。
在本实施例中,若测量的下行路损参考信号的接收功率RSRP值低于等于目标上行BWP的2-step RA资源中配置的RACH类型选择的RSRP门限,比如在当前服务小区的网络资源不支持时,即不支持2-step RA流程对网络的需求时,则为了确保通信成功率,UE在当前激活的上行BWP执行4-step RACH流程。
在本实施例中,可能UE不具有配置了两步随机接入2-step RA资源的目标上行BWP,则为了确保通信的成功,在UE在当前激活的上行BWP执行4-step RACH流程。
由此,上述实施例中无论用户设备UE的当前激活的第一BWP配置了何种RA资源,都可以实现对RACH类型的接入,平衡了通信效率和通信成功率。
综上,本申请实施例的随机接入信道类型选择方法,当用户设备UE的当前激活的第一BWP配置了两步随机接入2-step RA资源但未配置4-step RA资源,判断UE测量的下行 路损参考信号的接收功率RSRP值是否高于在当前激活的上行BWP中预先配置的RACH类型选择的RSRP门限,若用户设备测量的下行路损参考信号的接收功率RSRP值高于在当前激活的上行BWP中预先配置的RACH类型选择的RSRP门限,UE在当前激活的上行BWP上执行2-step RA流程,由此,实现了在新一代移动通信技术下,根据2-step RA资源实现对用户设备的RACH类型的灵活配置。
基于以上实施例,不难理解的是,当UE当前信道质量较差,或者是多个用户设备抢占RACH时,可能会有RACH失败的问题,当RACH失败时,如何确保可以重新实现RACH的连接,以保证通信成功也是本申请要解决的技术问题。
具体而言,当UE没有执行BWP切换,在当前激活的上行BWP上执行2-step RA流程之后,该方法还包括:当发生N次2-step RA msgA重传之后,其中,N为预设的门限值,UE直接触发RACH问题上报给RRC层,以使RRC层触发RRC重建过程或者触发UE回到IDLE态。
需要强调的是,本申请实施例中的N次2-step RA msgA重传可以理解为,在执行2-step RA流程时,发送了2-step RA流程中的第一条消息,即MSGA之后,UE没有收到任何网络响应,或者即使收到网络相应,UE也认为2-step RA未完成(比如收到回退到msg3传输响应,随机回退指示或者响应解码失败),这是MSGA传输失败。UE在下一个可用的MSGA资源上再次发送MSGA。在发生N次MSGA的尝试之后,UE不会切换BWP,而是向上层上报RACH问题。
其中,N为预设的门限值,可以根据大量实验数据标定。在实际执行过程中,可以预先在2-step RA资源中配置N的门限值。当然,也可以在其他位置配置,在此不作限制。
具体而言,当发生N次2-step RA msgA重传之后,UE直接触发RACH问题上报给RRC层,使得RRC层触发RRC重建过程或者触发UE回到IDLE态,进行相关信息的释放,比如,RRC连接释放,RL释放;BIU口释放,RL释放,RRC连接释放等。
需要说明的是,可以基于RACH计数器对重传状态进行计数,且在不同的应用场景下,基于RACH计数器进行RACH处理的方式不同,示例说明如下:
示例一:
在本示例中,在当发生N次2-step RA msgA重传之后,UE切换到配置4-step RA资源的第二BWP执行4-step RACH流程,且对RACH计数器状态不进行重置,从N开始继续计数,当RACH计数器显示随机接入前导码传输的次数大于等于4-step RA资源中配置的门限值时,则认为当前确实发生了RACH流程问题,从而,UE触发RACH问题,可以向进行报警或者向有关技术人员发送报警信息,以快速进行问题的修复,其中,RACH计数 器是记录随机接入前导码传输次数的计数器。
在本实施例中,计数器是,当PREAMBLE_TRANSMISSION_COUNTER大于等于4-step RA资源中配置的门限值时,UE触发RACH问题。
示例二:
在本示例中,在当发生N次2-step RA msgA重传之后,UE切换到配置4-step RA资源的第二BWP执行4-step RACH流程,且对RACH计数器状态进行重置,从0开始继续计数,当RACH计数器显示随机接入前导码传输的次数大于等于4-step RA资源中配置的门限值时,UE触发RACH问题发生RRC重建过程,即此时重新建立RRC。
计数器为PREAMBLE_TRANSMISSION_COUNTER,当PREAMBLE_TRANSMISSION_COUNTER大于等于4-step RA资源中配置的门限值时,UE触发RACH问题,即发生RRC重建过程。
在本申请的一个实施例中,当发生N次2-step RA msgA重传之后,也可以实现对RACH类型的配置,具体而言,如图3所示,上述方法还包括:
步骤201,UE切换到配置了两步随机接入2-step RA资源和四步随机接入信道4-step RA资源的第二BWP上选择RACH类型。
其中,第二BWP包括初始上行BWP,也可以包括任意配置了两步随机接入2-step RA资源和四步随机接入信道4-step RA资源的其他非初始上行BWP。
具体而言,为了保证RACH选择的成功性,UE切换到配置了两步随机接入2-step RA资源和四步随机接入信道4-step RA资源的第二BWP上选择RACH类型。
步骤202,判断UE测量的下行路损参考信号的接收功率RSRP值是否高于在第二BWP中预先配置的RACH类型选择的RSRP门限。
具体的,判断UE测量的下行路损参考信号的接收功率RSRP值是否高于在第二BWP中预先配置的RACH类型选择的RSRP门限,以初步判断当前RACH选择失败的原因是否是由于网络资源要求过高导致的。
步骤203,若用户设备测量的下行路损参考信号的接收功率RSRP值高于在第二BWP中预先配置的RACH类型选择的RSRP门限,UE在第二BWP上执行2-step RA流程。
具体的,若用户设备测量的下行路损参考信号的接收功率RSRP值高于在第二BWP中预先配置的RACH类型选择的RSRP门限,UE在第二BWP上执行2-step RA流程,即选择一种对网络资源要求比较低的第二BWP上执行的2-step RA流程,以兼顾通信的成功率和效率。
步骤204,若用户设备测量的下行路损参考信号的接收功率RSRP值低于等于在第二BWP中预先配置的RACH类型选择的RSRP门限,UE在第二BWP上执行4-step RACH 流程。
具体的,若用户设备测量的下行路损参考信号的接收功率RSRP值低于等于在第二BWP中预先配置的RACH类型选择的RSRP门限,则优先考虑通信的成功率,确保RACH类型的快速选择,UE在第二BWP上执行对网络资源要求更低的4-step RACH流程。
综上,本申请实施例的随机接入信道类型选择方法中,在当前2-step RA资源上尝试N次之后,仍旧可以实现对RA资源的连接成功,保证了通信成功率。
为了实现上述实施例,本申请还提出一种随机接入信道类型选择装置,该随机接入信道类型选择装置应用于用户设备。
图4是根据本申请一个实施例的随机接入信道类型选择装置的结构示意图,如图4所示,该装置包括:判断模块10、执行模块20,其中,
判断模块10,用于当用户设备UE的当前激活的第一BWP配置了两步随机接入2-step RA资源但未配置4-step RA资源,UE判断测量的下行路损参考信号的接收功率RSRP值是否高于在当前激活的上行BWP中预先配置的RACH类型选择的RSRP门限。
执行模块20,用于在用户设备测量的下行路损参考信号的接收功率RSRP值高于在当前激活的上行BWP中预先配置的RACH类型选择的RSRP门限时,在当前激活的上行BWP上执行2-step RA流程。
在本申请的一个实施例中,执行模块20,具体用于:在UE测量的下行路损参考信号的接收功率RSRP值低于等于在当前激活的上行BWP中预先配置的RACH类型选择的RSRP门限时,切换到配置了两步随机接入2-step RA资源和四步随机接入4-step RA资源的第二BWP上选择RACH类型。
在本实施例中,判断模块10具体用于第一判断模块,具体用于:
判断测量的下行路损参考信号的接收功率RSRP值是否高于在第二BWP中预先配置的RACH类型选择的RSRP门限;
若用户设备测量的下行路损参考信号的接收功率RSRP值高于在第二BWP中预先配置的RACH类型选择的RSRP门限,在第二BWP上执行2-step RA流程。
在本申请的一个实施例中,执行模块10,具体用于:
在用户设备测量的下行路损参考信号的接收功率RSRP值低于等于在第二BWP中预先配置的RACH类型选择的RSRP门限时,在第二BWP上执行4-step RACH流程。
在本申请的一个实施例中,执行模块20,具体用于:
在第二BWP上执行4-step RACH流程。
在本申请的一个实施例中,执行模块20,具体用于:
在用户设备测量的下行路损参考信号的接收功率RSRP值低于等于当前激活的上行BWP中预先配置的RACH类型选择的RSRP门限时,切换到配置了四步随机接入4-step RA资源但未配置两步随机接入2-step RA资源的第二BWP上执行4-step RACH流程。
在本申请的一个实施例中,执行模块20,具体用于:
当UE的当前激活的第一BWP配置两步随机接入2-step RA资源,且在当前激活的上行BWP中没有预先配置的RACH类型选择的RSRP门限,在当前激活的上行BWP上直接执行2-step RA流程。
在本申请的一个实施例中,执行模块20,具体用于:当UE的当前激活的第一BWP只配置两步随机接入2-step RA资源,且在当前激活的上行BWP中预先配置的RACH类型选择的RSRP门限,其中,RSRP门限小于UE在任何情况下测量的下行路损参考信号的RSRP值,忽略RSRP门限,直接在当前激活的上行BWP上执行2-step RA过程,或者,将测量的下行路损参考信号的RSRP值与RSRP门限比较后在当前激活的第一BWP上执行2-step RA过程。
在本申请的一个实施例中,判断模块10,具体用于:当UE的当前激活的第一BWP配置了四步随机接入4-step RA资源但未配置两步随机接入2-step RA资源时,判断是否具有配置了两步随机接入2-step RA资源的目标上行BWP;
执行模块,具体用于:
当UE测量的下行路损参考信号的接收功率RSRP值高于目标上行BWP的2-step RA资源中配置的RACH类型选择的RSRP门限时,切换到目标上行BWP上执行2-step RA流程。
在本申请的一个实施例中,执行模块20,具体用于:
在UE测量的下行路损参考信号的接收功率RSRP值低于等于目标上行BWP的2-step RA资源中配置的RACH类型选择的RSRP门限时,在当前激活的上行BWP执行4-step RACH流程。
在本申请的一个实施例中,执行模块20,具体用于:
在UE不具有配置了两步随机接入2-step RA资源的目标上行BWP时,在当前激活的上行BWP执行4-step RACH流程。
需要说明的是,前述对随机接入信道类型选择方法实施例的解释说明也适用于该实施例的随机接入信道类型选择装置,此处不再赘述。
综上,本申请实施例的随机接入信道类型选择装置,当用户设备UE的当前激活的第一BWP配置了两步随机接入2-step RA资源但未配置4-step RA资源,判断UE测量的下行路损参考信号的接收功率RSRP值是否高于在当前激活的上行BWP中预先配置的RACH 类型选择的RSRP门限,若用户设备测量的下行路损参考信号的接收功率RSRP值高于在当前激活的上行BWP中预先配置的RACH类型选择的RSRP门限,UE在当前激活的上行BWP上执行2-step RA流程,由此,实现了在新一代移动通信技术下,根据2-step RA资源实现对用户设备的RACH类型的灵活配置。
基于以上实施例,不难理解的是,当网络不稳定,或者是多个用户设备抢占RACH时,可能会有RACH选择失败的问题,当RACH选择失败时,如何确保可以重新实现RACH的连接以保证通信成功,也是本申请要解决的技术问题。
具体而言,如图5所示,在上述图4的基础上,该装置还包括:上报模块30,其中,
上报模块30,用于当发生N次2-step RA msgA重传之后,其中,N为预设的门限值,UE直接触发RACH问题上报给RRC层,以使RRC层触发RRC重建过程或者触发UE回到IDLE态。
在本申请的一个实施例中,上报模块30,具体用于:
切换到配置4-step RA资源的第二BWP执行4-step RACH流程,且对RACH计数器状态不进行重置,从N开始继续计数,其中,RACH计数器是记录随机接入前导码传输次数的计数器;
当RACH计数器显示随机接入前导码传输的次数大于等于4-step RA资源中配置的门限值时,触发RACH问题。
在本申请的一个实施例中,上报模块30,具体用于:
切换到配置4-step RA资源的第二BWP执行4-step RACH流程,且对RACH计数器状态进行重置,从0开始继续计数,其中,RACH计数器是记录随机接入前导码传输次数的计数器;
当RACH计数器显示随机接入前导码传输的次数大于等于4-step RA资源中配置的门限值时,触发RACH问题发生RRC重建过程。
在本申请的一个实施例中,执行模块20,还用于:
在当发生N次2-step RA msgA重传之后,切换到配置了两步随机接入2-step RA资源和四步随机接入4-step RA资源的第二BWP上选择RACH类型;
判断测量的下行路损参考信号的接收功率RSRP值是否高于在第二BWP中预先配置的RACH类型选择的RSRP门限;
在用户设备测量的下行路损参考信号的接收功率RSRP值高于在第二BWP中预先配置的RACH类型选择的RSRP门限时,在第二BWP上执行2-step RA流程;
在用户设备测量的下行路损参考信号的接收功率RSRP值低于等于在第二BWP中预先 配置的RACH类型选择的RSRP门限时,在第二BWP上执行4-step RACH流程。
需要说明的是,前述对随机接入信道类型选择方法实施例的解释说明也适用于该实施例的随机接入信道类型选择装置,此处不再赘述。
综上,本申请实施例的随机接入信道类型选择装置中,在当前2-step RA资源上尝试N次之后,仍旧可以实现对RA资源的连接成功,保证了通信成功率。
为了实现上述实施例,本申请还提出了一种用户设备,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,处理器执行计算机程序时,实现如前述实施例描述的随机接入信道类型选择方法。
为了实现上述实施例,本申请还提出一种非临时性计算机可读存储介质,当存储介质中的指令由处理器被执行时,使得能够实现如前述实施例描述的随机接入信道类型选择方法。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。

Claims (39)

  1. 一种随机接入信道类型选择方法,其特征在于,包括:
    当用户设备UE的当前激活的第一BWP配置了两步随机接入2-step RA资源但未配置4-step RA资源,所述UE判断测量的下行路损参考信号的接收功率RSRP值,是否高于在所述当前激活的上行BWP中预先配置的RACH类型选择的RSRP门限;
    若所述用户设备测量的下行路损参考信号的接收功率RSRP值高于在所述当前激活的上行BWP中预先配置的RACH类型选择的RSRP门限,所述UE在所述当前激活的上行BWP上执行2-step RA流程。
  2. 如权利要求1所述的方法,其特征在于,在所述UE判断测量的下行路损参考信号的接收功率RSRP值是否高于在所述当前激活的上行BWP中预先配置的RACH类型选择的RSRP门限之后,还包括:
    若所述UE测量的下行路损参考信号的接收功率RSRP值低于等于在所述当前激活的上行BWP中预先配置的RACH类型选择的RSRP门限,所述UE切换到配置了两步随机接入2-step RA资源和四步随机接入4-step RA资源的第二BWP上选择RACH类型。
  3. 如权利要求2所述的方法,其特征在于,所述UE切换到配置了两步随机接入2-step RA资源和四步随机接入4-step RA资源的第二BWP上选择RACH类型,包括:
    所述UE判断测量的下行路损参考信号的接收功率RSRP值是否高于在所述第二BWP中预先配置的RACH类型选择的RSRP门限;
    若所述用户设备测量的下行路损参考信号的接收功率RSRP值高于在所述第二BWP中预先配置的RACH类型选择的RSRP门限,所述UE在所述第二BWP上执行所述2-step RA流程。
  4. 如权利要求3所述的方法,其特征在于,在所述UE判断测量的下行路损参考信号的接收功率RSRP值是否高于在所述第二BWP中预先配置的RACH类型选择的RSRP门限之后,还包括:
    若所述用户设备测量的下行路损参考信号的接收功率RSRP值低于等于在所述第二BWP中预先配置的RACH类型选择的RSRP门限,所述UE在所述第二BWP上执行所述4-step RACH流程。
  5. 如权利要求2所述的方法,其特征在于,所述UE切换到配置了两步随机接入2-step RA资源和四步随机接入4-step RA资源的第二BWP上选择RACH类型,包括:
    所述UE在所述第二BWP上执行所述4-step RACH流程。
  6. 如权利要求2所述的方法,其特征在于,所述第二BWP包括:配置了两步随机接 入2-step RA资源和四步随机接入4-step RA资源的初始上行BWP。
  7. 如权利要求1所述的方法,其特征在于,在所述UE判断测量的下行路损参考信号的接收功率RSRP值是否高于在所述当前激活的上行BWP中预先配置的RACH类型选择的RSRP门限之后,还包括:
    若所述用户设备测量的下行路损参考信号的接收功率RSRP值低于等于所述当前激活的上行BWP中预先配置的RACH类型选择的RSRP门限,所述UE切换到配置了四步随机接入4-step RA资源未配置两步随机接入2-step RA资源的第二BWP上执行所述4-step RACH流程。
  8. 如权利要求7所述的方法,其特征在于,所述第二BWP包括:配置了四步随机接入4-step RA资源未配置两步随机接入2-step RA资源的初始上行BWP。
  9. 如权利要求1所述的方法,其特征在于,还包括:
    当所述UE的当前激活的第一BWP配置了两步随机接入2-step RA资源,且在所述当前激活的上行BWP中没有预先配置的RACH类型选择的RSRP门限,所述UE在所述当前激活的上行BWP上直接执行所述2-step RA流程。
  10. 如权利要求1所述的方法,其特征在于,还包括:
    当所述UE的当前激活的第一BWP配置了两步随机接入2-step RA资源未配置4-step RA资源,且在所述当前激活的上行BWP中预先配置的RACH类型选择的RSRP门限,,所述UE忽略所述RSRP门限,直接在所述当前激活的上行BWP上执行2-step RA过程,或者,将所述测量的下行路损参考信号的RSRP值与所述RSRP门限比较后在所述当前激活的第一BWP上执行2-step RA过程。
  11. 如权利要求1所述的方法,其特征在于,还包括:
    当所述UE的当前激活的第一BWP配置了四步随机接入4-step RA资源未配置两步随机接入2-step RA资源,所述UE判断是否具有配置了两步随机接入2-step RA资源的目标上行BWP;
    若所述UE具有配置了两步随机接入2-step RA资源的目标上行BWP,则所述UE判断测量的下行路损参考信号的接收功率RSRP值是否高于所述目标上行BWP的2-step RA资源中配置的RACH类型选择的RSRP门限;
    若所述UE测量的下行路损参考信号的接收功率RSRP值高于所述目标上行BWP的2-step RA资源中配置的RACH类型选择的RSRP门限,所述UE切换到所述目标上行BWP上执行2-step RA流程。
  12. 如权利要求11所述的方法,其特征在于,在所述UE判断测量的下行路损参考信号的接收功率RSRP值是否高于所述目标上行BWP的2-step RA资源中配置的RACH类型 选择的RSRP门限之后,还包括:
    若所述UE测量的下行路损参考信号的接收功率RSRP值低于等于所述目标上行BWP的2-step RA资源中配置的RACH类型选择的RSRP门限,所述UE在所述当前激活的上行BWP执行4-step RACH流程。
  13. 如权利要求11所述的方法,其特征在于,在所述UE判断是否具有配置了两步随机接入2-step RA资源的目标上行BWP之后,还包括:
    若所述UE不具有了两步随机接入配置了两步随机接入2-step RA资源的目标上行BWP,所述UE在所述当前激活的上行BWP执行4-step RACH流程。
  14. 如权利要求11所述的方法,其特征在于,所述目标上行BWP包括:具有配置了两步随机接入2-step RA资源的初始上行BWP。
  15. 如权利要求1-14任一所述的方法,其特征在于,当所述UE没有执行BWP切换,在当前激活的上行BWP上执行2-step RA流程之后,还包括:
    当发生N次2-step RA msgA重传之后,其中,N为预设的门限值,所述UE直接触发RACH问题上报给RRC层,以使所述RRC层触发RRC重建过程或者触发UE回到IDLE态。
  16. 如权利要求15所述的方法,其特征在于,还包括:
    预先在所述2-step RA资源中配置所述N的门限值。
  17. 如权利要求15所述的方法,其特征在于,当所述UE没有执行BWP切换,在当前激活的上行BWP上执行2-step RA流程之后,还包括:
    所述UE切换到配置4-step RA资源的第二BWP执行4-step RACH流程,且对所述RACH计数器状态不进行重置,从N开始继续计数,其中,所述RACH计数器是记录随机接入前导码传输次数的计数器;
    当所述RACH计数器显示随机接入前导码传输的次数大于等于4-step RA资源中配置的门限值时,所述UE触发RACH问题。
  18. 如权利要求15所述的方法,其特征在于,在所述当发生N次2-step RA msgA重传之后,还包括:
    所述UE切换到配置4-step RA资源的第二BWP执行4-step RACH流程,且对所述RACH计数器状态进行重置,从0开始继续计数,其中,所述RACH计数器是记录随机接入前导码传输次数的计数器;
    当所述RACH计数器显示随机接入前导码传输的次数大于等于4-step RA资源中配置的门限值时,所述UE触发RACH问题发生RRC重建过程。
  19. 如权利要求15所述的方法,其特征在于,在所述当发生N次2-step RA msgA重 传之后,还包括:
    所述UE切换到配置了两步随机接入2-step RA资源和四步随机接入4-step RA资源的第二BWP上选择RACH类型;
    所述UE判断测量的下行路损参考信号的接收功率RSRP值是否高于在所述第二BWP中预先配置的RACH类型选择的RSRP门限;
    若所述用户设备测量的下行路损参考信号的接收功率RSRP值高于在所述第二BWP中预先配置的RACH类型选择的RSRP门限,所述UE在所述第二BWP上执行2-step RA流程;
    若所述用户设备测量的下行路损参考信号的接收功率RSRP值低于等于在所述第二BWP中预先配置的RACH类型选择的RSRP门限,所述UE在所述第二BWP上执行4-step RACH流程。
  20. 如权利要求17-19任一所述的方法,其特征在于,所述第二BWP包括初始上行BWP。
  21. 如权利要求1-20任一所述的方法,其特征在于,所述预先配置的RACH类型选择的RSRP门限,包括:
    所述UE接收网络侧在具有2-step RA资源中的上行BWP中配置的RACH类型选择的RSRP门限;或者,
    所述UE接收通过系统广播消息中广播配置的RACH类型选择的RSRP门限。
  22. 一种随机接入信道类型选择装置,其特征在于,所述随机接入信道类型选择装置应用于用户设备,包括:
    判断模块,用于当用户设备UE的当前激活的第一BWP配置了两步随机接入2-step RA资源但未配置4-step RA资源,所述UE判断测量的下行路损参考信号的接收功率RSRP值,是否高于在所述当前激活的上行BWP中预先配置的RACH类型选择的RSRP门限;
    执行模块,用于在所述用户设备测量的下行路损参考信号的接收功率RSRP值高于在所述当前激活的上行BWP中预先配置的RACH类型选择的RSRP门限时,在所述当前激活的上行BWP上执行所述2-step RA流程。
  23. 如权利要求22所述的装置,其特征在于,所述执行模块,具体用于:在所述UE测量的下行路损参考信号的接收功率RSRP值低于等于在所述当前激活的上行BWP中预先配置的RACH类型选择的RSRP门限时,切换到配置了两步随机接入2-step RA资源和四步随机接入4-step RA资源的第二BWP上选择RACH类型。
  24. 如权利要求23所述的装置,其特征在于,所述第一判断模块,具体用于:
    判断测量的下行路损参考信号的接收功率RSRP值是否高于在所述第二BWP中预先配 置的RACH类型选择的RSRP门限;
    若所述用户设备测量的下行路损参考信号的接收功率RSRP值高于在所述第二BWP中预先配置的RACH类型选择的RSRP门限,在所述第二BWP上执行所述2-step RA流程。
  25. 如权利要求23所述的装置,其特征在于,所述执行模块,具体用于:
    在所述用户设备测量的下行路损参考信号的接收功率RSRP值低于等于在所述第二BWP中预先配置的RACH类型选择的RSRP门限时,在所述第二BWP上执行所述4-step RACH流程。
  26. 如权利要求23所述的装置,其特征在于,所述执行模块,具体用于:
    在所述第二BWP上执行所述4-step RACH流程。
  27. 如权利要求22所述的装置,其特征在于,所述执行模块,具体用于:
    在所述用户设备测量的下行路损参考信号的接收功率RSRP值低于等于所述当前激活的上行BWP中预先配置的RACH类型选择的RSRP门限时,切换到配置了四步随机接入4-step RA资源但未配置两步随机接入2-step RA资源的第二BWP上执行所述4-step RACH流程。
  28. 如权利要求22所述的装置,其特征在于,所述执行模块,具体用于:
    当所述UE的当前激活的第一BWP配置了两步随机接入2-step RA资源,且在所述当前激活的上行BWP中没有预先配置的RACH类型选择的RSRP门限时,在所述当前激活的上行BWP上直接执行所述2-step RA流程。
  29. 如权利要求22所述的装置,其特征在于,所述执行模块,具体用于:
    当所述UE的当前激活的第一BWP配置了两步随机接入2-step RA资源但未配置四步随机接入4-step RA资源,且在所述当前激活的上行BWP中预先配置的RACH类型选择的RSRP门限,忽略所述RSRP门限,直接在所述当前激活的上行BWP上执行2-step RA过程,或者,将所述测量的下行路损参考信号的RSRP值与所述RSRP门限比较后在所述当前激活的第一BWP上执行2-step RA过程。
  30. 如权利要求22所述的装置,其特征在于,所述判断模块,具体用于:
    当所述UE的当前激活的第一BWP配置了四步随机接入4-step RA资源但未配置两步随机接入2-step RA资源时,判断是否具有配置了两步随机接入2-step RA资源的目标上行BWP;
    所述执行模块,具体用于:
    当所述UE测量的下行路损参考信号的接收功率RSRP值高于所述目标上行BWP的2-step RA资源中配置的RACH类型选择的RSRP门限时,切换到所述目标上行BWP上执行2-step RA流程。
  31. 如权利要求30所述的装置,其特征在于,所述执行模块,具体用于:
    在所述UE测量的下行路损参考信号的接收功率RSRP值低于等于所述目标上行BWP的2-step RA资源中配置的RACH类型选择的RSRP门限时,在所述当前激活的上行BWP执行4-step RACH流程。
  32. 如权利要求30所述的装置,其特征在于,所述执行模块,具体用于:
    在所述UE不具有配置了两步随机接入2-step RA资源的目标上行BWP时,在所述当前激活的上行BWP执行4-step RACH流程。
  33. 如权利要求22-32任一所述的装置,其特征在于,还包括:
    上报模块,用于当发生N次2-step RA msgA重传之后,其中,N为预设的门限值,所述UE直接触发RACH问题上报给RRC层,以使所述RRC层触发RRC重建过程或者触发UE回到IDLE态。
  34. 如权利要求33所述的装置,其特征在于,所述上报模块,具体用于:
    切换到配置4-step RA资源的第二BWP执行4-step RACH流程,且对所述RACH计数器状态不进行重置,从N开始继续计数,其中,所述RACH计数器是记录随机接入前导码传输次数的计数器;
    当所述RACH计数器显示随机接入前导码传输的次数大于等于4-step RA资源中配置的门限值时,触发RACH问题。
  35. 如权利要求33所述的装置,其特征在于,所述上报模块,具体用于:
    切换到配置4-step RA资源的第二BWP执行4-step RACH流程,且对所述RACH计数器状态进行重置,从0开始继续计数,其中,所述RACH计数器是记录随机接入前导码传输次数的计数器;
    当所述RACH计数器显示随机接入前导码传输的次数大于等于4-step RA资源中配置的门限值时,触发RACH问题发生RRC重建过程。
  36. 如权利要求33所述的装置,其特征在于,所述执行模块,还用于:
    在所述当发生N次2-step RA msgA重传之后,切换到配置了两步随机接入2-step RA资源和四步随机接入4-step RA资源的第二BWP上选择RACH类型;
    判断测量的下行路损参考信号的接收功率RSRP值是否高于在所述第二BWP中预先配置的RACH类型选择的RSRP门限;
    在所述用户设备测量的下行路损参考信号的接收功率RSRP值高于在所述第二BWP中预先配置的RACH类型选择的RSRP门限时,在所述第二BWP上执行2-step RA流程;
    在所述用户设备测量的下行路损参考信号的接收功率RSRP值低于等于在所述第二BWP中预先配置的RACH类型选择的RSRP门限时,在所述第二BWP上执行所述4-step  RACH流程。
  37. 如权利要求22-36任一所述的装置,其特征在于,所述预先配置的RACH类型选择的RSRP门限,包括:
    所述UE接收网络侧在具有2-step RA资源中的上行BWP中配置的RACH类型选择的RSRP门限;或者,
    所述UE接收通过系统广播消息中广播配置的RACH类型选择的RSRP门限。
  38. 一种用户设备,其特征在于,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时,实现如权利要求1-21中任一所述的随机接入信道类型选择方法。
  39. 一种非临时性计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1-21中任一所述的随机接入信道类型选择方法。
PCT/CN2019/109707 2019-09-30 2019-09-30 随机接入信道类型选择方法和装置 WO2021062783A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2019/109707 WO2021062783A1 (zh) 2019-09-30 2019-09-30 随机接入信道类型选择方法和装置
EP19948026.0A EP3972375A4 (en) 2019-09-30 2019-09-30 PROCEDURE FOR SELECTING DIRECT ACCESS CHANNEL TYPE AND DEVICE
CN201980097193.8A CN113950864A (zh) 2019-09-30 2019-09-30 随机接入信道类型选择方法和装置
US17/554,115 US20220110170A1 (en) 2019-09-30 2021-12-17 Random access channel type selection method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/109707 WO2021062783A1 (zh) 2019-09-30 2019-09-30 随机接入信道类型选择方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/554,115 Continuation US20220110170A1 (en) 2019-09-30 2021-12-17 Random access channel type selection method and device

Publications (1)

Publication Number Publication Date
WO2021062783A1 true WO2021062783A1 (zh) 2021-04-08

Family

ID=75336739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/109707 WO2021062783A1 (zh) 2019-09-30 2019-09-30 随机接入信道类型选择方法和装置

Country Status (4)

Country Link
US (1) US20220110170A1 (zh)
EP (1) EP3972375A4 (zh)
CN (1) CN113950864A (zh)
WO (1) WO2021062783A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112584539B (zh) * 2019-09-30 2023-01-13 华为技术有限公司 一种随机接入方法及装置
CN114616904A (zh) * 2019-11-07 2022-06-10 富士通株式会社 随机接入方法、装置和通信系统
US11683840B2 (en) * 2020-04-15 2023-06-20 Qualcomm Incorporated Techniques for user equipment (UE) procedures for random access channel (RACH) type selection and random access response (RAR) monitoring in a wireless communication system
US12075490B2 (en) * 2021-08-05 2024-08-27 Ofinno, Llc Switching between two-step and four-step random access procedures in non-terrestrial networks

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018127549A1 (en) * 2017-01-06 2018-07-12 Sony Corporation Wireless telecommunications apparatuses and methods
US20180279376A1 (en) * 2017-03-23 2018-09-27 Comcast Cable Communications, Llc Power Control For Random Access
CN108702698A (zh) * 2016-02-26 2018-10-23 高通股份有限公司 发现参考信号传输窗口检测和随机接入过程选择
CN109644326A (zh) * 2018-10-31 2019-04-16 北京小米移动软件有限公司 传输随机接入指示信息的方法及装置
CN110169189A (zh) * 2017-01-13 2019-08-23 摩托罗拉移动有限责任公司 在载波频率中执行基于竞争的随机接入的方法和装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10433342B2 (en) * 2016-10-19 2019-10-01 Qualcomm Incorporated Enhanced random access channel (RACH) procedure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108702698A (zh) * 2016-02-26 2018-10-23 高通股份有限公司 发现参考信号传输窗口检测和随机接入过程选择
WO2018127549A1 (en) * 2017-01-06 2018-07-12 Sony Corporation Wireless telecommunications apparatuses and methods
CN110169189A (zh) * 2017-01-13 2019-08-23 摩托罗拉移动有限责任公司 在载波频率中执行基于竞争的随机接入的方法和装置
US20180279376A1 (en) * 2017-03-23 2018-09-27 Comcast Cable Communications, Llc Power Control For Random Access
CN109644326A (zh) * 2018-10-31 2019-04-16 北京小米移动软件有限公司 传输随机接入指示信息的方法及装置

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
CHARTER COMMUNICATIONS: "Views on 2-Step RA Procedures", 3GPP DRAFT; R1-1908339 VIEWS ON 2-STEP RA PROCEDURES, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Prague, Czech Republic; 20190826 - 20190830, 16 August 2019 (2019-08-16), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051764948 *
HUAWEI, HISILICON: "Discussion on 2-step RACH procedure", 3GPP DRAFT; R1-1908034, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Prague, Czech Republic; 20190826 - 20190830, 17 August 2019 (2019-08-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051764657 *
NOKIA, NOKIA SHANGHAI BELL: "Feature lead summary#3 on 2 step RACH procedures", 3GPP DRAFT; R1-1907900 2-STEP RACH PROCEDURE FEATURE LEAD SUMMARY RAN1#97, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20190513 - 20190517, 20 May 2019 (2019-05-20), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, pages 1 - 59, XP051740159 *
NTT DOCOMO, INC.: "Discussion on Procedure for Two-step RACH", 3GPP DRAFT; R1-1909173_DISCUSSION ON PROCEDURE FOR TWO-STEP RACH_FINAL, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Prague, CZ; 20190826 - 20190830, 16 August 2019 (2019-08-16), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051765778 *
OPPO: "On Procedure for 2-step RACH", 3GPP DRAFT; R1-1906581, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20190513 - 20190517, 13 May 2019 (2019-05-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051728032 *
SAMSUNG: "Procedure for Two-step RACH", 3GPP DRAFT; R1-1906906_PROCEDURE FOR TWO-STEP RACH, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20190513 - 20190517, 13 May 2019 (2019-05-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051728356 *
See also references of EP3972375A4 *
ZTE, SANECHIPS: "On the remaining issues of 2-step RACH procedures", 3GPP DRAFT; R1-1908182 ON THE REMAINING ISSUES OF 2-STEP RACH PROCEDURES, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Prague, CZ; 20190826 - 20190830, 16 August 2019 (2019-08-16), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051764801 *

Also Published As

Publication number Publication date
EP3972375A1 (en) 2022-03-23
CN113950864A (zh) 2022-01-18
EP3972375A4 (en) 2022-06-22
US20220110170A1 (en) 2022-04-07

Similar Documents

Publication Publication Date Title
AU2018240244B2 (en) Communication method in wireless network, apparatus, and system
KR101152045B1 (ko) Hspa 시스템에서 강화된 rach를 이용한 wtru 상태 천이를 수행하기 위한 방법 및 장치
US10187246B2 (en) Method and apparatus for transmission mode conversion
WO2021062783A1 (zh) 随机接入信道类型选择方法和装置
TWI688302B (zh) 重新導向通訊裝置的裝置及方法
US20110081904A1 (en) Method and Apparatus for Handling Radio Link Failure in Wireless Communication System
US20190357091A1 (en) Data transmission method, network device, and terminal device
EP3461178B1 (en) Scheduling in handover
KR102587763B1 (ko) Lbt 모니터링 장애를 위한 처리 방법, 디바이스 및 시스템
RU2388153C1 (ru) Способ запроса радиоресурсов для пакетной передачи восходящей линии в системе gprs
KR102612554B1 (ko) 랜덤 액세스 통계 정보 보고 방법 및 장치
JP6230706B2 (ja) ワイヤレス・ネットワークに対する接続を要求することを待ちながら、ページング要求に応答すること
US12114384B2 (en) Communication method, apparatus, and system
CN102685785B (zh) 无线资源控制rrc连接重建立的方法和设备
US20230009559A1 (en) Handling of Directional UL LBT Failures
WO2021087929A1 (zh) 一种随机接入的方法和装置
JP7111812B2 (ja) 通信装置のランダム・アクセス方法、装置、及び記憶媒体
CN106470417A (zh) 一种终端标识分配方法、装置及系统
US20230164746A1 (en) Random access resource selection method and related apparatus
US11490422B2 (en) Methods, terminal device and base station for channel sensing in unlicensed spectrum
CN111867125B (zh) 一种随机接入方法和装置
JP5911588B2 (ja) サービス・リンクの確立
WO2022002228A1 (zh) 部分带宽切换方法、通信网络系统,基站和用户设备
WO2022120574A1 (zh) 物理小区的波束管理方法以及相关装置
TW202131745A (zh) 通訊系統之隨機接取技術

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19948026

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019948026

Country of ref document: EP

Effective date: 20211215

NENP Non-entry into the national phase

Ref country code: DE