[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021060561A1 - Curable composition, cured product, and method for using curable composition - Google Patents

Curable composition, cured product, and method for using curable composition Download PDF

Info

Publication number
WO2021060561A1
WO2021060561A1 PCT/JP2020/036721 JP2020036721W WO2021060561A1 WO 2021060561 A1 WO2021060561 A1 WO 2021060561A1 JP 2020036721 W JP2020036721 W JP 2020036721W WO 2021060561 A1 WO2021060561 A1 WO 2021060561A1
Authority
WO
WIPO (PCT)
Prior art keywords
curable composition
repeating unit
component
group
carbon atoms
Prior art date
Application number
PCT/JP2020/036721
Other languages
French (fr)
Japanese (ja)
Inventor
瑶子 田中
学 宮脇
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to CN202080067180.9A priority Critical patent/CN114402037A/en
Priority to JP2021548480A priority patent/JP7569793B2/en
Priority to KR1020217027784A priority patent/KR20220074817A/en
Publication of WO2021060561A1 publication Critical patent/WO2021060561A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • C08K5/5419Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/544Silicon-containing compounds containing nitrogen
    • C08K5/5477Silicon-containing compounds containing nitrogen containing nitrogen in a heterocyclic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/296Organo-silicon compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape

Definitions

  • a curable composition having a high refractive index and preferably used in the optical field, a cured product obtained by curing the curable composition, and the curable composition are used as an adhesive for an optical element fixing material.
  • the present invention relates to a method used as a sealing material for an optical element fixing material.
  • the curable composition has been variously improved according to the application, and has been widely used industrially as a raw material for optical parts and molded articles, an adhesive, a coating agent, and the like. Further, the curable composition has also attracted attention as a composition for an optical element fixing material such as an adhesive for an optical element fixing material and a sealing material for an optical element fixing material.
  • Optical elements include various lasers such as semiconductor lasers (LDs), light emitting elements such as light emitting diodes (LEDs), light receiving elements, composite optical elements, and optical integrated circuits.
  • LDs semiconductor lasers
  • LEDs light emitting diodes
  • optical integrated circuits optical elements of blue light or white light having a shorter peak wavelength of light emission have been developed and widely used. The brightness of such a light emitting element having a short peak wavelength of light emission is dramatically increased, and the amount of heat generated by the optical element tends to be further increased accordingly.
  • Patent Documents 1 to 3 propose compositions for optical device fixing materials containing a polysilsesquioxane compound as a main component.
  • a curable composition having an appropriate refractive index may be selected in accordance with the refractive index of surrounding members in order to improve the light extraction efficiency.
  • the difference between the refractive index of the encapsulant and the refractive index of the fixing material is small. Therefore, when a sealant having a relatively high refractive index is used, it is necessary to form a fixing material using a curable composition having a similarly high refractive index.
  • Japanese Unexamined Patent Publication No. 2004-359933 Japanese Unexamined Patent Publication No. 2005-263869 Japanese Unexamined Patent Publication No. 2006-328231
  • An object of the present invention is to provide a method for using the curable composition as an adhesive for an optical element fixing material or a sealing material for an optical element fixing material.
  • the following methods of using the curable compositions [1] to [7], the cured products [8] and [9], and the curable compositions [10] and [11] are provided. Will be done.
  • Component (A) The following formula (a-1)
  • R 1 represents an unsubstituted aryl group having 6 to 12 carbon atoms or an aryl group having a substituent and having 6 to 12 carbon atoms.
  • It has a repeating unit [repeating unit (1)] represented by the following formula (a-2).
  • R 2 represents an unsubstituted alkyl group having 1 to 10 carbon atoms or an alkyl group having a substituent and having 1 to 10 carbon atoms.
  • the amount of the repeating unit (1) is 80 to 100 mol% with respect to the total amount of the repeating unit (1) and the repeating unit (2).
  • the amount of the T2 site is 30 to 70 mol%.
  • [G represents a group represented by R 1 or R 2.
  • R 3 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • a silicon atom is bonded to *.
  • a curable composition having a high refractive index and preferably used in the optical field, a cured product obtained by curing the curable composition, and the curable composition are fixed to an optical element.
  • a method for use as a material adhesive or a sealing material for an optical element fixing material is provided.
  • the present invention will be described in detail by dividing it into 1) a curable composition, 2) a cured product, and 3) a method of using the curable composition.
  • Curable composition contains the following component (A) and component (C).
  • Component (A) A polysilsesquioxane compound having a repeating unit represented by the above formula (a-1) and having or not having a repeating unit represented by the above formula (a-2), and the above requirements.
  • Polysilsesquioxane compound characterized by satisfying 1 and 2 may be described as "polysilsesquioxane compound (A)".
  • the component (A) constituting the curable composition of the present invention is a polysilsesquioxane compound having a repeating unit [repeating unit (1)] represented by the following formula (a-1), and the above requirement 1
  • the polysilsesquioxane compound is characterized by satisfying the requirements 2 and 2.
  • R 1 represents an unsubstituted aryl group having 6 to 12 carbon atoms or an aryl group having a substituent and having 6 to 12 carbon atoms.
  • the repeating unit (1) Since the repeating unit (1) has R 1 , the polysilsesquioxane compound having the repeating unit (1) has a high refractive index. Therefore, the curable composition of the present invention has a high refractive index.
  • Examples of the "unsubstituted aryl group having 6 to 12 carbon atoms" of R 1 include a phenyl group, a 1-naphthyl group, a 2-naphthyl group and the like.
  • the number of carbon atoms of the "unsubstituted aryl group having 6 to 12 carbon atoms" of R 1 is 6 are preferred.
  • the number of carbon atoms of the "aryl group having 6 to 12 carbon atoms having a substituent" for R 1 6 is preferred.
  • the number of carbon atoms means the number of carbon atoms of the portion excluding the substituent (the portion of the aryl group). Therefore, when R 1 is an "aryl group having 6 to 12 carbon atoms having a substituent", the carbon number of R 1 may exceed 12.
  • Examples of the aryl group of the "aryl group having a substituent and having 6 to 12 carbon atoms" of R 1 include those similar to those shown as "an unsubstituted aryl group having 6 to 12 carbon atoms".
  • the number of atoms of the substituent (excluding the number of hydrogen atoms) of the "aryl group having 6 to 12 carbon atoms having a substituent" of R 1 is usually 1 to 30, preferably 1 to 20.
  • the R 1 an unsubstituted aryl group having 6 to 12 carbon atoms are preferred, the phenyl group is more preferable.
  • the polysilsesquioxane compound (A) may be one having one kind of R 1 (monopolymer) or one having two or more kinds of R 1 (copolymer). ..
  • the polysilsesquioxane compound (A) is a copolymer
  • the polysilsesquioxane compound (A) is any of a random copolymer, a block copolymer, a graft copolymer, an alternating copolymer and the like.
  • a random copolymer is preferable.
  • the structure of the polysilsesquioxane compound (A) may be any of a ladder type structure, a double decker type structure, a cage type structure, a partially cleaved cage type structure, a cyclic type structure, and a random type structure. ..
  • the polysilsesquioxane compound (A) may further have a repeating unit [repeating unit (2)] represented by the following formula (a-2) (copolymer).
  • R 2 represents an unsubstituted alkyl group having 1 to 10 carbon atoms or an alkyl group having a substituent and having 1 to 10 carbon atoms.
  • the polysilsesquioxane compound has a repeating unit (2), so that the molecular weight is increased and the flexibility of the molecular chain is improved. Therefore, it is considered that the curable composition contains the polysilsesquioxane compound having the repeating unit (2), so that cracks are less likely to occur in the cured product.
  • the present invention uses a polysilsesquioxane compound in which the content ratio of the repeating unit (2) is not high, and this effect caused by the repeating unit (2) can hardly be utilized. It is expected to be.
  • the number of carbon atoms of the "alkyl group unsubstituted 1 to 10 carbon atoms" of R 2 is preferably 1 to 6, 1 to 3 more preferred.
  • "unsubstituted alkyl group having 1 to 10 carbon atoms” is R 2, a methyl group, an ethyl group, n- propyl group, an isopropyl group, n- butyl group, isobutyl group, s- butyl, t- butyl group , N-Pentyl group, n-Hexyl group, n-octyl group, n-nonyl group, n-decyl group and the like.
  • the number of carbon atoms of the "alkyl group having 1 to 10 carbon atoms having a substituent" for R 2 is preferably 1 to 6, 1 to 3 more preferred.
  • the number of carbon atoms means the number of carbon atoms of the portion excluding the substituent (the portion of the alkyl group). Therefore, when R 2 is an "alkyl group having 1 to 10 carbon atoms having a substituent", the carbon number of R 2 may exceed 10.
  • the alkyl group of the "alkyl group having 1 to 10 carbon atoms having a substituent" for R 2 include the same as those shown as "unsubstituted alkyl group having 1 to 10 carbon atoms.”
  • the number of atoms of the substituent (excluding the number of hydrogen atoms) of the "alkyl group having 1 to 10 carbon atoms having a substituent” is usually 1 to 30, preferably 1 to 20.
  • substituent of the "alkyl group having 1 to 10 carbon atoms having a substituent" include a halogen atom such as a chlorine atom and a bromine atom; a cyano group; and the like.
  • R 2 preferably an alkyl group having 1 to 10 carbon atoms unsubstituted, more preferably an alkyl group unsubstituted carbon number of 1 to 6, unsubstituted alkyl group having 1 to 3 carbon atoms More preferred.
  • R 2 is, by using polysilsesquioxane compound is an unsubstituted alkyl group having 1 to 10 carbon atoms and (A), it can be controlled polysilsesquioxane compound the molecular weight of the (A) efficiently ..
  • the polysilsesquioxane compound (A) has a repeating unit (2)
  • the polysilsesquioxane compound (A) has two or more kinds even if it has one kind of R 2. be one having a R 2 may be.
  • the repeating unit (1) and the repeating unit (2) are represented by the following formula (a-6).
  • G represents a group represented by R 1 or R 2.
  • R 1 and R 2 have the same meanings as described above.
  • O 1/2 means that the oxygen atom is shared with the adjacent repeating unit.
  • the polysilsesquioxane compound (A) is generally referred to as T-site, in which three oxygen atoms are bonded to a silicon atom, and other groups (represented by G). It has a partial structure in which one group) is bonded.
  • the T-site contained in the polysilsesquioxane compound (A) includes a T-site (T1 site) represented by the following formula (a-3) and a T-site (T2 site) represented by the following formula (a-4). , T site (T3 site) represented by the following formula (a-5) can be mentioned.
  • R 3 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • Examples of the "alkyl group having 1 to 10 carbon atoms" of R 3 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an s-butyl group, an isobutyl group, a t-butyl group and the like. Be done.
  • a plurality of R 3 to each other may all be different mutually be the same.
  • a silicon atom is bonded to *.
  • the product contains a large amount of T1 sites and T2 sites, but as the reaction progresses, the amount of these sites decreases and gradually decreases.
  • the amount of T3 sites increases. Therefore, the polysilsesquioxane compound having a high content of T1 site and T2 site is a relatively low molecular weight compound, whereas the polysilsesquioxane compound having a high content of T3 site is a relatively high molecular weight compound. It is a compound of the above, and the movement of the molecular chain is restricted.
  • the polysilsesquioxane compound having a high content ratio of T1 site and T2 site has sufficient reactivity.
  • Polysilsesquioxane compounds having a high T3 site content tend to be inferior in reactivity.
  • the polysilsesquioxane compound (A) satisfies the above requirement 1. That is, the polysilsesquioxane compound (A) has an amount of the repeating unit (1) of 80 to 100 mol% with respect to the total amount of the repeating unit (1) and the repeating unit (2). Since the curable composition of the present invention contains a polysilsesquioxane compound satisfying Requirement 1, it has a high refractive index. Since a curable composition having a higher refractive index can be obtained, the amount of the repeating unit (1) is preferably 92 to 100 mol% with respect to the total amount of the repeating unit (1) and the repeating unit (2), 98. ⁇ 100 mol% is more preferable, and 100 mol% is particularly preferable.
  • the polysilsesquioxane compound (A) satisfying Requirement 1 contains little or no repeating unit (2). Therefore, it is considered that the polysilsesquioxane compound satisfying the requirement 1 has almost no characteristics due to the repeating unit (2). That is, when the curable composition contains the polysilsesquioxane compound satisfying the requirement 1, cracks may occur in the cured product or the adhesiveness of the cured product may be deteriorated. As will be described later, the present invention solves these problems by satisfying Requirement 2 and utilizing the component (C).
  • the ratio of the repeating unit (1) and the repeating unit (2) in the polysilsesquioxane compound (A) can be determined, for example, by measuring 29 Si-NMR of the polysilsesquioxane compound (A). Can be done.
  • the polysilsesquioxane compound (A) is a ketone solvent such as acetone; an aromatic hydrocarbon solvent such as benzene; a sulfur-containing solvent such as dimethyl sulfoxide; an ether solvent such as tetrahydrofuran; an ester solvent such as ethyl acetate. It is soluble in various organic solvents such as a solvent; a halogen-containing solvent such as chloroform; and a mixed solvent composed of two or more of these. Therefore, using these solvents, 29 Si-NMR in a solution state of the polysilsesquioxane compound (A) can be measured.
  • the polysilsesquioxane compound (A) satisfies the above requirement 2. That is, the amount of the T2 site of the polysilsesquioxane compound (A) is 30 to 70 mol% with respect to the total amount of the T1 site, the T2 site, and the T3 site, and the T2 site is relatively large. Including many.
  • the curable composition of the present invention contains a polysilsesquioxane compound satisfying the above requirement 1, and the effect caused by the repeating unit (2) can hardly be utilized. However, when the polysilsesquioxane compound satisfying the requirement 1 satisfies the requirement 2, the cured product of the curable composition of the present invention is less likely to be cracked.
  • a curable composition containing a polysilsesquioxane compound that satisfies the above requirement 1 and contains a large amount of T1 sites undergoes an excessive hydrolysis reaction or condensation reaction when cured, resulting in curing shrinkage. Cracks are likely to occur in the cured product.
  • the polysilsesquioxane compound that satisfies the above requirement 1 and contains a large amount of T3 sites is a relatively high molecular weight compound and is inferior in motility, such a polysilsesquioxane compound Residual stress is likely to occur in the cured product of the curable composition containing the above, and cracks are likely to occur.
  • a curable composition containing a polysilsesquioxane compound containing a large amount of T2 sites can be cured without excessively causing a hydrolysis reaction or a condensation reaction, so that cracks occur in the cured product. It's hard to do. Further, since the polysilsesquioxane compound containing a large amount of T2 sites does not have a very high molecular weight and has appropriate motility, a curable composition containing a polysilsesquioxane compound containing a large amount of T2 sites Residual stress is less likely to occur in the cured product, and cracks are less likely to occur. Further, by using a polysilsesquioxane compound containing a large amount of T2 sites, the adhesiveness of the cured product of the curable composition tends to be improved.
  • the amount of T2 sites with respect to the total amount of T1 sites, T2 sites, and T3 sites is 30 to 70 mol%, preferably 35 to 66 mol%, and more preferably 40 to 62 mol%. It is even more preferably 45 to 58 mol%.
  • the amount of T1 sites relative to the total amount of T1 sites, T2 sites, and T3 sites is preferably 0 to 40 mol%, more preferably 0 to 30 mol%, even more preferably 0 to 20 mol%, and more. More preferably, it is 0 to 10 mol%.
  • the amount of T3 sites relative to the total amount of T1 sites, T2 sites, and T3 sites is preferably 10 to 80 mol%, more preferably 20 to 70 mol%, and even more preferably 30 to 50 mol%.
  • the polysilsesquioxane compound (A) appropriately contains T3 sites, it is possible to suppress the generation of by-products generated by the condensation reaction during curing.
  • the content ratios of the T1 site, the T2 site, and the T3 site can be determined by measuring 29 Si-NMR in the solution state of the polysilsesquioxane compound (A). For example, when acetone is used as the measurement solvent and TMS (tetramethylsilane) is used as the internal standard, in the formulas (a-3) to (a-6), G becomes a silicon atom in the T site of the phenyl group. The resulting signal was observed at -65 to -58 ppm at the T1 site, -74 to -65 ppm at the T2 site, and -82 to -75 ppm at the T3 site.
  • TMS tetramethylsilane
  • the mass average molecular weight (Mw) of the polysilsesquioxane compound (A) is preferably 500 to 3,000, more preferably 550 to 2,650, still more preferably 600 to 2,300, and even more preferably. It is 650 to 2,000.
  • the molecular weight distribution (Mw / Mn) of the polysilsesquioxane compound (A) is not particularly limited, but is usually 1.0 to 10.0, preferably 1.1 to 6.0, and more preferably 1.1. ⁇ 4.0.
  • the mass average molecular weight (Mw) and the number average molecular weight (Mn) can be determined, for example, as standard polystyrene-equivalent values by gel permeation chromatography (GPC) using tetrahydrofuran (THF) as a solvent.
  • the total amount of the repeating unit (1) and the repeating unit (2) in the polysilsesquioxane compound (A) is preferably 90 to 100 mol%, more preferably 90 to 100 mol% in all the repeating units of the polysilsesquioxane compound (A). It is preferably 95 to 100 mol%, more preferably 98 to 100 mol%.
  • the refractive index (nD) of the polysilsesquioxane compound (A) at 25 ° C. is preferably 1.500 to 1.600, more preferably 1.505 to 1.590, and even more preferably 1. It is .510 to 1.580.
  • the refractive index (nD) of the polysilsesquioxane compound (A) at 25 ° C. is in the range of 1.500 to 1.600, it is easy to obtain a curable composition or a cured product having a high refractive index. Become.
  • the refractive index (nD) of the polysilsesquioxane compound (A) can be measured using an Abbe refractometer.
  • the polysilsesquioxane compound (A) can be used alone or in combination of two or more.
  • the method for synthesizing the polysilsesquioxane compound (A) is not particularly limited.
  • the polysilsesquioxane compound (A) can be synthesized by polycondensing at least one of the silane compounds (1) represented by the following formula (a-7).
  • R 1 has the same meaning as described above.
  • R 4 represents an alkyl group having 1 to 10 carbon atoms
  • X 1 represents a halogen atom
  • p represents an integer of 0 to 3.
  • Multiple R 4 and a plurality of X 1 are each, be the same as each other, may be different from each other.
  • the polysil The sesquioxane compound (A) can be synthesized.
  • R 2 has the same meaning as described above.
  • R 5 represents an alkyl group having 1 to 10 carbon atoms
  • X 2 represents a halogen atom
  • q represents an integer of 0 to 3.
  • Multiple R 5 and a plurality of X 2 may, respectively, be the same as each other, may be different from each other.
  • Examples of the “alkyl group having 1 to 10 carbon atoms” of R 4 and R 5 include those similar to those shown as the “alkyl group having 1 to 10 carbon atoms” of R 3.
  • Examples of the halogen atom of X 1 and X 2 include a chlorine atom and a bromine atom.
  • Unsubstituted aryltrialkoxysilane compounds such as phenyltrimethoxysilane and phenyltriethoxysilane; Unsubstituted arylhalogenoalkoxysilane compounds such as phenylchlorodimethoxysilane, phenylchlorodiethoxysilane, phenyldichloromethoxysilane, and phenyldichloroethoxysilane; Unsubstituted aryltrihalogenosilane compounds such as phenyltrichlorosilane; Substituents such as 4-methylphenyltrimethoxysilane, 4-methoxyphenyltrimethoxysilane, 4-chlorophenyltrimethoxysilane, 4-methylphenyltriethoxysilane, 4-methoxyphenyltriethoxysilane, 4-chlorophenyltrieth
  • Arylhalogenoalkoxysilane compounds having; Aryltrihalogenosilane compounds having a substituent such as 4-methylphenyltrichlorosilane, 4-methoxyphenyltrichlorosilane, 4-chlorophenyltrichlorosilane; and the like can be mentioned.
  • These silane compounds (1) can be used alone or in combination of two or more.
  • Unsubstituted alkyltrialkoxysilane compounds such as methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, ethyltripropoxysilane;
  • Unsubstituted alkylhalogenoalkoxysilanes such as methylchlorodimethoxysilane, methylchlorodiethoxysilane, methyldichloromethoxysilane, methylbromodimethoxysilane, ethylchlorodimethoxysilane, ethylchlorodiethoxysilane, ethyldichloromethoxysilane, and ethylbromodimethoxysilane.
  • Unsubstituted alkyltrihalogenosilane compounds such as methyltrichlorosilane, methyltribromosilane, ethyltrichlorosilane, and ethyltribromosilane; Alkoxytrialkoxysilane compounds having substituents such as 2-cyanoethyltrimethoxysilane, 3-chloropropyltrimethoxysilane, 2-cyanoethyltriethoxysilane, and 3-chloropropyltriethoxysilane; 2-Cyanoethyl chlorodimethoxysilane, 3-chloropropylchlorodimethoxysilane, 2-cyanoethylchlorodiethoxysilane, 3-chloropropylchlorodiethoxysilane, 2-cyanoethyldichloromethoxysilane, 3-chloropropyldichloromethoxysilane, 2-cyanoethy
  • the method for polycondensing the silane compound is not particularly limited.
  • a method of adding a predetermined amount of a polycondensation catalyst to a silane compound in a solvent or without a solvent and stirring at a predetermined temperature can be mentioned. More specifically, (a) a method of adding a predetermined amount of an acid catalyst to a silane compound and stirring at a predetermined temperature, and (b) adding a predetermined amount of a base catalyst to a silane compound and stirring at a predetermined temperature. Method, (c) A method of adding a predetermined amount of acid catalyst to a silane compound and stirring at a predetermined temperature, and then adding an excess amount of a base catalyst to make the reaction system basic and stirring at a predetermined temperature, etc. Can be mentioned. Among these, the method (a) is preferable because the target polysilsesquioxane compound (A) can be efficiently obtained.
  • the polycondensation catalyst used may be either an acid catalyst or a base catalyst. Further, two or more polycondensation catalysts may be used in combination, but at least an acid catalyst is preferably used.
  • the acid catalyst include inorganic acids such as phosphoric acid, hydrochloric acid, boric acid, sulfuric acid and nitric acid; and organic acids such as citric acid, acetic acid, methanesulfonic acid, trifluoromethanesulfonic acid, benzenesulfonic acid and p-toluenesulfonic acid; Can be mentioned.
  • at least one selected from phosphoric acid, hydrochloric acid, boric acid, sulfuric acid, citric acid, acetic acid, and methanesulfonic acid is preferable.
  • aqueous ammonia As the base catalyst, aqueous ammonia; trimethylamine, triethylamine, lithium diisopropylamide, lithium bis (trimethylsilyl) amide, pyridine, 1,8-diazabicyclo [5.4.0] -7-undecene, aniline, picolin, 1,4- Diazabicyclo [2.2.2]
  • Organic bases such as octane and imidazole;
  • Organic hydroxides such as tetramethylammonium hydroxide and tetraethylammonium hydroxide; sodium methoxydone, sodium alkoxide, sodium t-butoxide, potassium t-butoxide
  • Metal alkoxides such as; metal hydrides such as sodium hydride and calcium hydride; metal hydroxides such as sodium hydroxide, potassium hydroxide and calcium hydroxide; metal carbonates such as sodium carbonate, potassium carbonate and magnesium carbonate; Metallic hydrogen carbonates such as sodium hydrogen carbonate and potassium
  • the amount of the polycondensation catalyst used is usually in the range of 0.05 to 10 mol%, preferably 0.1 to 5 mol%, based on the total mol amount of the silane compound.
  • the solvent to be used can be appropriately selected according to the type of the silane compound and the like.
  • water aromatic hydrocarbons such as benzene, toluene and xylene
  • esters such as methyl acetate, ethyl acetate, propyl acetate, butyl acetate and methyl propionate
  • ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone.
  • Alcohols such as methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, s-butyl alcohol, t-butyl alcohol; and the like. These solvents can be used alone or in combination of two or more.
  • the amount of the solvent used is 0.1 liter or more and 10 liters or less, preferably 0.1 liter or more and 2 liters or less, per 1 mol of the total molar amount of the silane compound.
  • the temperature at which the silane compound is polycondensed is usually in the temperature range from 0 ° C. to the boiling point of the solvent used, preferably in the range of 20 ° C. or higher and 100 ° C. or lower. If the reaction temperature is too low, the progress of the polycondensation reaction may be insufficient. On the other hand, if the reaction temperature becomes too high, it becomes difficult to suppress gelation. The reaction is usually complete in 30 minutes to 30 hours.
  • the reaction is carried out using a large amount of the compound represented by the formula (a-7), it is difficult to obtain a polymer having a large molecular weight. Then, even if the reaction is carried out for a long time, it is difficult to increase the molecular weight while leaving the T2 site. Further, in order to obtain the effect of the present invention, it is preferable that the molecular weight of the polysilsesquioxane compound (A) is not so large. Therefore, in order to synthesize the polysilsesquioxane compound (A), as described above, a predetermined amount of acid catalyst is added to the silane compound, the mixture is stirred at a predetermined temperature, and the reaction is completed in a relatively short time. Is preferable.
  • the component (C) constituting the curable composition of the present invention is a silane coupling agent.
  • the curable composition of the present invention contains a polysilsesquioxane compound satisfying the above requirement 1, and the effect caused by the repeating unit (2) can hardly be utilized.
  • the curable composition of the present invention contains the component (C) together with the polysilsesquioxane compound satisfying the requirement 1, the cured product of the curable composition of the present invention is at room temperature or at a high temperature. It has excellent adhesiveness over time.
  • the silane coupling agent refers to a silane compound having a silicon atom, a functional group, and a hydrolyzable group bonded to the silicon atom.
  • the functional group means a group having a reactivity with another compound (mainly an organic substance), for example, a group having a nitrogen atom such as an amino group, a substituted amino group, an isocyanate group, a ureido group, and a group having an isocyanurate skeleton.
  • An acid anhydride group (a group having an acid anhydride structure); a vinyl group; an allyl group; an epoxy group; a (meth) acrylic group; a mercapto group; and the like.
  • the silane coupling agent can be used alone or in combination of two or more.
  • the content of the silane coupling agent is preferably 0.1 to 70 parts by mass, more preferably 1 to 60 parts by mass, and further preferably 5 with respect to 100 parts by mass of the polysilsesquioxane compound (A). It is ⁇ 55 parts by mass, more preferably 10 to 50 parts by mass, and particularly preferably 15 to 45 parts by mass.
  • silane coupling agent a silane coupling agent having a nitrogen atom in the molecule, a silane coupling agent having an acid anhydride structure in the molecule, a silane coupling agent having an isocyanurate structure in the molecule, and a silane coupling agent are preferable.
  • a silane coupling agent having an succinic anhydride structure in the molecule is more preferable.
  • silane coupling agent having a nitrogen atom in the molecule examples include a trialkoxysilane compound represented by the following formula (c-1), a dialkoxyalkylsilane compound represented by the formula (c-2), or dialkoxy. Examples thereof include arylsilane compounds.
  • R a represents a methoxy group, an ethoxy group, n- propoxy group, isopropoxy group, n- butoxy group, an alkoxy group having 1 to 6 carbon atoms such as t- butoxy.
  • R b is an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group and a t-butyl group; or a phenyl group, a 4-chlorophenyl group and a 4-.
  • R c represents an organic group having 1 to 10 carbon atoms and having a nitrogen atom. Further, R c may be bonded to a group containing another silicon atom. Specific examples of the organic group having 1 to 10 carbon atoms R c is, N-2- (aminoethyl) -3-aminopropyl group, 3-aminopropyl group, N-(1,3-dimethyl - butylidene) amino Examples thereof include a propyl group, a 3-ureidopropyl group and an N-phenyl-aminopropyl group.
  • the silane coupling agent having a nitrogen atom in the molecule an isocyanurate-based silane coupling agent and a urea-based silane coupling agent are preferable because a cured product having better adhesiveness can be easily obtained.
  • the molecule has 4 or more alkoxy groups bonded to a silicon atom. Having 4 or more alkoxy groups bonded to a silicon atom means that the total count of the alkoxy groups bonded to the same silicon atom and the alkoxy groups bonded to different silicon atoms is 4 or more.
  • Examples of the isocyanurate-based silane coupling agent having 4 or more alkoxy groups bonded to a silicon atom include a compound represented by the following formula (c-3).
  • Examples of the urea-based silane coupling agent having 4 or more alkoxy groups bonded to a silicon atom include a compound represented by the following formula (c-4).
  • Ra has the same meaning as above.
  • t1 to t5 independently represents an integer of 1 to 10, preferably an integer of 1 to 6, and particularly preferably 3.
  • 1,3,5-N-tris (3-trimethoxysilylpropyl) isocyanurate and 1,3,5-N-tris (3-) are examples of the silane coupling agent having a nitrogen atom in the molecule.
  • Triethoxysilylpropyl) isocyanurate hereinafter referred to as "isocyanurate compound”
  • N, N'-bis (3-trimethoxysilylpropyl) urea N, N'-bis (3-triethoxysilylpropyl) urea
  • urea compound a combination of the above isocyanurate compound and urea compound is preferably used.
  • the content thereof is not particularly limited, but the amount thereof has the nitrogen atom in the molecule with the component (A) described above.
  • the mass ratio of the silane coupling agent [(A component: silane coupling agent having a nitrogen atom in the molecule], preferably 100: 0.1 to 100: 65, more preferably 100: 0.3 to 100: The amount is 60, more preferably 100: 1 to 100: 50, still more preferably 100: 3 to 100: 40, and particularly preferably 100: 5 to 100: 35.
  • the cured product of the curable composition containing the component (A) and the silane coupling agent having a nitrogen atom in the molecule at such a ratio becomes excellent in heat resistance and adhesiveness.
  • a silane coupling agent having an acid anhydride structure in a molecule is an organosilicon compound having both a group having an acid anhydride structure and a hydrolyzable group in one molecule. Specific examples thereof include compounds represented by the following formula (c-5).
  • Q represents a group having an acid anhydride structure
  • R d represents an alkyl group, or have a substituent, or having no substituent phenyl group having 1 to 6 carbon atoms
  • R e is a carbon It represents an alkoxy group or a halogen atom of the number 1 to 6
  • i and k represent an integer of 1 to 3
  • j represents an integer of 0 to 2
  • i + j + k 4.
  • R ds may be the same or different from each other.
  • k is 2 or 3
  • among a plurality of R e may be different from each be the same.
  • i 2 or 3
  • a plurality of Qs may be the same or different from each other.
  • h represents an integer of 0 to 10) and the like, and the group represented by (Q1) is particularly preferable.
  • silane coupling agent having an acid anhydride structure in the molecule examples include 2- (trimethoxysilyl) ethyl succinic anhydride, 2- (triethoxysilyl) ethyl anhydride succinic anhydride, and 3- (trimethoxysilyl) propyl succinic anhydride.
  • Tri (1 to 6 carbon atoms) alkoxysilyl (2 to 8 carbon atoms) alkyl succinic anhydride such as acid, 3- (triethoxysilyl) propyl succinic anhydride
  • Di (1 to 6 carbon atoms) alkoxymethylsilyl (2 to 8 carbon atoms) alkyl succinic anhydride such as 2- (dimethoxymethylsilyl) ethyl succinic anhydride
  • (1 to 6 carbon atoms) alkoxydimethylsilyl (2 to 8 carbon atoms) alkyl succinic anhydride
  • Trihalogenosilyl (2-8 carbon atoms) alkyl succinic anhydride such as 2- (trichlorosilyl) ethyl succinic anhydride, 2- (tribromosilyl) ethyl succinic anhydride;
  • Dihalogenomethylsilyl (2-8 carbon atoms) alkyl succinic anhydride such as 2- (dichloromethylsilyl) ethyl succinic anhydride;
  • Examples thereof include halogenodimethylsilyl (2 to 8 carbon atoms) alkyl succinic anhydride, such as 2- (chlorodimethylsilyl) ethyl succinic anhydride.
  • silane coupling agent having an acid anhydride structure in the molecule tri (1 to 6 carbon atoms) alkoxysilyl (2 to 8 carbon atoms) alkyl succinic anhydride is preferable, and 3- (trimethoxysilyl) is preferable.
  • silane coupling agent having an acid anhydride structure in the molecule tri (1 to 6 carbon atoms) alkoxysilyl (2 to 8 carbon atoms) alkyl succinic anhydride is preferable, and 3- (trimethoxysilyl) is preferable.
  • Succinic anhydride or 3- (triethoxysilyl) propyl succinic anhydride is particularly preferred.
  • the content thereof is not particularly limited, but the amount thereof is acid anhydride in the above component (A) and the molecule.
  • the mass ratio of the silane coupling agent having a physical structure [(A component: silane coupling agent having an acid anhydride structure in the molecule], preferably 100: 0.1 to 100:30, more preferably 100: The amount is 0.3 to 100: 20, more preferably 100: 0.5 to 100: 15, and even more preferably 100: 1 to 100:10.
  • the cured product of the curable composition containing the component (A) and the silane coupling agent having an acid anhydride structure in the molecule at such a ratio becomes more excellent in adhesiveness.
  • the total amount of the component (A) and the component (C) is preferably 50 to 100% by mass, preferably 70 to 100% by mass, based on the solid content of the curable composition. Is more preferable.
  • the "solid content” refers to a component other than the solvent in the curable composition.
  • the curable composition of the present invention may contain fine particles having an average primary particle diameter of 5 nm or more and 40 nm or less (hereinafter, may be referred to as “fine particles (B)”) as the component (B). Good.
  • the curable composition containing the fine particles (B) is excellent in workability in the coating process. Since this effect is more easily obtained, the average primary particle size of the fine particles (B) is preferably 5 to 30 nm, more preferably 5 to 20 nm.
  • the average primary particle size of the fine particles (B) is determined by observing the shape of the fine particles using a transmission electron microscope.
  • the materials of the fine particles (B) include metals; metal oxides; minerals; metal carbonates such as calcium carbonate and magnesium carbonate; metal sulfates such as calcium sulfate and barium sulfate; metal hydroxides such as aluminum hydroxide; silicic acid.
  • metal silicates such as aluminum, calcium silicate and magnesium silicate; inorganic components such as silica; silicones; organic components such as acrylic polymers; and the like.
  • the fine particles (B) used may have a modified surface.
  • the fine particles (B) can be used alone or in combination of two or more.
  • the content of the (B) component is not particularly limited, but the amounts thereof are the above-mentioned (A) component and (B) component.
  • [(A) component: (B) component] preferably 100: 0.1 to 100: 90, more preferably 100: 0.2 to 100: 60, and more preferably 100: 0.3 to.
  • the amount is 100:50, more preferably 100: 0.5 to 100:40, and more preferably 100: 0.8 to 100:30.
  • the curable composition of the present invention may contain other components as long as the object of the present invention is not impaired.
  • other components include antioxidants, ultraviolet absorbers, light stabilizers and the like.
  • Antioxidants are added to prevent oxidative deterioration during heating.
  • examples of the antioxidant include phosphorus-based antioxidants, phenol-based antioxidants, sulfur-based antioxidants, and the like.
  • Examples of phosphorus-based antioxidants include phosphites, oxaphosphaphenanthrene oxides, and the like.
  • Examples of the phenolic antioxidant include monophenols, bisphenols, and high molecular weight phenols.
  • Examples of the sulfur-based antioxidant include dilauryl-3,3'-thiodipropionate, dimyristyl-3,3'-thiodipropionate, disstearyl-3,3'-thiodipropionate and the like.
  • antioxidants can be used alone or in combination of two or more.
  • the content of the antioxidant is not particularly limited, but is usually 10% by mass or less with respect to the component (A).
  • the UV absorber is added for the purpose of improving the light resistance of the obtained cured product.
  • examples of the ultraviolet absorber include salicylic acids, benzophenones, benzotriazoles, hindered amines and the like.
  • the ultraviolet absorber may be used alone or in combination of two or more.
  • the content of the ultraviolet absorber is not particularly limited, but is usually 10% by mass or less with respect to the component (A).
  • the light stabilizer is added for the purpose of improving the light resistance of the obtained cured product.
  • the light stabilizer include poly [ ⁇ 6- (1,1,3,3-tetramethylbutyl) amino-1,3,5-triazine-2,4-diyl ⁇ ⁇ (2,2,6). , 6-Tetramethyl-4-piperidin) imino ⁇ Hexamethylene ⁇ (2,2,6,6-tetramethyl-4-piperidine) imino ⁇ ] and other hindered amines.
  • These light stabilizers can be used alone or in combination of two or more.
  • the content of the light stabilizer is usually 20% by mass or less with respect to the component (A).
  • the curable composition of the present invention may contain a diluent.
  • the diluent is not particularly limited as long as it can dissolve or disperse the components of the curable composition of the present invention.
  • One type of diluent may be used, or two or more types may be used in combination.
  • the content thereof is preferably 60% by mass or more and less than 100% by mass, more preferably 65 to 98% by mass, and even more preferably.
  • the amount is 70 to 95% by mass.
  • the polysilsesquioxane compound (A) used in the present invention often has a relatively small molecular weight.
  • the curable composition containing such a polysilsesquioxane compound (A) has good coatability even if a large amount of diluent is not contained (that is, even if the solid content concentration is high). ..
  • the cured product contains almost no solvent even if the drying conditions and curing conditions of the coating film are not strictly controlled, so that the cured product has certain characteristics. Can be stably formed.
  • the curable composition of the present invention contains the polysilsesquioxane compound (A), it has a high refractive index.
  • the refractive index (nD) of the curable composition of the present invention at 25 ° C. is usually 1.500 or more, preferably 1.500 to 1.600, and more preferably 1.505 to 1.590. Even more preferably, it is 1.510 to 1.580.
  • the refractive index (nD) of the curable composition can be measured using the method described in Examples.
  • the curable composition of the present invention can be prepared, for example, by mixing the above-mentioned component (A), component (C), and, if desired, components other than these in a predetermined ratio and defoaming.
  • the mixing method and defoaming method are not particularly limited, and known methods can be used.
  • the cured product of the present invention is obtained by curing the curable composition of the present invention.
  • Examples of the method for curing the curable composition of the present invention include heat curing.
  • the heating temperature at the time of curing is usually 100 to 200 ° C., and the heating time is usually 10 minutes to 20 hours, preferably 30 minutes to 10 hours.
  • the cured product of the present invention is excellent in heat resistance and adhesiveness. It can be confirmed that the cured product of the present invention has these properties, for example, as follows. That is, a predetermined amount of the curable composition of the present invention is applied to the mirror surface of the silicon chip, the coated surface is placed on the adherend, pressure-bonded, and heat-treated to cure. This is left on the measurement stage of a bond tester preheated to a predetermined temperature (for example, 23 ° C., 100 ° C.) for 30 seconds, and from a position at a height of 50 ⁇ m from the adherend, in the horizontal direction (shearing) with respect to the adhesive surface. Apply stress in the direction) and measure the adhesive force between the test piece and the adherend.
  • a predetermined amount of the curable composition of the present invention is applied to the mirror surface of the silicon chip, the coated surface is placed on the adherend, pressure-bonded, and heat-treated to cure. This is left on the measurement stage of a bond tester preheated to a predetermined
  • the adhesive strength of the cured product of the present invention is preferably 100 N / 4 mm 2 or more, and more preferably 120 N / 4 mm 2 or more at 23 ° C.
  • the adhesive strength of the cured product of the present invention is preferably 40 N / 4 mm 2 or more, and more preferably 45 N / 4 mm 2 or more at 100 ° C.
  • "4 mm 2 " means "2 mm square", that is, 2 mm ⁇ 2 mm (a square having a side of 2 mm).
  • the cured product of the present invention has a high refractive index and excellent adhesiveness. Therefore, the cured product of the present invention is preferably used as an adhesive layer having a high refractive index.
  • the refractive index (nD) of the cured product of the present invention at 25 ° C. is usually 1.500 or more, preferably 1.500 to 1.600, more preferably 1.505 to 1.590, and even more. It is preferably 1.510 to 1.580.
  • the refractive index (nD) of the cured product can be measured using an Abbe refractometer.
  • the cured product of the present invention is preferably used as an optical element fixing material.
  • the method of the present invention is a method of using the curable composition of the present invention as an adhesive for an optical element fixing material or a sealing material for an optical element fixing material.
  • the optical element include a light emitting element such as an LED and an LD, a light receiving element, a composite optical element, and an optical integrated circuit.
  • the curable composition of the present invention can be suitably used as an adhesive for an optical element fixing material.
  • the composition is applied to one or both adhesive surfaces of a material to be adhered (optical element and its substrate, etc.).
  • a method of crimping and then heat-curing to firmly bond the materials to be bonded to each other can be mentioned.
  • the amount of the curable composition of the present invention applied is not particularly limited as long as it can firmly bond the materials to be bonded to each other by curing.
  • the thickness of the coating film of the curable composition is 0.5 to 5 ⁇ m, preferably 1 to 3 ⁇ m.
  • Substrate materials for adhering optical elements include glasses such as soda lime glass and heat-resistant hard glass; ceramics; sapphire; iron, copper, aluminum, gold, silver, platinum, chromium, titanium and alloys of these metals. , Stainless steel (SUS302, SUS304, SUS304L, SUS309, etc.); polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, ethylene-vinyl acetate copolymer, polystyrene, polycarbonate, polymethylpentene, polysulfone, polyetheretherketone , Polyethersulfone, polyphenylene sulfide, polyetherimide, polyimide, polyamide, acrylic resin, norbornene-based resin, cycloolefin resin, synthetic resin such as glass epoxy resin; and the like.
  • glasses such as soda lime glass and heat-resistant hard glass
  • ceramics such as soda lime glass and heat-resistant hard glass
  • sapphire iron, copper,
  • the heating temperature at the time of heat curing is usually 100 to 200 ° C., although it depends on the curable composition used and the like.
  • the heating time is usually 10 minutes to 20 hours, preferably 30 minutes to 10 hours.
  • the curable composition of the present invention can be suitably used as a sealing material for an optical element fixing material.
  • a method of using the curable composition of the present invention as a sealing material for an optical element fixing material for example, the composition is molded into a desired shape to obtain a molded body containing an optical element, and then this Examples thereof include a method of manufacturing an optical device encapsulant by heating and curing the material.
  • the method for molding the curable composition of the present invention into a desired shape is not particularly limited, and a known molding method such as a normal transfer molding method or a casting method can be adopted.
  • the heating temperature at the time of heat curing depends on the curable composition used and the like, but is usually 100 to 200 ° C.
  • the heating time is usually 10 minutes to 20 hours, preferably 30 minutes to 10 hours.
  • the obtained optical element encapsulant uses the curable composition of the present invention, it is excellent in heat resistance and adhesiveness.
  • the mass average molecular weight (Mw) and the number average molecular weight (Mn) of the polysilsesquioxane compound were measured in terms of standard polystyrene under the following equipment and conditions.
  • 29 Si-NMR measurement In order to investigate the repeating unit of the polysilsesquioxane compound and its amount, 29 Si-NMR measurement was carried out under the following conditions. Equipment: AV-500 manufactured by Bruker Biospin 29 Si-NMR resonance frequency: 99.352 MHz Probe: 5 mm ⁇ solution Probe measurement temperature: Room temperature (25 ° C) Sample rotation speed: 20 kHz Measurement method: inverse gate decoupling method 29 Si flip angle: 90 ° 29 Si 90 ° pulse width: 8.0 ⁇ s Repeat time: 5s Number of integrations: 9200 observations Width: 30 kHz
  • T-site having a phenyl group T1: -65 to -58 ppm, T2: -74 to -65 ppm, T3: -82 to -75 ppm
  • T site having a methyl group T1: -50 to -46 ppm, T2: -61 to -52 ppm, T3: -70 to -61 ppm
  • the refractive index (nD) of the polysilsesquioxane compound was measured at 25 ° C. using a multi-wavelength Abbe refractometer (DR-M2 manufactured by Atago Co., Ltd.).
  • Table 1 shows the details of the obtained polysilsesquioxane compound (PSQ).
  • Silane coupling agent Silane Coupling Agent (C1): 1,3,5-N-Tris [3- (trimethoxysilyl) propyl] Isocyanurate Silane Coupling Agent (C2): 3- (Trimethoxysilyl) Propyl succinic anhydride
  • Silica fine particles (manufactured by Nippon Aerosil Co., Ltd., product name "AEROSIL RX300", average primary particle size: 7 nm, specific surface area: 210 m 2 / g)
  • Example 2 A curable composition having a solid content concentration of 80% by mass was prepared in the same manner as in Example 1 except that the content of the silica fine particles was changed to 20 parts by mass and the amount of the mixed solvent was changed in Example 1. Obtained.
  • Example 3 In Example 1, the same as in Example 1 except that the polysilsesquioxane compound (A2) was used instead of the polysilsesquioxane compound (A1) and the amount of the mixed solvent was changed. A curable composition having a solid content concentration of 90% by mass was obtained.
  • Example 4 A curable composition having a solid content concentration of 90% by mass was prepared in the same manner as in Example 3 except that the content of the silica fine particles was changed to 0 parts by mass and the amount of the mixed solvent was changed in Example 3. Obtained.
  • Example 5 In Example 1, the same as in Example 1 except that the polysilsesquioxane compound (A3) was used instead of the polysilsesquioxane compound (A1) and the amount of the mixed solvent was changed. A curable composition having a solid content concentration of 82% by mass was obtained.
  • Example 6 In Example 1, the same as in Example 1 except that the polysilsesquioxane compound (A4) was used instead of the polysilsesquioxane compound (A1) and the amount of the mixed solvent was changed. A curable composition having a solid content concentration of 82% by mass was obtained.
  • Example 7 In Example 1, the same as in Example 1 except that the polysilsesquioxane compound (A5) was used instead of the polysilsesquioxane compound (A1) and the amount of the mixed solvent was changed. A curable composition having a solid content concentration of 80% by mass was obtained.
  • Example 1 Comparative Example 1
  • the polysilsesquioxane compound (A6) was used instead of the polysilsesquioxane compound (A1), the content of the silica fine particles was changed to 20 parts by mass, and the amount of the mixed solvent was further increased.
  • a curable composition having a solid content concentration of 80% by mass was obtained in the same manner as in Example 1 except for the modification.
  • Example 2 A curable composition having a solid content concentration of 90% by mass was prepared in the same manner as in Example 5 except that the silane coupling agent (C1) and the silane coupling agent (C2) were not used in Example 5. Obtained.
  • Example 2 In Example 1, the polysilsesquioxane compound (A8) was used instead of the polysilsesquioxane compound (A1), the content of the silica fine particles was changed to 20 parts by mass, and the amount of the mixed solvent was further changed. Except for the above, a curable composition having a solid content concentration of 80% by mass was obtained in the same manner as in Example 1.
  • the refractive index (nD) of the curable composition was measured at 25 ° C. using a multi-wavelength Abbe refractometer (DR-M2, manufactured by Atago Co., Ltd.).
  • a scanning electron microscope (VE-9800S manufactured by KEYENCE), observe the resin part (fillet part) protruding from the glass chip, count the number of samples with cracks, and the crack occurrence rate is 0% or more and 25%. Less than was evaluated as "A”, 25% or more and less than 50% was evaluated as “B”, and 50% or more and 100% or less was evaluated as "C”.
  • the adherend with the test piece was left on the measurement stage of a bond tester (manufactured by Daige Co., Ltd., Series 4000) preheated to a predetermined temperature (23 ° C., 100 ° C.) for 30 seconds, and the height was 50 ⁇ m from the adherend. Stress was applied to the adhesive surface in the horizontal direction (shear direction) at a speed of 200 ⁇ m / s, and the adhesive force (N / 4 mm 2 ) between the test piece and the adherend at 23 ° C and 100 ° C was measured. ..
  • Table 2 shows the measurement results and evaluation results.
  • the curable compositions of Examples 1 to 7 contain the polysilsesquioxane compound having a high content ratio of the repeating unit (1), the refractive index is high.
  • the curable composition of Comparative Example 1 also has a high refractive index because it contains a polysilsesquioxane compound having a high content ratio of the repeating unit (1).
  • the polysilsesquioxane compound (A6) used in Comparative Example 1 does not have a high proportion of T2 sites, the cured product of the curable composition of Comparative Example 1 is inferior in crack resistance.
  • the curable compositions of Examples 1 to 7 contain a silane coupling agent, even if the curable compositions contain a polysilsesquioxane compound having a high content ratio of the repeating unit (1), the curing thereof. The object has sufficient adhesive strength.
  • the curable composition obtained in Comparative Example 2 does not contain a silane coupling agent, the cured product does not have sufficient adhesive strength.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Silicon Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention pertains to: a curable composition containing component (A) and component (C); a cured product obtained by curing said curable composition; and a method for using said curable composition as an adhesive agent for optical element-fixing materials or as a sealing material for optical element-fixing materials. The curable composition according to the present invention has a high refractive index and is suitably used in the field of optics. Component (A): A polysilsesquioxane compound that has a repeating unit [repeating unit (1)] represented by formula (a-1) [R1 represents an unsubstituted aryl group having 6-12 carbon atoms or an aryl group having a substituent and having 6-12 carbon atoms] and that optionally has a repeating unit [repeating unit (2)] represented by formula (a-2) [R2 represents an unsubstituted alkyl group having 1-10 carbon atoms and an alkyl group having a substituent and having 1-10 carbon atoms]. The polysilsesquioxane compound is characterized by satisfying a specific requirement regarding the molecular structure. Component (C): A silane coupling agent. (a-1): R1SiO3/2 (a-2): R2SiO3/2

Description

硬化性組成物、硬化物、及び、硬化性組成物の使用方法Curable composition, cured product, and how to use the curable composition
 本発明は、屈折率が高く、光学分野において好適に用いられる硬化性組成物、前記硬化性組成物が硬化してなる硬化物、及び、前記硬化性組成物を、光素子固定材用接着剤又は光素子固定材用封止材として使用する方法に関する。 In the present invention, a curable composition having a high refractive index and preferably used in the optical field, a cured product obtained by curing the curable composition, and the curable composition are used as an adhesive for an optical element fixing material. Alternatively, the present invention relates to a method used as a sealing material for an optical element fixing material.
 従来、硬化性組成物は用途に応じて様々な改良がなされ、光学部品や成形体の原料、接着剤、コーティング剤等として産業上広く利用されてきている。
 また、硬化性組成物は、光素子固定材用接着剤や光素子固定材用封止材等の光素子固定材用組成物としても注目を浴びてきている。
Conventionally, the curable composition has been variously improved according to the application, and has been widely used industrially as a raw material for optical parts and molded articles, an adhesive, a coating agent, and the like.
Further, the curable composition has also attracted attention as a composition for an optical element fixing material such as an adhesive for an optical element fixing material and a sealing material for an optical element fixing material.
 光素子には、半導体レーザー(LD)等の各種レーザーや発光ダイオード(LED)等の発光素子、受光素子、複合光素子、光集積回路等がある。
 近年においては、発光のピーク波長がより短波長である青色光や白色光の光素子が開発され広く使用されてきている。このような発光のピーク波長の短い発光素子の高輝度化が飛躍的に進み、これに伴い、光素子の発熱量が更に大きくなっていく傾向にある。
Optical elements include various lasers such as semiconductor lasers (LDs), light emitting elements such as light emitting diodes (LEDs), light receiving elements, composite optical elements, and optical integrated circuits.
In recent years, optical elements of blue light or white light having a shorter peak wavelength of light emission have been developed and widely used. The brightness of such a light emitting element having a short peak wavelength of light emission is dramatically increased, and the amount of heat generated by the optical element tends to be further increased accordingly.
 ところが、近年における光素子の高輝度化に伴い、光素子固定材用組成物の硬化物が、より高いエネルギーの光や、光素子から発生するより高温の熱に長時間さらされ、接着力が低下するという問題が生じた。 However, with the increase in brightness of optical devices in recent years, the cured product of the composition for fixing optical elements is exposed to higher energy light and higher temperature heat generated from the optical element for a long time, and the adhesive strength is increased. The problem of lowering arose.
 この問題を解決するべく、特許文献1~3には、ポリシルセスキオキサン化合物を主成分とする光素子固定材用組成物が提案されている。 In order to solve this problem, Patent Documents 1 to 3 propose compositions for optical device fixing materials containing a polysilsesquioxane compound as a main component.
 ところで、硬化性組成物を用いて光素子等を固定する場合、光取り出し効率を高めるために、周囲の部材の屈折率に合わせて、適切な屈折率の硬化性組成物が選択されることがある。
 例えば、封止剤と固定材の界面での反射を抑え、光取り出し効率を高めるためには、封止剤の屈折率と固定材の屈折率の差が小さいことが好ましい。
 したがって、比較的高い屈折率を有する封止剤を用いる場合、同じように高い屈折率を有する硬化性組成物を用いて固定材を形成することが必要になる。
By the way, when an optical element or the like is fixed using a curable composition, a curable composition having an appropriate refractive index may be selected in accordance with the refractive index of surrounding members in order to improve the light extraction efficiency. is there.
For example, in order to suppress reflection at the interface between the encapsulant and the fixing material and improve the light extraction efficiency, it is preferable that the difference between the refractive index of the encapsulant and the refractive index of the fixing material is small.
Therefore, when a sealant having a relatively high refractive index is used, it is necessary to form a fixing material using a curable composition having a similarly high refractive index.
特開2004-359933号公報Japanese Unexamined Patent Publication No. 2004-359933 特開2005-263869号公報Japanese Unexamined Patent Publication No. 2005-263869 特開2006-328231号公報Japanese Unexamined Patent Publication No. 2006-328231
 本発明は、上記した従来技術の実情に鑑みてなされたものであり、屈折率が高く、光学分野において好適に用いられる硬化性組成物、前記硬化性組成物が硬化してなる硬化物、及び、前記硬化性組成物を、光素子固定材用接着剤又は光素子固定材用封止材として使用する方法を提供することを目的とする。 The present invention has been made in view of the above-mentioned actual conditions of the prior art, a curable composition having a high refractive index and preferably used in the optical field, a cured product obtained by curing the curable composition, and a cured product obtained by curing the curable composition. , An object of the present invention is to provide a method for using the curable composition as an adhesive for an optical element fixing material or a sealing material for an optical element fixing material.
 本発明者らは、上記課題を解決すべく、ポリシルセスキオキサン化合物を含有する硬化性組成物について鋭意検討を重ねた。
 その結果、
(i)ポリシルセスキオキサン化合物として、アリール基を多く含むポリシルセスキオキサン化合物を用いることで、屈折率が高い硬化性組成物が得られること、
(ii)アリール基を多く含むポリシルセスキオキサン化合物を含有する硬化性組成物の硬化物には、クラックが発生するおそれがあること、
(iii)アリール基を多く含むポリシルセスキオキサン化合物を含有する硬化性組成物の硬化物は、接着性に劣る傾向があること、
(iv)アリール基を多く含むポリシルセスキオキサン化合物に特定の分子構造を導入すること、及び、硬化性組成物中にシランカップリング剤を添加すること、により、上記(ii)及び(iii)の問題を解決し得ること、
を見出し、本発明を完成するに至った。
In order to solve the above problems, the present inventors have made extensive studies on a curable composition containing a polysilsesquioxane compound.
as a result,
(I) By using a polysilsesquioxane compound containing a large amount of aryl groups as the polysilsesquioxane compound, a curable composition having a high refractive index can be obtained.
(Ii) A cured product of a curable composition containing a polysilsesquioxane compound containing a large amount of aryl groups may have cracks.
(Iii) A cured product of a curable composition containing a polysilsesquioxane compound containing a large amount of aryl groups tends to have poor adhesiveness.
By introducing a specific molecular structure into the (iv) aryl group-rich polysilsesquioxane compound and adding a silane coupling agent to the curable composition, the above (ii) and (iii) ) Can be solved,
The present invention has been completed.
 かくして本発明によれば、下記〔1〕~〔7〕の硬化性組成物、〔8〕、〔9〕の硬化物、及び〔10〕、〔11〕の硬化性組成物の使用方法が提供される。 Thus, according to the present invention, the following methods of using the curable compositions [1] to [7], the cured products [8] and [9], and the curable compositions [10] and [11] are provided. Will be done.
〔1〕下記(A)成分、及び、(C)成分を含有する硬化性組成物。
(A)成分:下記式(a-1)
[1] A curable composition containing the following component (A) and component (C).
Component (A): The following formula (a-1)
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
〔Rは、無置換の炭素数6~12のアリール基、又は、置換基を有する炭素数6~12のアリール基を表す。〕
で示される繰り返し単位〔繰り返し単位(1)〕を有し、下記式(a-2)
[R 1 represents an unsubstituted aryl group having 6 to 12 carbon atoms or an aryl group having a substituent and having 6 to 12 carbon atoms. ]
It has a repeating unit [repeating unit (1)] represented by the following formula (a-2).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
〔Rは、無置換の炭素数1~10のアルキル基、又は、置換基を有する炭素数1~10のアルキル基を表す。〕
で示される繰り返し単位〔繰り返し単位(2)〕を有する又は有しないポリシルセスキオキサン化合物であって、下記要件1及び要件2を満たすことを特徴とするポリシルセスキオキサン化合物
〔要件1〕
 繰り返し単位(1)と繰り返し単位(2)の合計量に対して、繰り返し単位(1)の量が80~100mol%である。
〔要件2〕
 下記式(a-3)で示されるTサイト(T1サイト)、下記式(a-4)で示されるTサイト(T2サイト)、及び下記式(a-5)で示されるTサイト(T3サイト)の合計量に対して、前記T2サイトの量が、30~70mol%である。
[R 2 represents an unsubstituted alkyl group having 1 to 10 carbon atoms or an alkyl group having a substituent and having 1 to 10 carbon atoms. ]
A polysilsesquioxane compound having or not having a repeating unit [repeating unit (2)] represented by the above, wherein the polysilsesquioxane compound satisfies the following requirements 1 and 2 [requirement 1].
The amount of the repeating unit (1) is 80 to 100 mol% with respect to the total amount of the repeating unit (1) and the repeating unit (2).
[Requirement 2]
The T site (T1 site) represented by the following formula (a-3), the T site (T2 site) represented by the following formula (a-4), and the T site (T3 site) represented by the following formula (a-5). ), The amount of the T2 site is 30 to 70 mol%.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
〔Gは、R又はRで表される基を表す。Rは、水素原子又は炭素数1~10のアルキル基を表す。*には、ケイ素原子が結合している。〕
(C)成分:シランカップリング剤
〔2〕(A)成分の質量平均分子量(Mw)が500~3,000である、〔1〕に記載の硬化性組成物。
〔3〕(A)成分中の繰り返し単位(1)と繰り返し単位(2)の合計量が、(A)成分の全繰り返し単位中90~100mol%である、〔1〕又は〔2〕に記載の硬化性組成物。
〔4〕(C)成分の含有量が、(A)成分100質量部に対して、0.1~70質量部である、〔1〕~〔3〕のいずれかに記載の硬化性組成物。
〔5〕(A)成分と(C)成分の合計量が、硬化性組成物の固形分中50~100質量%である、〔1〕~〔4〕のいずれかに記載の硬化性組成物。
〔6〕さらに希釈剤を含有し、固形分濃度が、60質量%以上、100質量%未満である、〔1〕~〔5〕のいずれかに記載の硬化性組成物。
〔7〕25℃における屈折率(nD)が、1.500~1.600である、〔1〕~〔6〕のいずれかに記載の硬化性組成物。
〔8〕前記〔1〕~〔7〕のいずれかに記載の硬化性組成物を硬化させて得られる硬化物。
〔9〕光素子固定材である〔8〕に記載の硬化物。
〔10〕前記〔1〕~〔7〕のいずれかに記載の硬化性組成物を、光素子固定材用接着剤として使用する方法。
〔11〕前記〔1〕~〔7〕のいずれかに記載の硬化性組成物を、光素子固定材用封止材として使用する方法。
[G represents a group represented by R 1 or R 2. R 3 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. A silicon atom is bonded to *. ]
Component (C): Silane coupling agent [2] The curable composition according to [1], wherein the mass average molecular weight (Mw) of the component (A) is 500 to 3,000.
[3] Described in [1] or [2], wherein the total amount of the repeating unit (1) and the repeating unit (2) in the component (A) is 90 to 100 mol% in all the repeating units of the component (A). Curable composition.
[4] The curable composition according to any one of [1] to [3], wherein the content of the component (C) is 0.1 to 70 parts by mass with respect to 100 parts by mass of the component (A). ..
[5] The curable composition according to any one of [1] to [4], wherein the total amount of the component (A) and the component (C) is 50 to 100% by mass in the solid content of the curable composition. ..
[6] The curable composition according to any one of [1] to [5], further containing a diluent and having a solid content concentration of 60% by mass or more and less than 100% by mass.
[7] The curable composition according to any one of [1] to [6], wherein the refractive index (nD) at 25 ° C. is 1.500 to 1.600.
[8] A cured product obtained by curing the curable composition according to any one of the above [1] to [7].
[9] The cured product according to [8], which is an optical element fixing material.
[10] A method in which the curable composition according to any one of [1] to [7] above is used as an adhesive for an optical element fixing material.
[11] A method in which the curable composition according to any one of [1] to [7] above is used as a sealing material for an optical element fixing material.
 本発明によれば、屈折率が高く、かつ、光学分野において好適に用いられる硬化性組成物、前記硬化性組成物が硬化してなる硬化物、及び、前記硬化性組成物を、光素子固定材用接着剤又は光素子固定材用封止材として使用する方法が提供される。 According to the present invention, a curable composition having a high refractive index and preferably used in the optical field, a cured product obtained by curing the curable composition, and the curable composition are fixed to an optical element. A method for use as a material adhesive or a sealing material for an optical element fixing material is provided.
 以下、本発明を、1)硬化性組成物、2)硬化物、及び、3)硬化性組成物の使用方法、に項分けして詳細に説明する。 Hereinafter, the present invention will be described in detail by dividing it into 1) a curable composition, 2) a cured product, and 3) a method of using the curable composition.
1)硬化性組成物
 本発明の硬化性組成物は、下記(A)成分、及び、(C)成分を含有する。
(A)成分:上記式(a-1)で示される繰り返し単位を有し、上記式(a-2)で示される繰り返し単位を有する又は有しないポリシルセスキオキサン化合物であって、上記要件1及び要件2を満たすことを特徴とするポリシルセスキオキサン化合物〔以下、「ポリシルセスキオキサン化合物(A)」と記載することがある。〕
(C)成分:シランカップリング剤
1) Curable composition The curable composition of the present invention contains the following component (A) and component (C).
Component (A): A polysilsesquioxane compound having a repeating unit represented by the above formula (a-1) and having or not having a repeating unit represented by the above formula (a-2), and the above requirements. Polysilsesquioxane compound characterized by satisfying 1 and 2 [hereinafter, may be described as "polysilsesquioxane compound (A)". ]
Ingredient (C): Silane coupling agent
〔(A)成分〕
 本発明の硬化性組成物を構成する(A)成分は、下記式(a-1)で示される繰り返し単位〔繰り返し単位(1)〕を有するポリシルセスキオキサン化合物であって、上記要件1及び要件2を満たすことを特徴とするポリシルセスキオキサン化合物である。
[(A) component]
The component (A) constituting the curable composition of the present invention is a polysilsesquioxane compound having a repeating unit [repeating unit (1)] represented by the following formula (a-1), and the above requirement 1 The polysilsesquioxane compound is characterized by satisfying the requirements 2 and 2.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
〔Rは、無置換の炭素数6~12のアリール基、又は、置換基を有する炭素数6~12のアリール基を表す。〕 [R 1 represents an unsubstituted aryl group having 6 to 12 carbon atoms or an aryl group having a substituent and having 6 to 12 carbon atoms. ]
 繰り返し単位(1)はRを有するため、繰り返し単位(1)を有するポリシルセスキオキサン化合物は高い屈折率を有する。このため、本発明の硬化性組成物は屈折率が高いものとなる。 Since the repeating unit (1) has R 1 , the polysilsesquioxane compound having the repeating unit (1) has a high refractive index. Therefore, the curable composition of the present invention has a high refractive index.
 Rの「無置換の炭素数6~12のアリール基」としては、フェニル基、1-ナフチル基、2-ナフチル基等が挙げられる。
 Rの「無置換の炭素数6~12のアリール基」の炭素数は6が好ましい。
Examples of the "unsubstituted aryl group having 6 to 12 carbon atoms" of R 1 include a phenyl group, a 1-naphthyl group, a 2-naphthyl group and the like.
The number of carbon atoms of the "unsubstituted aryl group having 6 to 12 carbon atoms" of R 1 is 6 are preferred.
 Rの「置換基を有する炭素数6~12のアリール基」の炭素数は6が好ましい。なお、この炭素数は、置換基を除いた部分(アリール基の部分)の炭素数を意味するものである。したがって、Rが「置換基を有する炭素数6~12のアリール基」である場合、Rの炭素数は12を超える場合もあり得る。
 Rの「置換基を有する炭素数6~12のアリール基」のアリール基としては、「無置換の炭素数6~12のアリール基」として示したものと同様のものが挙げられる。
The number of carbon atoms of the "aryl group having 6 to 12 carbon atoms having a substituent" for R 1 6 is preferred. The number of carbon atoms means the number of carbon atoms of the portion excluding the substituent (the portion of the aryl group). Therefore, when R 1 is an "aryl group having 6 to 12 carbon atoms having a substituent", the carbon number of R 1 may exceed 12.
Examples of the aryl group of the "aryl group having a substituent and having 6 to 12 carbon atoms" of R 1 include those similar to those shown as "an unsubstituted aryl group having 6 to 12 carbon atoms".
 Rの「置換基を有する炭素数6~12のアリール基」の置換基の原子数(ただし、水素原子の数を除く)は、通常1~30、好ましくは1~20である。
 Rの「置換基を有する炭素数6~12のアリール基」の置換基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、イソオクチル基等のアルキル基;塩素原子、臭素原子等のハロゲン原子;メトキシ基、エトキシ基等のアルコキシ基;等が挙げられる。
The number of atoms of the substituent (excluding the number of hydrogen atoms) of the "aryl group having 6 to 12 carbon atoms having a substituent" of R 1 is usually 1 to 30, preferably 1 to 20.
Examples of the substituent of the "aryl group having 6 to 12 carbon atoms having a substituent" for R 1, a methyl group, an ethyl group, n- propyl group, an isopropyl group, n- butyl group, s- butyl group, an isobutyl group, Alkyl groups such as t-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group and isooctyl group; halogen atoms such as chlorine atom and bromine atom; alkoxy such as methoxy group and ethoxy group. Group; etc.
 これらの中でも、屈折率が高い硬化性組成物を効率よく調製することができることから、Rとしては、無置換の炭素数6~12のアリール基が好ましく、フェニル基がより好ましい。 Among these, a high refractive index curable composition since it can be efficiently prepared, the R 1, an unsubstituted aryl group having 6 to 12 carbon atoms are preferred, the phenyl group is more preferable.
 ポリシルセスキオキサン化合物(A)は、1種のRを有するもの(単独重合体)であってもよいし、2種以上のRを有するもの(共重合体)であってもよい。
 ポリシルセスキオキサン化合物(A)が共重合体である場合、ポリシルセスキオキサン化合物(A)は、ランダム共重合体、ブロック共重合体、グラフト共重合体、交互共重合体等のいずれであってもよいが、製造容易性等の観点からは、ランダム共重合体が好ましい。
 また、ポリシルセスキオキサン化合物(A)の構造は、ラダー型構造、ダブルデッカー型構造、籠型構造、部分開裂籠型構造、環状型構造、ランダム型構造のいずれの構造であってもよい。
The polysilsesquioxane compound (A) may be one having one kind of R 1 (monopolymer) or one having two or more kinds of R 1 (copolymer). ..
When the polysilsesquioxane compound (A) is a copolymer, the polysilsesquioxane compound (A) is any of a random copolymer, a block copolymer, a graft copolymer, an alternating copolymer and the like. However, from the viewpoint of ease of production and the like, a random copolymer is preferable.
Further, the structure of the polysilsesquioxane compound (A) may be any of a ladder type structure, a double decker type structure, a cage type structure, a partially cleaved cage type structure, a cyclic type structure, and a random type structure. ..
 ポリシルセスキオキサン化合物(A)は、更に、下記式(a-2)で示される繰り返し単位〔繰り返し単位(2)〕を有するもの(共重合体)であってもよい。 The polysilsesquioxane compound (A) may further have a repeating unit [repeating unit (2)] represented by the following formula (a-2) (copolymer).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
〔Rは、無置換の炭素数1~10のアルキル基、又は、置換基を有する炭素数1~10のアルキル基を表す。〕 [R 2 represents an unsubstituted alkyl group having 1 to 10 carbon atoms or an alkyl group having a substituent and having 1 to 10 carbon atoms. ]
 一般に、ポリシルセスキオキサン化合物は、繰り返し単位(2)を有することで、高分子量化するとともに、分子鎖の柔軟性が向上する。このため、硬化性組成物が、繰り返し単位(2)を有するポリシルセスキオキサン化合物を含有することで、その硬化物にクラックが発生しにくくなると考えられる。
 ただし、後述するように、本発明は、繰り返し単位(2)の含有割合が高くないポリシルセスキオキサン化合物を用いるものであり、繰り返し単位(2)に起因するこの効果をほとんど利用できていないと予想される。
In general, the polysilsesquioxane compound has a repeating unit (2), so that the molecular weight is increased and the flexibility of the molecular chain is improved. Therefore, it is considered that the curable composition contains the polysilsesquioxane compound having the repeating unit (2), so that cracks are less likely to occur in the cured product.
However, as will be described later, the present invention uses a polysilsesquioxane compound in which the content ratio of the repeating unit (2) is not high, and this effect caused by the repeating unit (2) can hardly be utilized. It is expected to be.
 Rの「無置換の炭素数1~10のアルキル基」の炭素数は、1~6が好ましく、1~3がより好ましい。
 Rの「無置換の炭素数1~10のアルキル基」としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-オクチル基、n-ノニル基、n-デシル基等が挙げられる。
The number of carbon atoms of the "alkyl group unsubstituted 1 to 10 carbon atoms" of R 2 is preferably 1 to 6, 1 to 3 more preferred.
As "unsubstituted alkyl group having 1 to 10 carbon atoms" is R 2, a methyl group, an ethyl group, n- propyl group, an isopropyl group, n- butyl group, isobutyl group, s- butyl, t- butyl group , N-Pentyl group, n-Hexyl group, n-octyl group, n-nonyl group, n-decyl group and the like.
 Rの「置換基を有する炭素数1~10のアルキル基」の炭素数は、1~6が好ましく、1~3がより好ましい。なお、この炭素数は、置換基を除いた部分(アルキル基の部分)の炭素数を意味するものである。したがって、Rが「置換基を有する炭素数1~10のアルキル基」である場合、Rの炭素数は10を超える場合もあり得る。
 Rの「置換基を有する炭素数1~10のアルキル基」のアルキル基としては、「無置換の炭素数1~10のアルキル基」として示したものと同様のものが挙げられる。
The number of carbon atoms of the "alkyl group having 1 to 10 carbon atoms having a substituent" for R 2 is preferably 1 to 6, 1 to 3 more preferred. The number of carbon atoms means the number of carbon atoms of the portion excluding the substituent (the portion of the alkyl group). Therefore, when R 2 is an "alkyl group having 1 to 10 carbon atoms having a substituent", the carbon number of R 2 may exceed 10.
The alkyl group of the "alkyl group having 1 to 10 carbon atoms having a substituent" for R 2, include the same as those shown as "unsubstituted alkyl group having 1 to 10 carbon atoms."
 「置換基を有する炭素数1~10のアルキル基」の置換基の原子数(ただし水素原子の数を除く)は、通常1~30、好ましくは1~20である。
 「置換基を有する炭素数1~10のアルキル基」の置換基としては、塩素原子、臭素原子等のハロゲン原子;シアノ基;等が挙げられる。
The number of atoms of the substituent (excluding the number of hydrogen atoms) of the "alkyl group having 1 to 10 carbon atoms having a substituent" is usually 1 to 30, preferably 1 to 20.
Examples of the substituent of the "alkyl group having 1 to 10 carbon atoms having a substituent" include a halogen atom such as a chlorine atom and a bromine atom; a cyano group; and the like.
 これらの中でも、Rとしては、無置換の炭素数1~10のアルキル基が好ましく、無置換の炭素数1~6のアルキル基がより好ましく、無置換の炭素数1~3のアルキル基が更に好ましい。
 Rが、無置換の炭素数1~10のアルキル基であるポリシルセスキオキサン化合物(A)を用いることで、ポリシルセスキオキサン化合物(A)の分子量を効率よく制御することができる。
Among these, R 2, preferably an alkyl group having 1 to 10 carbon atoms unsubstituted, more preferably an alkyl group unsubstituted carbon number of 1 to 6, unsubstituted alkyl group having 1 to 3 carbon atoms More preferred.
R 2 is, by using polysilsesquioxane compound is an unsubstituted alkyl group having 1 to 10 carbon atoms and (A), it can be controlled polysilsesquioxane compound the molecular weight of the (A) efficiently ..
 ポリシルセスキオキサン化合物(A)が繰り返し単位(2)を有するものである場合、ポリシルセスキオキサン化合物(A)は、1種のRを有するものであっても、2種以上のRを有するものであってもよい。 When the polysilsesquioxane compound (A) has a repeating unit (2), the polysilsesquioxane compound (A) has two or more kinds even if it has one kind of R 2. be one having a R 2 may be.
 繰り返し単位(1)や繰り返し単位(2)は、下記式(a-6)で示されるものである。 The repeating unit (1) and the repeating unit (2) are represented by the following formula (a-6).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
〔Gは、R又はRで表される基を表す。R、Rは、それぞれ上記と同じ意味を表す。O1/2とは、酸素原子が隣の繰り返し単位と共有されていることを表す。〕 [G represents a group represented by R 1 or R 2. R 1 and R 2 have the same meanings as described above. O 1/2 means that the oxygen atom is shared with the adjacent repeating unit. ]
 式(a-6)で示されるように、ポリシルセスキオキサン化合物(A)は、一般にTサイトと総称される、ケイ素原子に酸素原子が3つ結合し、それ以外の基(Gで表される基)が1つ結合してなる部分構造を有する。
 ポリシルセスキオキサン化合物(A)に含まれるTサイトとしては、下記式(a-3)で示されるTサイト(T1サイト)、下記式(a-4)で示されるTサイト(T2サイト)、下記式(a-5)で示されるTサイト(T3サイト)が挙げられる。
As represented by the formula (a-6), the polysilsesquioxane compound (A) is generally referred to as T-site, in which three oxygen atoms are bonded to a silicon atom, and other groups (represented by G). It has a partial structure in which one group) is bonded.
The T-site contained in the polysilsesquioxane compound (A) includes a T-site (T1 site) represented by the following formula (a-3) and a T-site (T2 site) represented by the following formula (a-4). , T site (T3 site) represented by the following formula (a-5) can be mentioned.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 式(a-3)、(a-4)及び(a-5)中、Gは、上記と同じ意味を表す。Rは、水素原子又は炭素数1~10のアルキル基を表す。Rの「炭素数1~10のアルキル基」としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基等が挙げられる。複数のR同士は、すべて同一であっても相異なっていてもよい。また、上記式(a-3)~(a-5)中、*には、ケイ素原子が結合している。 In formulas (a-3), (a-4) and (a-5), G has the same meaning as described above. R 3 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. Examples of the "alkyl group having 1 to 10 carbon atoms" of R 3 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an s-butyl group, an isobutyl group, a t-butyl group and the like. Be done. A plurality of R 3 to each other may all be different mutually be the same. Further, in the above formulas (a-3) to (a-5), a silicon atom is bonded to *.
 ポリシルセスキオキサン化合物(A)を合成する際、反応開始直後は、生成物にはT1サイトやT2サイトが多く含まれるが、反応が進行するとともにこれらのサイトの量が減少し、徐々にT3サイトの量が増加する。
 したがって、T1サイトやT2サイトの含有割合が高いポリシルセスキオキサン化合物は比較的低分子の化合物であるのに対して、T3サイトの含有割合が高いポリシルセスキオキサン化合物は比較的高分子の化合物であり、分子鎖の運動は制限される。
 また、残存する反応性基(-OR)の数から示されるように、T1サイトやT2サイトの含有割合が高いポリシルセスキオキサン化合物は十分な反応性を有しているのに対して、T3サイトの含有割合が高いポリシルセスキオキサン化合物は反応性に劣る傾向がある。
When synthesizing the polysilsesquioxane compound (A), immediately after the start of the reaction, the product contains a large amount of T1 sites and T2 sites, but as the reaction progresses, the amount of these sites decreases and gradually decreases. The amount of T3 sites increases.
Therefore, the polysilsesquioxane compound having a high content of T1 site and T2 site is a relatively low molecular weight compound, whereas the polysilsesquioxane compound having a high content of T3 site is a relatively high molecular weight compound. It is a compound of the above, and the movement of the molecular chain is restricted.
Further, as shown by the number of remaining reactive groups (-OR 3 ), the polysilsesquioxane compound having a high content ratio of T1 site and T2 site has sufficient reactivity. , Polysilsesquioxane compounds having a high T3 site content tend to be inferior in reactivity.
 ポリシルセスキオキサン化合物(A)は、上記要件1を満たすものである。
 すなわち、ポリシルセスキオキサン化合物(A)は、繰り返し単位(1)と繰り返し単位(2)の合計量に対して、繰り返し単位(1)の量が80~100mol%のものである。
 本発明の硬化性組成物は、要件1を満たすポリシルセスキオキサン化合物を含有するため、屈折率が高いものとなる。
 より高い屈折率の硬化性組成物が得られることから、繰り返し単位(1)の量は、繰り返し単位(1)と繰り返し単位(2)の合計量に対して、92~100mol%が好ましく、98~100mol%がより好ましく、100mol%が特に好ましい。
The polysilsesquioxane compound (A) satisfies the above requirement 1.
That is, the polysilsesquioxane compound (A) has an amount of the repeating unit (1) of 80 to 100 mol% with respect to the total amount of the repeating unit (1) and the repeating unit (2).
Since the curable composition of the present invention contains a polysilsesquioxane compound satisfying Requirement 1, it has a high refractive index.
Since a curable composition having a higher refractive index can be obtained, the amount of the repeating unit (1) is preferably 92 to 100 mol% with respect to the total amount of the repeating unit (1) and the repeating unit (2), 98. ~ 100 mol% is more preferable, and 100 mol% is particularly preferable.
 要件1を満たすポリシルセスキオキサン化合物(A)は、繰り返し単位(2)をほとんど含まない、又は、全く含まないものである。したがって、要件1を満たすポリシルセスキオキサン化合物は、繰り返し単位(2)に起因する特性をほとんど有しないと考えられる。
 すなわち、硬化性組成物が、要件1を満たすポリシルセスキオキサン化合物を含有することで、その硬化物にクラックが発生したり、硬化物の接着性が劣ったりするおそれがある。
 後述するように、本発明は、要件2を満たすこと、及び(C)成分を利用することにより、これらの問題を解決するものである。
The polysilsesquioxane compound (A) satisfying Requirement 1 contains little or no repeating unit (2). Therefore, it is considered that the polysilsesquioxane compound satisfying the requirement 1 has almost no characteristics due to the repeating unit (2).
That is, when the curable composition contains the polysilsesquioxane compound satisfying the requirement 1, cracks may occur in the cured product or the adhesiveness of the cured product may be deteriorated.
As will be described later, the present invention solves these problems by satisfying Requirement 2 and utilizing the component (C).
 ポリシルセスキオキサン化合物(A)中の、繰り返し単位(1)や繰り返し単位(2)の割合は、例えば、ポリシルセスキオキサン化合物(A)の29Si-NMRを測定することにより求めることができる。
 ポリシルセスキオキサン化合物(A)は、アセトン等のケトン系溶媒;ベンゼン等の芳香族炭化水素系溶媒;ジメチルスルホキシド等の含硫黄系溶媒;テトラヒドロフラン等のエーテル系溶媒;酢酸エチル等のエステル系溶媒;クロロホルム等の含ハロゲン系溶媒;及びこれらの2種以上からなる混合溶媒;等の各種有機溶媒に可溶である。このため、これらの溶媒を用いて、ポリシルセスキオキサン化合物(A)の溶液状態での29Si-NMRを測定することができる。
The ratio of the repeating unit (1) and the repeating unit (2) in the polysilsesquioxane compound (A) can be determined, for example, by measuring 29 Si-NMR of the polysilsesquioxane compound (A). Can be done.
The polysilsesquioxane compound (A) is a ketone solvent such as acetone; an aromatic hydrocarbon solvent such as benzene; a sulfur-containing solvent such as dimethyl sulfoxide; an ether solvent such as tetrahydrofuran; an ester solvent such as ethyl acetate. It is soluble in various organic solvents such as a solvent; a halogen-containing solvent such as chloroform; and a mixed solvent composed of two or more of these. Therefore, using these solvents, 29 Si-NMR in a solution state of the polysilsesquioxane compound (A) can be measured.
 ポリシルセスキオキサン化合物(A)は、上記要件2を満たすものである。
 すなわち、ポリシルセスキオキサン化合物(A)は、T1サイト、T2サイト、及びT3サイトの合計量に対して、前記T2サイトの量が、30~70mol%のものであり、T2サイトを比較的多く含む。
 本発明の硬化性組成物は、上記要件1を満たすポリシルセスキオキサン化合物を含有するものであり、繰り返し単位(2)に起因する効果をほとんど利用することができない。
 しかしながら、要件1を満たすポリシルセスキオキサン化合物が、要件2を満たすことで、本発明の硬化性組成物の硬化物は、クラックが発生しにくいものとなる。
The polysilsesquioxane compound (A) satisfies the above requirement 2.
That is, the amount of the T2 site of the polysilsesquioxane compound (A) is 30 to 70 mol% with respect to the total amount of the T1 site, the T2 site, and the T3 site, and the T2 site is relatively large. Including many.
The curable composition of the present invention contains a polysilsesquioxane compound satisfying the above requirement 1, and the effect caused by the repeating unit (2) can hardly be utilized.
However, when the polysilsesquioxane compound satisfying the requirement 1 satisfies the requirement 2, the cured product of the curable composition of the present invention is less likely to be cracked.
 すなわち、上記要件1を満たし、かつ、T1サイトを多く含むポリシルセスキオキサン化合物を含有する硬化性組成物は、硬化する際に、加水分解反応や縮合反応が過度に起き、硬化収縮により、その硬化物中にクラックが発生しやすくなる。
 また、上記要件1を満たし、かつ、T3サイトを多く含むポリシルセスキオキサン化合物は、比較的高分子の化合物であり、運動性に劣るものであるため、そのようなポリシルセスキオキサン化合物を含有する硬化性組成物の硬化物は、残留応力が生じやすく、クラックが発生しやすくなる。
That is, a curable composition containing a polysilsesquioxane compound that satisfies the above requirement 1 and contains a large amount of T1 sites undergoes an excessive hydrolysis reaction or condensation reaction when cured, resulting in curing shrinkage. Cracks are likely to occur in the cured product.
Further, since the polysilsesquioxane compound that satisfies the above requirement 1 and contains a large amount of T3 sites is a relatively high molecular weight compound and is inferior in motility, such a polysilsesquioxane compound Residual stress is likely to occur in the cured product of the curable composition containing the above, and cracks are likely to occur.
 一方、T2サイトを多く含むポリシルセスキオキサン化合物を含有する硬化性組成物は、加水分解反応や縮合反応を過度に起こすことなく硬化し得るものであるため、その硬化物中にクラックが発生しにくい。
 また、T2サイトを多く含むポリシルセスキオキサン化合物は、それほど分子量が高くなく適度な運動性を有するものであるため、T2サイトを多く含むポリシルセスキオキサン化合物を含有する硬化性組成物の硬化物は、残留応力が生じにくく、クラックが発生しにくい。
 更に、T2サイトを多く含むポリシルセスキオキサン化合物を用いることで、硬化性組成物の硬化物の接着性が向上する傾向がある。
On the other hand, a curable composition containing a polysilsesquioxane compound containing a large amount of T2 sites can be cured without excessively causing a hydrolysis reaction or a condensation reaction, so that cracks occur in the cured product. It's hard to do.
Further, since the polysilsesquioxane compound containing a large amount of T2 sites does not have a very high molecular weight and has appropriate motility, a curable composition containing a polysilsesquioxane compound containing a large amount of T2 sites Residual stress is less likely to occur in the cured product, and cracks are less likely to occur.
Further, by using a polysilsesquioxane compound containing a large amount of T2 sites, the adhesiveness of the cured product of the curable composition tends to be improved.
 上記の効果が得られ易いことから、T1サイト、T2サイト、及びT3サイトの合計量に対するT2サイトの量は、30~70mol%であり、好ましくは35~66mol%、より好ましくは40~62mol%であり、より更に好ましくは45~58mol%である。 Since the above effects can be easily obtained, the amount of T2 sites with respect to the total amount of T1 sites, T2 sites, and T3 sites is 30 to 70 mol%, preferably 35 to 66 mol%, and more preferably 40 to 62 mol%. It is even more preferably 45 to 58 mol%.
 また、T1サイト、T2サイト、及びT3サイトの合計量に対するT1サイトの量は、好ましくは0~40mol%、より好ましくは0~30mol%であり、より更に好ましくは0~20mol%であり、より更に好ましくは0~10mol%である。
 ポリシルセスキオキサン化合物(A)がT1サイトを適度に含むことで、硬化性により優れる硬化性組成物を得ることができる。
 また、T1サイト、T2サイト、及びT3サイトの合計量に対するT3サイトの量は、好ましくは10~80mol%、より好ましくは20~70mol%であり、より更に好ましくは30~50mol%である。
 ポリシルセスキオキサン化合物(A)がT3サイトを適度に含むことで、硬化する際の縮合反応によって生じる副生成物の発生を抑制することができる。
The amount of T1 sites relative to the total amount of T1 sites, T2 sites, and T3 sites is preferably 0 to 40 mol%, more preferably 0 to 30 mol%, even more preferably 0 to 20 mol%, and more. More preferably, it is 0 to 10 mol%.
When the polysilsesquioxane compound (A) appropriately contains T1 sites, a curable composition having better curability can be obtained.
The amount of T3 sites relative to the total amount of T1 sites, T2 sites, and T3 sites is preferably 10 to 80 mol%, more preferably 20 to 70 mol%, and even more preferably 30 to 50 mol%.
When the polysilsesquioxane compound (A) appropriately contains T3 sites, it is possible to suppress the generation of by-products generated by the condensation reaction during curing.
 T1サイト、T2サイト、及びT3サイトの含有割合は、ポリシルセスキオキサン化合物(A)の溶液状態での29Si-NMRを測定することにより求めることができる。
 例えば、測定溶媒としてアセトンを使用し、内部標準としてTMS(テトラメチルシラン)を使用した場合、式(a-3)~(a-6)において、Gがフェニル基のTサイト中のケイ素原子に由来するシグナルは、T1サイトで-65~-58ppm、T2サイトで-74~-65ppm、T3サイトで-82~-75ppmに観測され、式(a-3)~(a-6)において、Gがメチル基のTサイト中のケイ素原子に由来するシグナルは、T1サイトで-50~-46ppm、T2サイトで-61~-52ppm、T3サイトで-70~-61ppmに観測される。
The content ratios of the T1 site, the T2 site, and the T3 site can be determined by measuring 29 Si-NMR in the solution state of the polysilsesquioxane compound (A).
For example, when acetone is used as the measurement solvent and TMS (tetramethylsilane) is used as the internal standard, in the formulas (a-3) to (a-6), G becomes a silicon atom in the T site of the phenyl group. The resulting signal was observed at -65 to -58 ppm at the T1 site, -74 to -65 ppm at the T2 site, and -82 to -75 ppm at the T3 site. Signals derived from silicon atoms in the T site of the methyl group are observed at -50 to -46 ppm at the T1 site, -61 to -52 ppm at the T2 site, and -70 to -61 ppm at the T3 site.
 ポリシルセスキオキサン化合物(A)の質量平均分子量(Mw)は、好ましくは500~3,000、より好ましくは550~2,650、更に好ましくは600~2,300であり、より更に好ましくは650~2,000である。質量平均分子量(Mw)が上記範囲内にあるポリシルセスキオキサン化合物(A)を用いることで、硬化後にクラックが生じにくい硬化性組成物が得られ易くなる。 The mass average molecular weight (Mw) of the polysilsesquioxane compound (A) is preferably 500 to 3,000, more preferably 550 to 2,650, still more preferably 600 to 2,300, and even more preferably. It is 650 to 2,000. By using the polysilsesquioxane compound (A) having a mass average molecular weight (Mw) within the above range, it becomes easy to obtain a curable composition in which cracks are less likely to occur after curing.
 ポリシルセスキオキサン化合物(A)の分子量分布(Mw/Mn)は特に限定されないが、通常1.0~10.0、好ましくは1.1~6.0であり、より好ましくは1.1~4.0である。分子量分布(Mw/Mn)が上記範囲内にあるポリシルセスキオキサン化合物(A)を用いることで、耐熱性及び接着性により優れる硬化物を与える硬化性組成物が得られ易くなる。
 質量平均分子量(Mw)及び数平均分子量(Mn)は、例えば、テトラヒドロフラン(THF)を溶媒とするゲル・パーミエーション・クロマトグラフィー(GPC)による標準ポリスチレン換算値として求めることができる。
The molecular weight distribution (Mw / Mn) of the polysilsesquioxane compound (A) is not particularly limited, but is usually 1.0 to 10.0, preferably 1.1 to 6.0, and more preferably 1.1. ~ 4.0. By using the polysilsesquioxane compound (A) having a molecular weight distribution (Mw / Mn) within the above range, it becomes easy to obtain a curable composition that gives a cured product having better heat resistance and adhesiveness.
The mass average molecular weight (Mw) and the number average molecular weight (Mn) can be determined, for example, as standard polystyrene-equivalent values by gel permeation chromatography (GPC) using tetrahydrofuran (THF) as a solvent.
 ポリシルセスキオキサン化合物(A)中の繰り返し単位(1)と繰り返し単位(2)の合計量は、ポリシルセスキオキサン化合物(A)の全繰り返し単位中、好ましくは90~100mol%、より好ましくは95~100mol%、更に好ましくは98~100mol%である。 The total amount of the repeating unit (1) and the repeating unit (2) in the polysilsesquioxane compound (A) is preferably 90 to 100 mol%, more preferably 90 to 100 mol% in all the repeating units of the polysilsesquioxane compound (A). It is preferably 95 to 100 mol%, more preferably 98 to 100 mol%.
 ポリシルセスキオキサン化合物(A)の25℃における屈折率(nD)は、好ましくは1.500~1.600であり、より好ましくは1.505~1.590であり、より更に好ましくは1.510~1.580である。
 ポリシルセスキオキサン化合物(A)の25℃における屈折率(nD)が、1.500~1.600の範囲内であることで、屈折率が高い硬化性組成物や硬化物が得られ易くなる。
 ポリシルセスキオキサン化合物(A)の屈折率(nD)は、アッベ屈折計を用いて測定することができる。
The refractive index (nD) of the polysilsesquioxane compound (A) at 25 ° C. is preferably 1.500 to 1.600, more preferably 1.505 to 1.590, and even more preferably 1. It is .510 to 1.580.
When the refractive index (nD) of the polysilsesquioxane compound (A) at 25 ° C. is in the range of 1.500 to 1.600, it is easy to obtain a curable composition or a cured product having a high refractive index. Become.
The refractive index (nD) of the polysilsesquioxane compound (A) can be measured using an Abbe refractometer.
 本発明において、ポリシルセスキオキサン化合物(A)は1種単独で、あるいは2種以上を組み合わせて用いることができる。 In the present invention, the polysilsesquioxane compound (A) can be used alone or in combination of two or more.
 ポリシルセスキオキサン化合物(A)の合成方法は特に限定されない。例えば、下記式(a-7)で示されるシラン化合物(1)の少なくとも1種を重縮合させることにより、ポリシルセスキオキサン化合物(A)を合成することができる。 The method for synthesizing the polysilsesquioxane compound (A) is not particularly limited. For example, the polysilsesquioxane compound (A) can be synthesized by polycondensing at least one of the silane compounds (1) represented by the following formula (a-7).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
(式中、Rは前記と同じ意味を表す。Rは炭素数1~10のアルキル基を表し、Xはハロゲン原子を表し、pは0~3の整数を表す。複数のR、及び複数のXは、それぞれ、互いに同一であっても、相異なっていてもよい。) (In the formula, R 1 has the same meaning as described above. R 4 represents an alkyl group having 1 to 10 carbon atoms, X 1 represents a halogen atom, and p represents an integer of 0 to 3. Multiple R 4 and a plurality of X 1 are each, be the same as each other, may be different from each other.)
 また、式(a-7)で示されるシラン化合物(1)の少なくとも1種と、下記式(a-8)で示されるシラン化合物(2)の少なくとも1種を重縮合させることにより、ポリシルセスキオキサン化合物(A)を合成することができる。 Further, by polycondensing at least one of the silane compound (1) represented by the formula (a-7) and at least one of the silane compound (2) represented by the following formula (a-8), the polysil The sesquioxane compound (A) can be synthesized.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
(式中、Rは前記と同じ意味を表す。Rは炭素数1~10のアルキル基を表し、Xはハロゲン原子を表し、qは0~3の整数を表す。複数のR、及び複数のXは、それぞれ、互いに同一であっても、相異なっていてもよい。) (In the formula, R 2 has the same meaning as described above. R 5 represents an alkyl group having 1 to 10 carbon atoms, X 2 represents a halogen atom, and q represents an integer of 0 to 3. Multiple R 5 and a plurality of X 2 may, respectively, be the same as each other, may be different from each other.)
 R、Rの「炭素数1~10のアルキル基」としては、Rの「炭素数1~10のアルキル基」として示したものと同様のものが挙げられる。
 X、Xのハロゲン原子としては、塩素原子、及び臭素原子等が挙げられる。
Examples of the “alkyl group having 1 to 10 carbon atoms” of R 4 and R 5 include those similar to those shown as the “alkyl group having 1 to 10 carbon atoms” of R 3.
Examples of the halogen atom of X 1 and X 2 include a chlorine atom and a bromine atom.
 シラン化合物(1)の具体例としては、
 フェニルトリメトキシシラン、フェニルトリエトキシシラン等の無置換のアリールトリアルコキシシラン化合物類;
 フェニルクロロジメトキシシラン、フェニルクロロジエトキシシラン、フェニルジクロロメトキシシラン、フェニルジクロロエトキシシラン等の無置換のアリールハロゲノアルコキシシラン化合物類;
 フェニルトリクロロシラン等の無置換のアリールトリハロゲノシラン化合物類;
 4-メチルフェニルトリメトキシシラン、4-メトキシフェニルトリメトキシシラン、4-クロロフェニルトリメトキシシラン、4-メチルフェニルトリエトキシシラン、4-メトキシフェニルトリエトキシシラン、4-クロロフェニルトリエトキシシラン等の置換基を有するアリールトリアルコキシシラン化合物類;
 4-メチルフェニルクロロジメトキシシラン、4-メトキシフェニルクロロジメトキシシラン、4-クロロフェニルクロロジメトキシシラン、4-メチルフェニルジクロロメトキシシラン、4-メトキシフェニルジクロロメトキシシラン、4-クロロフェニルジクロロメトキシシラン等の置換基を有するアリールハロゲノアルコキシシラン化合物類;
 4-メチルフェニルトリクロロシラン、4-メトキシフェニルトリクロロシラン、4-クロロフェニルトリクロロシラン等の置換基を有するアリールトリハロゲノシラン化合物類;等が挙げられる。
 これらのシラン化合物(1)は、1種単独で、あるいは2種以上を組み合わせて用いることができる。
As a specific example of the silane compound (1),
Unsubstituted aryltrialkoxysilane compounds such as phenyltrimethoxysilane and phenyltriethoxysilane;
Unsubstituted arylhalogenoalkoxysilane compounds such as phenylchlorodimethoxysilane, phenylchlorodiethoxysilane, phenyldichloromethoxysilane, and phenyldichloroethoxysilane;
Unsubstituted aryltrihalogenosilane compounds such as phenyltrichlorosilane;
Substituents such as 4-methylphenyltrimethoxysilane, 4-methoxyphenyltrimethoxysilane, 4-chlorophenyltrimethoxysilane, 4-methylphenyltriethoxysilane, 4-methoxyphenyltriethoxysilane, 4-chlorophenyltriethoxysilane, etc. Aryltrialkoxysilane compounds having;
Substituents such as 4-methylphenylchlorodimethoxysilane, 4-methoxyphenylchlorodimethoxysilane, 4-chlorophenylchlorodimethoxysilane, 4-methylphenyldichloromethoxysilane, 4-methoxyphenyldichloromethoxysilane, 4-chlorophenyldichloromethoxysilane Arylhalogenoalkoxysilane compounds having;
Aryltrihalogenosilane compounds having a substituent such as 4-methylphenyltrichlorosilane, 4-methoxyphenyltrichlorosilane, 4-chlorophenyltrichlorosilane; and the like can be mentioned.
These silane compounds (1) can be used alone or in combination of two or more.
 シラン化合物(2)の具体例としては、
 メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリプロポキシシラン等の無置換のアルキルトリアルコキシシラン化合物類;
 メチルクロロジメトキシシラン、メチルクロロジエトキシシラン、メチルジクロロメトキシシラン、メチルブロモジメトキシシラン、エチルクロロジメトキシシラン、エチルクロロジエトキシシラン、エチルジクロロメトキシシラン、エチルブロモジメトキシシラン等の無置換のアルキルハロゲノアルコキシシラン化合物類;
 メチルトリクロロシラン、メチルトリブロモシラン、エチルトリクロロシラン、エチルトリブロモシラン等の無置換のアルキルトリハロゲノシラン化合物類;
 2-シアノエチルトリメトキシシラン、3-クロロプロピルトリメトキシシラン、2-シアノエチルトリエトキシシラン、3-クロロプロピルトリエトキシシラン等の置換基を有するアルキルトリアルコキシシラン化合物類;
 2-シアノエチルクロロジメトキシシラン、3-クロロプロピルクロロジメトキシシラン、2-シアノエチルクロロジエトキシシラン、3-クロロプロピルクロロジエトキシシラン、2-シアノエチルジクロロメトキシシラン、3-クロロプロピルジクロロメトキシシラン、2-シアノエチルジクロロエトキシシラン、3-クロロプロピルジクロロエトキシシラン等の置換基を有するアルキルハロゲノアルコキシシラン化合物類;
 2-シアノエチルトリクロロシラン、3-クロロプロピルトリクロロシラン等の置換基を有するアルキルトリハロゲノシラン化合物類;等が挙げられる。
 これらのシラン化合物(2)は、1種単独で、あるいは2種以上を組み合わせて用いることができる。
As a specific example of the silane compound (2),
Unsubstituted alkyltrialkoxysilane compounds such as methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, ethyltripropoxysilane;
Unsubstituted alkylhalogenoalkoxysilanes such as methylchlorodimethoxysilane, methylchlorodiethoxysilane, methyldichloromethoxysilane, methylbromodimethoxysilane, ethylchlorodimethoxysilane, ethylchlorodiethoxysilane, ethyldichloromethoxysilane, and ethylbromodimethoxysilane. Compounds;
Unsubstituted alkyltrihalogenosilane compounds such as methyltrichlorosilane, methyltribromosilane, ethyltrichlorosilane, and ethyltribromosilane;
Alkoxytrialkoxysilane compounds having substituents such as 2-cyanoethyltrimethoxysilane, 3-chloropropyltrimethoxysilane, 2-cyanoethyltriethoxysilane, and 3-chloropropyltriethoxysilane;
2-Cyanoethyl chlorodimethoxysilane, 3-chloropropylchlorodimethoxysilane, 2-cyanoethylchlorodiethoxysilane, 3-chloropropylchlorodiethoxysilane, 2-cyanoethyldichloromethoxysilane, 3-chloropropyldichloromethoxysilane, 2-cyanoethyl Alkylhalogenoalkoxysilane compounds having substituents such as dichloroethoxysilane and 3-chloropropyldichloroethoxysilane;
Alkyltrihalogenosilane compounds having a substituent such as 2-cyanoethyltrichlorosilane and 3-chloropropyltrichlorosilane; and the like can be mentioned.
These silane compounds (2) can be used alone or in combination of two or more.
 前記シラン化合物を重縮合させる方法は特に限定されない。例えば、溶媒中、又は無溶媒で、シラン化合物に、所定量の重縮合触媒を添加し、所定温度で撹拌する方法が挙げられる。より具体的には、(a)シラン化合物に、所定量の酸触媒を添加し、所定温度で撹拌する方法、(b)シラン化合物に、所定量の塩基触媒を添加し、所定温度で撹拌する方法、(c)シラン化合物に、所定量の酸触媒を添加し、所定温度で撹拌した後、過剰量の塩基触媒を添加して、反応系を塩基性とし、所定温度で撹拌する方法等が挙げられる。
 これらの中でも、目的とするポリシルセスキオキサン化合物(A)を効率よく得ることができることから、(a)の方法が好ましい。
The method for polycondensing the silane compound is not particularly limited. For example, a method of adding a predetermined amount of a polycondensation catalyst to a silane compound in a solvent or without a solvent and stirring at a predetermined temperature can be mentioned. More specifically, (a) a method of adding a predetermined amount of an acid catalyst to a silane compound and stirring at a predetermined temperature, and (b) adding a predetermined amount of a base catalyst to a silane compound and stirring at a predetermined temperature. Method, (c) A method of adding a predetermined amount of acid catalyst to a silane compound and stirring at a predetermined temperature, and then adding an excess amount of a base catalyst to make the reaction system basic and stirring at a predetermined temperature, etc. Can be mentioned.
Among these, the method (a) is preferable because the target polysilsesquioxane compound (A) can be efficiently obtained.
 用いる重縮合触媒は、酸触媒及び塩基触媒のいずれであってもよい。また、2以上の重縮合触媒を組み合わせて用いてもよいが、少なくとも酸触媒を用いることが好ましい。
 酸触媒としては、リン酸、塩酸、ホウ酸、硫酸、硝酸等の無機酸;クエン酸、酢酸、メタンスルホン酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸等の有機酸;等が挙げられる。これらの中でも、リン酸、塩酸、ホウ酸、硫酸、クエン酸、酢酸、及びメタンスルホン酸から選ばれる少なくとも1種が好ましい。
The polycondensation catalyst used may be either an acid catalyst or a base catalyst. Further, two or more polycondensation catalysts may be used in combination, but at least an acid catalyst is preferably used.
Examples of the acid catalyst include inorganic acids such as phosphoric acid, hydrochloric acid, boric acid, sulfuric acid and nitric acid; and organic acids such as citric acid, acetic acid, methanesulfonic acid, trifluoromethanesulfonic acid, benzenesulfonic acid and p-toluenesulfonic acid; Can be mentioned. Among these, at least one selected from phosphoric acid, hydrochloric acid, boric acid, sulfuric acid, citric acid, acetic acid, and methanesulfonic acid is preferable.
 塩基触媒としては、アンモニア水;トリメチルアミン、トリエチルアミン、リチウムジイソプロピルアミド、リチウムビス(トリメチルシリル)アミド、ピリジン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、アニリン、ピコリン、1,4-ジアザビシクロ[2.2.2]オクタン、イミダゾール等の有機塩基;水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム等の有機水酸化物;ナトリウムメトキシド、ナトリウムエトキシド、ナトリウムt-ブトキシド、カリウムt-ブトキシド等の金属アルコキシド;水素化ナトリウム、水素化カルシウム等の金属水素化物;水酸化ナトリウム、水酸化カリウム、水酸化カルシウム等の金属水酸化物;炭酸ナトリウム、炭酸カリウム、炭酸マグネシウム等の金属炭酸塩;炭酸水素ナトリウム、炭酸水素カリウム等の金属炭酸水素塩;等が挙げられる。 As the base catalyst, aqueous ammonia; trimethylamine, triethylamine, lithium diisopropylamide, lithium bis (trimethylsilyl) amide, pyridine, 1,8-diazabicyclo [5.4.0] -7-undecene, aniline, picolin, 1,4- Diazabicyclo [2.2.2] Organic bases such as octane and imidazole; Organic hydroxides such as tetramethylammonium hydroxide and tetraethylammonium hydroxide; sodium methoxydone, sodium alkoxide, sodium t-butoxide, potassium t-butoxide Metal alkoxides such as; metal hydrides such as sodium hydride and calcium hydride; metal hydroxides such as sodium hydroxide, potassium hydroxide and calcium hydroxide; metal carbonates such as sodium carbonate, potassium carbonate and magnesium carbonate; Metallic hydrogen carbonates such as sodium hydrogen carbonate and potassium hydrogen carbonate; and the like.
 重縮合触媒の使用量は、シラン化合物の総mol量に対して、通常、0.05~10mol%、好ましくは0.1~5mol%の範囲である。 The amount of the polycondensation catalyst used is usually in the range of 0.05 to 10 mol%, preferably 0.1 to 5 mol%, based on the total mol amount of the silane compound.
 重縮合時に溶媒を用いる場合、用いる溶媒は、シラン化合物の種類等に応じて、適宜選択することができる。例えば、水;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、プロピオン酸メチル等のエステル類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;メチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、イソブチルアルコール、s-ブチルアルコール、t-ブチルアルコール等のアルコール類;等が挙げられる。これらの溶媒は1種単独で、あるいは2種以上を組み合わせて用いることができる。 When a solvent is used at the time of polycondensation, the solvent to be used can be appropriately selected according to the type of the silane compound and the like. For example, water; aromatic hydrocarbons such as benzene, toluene and xylene; esters such as methyl acetate, ethyl acetate, propyl acetate, butyl acetate and methyl propionate; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone. ; Alcohols such as methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, s-butyl alcohol, t-butyl alcohol; and the like. These solvents can be used alone or in combination of two or more.
 溶媒の使用量は、シラン化合物の総モル量1モル当たり、0.1リットル以上10リットル以下、好ましくは0.1リットル以上2リットル以下である。 The amount of the solvent used is 0.1 liter or more and 10 liters or less, preferably 0.1 liter or more and 2 liters or less, per 1 mol of the total molar amount of the silane compound.
 シラン化合物を重縮合させるときの温度は、通常0℃から用いる溶媒の沸点までの温度範囲、好ましくは20℃以上100℃以下の範囲である。反応温度があまりに低いと重縮合反応の進行が不十分となる場合がある。一方、反応温度が高くなりすぎるとゲル化抑制が困難となる。反応は、通常30分から30時間で完結する。 The temperature at which the silane compound is polycondensed is usually in the temperature range from 0 ° C. to the boiling point of the solvent used, preferably in the range of 20 ° C. or higher and 100 ° C. or lower. If the reaction temperature is too low, the progress of the polycondensation reaction may be insufficient. On the other hand, if the reaction temperature becomes too high, it becomes difficult to suppress gelation. The reaction is usually complete in 30 minutes to 30 hours.
 式(a-7)で示される化合物を大量に用いて反応を行う場合、分子量が大きい重合体は得られにくい。そして、長時間反応を行っても、T2サイトを残したまま、分子量を増やすことは困難である。
 また、本発明の効果を得るためには、ポリシルセスキオキサン化合物(A)の分子量はあまり大きくないほうが好ましい。
 したがって、ポリシルセスキオキサン化合物(A)を合成するためには、上記のように、シラン化合物に、所定量の酸触媒を添加し、所定温度で撹拌し、比較的短時間で反応を終えることが好ましい。
When the reaction is carried out using a large amount of the compound represented by the formula (a-7), it is difficult to obtain a polymer having a large molecular weight. Then, even if the reaction is carried out for a long time, it is difficult to increase the molecular weight while leaving the T2 site.
Further, in order to obtain the effect of the present invention, it is preferable that the molecular weight of the polysilsesquioxane compound (A) is not so large.
Therefore, in order to synthesize the polysilsesquioxane compound (A), as described above, a predetermined amount of acid catalyst is added to the silane compound, the mixture is stirred at a predetermined temperature, and the reaction is completed in a relatively short time. Is preferable.
 上記方法により、ポリシルセスキオキサン化合物(A)を合成する際、シラン化合物(1)のOR又はXや、シラン化合物(2)のOR又はXのうち、脱アルコール等が起こらなかった部分は、ポリシルセスキオキサン化合物(A)中に残存する。このため、ポリシルセスキオキサン化合物(A)中に、前記式(a-5)で示される繰り返し単位以外に、前記式(a-3)、式(a-4)で示される繰り返し単位が含まれることがある。 When the polysilsesquioxane compound (A) is synthesized by the above method, dealcoholization or the like occurs among OR 4 or X 1 of the silane compound (1) and OR 5 or X 2 of the silane compound (2). The absent portion remains in the polysilsesquioxane compound (A). Therefore, in the polysilsesquioxane compound (A), in addition to the repeating unit represented by the formula (a-5), the repeating unit represented by the formulas (a-3) and (a-4) is contained. May be included.
〔(C)成分〕
 本発明の硬化性組成物を構成する(C)成分は、シランカップリング剤である。
 本発明の硬化性組成物は、上記要件1を満たすポリシルセスキオキサン化合物を含有するものであり、繰り返し単位(2)に起因する効果をほとんど利用することができない。
 しかしながら、本発明の硬化性組成物は、要件1を満たすポリシルセスキオキサン化合物とともに(C)成分を含有するものであるため、本発明の硬化性組成物の硬化物は、常温時や高温時における接着性に優れたものとなる。
[Component (C)]
The component (C) constituting the curable composition of the present invention is a silane coupling agent.
The curable composition of the present invention contains a polysilsesquioxane compound satisfying the above requirement 1, and the effect caused by the repeating unit (2) can hardly be utilized.
However, since the curable composition of the present invention contains the component (C) together with the polysilsesquioxane compound satisfying the requirement 1, the cured product of the curable composition of the present invention is at room temperature or at a high temperature. It has excellent adhesiveness over time.
 シランカップリング剤とは、ケイ素原子と、官能基と、前記ケイ素原子に結合した加水分解性基とを有するシラン化合物をいう。
 官能基とは、他の化合物(主に有機物)と反応性を有する基をいい、例えば、アミノ基、置換アミノ基、イソシアネート基、ウレイド基、イソシアヌレート骨格を有する基等の窒素原子を有する基;酸無水物基(酸無水物構造を有する基);ビニル基;アリル基;エポキシ基;(メタ)アクリル基;メルカプト基;等が挙げられる。
 本発明において、シランカップリング剤は、1種単独で、あるいは2種以上を組み合わせて用いることができる。
The silane coupling agent refers to a silane compound having a silicon atom, a functional group, and a hydrolyzable group bonded to the silicon atom.
The functional group means a group having a reactivity with another compound (mainly an organic substance), for example, a group having a nitrogen atom such as an amino group, a substituted amino group, an isocyanate group, a ureido group, and a group having an isocyanurate skeleton. An acid anhydride group (a group having an acid anhydride structure); a vinyl group; an allyl group; an epoxy group; a (meth) acrylic group; a mercapto group; and the like.
In the present invention, the silane coupling agent can be used alone or in combination of two or more.
 シランカップリング剤の含有量は、ポリシルセスキオキサン化合物(A)100質量部に対して、好ましくは0.1~70質量部であり、より好ましくは1~60質量部、更に好ましくは5~55質量部であり、より更に好ましくは10~50質量部であり、特に好ましくは15~45質量部である。
 シランカップリング剤の含有量が上記範囲内である硬化性組成物を用いることで、常温時や高温時における接着性により優れた硬化物を形成することができる。
The content of the silane coupling agent is preferably 0.1 to 70 parts by mass, more preferably 1 to 60 parts by mass, and further preferably 5 with respect to 100 parts by mass of the polysilsesquioxane compound (A). It is ~ 55 parts by mass, more preferably 10 to 50 parts by mass, and particularly preferably 15 to 45 parts by mass.
By using a curable composition in which the content of the silane coupling agent is within the above range, a cured product having better adhesiveness at room temperature or high temperature can be formed.
 シランカップリング剤としては、分子内に窒素原子を有するシランカップリング剤や、分子内に酸無水物構造を有するシランカップリング剤が好ましく、分子内にイソシアヌレート構造を有するシランカップリング剤や、分子内にコハク酸無水物構造を有するシランカップリング剤が更に好ましい。 As the silane coupling agent, a silane coupling agent having a nitrogen atom in the molecule, a silane coupling agent having an acid anhydride structure in the molecule, a silane coupling agent having an isocyanurate structure in the molecule, and a silane coupling agent are preferable. A silane coupling agent having an succinic anhydride structure in the molecule is more preferable.
 分子内に窒素原子を有するシランカップリング剤としては、例えば、下記式(c-1)で表されるトリアルコキシシラン化合物、式(c-2)で表されるジアルコキシアルキルシラン化合物又はジアルコキシアリールシラン化合物等が挙げられる。 Examples of the silane coupling agent having a nitrogen atom in the molecule include a trialkoxysilane compound represented by the following formula (c-1), a dialkoxyalkylsilane compound represented by the formula (c-2), or dialkoxy. Examples thereof include arylsilane compounds.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 上記式中、Rは、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、t-ブトキシ基等の炭素数1~6のアルコキシ基を表す。複数のR同士は同一であっても相異なっていてもよい。
 Rは、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基等の炭素数1~6のアルキル基;又は、フェニル基、4-クロロフェニル基、4-メチルフェニル基、1-ナフチル基等の、置換基を有する、又は置換基を有さないアリール基;を表す。
In the above formulas, R a represents a methoxy group, an ethoxy group, n- propoxy group, isopropoxy group, n- butoxy group, an alkoxy group having 1 to 6 carbon atoms such as t- butoxy. A plurality of R a each other may be different from each be the same.
R b is an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group and a t-butyl group; or a phenyl group, a 4-chlorophenyl group and a 4-. Represents an aryl group having or not having a substituent, such as a methylphenyl group or a 1-naphthyl group.
 Rは、窒素原子を有する、炭素数1~10の有機基を表す。また、Rは、更に他のケイ素原子を含む基と結合していてもよい。
 Rの炭素数1~10の有機基の具体例としては、N-2-(アミノエチル)-3-アミノプロピル基、3-アミノプロピル基、N-(1,3-ジメチル-ブチリデン)アミノプロピル基、3-ウレイドプロピル基、N-フェニル-アミノプロピル基等が挙げられる。
R c represents an organic group having 1 to 10 carbon atoms and having a nitrogen atom. Further, R c may be bonded to a group containing another silicon atom.
Specific examples of the organic group having 1 to 10 carbon atoms R c is, N-2- (aminoethyl) -3-aminopropyl group, 3-aminopropyl group, N-(1,3-dimethyl - butylidene) amino Examples thereof include a propyl group, a 3-ureidopropyl group and an N-phenyl-aminopropyl group.
 上記式(c-1)又は(c-2)で表される化合物のうち、Rが、他のケイ素原子を含む基と結合した有機基である場合の化合物としては、イソシアヌレート骨格を介して他のケイ素原子と結合してイソシアヌレート系シランカップリング剤を構成するものや、ウレア骨格を介して他のケイ素原子と結合してウレア系シランカップリング剤を構成するものが挙げられる。 Of the above formula (c-1) or compounds represented by (c-2), as the compound when R c is an organic group bonded with groups containing other silicon atoms, via an isocyanurate skeleton Examples thereof include those that combine with other silicon atoms to form an isocyanurate-based silane coupling agent, and those that combine with other silicon atoms via a urea skeleton to form a urea-based silane coupling agent.
 これらの中でも、分子内に窒素原子を有するシランカップリング剤としては、接着性により優れる硬化物が得られ易いことから、イソシアヌレート系シランカップリング剤、及びウレア系シランカップリング剤が好ましく、更に、分子内に、ケイ素原子に結合したアルコキシ基を4以上有するものが好ましい。
 ケイ素原子に結合したアルコキシ基を4以上有するとは、同一のケイ素原子に結合したアルコキシ基と、異なるケイ素原子に結合したアルコキシ基との総合計数が4以上という意味である。
Among these, as the silane coupling agent having a nitrogen atom in the molecule, an isocyanurate-based silane coupling agent and a urea-based silane coupling agent are preferable because a cured product having better adhesiveness can be easily obtained. , It is preferable that the molecule has 4 or more alkoxy groups bonded to a silicon atom.
Having 4 or more alkoxy groups bonded to a silicon atom means that the total count of the alkoxy groups bonded to the same silicon atom and the alkoxy groups bonded to different silicon atoms is 4 or more.
 ケイ素原子に結合したアルコキシ基を4以上有するイソシアヌレート系シランカップリング剤としては、下記式(c-3)で表される化合物が挙げられる。ケイ素原子に結合したアルコキシ基を4以上有するウレア系シランカップリング剤としては、下記式(c-4)で表される化合物が挙げられる。 Examples of the isocyanurate-based silane coupling agent having 4 or more alkoxy groups bonded to a silicon atom include a compound represented by the following formula (c-3). Examples of the urea-based silane coupling agent having 4 or more alkoxy groups bonded to a silicon atom include a compound represented by the following formula (c-4).
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 式中、Rは上記と同じ意味を表す。t1~t5はそれぞれ独立して、1~10の整数を表し、1~6の整数であるのが好ましく、3であるのが特に好ましい。 In the formula, Ra has the same meaning as above. Each of t1 to t5 independently represents an integer of 1 to 10, preferably an integer of 1 to 6, and particularly preferably 3.
 これらの中でも、分子内に窒素原子を有するシランカップリング剤としては、1,3,5-N-トリス(3-トリメトキシシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-トリエトキシシリルプロピル)イソシアヌレート(以下、「イソシアヌレート化合物」という。)、N,N’-ビス(3-トリメトキシシリルプロピル)ウレア、N,N’-ビス(3-トリエトキシシリルプロピル)ウレア(以下、「ウレア化合物」という。)、及び、上記イソシアヌレート化合物とウレア化合物との組み合わせを用いるのが好ましい。 Among these, 1,3,5-N-tris (3-trimethoxysilylpropyl) isocyanurate and 1,3,5-N-tris (3-) are examples of the silane coupling agent having a nitrogen atom in the molecule. Triethoxysilylpropyl) isocyanurate (hereinafter referred to as "isocyanurate compound"), N, N'-bis (3-trimethoxysilylpropyl) urea, N, N'-bis (3-triethoxysilylpropyl) urea (Hereinafter referred to as "urea compound"), and a combination of the above isocyanurate compound and urea compound is preferably used.
 本発明の硬化性組成物が分子内に窒素原子を有するシランカップリング剤を含有する場合、その含有量は特に限定されないが、その量は、上記(A)成分と分子内に窒素原子を有するシランカップリング剤の質量比〔(A)成分:分子内に窒素原子を有するシランカップリング剤〕で、好ましくは100:0.1~100:65、より好ましくは100:0.3~100:60、より好ましくは100:1~100:50、更に好ましくは100:3~100:40、特に好ましくは100:5~100:35となる量である。
 このような割合で(A)成分及び分子内に窒素原子を有するシランカップリング剤を含有する硬化性組成物の硬化物は、耐熱性及び接着性により優れたものになる。
When the curable composition of the present invention contains a silane coupling agent having a nitrogen atom in the molecule, the content thereof is not particularly limited, but the amount thereof has the nitrogen atom in the molecule with the component (A) described above. The mass ratio of the silane coupling agent [(A component: silane coupling agent having a nitrogen atom in the molecule], preferably 100: 0.1 to 100: 65, more preferably 100: 0.3 to 100: The amount is 60, more preferably 100: 1 to 100: 50, still more preferably 100: 3 to 100: 40, and particularly preferably 100: 5 to 100: 35.
The cured product of the curable composition containing the component (A) and the silane coupling agent having a nitrogen atom in the molecule at such a ratio becomes excellent in heat resistance and adhesiveness.
 分子内に酸無水物構造を有するシランカップリング剤は、一つの分子中に、酸無水物構造を有する基と、加水分解性基の両者を併せ持つ有機ケイ素化合物である。具体的には下記式(c-5)で表される化合物が挙げられる。 A silane coupling agent having an acid anhydride structure in a molecule is an organosilicon compound having both a group having an acid anhydride structure and a hydrolyzable group in one molecule. Specific examples thereof include compounds represented by the following formula (c-5).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 式中、Qは酸無水物構造を有する基を表し、Rは炭素数1~6のアルキル基、又は、置換基を有する、若しくは置換基を有さないフェニル基を表し、Rは炭素数1~6のアルコキシ基又はハロゲン原子を表し、i、kは1~3の整数を表し、jは0~2の整数を表し、i+j+k=4である。jが2であるとき、R同士は同一であっても相異なっていてもよい。kが2又は3のとき、複数のR同士は同一であっても相異なっていてもよい。iが2又は3のとき、複数のQ同士は同一であっても相異なっていてもよい。
 Qとしては、下記式
Wherein, Q represents a group having an acid anhydride structure, R d represents an alkyl group, or have a substituent, or having no substituent phenyl group having 1 to 6 carbon atoms, R e is a carbon It represents an alkoxy group or a halogen atom of the number 1 to 6, i and k represent an integer of 1 to 3, j represents an integer of 0 to 2, and i + j + k = 4. When j is 2, R ds may be the same or different from each other. when k is 2 or 3, among a plurality of R e may be different from each be the same. When i is 2 or 3, a plurality of Qs may be the same or different from each other.
As Q, the following formula
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
(式中、hは0~10の整数を表す。)で表される基等が挙げられ、(Q1)で表される基が特に好ましい。 (In the formula, h represents an integer of 0 to 10) and the like, and the group represented by (Q1) is particularly preferable.
 分子内に酸無水物構造を有するシランカップリング剤としては、2-(トリメトキシシリル)エチル無水コハク酸、2-(トリエトキシシリル)エチル無水コハク酸、3-(トリメトキシシリル)プロピル無水コハク酸、3-(トリエトキシシリル)プロピル無水コハク酸等の、トリ(炭素数1~6)アルコキシシリル(炭素数2~8)アルキル無水コハク酸;
2-(ジメトキシメチルシリル)エチル無水コハク酸等の、ジ(炭素数1~6)アルコキシメチルシリル(炭素数2~8)アルキル無水コハク酸;
2-(メトキシジメチルシリル)エチル無水コハク酸等の、(炭素数1~6)アルコキシジメチルシリル(炭素数2~8)アルキル無水コハク酸;
Examples of the silane coupling agent having an acid anhydride structure in the molecule include 2- (trimethoxysilyl) ethyl succinic anhydride, 2- (triethoxysilyl) ethyl anhydride succinic anhydride, and 3- (trimethoxysilyl) propyl succinic anhydride. Tri (1 to 6 carbon atoms) alkoxysilyl (2 to 8 carbon atoms) alkyl succinic anhydride, such as acid, 3- (triethoxysilyl) propyl succinic anhydride;
Di (1 to 6 carbon atoms) alkoxymethylsilyl (2 to 8 carbon atoms) alkyl succinic anhydride, such as 2- (dimethoxymethylsilyl) ethyl succinic anhydride;
2- (Methoxydimethylsilyl) ethyl succinic anhydride, etc. (1 to 6 carbon atoms) alkoxydimethylsilyl (2 to 8 carbon atoms) alkyl succinic anhydride;
2-(トリクロロシリル)エチル無水コハク酸、2-(トリブロモシリル)エチル無水コハク酸等の、トリハロゲノシリル(炭素数2~8)アルキル無水コハク酸;
2-(ジクロロメチルシリル)エチル無水コハク酸等の、ジハロゲノメチルシリル(炭素数2~8)アルキル無水コハク酸;
2-(クロロジメチルシリル)エチル無水コハク酸等の、ハロゲノジメチルシリル(炭素数2~8)アルキル無水コハク酸;等が挙げられる。
Trihalogenosilyl (2-8 carbon atoms) alkyl succinic anhydride, such as 2- (trichlorosilyl) ethyl succinic anhydride, 2- (tribromosilyl) ethyl succinic anhydride;
Dihalogenomethylsilyl (2-8 carbon atoms) alkyl succinic anhydride, such as 2- (dichloromethylsilyl) ethyl succinic anhydride;
Examples thereof include halogenodimethylsilyl (2 to 8 carbon atoms) alkyl succinic anhydride, such as 2- (chlorodimethylsilyl) ethyl succinic anhydride.
 これらの中でも、分子内に酸無水物構造を有するシランカップリング剤としては、トリ(炭素数1~6)アルコキシシリル(炭素数2~8)アルキル無水コハク酸が好ましく、3-(トリメトキシシリル)プロピル無水コハク酸又は3-(トリエトキシシリル)プロピル無水コハク酸が特に好ましい。 Among these, as the silane coupling agent having an acid anhydride structure in the molecule, tri (1 to 6 carbon atoms) alkoxysilyl (2 to 8 carbon atoms) alkyl succinic anhydride is preferable, and 3- (trimethoxysilyl) is preferable. ) Succinic anhydride or 3- (triethoxysilyl) propyl succinic anhydride is particularly preferred.
 本発明の硬化性組成物が分子内に酸無水物構造を有するシランカップリング剤を含有する場合、その含有量は特に限定されないが、その量は、上記(A)成分と分子内に酸無水物構造を有するシランカップリング剤の質量比〔(A)成分:分子内に酸無水物構造を有するシランカップリング剤〕で、好ましくは100:0.1~100:30、より好ましくは100:0.3~100:20、より好ましくは100:0.5~100:15、更に好ましくは100:1~100:10となる量である。
 このような割合で(A)成分及び分子内に酸無水物構造を有するシランカップリング剤を含有する硬化性組成物の硬化物は、接着性により優れたものになる。
When the curable composition of the present invention contains a silane coupling agent having an acid anhydride structure in the molecule, the content thereof is not particularly limited, but the amount thereof is acid anhydride in the above component (A) and the molecule. The mass ratio of the silane coupling agent having a physical structure [(A component: silane coupling agent having an acid anhydride structure in the molecule], preferably 100: 0.1 to 100:30, more preferably 100: The amount is 0.3 to 100: 20, more preferably 100: 0.5 to 100: 15, and even more preferably 100: 1 to 100:10.
The cured product of the curable composition containing the component (A) and the silane coupling agent having an acid anhydride structure in the molecule at such a ratio becomes more excellent in adhesiveness.
〔硬化性組成物〕
 本発明の硬化性組成物は、(A)成分と(C)成分の合計量が、硬化性組成物の固形分中50~100質量%であることが好ましく、70~100質量%であることがより好ましい。
 本発明において、「固形分」とは、硬化性組成物中の溶媒以外の成分をいう。
[Curable composition]
In the curable composition of the present invention, the total amount of the component (A) and the component (C) is preferably 50 to 100% by mass, preferably 70 to 100% by mass, based on the solid content of the curable composition. Is more preferable.
In the present invention, the "solid content" refers to a component other than the solvent in the curable composition.
 本発明の硬化性組成物は、(B)成分として、平均一次粒子径が、5nm以上、40nm以下の微粒子(以下、「微粒子(B)」と記載することがある。)を含有してもよい。
 微粒子(B)を含有する硬化性組成物は、塗布工程における作業性に優れる。
 この効果がより得られ易いことから、微粒子(B)の平均一次粒子径は、好ましくは5~30nm、より好ましくは5~20nmである。
The curable composition of the present invention may contain fine particles having an average primary particle diameter of 5 nm or more and 40 nm or less (hereinafter, may be referred to as “fine particles (B)”) as the component (B). Good.
The curable composition containing the fine particles (B) is excellent in workability in the coating process.
Since this effect is more easily obtained, the average primary particle size of the fine particles (B) is preferably 5 to 30 nm, more preferably 5 to 20 nm.
 微粒子(B)の平均一次粒子径は、透過型電子顕微鏡を用いて微粒子の形状を観察することにより求められる。 The average primary particle size of the fine particles (B) is determined by observing the shape of the fine particles using a transmission electron microscope.
 微粒子(B)の材質としては、金属;金属酸化物;鉱物;炭酸カルシウム、炭酸マグネシウム等の金属炭酸塩;硫酸カルシウム、硫酸バリウム等の金属硫酸塩;水酸化アルミニウム等の金属水酸化物;珪酸アルミニウム、珪酸カルシウム、珪酸マグネシウム等の金属珪酸塩;シリカ等の無機成分;シリコーン;アクリル系重合体等の有機成分;等が挙げられる。
 また、用いる微粒子(B)は表面が修飾されたものであってもよい。
The materials of the fine particles (B) include metals; metal oxides; minerals; metal carbonates such as calcium carbonate and magnesium carbonate; metal sulfates such as calcium sulfate and barium sulfate; metal hydroxides such as aluminum hydroxide; silicic acid. Examples thereof include metal silicates such as aluminum, calcium silicate and magnesium silicate; inorganic components such as silica; silicones; organic components such as acrylic polymers; and the like.
Further, the fine particles (B) used may have a modified surface.
 微粒子(B)は1種単独で、あるいは2種以上を組み合わせて用いることができる。
 本発明の硬化性組成物が微粒子(B)〔(B)成分〕を含有する場合、(B)成分の含有量は特に限定されないが、その量は、上記(A)成分と(B)成分の質量比〔(A)成分:(B)成分〕で、好ましくは100:0.1~100:90、より好ましくは100:0.2~100:60、より好ましくは100:0.3~100:50、より好ましくは100:0.5~100:40、より好ましくは100:0.8~100:30となる量である。(B)成分を上記範囲で用いることにより、(B)成分を加える効果をより発現することができる。
The fine particles (B) can be used alone or in combination of two or more.
When the curable composition of the present invention contains fine particles (B) [(B) component], the content of the (B) component is not particularly limited, but the amounts thereof are the above-mentioned (A) component and (B) component. [(A) component: (B) component], preferably 100: 0.1 to 100: 90, more preferably 100: 0.2 to 100: 60, and more preferably 100: 0.3 to. The amount is 100:50, more preferably 100: 0.5 to 100:40, and more preferably 100: 0.8 to 100:30. By using the component (B) in the above range, the effect of adding the component (B) can be further exhibited.
 本発明の硬化性組成物は、本発明の目的を阻害しない範囲で、その他の成分を含有してもよい。
 その他の成分としては、酸化防止剤、紫外線吸収剤、光安定剤等が挙げられる。
The curable composition of the present invention may contain other components as long as the object of the present invention is not impaired.
Examples of other components include antioxidants, ultraviolet absorbers, light stabilizers and the like.
 酸化防止剤は、加熱時の酸化劣化を防止するために添加される。酸化防止剤としては、リン系酸化防止剤、フェノール系酸化防止剤、硫黄系酸化防止剤等が挙げられる。 Antioxidants are added to prevent oxidative deterioration during heating. Examples of the antioxidant include phosphorus-based antioxidants, phenol-based antioxidants, sulfur-based antioxidants, and the like.
 リン系酸化防止剤としては、ホスファイト類、オキサホスファフェナントレンオキサイド類等が挙げられる。フェノール系酸化防止剤としては、モノフェノール類、ビスフェノール類、高分子型フェノール類等が挙げられる。硫黄系酸化防止剤としては、ジラウリル-3,3’-チオジプロピオネート、ジミリスチル-3,3’-チオジプロピオネート、ジステアリル-3,3’-チオジプロピオネート等が挙げられる。 Examples of phosphorus-based antioxidants include phosphites, oxaphosphaphenanthrene oxides, and the like. Examples of the phenolic antioxidant include monophenols, bisphenols, and high molecular weight phenols. Examples of the sulfur-based antioxidant include dilauryl-3,3'-thiodipropionate, dimyristyl-3,3'-thiodipropionate, disstearyl-3,3'-thiodipropionate and the like.
 これらの酸化防止剤は1種単独で、あるいは2種以上を組み合わせて用いることができる。酸化防止剤の含有量は特に限定されないが、(A)成分に対して、通常10質量%以下である。 These antioxidants can be used alone or in combination of two or more. The content of the antioxidant is not particularly limited, but is usually 10% by mass or less with respect to the component (A).
 紫外線吸収剤は、得られる硬化物の耐光性を向上させる目的で添加される。
 紫外線吸収剤としては、サリチル酸類、ベンゾフェノン類、ベンゾトリアゾール類、ヒンダードアミン類等が挙げられる。
 紫外線吸収剤は1種単独で、あるいは2種以上を組み合わせて用いることができる。紫外線吸収剤の含有量は特に限定されないが、(A)成分に対して、通常10質量%以下である。
The UV absorber is added for the purpose of improving the light resistance of the obtained cured product.
Examples of the ultraviolet absorber include salicylic acids, benzophenones, benzotriazoles, hindered amines and the like.
The ultraviolet absorber may be used alone or in combination of two or more. The content of the ultraviolet absorber is not particularly limited, but is usually 10% by mass or less with respect to the component (A).
 光安定剤は、得られる硬化物の耐光性を向上させる目的で添加される。
 光安定剤としては、例えば、ポリ[{6-(1,1,3,3,-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル}{(2,2,6,6-テトラメチル-4-ピペリジン)イミノ}ヘキサメチレン{(2,2,6,6-テトラメチル-4-ピペリジン)イミノ}]等のヒンダードアミン類等が挙げられる。
 これらの光安定剤は1種単独で、あるいは2種以上を組み合わせて用いることができる。光安定剤の含有量は、(A)成分に対して、通常20質量%以下である。
The light stabilizer is added for the purpose of improving the light resistance of the obtained cured product.
Examples of the light stabilizer include poly [{6- (1,1,3,3-tetramethylbutyl) amino-1,3,5-triazine-2,4-diyl} {(2,2,6). , 6-Tetramethyl-4-piperidin) imino} Hexamethylene {(2,2,6,6-tetramethyl-4-piperidine) imino}] and other hindered amines.
These light stabilizers can be used alone or in combination of two or more. The content of the light stabilizer is usually 20% by mass or less with respect to the component (A).
 本発明の硬化性組成物は、希釈剤を含有してもよい。希釈剤は、本発明の硬化性組成物の成分を溶解又は分散し得るものであれば特に限定されない。希釈剤は1種類でもよいし、2種類以上を併用してもよい。 The curable composition of the present invention may contain a diluent. The diluent is not particularly limited as long as it can dissolve or disperse the components of the curable composition of the present invention. One type of diluent may be used, or two or more types may be used in combination.
 本発明の硬化性組成物が希釈剤を含有する場合、その含有量は、固形分濃度が、好ましくは60質量%以上、100質量%未満、より好ましくは65~98質量%、より更に好ましくは70~95質量%になる量である。
 本発明に用いるポリシルセスキオキサン化合物(A)は、比較的分子量が小さいことが多い。そのようなポリシルセスキオキサン化合物(A)を含有する硬化性組成物においては、希釈剤を大量に含有しなくても(すなわち、固形分濃度が高くても)、良好な塗布性を有する。
 固形分濃度が高い硬化性組成物を用いる場合、塗膜の乾燥条件や、硬化条件を厳密に管理しなくても、硬化物には溶媒がほとんど含まれないため、一定の特性を有する硬化物を安定的に形成することができる。
When the curable composition of the present invention contains a diluent, the content thereof is preferably 60% by mass or more and less than 100% by mass, more preferably 65 to 98% by mass, and even more preferably. The amount is 70 to 95% by mass.
The polysilsesquioxane compound (A) used in the present invention often has a relatively small molecular weight. The curable composition containing such a polysilsesquioxane compound (A) has good coatability even if a large amount of diluent is not contained (that is, even if the solid content concentration is high). ..
When a curable composition having a high solid content concentration is used, the cured product contains almost no solvent even if the drying conditions and curing conditions of the coating film are not strictly controlled, so that the cured product has certain characteristics. Can be stably formed.
 本発明の硬化性組成物はポリシルセスキオキサン化合物(A)を含有するため、屈折率が高い。
 本発明の硬化性組成物の、25℃における屈折率(nD)は、通常1.500以上であり、好ましくは1.500~1.600、より好ましくは1.505~1.590であり、より更に好ましくは1.510~1.580である。
 硬化性組成物の屈折率(nD)は、実施例に記載の方法を用いて測定することができる。
Since the curable composition of the present invention contains the polysilsesquioxane compound (A), it has a high refractive index.
The refractive index (nD) of the curable composition of the present invention at 25 ° C. is usually 1.500 or more, preferably 1.500 to 1.600, and more preferably 1.505 to 1.590. Even more preferably, it is 1.510 to 1.580.
The refractive index (nD) of the curable composition can be measured using the method described in Examples.
 本発明の硬化性組成物は、例えば、上記(A)成分と(C)成分、及び、所望によりこれら以外の成分を所定割合で混合し、脱泡することにより調製することができる。
 混合方法、脱泡方法は特に限定されず、公知の方法を利用することができる。
The curable composition of the present invention can be prepared, for example, by mixing the above-mentioned component (A), component (C), and, if desired, components other than these in a predetermined ratio and defoaming.
The mixing method and defoaming method are not particularly limited, and known methods can be used.
2)硬化物
 本発明の硬化物は、本発明の硬化性組成物を硬化させて得られるものである。
 本発明の硬化性組成物を硬化させる方法としては加熱硬化が挙げられる。硬化させるときの加熱温度は、通常100~200℃であり、加熱時間は、通常10分から20時間、好ましくは30分から10時間である。
2) Cured product The cured product of the present invention is obtained by curing the curable composition of the present invention.
Examples of the method for curing the curable composition of the present invention include heat curing. The heating temperature at the time of curing is usually 100 to 200 ° C., and the heating time is usually 10 minutes to 20 hours, preferably 30 minutes to 10 hours.
 本発明の硬化物は、耐熱性及び接着性に優れるものである。
 本発明の硬化物がこれらの特性を有することは、例えば、次のようにして確認することができる。すなわち、シリコンチップのミラー面に、本発明の硬化性組成物を所定量塗布し、塗布面を被着体の上に載せ、圧着し、加熱処理して硬化させる。これを、予め所定温度(例えば、23℃、100℃)に加熱したボンドテスターの測定ステージ上に30秒間放置し、被着体から50μmの高さの位置より、接着面に対し水平方向(せん断方向)に応力をかけ、試験片と被着体との接着力を測定する。
The cured product of the present invention is excellent in heat resistance and adhesiveness.
It can be confirmed that the cured product of the present invention has these properties, for example, as follows. That is, a predetermined amount of the curable composition of the present invention is applied to the mirror surface of the silicon chip, the coated surface is placed on the adherend, pressure-bonded, and heat-treated to cure. This is left on the measurement stage of a bond tester preheated to a predetermined temperature (for example, 23 ° C., 100 ° C.) for 30 seconds, and from a position at a height of 50 μm from the adherend, in the horizontal direction (shearing) with respect to the adhesive surface. Apply stress in the direction) and measure the adhesive force between the test piece and the adherend.
 本発明の硬化物の接着力は、23℃において100N/4mm以上であることが好ましく、120N/4mm以上であることがより好ましい。
 本発明の硬化物の接着力は、100℃において40N/4mm以上であることが好ましく、45N/4mm以上であることがより好ましい。
 本明細書において、「4mm」とは、「2mm square」、すなわち、2mm×2mm(1辺が2mmの正方形)を意味する。
The adhesive strength of the cured product of the present invention is preferably 100 N / 4 mm 2 or more, and more preferably 120 N / 4 mm 2 or more at 23 ° C.
The adhesive strength of the cured product of the present invention is preferably 40 N / 4 mm 2 or more, and more preferably 45 N / 4 mm 2 or more at 100 ° C.
In the present specification, "4 mm 2 " means "2 mm square", that is, 2 mm × 2 mm (a square having a side of 2 mm).
 本発明の硬化物は、屈折率が高く、かつ、優れた接着性を有する。したがって、本発明の硬化物は、屈折率が高い接着剤層等として好ましく用いられる。
 本発明の硬化物の、25℃における屈折率(nD)は、通常1.500以上であり、好ましくは1.500~1.600、より好ましくは1.505~1.590であり、より更に好ましくは1.510~1.580である。
 硬化物の屈折率(nD)は、アッベ屈折計を用いて測定することができる。
The cured product of the present invention has a high refractive index and excellent adhesiveness. Therefore, the cured product of the present invention is preferably used as an adhesive layer having a high refractive index.
The refractive index (nD) of the cured product of the present invention at 25 ° C. is usually 1.500 or more, preferably 1.500 to 1.600, more preferably 1.505 to 1.590, and even more. It is preferably 1.510 to 1.580.
The refractive index (nD) of the cured product can be measured using an Abbe refractometer.
 上記特性を有することから、本発明の硬化物は、光素子固定材として好ましく用いられる。 Since it has the above characteristics, the cured product of the present invention is preferably used as an optical element fixing material.
3)硬化性組成物の使用方法
 本発明の方法は、本発明の硬化性組成物を、光素子固定材用接着剤又は光素子固定材用封止材として使用する方法である。
 光素子としては、LED、LD等の発光素子、受光素子、複合光素子、光集積回路等が挙げられる。
3) Method of using curable composition The method of the present invention is a method of using the curable composition of the present invention as an adhesive for an optical element fixing material or a sealing material for an optical element fixing material.
Examples of the optical element include a light emitting element such as an LED and an LD, a light receiving element, a composite optical element, and an optical integrated circuit.
〈光素子固定材用接着剤〉
 本発明の硬化性組成物は、光素子固定材用接着剤として好適に使用することができる。
 本発明の硬化性組成物を光素子固定材用接着剤として使用する方法としては、接着の対象とする材料(光素子とその基板等)の一方又は両方の接着面に該組成物を塗布し、圧着した後、加熱硬化させ、接着の対象とする材料同士を強固に接着させる方法が挙げられる。本発明の硬化性組成物の塗布量は、特に限定されず、硬化させることにより、接着の対象とする材料同士を強固に接着することができる量であればよい。通常、硬化性組成物の塗膜の厚みが0.5~5μm、好ましくは1~3μmとなる量である。
<Adhesive for optical element fixing material>
The curable composition of the present invention can be suitably used as an adhesive for an optical element fixing material.
As a method of using the curable composition of the present invention as an adhesive for an optical element fixing material, the composition is applied to one or both adhesive surfaces of a material to be adhered (optical element and its substrate, etc.). , A method of crimping and then heat-curing to firmly bond the materials to be bonded to each other can be mentioned. The amount of the curable composition of the present invention applied is not particularly limited as long as it can firmly bond the materials to be bonded to each other by curing. Usually, the thickness of the coating film of the curable composition is 0.5 to 5 μm, preferably 1 to 3 μm.
 光素子を接着するための基板材料としては、ソーダライムガラス、耐熱性硬質ガラス等のガラス類;セラミックス;サファイア;鉄、銅、アルミニウム、金、銀、白金、クロム、チタン及びこれらの金属の合金、ステンレス(SUS302、SUS304、SUS304L、SUS309等)等の金属類;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、エチレン-酢酸ビニル共重合体、ポリスチレン、ポリカーボネート、ポリメチルペンテン、ポリスルホン、ポリエーテルエーテルケトン、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリエーテルイミド、ポリイミド、ポリアミド、アクリル樹脂、ノルボルネン系樹脂、シクロオレフィン樹脂、ガラスエポキシ樹脂等の合成樹脂;等が挙げられる。 Substrate materials for adhering optical elements include glasses such as soda lime glass and heat-resistant hard glass; ceramics; sapphire; iron, copper, aluminum, gold, silver, platinum, chromium, titanium and alloys of these metals. , Stainless steel (SUS302, SUS304, SUS304L, SUS309, etc.); polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, ethylene-vinyl acetate copolymer, polystyrene, polycarbonate, polymethylpentene, polysulfone, polyetheretherketone , Polyethersulfone, polyphenylene sulfide, polyetherimide, polyimide, polyamide, acrylic resin, norbornene-based resin, cycloolefin resin, synthetic resin such as glass epoxy resin; and the like.
 加熱硬化させる際の加熱温度は、用いる硬化性組成物等にもよるが、通常100~200℃である。加熱時間は、通常10分から20時間、好ましくは30分から10時間である。 The heating temperature at the time of heat curing is usually 100 to 200 ° C., although it depends on the curable composition used and the like. The heating time is usually 10 minutes to 20 hours, preferably 30 minutes to 10 hours.
〈光素子固定材用封止材〉
 本発明の硬化性組成物は、光素子固定材用封止材として好適に用いることができる。
 本発明の硬化性組成物を光素子固定材用封止材として使用する方法としては、例えば、該組成物を所望の形状に成形して、光素子を内包した成形体を得た後、このものを加熱硬化させることにより、光素子封止体を製造する方法等が挙げられる。
 本発明の硬化性組成物を所望の形状に成形する方法としては、特に限定されるものではなく、通常のトランスファー成形法や、注型法等の公知のモールド法を採用できる。
<Encapsulating material for optical element fixing material>
The curable composition of the present invention can be suitably used as a sealing material for an optical element fixing material.
As a method of using the curable composition of the present invention as a sealing material for an optical element fixing material, for example, the composition is molded into a desired shape to obtain a molded body containing an optical element, and then this Examples thereof include a method of manufacturing an optical device encapsulant by heating and curing the material.
The method for molding the curable composition of the present invention into a desired shape is not particularly limited, and a known molding method such as a normal transfer molding method or a casting method can be adopted.
 加熱硬化させる際の加熱温度は、用いる硬化性組成物等にもよるが、通常、100~200℃である。加熱時間は、通常10分から20時間、好ましくは30分から10時間である。 The heating temperature at the time of heat curing depends on the curable composition used and the like, but is usually 100 to 200 ° C. The heating time is usually 10 minutes to 20 hours, preferably 30 minutes to 10 hours.
 得られる光素子封止体は、本発明の硬化性組成物を用いているので、耐熱性及び接着性に優れる。 Since the obtained optical element encapsulant uses the curable composition of the present invention, it is excellent in heat resistance and adhesiveness.
 以下、実施例を挙げて本発明を更に詳細に説明する。但し、本発明は、以下の実施例になんら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.
(平均分子量測定)
 ポリシルセスキオキサン化合物の質量平均分子量(Mw)及び数平均分子量(Mn)は、標準ポリスチレン換算値とし、以下の装置及び条件にて測定した。
 装置名:HLC-8220GPC、東ソー株式会社製
 カラム:TSKgelGMHXL、TSKgelGMHXL、及び、TSKgel2000HXLを順次連結したもの
 溶媒:テトラヒドロフラン
 注入量:20μl
 測定温度:40℃
 流速:0.6ml/分
 検出器:示差屈折計
(Measurement of average molecular weight)
The mass average molecular weight (Mw) and the number average molecular weight (Mn) of the polysilsesquioxane compound were measured in terms of standard polystyrene under the following equipment and conditions.
Device name: HLC-8220GPC, manufactured by Tosoh Corporation Columns: TSKgelGMHXL, TSKgelGMHXL, and TSKgel2000HXL are sequentially linked. Solvent: tetrahydrofuran Injection amount: 20 μl
Measurement temperature: 40 ° C
Flow velocity: 0.6 ml / min Detector: Differential refractometer
29Si-NMR測定)
 ポリシルセスキオキサン化合物の繰り返し単位とその量を調べるために、以下の条件で29Si-NMR測定を行った。
装置:ブルカー・バイオスピン社製 AV-500
29Si-NMR共鳴周波数:99.352MHz
プローブ:5mmφ溶液プローブ
測定温度:室温(25℃)
試料回転数:20kHz
測定法:インバースゲートデカップリング法
29Si フリップ角:90°
29Si 90°パルス幅:8.0μs
繰り返し時間:5s
積算回数:9200回
観測幅:30kHz
( 29 Si-NMR measurement)
In order to investigate the repeating unit of the polysilsesquioxane compound and its amount, 29 Si-NMR measurement was carried out under the following conditions.
Equipment: AV-500 manufactured by Bruker Biospin
29 Si-NMR resonance frequency: 99.352 MHz
Probe: 5 mmφ solution Probe measurement temperature: Room temperature (25 ° C)
Sample rotation speed: 20 kHz
Measurement method: inverse gate decoupling method
29 Si flip angle: 90 °
29 Si 90 ° pulse width: 8.0 μs
Repeat time: 5s
Number of integrations: 9200 observations Width: 30 kHz
29Si-NMR試料作製方法)
 緩和時間短縮のため、緩和試薬としてFe(acac)を添加し測定した。
ポリシルセスキオキサン化合物濃度:15質量%
Fe(acac)濃度:0.6質量%
測定溶媒:アセトン
内部標準:TMS
( 29 Si-NMR sample preparation method)
In order to shorten the relaxation time, Fe (acac) 3 was added as a relaxation reagent and the measurement was performed.
Polysilsesquioxane compound concentration: 15% by mass
Fe (acac) 3 concentration: 0.6% by mass
Measuring solvent: Acetone Internal standard: TMS
(波形処理解析)
 フーリエ変換後のスペクトルの各ピークについて、ピークトップの位置によりケミカルシフトを求め、以下の範囲で各ピークの積分を行った。得られた値をもとに、T1サイト、T2サイト、T3サイトの割合を算出した。
フェニル基を有するTサイト(T1:-65~-58ppm、T2:-74~-65ppm、T3:-82~-75ppm)
メチル基を有するTサイト(T1:-50~-46ppm、T2:-61~-52ppm、T3:-70~-61ppm)
(Waveform processing analysis)
For each peak of the spectrum after Fourier transform, the chemical shift was obtained from the position of the peak top, and the integration of each peak was performed in the following range. Based on the obtained values, the ratios of T1 site, T2 site, and T3 site were calculated.
T-site having a phenyl group (T1: -65 to -58 ppm, T2: -74 to -65 ppm, T3: -82 to -75 ppm)
T site having a methyl group (T1: -50 to -46 ppm, T2: -61 to -52 ppm, T3: -70 to -61 ppm)
(屈折率)
 多波長アッベ屈折計(株式会社アタゴ製、DR-M2)を用いて、25℃で、ポリシルセスキオキサン化合物の屈折率(nD)を測定した。
(Refractive index)
The refractive index (nD) of the polysilsesquioxane compound was measured at 25 ° C. using a multi-wavelength Abbe refractometer (DR-M2 manufactured by Atago Co., Ltd.).
(製造例1)
 300mlのナス型フラスコに、フェニルトリメトキシシラン28.91g(145.8mmol)を仕込んだ後、これを撹拌しながら、蒸留水7.874gに35質量%塩酸0.0376g(フェニルトリメトキシシランに対してHClが0.25mol%)を溶解した水溶液を加え、全容を30℃にて2時間、次いで70℃に昇温して5時間撹拌した。
 反応液を室温まで放冷した後、そこに、酢酸プロピル50g及び水100gを加えて分液処理を行い、反応生成物を含む有機層を得た。この有機層に硫酸マグネシウムを加えて乾燥処理を行った。硫酸マグネシウムを濾別除去した後、有機層をエバポレーターで濃縮し、次いで、得られた濃縮物を真空乾燥することにより、ポリシルセスキオキサン化合物(A1)を得た。
(Manufacturing Example 1)
After charging 28.91 g (145.8 mmol) of phenyltrimethoxysilane in a 300 ml eggplant-shaped flask, while stirring this, 0.0376 g of 35 mass% hydrochloric acid (relative to phenyltrimethoxysilane) was added to 7.874 g of distilled water. An aqueous solution in which 0.25 mol% of HCl was dissolved was added, and the whole volume was heated to 70 ° C. for 2 hours and then stirred for 5 hours.
After allowing the reaction solution to cool to room temperature, 50 g of propyl acetate and 100 g of water were added thereto to carry out a liquid separation treatment to obtain an organic layer containing a reaction product. Magnesium sulfate was added to this organic layer and dried. After removing magnesium sulfate by filtration, the organic layer was concentrated by an evaporator, and then the obtained concentrate was vacuum dried to obtain a polysilsesquioxane compound (A1).
(製造例2)
 製造例1において、フェニルトリメトキシシランに塩酸を加え、全容を30℃で2時間撹拌した。その後、70℃に昇温して5時間撹拌する工程を行わなかったこと以外は、製造例1と同様にしてポリシルセスキオキサン化合物(A2)を得た。
(Manufacturing Example 2)
In Production Example 1, hydrochloric acid was added to phenyltrimethoxysilane, and the whole volume was stirred at 30 ° C. for 2 hours. Then, the polysilsesquioxane compound (A2) was obtained in the same manner as in Production Example 1 except that the step of raising the temperature to 70 ° C. and stirring for 5 hours was not performed.
(製造例3)
 300mlのナス型フラスコに、フェニルトリメトキシシラン28.77g(145.1mmol)およびメチルトリエトキシシラン0.2675g(1.5mmol)を仕込んだ後、これを撹拌しながら、蒸留水8.24gに35質量%塩酸0.477g(シラン化合物全量に対してHClが3mol%)を溶解した水溶液を加え、全容を30℃にて2時間、次いで80℃に昇温して20時間撹拌した。
 反応液を室温まで放冷した後、製造例1と同様に分液、乾燥処理等を行うことにより、ポリシルセスキオキサン化合物(A3)を得た。
(Manufacturing Example 3)
28.77 g (145.1 mmol) of phenyltrimethoxysilane and 0.2675 g (1.5 mmol) of methyltriethoxysilane were charged in a 300 ml eggplant-shaped flask, and then 35 to 8.24 g of distilled water with stirring. An aqueous solution prepared by dissolving 0.477 g of mass% hydrochloric acid (3 mol% of HCl with respect to the total amount of the silane compound) was added, and the whole volume was heated to 80 ° C. for 2 hours and then stirred for 20 hours.
After allowing the reaction solution to cool to room temperature, the reaction solution was separated and dried in the same manner as in Production Example 1 to obtain a polysilsesquioxane compound (A3).
(製造例4)
 300mlのナス型フラスコに、フェニルトリメトキシシラン28.10g(141.7mmol)およびメチルトリエトキシシラン1.337g(7.5mmol)を仕込んだ後、これを撹拌しながら、蒸留水8.05gに35質量%塩酸0.466g(シラン化合物全量に対してHClが3mol%)を溶解した水溶液を加え、全容を30℃にて2時間、次いで80℃に昇温して20時間撹拌した。
 反応液を室温まで放冷した後、製造例1と同様に分液、乾燥処理等を行うことにより、ポリシルセスキオキサン化合物(A4)を得た。
(Manufacturing Example 4)
28.10 g (141.7 mmol) of phenyltrimethoxysilane and 1.337 g (7.5 mmol) of methyltriethoxysilane were charged in a 300 ml eggplant-shaped flask, and then 35 to 8.05 g of distilled water with stirring. An aqueous solution prepared by dissolving 0.466 g of mass% hydrochloric acid (3 mol% of HCl with respect to the total amount of the silane compound) was added, and the whole volume was heated to 80 ° C. for 2 hours and then stirred for 20 hours.
After allowing the reaction solution to cool to room temperature, the reaction solution was separated and dried in the same manner as in Production Example 1 to obtain a polysilsesquioxane compound (A4).
(製造例5)
 300mlのナス型フラスコに、フェニルトリメトキシシラン13.62g(68.7mmol)およびメチルトリエトキシシラン1.36g(6.3mmol)を仕込んだ後、これを撹拌しながら、蒸留水4.12gに35質量%塩酸0.02g(シラン化合物全量に対してHClが0.25mol%)を溶解した水溶液を加え、全容を30℃にて2時間、次いで80℃に昇温して20時間撹拌した。
 反応液を室温まで放冷した後、製造例1と同様に分液、乾燥処理等を行うことにより、ポリシルセスキオキサン化合物(A5)を得た。
(Manufacturing Example 5)
13.62 g (68.7 mmol) of phenyltrimethoxysilane and 1.36 g (6.3 mmol) of methyltriethoxysilane were charged in a 300 ml eggplant-shaped flask, and then 35 to 4.12 g of distilled water with stirring. An aqueous solution prepared by dissolving 0.02 g of mass% hydrochloric acid (0.25 mol% of HCl with respect to the total amount of the silane compound) was added, and the whole volume was heated to 80 ° C. for 2 hours and then stirred for 20 hours.
After allowing the reaction solution to cool to room temperature, the polysilsesquioxane compound (A5) was obtained by performing liquid separation, drying treatment and the like in the same manner as in Production Example 1.
(比較製造例1)
 300mlのナス型フラスコに、フェニルトリメトキシシラン14.455g(72.9mmol)を仕込んだ後、これを撹拌しながら、蒸留水3.937gに35質量%塩酸0.0188g(フェニルトリメトキシシランに対してHClが0.25mol%)を溶解した水溶液を加え、全容を30℃にて2時間、次いで70℃に昇温して22時間撹拌した。
 内容物の撹拌を継続しながら、そこに、酢酸プロピル15gと、28質量%アンモニア水0.0109g(フェニルトリエトキシシランに対して0.25mol%)を加え、80℃に昇温して20時間撹拌した。
 反応液を室温まで放冷した後、製造例1と同様に分液、乾燥処理等を行うことにより、ポリシルセスキオキサン化合物(A6)を得た。
(Comparative Manufacturing Example 1)
After charging 14.455 g (72.9 mmol) of phenyltrimethoxysilane in a 300 ml eggplant-shaped flask, 0.0188 g of 35 mass% hydrochloric acid (relative to phenyltrimethoxysilane) was added to 3.937 g of distilled water while stirring this. An aqueous solution in which 0.25 mol% of HCl was dissolved was added, and the whole volume was heated to 70 ° C. for 2 hours and then stirred for 22 hours.
While continuing to stir the contents, 15 g of propyl acetate and 0.0109 g of 28% by mass aqueous ammonia (0.25 mol% with respect to phenyltriethoxysilane) were added thereto, and the temperature was raised to 80 ° C. for 20 hours. Stirred.
After allowing the reaction solution to cool to room temperature, the polysilsesquioxane compound (A6) was obtained by performing liquid separation, drying treatment and the like in the same manner as in Production Example 1.
(参考製造例1)
 300mlのナス型フラスコに、フェニルトリメトキシシラン9.34g(47.1mmol)およびメチルトリエトキシシラン8.40g(47.1mmol)を仕込んだ後、これを撹拌しながら、蒸留水5.09gに35質量%塩酸0.025g(シラン化合物全量に対してHClが0.25mol%)を溶解した水溶液を加え、全容を30℃にて2時間、次いで80℃に昇温して20時間撹拌した。
 反応液を室温まで放冷した後、製造例1と同様に分液、乾燥処理等を行うことにより、ポリシルセスキオキサン化合物(A7)を得た。
(Reference manufacturing example 1)
After charging 9.34 g (47.1 mmol) of phenyltrimethoxysilane and 8.40 g (47.1 mmol) of methyltriethoxysilane in a 300 ml eggplant-shaped flask, 35 to 5.09 g of distilled water with stirring. An aqueous solution prepared by dissolving 0.025 g of mass% hydrochloric acid (0.25 mol% of HCl with respect to the total amount of the silane compound) was added, and the whole volume was heated to 80 ° C. for 2 hours and then stirred for 20 hours.
After allowing the reaction solution to cool to room temperature, the polysilsesquioxane compound (A7) was obtained by performing liquid separation, drying treatment and the like in the same manner as in Production Example 1.
(参考製造例2)
 300mlのナス型フラスコに、フェニルトリメトキシシラン12.55g(63.3mmol)およびメチルトリエトキシシラン4.83g(27.1mmol)を仕込んだ後、これを撹拌しながら、蒸留水4.88gに35質量%塩酸0.024g(シラン化合物全量に対してHClが0.25mol%)を溶解した水溶液を加え、全容を30℃にて2時間、次いで80℃に昇温して20時間撹拌した。
 内容物の撹拌を継続しながら、そこに、酢酸プロピル17gと、28質量%アンモニア水0.149g(フェニルトリエトキシシランに対して2.5mol%)を加え、80℃に昇温して20時間撹拌した。
 反応液を室温まで放冷した後、製造例1と同様に分液、乾燥処理等を行うことにより、ポリシルセスキオキサン化合物(A8)を得た。
(Reference manufacturing example 2)
12.55 g (63.3 mmol) of phenyltrimethoxysilane and 4.83 g (27.1 mmol) of methyltriethoxysilane were charged in a 300 ml eggplant-shaped flask, and the mixture was stirred to make 35 in 4.88 g of distilled water. An aqueous solution prepared by dissolving 0.024 g of mass% hydrochloric acid (0.25 mol% of HCl with respect to the total amount of the silane compound) was added, and the whole volume was heated to 80 ° C. for 2 hours and then stirred for 20 hours.
While continuing to stir the contents, 17 g of propyl acetate and 0.149 g of 28 mass% aqueous ammonia (2.5 mol% with respect to phenyltriethoxysilane) were added thereto, and the temperature was raised to 80 ° C. for 20 hours. Stirred.
After allowing the reaction solution to cool to room temperature, the reaction solution was separated and dried in the same manner as in Production Example 1 to obtain a polysilsesquioxane compound (A8).
 得られたポリシルセスキオキサン化合物(PSQ)の詳細を第1表に示す。 Table 1 shows the details of the obtained polysilsesquioxane compound (PSQ).
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 実施例、比較例、及び参考例で用いた化合物を以下に示す。 The compounds used in Examples, Comparative Examples, and Reference Examples are shown below.
(シランカップリング剤)
シランカップリング剤(C1):1,3,5-N-トリス〔3-(トリメトキシシリル)プロピル〕イソシアヌレート
シランカップリング剤(C2):3-(トリメトキシシリル)プロピルコハク酸無水物
(Silane coupling agent)
Silane Coupling Agent (C1): 1,3,5-N-Tris [3- (trimethoxysilyl) propyl] Isocyanurate Silane Coupling Agent (C2): 3- (Trimethoxysilyl) Propyl succinic anhydride
(フィラー)
シリカ微粒子:(日本アエロジル株式会社製、製品名「AEROSIL RX300」、平均一次粒子径:7nm、比表面積:210m/g)
(Filler)
Silica fine particles: (manufactured by Nippon Aerosil Co., Ltd., product name "AEROSIL RX300", average primary particle size: 7 nm, specific surface area: 210 m 2 / g)
(実施例1)
 ポリシルセスキオキサン化合物(A1)100質量部に、シリカ微粒子5質量部を加え、更に、ジエチレングリコールモノブチルエーテルアセテート:トリプロピレングリコール-n-ブチルエーテル=40:60(質量比)の混合溶剤を加え、全容を撹拌した。三本ロールミルによる分散処理後、シランカップリング剤(C1)30質量部、シランカップリング剤(C2)3質量部を加え、全容を十分に混合、脱泡することにより、固形分濃度が80質量%の硬化性組成物を得た。
(Example 1)
To 100 parts by mass of the polysilsesquioxane compound (A1), 5 parts by mass of silica fine particles were added, and further, a mixed solvent of diethylene glycol monobutyl ether acetate: tripropylene glycol-n-butyl ether = 40: 60 (mass ratio) was added. The whole was stirred. After the dispersion treatment with a three-roll mill, 30 parts by mass of the silane coupling agent (C1) and 3 parts by mass of the silane coupling agent (C2) are added, and the whole content is sufficiently mixed and defoamed to obtain a solid content concentration of 80 parts by mass. A curable composition of% was obtained.
(実施例2)
 実施例1において、シリカ微粒子の含有量を20質量部に変更し、更に混合溶剤量を変更したこと以外は、実施例1と同様にして、固形分濃度が80質量%の硬化性組成物を得た。
(Example 2)
A curable composition having a solid content concentration of 80% by mass was prepared in the same manner as in Example 1 except that the content of the silica fine particles was changed to 20 parts by mass and the amount of the mixed solvent was changed in Example 1. Obtained.
(実施例3)
 実施例1において、ポリシルセスキオキサン化合物(A1)に代えてポリシルセスキオキサン化合物(A2)を使用したことと、混合溶剤量を変更したこと以外は、実施例1と同様にして、固形分濃度が90質量%の硬化性組成物を得た。
(Example 3)
In Example 1, the same as in Example 1 except that the polysilsesquioxane compound (A2) was used instead of the polysilsesquioxane compound (A1) and the amount of the mixed solvent was changed. A curable composition having a solid content concentration of 90% by mass was obtained.
(実施例4)
 実施例3において、シリカ微粒子の含有量を0質量部に変更し、更に混合溶剤量を変更したこと以外は、実施例3と同様にして、固形分濃度が90質量%の硬化性組成物を得た。
(Example 4)
A curable composition having a solid content concentration of 90% by mass was prepared in the same manner as in Example 3 except that the content of the silica fine particles was changed to 0 parts by mass and the amount of the mixed solvent was changed in Example 3. Obtained.
(実施例5)
 実施例1において、ポリシルセスキオキサン化合物(A1)に代えてポリシルセスキオキサン化合物(A3)を使用したことと、混合溶剤量を変更したこと以外は、実施例1と同様にして、固形分濃度が82質量%の硬化性組成物を得た。
(Example 5)
In Example 1, the same as in Example 1 except that the polysilsesquioxane compound (A3) was used instead of the polysilsesquioxane compound (A1) and the amount of the mixed solvent was changed. A curable composition having a solid content concentration of 82% by mass was obtained.
(実施例6)
 実施例1において、ポリシルセスキオキサン化合物(A1)に代えてポリシルセスキオキサン化合物(A4)を使用したことと、混合溶剤量を変更したこと以外は、実施例1と同様にして、固形分濃度が82質量%の硬化性組成物を得た。
(Example 6)
In Example 1, the same as in Example 1 except that the polysilsesquioxane compound (A4) was used instead of the polysilsesquioxane compound (A1) and the amount of the mixed solvent was changed. A curable composition having a solid content concentration of 82% by mass was obtained.
(実施例7)
 実施例1において、ポリシルセスキオキサン化合物(A1)に代えてポリシルセスキオキサン化合物(A5)を使用したことと、混合溶剤量を変更したこと以外は、実施例1と同様にして、固形分濃度が80質量%の硬化性組成物を得た。
(Example 7)
In Example 1, the same as in Example 1 except that the polysilsesquioxane compound (A5) was used instead of the polysilsesquioxane compound (A1) and the amount of the mixed solvent was changed. A curable composition having a solid content concentration of 80% by mass was obtained.
(比較例1)
 実施例1において、ポリシルセスキオキサン化合物(A1)に代えてポリシルセスキオキサン化合物(A6)を使用したことと、シリカ微粒子の含有量を20質量部に変更し、更に混合溶剤量を変更したこと以外は、実施例1と同様にして、固形分濃度が80質量%の硬化性組成物を得た。
(Comparative Example 1)
In Example 1, the polysilsesquioxane compound (A6) was used instead of the polysilsesquioxane compound (A1), the content of the silica fine particles was changed to 20 parts by mass, and the amount of the mixed solvent was further increased. A curable composition having a solid content concentration of 80% by mass was obtained in the same manner as in Example 1 except for the modification.
(比較例2)
 実施例5において、シランカップリング剤(C1)とシランカップリング剤(C2)を使用しなかったこと以外は、実施例5と同様にして、固形分濃度が90質量%の硬化性組成物を得た。
(Comparative Example 2)
A curable composition having a solid content concentration of 90% by mass was prepared in the same manner as in Example 5 except that the silane coupling agent (C1) and the silane coupling agent (C2) were not used in Example 5. Obtained.
(参考例1)
 実施例1において、ポリシルセスキオキサン化合物(A1)に代えてポリシルセスキオキサン化合物(A7)を使用したこと以外は、実施例1と同様にして、固形分濃度が80質量%の硬化性組成物を得た。
(Reference example 1)
Curing with a solid content concentration of 80% by mass in the same manner as in Example 1 except that the polysilsesquioxane compound (A7) was used instead of the polysilsesquioxane compound (A1) in Example 1. A sex composition was obtained.
(参考例2)
 実施例1において、ポリシルセスキオキサン化合物(A1)に代えてポリシルセスキオキサン化合物(A8)を使用し、シリカ微粒子の含有量を20質量部に変更し、更に混合溶剤量を変更したこと以外は、実施例1と同様にして、固形分濃度が80質量%の硬化性組成物を得た。
(Reference example 2)
In Example 1, the polysilsesquioxane compound (A8) was used instead of the polysilsesquioxane compound (A1), the content of the silica fine particles was changed to 20 parts by mass, and the amount of the mixed solvent was further changed. Except for the above, a curable composition having a solid content concentration of 80% by mass was obtained in the same manner as in Example 1.
 実施例、比較例、及び参考例で得た硬化性組成物を用いて、それぞれ以下の測定、試験を行った。
〔屈折率測定〕
 多波長アッベ屈折計(株式会社アタゴ製、DR-M2)を用いて、25℃で、硬化性組成物の屈折率(nD)を測定した。
The following measurements and tests were carried out using the curable compositions obtained in Examples, Comparative Examples, and Reference Examples, respectively.
[Refractive index measurement]
The refractive index (nD) of the curable composition was measured at 25 ° C. using a multi-wavelength Abbe refractometer (DR-M2, manufactured by Atago Co., Ltd.).
〔耐クラック性評価〕
 一辺の長さが0.5mmの正方形のガラスチップのミラー面に、実施例及び比較例で得た硬化性組成物を、それぞれ、厚さが約2μmになるよう塗布し、塗布面を被着体(銀メッキ銅板)の上に載せ圧着した。その後、170℃で2時間加熱処理して硬化させて試験片付被着体を得た。なお、硬化性組成物1種につき、20個の試験片付被着体を作製した。走査型電子顕微鏡(キーエンス社製、VE-9800S)を用いてガラスチップからはみ出している樹脂部(フィレット部)を観察し、クラックを有するサンプルの数を数え、クラック発生率が0%以上25%未満を「A」、25%以上50%未満を「B」、50%以上100%以下を「C」と評価した。
[Evaluation of crack resistance]
The curable compositions obtained in Examples and Comparative Examples were applied to the mirror surface of a square glass chip having a side length of 0.5 mm so as to have a thickness of about 2 μm, and the coated surface was adhered. It was placed on the body (silver-plated copper plate) and crimped. Then, it was heat-treated at 170 ° C. for 2 hours and cured to obtain an adherend with a test piece. In addition, 20 test piece-attached adherends were prepared for each type of curable composition. Using a scanning electron microscope (VE-9800S manufactured by KEYENCE), observe the resin part (fillet part) protruding from the glass chip, count the number of samples with cracks, and the crack occurrence rate is 0% or more and 25%. Less than was evaluated as "A", 25% or more and less than 50% was evaluated as "B", and 50% or more and 100% or less was evaluated as "C".
〔接着強度評価〕
 一辺の長さが2mmの正方形(面積が4mm)のシリコンチップのミラー面に、実施例及び比較例で得た硬化性組成物を、それぞれ、厚さが約2μmになるように塗布し、塗布面を被着体(銀メッキ銅板)の上に載せ圧着した。その後、170℃で2時間加熱処理して硬化させて試験片付被着体を得た。この試験片付被着体を、予め所定温度(23℃、100℃)に加熱したボンドテスター(デイジ社製、シリーズ4000)の測定ステージ上に30秒間放置し、被着体から50μmの高さの位置より、スピード200μm/sで接着面に対し水平方向(せん断方向)に応力をかけ、23℃及び100℃における、試験片と被着体との接着力(N/4mm)を測定した。
[Adhesive strength evaluation]
The curable compositions obtained in Examples and Comparative Examples were applied to the mirror surface of a square (area 4 mm 2) silicon chip having a side length of 2 mm so as to have a thickness of about 2 μm. The coated surface was placed on an adherend (silver-plated copper plate) and crimped. Then, it was heat-treated at 170 ° C. for 2 hours and cured to obtain an adherend with a test piece. The adherend with the test piece was left on the measurement stage of a bond tester (manufactured by Daige Co., Ltd., Series 4000) preheated to a predetermined temperature (23 ° C., 100 ° C.) for 30 seconds, and the height was 50 μm from the adherend. Stress was applied to the adhesive surface in the horizontal direction (shear direction) at a speed of 200 μm / s, and the adhesive force (N / 4 mm 2 ) between the test piece and the adherend at 23 ° C and 100 ° C was measured. ..
 測定結果、評価結果を第2表に示す。 Table 2 shows the measurement results and evaluation results.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 上記実施例、比較例及び参考例から以下のことが分かる。
 実施例1~7の硬化性組成物は、繰り返し単位(1)の含有割合が高いポリシルセスキオキサン化合物を含有するため、屈折率が高い。
 同様に、比較例1の硬化性組成物もまた、繰り返し単位(1)の含有割合が高いポリシルセスキオキサン化合物を含有するため、屈折率が高い。
 しかしながら、比較例1で使用したポリシルセスキオキサン化合物(A6)は、T2サイトの割合が高くないため、比較例1の硬化性組成物の硬化物は耐クラック性に劣っている。
 また、実施例1~7の硬化性組成物は、シランカップリング剤を含有するため、繰り返し単位(1)の含有割合が高いポリシルセスキオキサン化合物を含有するものであっても、その硬化物は十分な接着強度を有している。
 一方、比較例2で得られた硬化性組成物は、シランカップリング剤を含有しないものであるため、その硬化物は十分な接着強度を有していない。
 なお、参考例1と参考例2の結果を比べると、繰り返し単位(1)の割合が低いと、硬化性組成物の屈折率が低くなることが分かるが、実施例1~7、参考例1の結果によれば、繰り返し単位(1)と繰り返し単位(2)の合計量に対して、繰り返し単位(1)の量が80~100mol%の範囲では、十分に高い屈折率を有すると考えられる。
The following can be seen from the above Examples, Comparative Examples and Reference Examples.
Since the curable compositions of Examples 1 to 7 contain the polysilsesquioxane compound having a high content ratio of the repeating unit (1), the refractive index is high.
Similarly, the curable composition of Comparative Example 1 also has a high refractive index because it contains a polysilsesquioxane compound having a high content ratio of the repeating unit (1).
However, since the polysilsesquioxane compound (A6) used in Comparative Example 1 does not have a high proportion of T2 sites, the cured product of the curable composition of Comparative Example 1 is inferior in crack resistance.
Further, since the curable compositions of Examples 1 to 7 contain a silane coupling agent, even if the curable compositions contain a polysilsesquioxane compound having a high content ratio of the repeating unit (1), the curing thereof. The object has sufficient adhesive strength.
On the other hand, since the curable composition obtained in Comparative Example 2 does not contain a silane coupling agent, the cured product does not have sufficient adhesive strength.
Comparing the results of Reference Example 1 and Reference Example 2, it can be seen that the refractive index of the curable composition decreases when the ratio of the repeating unit (1) is low, but Examples 1 to 7 and Reference Example 1 According to the results of, it is considered that the refractive index is sufficiently high when the amount of the repeating unit (1) is in the range of 80 to 100 mol% with respect to the total amount of the repeating unit (1) and the repeating unit (2). ..

Claims (11)

  1.  下記(A)成分、及び、(C)成分を含有する硬化性組成物。
    (A)成分:下記式(a-1)
    Figure JPOXMLDOC01-appb-C000001
    〔Rは、無置換の炭素数6~12のアリール基、又は、置換基を有する炭素数6~12のアリール基を表す。〕
    で示される繰り返し単位〔繰り返し単位(1)〕を有し、下記式(a-2)
    Figure JPOXMLDOC01-appb-C000002
    〔Rは、無置換の炭素数1~10のアルキル基、又は、置換基を有する炭素数1~10のアルキル基を表す。〕
    で示される繰り返し単位〔繰り返し単位(2)〕を有する又は有しないポリシルセスキオキサン化合物であって、下記要件1及び要件2を満たすことを特徴とするポリシルセスキオキサン化合物
    〔要件1〕
     繰り返し単位(1)と繰り返し単位(2)の合計量に対して、繰り返し単位(1)の量が80~100mol%である。
    〔要件2〕
     下記式(a-3)で示されるTサイト(T1サイト)、下記式(a-4)で示されるTサイト(T2サイト)、及び下記式(a-5)で示されるTサイト(T3サイト)の合計量に対して、前記T2サイトの量が、30~70mol%である。
    Figure JPOXMLDOC01-appb-C000003
    〔Gは、R又はRで表される基を表す。Rは、水素原子又は炭素数1~10のアルキル基を表す。*には、ケイ素原子が結合している。〕
    (C)成分:シランカップリング剤
    A curable composition containing the following component (A) and component (C).
    Component (A): The following formula (a-1)
    Figure JPOXMLDOC01-appb-C000001
    [R 1 represents an unsubstituted aryl group having 6 to 12 carbon atoms or an aryl group having a substituent and having 6 to 12 carbon atoms. ]
    It has a repeating unit [repeating unit (1)] represented by the following formula (a-2).
    Figure JPOXMLDOC01-appb-C000002
    [R 2 represents an unsubstituted alkyl group having 1 to 10 carbon atoms or an alkyl group having a substituent and having 1 to 10 carbon atoms. ]
    A polysilsesquioxane compound having or not having a repeating unit [repeating unit (2)] represented by the above, wherein the polysilsesquioxane compound satisfies the following requirements 1 and 2 [requirement 1].
    The amount of the repeating unit (1) is 80 to 100 mol% with respect to the total amount of the repeating unit (1) and the repeating unit (2).
    [Requirement 2]
    The T site (T1 site) represented by the following formula (a-3), the T site (T2 site) represented by the following formula (a-4), and the T site (T3 site) represented by the following formula (a-5). ), The amount of the T2 site is 30 to 70 mol%.
    Figure JPOXMLDOC01-appb-C000003
    [G represents a group represented by R 1 or R 2. R 3 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. A silicon atom is bonded to *. ]
    Ingredient (C): Silane coupling agent
  2.  (A)成分の質量平均分子量(Mw)が500~3,000である、請求項1に記載の硬化性組成物。 The curable composition according to claim 1, wherein the mass average molecular weight (Mw) of the component (A) is 500 to 3,000.
  3.  (A)成分中の繰り返し単位(1)と繰り返し単位(2)の合計量が、(A)成分の全繰り返し単位中90~100mol%である、請求項1又は2に記載の硬化性組成物。 The curable composition according to claim 1 or 2, wherein the total amount of the repeating unit (1) and the repeating unit (2) in the component (A) is 90 to 100 mol% in all the repeating units of the component (A). ..
  4.  (C)成分の含有量が、(A)成分100質量部に対して、0.1~70質量部である、請求項1~3のいずれかに記載の硬化性組成物。 The curable composition according to any one of claims 1 to 3, wherein the content of the component (C) is 0.1 to 70 parts by mass with respect to 100 parts by mass of the component (A).
  5.  (A)成分と(C)成分の合計量が、硬化性組成物の固形分中50~100質量%である、請求項1~4のいずれかに記載の硬化性組成物。 The curable composition according to any one of claims 1 to 4, wherein the total amount of the component (A) and the component (C) is 50 to 100% by mass in the solid content of the curable composition.
  6.  さらに希釈剤を含有し、固形分濃度が、60質量%以上、100質量%未満である、請求項1~5のいずれかに記載の硬化性組成物。 The curable composition according to any one of claims 1 to 5, further containing a diluent and having a solid content concentration of 60% by mass or more and less than 100% by mass.
  7.  25℃における屈折率(nD)が、1.500~1.600である、請求項1~6のいずれかに記載の硬化性組成物。 The curable composition according to any one of claims 1 to 6, wherein the refractive index (nD) at 25 ° C. is 1.500 to 1.600.
  8.  請求項1~7のいずれかに記載の硬化性組成物を硬化させて得られる硬化物。 A cured product obtained by curing the curable composition according to any one of claims 1 to 7.
  9.  光素子固定材である請求項8に記載の硬化物。 The cured product according to claim 8, which is an optical element fixing material.
  10.  請求項1~7のいずれかに記載の硬化性組成物を、光素子固定材用接着剤として使用する方法。 A method in which the curable composition according to any one of claims 1 to 7 is used as an adhesive for an optical element fixing material.
  11.  請求項1~7のいずれかに記載の硬化性組成物を、光素子固定材用封止材として使用する方法。 A method in which the curable composition according to any one of claims 1 to 7 is used as a sealing material for an optical element fixing material.
PCT/JP2020/036721 2019-09-27 2020-09-28 Curable composition, cured product, and method for using curable composition WO2021060561A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080067180.9A CN114402037A (en) 2019-09-27 2020-09-28 Curable composition, cured product, and method for using curable composition
JP2021548480A JP7569793B2 (en) 2019-09-27 2020-09-28 CURABLE COMPOSITION, CURED PRODUCT, AND METHOD OF USE OF CURABLE COMPOSITION
KR1020217027784A KR20220074817A (en) 2019-09-27 2020-09-28 Curable compositions, cured products and methods of using the curable compositions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019177176 2019-09-27
JP2019-177176 2019-09-27

Publications (1)

Publication Number Publication Date
WO2021060561A1 true WO2021060561A1 (en) 2021-04-01

Family

ID=75165279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/036721 WO2021060561A1 (en) 2019-09-27 2020-09-28 Curable composition, cured product, and method for using curable composition

Country Status (5)

Country Link
JP (1) JP7569793B2 (en)
KR (1) KR20220074817A (en)
CN (1) CN114402037A (en)
TW (1) TW202118832A (en)
WO (1) WO2021060561A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007291273A (en) * 2006-04-26 2007-11-08 Asahi Kasei Corp Composition for sealing material, and optical device
JP2011100975A (en) * 2009-10-09 2011-05-19 Jsr Corp Light-emitting element, method for manufacturing light-emitting element, and composition for forming light-emitting element protective layer
JP2017122216A (en) * 2014-08-26 2017-07-13 リンテック株式会社 Curable composition, cured product, method for using curable composition, and optical device
JP2018168286A (en) * 2017-03-30 2018-11-01 リンテック株式会社 Optical element adhesive and method for producing the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4734832B2 (en) 2003-05-14 2011-07-27 ナガセケムテックス株式会社 Encapsulant for optical element
JP2005263869A (en) 2004-03-16 2005-09-29 Nagase Chemtex Corp Resin composition for sealing optical semiconductor
JP2006328231A (en) 2005-05-26 2006-12-07 Nagase Chemtex Corp Resin composition for encapsulating optical element
TWI504681B (en) * 2010-03-08 2015-10-21 Lintec Corp A hardening composition, a hardened product, and a hardening composition
WO2014069508A1 (en) * 2012-10-30 2014-05-08 リンテック株式会社 Curable polysilsesquioxane compound, method for producing same, curable composition, cured product, and method for using curable composition or like
CN105745253A (en) * 2013-09-20 2016-07-06 琳得科株式会社 Curable composition, curing product, and method for using curable composition
CN108368346B (en) * 2015-12-22 2021-07-13 琳得科株式会社 Curable composition, method for producing curable composition, cured product, method for using curable composition, and optical device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007291273A (en) * 2006-04-26 2007-11-08 Asahi Kasei Corp Composition for sealing material, and optical device
JP2011100975A (en) * 2009-10-09 2011-05-19 Jsr Corp Light-emitting element, method for manufacturing light-emitting element, and composition for forming light-emitting element protective layer
JP2017122216A (en) * 2014-08-26 2017-07-13 リンテック株式会社 Curable composition, cured product, method for using curable composition, and optical device
JP2018168286A (en) * 2017-03-30 2018-11-01 リンテック株式会社 Optical element adhesive and method for producing the same

Also Published As

Publication number Publication date
TW202118832A (en) 2021-05-16
CN114402037A (en) 2022-04-26
KR20220074817A (en) 2022-06-03
JP7569793B2 (en) 2024-10-18
JPWO2021060561A1 (en) 2021-04-01

Similar Documents

Publication Publication Date Title
TWI663213B (en) Curable composition, method for producing curable composition, cured product, method of using curable composition, and optical device
WO2017110948A1 (en) Curable composition, method for producing curable composition, cured product, use of curable composition, and optical device
JP6990033B2 (en) Adhesives for optical devices and their manufacturing methods
JP6840901B2 (en) Curable composition, cured product, and how to use the curable composition
JP6830565B1 (en) Curable composition, cured product, and how to use the curable composition
JP7569793B2 (en) CURABLE COMPOSITION, CURED PRODUCT, AND METHOD OF USE OF CURABLE COMPOSITION
JP7569794B2 (en) CURABLE COMPOSITION, CURED PRODUCT, AND METHOD OF USE OF CURABLE COMPOSITION
JP6830563B2 (en) Curable Polysilsesquioxane Compounds, Curable Compositions, Curables, and How to Use Curable Compositions
JP6840900B2 (en) Curable composition, cured product, and how to use the curable composition
JP2020158609A (en) Curable composition, cured product and method for using curable composition
JP7310047B2 (en) Curable composition, cured product, method for producing cured product, and method for using curable composition
WO2020196704A1 (en) Curable composition, cured product, and method for using curable composition
WO2022202119A1 (en) Curable composition and cured object
JP2024136509A (en) Thermosetting composition, semiconductor element fixing composition, and cured product
JP2021147562A (en) Curable composition, cured product and method for using curable composition
WO2021193452A1 (en) Curable composition, cured product, and method for using curable composition
JP2024136510A (en) Silane compound polymer, thermosetting composition, semiconductor element fixing composition, and cured product
JP2024136511A (en) Silane compound polymer, thermosetting composition, semiconductor element fixing composition, and cured product
WO2015041344A1 (en) Curable composition, cured product, and method for using curable composition
JP2023139659A (en) Adhesive paste, method for using adhesive paste, and method for manufacturing semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20868172

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021548480

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20868172

Country of ref document: EP

Kind code of ref document: A1