[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021059350A1 - Electric motor driving device and refrigeration cycle application apparatus - Google Patents

Electric motor driving device and refrigeration cycle application apparatus Download PDF

Info

Publication number
WO2021059350A1
WO2021059350A1 PCT/JP2019/037376 JP2019037376W WO2021059350A1 WO 2021059350 A1 WO2021059350 A1 WO 2021059350A1 JP 2019037376 W JP2019037376 W JP 2019037376W WO 2021059350 A1 WO2021059350 A1 WO 2021059350A1
Authority
WO
WIPO (PCT)
Prior art keywords
command value
value
current command
electric motor
unit
Prior art date
Application number
PCT/JP2019/037376
Other languages
French (fr)
Japanese (ja)
Inventor
慎也 豊留
和徳 畠山
健治 ▲高▼橋
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/037376 priority Critical patent/WO2021059350A1/en
Priority to JP2021548019A priority patent/JP7166468B2/en
Publication of WO2021059350A1 publication Critical patent/WO2021059350A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/05Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for damping motor oscillations, e.g. for reducing hunting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using DC to AC converters or inverters

Definitions

  • the present invention relates to an electric motor drive device and a refrigeration cycle applicable device including the electric motor drive device.
  • PM Permanent magnet synchronous motors
  • PM Permanent magnet synchronous motors
  • Equipment equipped with a PM motor is required to have high efficiency in the low speed rotation range, that is, with a light load, in accordance with the movement to prevent global warming and save energy, and in order to improve the usability of the equipment, the high speed rotation range, That is, it is also required to expand the drive range under high load.
  • As a method of improving efficiency in the low speed rotation range of the motor there is a low speed design by increasing the amount of magnets and windings of the motor.
  • the motor is designed at a low speed, the induced voltage generated in the high speed rotation range increases.
  • a method of expanding the high-speed rotation range of the motor by using the weakening magnetic flux control is known.
  • the PM motor is used, for example, in a compressor provided in a refrigerating and air-conditioning device for operating a compression mechanism for compressing a refrigerant.
  • Refrigerating and air-conditioning equipment has a characteristic that the load torque fluctuates periodically according to the operation process in which the compressor compresses the refrigerant.
  • refrigeration and air conditioning equipment suppresses the speed fluctuation of the PM motor by matching the output torque of the PM motor with the load torque of the compressor that fluctuates periodically, and performs vibration suppression control that reduces the vibration of the compressor. Is going.
  • a motor drive device mounted on a refrigerating and air-conditioning device suppresses the occurrence of step-out in the weakened magnetic flux control region, and secures necessary torque even when vibration suppression control is performed in the weakened magnetic flux control region.
  • the technology to control it so that it can be performed is disclosed.
  • the present invention has been made in view of the above, and it is desired to obtain an electric motor drive device capable of performing highly efficient operation while suppressing the occurrence of overcurrent and step-out in the entire operating range of the electric motor.
  • the purpose is desired to obtain an electric motor drive device capable of performing highly efficient operation while suppressing the occurrence of overcurrent and step-out in the entire operating range of the electric motor.
  • the electric motor drive device supplies an AC voltage having a variable frequency and voltage value to an electric motor that drives a load element in which the load torque fluctuates periodically.
  • the inverter is provided with a control device for controlling the inverter.
  • the control device includes a ⁇ -axis current command value generator that generates a ⁇ -axis current command value in a rotational coordinate system having a ⁇ -axis and a ⁇ -axis, and a speed control unit that generates a first ⁇ -axis current command value in the rotational coordinate system.
  • the limit value is used to limit the first ⁇ -axis current command value, and the limit unit that generates the second ⁇ -axis current command value, and the output torque of the motor follow the periodic fluctuation of the load torque.
  • a compensation value calculation unit that generates a ⁇ -axis current compensation value, and a vibration suppression control unit that generates a third ⁇ -axis current command value using the second ⁇ -axis current command value, limit value, and ⁇ -axis current compensation value.
  • the inverter is controlled by using the ⁇ -axis current command value and the third ⁇ -axis current command value.
  • the electric motor drive device has an effect that highly efficient operation can be performed while suppressing the occurrence of overcurrent and step-out in the entire operating area of the electric motor.
  • FIG. 1 A block diagram showing a configuration example of a control device included in the electric motor drive device according to the first embodiment.
  • a block diagram showing a configuration example of a voltage command value calculation unit included in the control device according to the first embodiment A block diagram showing a configuration example of a compensation value calculation unit included in the voltage command value calculation unit according to the first embodiment.
  • the first flowchart which shows the operation of the torque current command value generation part which concerns on Embodiment 1.
  • the first figure which shows the operating state of the electric motor drive device which concerns on Embodiment 1.
  • a second block diagram showing a configuration example of a torque current command value generation unit included in the voltage command value calculation unit according to the first embodiment.
  • FIG. 2 is a second diagram showing an operating state of the electric motor drive device according to the first embodiment.
  • FIG. 1 is a diagram showing a configuration example of an electric motor drive device 2 according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing a configuration example of an inverter 30 included in the electric motor drive device 2 according to the first embodiment.
  • the electric motor drive device 2 is connected to the AC power supply 1 and the electric motor 7.
  • the electric motor drive device 2 rectifies the AC voltage supplied from the AC power supply 1, converts it into an AC voltage again, supplies the AC voltage to the electric motor 7, and drives the electric motor 7.
  • the electric motor drive device 2 includes a reactor 4, a rectifier circuit 10, a smoothing capacitor 20, an inverter 30, a bus voltage detection unit 82, a bus current detection unit 84, and a control device 100.
  • the rectifier circuit 10 includes four diodes D1, D2, D3, and D4.
  • the four diodes D1 to D4 are bridge-connected to form a diode bridge circuit.
  • the rectifier circuit 10 rectifies the AC voltage supplied from the AC power supply 1 by a diode bridge circuit composed of four diodes D1 to D4.
  • a diode bridge circuit composed of four diodes D1 to D4.
  • the output terminal is connected to the smoothing capacitor 20.
  • the smoothing capacitor 20 smoothes the output voltage of the rectifier circuit 10.
  • One electrode of the smoothing capacitor 20 is connected to the first output terminal of the rectifier circuit 10 and the DC bus 22a on the high potential side, that is, the positive side.
  • the other electrode of the smoothing capacitor 20 is connected to the second output terminal of the rectifier circuit 10 and the DC bus 22b on the low potential side, that is, the negative side.
  • the voltage smoothed by the smoothing capacitor 20 is referred to as a bus voltage V dc.
  • the inverter 30 receives the voltage across the smoothing capacitor 20, that is, the bus voltage V dc , generates a three-phase AC voltage having a variable frequency and voltage value, and supplies the voltage to the electric motor 7 via the output lines 331 to 333.
  • the inverter 30 includes an inverter main circuit 310 and a drive circuit 350.
  • the input terminal of the inverter main circuit 310 is connected to the DC bus 22a and 22b.
  • the inverter main circuit 310 includes switching elements 311 to 316. Rectifier elements 321 to 326 for reflux are connected in antiparallel to each of the switching elements 311 to 316.
  • the drive circuit 350 generates drive signals Sr1 to Sr6 based on the PWM (Pulse Width Modulation) signals Sm1 to Sm6 output from the control device 100.
  • the drive circuit 350 controls the on / off of the switching elements 311 to 316 by the drive signals Sr1 to Sr6.
  • the inverter 30 can supply the frequency-variable and voltage-variable three-phase AC voltage to the electric motor 7 via the output lines 331 to 333.
  • the PWM signals Sm1 to Sm6 are signals having a signal level of a logic circuit, that is, a magnitude of 0V to 5V.
  • the PWM signals Sm1 to Sm6 are signals using the ground potential of the control device 100 as a reference potential.
  • the drive signals Sr1 to Sr6 are signals having a voltage level required for controlling the switching elements 311 to 316, for example, a magnitude of -15V to + 15V.
  • the drive signals Sr1 to Sr6 are signals whose reference potential is the potential of the negative terminal of the corresponding switching element, that is, the emitter terminal.
  • the electric motor 7 is, for example, a three-phase permanent magnet synchronous motor. In the present embodiment, it is assumed that the electric motor 7 drives a load element in which the load torque T l fluctuates periodically. In the following description, the electric motor may be referred to as a motor.
  • the bus voltage detection unit 82 detects the voltage between the DC bus 22a and 22b as the bus voltage Vdc .
  • the bus voltage detection unit 82 includes, for example, a voltage dividing circuit that divides the voltage by resistors connected in series.
  • the bus voltage detection unit 82 converts the detected bus voltage V dc into a voltage suitable for processing by the control device 100 using a voltage dividing circuit, for example, a voltage of 5 V or less, and uses it as a voltage detection signal which is an analog signal. Output to the control device 100.
  • the voltage detection signal output from the bus voltage detection unit 82 to the control device 100 is converted from an analog signal to a digital signal by an AD (Analog to Digital) conversion unit (not shown) in the control device 100, and is internally processed by the control device 100. Used for.
  • AD Analog to Digital
  • the bus current detection unit 84 includes a shunt resistor inserted in the DC bus 22b.
  • the bus current detection unit 84 uses a shunt resistor to detect the current input to the inverter 30 as a direct current I dc.
  • the bus current detection unit 84 outputs the detected direct current I dc to the control device 100 as a current detection signal which is an analog signal.
  • the current detection signal output from the bus current detection unit 84 to the control device 100 is converted from an analog signal to a digital signal by an AD conversion unit (not shown) in the control device 100, and is used for internal processing in the control device 100.
  • the control device 100 generates PWM signals Sm1 to Sm6 in order to control the inverter 30.
  • the control device 100 outputs PWM signals Sm1 to Sm6 to the inverter 30 to control the inverter 30.
  • the control device 100 controls the inverter 30 to change the angular frequency ⁇ and the voltage value of the output voltage of the inverter 30.
  • the angular frequency ⁇ of the output voltage of the inverter 30 is represented by the same code ⁇ as the angular frequency of the output voltage, and determines the rotational angular velocity at the electric angle of the electric motor 7.
  • the rotational angular velocity ⁇ m at the mechanical angle of the electric motor 7 is equal to the rotational angular velocity ⁇ at the electric angle of the electric motor 7 divided by the pole log number P m. Therefore, there is a relationship represented by the following equation (1) between the rotational angular velocity ⁇ m at the mechanical angle of the electric motor 7 and the angular frequency ⁇ of the output voltage of the inverter 30.
  • the rotational angular velocity may be simply referred to as a rotational velocity
  • the angular frequency may be simply referred to as a frequency.
  • Controller 100 the phase current i u flowing through the electric motor 7, i v, based on the i w generates an excitation current command value i gamma *, exciting current command value i gamma * gamma-axis voltage command value V gamma based on * Is generated. Further, the control unit 100, the frequency estimate omega est of the electric motor 7 calculates a torque current command value i [delta] * to match the frequency command value omega e *, [delta] axes based on the torque current command value i [delta] * Generates the voltage command value V ⁇ *.
  • the control device 100 controls the inverter 30 based on the ⁇ -axis voltage command value V ⁇ * and the ⁇ -axis voltage command value V ⁇ *. As described above, in the present embodiment, the control device 100 controls in the rotating coordinate system having the ⁇ axis and the ⁇ axis.
  • the control device 100 When the electric motor 7 drives a load element in which the load torque T l fluctuates periodically, the control device 100 causes the output torque T m of the electric motor 7 to follow the periodic fluctuation of the load torque T l, that is, pulsation. It is desirable to control the inverter 30.
  • the control device 100 may generate a torque current compensation value in order to make the output torque T m follow the periodic fluctuation of the load torque T l, that is, the pulsation. In the control device 100, the generated torque current compensation value is used to correct the torque current command value i ⁇ *.
  • FIG. 3 is a diagram showing a state of operation of the electric motor drive device 2 according to the first embodiment when vibration suppression control is not performed.
  • FIG. 4 is a diagram showing a state of operation of the electric motor drive device 2 according to the first embodiment when vibration suppression control is provided.
  • 3 and 4 show the load torque T l of the single rotary compressor assumed as the load element driven by the electric motor 7 in one rotation of the mechanical angle of the electric motor 7, the output torque T m of the electric motor 7, and the electric motor in the single rotary compressor. It is a figure which shows the relationship between the rotation speed of 7 and a torque current compensation value.
  • FIG. 3 is a diagram showing a state of operation of the electric motor drive device 2 according to the first embodiment when vibration suppression control is not performed.
  • FIG. 4 is a diagram showing a state of operation of the electric motor drive device 2 according to the first embodiment when vibration suppression control is provided.
  • 3 and 4 show the load torque T l of the single rotary compressor assumed as the load element driven by the electric motor 7 in one rotation
  • FIG. 3 shows a state in which the control device 100 constantly controls the output torque T m of the electric motor 7.
  • FIG. 4 shows a state in which the control device 100 controls the torque current compensation value so that the output torque T m of the electric motor 7 matches the load torque T l , and controls the rotation speed to be constant.
  • the rotation speed fluctuates due to the difference between the output torque T m of the electric motor 7 and the load torque T l.
  • the electric motor 7 may step out and stop.
  • the control device 100 controls the output torque T m of the electric motor 7 so as to match the load torque T l in the vibration suppression control shown in FIG.
  • the control device 100 can control the rotation speed to be constant by eliminating excess or deficiency of torque between the output torque T m and the load torque T l of the electric motor 7.
  • the control device 100 in order to realize the vibration suppression control, as shown in FIG. 4, it is necessary to be changed in accordance a torque current compensation value i Deruta_trq the load torque T l.
  • FIG. 5 is a block diagram showing a configuration example of a control device 100 included in the electric motor drive device 2 according to the first embodiment.
  • the control device 100 includes an operation control unit 102 and an inverter control unit 110.
  • the operation control unit 102 receives the command information Q e from the outside and generates the frequency command value ⁇ e * based on the command information Q e.
  • the frequency command value ⁇ e * can be obtained by multiplying the rotation angular velocity command value ⁇ m * , which is the command value of the rotation speed of the electric motor 7, by the pole logarithm P m. ..
  • Controller 100 when controlling the air conditioner as a refrigeration cycle application device, controls the operation of each unit of the air conditioner based on the command information Q e.
  • the command information Q e includes, for example, a temperature detected by a temperature sensor (not shown), information indicating a set temperature indicated by a remote controller which is an operation unit (not shown), operation mode selection information, operation start and operation end instruction information, and the like. Is.
  • the operation mode is, for example, heating, cooling, dehumidification, and the like.
  • the operation control unit 102 may be outside the control device 100. That is, the control device 100 may be configured to acquire the frequency command value ⁇ e * from the outside.
  • the inverter control unit 110 includes a current restoration unit 111, a three-phase two-phase conversion unit 112, an exciting current command value generation unit 113, a voltage command value calculation unit 115, an electric phase calculation unit 116, and a two-phase three-phase conversion.
  • a unit 117 and a PWM signal generation unit 118 are provided.
  • the current restoration unit 111 restores the phase currents i u , iv , i w flowing through the motor 7 based on the direct current I dc detected by the bus current detection unit 84.
  • the current restoration unit 111 samples the direct current I dc detected by the bus current detection unit 84 at a timing determined based on the PWM signals Sm1 to Sm6 generated by the PWM signal generation unit 118, whereby the phase current i u , iv , i w can be restored.
  • the three-phase two-phase conversion unit 112 uses the electric phase ⁇ e generated by the electric phase calculation unit 116, which will be described later, to convert the phase currents i u , iv , i w restored by the current restoration unit 111 to the ⁇ -axis. It is converted into an exciting current i ⁇ , which is a current, and a torque current i ⁇ , which is a ⁇ -axis current, that is, a current value on the ⁇ - ⁇ axis.
  • the exciting current command value generation unit 113 generates the exciting current command value i ⁇ * in the above-mentioned rotating coordinate system. Specifically, the exciting current command value generation unit 113 obtains the optimum exciting current command value i ⁇ * that is most efficient for driving the electric motor 7 based on the torque current i ⁇ . Based on the torque current i ⁇ , the exciting current command value generator 113 sets the output torque T m to be greater than or equal to or maximum than the specified value, that is, the current phase ⁇ m to be equal to or less than or minimum to the specified value. The exciting current command value i ⁇ * is output.
  • the exciting current command value generation unit 113 obtains the exciting current command value i ⁇ * based on the torque current i ⁇ , but this is an example and is not limited thereto. The same effect can be obtained even if the exciting current command value generation unit 113 obtains the exciting current command value i ⁇ * based on the exciting current i ⁇ , the frequency command value ⁇ e *, or the like. Further, the exciting current command value generation unit 113 may determine the exciting current command value i ⁇ * by the weakening magnetic flux control as described later. In the following description, the exciting current command value may be referred to as a ⁇ -axis current command value, and the exciting current command value generating unit may be referred to as a ⁇ -axis current command value generating unit.
  • the voltage command value calculation unit 115 includes a frequency command value ⁇ e * acquired from the operation control unit 102, an exciting current i ⁇ and a torque current i ⁇ acquired from the three-phase two-phase conversion unit 112, and an exciting current command value generation unit. Based on the exciting current command value i ⁇ * obtained from 113, the ⁇ -axis voltage command value V ⁇ * and the ⁇ -axis voltage command value V ⁇ * are generated. Further, the voltage command value calculation unit 115 sets the frequency estimation value ⁇ est based on the ⁇ -axis voltage command value V ⁇ * , the ⁇ -axis voltage command value V ⁇ * , the exciting current i ⁇ , and the torque current i ⁇ . To estimate.
  • the electric phase calculation unit 116 calculates the electric phase ⁇ e by integrating the frequency estimation value ⁇ est acquired from the voltage command value calculation unit 115.
  • the two-phase three-phase conversion unit 117 performs electrical phase calculation on the ⁇ -axis voltage command value V ⁇ * and the ⁇ -axis voltage command value V ⁇ * acquired from the voltage command value calculation unit 115, that is, the voltage command value of the two-phase coordinate system.
  • the voltage is converted into the three-phase voltage command values V u * , V v * , and V w * , which are the output voltage command values of the three-phase coordinate system.
  • the PWM signal generation unit 118 combines the three-phase voltage command values V u * , V v * , V w * acquired from the two-phase three-phase conversion unit 117 and the bus voltage V dc detected by the bus voltage detection unit 82. By comparing, PWM signals Sm1 to Sm6 are generated. The PWM signal generation unit 118 can also stop the electric motor 7 by not outputting the PWM signals Sm1 to Sm6.
  • FIG. 6 is a block diagram showing a configuration example of the voltage command value calculation unit 115 included in the control device 100 according to the first embodiment.
  • the voltage command value calculation unit 115 includes a frequency estimation unit 501, a subtraction unit 502, a torque current command value generation unit 503, a compensation value calculation unit 504, a subtraction unit 509, 510, an excitation current control unit 511, and a torque.
  • a current control unit 512 is provided.
  • the frequency estimation unit 501 is the frequency of the voltage supplied to the electric motor 7 based on the exciting current i ⁇ , the torque current i ⁇ , the ⁇ -axis voltage command value V ⁇ *, and the ⁇ -axis voltage command value V ⁇ *. Is estimated and output as the frequency estimated value ⁇ est.
  • the subtraction unit 502 calculates the difference ( ⁇ e * ⁇ est ) of the frequency estimation value ⁇ est estimated by the frequency estimation unit 501 with respect to the frequency command value ⁇ e *.
  • the compensation value calculation unit 504 generates a torque current compensation value i ⁇ _trq so that the output torque T m of the electric motor 7 follows the periodic fluctuation of the load torque T l. Specifically, the compensation value calculation unit 504 generates the torque current compensation value i ⁇ _trq based on the frequency estimation value ⁇ est acquired from the frequency estimation unit 501.
  • the torque current compensation value i ⁇ _trq is for suppressing the pulsating component of the frequency estimation value ⁇ est , particularly the pulsating component having a frequency of ⁇ mn.
  • the " pulsating component of the frequency estimated value ⁇ est , particularly the pulsating component having a frequency of ⁇ mn " is a pulsating component of a DC amount which is a value representing the frequency estimated value ⁇ est , particularly the pulsating frequency is ⁇ mn . It means a pulsating component.
  • m is a parameter related to the amount of DC
  • n is a parameter indicating the load driven by the electric motor 7.
  • the load driven by the electric motor 7 is 1 in the case of a single rotary compressor and 2 in the case of a twin rotary compressor. Further, n may be 3 or more.
  • the torque current compensation value i ⁇ _trq may be referred to as a ⁇ -axis current compensation value.
  • the torque current command value generation unit 503 generates the torque current command value i ⁇ *** in the above-mentioned rotating coordinate system. Specifically, the torque current command value generation unit 503 performs proportional integration calculation, that is, PI (Proportional Integral) control on the difference ( ⁇ e * - ⁇ est) calculated by the subtraction unit 502, and the difference. Find the torque current command value i ⁇ * that brings ( ⁇ e * - ⁇ est) close to zero. By generating the torque current command value i ⁇ * in this way, the torque current command value generation unit 503 controls to match the frequency estimation value ⁇ est with the frequency command value ⁇ e *.
  • proportional integration calculation that is, PI (Proportional Integral) control on the difference ( ⁇ e * - ⁇ est) calculated by the subtraction unit 502, and the difference.
  • the torque current command value generation unit 503 is generated by the pulsation of the load torque T l by correcting the torque current command value i ⁇ * using the torque current compensation value i ⁇ _trq acquired from the compensation value calculation unit 504. It is possible to suppress the speed pulsation.
  • the torque current command value generation unit 503 generates and outputs the torque current command value i ⁇ *** corrected by using the torque current compensation value i ⁇ _trq.
  • the torque current command value may be referred to as a ⁇ -axis current command value
  • the torque current command value generation unit may be referred to as a ⁇ -axis current command value generation unit.
  • the subtraction unit 509 calculates the difference (i ⁇ * ⁇ i ⁇ ) of the exciting current i ⁇ with respect to the exciting current command value i ⁇ *.
  • the subtraction unit 510 calculates the difference (i ⁇ *** ⁇ i ⁇ ) of the torque current i ⁇ with respect to the torque current command value i ⁇ ***.
  • the exciting current control unit 511 performs a proportional integration operation on the difference (i ⁇ * -i ⁇ ) calculated by the subtraction unit 509 to bring the difference (i ⁇ * -i ⁇ ) close to zero. Generates the value V ⁇ *. By generating the ⁇ -axis voltage command value V ⁇ * in this way, the exciting current control unit 511 controls to match the exciting current i ⁇ with the exciting current command value i ⁇ *.
  • the torque current control unit 512 performs a proportional integration calculation on the difference (i ⁇ *** -i ⁇ ) calculated by the subtraction unit 510 to bring the difference (i ⁇ *** -i ⁇ ) close to zero. Generates the ⁇ -axis voltage command value V ⁇ *. By generating the ⁇ -axis voltage command value V ⁇ * in this way, the torque current control unit 512 controls the torque current i ⁇ to match the torque current command value i ⁇ ***.
  • FIG. 7 is a block diagram showing a configuration example of the compensation value calculation unit 504 included in the voltage command value calculation unit 115 according to the first embodiment.
  • the compensation value calculation unit 504 includes a calculation unit 550, a cosine calculation unit 551, a sine calculation unit 552, a multiplication unit 535, 554, a low-pass filter 555, 556, a subtraction unit 557, 558, and a frequency control unit 559, It includes a 560, a multiplication unit 561, 562, and an addition unit 563.
  • the calculation unit 550 calculates the mechanical angle phase ⁇ mn indicating the rotation position of the electric motor 7 by integrating the frequency estimation value ⁇ est and dividing by the pole logarithm.
  • Cosine calculation unit 551, based on the mechanical angle phase theta mn calculates the cosine cos [theta] mn.
  • Multiplying unit 553 multiplies the cosine cos [theta] mn in frequency estimate omega est, calculates the cosine component ⁇ est ⁇ cos ⁇ mn frequency estimate omega est.
  • Multiplying unit 554 multiplies the sine sin [theta mn in frequency estimate omega est, it calculates a sine component ⁇ est ⁇ sin ⁇ mn frequency estimate omega est.
  • the cosine component ⁇ est ⁇ cos ⁇ mn and sine component ⁇ est ⁇ sin ⁇ mn is calculated by multiplying unit 553 and 554, other pulsating component frequency is omega mn, pulsating component having a frequency higher than the frequency omega mn, i.e. Harmonic components are included.
  • the low-pass filters 555 and 556 are first-order lag filters whose transfer function is represented by 1 / (1 + s ⁇ T f).
  • s is a Laplace operator.
  • T f is a time constant and is defined to remove pulsating components at frequencies higher than the frequency ⁇ mn.
  • "removal” includes a case where a part of the pulsating component is attenuated, that is, reduced.
  • the time constant T f is set by the operation control unit 102 based on the speed command value, and the operation control unit 102 may notify the low-pass filters 555 and 556, or the low-pass filters 555 and 556 hold the time constant T f. Good.
  • the first-order lag filter is an example, and may be a moving average filter or the like, and the type of filter is not limited as long as the pulsating component on the high frequency side can be removed.
  • the low-pass filter 555 performs low-pass filtering on the cosine component ⁇ est ⁇ cos ⁇ mn , removes the pulsating component having a frequency higher than the frequency ⁇ mn , and outputs the low frequency component ⁇ est_cos.
  • the low frequency component ⁇ est_cos is a DC amount representing a cosine component having a frequency of ⁇ mn among the pulsating components of the frequency estimation value ⁇ est.
  • the low-pass filter 556 performs low-pass filtering on the sine component ⁇ est ⁇ sin ⁇ mn , removes a pulsating component having a frequency higher than the frequency ⁇ mn , and outputs a low frequency component ⁇ est_sin.
  • the low frequency component ⁇ est_sin is a DC amount representing a sine component having a frequency of ⁇ mn among the pulsating components of the frequency estimation value ⁇ est.
  • the subtraction unit 557 calculates the difference ( ⁇ est_cos ⁇ 0) between the low frequency component ⁇ est_cos and 0 output from the low-pass filter 555.
  • the subtraction unit 558 calculates the difference ( ⁇ est_sin ⁇ 0) between the low frequency component ⁇ est_sin and 0 output from the low-pass filter 556.
  • the frequency control unit 559 performs a proportional integration calculation on the difference ( ⁇ est_cos- 0) calculated by the subtraction unit 557, and sets the cosine component i ⁇ _trq_cos of the current command value that brings the difference ( ⁇ est_cos- 0) close to zero. calculate.
  • the frequency control unit 559 controls the low frequency component ⁇ est_cos to match 0 by generating the cosine component i ⁇ _trq_cos in this way.
  • the frequency control unit 560 performs a proportional integration operation on the difference ( ⁇ est_sin- 0) calculated by the subtraction unit 558, and sets the sine component i ⁇ _trq_sin of the current command value that brings the difference ( ⁇ est_sin- 0) close to zero. calculate.
  • the frequency control unit 560 controls the low frequency component ⁇ est_sin to match 0 by generating the sine component i ⁇ _trq_sin in this way.
  • Multiplication unit 561 generates a i ⁇ _trq_cos ⁇ cos ⁇ mn by multiplying the cosine cos [theta] mn to the cosine component i Deruta_trq_cos output from the frequency control unit 559.
  • i ⁇ _trq_cos ⁇ cos ⁇ mn is an AC component having a frequency n ⁇ ⁇ est.
  • Multiplying unit 562 multiplies the sine sin [theta mn to produce a i ⁇ _trq_sin ⁇ sin ⁇ mn sine component i Deruta_trq_sin output from the frequency control unit 560.
  • i ⁇ _trq_sin ⁇ sin ⁇ mn is an AC component having a frequency n ⁇ ⁇ est.
  • the addition unit 563 obtains the sum of i ⁇ _trq_cos ⁇ cos ⁇ mn output from the multiplication unit 561 and i ⁇ _trq_sin ⁇ sin ⁇ mn output from the multiplication unit 562.
  • the compensation value calculation unit 504 outputs what is obtained by the addition unit 563 as the torque current compensation value i ⁇ _trq.
  • the torque current command value generation unit 503 adds the torque current compensation value i ⁇ _trq obtained in the compensation value calculation unit 504 as described above to the torque current command value in the middle of calculation, and adds the addition result to the corrected torque current. By using it as the command value i ⁇ *** , the pulsating component can be suppressed.
  • the torque current command value generation unit 503 uses the limiter values i ⁇ _lim1, i ⁇ _lim2, i ⁇ _trq_lim as the limiter value for the ⁇ -axis current command.
  • the limiter values i ⁇ _lim1, i ⁇ _lim2, and i ⁇ _trq_lim are represented by the following equations (3) to (5), respectively.
  • the limiter value i ⁇ _lim1 is assumed to be limited based on the current value of the electric motor 7 when the rotation speed of the electric motor 7 is in the low speed region.
  • Ie is an effective value of the overcurrent cutoff value of the phase current determined by the demagnetization limit of the motor 7.
  • the torque current i [delta] because to be a priority constituting the exciting current i gamma, has a configuration obtained by subtracting the excitation current i gamma from overcurrent break value of the phase current. That is, the limiter value i ⁇ _lim1 is defined by the current limit value with respect to the phase current of the electric motor 7 and the exciting current i ⁇ .
  • the limiter value i ⁇ _lim2 is assumed to be limited based on the voltage value of the electric motor 7 when the rotation speed of the electric motor 7 is in the medium-high speed region.
  • L ⁇ is the ⁇ -axis inductance of the above-mentioned rotating coordinate system
  • L ⁇ is the ⁇ -axis inductance of the above-mentioned rotating coordinate system.
  • the limit value Vom may be a value obtained by subtracting, for example, the winding resistance of the electric motor 7 and the voltage drop of the switching elements 311 to 316 of the inverter 30.
  • the output limit range of the inverter 30 is a hexagonal shape, but here it is approximated by a circle.
  • the discussion is made on the premise that the approximation is made by a circle, but it goes without saying that the discussion may be made by strictly considering a hexagon.
  • Equation (4) can be derived by solving equation (6) with respect to the torque current i ⁇ . Since the delta-axis current command of the equation (4) can take into consideration the voltage limit and the effectiveness of the weakening magnetic flux control, a more optimum delta-axis current is compared with, for example, the number 6 described in Patent Document 1. It can be said that it is the limiter value of the command.
  • the limiter value i ⁇ _lim2 the voltage limit value the inverter 30 is the limiting value V om based on the output enable voltage to the motor 7, the rotational speed of the motor 7, the ?? axes flux linkage [Phi a motor 7, the rotation of the above It is defined by the ⁇ -axis inductance of the coordinate system and the ⁇ -axis inductance of the rotating coordinate system described above.
  • the circle whose radius centered on the origin is the limit value Vom is referred to as the voltage limit circle 21.
  • the limit value V om when the inverter 30 is a PWM inverter, it is known to vary with the value of the bus voltage V dc.
  • the exciting current i ⁇ is passed in the negative direction, and the amplitude of the voltage command vector v * is set in the voltage limiting circle 21.
  • the control method of generating the ⁇ -axis stator magnetic flux L ⁇ i ⁇ in the direction opposite to the ⁇ ⁇ -axis magnetic flux chain crossover number ⁇ a to reduce the voltage amplitude is generally called weakening magnetic flux control.
  • FIG. 8 is a diagram showing a voltage vector representing a state of voltage applied to the electric motor 7 when the electric motor 7 is rotating in a high speed region in the electric motor drive device 2 according to the first embodiment.
  • the arc-shaped dotted line is the above-mentioned limit value Vom , that is, the voltage limit circle 21.
  • FIG. 8 shows the difference between the present embodiment and Patent Document 1 regarding the limiter value of the ⁇ -axis current command.
  • i ⁇ _lim2 is used as the limiter value of the ⁇ -axis current command as in the present embodiment, the ⁇ -axis current command according to the effect of the weakening magnetic flux control by ⁇ e L ⁇ i ⁇ with respect to ⁇ e ⁇ a.
  • the limiter value can be uniquely determined.
  • i ⁇ _lim4 is used as the limiter value of the ⁇ -axis current command according to Patent Document 1
  • the limiter value of the ⁇ -axis current command cannot be uniquely determined, resulting in excess or deficiency.
  • FIG. 9 shows the state of the voltage applied to the electric motor 7 when the electric motor 7 is rotating in the high-speed region in the electric motor drive device 2 according to the first embodiment and vibration suppression control is performed for the limiter value of the ⁇ -axis current command. It is a figure which shows the representative voltage vector.
  • the voltage command fluctuates in the ⁇ -axis direction depending on the torque / current compensation value i ⁇ _trq. Further, when the voltage command vector v * is as large as the voltage limit circle 21 as shown in FIG. 9, and the torque current compensation value i ⁇ _trq increases in the positive direction and the ⁇ -axis voltage increases in the negative direction, the electric motor
  • the drive device 2 controls the weakening magnetic flux so as to be within the voltage limiting circle 21.
  • FIG. 10 is a diagram showing a difference in ⁇ -axis current depending on the magnitude of the limiter value of the ⁇ -axis current command in the motor drive device 2 according to the first embodiment.
  • FIG. 10 (a) shows a state in which the weakening magnetic flux control was performed when the limiter value i ⁇ _lim4 of the ⁇ -axis current command was performed, and FIG. Indicates the state. Comparing FIG. 10A and FIG. 10B, when the limiter value i ⁇ _lim4 of the ⁇ -axis current command is excessively large, the ⁇ -axis current flows more than when the limiter value i ⁇ _lim2 of the ⁇ -axis current command is set. It can be seen that the efficiency is getting worse. It can be seen in FIG.
  • the simplest method for weakening magnetic flux control is to determine the ⁇ -axis current command based on the voltage equation.
  • Eq. (7) is obtained by solving Eq. (6) with respect to the exciting current i ⁇ .
  • the weakened magnetic flux control that can obtain the exciting current i ⁇ represented by the equation (7) has a drawback that it is vulnerable to changes and variations in the motor constant, and is not widely used in the industrial world.
  • An integral type weakening magnetic flux control is used instead of the weakening magnetic flux control in which the exciting current i ⁇ represented by the equation (7) can be obtained.
  • of the voltage command vector and the limit value vom is known.
  • the exciting current command value i ⁇ * is increased in the negative direction, and conversely, the voltage command vector amplitude
  • a limiter is appropriately applied to the exciting current command value i ⁇ *. This is to prevent the motor 7 from being demagnetized due to an excessive excitation current command value i ⁇ *. Further, in order to prevent a positive exciting current i ⁇ from flowing in a region where the rotation speed of the electric motor 7 is low to medium speed, a limiter in the positive direction may be applied.
  • the limiter value in the positive direction is generally zero or "current command value for maximum torque / current control".
  • FIG. 11 is a first block diagram showing a configuration example of a torque current command value generation unit 503 included in the voltage command value calculation unit 115 according to the first embodiment. Note that FIG. 11 also includes the subtraction unit 502 in the previous stage.
  • the torque current command value generation unit 503 includes a speed control unit 610, a vibration suppression control unit 620, and a limiting unit 630.
  • the speed control unit 610 generates the torque current command value i ⁇ * in the above-mentioned rotating coordinate system.
  • the speed control unit 610 includes a proportional control unit 611, an integration control unit 612, and an addition unit 613.
  • the proportional control unit 611 performs proportional control on the difference ( ⁇ e * - ⁇ est ) between the frequency command value ⁇ e * and the frequency estimated value ⁇ est acquired from the subtraction unit 502, and sets the proportional term i ⁇ _p * . Output.
  • the integration control unit 612 performs integration control on the difference ( ⁇ e * - ⁇ est ) between the frequency command value ⁇ e * and the frequency estimation value ⁇ est acquired from the subtraction unit 502, and sets the integration term i ⁇ _i * . Output.
  • the addition unit 613 adds the proportional term i ⁇ _p * acquired from the proportional control unit 611 and the integral term i ⁇ _i * acquired from the integral control unit 612 to generate the torque current command value i ⁇ *.
  • the torque current command value i ⁇ * may be referred to as the first ⁇ -axis current command value.
  • the vibration suppression control unit 620 includes an addition unit 621.
  • the addition unit 621 adds the torque current command value i ⁇ * generated by the speed control unit 610 and the torque current compensation value i ⁇ _trq acquired from the compensation value calculation unit 504, and adds the torque current command value i ⁇ **. To generate.
  • the limiting unit 630 includes a storage unit 631, a selection unit 632, and a limiter 633.
  • the storage unit 631 stores the limiter values i ⁇ _lim1 and i ⁇ _lim2. That is, the limiting unit 630 has limiter values i ⁇ _lim1 and i ⁇ _lim2.
  • the selection unit 632 selects one of the limiter values i ⁇ _lim1 and i ⁇ _lim2 stored in the storage unit 631 and sets the limiter value i ⁇ _lim.
  • the limiter 633 outputs the torque current command value i ⁇ ** generated by the vibration suppression control unit 620, which is limited by the limiter value i ⁇ _lim, as the torque current command value i ⁇ *** .
  • the limiting unit 630 may store the limiter values i ⁇ _lim1 and i ⁇ _lim2 calculated by itself in the storage unit 631 or may be acquired from the outside, for example, the operation control unit 102 and stored in the storage unit 631. You may memorize it.
  • the limiter value i ⁇ _lim may be referred to as a limit value
  • the limiter value i ⁇ _lim1 may be referred to as a first limit value
  • the limiter value i ⁇ _lim2 may be referred to as a second limit value.
  • FIG. 12 is a first flowchart showing the operation of the torque current command value generation unit 503 according to the first embodiment.
  • the speed control unit 610 generates the torque current command value i ⁇ * from the difference ( ⁇ e * - ⁇ est ) between the frequency command value ⁇ e * and the frequency estimation value ⁇ est ( ⁇ e * - ⁇ est).
  • Step S1 The vibration suppression control unit 620 adds the torque current command value i ⁇ * and the torque current compensation value i ⁇ _trq to generate the torque current command value i ⁇ ** (step S2).
  • FIG. 13 is a flowchart showing an operation in which the limiting unit 630 according to the first embodiment selects a limiter value.
  • the selecting unit 632 selects the limiter value based on, for example, the modulation factor of the electric motor 7.
  • the modulation factor is a value obtained by dividing the line voltage of each phase of the motor 7 by the peak voltage of the bus voltage V dc.
  • the selection unit 632 selects the limiter value i ⁇ _lim2 (step S12).
  • the selection unit 632 selects the limiter value i ⁇ _lim1 (step S13).
  • the operation shown in FIG. 13 is an example, and the selection unit 632 may select the limiter value by another method.
  • the selection unit 632 may select the limiter value i ⁇ _lim2, for example, when the rotation speed of the electric motor 7, the load, etc. are large and the magnetic flux control is required.
  • the limiting unit 630 may compare the limiter value i ⁇ _lim1 and the limiter value i ⁇ _lim2 and select the smaller one.
  • FIG. 14 is a first diagram showing an operating state of the electric motor drive device 2 according to the first embodiment.
  • FIG. 14 shows an operating state when the configuration of the torque current command value generation unit 503 of the electric motor drive device 2 is FIG. 11. From FIG. 14, it can be seen that the actual speed cannot follow the speed command value because the integral term i ⁇ _i * of the speed control unit 610 becomes small.
  • the torque current command value generation unit 503 shown in FIG. 14 shows an operating state when the configuration of the torque current command value generation unit 503 of the electric motor drive device 2 is FIG. 11. From FIG. 14, it can be seen that the actual speed cannot follow the speed command value because the integral term i ⁇ _i * of the speed control unit 610 becomes small.
  • the vibration suppression control is prioritized and the speed control is not properly performed. If the speed control cannot be performed properly, the electric motor drive device 2 cannot produce the desired capacity, and there is a high possibility that the control will fail.
  • FIG. 15 is a second block diagram showing a configuration example of the torque current command value generation unit 503 included in the voltage command value calculation unit 115 according to the first embodiment. Note that FIG. 15 also includes the subtraction unit 502 in the previous stage.
  • the torque current command value generation unit 503 includes a speed control unit 610, a limiting unit 630, and a vibration suppression control unit 640.
  • the limiting unit 630 outputs the torque current command value i ⁇ * generated by the speed control unit 610, which is limited by the limiter value i ⁇ _lim, as the torque current command value i ⁇ _lim * . That is, the limiting section 630, using the limiter value Aideruta_lim limits the torque current command value i? *, For generating a torque current command value i ⁇ _lim *.
  • the torque current command value i ⁇ _lim * may be referred to as the second ⁇ -axis current command value.
  • the restriction unit 630 has a different target of restriction as compared with the example of FIG. 11, but the content of the operation is the same as the content of the operation in the case of the example of FIG.
  • the vibration suppression control unit 640 generates a torque current command value i ⁇ *** using the torque current command value i ⁇ _lim * , the limiter value i ⁇ _lim, and the torque current compensation value i ⁇ _ trq.
  • the vibration suppression control unit 640 includes a subtraction unit 641, a limiter 642, and an addition unit 643.
  • the subtraction unit 641 calculates the difference between the limiter value i ⁇ _lim acquired from the limit unit 630 and the torque current command value i ⁇ _lim *, and calculates the limiter value i ⁇ _trq_lim * with respect to the torque current compensation value.
  • the limiter 642 outputs what is limited by the limiter value i ⁇ _trq_lim with respect to the torque current compensation value i ⁇ _trq as the torque current compensation value i ⁇ _trq_lim * after the limiter.
  • the addition unit 643 adds the torque current command value i ⁇ _lim * and the torque current compensation value i ⁇ _trq_lim * after the limiter to generate the torque current command value I ⁇ ***.
  • the torque current command value i ⁇ *** may be referred to as a third ⁇ -axis current command value.
  • the torque current command value generation unit 503 is provided with a limit unit 630 after the speed control unit 610, and the limiter value i ⁇ _trq_lim with respect to the torque current compensation value is set to i ⁇ _lim-i ⁇ _lim * .
  • the torque current command value generation unit 503 can secure the delta-axis current command for the amount that can follow the speed command, and use the surplus for the delta-axis current command for the vibration suppression control.
  • FIG. 16 is a second flowchart showing the operation of the torque current command value generation unit 503 according to the first embodiment.
  • the speed control unit 610 generates the torque current command value i ⁇ * from the difference ( ⁇ e * - ⁇ est ) between the frequency command value ⁇ e * and the frequency estimation value ⁇ est ( ⁇ e * - ⁇ est).
  • Step S21 When the limiter value i ⁇ _lim is smaller than the torque current command value i ⁇ * (step S22: No), the limiting unit 630 reduces the integration term i ⁇ _i * of the speed control unit 610 (step S23).
  • Limiting section 630 if the limiter value Aideruta_lim is more * torque current command value i [delta] (step S22: Yes), the torque current command value after limiter Aideruta_lim *, outputs a torque current command value i [delta] * (step S24 ).
  • the vibration suppression control unit 640 calculates the value obtained by subtracting the torque current command value i ⁇ _lim * from the limiter value i ⁇ _lim as the limiter value i ⁇ _trq_lim with respect to the torque current compensation value i ⁇ _trq (step S25).
  • the vibration suppression control unit 640 sets the torque current compensation value i ⁇ _trq_lim * after the limiter as the torque current compensation value i ⁇ _trq (step S27).
  • the vibration suppression control unit 640 sets the torque current compensation value i ⁇ _trq_lim * after the limiter as the limiter value i ⁇ _trq_lim (step S28).
  • the vibration suppression control unit 640 adds the torque current command value i ⁇ _lim * and the torque current compensation value i ⁇ _trq_lim * after the limiter to generate the torque current command value i ⁇ *** (step S29).
  • the operation of the selection unit 632 in the limiting unit 630 to select either the limiter value i ⁇ _lim1 or the limiter value i ⁇ _lim2 as the limiter value i ⁇ _lim is the same as described above.
  • FIG. 17 is a second diagram showing an operating state of the electric motor drive device 2 according to the first embodiment.
  • FIG. 17 shows an operating state when the configuration of the torque current command value generation unit 503 of the electric motor drive device 2 is FIG. 15. Unlike the case of FIG. 14, it can be seen from FIG. 17 that the actual speed can follow the speed command value.
  • the control device 100 In the motor drive device 2, the control device 100 generates the ⁇ -axis voltage command value V ⁇ * and the ⁇ -axis voltage command value V ⁇ * using the exciting current command value i ⁇ * and the torque current command value i ⁇ ***. Further, the inverter 30 is controlled by converting the three-phase voltage command values V u * , V v * , and V w * and then generating PWM signals Sm1 to Sm6. In this way, the electric motor drive device 2 follows the speed command value and suppresses step-out by setting the torque current command value generation unit 503 to the configuration shown in FIG. 15 and providing a limiter value for the ⁇ -axis current. At the same time, it is possible to perform efficient vibration suppression control.
  • the electric motor drive device 2 is configured to restore the phase currents i u , iv , i w from the direct current I dc on the input side of the inverter 30, but is not limited to this.
  • the electric motor drive device 2 may detect the phase current by providing a current detector on the output lines 331, 332, 333 of the inverter 30. In this case, the electric motor drive device 2 may use the current value detected by the current detector instead of the current restored by the current restoration unit 111.
  • the switching elements 311 to 316 of the inverter main circuit 310 are assumed to be IGBTs (Insulated Gate Bipolar Transistors), MOSFETs (Metal-Oxide-Semiconductor Field-Effect Transistors), etc., but switching is performed. Any element that can be used may be used.
  • the switching elements 311 to 316 are MOSFETs, the MOSFET has a parasitic diode due to its structure, so that the same effect can be obtained without connecting the rectifying elements 321 to 326 for circulation in antiparallel. Can be done.
  • the materials constituting the switching elements 311 to 316 are made of not only silicon (Si) but also silicon carbide (SiC), gallium nitride (GaN), diamond, etc., which are wide bandgap semiconductors. It is possible to reduce the loss.
  • FIG. 18 is a diagram showing an example of a hardware configuration that realizes the control device 100 included in the electric motor drive device 2 according to the first embodiment.
  • the control device 100 is realized by the processor 201 and the memory 202.
  • the processor 201 is a CPU (Central Processing Unit, central processing unit, processing unit, arithmetic unit, microprocessor, microcomputer, processor, DSP (Digital Signal Processor)), or system LSI (Large Scale Integration).
  • the memory 202 is non-volatile or volatile such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), and EEPROM (registered trademark) (Electrically Erasable Programmable Read-Only Memory).
  • RAM Random Access Memory
  • ROM Read Only Memory
  • flash memory EPROM (Erasable Programmable Read Only Memory)
  • EEPROM registered trademark
  • the semiconductor memory of the above can be illustrated.
  • the memory 202 is not limited to these, and may be a magnetic disk, an optical disk, a compact disk, a mini disk, or a DVD (Digital Versatile Disc).
  • the control device 100 determines the output torque of the electric motor 7 when the electric motor 7 drives a load element in which the load torque T l fluctuates periodically.
  • the inverter 30 is controlled so that T m follows a periodic fluctuation of the load torque T l , that is, a pulsation.
  • the control device 100 appropriately sets the limiter value and generates the torque current command value i ⁇ *** according to the effectiveness of the weakening magnetic flux control, thereby realizing low vibration in the entire operating range of the motor 7.
  • highly efficient operation can be performed while suppressing the occurrence of overcurrent and step-out.
  • FIG. 19 is a diagram showing a configuration example of the refrigeration cycle application device 900 according to the second embodiment.
  • the refrigeration cycle application device 900 according to the second embodiment includes the electric motor drive device 2 described in the first embodiment.
  • the refrigeration cycle application device 900 according to the second embodiment can be applied to products including a refrigeration cycle such as an air conditioner, a refrigerator, a freezer, and a heat pump water heater.
  • a refrigeration cycle such as an air conditioner, a refrigerator, a freezer, and a heat pump water heater.
  • the components having the same functions as those of the first embodiment are designated by the same reference numerals as those of the first embodiment.
  • the compressor 901 incorporating the electric motor 7 in the first embodiment, the four-way valve 902, the indoor heat exchanger 906, the expansion valve 908, and the outdoor heat exchanger 910 form a refrigerant pipe 912. It is attached via.
  • a compression mechanism 904 for compressing the refrigerant and an electric motor 7 for operating the compression mechanism 904 are provided inside the compressor 901.
  • the refrigeration cycle applicable device 900 can perform a heating operation or a cooling operation by switching the four-way valve 902.
  • the compression mechanism 904 is driven by an electric motor 7 that is controlled at a variable speed.
  • the refrigerant is pressurized by the compression mechanism 904 and sent out, and passes through the four-way valve 902, the indoor heat exchanger 906, the expansion valve 908, the outdoor heat exchanger 910 and the four-way valve 902. Return to the compression mechanism 904.
  • the refrigerant is pressurized by the compression mechanism 904 and sent out, and passes through the four-way valve 902, the outdoor heat exchanger 910, the expansion valve 908, the indoor heat exchanger 906, and the four-way valve 902. Return to the compression mechanism 904.
  • the indoor heat exchanger 906 acts as a condenser to release heat, and the outdoor heat exchanger 910 acts as an evaporator to absorb heat.
  • the outdoor heat exchanger 910 acts as a condenser to release heat, and the indoor heat exchanger 906 acts as an evaporator to absorb heat.
  • the expansion valve 908 depressurizes the refrigerant and expands it.
  • the configuration shown in the above-described embodiment shows an example of the content of the present invention, can be combined with another known technique, and is one of the configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

The present invention comprises an inverter (30) for supplying an AC voltage with a variable frequency and voltage value to an electric motor (7) that drives a load element the load torque of which fluctuates periodically, and a control device (100) for controlling the inverter (30), wherein the control device (100) includes: an excitation current command value generation unit (113) which generates a γ-axis current command value in a rotating coordinate system; a speed control unit (610) which generates a first δ-axis current command value in the rotating coordinate system; a limiting unit (630) which limits the first δ-axis current command value by using a limit value, and generates a second δ-axis current command value; a compensation value calculation unit (504) which generates a δ-axis current compensation value such that the output torque of the electric motor (7) follows the periodic fluctuation of the load torque; and a vibration suppression control unit (640) which generates a third δ-axis current command value by using the second δ-axis current command value, the limit value, and the δ-axis current compensation value, and controls the inverter (30) by using the γ-axis current command value and the third δ-axis current command value.

Description

電動機駆動装置および冷凍サイクル適用機器Electric motor drive and refrigeration cycle applicable equipment
 本発明は、電動機駆動装置およびそれを備えた冷凍サイクル適用機器に関する。 The present invention relates to an electric motor drive device and a refrigeration cycle applicable device including the electric motor drive device.
 永久磁石同期モータ(以下、PM(Permanent Magnet)モータとする。)は、誘導モータと比較して高効率な特性を有するため、家電製品、産業機器、電動車分野など、適用範囲が広がっている。PMモータが搭載された機器は、地球温暖化防止および省エネルギー化の動きに伴い、低速回転域、すなわち軽負荷での高効率化が求められるとともに、機器の使用感を向上させるため高速回転域、すなわち高負荷における駆動範囲の拡大も求められている。モータの低速回転域での高効率化の方法として、モータの磁石量および巻線を増加させることによる低速設計化がある。しかしながら、モータを低速設計化すると、高速回転域で発生する誘起電圧が増大する。このような問題に対して、弱め磁束制御を用いて、モータの高速回転域を拡大する方法が知られている。 Permanent magnet synchronous motors (hereinafter referred to as PM (Permanent Magnet) motors) have higher efficiency characteristics than induction motors, so their application range is expanding to the fields of home appliances, industrial equipment, electric vehicles, etc. .. Equipment equipped with a PM motor is required to have high efficiency in the low speed rotation range, that is, with a light load, in accordance with the movement to prevent global warming and save energy, and in order to improve the usability of the equipment, the high speed rotation range, That is, it is also required to expand the drive range under high load. As a method of improving efficiency in the low speed rotation range of the motor, there is a low speed design by increasing the amount of magnets and windings of the motor. However, when the motor is designed at a low speed, the induced voltage generated in the high speed rotation range increases. To solve such a problem, a method of expanding the high-speed rotation range of the motor by using the weakening magnetic flux control is known.
 PMモータは、例えば、冷凍空調機器が備える圧縮機において、冷媒を圧縮する圧縮機構を動作させる用途で使用される。冷凍空調機器は、圧縮機が冷媒を圧縮する動作工程に応じて、負荷トルクが周期的に変動する特性を有している。一般的に、冷凍空調機器は、周期的に変動する圧縮機の負荷トルクにPMモータの出力トルクを一致させることでPMモータの速度変動を抑制し、圧縮機の振動低減を行う振動抑制制御を行っている。特許文献1には、冷凍空調機器に搭載されるモータ駆動装置が、弱め磁束制御領域での脱調発生を抑制し、弱め磁束制御領域で振動抑制制御を行う場合においても、必要なトルクを確保できるように制御する技術が開示されている。 The PM motor is used, for example, in a compressor provided in a refrigerating and air-conditioning device for operating a compression mechanism for compressing a refrigerant. Refrigerating and air-conditioning equipment has a characteristic that the load torque fluctuates periodically according to the operation process in which the compressor compresses the refrigerant. In general, refrigeration and air conditioning equipment suppresses the speed fluctuation of the PM motor by matching the output torque of the PM motor with the load torque of the compressor that fluctuates periodically, and performs vibration suppression control that reduces the vibration of the compressor. Is going. According to Patent Document 1, a motor drive device mounted on a refrigerating and air-conditioning device suppresses the occurrence of step-out in the weakened magnetic flux control region, and secures necessary torque even when vibration suppression control is performed in the weakened magnetic flux control region. The technology to control it so that it can be performed is disclosed.
特開2018-14854号公報Japanese Unexamined Patent Publication No. 2018-14854
 しかしながら、上記従来の技術によれば、弱め磁束制御領域での振動抑制制御が適切に行われない場合、冷凍空調機器において、過電流遮断などが発生するとともに、効率の悪い運転をしてしまう、という問題があった。 However, according to the above-mentioned conventional technique, if the vibration suppression control in the weakened magnetic flux control region is not properly performed, overcurrent interruption occurs in the refrigerating and air-conditioning equipment, and the operation is inefficient. There was a problem.
 本発明は、上記に鑑みてなされたものであって、電動機の運転領域の全域において、過電流および脱調の発生を抑制しつつ、高効率な運転を実施可能な電動機駆動装置を得ることを目的とする。 The present invention has been made in view of the above, and it is desired to obtain an electric motor drive device capable of performing highly efficient operation while suppressing the occurrence of overcurrent and step-out in the entire operating range of the electric motor. The purpose.
 上述した課題を解決し、目的を達成するために、本発明に係る電動機駆動装置は、負荷トルクが周期的に変動する負荷要素を駆動する電動機に、周波数および電圧値が可変の交流電圧を供給するインバータと、インバータを制御する制御装置と、を備える。制御装置は、γ軸およびδ軸を有する回転座標系におけるγ軸電流指令値を生成するγ軸電流指令値生成部と、回転座標系における第1のδ軸電流指令値を生成する速度制御部と、制限値を用いて第1のδ軸電流指令値を制限し、第2のδ軸電流指令値を生成する制限部と、電動機の出力トルクが負荷トルクの周期的変動に追従するようにδ軸電流補償値を生成する補償値演算部と、第2のδ軸電流指令値、制限値、およびδ軸電流補償値を用いて第3のδ軸電流指令値を生成する振動抑制制御部と、を備え、γ軸電流指令値および第3のδ軸電流指令値を用いてインバータを制御する。 In order to solve the above-mentioned problems and achieve the object, the electric motor drive device according to the present invention supplies an AC voltage having a variable frequency and voltage value to an electric motor that drives a load element in which the load torque fluctuates periodically. The inverter is provided with a control device for controlling the inverter. The control device includes a γ-axis current command value generator that generates a γ-axis current command value in a rotational coordinate system having a γ-axis and a δ-axis, and a speed control unit that generates a first δ-axis current command value in the rotational coordinate system. The limit value is used to limit the first δ-axis current command value, and the limit unit that generates the second δ-axis current command value, and the output torque of the motor follow the periodic fluctuation of the load torque. A compensation value calculation unit that generates a δ-axis current compensation value, and a vibration suppression control unit that generates a third δ-axis current command value using the second δ-axis current command value, limit value, and δ-axis current compensation value. And, the inverter is controlled by using the γ-axis current command value and the third δ-axis current command value.
 本発明に係る電動機駆動装置は、電動機の運転領域の全域において、過電流および脱調の発生を抑制しつつ、高効率な運転を実施できる、という効果を奏する。 The electric motor drive device according to the present invention has an effect that highly efficient operation can be performed while suppressing the occurrence of overcurrent and step-out in the entire operating area of the electric motor.
実施の形態1に係る電動機駆動装置の構成例を示す図The figure which shows the structural example of the electric motor drive device which concerns on Embodiment 1. 実施の形態1に係る電動機駆動装置が備えるインバータの構成例を示す図The figure which shows the configuration example of the inverter included in the electric motor drive device which concerns on Embodiment 1. 実施の形態1に係る電動機駆動装置において振動抑制制御無しのときの動作の状態を示す図The figure which shows the operation state when the vibration suppression control is not performed in the electric motor drive device which concerns on Embodiment 1. FIG. 実施の形態1に係る電動機駆動装置において振動抑制制御有りのときの動作の状態を示す図The figure which shows the operation state at the time of having the vibration suppression control in the electric motor drive device which concerns on Embodiment 1. 実施の形態1に係る電動機駆動装置が備える制御装置の構成例を示すブロック図A block diagram showing a configuration example of a control device included in the electric motor drive device according to the first embodiment. 実施の形態1に係る制御装置が備える電圧指令値演算部の構成例を示すブロック図A block diagram showing a configuration example of a voltage command value calculation unit included in the control device according to the first embodiment. 実施の形態1に係る電圧指令値演算部が備える補償値演算部の構成例を示すブロック図A block diagram showing a configuration example of a compensation value calculation unit included in the voltage command value calculation unit according to the first embodiment. 実施の形態1に係る電動機駆動装置において電動機が高速領域で回転しているときの電動機にかかる電圧の状態を表す電圧ベクトルを示す図The figure which shows the voltage vector which shows the state of the voltage applied to the electric motor when the electric motor is rotating in a high speed region in the electric motor drive device which concerns on Embodiment 1. 実施の形態1に係る電動機駆動装置において電動機が高速領域で回転しており、δ軸電流指令のリミッタ値について振動抑制制御を行ったときの電動機にかかる電圧の状態を表す電圧ベクトルを示す図The figure which shows the voltage vector which shows the state of the voltage applied to the electric motor when the electric motor is rotating in a high speed region in the electric motor drive device which concerns on Embodiment 1, and vibration suppression control is performed about the limiter value of a δ-axis current command. 実施の形態1に係る電動機駆動装置においてδ軸電流指令のリミッタ値の大きさによるγ軸電流の差異を示す図The figure which shows the difference of the γ-axis current by the magnitude of the limiter value of the δ-axis current command in the electric motor drive device which concerns on Embodiment 1. 実施の形態1に係る電圧指令値演算部が備えるトルク電流指令値生成部の構成例を示す第1のブロック図A first block diagram showing a configuration example of a torque current command value generation unit included in the voltage command value calculation unit according to the first embodiment. 実施の形態1に係るトルク電流指令値生成部の動作を示す第1のフローチャートThe first flowchart which shows the operation of the torque current command value generation part which concerns on Embodiment 1. 実施の形態1に係る制限部がリミッタ値を選択する動作を示すフローチャートA flowchart showing an operation in which the limiting unit according to the first embodiment selects a limiter value. 実施の形態1に係る電動機駆動装置の動作状態を示す第1の図The first figure which shows the operating state of the electric motor drive device which concerns on Embodiment 1. 実施の形態1に係る電圧指令値演算部が備えるトルク電流指令値生成部の構成例を示す第2のブロック図A second block diagram showing a configuration example of a torque current command value generation unit included in the voltage command value calculation unit according to the first embodiment. 実施の形態1に係るトルク電流指令値生成部の動作を示す第2のフローチャートA second flowchart showing the operation of the torque current command value generation unit according to the first embodiment. 実施の形態1に係る電動機駆動装置の動作状態を示す第2の図FIG. 2 is a second diagram showing an operating state of the electric motor drive device according to the first embodiment. 実施の形態1に係る電動機駆動装置が備える制御装置を実現するハードウェア構成の一例を示す図The figure which shows an example of the hardware configuration which realizes the control device provided in the electric motor drive device which concerns on Embodiment 1. 実施の形態2に係る冷凍サイクル適用機器の構成例を示す図The figure which shows the structural example of the refrigerating cycle application apparatus which concerns on Embodiment 2.
 以下に、本発明の実施の形態に係る電動機駆動装置および冷凍サイクル適用機器を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, the electric motor drive device and the refrigeration cycle applicable device according to the embodiment of the present invention will be described in detail with reference to the drawings. The present invention is not limited to this embodiment.
実施の形態1.
 図1は、本発明の実施の形態1に係る電動機駆動装置2の構成例を示す図である。図2は、実施の形態1に係る電動機駆動装置2が備えるインバータ30の構成例を示す図である。電動機駆動装置2は、交流電源1および電動機7に接続される。電動機駆動装置2は、交流電源1から供給される交流電圧を整流し、再度交流電圧に変換して電動機7に供給して、電動機7を駆動する。電動機駆動装置2は、リアクタ4と、整流回路10と、平滑コンデンサ20と、インバータ30と、母線電圧検出部82と、母線電流検出部84と、制御装置100と、を備える。
Embodiment 1.
FIG. 1 is a diagram showing a configuration example of an electric motor drive device 2 according to a first embodiment of the present invention. FIG. 2 is a diagram showing a configuration example of an inverter 30 included in the electric motor drive device 2 according to the first embodiment. The electric motor drive device 2 is connected to the AC power supply 1 and the electric motor 7. The electric motor drive device 2 rectifies the AC voltage supplied from the AC power supply 1, converts it into an AC voltage again, supplies the AC voltage to the electric motor 7, and drives the electric motor 7. The electric motor drive device 2 includes a reactor 4, a rectifier circuit 10, a smoothing capacitor 20, an inverter 30, a bus voltage detection unit 82, a bus current detection unit 84, and a control device 100.
 整流回路10は、4つのダイオードD1,D2,D3,D4を備える。4つのダイオードD1~D4は、ブリッジ接続され、ダイオードブリッジ回路を構成する。整流回路10は、4つのダイオードD1~D4から構成されるダイオードブリッジ回路によって、交流電源1から供給される交流電圧を整流する。整流回路10において、入力端子の一端はリアクタ4を介して交流電源1に接続され、入力端子の他端は交流電源1に接続されている。また、整流回路10において、出力端子は平滑コンデンサ20に接続されている。 The rectifier circuit 10 includes four diodes D1, D2, D3, and D4. The four diodes D1 to D4 are bridge-connected to form a diode bridge circuit. The rectifier circuit 10 rectifies the AC voltage supplied from the AC power supply 1 by a diode bridge circuit composed of four diodes D1 to D4. In the rectifier circuit 10, one end of the input terminal is connected to the AC power supply 1 via the reactor 4, and the other end of the input terminal is connected to the AC power supply 1. Further, in the rectifier circuit 10, the output terminal is connected to the smoothing capacitor 20.
 平滑コンデンサ20は、整流回路10の出力電圧を平滑する。平滑コンデンサ20の一方の電極は、整流回路10の第1の出力端子、および高電位側、すなわち正側の直流母線22aに接続されている。平滑コンデンサ20の他方の電極は、整流回路10の第2の出力端子、および低電位側、すなわち負側の直流母線22bに接続されている。平滑コンデンサ20で平滑された電圧を母線電圧Vdcと称する。 The smoothing capacitor 20 smoothes the output voltage of the rectifier circuit 10. One electrode of the smoothing capacitor 20 is connected to the first output terminal of the rectifier circuit 10 and the DC bus 22a on the high potential side, that is, the positive side. The other electrode of the smoothing capacitor 20 is connected to the second output terminal of the rectifier circuit 10 and the DC bus 22b on the low potential side, that is, the negative side. The voltage smoothed by the smoothing capacitor 20 is referred to as a bus voltage V dc.
 インバータ30は、平滑コンデンサ20の両端電圧、すなわち母線電圧Vdcを受けて、周波数および電圧値が可変の3相交流電圧を発生して、出力線331~333を介して電動機7に供給する。インバータ30は、図2に示すように、インバータ主回路310と、駆動回路350と、を備える。インバータ主回路310の入力端子は、直流母線22a,22bに接続されている。インバータ主回路310は、スイッチング素子311~316を備える。スイッチング素子311~316の各々には、還流用の整流素子321~326が逆並列接続されている。 The inverter 30 receives the voltage across the smoothing capacitor 20, that is, the bus voltage V dc , generates a three-phase AC voltage having a variable frequency and voltage value, and supplies the voltage to the electric motor 7 via the output lines 331 to 333. As shown in FIG. 2, the inverter 30 includes an inverter main circuit 310 and a drive circuit 350. The input terminal of the inverter main circuit 310 is connected to the DC bus 22a and 22b. The inverter main circuit 310 includes switching elements 311 to 316. Rectifier elements 321 to 326 for reflux are connected in antiparallel to each of the switching elements 311 to 316.
 駆動回路350は、制御装置100から出力されるPWM(Pulse Width Modulation)信号Sm1~Sm6に基づいて、駆動信号Sr1~Sr6を生成する。駆動回路350は、駆動信号Sr1~Sr6によってスイッチング素子311~316のオンオフを制御する。これにより、インバータ30は、周波数可変かつ電圧可変の3相交流電圧を、出力線331~333を介して電動機7に供給することができる。 The drive circuit 350 generates drive signals Sr1 to Sr6 based on the PWM (Pulse Width Modulation) signals Sm1 to Sm6 output from the control device 100. The drive circuit 350 controls the on / off of the switching elements 311 to 316 by the drive signals Sr1 to Sr6. As a result, the inverter 30 can supply the frequency-variable and voltage-variable three-phase AC voltage to the electric motor 7 via the output lines 331 to 333.
 PWM信号Sm1~Sm6は、論理回路の信号レベル、すなわち0V~5Vの大きさを持つ信号である。PWM信号Sm1~Sm6は、制御装置100の接地電位を基準電位とする信号である。一方、駆動信号Sr1~Sr6は、スイッチング素子311~316を制御するのに必要な電圧レベル、例えば、-15V~+15Vの大きさを持つ信号である。駆動信号Sr1~Sr6は、それぞれ対応するスイッチング素子の負側の端子、すなわちエミッタ端子の電位を基準電位とする信号である。 The PWM signals Sm1 to Sm6 are signals having a signal level of a logic circuit, that is, a magnitude of 0V to 5V. The PWM signals Sm1 to Sm6 are signals using the ground potential of the control device 100 as a reference potential. On the other hand, the drive signals Sr1 to Sr6 are signals having a voltage level required for controlling the switching elements 311 to 316, for example, a magnitude of -15V to + 15V. The drive signals Sr1 to Sr6 are signals whose reference potential is the potential of the negative terminal of the corresponding switching element, that is, the emitter terminal.
 電動機7は、例えば、3相永久磁石同期電動機である。本実施の形態では、電動機7は、負荷トルクTが周期的に変動する負荷要素を駆動することを想定している。以降の説明において、電動機のことをモータと称することがある。 The electric motor 7 is, for example, a three-phase permanent magnet synchronous motor. In the present embodiment, it is assumed that the electric motor 7 drives a load element in which the load torque T l fluctuates periodically. In the following description, the electric motor may be referred to as a motor.
 母線電圧検出部82は、直流母線22a,22b間の電圧を母線電圧Vdcとして検出する。母線電圧検出部82は、例えば、直列接続された抵抗で分圧する分圧回路を備える。母線電圧検出部82は、検出した母線電圧Vdcを、分圧回路を用いて制御装置100での処理に適した電圧、例えば、5V以下の電圧に変換し、アナログ信号である電圧検出信号として制御装置100に出力する。母線電圧検出部82から制御装置100に出力される電圧検出信号は、制御装置100内の図示しないAD(Analog to Digital)変換部によってアナログ信号からデジタル信号に変換され、制御装置100での内部処理に用いられる。 The bus voltage detection unit 82 detects the voltage between the DC bus 22a and 22b as the bus voltage Vdc . The bus voltage detection unit 82 includes, for example, a voltage dividing circuit that divides the voltage by resistors connected in series. The bus voltage detection unit 82 converts the detected bus voltage V dc into a voltage suitable for processing by the control device 100 using a voltage dividing circuit, for example, a voltage of 5 V or less, and uses it as a voltage detection signal which is an analog signal. Output to the control device 100. The voltage detection signal output from the bus voltage detection unit 82 to the control device 100 is converted from an analog signal to a digital signal by an AD (Analog to Digital) conversion unit (not shown) in the control device 100, and is internally processed by the control device 100. Used for.
 母線電流検出部84は、直流母線22bに挿入されたシャント抵抗を備える。母線電流検出部84は、シャント抵抗を用いて、インバータ30に入力される電流を直流電流Idcとして検出する。母線電流検出部84は、検出した直流電流Idcを、アナログ信号である電流検出信号として制御装置100に出力する。母線電流検出部84から制御装置100に出力される電流検出信号は、制御装置100内の図示しないAD変換部によってアナログ信号からデジタル信号に変換され、制御装置100での内部処理に用いられる。 The bus current detection unit 84 includes a shunt resistor inserted in the DC bus 22b. The bus current detection unit 84 uses a shunt resistor to detect the current input to the inverter 30 as a direct current I dc. The bus current detection unit 84 outputs the detected direct current I dc to the control device 100 as a current detection signal which is an analog signal. The current detection signal output from the bus current detection unit 84 to the control device 100 is converted from an analog signal to a digital signal by an AD conversion unit (not shown) in the control device 100, and is used for internal processing in the control device 100.
 制御装置100は、インバータ30を制御するため、PWM信号Sm1~Sm6を生成する。制御装置100は、PWM信号Sm1~Sm6をインバータ30に出力して、インバータ30を制御する。具体的には、制御装置100は、インバータ30を制御して、インバータ30の出力電圧の角周波数ωおよび電圧値を変化させる。 The control device 100 generates PWM signals Sm1 to Sm6 in order to control the inverter 30. The control device 100 outputs PWM signals Sm1 to Sm6 to the inverter 30 to control the inverter 30. Specifically, the control device 100 controls the inverter 30 to change the angular frequency ω and the voltage value of the output voltage of the inverter 30.
 インバータ30の出力電圧の角周波数ωは、出力電圧の角周波数と同じ符号ωで表されるものであって、電動機7の電気角での回転角速度を定めるものである。電動機7の機械角での回転角速度ωは、電動機7の電気角での回転角速度ωを極対数Pで割ったものに等しい。従って、電動機7の機械角での回転角速度ωと、インバータ30の出力電圧の角周波数ωとの間には、下記の式(1)で表される関係がある。以降の説明において、回転角速度を単に回転速度と称し、角周波数を単に周波数と称することがある。 The angular frequency ω of the output voltage of the inverter 30 is represented by the same code ω as the angular frequency of the output voltage, and determines the rotational angular velocity at the electric angle of the electric motor 7. The rotational angular velocity ω m at the mechanical angle of the electric motor 7 is equal to the rotational angular velocity ω at the electric angle of the electric motor 7 divided by the pole log number P m. Therefore, there is a relationship represented by the following equation (1) between the rotational angular velocity ω m at the mechanical angle of the electric motor 7 and the angular frequency ω of the output voltage of the inverter 30. In the following description, the rotational angular velocity may be simply referred to as a rotational velocity, and the angular frequency may be simply referred to as a frequency.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 制御装置100は、電動機7に流れる相電流i,i,iに基づいて励磁電流指令値iγ を生成し、励磁電流指令値iγ に基づいてγ軸電圧指令値Vγ を生成する。また、制御装置100は、電動機7の周波数推定値ωestを周波数指令値ω に一致させるようにトルク電流指令値iδ を算出し、トルク電流指令値iδ に基づいてδ軸電圧指令値Vδ を生成する。制御装置100は、γ軸電圧指令値Vγ およびδ軸電圧指令値Vδ に基づいてインバータ30を制御する。このように、本実施の形態において、制御装置100は、γ軸およびδ軸を有する回転座標系において制御を行う。 Controller 100, the phase current i u flowing through the electric motor 7, i v, based on the i w generates an excitation current command value i gamma *, exciting current command value i gamma * gamma-axis voltage command value V gamma based on * Is generated. Further, the control unit 100, the frequency estimate omega est of the electric motor 7 calculates a torque current command value i [delta] * to match the frequency command value omega e *, [delta] axes based on the torque current command value i [delta] * Generates the voltage command value V δ *. The control device 100 controls the inverter 30 based on the γ-axis voltage command value V γ * and the δ-axis voltage command value V δ *. As described above, in the present embodiment, the control device 100 controls in the rotating coordinate system having the γ axis and the δ axis.
 制御装置100は、負荷トルクTが周期的に変動する負荷要素を電動機7が駆動する場合、電動機7の出力トルクTが、負荷トルクTの周期的変動、すなわち脈動に追従するようにインバータ30を制御することが望ましい。制御装置100は、出力トルクTを負荷トルクTの周期的変動、すなわち脈動に追従させるため、トルク電流補償値を生成してもよい。制御装置100において、生成されたトルク電流補償値は、トルク電流指令値iδ を補正するために用いられる。 When the electric motor 7 drives a load element in which the load torque T l fluctuates periodically, the control device 100 causes the output torque T m of the electric motor 7 to follow the periodic fluctuation of the load torque T l, that is, pulsation. It is desirable to control the inverter 30. The control device 100 may generate a torque current compensation value in order to make the output torque T m follow the periodic fluctuation of the load torque T l, that is, the pulsation. In the control device 100, the generated torque current compensation value is used to correct the torque current command value i δ *.
 ここで、電動機駆動装置2での振動抑制制御の必要性および動作について、図3および図4を用いて説明する。図3は、実施の形態1に係る電動機駆動装置2において振動抑制制御無しのときの動作の状態を示す図である。図4は、実施の形態1に係る電動機駆動装置2において振動抑制制御有りのときの動作の状態を示す図である。図3および図4は、電動機7の機械角1回転における、電動機7が駆動する負荷要素として想定したシングルロータリー圧縮機の負荷トルクT、電動機7の出力トルクT、シングルロータリー圧縮機内の電動機7の回転速度、およびトルク電流補償値の関係を示す図である。図3は、制御装置100が、電動機7の出力トルクTを一定に制御した状態を示している。図4は、制御装置100が、電動機7の出力トルクTを負荷トルクTに一致させるようにトルク電流補償値を制御して回転速度を一定に制御した状態を示している。 Here, the necessity and operation of vibration suppression control in the electric motor drive device 2 will be described with reference to FIGS. 3 and 4. FIG. 3 is a diagram showing a state of operation of the electric motor drive device 2 according to the first embodiment when vibration suppression control is not performed. FIG. 4 is a diagram showing a state of operation of the electric motor drive device 2 according to the first embodiment when vibration suppression control is provided. 3 and 4 show the load torque T l of the single rotary compressor assumed as the load element driven by the electric motor 7 in one rotation of the mechanical angle of the electric motor 7, the output torque T m of the electric motor 7, and the electric motor in the single rotary compressor. It is a figure which shows the relationship between the rotation speed of 7 and a torque current compensation value. FIG. 3 shows a state in which the control device 100 constantly controls the output torque T m of the electric motor 7. FIG. 4 shows a state in which the control device 100 controls the torque current compensation value so that the output torque T m of the electric motor 7 matches the load torque T l , and controls the rotation speed to be constant.
 図3から分かるように、制御装置100が電動機7の出力トルクTを一定に制御すると、電動機7の出力トルクTと負荷トルクTとの差で回転速度が変動する。回転速度が変動すると、シングルロータリー圧縮機で振動、騒音などが発生するだけでなく、回転数の変動が大きい場合には、電動機7が脱調し、停止する可能性がある。 As can be seen from FIG. 3, when the control device 100 constantly controls the output torque T m of the electric motor 7, the rotation speed fluctuates due to the difference between the output torque T m of the electric motor 7 and the load torque T l. When the rotation speed fluctuates, not only vibration and noise are generated in the single rotary compressor, but also when the rotation speed fluctuates greatly, the electric motor 7 may step out and stop.
 そのため、本実施の形態において、制御装置100は、図4に示す振動抑制制御では、電動機7の出力トルクTを負荷トルクTに一致させるように制御する。制御装置100は、電動機7の出力トルクTと負荷トルクTとの間でトルクの過不足を無くすことで、回転速度を一定に制御することができる。ただし、制御装置100は、振動抑制制御を実現するためには、図4に示すように、トルク電流補償値iδ_trqを負荷トルクTに応じて変化させる必要がある。 Therefore, in the present embodiment, the control device 100 controls the output torque T m of the electric motor 7 so as to match the load torque T l in the vibration suppression control shown in FIG. The control device 100 can control the rotation speed to be constant by eliminating excess or deficiency of torque between the output torque T m and the load torque T l of the electric motor 7. However, the control device 100, in order to realize the vibration suppression control, as shown in FIG. 4, it is necessary to be changed in accordance a torque current compensation value i Deruta_trq the load torque T l.
 制御装置100の構成について説明する。図5は、実施の形態1に係る電動機駆動装置2が備える制御装置100の構成例を示すブロック図である。制御装置100は、運転制御部102と、インバータ制御部110と、を備える。 The configuration of the control device 100 will be described. FIG. 5 is a block diagram showing a configuration example of a control device 100 included in the electric motor drive device 2 according to the first embodiment. The control device 100 includes an operation control unit 102 and an inverter control unit 110.
 運転制御部102は、外部から指令情報Qを受け、指令情報Qに基づいて、周波数指令値ω を生成する。周波数指令値ω は、下記の式(2)に示すように、電動機7の回転速度の指令値である回転角速度指令値ω に極対数Pを乗算することで求めることができる。 The operation control unit 102 receives the command information Q e from the outside and generates the frequency command value ω e * based on the command information Q e. As shown in the following equation (2), the frequency command value ω e * can be obtained by multiplying the rotation angular velocity command value ω m * , which is the command value of the rotation speed of the electric motor 7, by the pole logarithm P m. ..
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 制御装置100は、冷凍サイクル適用機器として空気調和機を制御する場合、指令情報Qに基づいて空気調和機の各部の動作を制御する。指令情報Qは、例えば、図示しない温度センサで検出された温度、図示しない操作部であるリモコンから指示される設定温度を示す情報、運転モードの選択情報、運転開始及び運転終了の指示情報などである。運転モードとは、例えば、暖房、冷房、除湿などである。なお、運転制御部102については、制御装置100の外部にあってもよい。すなわち、制御装置100は、外部から周波数指令値ω を取得する構成であってもよい。 Controller 100, when controlling the air conditioner as a refrigeration cycle application device, controls the operation of each unit of the air conditioner based on the command information Q e. The command information Q e includes, for example, a temperature detected by a temperature sensor (not shown), information indicating a set temperature indicated by a remote controller which is an operation unit (not shown), operation mode selection information, operation start and operation end instruction information, and the like. Is. The operation mode is, for example, heating, cooling, dehumidification, and the like. The operation control unit 102 may be outside the control device 100. That is, the control device 100 may be configured to acquire the frequency command value ω e * from the outside.
 インバータ制御部110は、電流復元部111と、3相2相変換部112と、励磁電流指令値生成部113と、電圧指令値演算部115と、電気位相演算部116と、2相3相変換部117と、PWM信号生成部118と、を備える。 The inverter control unit 110 includes a current restoration unit 111, a three-phase two-phase conversion unit 112, an exciting current command value generation unit 113, a voltage command value calculation unit 115, an electric phase calculation unit 116, and a two-phase three-phase conversion. A unit 117 and a PWM signal generation unit 118 are provided.
 電流復元部111は、母線電流検出部84で検出された直流電流Idcに基づいて電動機7に流れる相電流i,i,iを復元する。電流復元部111は、母線電流検出部84で検出された直流電流Idcを、PWM信号生成部118で生成されたPWM信号Sm1~Sm6に基づいて定められるタイミングでサンプリングすることによって、相電流i,i,iを復元することができる。 The current restoration unit 111 restores the phase currents i u , iv , i w flowing through the motor 7 based on the direct current I dc detected by the bus current detection unit 84. The current restoration unit 111 samples the direct current I dc detected by the bus current detection unit 84 at a timing determined based on the PWM signals Sm1 to Sm6 generated by the PWM signal generation unit 118, whereby the phase current i u , iv , i w can be restored.
 3相2相変換部112は、電流復元部111で復元された相電流i,i,iを、後述する電気位相演算部116で生成された電気位相θを用いて、γ軸電流である励磁電流iγ、およびδ軸電流であるトルク電流iδ、すなわちγ-δ軸の電流値に変換する。 The three-phase two-phase conversion unit 112 uses the electric phase θ e generated by the electric phase calculation unit 116, which will be described later, to convert the phase currents i u , iv , i w restored by the current restoration unit 111 to the γ-axis. It is converted into an exciting current i γ , which is a current, and a torque current i δ , which is a δ-axis current, that is, a current value on the γ-δ axis.
 励磁電流指令値生成部113は、前述の回転座標系における励磁電流指令値iγ を生成する。具体的には、励磁電流指令値生成部113は、トルク電流iδに基づいて、電動機7を駆動するために最も効率が良くなる最適な励磁電流指令値iγ を求める。励磁電流指令値生成部113は、トルク電流iδに基づいて、出力トルクTが規定された値以上または最大になる、すなわち電流値が規定された値以下または最小になる電流位相βとなる励磁電流指令値iγ を出力する。なお、ここでは、励磁電流指令値生成部113が、トルク電流iδに基づいて励磁電流指令値iγ を求めているが、一例であり、これに限定されない。励磁電流指令値生成部113は、励磁電流iγ、周波数指令値ω などに基づいて励磁電流指令値iγ を求めても、同様の効果を得ることができる。また、励磁電流指令値生成部113は、後述するような弱め磁束制御によって励磁電流指令値iγ を決定してもよい。以降の説明において、励磁電流指令値をγ軸電流指令値と称し、励磁電流指令値生成部をγ軸電流指令値生成部と称することがある。 The exciting current command value generation unit 113 generates the exciting current command value i γ * in the above-mentioned rotating coordinate system. Specifically, the exciting current command value generation unit 113 obtains the optimum exciting current command value i γ * that is most efficient for driving the electric motor 7 based on the torque current i δ. Based on the torque current i δ , the exciting current command value generator 113 sets the output torque T m to be greater than or equal to or maximum than the specified value, that is, the current phase β m to be equal to or less than or minimum to the specified value. The exciting current command value i γ * is output. Here, the exciting current command value generation unit 113 obtains the exciting current command value i γ * based on the torque current i δ , but this is an example and is not limited thereto. The same effect can be obtained even if the exciting current command value generation unit 113 obtains the exciting current command value i γ * based on the exciting current i γ, the frequency command value ω e *, or the like. Further, the exciting current command value generation unit 113 may determine the exciting current command value i γ * by the weakening magnetic flux control as described later. In the following description, the exciting current command value may be referred to as a γ-axis current command value, and the exciting current command value generating unit may be referred to as a γ-axis current command value generating unit.
 電圧指令値演算部115は、運転制御部102から取得した周波数指令値ω と、3相2相変換部112から取得した励磁電流iγおよびトルク電流iδと、励磁電流指令値生成部113から取得した励磁電流指令値iγ とに基づいて、γ軸電圧指令値Vγ およびδ軸電圧指令値Vδ を生成する。さらに、電圧指令値演算部115は、γ軸電圧指令値Vγ と、δ軸電圧指令値Vδ と、励磁電流iγと、トルク電流iδとに基づいて、周波数推定値ωestを推定する。 The voltage command value calculation unit 115 includes a frequency command value ω e * acquired from the operation control unit 102, an exciting current i γ and a torque current i δ acquired from the three-phase two-phase conversion unit 112, and an exciting current command value generation unit. Based on the exciting current command value i γ * obtained from 113, the γ-axis voltage command value V γ * and the δ-axis voltage command value V δ * are generated. Further, the voltage command value calculation unit 115 sets the frequency estimation value ω est based on the γ-axis voltage command value V γ * , the δ-axis voltage command value V δ * , the exciting current i γ, and the torque current i δ. To estimate.
 電気位相演算部116は、電圧指令値演算部115から取得した周波数推定値ωestを積分することで、電気位相θを演算する。 The electric phase calculation unit 116 calculates the electric phase θ e by integrating the frequency estimation value ω est acquired from the voltage command value calculation unit 115.
 2相3相変換部117は、電圧指令値演算部115から取得したγ軸電圧指令値Vγ およびδ軸電圧指令値Vδ 、すなわち2相座標系の電圧指令値を、電気位相演算部116から取得した電気位相θを用いて、3相座標系の出力電圧指令値である3相電圧指令値V ,V ,V に変換する。 The two-phase three-phase conversion unit 117 performs electrical phase calculation on the γ-axis voltage command value V γ * and the δ-axis voltage command value V δ * acquired from the voltage command value calculation unit 115, that is, the voltage command value of the two-phase coordinate system. Using the electric phase θ e acquired from the unit 116, the voltage is converted into the three-phase voltage command values V u * , V v * , and V w * , which are the output voltage command values of the three-phase coordinate system.
 PWM信号生成部118は、2相3相変換部117から取得した3相電圧指令値V ,V ,V と、母線電圧検出部82で検出された母線電圧Vdcとを比較することによって、PWM信号Sm1~Sm6を生成する。なお、PWM信号生成部118は、PWM信号Sm1~Sm6を出力しないようにすることによって、電動機7を停止することも可能である。 The PWM signal generation unit 118 combines the three-phase voltage command values V u * , V v * , V w * acquired from the two-phase three-phase conversion unit 117 and the bus voltage V dc detected by the bus voltage detection unit 82. By comparing, PWM signals Sm1 to Sm6 are generated. The PWM signal generation unit 118 can also stop the electric motor 7 by not outputting the PWM signals Sm1 to Sm6.
 電圧指令値演算部115の構成について説明する。図6は、実施の形態1に係る制御装置100が備える電圧指令値演算部115の構成例を示すブロック図である。電圧指令値演算部115は、周波数推定部501と、減算部502と、トルク電流指令値生成部503と、補償値演算部504と、減算部509,510と、励磁電流制御部511と、トルク電流制御部512と、を備える。 The configuration of the voltage command value calculation unit 115 will be described. FIG. 6 is a block diagram showing a configuration example of the voltage command value calculation unit 115 included in the control device 100 according to the first embodiment. The voltage command value calculation unit 115 includes a frequency estimation unit 501, a subtraction unit 502, a torque current command value generation unit 503, a compensation value calculation unit 504, a subtraction unit 509, 510, an excitation current control unit 511, and a torque. A current control unit 512 is provided.
 周波数推定部501は、励磁電流iγと、トルク電流iδと、γ軸電圧指令値Vγ と、δ軸電圧指令値Vδ とに基づいて、電動機7に供給される電圧の周波数を推定し、周波数推定値ωestとして出力する。 The frequency estimation unit 501 is the frequency of the voltage supplied to the electric motor 7 based on the exciting current i γ , the torque current i δ , the γ-axis voltage command value V γ *, and the δ-axis voltage command value V δ *. Is estimated and output as the frequency estimated value ω est.
 減算部502は、周波数指令値ω に対する、周波数推定部501で推定された周波数推定値ωestの差分(ω -ωest)を算出する。 The subtraction unit 502 calculates the difference (ω e * −ω est ) of the frequency estimation value ω est estimated by the frequency estimation unit 501 with respect to the frequency command value ω e *.
 補償値演算部504は、電動機7の出力トルクTが負荷トルクTの周期的変動に追従するようにトルク電流補償値iδ_trqを生成する。具体的には、補償値演算部504は、周波数推定部501から取得した周波数推定値ωestに基づいて、トルク電流補償値iδ_trqを生成する。トルク電流補償値iδ_trqは、周波数推定値ωestの脈動成分、特に周波数がωmnである脈動成分を抑制するためのものである。ここで、「周波数推定値ωestの脈動成分、特に周波数がωmnである脈動成分」とは、周波数推定値ωestを表す値である直流量の脈動成分、特に脈動周波数がωmnである脈動成分を意味する。なお、mは直流量に関係するパラメータであり、nは電動機7が駆動する負荷を示すパラメータである。nについては、例えば、電動機7が駆動する負荷が、シングルロータリー圧縮機の場合は1とし、ツインロータリー圧縮機の場合は2とする。また、nは3以上であってもよい。以降の説明において、トルク電流補償値iδ_trqをδ軸電流補償値と称することがある。 The compensation value calculation unit 504 generates a torque current compensation value i δ_trq so that the output torque T m of the electric motor 7 follows the periodic fluctuation of the load torque T l. Specifically, the compensation value calculation unit 504 generates the torque current compensation value i δ_trq based on the frequency estimation value ω est acquired from the frequency estimation unit 501. The torque current compensation value i δ_trq is for suppressing the pulsating component of the frequency estimation value ω est , particularly the pulsating component having a frequency of ω mn. Here, the " pulsating component of the frequency estimated value ω est , particularly the pulsating component having a frequency of ω mn " is a pulsating component of a DC amount which is a value representing the frequency estimated value ω est , particularly the pulsating frequency is ω mn . It means a pulsating component. Note that m is a parameter related to the amount of DC, and n is a parameter indicating the load driven by the electric motor 7. Regarding n, for example, the load driven by the electric motor 7 is 1 in the case of a single rotary compressor and 2 in the case of a twin rotary compressor. Further, n may be 3 or more. In the following description, the torque current compensation value i δ_trq may be referred to as a δ-axis current compensation value.
 トルク電流指令値生成部503は、前述の回転座標系におけるトルク電流指令値iδ ***を生成する。具体的には、トルク電流指令値生成部503は、減算部502で算出された差分(ω -ωest)に対して、比例積分演算、すなわちPI(Proportional Integral)制御を行って、差分(ω -ωest)をゼロに近付けるトルク電流指令値iδ を求める。トルク電流指令値生成部503は、このようにしてトルク電流指令値iδ を生成することで、周波数推定値ωestを周波数指令値ω に一致させるための制御を行う。さらに、トルク電流指令値生成部503は、トルク電流指令値iδ を、補償値演算部504から取得したトルク電流補償値iδ_trqを用いて補正することによって、負荷トルクTの脈動により発生する速度脈動を抑制することができる。トルク電流指令値生成部503は、トルク電流補償値iδ_trqを用いて補正したトルク電流指令値iδ ***を生成して出力する。以降の説明において、トルク電流指令値をδ軸電流指令値と称し、トルク電流指令値生成部をδ軸電流指令値生成部と称することがある。 The torque current command value generation unit 503 generates the torque current command value i δ *** in the above-mentioned rotating coordinate system. Specifically, the torque current command value generation unit 503 performs proportional integration calculation, that is, PI (Proportional Integral) control on the difference (ω e *est) calculated by the subtraction unit 502, and the difference. Find the torque current command value i δ * that brings (ω e * -ω est) close to zero. By generating the torque current command value i δ * in this way, the torque current command value generation unit 503 controls to match the frequency estimation value ω est with the frequency command value ω e *. Further, the torque current command value generation unit 503 is generated by the pulsation of the load torque T l by correcting the torque current command value i δ * using the torque current compensation value i δ_trq acquired from the compensation value calculation unit 504. It is possible to suppress the speed pulsation. The torque current command value generation unit 503 generates and outputs the torque current command value i δ *** corrected by using the torque current compensation value i δ_trq. In the following description, the torque current command value may be referred to as a δ-axis current command value, and the torque current command value generation unit may be referred to as a δ-axis current command value generation unit.
 減算部509は、励磁電流指令値iγ に対する励磁電流iγの差分(iγ -iγ)を算出する。減算部510は、トルク電流指令値iδ ***に対するトルク電流iδの差分(iδ ***-iδ)を算出する。 The subtraction unit 509 calculates the difference (i γ * −i γ ) of the exciting current i γ with respect to the exciting current command value i γ *. The subtraction unit 510 calculates the difference (i δ *** −i δ ) of the torque current i δ with respect to the torque current command value i δ ***.
 励磁電流制御部511は、減算部509で算出された差分(iγ -iγ)に対して比例積分演算を行って、差分(iγ -iγ)をゼロに近付けるγ軸電圧指令値Vγ を生成する。励磁電流制御部511は、このようにしてγ軸電圧指令値Vγ を生成することで、励磁電流iγを励磁電流指令値iγ に一致させるための制御を行う。 The exciting current control unit 511 performs a proportional integration operation on the difference (i γ * -i γ ) calculated by the subtraction unit 509 to bring the difference (i γ * -i γ ) close to zero. Generates the value V γ *. By generating the γ-axis voltage command value V γ * in this way, the exciting current control unit 511 controls to match the exciting current i γ with the exciting current command value i γ *.
 トルク電流制御部512は、減算部510で算出された差分(iδ ***-iδ)に対して比例積分演算を行って、差分(iδ ***-iδ)をゼロに近付けるδ軸電圧指令値Vδ を生成する。トルク電流制御部512は、このようにしてδ軸電圧指令値Vδ を生成することで、トルク電流iδをトルク電流指令値iδ ***に一致させるための制御を行う。 The torque current control unit 512 performs a proportional integration calculation on the difference (i δ *** -i δ ) calculated by the subtraction unit 510 to bring the difference (i δ *** -i δ ) close to zero. Generates the δ-axis voltage command value V δ *. By generating the δ-axis voltage command value V δ * in this way, the torque current control unit 512 controls the torque current i δ to match the torque current command value i δ ***.
 補償値演算部504の構成について説明する。図7は、実施の形態1に係る電圧指令値演算部115が備える補償値演算部504の構成例を示すブロック図である。補償値演算部504は、演算部550と、余弦演算部551と、正弦演算部552と、乗算部553,554と、ローパスフィルタ555,556と、減算部557,558と、周波数制御部559,560と、乗算部561,562と、加算部563と、を備える。 The configuration of the compensation value calculation unit 504 will be described. FIG. 7 is a block diagram showing a configuration example of the compensation value calculation unit 504 included in the voltage command value calculation unit 115 according to the first embodiment. The compensation value calculation unit 504 includes a calculation unit 550, a cosine calculation unit 551, a sine calculation unit 552, a multiplication unit 535, 554, a low- pass filter 555, 556, a subtraction unit 557, 558, and a frequency control unit 559, It includes a 560, a multiplication unit 561, 562, and an addition unit 563.
 演算部550は、周波数推定値ωestを積分し、極対数で除算することによって電動機7の回転位置を示す機械角位相θmnを算出する。余弦演算部551は、機械角位相θmnに基づいて、余弦cosθmnを算出する。正弦演算部552は、機械角位相θmnに基づいて、正弦sinθmnを算出する。 The calculation unit 550 calculates the mechanical angle phase θ mn indicating the rotation position of the electric motor 7 by integrating the frequency estimation value ω est and dividing by the pole logarithm. Cosine calculation unit 551, based on the mechanical angle phase theta mn, calculates the cosine cos [theta] mn. Sine calculator 552, based on the mechanical angle phase theta mn, calculates a sine sin [theta mn.
 乗算部553は、周波数推定値ωestに余弦cosθmnを乗算し、周波数推定値ωestの余弦成分ωest・cosθmnを算出する。乗算部554は、周波数推定値ωestに正弦sinθmnを乗算し、周波数推定値ωestの正弦成分ωest・sinθmnを算出する。乗算部553,554で算出される余弦成分ωest・cosθmnおよび正弦成分ωest・sinθmnには、周波数がωmnである脈動成分の他、周波数がωmnより高い周波数の脈動成分、すなわち高調波成分が含まれている。 Multiplying unit 553 multiplies the cosine cos [theta] mn in frequency estimate omega est, calculates the cosine component ω est · cosθ mn frequency estimate omega est. Multiplying unit 554 multiplies the sine sin [theta mn in frequency estimate omega est, it calculates a sine component ω est · sinθ mn frequency estimate omega est. The cosine component ω est · cosθ mn and sine component ω est · sinθ mn is calculated by multiplying unit 553 and 554, other pulsating component frequency is omega mn, pulsating component having a frequency higher than the frequency omega mn, i.e. Harmonic components are included.
 ローパスフィルタ555,556は、伝達関数が1/(1+s・T)で表される一次遅れフィルタである。ここで、sはラプラス演算子である。Tは時定数であり、周波数ωmnよりも高い周波数の脈動成分を除去するように定められる。なお、「除去」には、脈動成分の一部が減衰、すなわち低減される場合が含まれるものとする。時定数Tについては、速度指令値に基づいて運転制御部102で設定され、運転制御部102がローパスフィルタ555,556に通知してもよいし、ローパスフィルタ555,556が保持していてもよい。ローパスフィルタ555,556については、一次遅れフィルタは一例であって、移動平均フィルタなどであってもよいし、高周波側の脈動成分を除去できればフィルタの種類は限定されない。 The low- pass filters 555 and 556 are first-order lag filters whose transfer function is represented by 1 / (1 + s · T f). Here, s is a Laplace operator. T f is a time constant and is defined to remove pulsating components at frequencies higher than the frequency ω mn. In addition, "removal" includes a case where a part of the pulsating component is attenuated, that is, reduced. The time constant T f is set by the operation control unit 102 based on the speed command value, and the operation control unit 102 may notify the low- pass filters 555 and 556, or the low- pass filters 555 and 556 hold the time constant T f. Good. Regarding the low- pass filters 555 and 556, the first-order lag filter is an example, and may be a moving average filter or the like, and the type of filter is not limited as long as the pulsating component on the high frequency side can be removed.
 ローパスフィルタ555は、余弦成分ωest・cosθmnに対してローパスフィルタリングを行なって、周波数ωmnよりも高い周波数の脈動成分を除去し、低周波数成分ωest_cosを出力する。低周波数成分ωest_cosは、周波数推定値ωestの脈動成分のうち、周波数がωmnである余弦成分を表す直流量である。 The low-pass filter 555 performs low-pass filtering on the cosine component ω est · cos θ mn , removes the pulsating component having a frequency higher than the frequency ω mn , and outputs the low frequency component ω est_cos. The low frequency component ω est_cos is a DC amount representing a cosine component having a frequency of ω mn among the pulsating components of the frequency estimation value ω est.
 ローパスフィルタ556は、正弦成分ωest・sinθmnに対してローパスフィルタリングを行なって、周波数ωmnよりも高い周波数の脈動成分を除去し、低周波数成分ωest_sinを出力する。低周波数成分ωest_sinは、周波数推定値ωestの脈動成分のうち、周波数がωmnである正弦成分を表す直流量である。 The low-pass filter 556 performs low-pass filtering on the sine component ω est · sin θ mn , removes a pulsating component having a frequency higher than the frequency ω mn , and outputs a low frequency component ω est_sin. The low frequency component ω est_sin is a DC amount representing a sine component having a frequency of ω mn among the pulsating components of the frequency estimation value ω est.
 減算部557は、ローパスフィルタ555から出力された低周波数成分ωest_cosと0との差分(ωest_cos-0)を算出する。減算部558は、ローパスフィルタ556から出力された低周波数成分ωest_sinと0との差分(ωest_sin-0)を算出する。 The subtraction unit 557 calculates the difference (ω est_cos −0) between the low frequency component ω est_cos and 0 output from the low-pass filter 555. The subtraction unit 558 calculates the difference (ω est_sin − 0) between the low frequency component ω est_sin and 0 output from the low-pass filter 556.
 周波数制御部559は、減算部557で算出された差分(ωest_cos-0)に対して比例積分演算を行って、差分(ωest_cos-0)をゼロに近付ける電流指令値の余弦成分iδ_trq_cosを算出する。周波数制御部559は、このようにして余弦成分iδ_trq_cosを生成することで、低周波数成分ωest_cosを0に一致させるための制御を行う。 The frequency control unit 559 performs a proportional integration calculation on the difference (ω est_cos- 0) calculated by the subtraction unit 557, and sets the cosine component i δ_trq_cos of the current command value that brings the difference (ω est_cos- 0) close to zero. calculate. The frequency control unit 559 controls the low frequency component ω est_cos to match 0 by generating the cosine component i δ_trq_cos in this way.
 周波数制御部560は、減算部558で算出された差分(ωest_sin-0)に対して比例積分演算を行って、差分(ωest_sin-0)をゼロに近付ける電流指令値の正弦成分iδ_trq_sinを算出する。周波数制御部560は、このようにして正弦成分iδ_trq_sinを生成することで、低周波数成分ωest_sinを0に一致させるための制御を行う。 The frequency control unit 560 performs a proportional integration operation on the difference (ω est_sin- 0) calculated by the subtraction unit 558, and sets the sine component i δ_trq_sin of the current command value that brings the difference (ω est_sin- 0) close to zero. calculate. The frequency control unit 560 controls the low frequency component ω est_sin to match 0 by generating the sine component i δ_trq_sin in this way.
 乗算部561は、周波数制御部559から出力された余弦成分iδ_trq_cosに余弦cosθmnを乗算してiδ_trq_cos・cosθmnを生成する。iδ_trq_cos・cosθmnは、周波数n・ωestを持つ交流成分である。 Multiplication unit 561 generates a i δ_trq_cos · cosθ mn by multiplying the cosine cos [theta] mn to the cosine component i Deruta_trq_cos output from the frequency control unit 559. i δ_trq_cos · cos θ mn is an AC component having a frequency n · ω est.
 乗算部562は、周波数制御部560から出力された正弦成分iδ_trq_sinに正弦sinθmnを乗算してiδ_trq_sin・sinθmnを生成する。iδ_trq_sin・sinθmnは、周波数n・ωestを持つ交流成分である。 Multiplying unit 562 multiplies the sine sin [theta mn to produce a i δ_trq_sin · sinθ mn sine component i Deruta_trq_sin output from the frequency control unit 560. i δ_trq_sin · sinθ mn is an AC component having a frequency n · ω est.
 加算部563は、乗算部561から出力されたiδ_trq_cos・cosθmnと、乗算部562から出力されたiδ_trq_sin・sinθmnとの和を求める。補償値演算部504は、加算部563で求められたものを、トルク電流補償値iδ_trqとして出力する。 The addition unit 563 obtains the sum of i δ_trq_cos · cos θ mn output from the multiplication unit 561 and i δ_trq_sin · sin θ mn output from the multiplication unit 562. The compensation value calculation unit 504 outputs what is obtained by the addition unit 563 as the torque current compensation value i δ_trq.
 トルク電流指令値生成部503は、補償値演算部504において上記のようにして求められたトルク電流補償値iδ_trqを演算途中のトルク電流指令値に加算し、加算結果を、補正されたトルク電流指令値iδ ***として用いることで、脈動成分を抑制することができる。 The torque current command value generation unit 503 adds the torque current compensation value i δ_trq obtained in the compensation value calculation unit 504 as described above to the torque current command value in the middle of calculation, and adds the addition result to the corrected torque current. By using it as the command value i δ *** , the pulsating component can be suppressed.
 トルク電流指令値生成部503の動作について詳細に説明する。一般的に、冷凍サイクル適用機器を制御する電動機駆動装置では、振動抑制制御などを目的として、δ軸電流指令に対してリミッタ値を設定している。本実施の形態において、トルク電流指令値生成部503は、δ軸電流指令に対するリミッタ値として、リミッタ値iδ_lim1,iδ_lim2,iδ_trq_limを用いる。リミッタ値iδ_lim1,iδ_lim2,iδ_trq_limは、それぞれ下記の式(3)~(5)で表される。 The operation of the torque current command value generation unit 503 will be described in detail. Generally, in an electric motor drive device that controls a refrigeration cycle application device, a limiter value is set for a δ-axis current command for the purpose of vibration suppression control or the like. In the present embodiment, the torque current command value generation unit 503 uses the limiter values iδ_lim1, iδ_lim2, iδ_trq_lim as the limiter value for the δ-axis current command. The limiter values iδ_lim1, iδ_lim2, and iδ_trq_lim are represented by the following equations (3) to (5), respectively.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 リミッタ値iδ_lim1は、電動機7の回転速度が低速領域の場合において、電動機7の電流値に基づいて制限をかけることを想定したものである。式(3)において、Iは電動機7の減磁限界などによって定まる相電流の過電流遮断値の実効値である。トルク電流iδは、励磁電流iγを優先する構成としたいため、相電流の過電流遮断値から励磁電流iγを引いた構成としている。すなわち、リミッタ値iδ_lim1は、電動機7の相電流に対する電流制限値、および励磁電流iγから規定される。 The limiter value iδ_lim1 is assumed to be limited based on the current value of the electric motor 7 when the rotation speed of the electric motor 7 is in the low speed region. In the formula (3), Ie is an effective value of the overcurrent cutoff value of the phase current determined by the demagnetization limit of the motor 7. The torque current i [delta], because to be a priority constituting the exciting current i gamma, has a configuration obtained by subtracting the excitation current i gamma from overcurrent break value of the phase current. That is, the limiter value iδ_lim1 is defined by the current limit value with respect to the phase current of the electric motor 7 and the exciting current i γ.
 リミッタ値iδ_lim2は、電動機7の回転速度が中高速領域の場合において、電動機7の電圧値に基づいて制限をかけることを想定したものである。式(4)において、Lγは前述の回転座標系のγ軸インダクタンスであり、Lδは前述の回転座標系のδ軸インダクタンスである。一般的に、インバータ30が電動機7に出力できる交流電圧の最大電圧には制限があるので、γδ軸電圧の制限値をVomとした場合、励磁電流iγとトルク電流iδとの関係は、式(6)のように表される。なお、制限値Vomについては、例えば、電動機7の巻線抵抗、インバータ30のスイッチング素子311~316などの電圧降下分を差し引いた値にしてもよい。インバータ30の出力限界範囲は、厳密には六角形状であるが、ここでは円で近似して考えている。本実施の形態では、円で近似することを前提として議論するが、厳密に六角形を考えて議論してもよいことは言うまでも無い。 The limiter value iδ_lim2 is assumed to be limited based on the voltage value of the electric motor 7 when the rotation speed of the electric motor 7 is in the medium-high speed region. In the formula (4), L γ is the γ-axis inductance of the above-mentioned rotating coordinate system, and L δ is the δ-axis inductance of the above-mentioned rotating coordinate system. Generally, there is a limit to the maximum AC voltage that the inverter 30 can output to the motor 7. Therefore, when the limit value of the γδ-axis voltage is set to Vol , the relationship between the exciting current i γ and the torque current i δ is , Is expressed as in equation (6). The limit value Vom may be a value obtained by subtracting, for example, the winding resistance of the electric motor 7 and the voltage drop of the switching elements 311 to 316 of the inverter 30. Strictly speaking, the output limit range of the inverter 30 is a hexagonal shape, but here it is approximated by a circle. In the present embodiment, the discussion is made on the premise that the approximation is made by a circle, but it goes without saying that the discussion may be made by strictly considering a hexagon.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 式(6)をトルク電流iδについて解くと、式(4)を導出することができる。式(4)のδ軸電流指令は、電圧限界および弱め磁束制御の効き具合を考慮できているため、例えば、特許文献1に記載されている数6と比較して、より最適なδ軸電流指令のリミッタ値であると言える。すなわち、リミッタ値iδ_lim2は、インバータ30が電動機7に出力可能な電圧に基づく制限値Vomである電圧制限値、電動機7の回転速度、電動機7のγδ軸磁束鎖交数Φ、前述の回転座標系のγ軸インダクタンス、および前述の回転座標系のδ軸インダクタンスから規定される。 Equation (4) can be derived by solving equation (6) with respect to the torque current i δ. Since the delta-axis current command of the equation (4) can take into consideration the voltage limit and the effectiveness of the weakening magnetic flux control, a more optimum delta-axis current is compared with, for example, the number 6 described in Patent Document 1. It can be said that it is the limiter value of the command. In other words, the limiter value iδ_lim2 the voltage limit value the inverter 30 is the limiting value V om based on the output enable voltage to the motor 7, the rotational speed of the motor 7, the ?? axes flux linkage [Phi a motor 7, the rotation of the above It is defined by the γ-axis inductance of the coordinate system and the δ-axis inductance of the rotating coordinate system described above.
 本実施の形態では、原点を中心とする半径が制限値Vomの円のことを電圧制限円21と称する。なお、制限値Vomは、インバータ30がPWMインバータであった場合、母線電圧Vdcの値によって変動することは公知である。 In the present embodiment, the circle whose radius centered on the origin is the limit value Vom is referred to as the voltage limit circle 21. Incidentally, the limit value V om, when the inverter 30 is a PWM inverter, it is known to vary with the value of the bus voltage V dc.
 高速領域では速度起電力ωΦが非常に大きくなるから、トルク電流iδを大きくするためには励磁電流iγをマイナス方向に流し、電圧指令ベクトルvの振幅を電圧制限円21の範囲内に収める必要がある。このように、γδ軸磁束鎖交数Φと逆方向にγ軸固定子磁束Lγγを発生させて電圧振幅を減少させる制御手法は、一般に弱め磁束制御と呼ばれている。 Since the velocity electromotive force ω e Φ a becomes very large in the high-speed region, in order to increase the torque current i δ , the exciting current i γ is passed in the negative direction, and the amplitude of the voltage command vector v * is set in the voltage limiting circle 21. Must be within range. As described above, the control method of generating the γ-axis stator magnetic flux L γ i γ in the direction opposite to the γ δ-axis magnetic flux chain crossover number Φ a to reduce the voltage amplitude is generally called weakening magnetic flux control.
 図8は、実施の形態1に係る電動機駆動装置2において電動機7が高速領域で回転しているときの電動機7にかかる電圧の状態を表す電圧ベクトルを示す図である。図8において、弧状の点線が前述の制限値Vom、すなわち電圧制限円21である。図8は、δ軸電流指令のリミッタ値について、本実施の形態と特許文献1との差異を示している。本実施の形態のように、δ軸電流指令のリミッタ値としてiδ_lim2を用いた場合、ωΦに対してのωγγによる弱め磁束制御の効きに応じたδ軸電流指令のリミッタ値を一意に決めることができる。一方、特許文献1によるδ軸電流指令のリミッタ値としてiδ_lim4を用いた場合、δ軸電流指令のリミッタ値を一意に決めることができず、過不足が発生してしまう。 FIG. 8 is a diagram showing a voltage vector representing a state of voltage applied to the electric motor 7 when the electric motor 7 is rotating in a high speed region in the electric motor drive device 2 according to the first embodiment. In FIG. 8, the arc-shaped dotted line is the above-mentioned limit value Vom , that is, the voltage limit circle 21. FIG. 8 shows the difference between the present embodiment and Patent Document 1 regarding the limiter value of the δ-axis current command. When iδ_lim2 is used as the limiter value of the δ-axis current command as in the present embodiment, the δ-axis current command according to the effect of the weakening magnetic flux control by ω e L γ i γ with respect to ω e Φ a. The limiter value can be uniquely determined. On the other hand, when iδ_lim4 is used as the limiter value of the δ-axis current command according to Patent Document 1, the limiter value of the δ-axis current command cannot be uniquely determined, resulting in excess or deficiency.
 図9は、実施の形態1に係る電動機駆動装置2において電動機7が高速領域で回転しており、δ軸電流指令のリミッタ値について振動抑制制御を行ったときの電動機7にかかる電圧の状態を表す電圧ベクトルを示す図である。トルク電流補償値iδ_trqによって電圧指令はγ軸方向に揺れる。また、電圧指令ベクトルvが図9に示すように電圧制限円21ぎりぎりの大きさであって、トルク電流補償値iδ_trqが正方向に大きくなりγ軸電圧が負方向に大きくなる場合、電動機駆動装置2は、電圧制限円21内に入るように弱め磁束制御を行う。 FIG. 9 shows the state of the voltage applied to the electric motor 7 when the electric motor 7 is rotating in the high-speed region in the electric motor drive device 2 according to the first embodiment and vibration suppression control is performed for the limiter value of the δ-axis current command. It is a figure which shows the representative voltage vector. The voltage command fluctuates in the γ-axis direction depending on the torque / current compensation value i δ_trq. Further, when the voltage command vector v * is as large as the voltage limit circle 21 as shown in FIG. 9, and the torque current compensation value i δ_trq increases in the positive direction and the γ-axis voltage increases in the negative direction, the electric motor The drive device 2 controls the weakening magnetic flux so as to be within the voltage limiting circle 21.
 図9において、例えば、iδ_lim4が過剰に大きい場合、電圧指令ベクトルはv**となり大きく電圧制限円21から外れる。この場合、電動機7において脱調の可能性が大きくなり、電動機7に対する電動機駆動装置2の制御が不安定になりやすい。電動機駆動装置2は、電圧指令ベクトルがv**の場合、安定して電動機7を駆動させるには弱め磁束制御を行う必要がある。しかしながら、電動機駆動装置2は、必要以上に励磁電流iγを流してしまうと、電動機7を制御する際、効率の悪い運転となってしまう。弱め磁束制御の結果、電圧指令はv_lim4となる。図9において、電圧指令ベクトルv**に対する弱め磁束制御によるωγγが、電圧指令ベクトルvに対する弱め磁束制御によるωγγよりも大きくなっていることが分かる。また、図9において、電圧指令ベクトルv**に対するγ軸方向の振幅が、電圧指令ベクトルvに対するγ軸方向の振幅よりも大きくなっていることが分かる。 In FIG. 9, for example, when iδ_lim4 is excessively large, the voltage command vector becomes v ** , which greatly deviates from the voltage limiting circle 21. In this case, the possibility of step-out in the electric motor 7 increases, and the control of the electric motor drive device 2 with respect to the electric motor 7 tends to become unstable. When the voltage command vector is v ** , the electric motor drive device 2 needs to perform weak magnetic flux control in order to stably drive the electric motor 7. However, if the exciting current i γ is passed through the electric motor driving device 2 more than necessary, the operation becomes inefficient when controlling the electric motor 7. As a result of the weakening magnetic flux control, the voltage command becomes v_lim4 * . 9, the voltage command vector v ω e L γ i γ by flux-weakening control for **, it is understood that greater than ω e L γ i γ by flux-weakening control for the voltage command vector v *. Further, in FIG. 9, the amplitude of the γ-axis direction with respect to the voltage command vector v ** It can be seen that is larger than the amplitude of the γ-axis direction with respect to the voltage command vector v *.
 図10は、実施の形態1に係る電動機駆動装置2においてδ軸電流指令のリミッタ値の大きさによるγ軸電流の差異を示す図である。図10(a)はδ軸電流指令のリミッタ値iδ_lim4の場合に弱め磁束制御を行った状態を示し、図10(b)はδ軸電流指令のリミッタ値iδ_lim2の場合に弱め磁束制御を行った状態を示す。図10(a)と図10(b)とを比較すると、δ軸電流指令のリミッタ値iδ_lim4が過剰に大きい場合、δ軸電流指令のリミッタ値iδ_lim2のときよりもγ軸電流が余計に流れて効率が悪くなっていることが分かる。図10(a)では電流ピークが-10Aであるのに対して、図10(b)では電流ピークが-5Aに減少している、すなわち銅損の増加を抑制していることが分かる。また、δ軸電流指令のリミッタ値iδ_lim4が過剰に大きい場合、電動機駆動装置2において、過電流保護にかかる可能性も考えられる。 FIG. 10 is a diagram showing a difference in γ-axis current depending on the magnitude of the limiter value of the δ-axis current command in the motor drive device 2 according to the first embodiment. FIG. 10 (a) shows a state in which the weakening magnetic flux control was performed when the limiter value iδ_lim4 of the δ-axis current command was performed, and FIG. Indicates the state. Comparing FIG. 10A and FIG. 10B, when the limiter value iδ_lim4 of the δ-axis current command is excessively large, the γ-axis current flows more than when the limiter value iδ_lim2 of the δ-axis current command is set. It can be seen that the efficiency is getting worse. It can be seen in FIG. 10 (a) that the current peak is −10 A, whereas in FIG. 10 (b), the current peak is reduced to −5 A, that is, the increase in copper loss is suppressed. Further, if the limiter value iδ_lim4 of the δ-axis current command is excessively large, it is possible that the motor drive device 2 may be protected against overcurrent.
 弱め磁束制御について説明する。弱め磁束制御として最も単純な方法は、電圧方程式に基づいてγ軸電流指令を決定する方法である。式(6)を励磁電流iγについて解くと式(7)が得られる。 Weak magnetic flux control will be described. The simplest method for weakening magnetic flux control is to determine the γ-axis current command based on the voltage equation. Eq. (7) is obtained by solving Eq. (6) with respect to the exciting current i γ.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 しかしながら、式(7)で示される励磁電流iγが得られる弱め磁束制御は、モータ定数の変化、バラツキなどに弱いという欠点があり、産業界ではあまり利用されていない。 However, the weakened magnetic flux control that can obtain the exciting current i γ represented by the equation (7) has a drawback that it is vulnerable to changes and variations in the motor constant, and is not widely used in the industrial world.
 式(7)で示される励磁電流iγが得られる弱め磁束制御の代わりに利用されているのは、積分型の弱め磁束制御である。例えば、電圧指令ベクトルの振幅|v|と制限値Vomとの差分を積分制御することで励磁電流指令値iγ を決定する手法が公知である。この手法では、電圧指令ベクトルの振幅|v|が制限値Vomよりも大きい場合は励磁電流指令値iγ をマイナス方向に増やし、逆に、電圧指令ベクトルの振幅|v|が制限値Vomよりも小さい場合は励磁電流指令値iγ を減らす。一般論として、励磁電流指令値iγ には適宜、リミッタがかけられる。これは、励磁電流指令値iγ が過大になって、電動機7が減磁するのを防ぐためである。また、電動機7の回転速度が低中速領域で正の励磁電流iγが流れるのを防ぐため、プラス方向のリミッタをかけてもよい。プラス方向のリミッタ値は、ゼロまたは「最大トルク/電流制御の電流指令値」とするのが一般的である。 An integral type weakening magnetic flux control is used instead of the weakening magnetic flux control in which the exciting current i γ represented by the equation (7) can be obtained. For example, a method of determining the exciting current command value i γ * by integrating and controlling the difference between the amplitude | v * | of the voltage command vector and the limit value vom is known. In this method, when the voltage command vector amplitude | v * | is larger than the limit value Vol, the exciting current command value i γ * is increased in the negative direction, and conversely, the voltage command vector amplitude | v * | is limited. If it is smaller than the value Vol , reduce the exciting current command value i γ *. As a general rule, a limiter is appropriately applied to the exciting current command value i γ *. This is to prevent the motor 7 from being demagnetized due to an excessive excitation current command value i γ *. Further, in order to prevent a positive exciting current i γ from flowing in a region where the rotation speed of the electric motor 7 is low to medium speed, a limiter in the positive direction may be applied. The limiter value in the positive direction is generally zero or "current command value for maximum torque / current control".
 トルク電流指令値生成部503の具体的な構成および動作について説明する。図11は、実施の形態1に係る電圧指令値演算部115が備えるトルク電流指令値生成部503の構成例を示す第1のブロック図である。なお、図11には、前段の減算部502も含めている。トルク電流指令値生成部503は、速度制御部610と、振動抑制制御部620と、制限部630と、を備える。 The specific configuration and operation of the torque current command value generation unit 503 will be described. FIG. 11 is a first block diagram showing a configuration example of a torque current command value generation unit 503 included in the voltage command value calculation unit 115 according to the first embodiment. Note that FIG. 11 also includes the subtraction unit 502 in the previous stage. The torque current command value generation unit 503 includes a speed control unit 610, a vibration suppression control unit 620, and a limiting unit 630.
 速度制御部610は、前述の回転座標系におけるトルク電流指令値iδ を生成する。具体的には、速度制御部610は、比例制御部611と、積分制御部612と、加算部613と、を備える。比例制御部611は、減算部502から取得した、周波数指令値ω と周波数推定値ωestとの差分(ω -ωest)に対して比例制御を行い、比例項iδ_p を出力する。積分制御部612は、減算部502から取得した、周波数指令値ω と周波数推定値ωestとの差分(ω -ωest)に対して積分制御を行い、積分項iδ_i を出力する。加算部613は、比例制御部611から取得した比例項iδ_p と、積分制御部612から取得した積分項iδ_i とを加算して、トルク電流指令値iδ を生成する。以降の説明において、トルク電流指令値iδ を第1のδ軸電流指令値と称することがある。 The speed control unit 610 generates the torque current command value i δ * in the above-mentioned rotating coordinate system. Specifically, the speed control unit 610 includes a proportional control unit 611, an integration control unit 612, and an addition unit 613. The proportional control unit 611 performs proportional control on the difference (ω e *est ) between the frequency command value ω e * and the frequency estimated value ω est acquired from the subtraction unit 502, and sets the proportional term i δ_p * . Output. The integration control unit 612 performs integration control on the difference (ω e *est ) between the frequency command value ω e * and the frequency estimation value ω est acquired from the subtraction unit 502, and sets the integration term i δ_i * . Output. The addition unit 613 adds the proportional term i δ_p * acquired from the proportional control unit 611 and the integral term i δ_i * acquired from the integral control unit 612 to generate the torque current command value i δ *. In the following description, the torque current command value i δ * may be referred to as the first δ-axis current command value.
 振動抑制制御部620は、加算部621を備える。加算部621は、速度制御部610で生成されたトルク電流指令値iδ と、補償値演算部504から取得したトルク電流補償値iδ_trqとを加算して、トルク電流指令値iδ **を生成する。 The vibration suppression control unit 620 includes an addition unit 621. The addition unit 621 adds the torque current command value i δ * generated by the speed control unit 610 and the torque current compensation value i δ_trq acquired from the compensation value calculation unit 504, and adds the torque current command value i δ **. To generate.
 制限部630は、記憶部631と、選択部632と、リミッタ633と、を備える。記憶部631は、リミッタ値iδ_lim1,iδ_lim2を記憶している。すなわち、制限部630は、リミッタ値iδ_lim1,iδ_lim2を有している。選択部632は、記憶部631に記憶されているリミッタ値iδ_lim1,iδ_lim2のいずれかを選択し、リミッタ値iδ_limとする。リミッタ633は、振動抑制制御部620で生成されたトルク電流指令値iδ **に対してリミッタ値iδ_limで制限したものをトルク電流指令値iδ ***として出力する。なお、制限部630は、リミッタ値iδ_lim1,iδ_lim2について、自身で演算して求めたものを記憶部631に記憶させてもよいし、外部、例えば、運転制御部102から取得して記憶部631に記憶させてもよい。以降の説明において、リミッタ値iδ_limを制限値と称し、リミッタ値iδ_lim1を第1の制限値と称し、リミッタ値iδ_lim2を第2の制限値と称することがある。 The limiting unit 630 includes a storage unit 631, a selection unit 632, and a limiter 633. The storage unit 631 stores the limiter values iδ_lim1 and iδ_lim2. That is, the limiting unit 630 has limiter values iδ_lim1 and iδ_lim2. The selection unit 632 selects one of the limiter values iδ_lim1 and iδ_lim2 stored in the storage unit 631 and sets the limiter value iδ_lim. The limiter 633 outputs the torque current command value i δ ** generated by the vibration suppression control unit 620, which is limited by the limiter value i δ_lim, as the torque current command value i δ *** . The limiting unit 630 may store the limiter values iδ_lim1 and iδ_lim2 calculated by itself in the storage unit 631 or may be acquired from the outside, for example, the operation control unit 102 and stored in the storage unit 631. You may memorize it. In the following description, the limiter value iδ_lim may be referred to as a limit value, the limiter value iδ_lim1 may be referred to as a first limit value, and the limiter value iδ_lim2 may be referred to as a second limit value.
 図12は、実施の形態1に係るトルク電流指令値生成部503の動作を示す第1のフローチャートである。トルク電流指令値生成部503において、速度制御部610は、周波数指令値ω と周波数推定値ωestとの差分(ω -ωest)からトルク電流指令値iδ を生成する(ステップS1)。振動抑制制御部620は、トルク電流指令値iδ とトルク電流補償値iδ_trqとを加算して、トルク電流指令値iδ **を生成する(ステップS2)。制限部630は、リミッタ値iδ_limがトルク電流指令値iδ **より小さい場合(ステップS3:No)、速度制御部610の積分項iδ_i を低減させる(ステップS4)。具体的には、制限部630は、「iδ_i =iδ_lim-iδ_p 」にすることを速度制御部610に指示する。制限部630は、リミッタ値iδ_limがトルク電流指令値iδ **以上の場合(ステップS3:Yes)、トルク電流指令値iδ ***として、トルク電流指令値iδ **を出力する(ステップS5)。 FIG. 12 is a first flowchart showing the operation of the torque current command value generation unit 503 according to the first embodiment. In the torque current command value generation unit 503, the speed control unit 610 generates the torque current command value i δ * from the difference (ω e *est ) between the frequency command value ω e * and the frequency estimation value ω est (ω e * -ω est). Step S1). The vibration suppression control unit 620 adds the torque current command value i δ * and the torque current compensation value i δ_trq to generate the torque current command value i δ ** (step S2). When the limiter value i δ_lim is smaller than the torque current command value i δ ** (step S3: No), the limiting unit 630 reduces the integral term i δ_i * of the speed control unit 610 (step S4). Specifically, the limiting unit 630 instructs the speed control unit 610 to set "i δ_i * = i δ_lim -i δ_p *". Limiting section 630, if the limiter value iδ_lim is more ** torque current command value i [delta] (Step S3: Yes), the torque current command value i [delta] ***, outputs a torque current command value i [delta] ** ( Step S5).
 制限部630が、リミッタ値iδ_limとして、リミッタ値iδ_lim1またはリミッタ値iδ_lim2の一方を選択する動作について説明する。図13は、実施の形態1に係る制限部630がリミッタ値を選択する動作を示すフローチャートである。制限部630において、選択部632は、例えば、電動機7の変調率に基づいて、リミッタ値を選択する。変調率は、電動機7の各相の線間電圧を母線電圧Vdcのピーク電圧で除算した値とする。選択部632は、変調率が1を超える場合(ステップS11:Yes)、リミッタ値iδ_lim2を選択する(ステップS12)。選択部632は、変調率が1以下の場合(ステップS11:No)、リミッタ値iδ_lim1を選択する(ステップS13)。なお、図13に示す動作は一例であって、選択部632は、他の手法によってリミッタ値を選択してもよい。選択部632は、例えば、電動機7の回転数、負荷などが大きく弱め磁束制御が必要な場合、リミッタ値iδ_lim2を選択してもよい。また、制限部630は、リミッタ値iδ_lim1とリミッタ値iδ_lim2とを比較して、小さい方を選択してもよい。 The operation in which the limiting unit 630 selects either the limiter value iδ_lim1 or the limiter value iδ_lim2 as the limiter value iδ_lim will be described. FIG. 13 is a flowchart showing an operation in which the limiting unit 630 according to the first embodiment selects a limiter value. In the limiting unit 630, the selecting unit 632 selects the limiter value based on, for example, the modulation factor of the electric motor 7. The modulation factor is a value obtained by dividing the line voltage of each phase of the motor 7 by the peak voltage of the bus voltage V dc. When the modulation factor exceeds 1 (step S11: Yes), the selection unit 632 selects the limiter value iδ_lim2 (step S12). When the modulation factor is 1 or less (step S11: No), the selection unit 632 selects the limiter value iδ_lim1 (step S13). The operation shown in FIG. 13 is an example, and the selection unit 632 may select the limiter value by another method. The selection unit 632 may select the limiter value iδ_lim2, for example, when the rotation speed of the electric motor 7, the load, etc. are large and the magnetic flux control is required. Further, the limiting unit 630 may compare the limiter value iδ_lim1 and the limiter value iδ_lim2 and select the smaller one.
 ここで、図12に示すフローチャートにおいてステップS3:Noの場合、トルク電流指令値生成部503では、速度制御部610の積分項iδ_i を低減させる、アンチワインドアップ制御と呼ばれる制御が働く。この場合の電動機駆動装置2の動作状態を図14に示す。図14は、実施の形態1に係る電動機駆動装置2の動作状態を示す第1の図である。図14は、電動機駆動装置2のトルク電流指令値生成部503の構成が図11の場合の動作状態を示すものである。図14から、速度制御部610の積分項iδ_i が小さくなってしまうので、実速度が速度指令値に追従できていないことが分かる。図11に示すトルク電流指令値生成部503の構成では、制限部630が振動抑制制御部620の後段にあるため、振動抑制制御を優先し、速度制御が適切に行えていない。速度制御が適切に行えない場合、電動機駆動装置2は、出したい能力が出せず、制御破綻する可能性が高くなる。 Here, in the case of step S3: No in the flowchart shown in FIG. 12, the torque current command value generation unit 503 operates a control called anti-windup control that reduces the integration term i δ_i * of the speed control unit 610. The operating state of the electric motor drive device 2 in this case is shown in FIG. FIG. 14 is a first diagram showing an operating state of the electric motor drive device 2 according to the first embodiment. FIG. 14 shows an operating state when the configuration of the torque current command value generation unit 503 of the electric motor drive device 2 is FIG. 11. From FIG. 14, it can be seen that the actual speed cannot follow the speed command value because the integral term i δ_i * of the speed control unit 610 becomes small. In the configuration of the torque current command value generation unit 503 shown in FIG. 11, since the limiting unit 630 is located after the vibration suppression control unit 620, the vibration suppression control is prioritized and the speed control is not properly performed. If the speed control cannot be performed properly, the electric motor drive device 2 cannot produce the desired capacity, and there is a high possibility that the control will fail.
 速度制御を優先した場合のトルク電流指令値生成部503の具体的な構成および動作について説明する。図15は、実施の形態1に係る電圧指令値演算部115が備えるトルク電流指令値生成部503の構成例を示す第2のブロック図である。なお、図15には、前段の減算部502も含めている。トルク電流指令値生成部503は、速度制御部610と、制限部630と、振動抑制制御部640と、を備える。 The specific configuration and operation of the torque current command value generation unit 503 when speed control is prioritized will be described. FIG. 15 is a second block diagram showing a configuration example of the torque current command value generation unit 503 included in the voltage command value calculation unit 115 according to the first embodiment. Note that FIG. 15 also includes the subtraction unit 502 in the previous stage. The torque current command value generation unit 503 includes a speed control unit 610, a limiting unit 630, and a vibration suppression control unit 640.
 制限部630は、速度制御部610で生成されたトルク電流指令値iδ に対してリミッタ値iδ_limで制限したものをトルク電流指令値iδ_limとして出力する。すなわち、制限部630は、リミッタ値iδ_limを用いてトルク電流指令値iδを制限し、トルク電流指令値iδ_limを生成する。以降の説明において、トルク電流指令値iδ_limを第2のδ軸電流指令値と称することがある。なお、制限部630は、図15の例では、図11の例と比較して制限の対象が異なるが、動作の内容は図11の例の場合の動作の内容と同様である。 The limiting unit 630 outputs the torque current command value i δ * generated by the speed control unit 610, which is limited by the limiter value i δ_lim, as the torque current command value i δ_lim * . That is, the limiting section 630, using the limiter value Aideruta_lim limits the torque current command value i? *, For generating a torque current command value iδ_lim *. In the following description, the torque current command value iδ_lim * may be referred to as the second δ-axis current command value. In the example of FIG. 15, the restriction unit 630 has a different target of restriction as compared with the example of FIG. 11, but the content of the operation is the same as the content of the operation in the case of the example of FIG.
 振動抑制制御部640は、トルク電流指令値iδ_lim、リミッタ値iδ_lim、およびトルク電流補償値iδ_trqを用いてトルク電流指令値iδ ***を生成する。具体的には、振動抑制制御部640は、減算部641と、リミッタ642と、加算部643と、を備える。減算部641は、制限部630から取得したリミッタ値iδ_limとトルク電流指令値iδ_limとの差分を算出し、トルク電流補償値に対するリミッタ値iδ_trq_limを算出する。リミッタ642は、トルク電流補償値iδ_trqに対してリミッタ値iδ_trq_limで制限したものをリミッタ後のトルク電流補償値iδ_trq_limとして出力する。加算部643は、トルク電流指令値iδ_limと、リミッタ後のトルク電流補償値iδ_trq_limとを加算して、トルク電流指令値Iδ ***を生成する。以降の説明において、トルク電流指令値iδ ***を第3のδ軸電流指令値と称することがある。 The vibration suppression control unit 640 generates a torque current command value i δ *** using the torque current command value i δ_lim * , the limiter value i δ_lim, and the torque current compensation value i δ_ trq. Specifically, the vibration suppression control unit 640 includes a subtraction unit 641, a limiter 642, and an addition unit 643. The subtraction unit 641 calculates the difference between the limiter value iδ_lim acquired from the limit unit 630 and the torque current command value iδ_lim *, and calculates the limiter value iδ_trq_lim * with respect to the torque current compensation value. The limiter 642 outputs what is limited by the limiter value iδ_trq_lim with respect to the torque current compensation value i δ_trq as the torque current compensation value iδ_trq_lim * after the limiter. The addition unit 643 adds the torque current command value iδ_lim * and the torque current compensation value iδ_trq_lim * after the limiter to generate the torque current command value I δ ***. In the following description, the torque current command value i δ *** may be referred to as a third δ-axis current command value.
 図15に示す例では、トルク電流指令値生成部503は、速度制御部610の後段に制限部630を設け、トルク電流補償値に対するリミッタ値iδ_trq_limをiδ_lim-iδ_limとする。これにより、トルク電流指令値生成部503は、速度指令に追従できる分のδ軸電流指令を確保しつつ、余っている分を振動抑制制御のδ軸電流指令に使うことができる。 In the example shown in FIG. 15, the torque current command value generation unit 503 is provided with a limit unit 630 after the speed control unit 610, and the limiter value iδ_trq_lim with respect to the torque current compensation value is set to iδ_lim-iδ_lim * . As a result, the torque current command value generation unit 503 can secure the delta-axis current command for the amount that can follow the speed command, and use the surplus for the delta-axis current command for the vibration suppression control.
 図16は、実施の形態1に係るトルク電流指令値生成部503の動作を示す第2のフローチャートである。トルク電流指令値生成部503において、速度制御部610は、周波数指令値ω と周波数推定値ωestとの差分(ω -ωest)からトルク電流指令値iδ を生成する(ステップS21)。制限部630は、リミッタ値iδ_limがトルク電流指令値iδ より小さい場合(ステップS22:No)、速度制御部610の積分項iδ_i を低減させる(ステップS23)。具体的には、制限部630は、「iδ_i =iδ_lim-iδ_p 」にすることを速度制御部610に指示する。制限部630は、リミッタ値iδ_limがトルク電流指令値iδ 以上の場合(ステップS22:Yes)、リミッタ後のトルク電流指令値iδ_limとして、トルク電流指令値iδ を出力する(ステップS24)。 FIG. 16 is a second flowchart showing the operation of the torque current command value generation unit 503 according to the first embodiment. In the torque current command value generation unit 503, the speed control unit 610 generates the torque current command value i δ * from the difference (ω e *est ) between the frequency command value ω e * and the frequency estimation value ω est (ω e * -ω est). Step S21). When the limiter value i δ_lim is smaller than the torque current command value i δ * (step S22: No), the limiting unit 630 reduces the integration term i δ_i * of the speed control unit 610 (step S23). Specifically, the limiting unit 630 instructs the speed control unit 610 to set "i δ_i * = i δ_lim -i δ_p *". Limiting section 630, if the limiter value Aideruta_lim is more * torque current command value i [delta] (step S22: Yes), the torque current command value after limiter Aideruta_lim *, outputs a torque current command value i [delta] * (step S24 ).
 振動抑制制御部640は、リミッタ値iδ_limからトルク電流指令値iδ_limを減算したものを、トルク電流補償値iδ_trqに対するリミッタ値iδ_trq_limとして算出する(ステップS25)。振動抑制制御部640は、リミッタ値iδ_trq_limがトルク電流補償値iδ_trq以上の場合(ステップS26:Yes)、リミッタ後のトルク電流補償値iδ_trq_limをトルク電流補償値iδ_trqとする(ステップS27)。振動抑制制御部640は、リミッタ値iδ_trq_limがトルク電流補償値iδ_trq未満の場合(ステップS26:No)、リミッタ後のトルク電流補償値iδ_trq_limをリミッタ値iδ_trq_limとする(ステップS28)。振動抑制制御部640は、トルク電流指令値iδ_limとリミッタ後のトルク電流補償値iδ_trq_limとを加算して、トルク電流指令値iδ ***を生成する(ステップS29)。 The vibration suppression control unit 640 calculates the value obtained by subtracting the torque current command value iδ_lim * from the limiter value iδ_lim as the limiter value iδ_trq_lim with respect to the torque current compensation value i δ_trq (step S25). When the limiter value iδ_trq_lim is equal to or greater than the torque current compensation value i δ_trq (step S26: Yes), the vibration suppression control unit 640 sets the torque current compensation value iδ_trq_lim * after the limiter as the torque current compensation value i δ_trq (step S27). When the limiter value iδ_trq_lim is less than the torque current compensation value i δ_trq (step S26: No), the vibration suppression control unit 640 sets the torque current compensation value iδ_trq_lim * after the limiter as the limiter value iδ_trq_lim (step S28). The vibration suppression control unit 640 adds the torque current command value iδ_lim * and the torque current compensation value iδ_trq_lim * after the limiter to generate the torque current command value i δ *** (step S29).
 なお、制限部630において選択部632が、リミッタ値iδ_limとして、リミッタ値iδ_lim1またはリミッタ値iδ_lim2の一方を選択する動作については、前述と同様とする。 The operation of the selection unit 632 in the limiting unit 630 to select either the limiter value iδ_lim1 or the limiter value iδ_lim2 as the limiter value iδ_lim is the same as described above.
 図17は、実施の形態1に係る電動機駆動装置2の動作状態を示す第2の図である。図17は、電動機駆動装置2のトルク電流指令値生成部503の構成が図15の場合の動作状態を示すものである。図14の場合と異なり、図17から、実速度が速度指令値に追従できていることが分かる。 FIG. 17 is a second diagram showing an operating state of the electric motor drive device 2 according to the first embodiment. FIG. 17 shows an operating state when the configuration of the torque current command value generation unit 503 of the electric motor drive device 2 is FIG. 15. Unlike the case of FIG. 14, it can be seen from FIG. 17 that the actual speed can follow the speed command value.
 電動機駆動装置2において、制御装置100は、励磁電流指令値iγ およびトルク電流指令値iδ ***を用いてγ軸電圧指令値Vγ およびδ軸電圧指令値Vδ を生成し、さらに、3相電圧指令値V ,V ,V に変換してからPWM信号Sm1~Sm6を生成することで、インバータ30を制御する。このように、電動機駆動装置2は、トルク電流指令値生成部503の構成を図15に示す構成にして、δ軸電流のリミッタ値を設けることで、速度指令値に追従し、脱調を抑制しつつ、効率の良い振動抑制制御を行うことが可能となる。 In the motor drive device 2, the control device 100 generates the γ-axis voltage command value V γ * and the δ-axis voltage command value V δ * using the exciting current command value i γ * and the torque current command value i δ ***. Further, the inverter 30 is controlled by converting the three-phase voltage command values V u * , V v * , and V w * and then generating PWM signals Sm1 to Sm6. In this way, the electric motor drive device 2 follows the speed command value and suppresses step-out by setting the torque current command value generation unit 503 to the configuration shown in FIG. 15 and providing a limiter value for the δ-axis current. At the same time, it is possible to perform efficient vibration suppression control.
 なお、本実施の形態では、電動機駆動装置2は、インバータ30の入力側の直流電流Idcから相電流i,i,iを復元する構成としているが、これに限定されない。電動機駆動装置2は、インバータ30の出力線331,332,333に電流検知器を設けて相電流を検出してもよい。この場合、電動機駆動装置2は、電流検知器で検出された電流値を、電流復元部111で復元された電流の代わりに用いればよい。 In the present embodiment, the electric motor drive device 2 is configured to restore the phase currents i u , iv , i w from the direct current I dc on the input side of the inverter 30, but is not limited to this. The electric motor drive device 2 may detect the phase current by providing a current detector on the output lines 331, 332, 333 of the inverter 30. In this case, the electric motor drive device 2 may use the current value detected by the current detector instead of the current restored by the current restoration unit 111.
 電動機駆動装置2において、インバータ主回路310のスイッチング素子311~316としては、IGBT(Insulated Gate Bipolar Transistor)、MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)などを想定しているが、スイッチングを行うことが可能な素子であれば、どのようなものを用いてもよい。なお、電動機駆動装置2では、スイッチング素子311~316がMOSFETの場合、MOSFETは構造上寄生ダイオードを有するため、環流用の整流素子321~326を逆並列接続しなくても同様の効果を得ることができる。 In the electric motor drive device 2, the switching elements 311 to 316 of the inverter main circuit 310 are assumed to be IGBTs (Insulated Gate Bipolar Transistors), MOSFETs (Metal-Oxide-Semiconductor Field-Effect Transistors), etc., but switching is performed. Any element that can be used may be used. In the motor drive device 2, when the switching elements 311 to 316 are MOSFETs, the MOSFET has a parasitic diode due to its structure, so that the same effect can be obtained without connecting the rectifying elements 321 to 326 for circulation in antiparallel. Can be done.
 スイッチング素子311~316を構成する材料については、ケイ素(Si)だけでなく、ワイドバンドギャップ半導体である炭化ケイ素(SiC)、窒化ガリウム(GaN)、ダイヤモンド等を用いたもので構成することにより、損失をより少なくすることが可能となる。 The materials constituting the switching elements 311 to 316 are made of not only silicon (Si) but also silicon carbide (SiC), gallium nitride (GaN), diamond, etc., which are wide bandgap semiconductors. It is possible to reduce the loss.
 つづいて、電動機駆動装置2が備える制御装置100のハードウェア構成について説明する。図18は、実施の形態1に係る電動機駆動装置2が備える制御装置100を実現するハードウェア構成の一例を示す図である。制御装置100は、プロセッサ201及びメモリ202により実現される。 Next, the hardware configuration of the control device 100 included in the electric motor drive device 2 will be described. FIG. 18 is a diagram showing an example of a hardware configuration that realizes the control device 100 included in the electric motor drive device 2 according to the first embodiment. The control device 100 is realized by the processor 201 and the memory 202.
 プロセッサ201は、CPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、DSP(Digital Signal Processor)ともいう)、またはシステムLSI(Large Scale Integration)である。メモリ202は、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリー、EPROM(Erasable Programmable Read Only Memory)、EEPROM(登録商標)(Electrically Erasable Programmable Read-Only Memory)といった不揮発性または揮発性の半導体メモリを例示できる。またメモリ202は、これらに限定されず、磁気ディスク、光ディスク、コンパクトディスク、ミニディスク、またはDVD(Digital Versatile Disc)でもよい。 The processor 201 is a CPU (Central Processing Unit, central processing unit, processing unit, arithmetic unit, microprocessor, microcomputer, processor, DSP (Digital Signal Processor)), or system LSI (Large Scale Integration). The memory 202 is non-volatile or volatile such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), and EEPROM (registered trademark) (Electrically Erasable Programmable Read-Only Memory). The semiconductor memory of the above can be illustrated. The memory 202 is not limited to these, and may be a magnetic disk, an optical disk, a compact disk, a mini disk, or a DVD (Digital Versatile Disc).
 以上説明したように、本実施の形態によれば、電動機駆動装置2において、制御装置100は、負荷トルクTが周期的に変動する負荷要素を電動機7が駆動する場合、電動機7の出力トルクTが、負荷トルクTの周期的変動、すなわち脈動に追従するようにインバータ30を制御する。制御装置100は、適切にリミッタ値を設定して弱め磁束制御の効きに応じたトルク電流指令値iδ ***を生成することで、電動機7の運転領域の全域において、低振動化を実現し、過電流および脱調の発生を抑制しつつ、高効率な運転を実施できる。 As described above, according to the present embodiment, in the electric motor drive device 2, the control device 100 determines the output torque of the electric motor 7 when the electric motor 7 drives a load element in which the load torque T l fluctuates periodically. The inverter 30 is controlled so that T m follows a periodic fluctuation of the load torque T l , that is, a pulsation. The control device 100 appropriately sets the limiter value and generates the torque current command value i δ *** according to the effectiveness of the weakening magnetic flux control, thereby realizing low vibration in the entire operating range of the motor 7. However, highly efficient operation can be performed while suppressing the occurrence of overcurrent and step-out.
実施の形態2.
 図19は、実施の形態2に係る冷凍サイクル適用機器900の構成例を示す図である。実施の形態2に係る冷凍サイクル適用機器900は、実施の形態1で説明した電動機駆動装置2を備える。実施の形態2に係る冷凍サイクル適用機器900は、空気調和機、冷蔵庫、冷凍庫、ヒートポンプ給湯器といった冷凍サイクルを備える製品に適用することが可能である。なお、図19において、実施の形態1と同様の機能を有する構成要素には、実施の形態1と同一の符号を付している。
Embodiment 2.
FIG. 19 is a diagram showing a configuration example of the refrigeration cycle application device 900 according to the second embodiment. The refrigeration cycle application device 900 according to the second embodiment includes the electric motor drive device 2 described in the first embodiment. The refrigeration cycle application device 900 according to the second embodiment can be applied to products including a refrigeration cycle such as an air conditioner, a refrigerator, a freezer, and a heat pump water heater. In FIG. 19, the components having the same functions as those of the first embodiment are designated by the same reference numerals as those of the first embodiment.
 冷凍サイクル適用機器900は、実施の形態1における電動機7を内蔵した圧縮機901と、四方弁902と、室内熱交換器906と、膨張弁908と、室外熱交換器910とが冷媒配管912を介して取り付けられている。 In the refrigeration cycle application device 900, the compressor 901 incorporating the electric motor 7 in the first embodiment, the four-way valve 902, the indoor heat exchanger 906, the expansion valve 908, and the outdoor heat exchanger 910 form a refrigerant pipe 912. It is attached via.
 圧縮機901の内部には、冷媒を圧縮する圧縮機構904と、圧縮機構904を動作させる電動機7とが設けられている。 Inside the compressor 901, a compression mechanism 904 for compressing the refrigerant and an electric motor 7 for operating the compression mechanism 904 are provided.
 冷凍サイクル適用機器900は、四方弁902の切替動作により暖房運転又は冷房運転をすることができる。圧縮機構904は、可変速制御される電動機7によって駆動される。 The refrigeration cycle applicable device 900 can perform a heating operation or a cooling operation by switching the four-way valve 902. The compression mechanism 904 is driven by an electric motor 7 that is controlled at a variable speed.
 暖房運転時には、実線矢印で示すように、冷媒が圧縮機構904で加圧されて送り出され、四方弁902、室内熱交換器906、膨張弁908、室外熱交換器910及び四方弁902を通って圧縮機構904に戻る。 During the heating operation, as shown by the solid arrow, the refrigerant is pressurized by the compression mechanism 904 and sent out, and passes through the four-way valve 902, the indoor heat exchanger 906, the expansion valve 908, the outdoor heat exchanger 910 and the four-way valve 902. Return to the compression mechanism 904.
 冷房運転時には、破線矢印で示すように、冷媒が圧縮機構904で加圧されて送り出され、四方弁902、室外熱交換器910、膨張弁908、室内熱交換器906及び四方弁902を通って圧縮機構904に戻る。 During cooling operation, as shown by the broken arrow arrow, the refrigerant is pressurized by the compression mechanism 904 and sent out, and passes through the four-way valve 902, the outdoor heat exchanger 910, the expansion valve 908, the indoor heat exchanger 906, and the four-way valve 902. Return to the compression mechanism 904.
 暖房運転時には、室内熱交換器906が凝縮器として作用して熱放出を行い、室外熱交換器910が蒸発器として作用して熱吸収を行う。冷房運転時には、室外熱交換器910が凝縮器として作用して熱放出を行い、室内熱交換器906が蒸発器として作用し、熱吸収を行う。膨張弁908は、冷媒を減圧して膨張させる。 During the heating operation, the indoor heat exchanger 906 acts as a condenser to release heat, and the outdoor heat exchanger 910 acts as an evaporator to absorb heat. During the cooling operation, the outdoor heat exchanger 910 acts as a condenser to release heat, and the indoor heat exchanger 906 acts as an evaporator to absorb heat. The expansion valve 908 depressurizes the refrigerant and expands it.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration shown in the above-described embodiment shows an example of the content of the present invention, can be combined with another known technique, and is one of the configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
 1 交流電源、2 電動機駆動装置、4 リアクタ、7 電動機、10 整流回路、20 平滑コンデンサ、22a,22b 直流母線、30 インバータ、82 母線電圧検出部、84 母線電流検出部、100 制御装置、102 運転制御部、110 インバータ制御部、111 電流復元部、112 3相2相変換部、113 励磁電流指令値生成部、115 電圧指令値演算部、116 電気位相演算部、117 2相3相変換部、118 PWM信号生成部、310 インバータ主回路、311~316 スイッチング素子、321~326 整流素子、331~333 出力線、350 駆動回路、501 周波数推定部、502,509,510,557,558,641 減算部、503 トルク電流指令値生成部、504 補償値演算部、511 励磁電流制御部、512 トルク電流制御部、550 演算部、551 余弦演算部、552 正弦演算部、553,554,561,562 乗算部、555,556 ローパスフィルタ、559,560 周波数制御部、563,613,621,643 加算部、610 速度制御部、611 比例制御部、612 積分制御部、620,640 振動抑制制御部、630 制限部、631 記憶部、632 選択部、633,642 リミッタ、900 冷凍サイクル適用機器、901 圧縮機、902 四方弁、904 圧縮機構、906 室内熱交換器、908 膨張弁、910 室外熱交換器、912 冷媒配管、D1~D4 ダイオード。 1 AC power supply, 2 electric motor drive, 4 reactor, 7 electric motor, 10 rectifier circuit, 20 smoothing condenser, 22a, 22b DC bus, 30 inverter, 82 bus voltage detector, 84 bus current detector, 100 controller, 102 operation Control unit, 110 inverter control unit, 111 current restoration unit, 112 3-phase 2-phase conversion unit, 113 excitation current command value generation unit, 115 voltage command value calculation unit, 116 electrical phase calculation unit, 117 2-phase 3-phase conversion unit, 118 PWM signal generator, 310 inverter main circuit, 311-316 switching element, 321-326 rectifier element, 331-333 output line, 350 drive circuit, 501 frequency estimation unit, 502,509,510,557,558,641 subtraction Unit, 503 torque current command value generation unit, 504 compensation value calculation unit, 511 exciting current control unit, 512 torque current control unit, 550 calculation unit, 551 cosine calculation unit, 552 sine calculation unit, 533, 554, 561, 562 multiplication Unit, 555,556 low pass filter, 559,560 frequency control unit, 563,613,621,643 addition unit, 610 speed control unit, 611 proportional control unit, 612 integration control unit, 620,640 vibration suppression control unit, 630 limit Unit, 631 storage unit, 632 selection unit, 633,642 limiter, 900 refrigeration cycle applicable equipment, 901 compressor, 902 four-way valve, 904 compression mechanism, 906 indoor heat exchanger, 908 expansion valve, 910 outdoor heat exchanger, 912 Rectifier piping, D1 to D4 diodes.

Claims (3)

  1.  負荷トルクが周期的に変動する負荷要素を駆動する電動機に、周波数および電圧値が可変の交流電圧を供給するインバータと、
     前記インバータを制御する制御装置と、
     を備え、
     前記制御装置は、
     γ軸およびδ軸を有する回転座標系におけるγ軸電流指令値を生成するγ軸電流指令値生成部と、
     前記回転座標系における第1のδ軸電流指令値を生成する速度制御部と、
     制限値を用いて前記第1のδ軸電流指令値を制限し、第2のδ軸電流指令値を生成する制限部と、
     前記電動機の出力トルクが前記負荷トルクの周期的変動に追従するようにδ軸電流補償値を生成する補償値演算部と、
     前記第2のδ軸電流指令値、前記制限値、および前記δ軸電流補償値を用いて第3のδ軸電流指令値を生成する振動抑制制御部と、
     を備え、前記γ軸電流指令値および前記第3のδ軸電流指令値を用いて前記インバータを制御する電動機駆動装置。
    An inverter that supplies an AC voltage with variable frequency and voltage value to an electric motor that drives a load element whose load torque fluctuates periodically.
    A control device that controls the inverter and
    With
    The control device is
    A γ-axis current command value generator that generates a γ-axis current command value in a rotating coordinate system having a γ-axis and a δ-axis,
    A speed control unit that generates a first delta-axis current command value in the rotating coordinate system,
    A limiting unit that limits the first δ-axis current command value using the limit value and generates a second δ-axis current command value,
    A compensation value calculation unit that generates a delta-axis current compensation value so that the output torque of the electric motor follows the periodic fluctuation of the load torque.
    A vibration suppression control unit that generates a third δ-axis current command value using the second δ-axis current command value, the limit value, and the δ-axis current compensation value.
    An electric motor drive device that controls the inverter by using the γ-axis current command value and the third δ-axis current command value.
  2.  前記制限部は、
     前記電動機の相電流に対する電流制限値、およびγ軸電流から規定される第1の制限値と、
     前記インバータが前記電動機に出力可能な電圧に基づく電圧制限値、前記電動機の回転速度、前記電動機の磁束鎖交数、前記回転座標系のγ軸インダクタンス、および前記回転座標系のδ軸インダクタンスから規定される第2の制限値と、
     を有し、
     前記電動機の線間電圧を母線電圧のピーク電圧で除算した値を変調率とした場合、前記制限値として、前記変調率が1より小さい場合は前記第1の制限値を選択し、前記変調率が1以上の場合は前記第2の制限値を選択する請求項1に記載の電動機駆動装置。
    The restriction part is
    The current limit value for the phase current of the motor and the first limit value defined by the γ-axis current,
    Defined from the voltage limit value based on the voltage that the inverter can output to the electric motor, the rotation speed of the electric motor, the magnetic flux chain intersection of the electric motor, the γ-axis inductance of the rotating coordinate system, and the δ-axis inductance of the rotating coordinate system. The second limit to be done and
    Have,
    When the value obtained by dividing the line voltage of the motor by the peak voltage of the bus voltage is used as the modulation factor, the first limit value is selected as the limit value when the modulation factor is smaller than 1, and the modulation factor is selected. The electric motor drive device according to claim 1, wherein when is 1 or more, the second limit value is selected.
  3.  請求項1または2に記載の電動機駆動装置を備える冷凍サイクル適用機器。 A refrigeration cycle applicable device including the electric motor drive device according to claim 1 or 2.
PCT/JP2019/037376 2019-09-24 2019-09-24 Electric motor driving device and refrigeration cycle application apparatus WO2021059350A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/037376 WO2021059350A1 (en) 2019-09-24 2019-09-24 Electric motor driving device and refrigeration cycle application apparatus
JP2021548019A JP7166468B2 (en) 2019-09-24 2019-09-24 Motor drive device and refrigeration cycle application equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/037376 WO2021059350A1 (en) 2019-09-24 2019-09-24 Electric motor driving device and refrigeration cycle application apparatus

Publications (1)

Publication Number Publication Date
WO2021059350A1 true WO2021059350A1 (en) 2021-04-01

Family

ID=75165171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/037376 WO2021059350A1 (en) 2019-09-24 2019-09-24 Electric motor driving device and refrigeration cycle application apparatus

Country Status (2)

Country Link
JP (1) JP7166468B2 (en)
WO (1) WO2021059350A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024038574A1 (en) * 2022-08-19 2024-02-22 三菱電機株式会社 Ac electric motor control device and air conditioning device
JP7566175B2 (en) 2021-12-10 2024-10-11 三菱電機株式会社 Power conversion devices, motor drive devices and refrigeration cycle application devices

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010259133A (en) * 2009-04-21 2010-11-11 Panasonic Corp Motor control device and compressor
JP2013223329A (en) * 2012-04-16 2013-10-28 Sanyo Denki Co Ltd Motor control apparatus
JP6478740B2 (en) * 2015-03-20 2019-03-06 日立ジョンソンコントロールズ空調株式会社 Motor control device and electric device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010259133A (en) * 2009-04-21 2010-11-11 Panasonic Corp Motor control device and compressor
JP2013223329A (en) * 2012-04-16 2013-10-28 Sanyo Denki Co Ltd Motor control apparatus
JP6478740B2 (en) * 2015-03-20 2019-03-06 日立ジョンソンコントロールズ空調株式会社 Motor control device and electric device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7566175B2 (en) 2021-12-10 2024-10-11 三菱電機株式会社 Power conversion devices, motor drive devices and refrigeration cycle application devices
WO2024038574A1 (en) * 2022-08-19 2024-02-22 三菱電機株式会社 Ac electric motor control device and air conditioning device
JP7696510B2 (en) 2022-08-19 2025-06-20 三菱電機株式会社 AC motor control device and air conditioning device

Also Published As

Publication number Publication date
JP7166468B2 (en) 2022-11-07
JPWO2021059350A1 (en) 2021-12-23

Similar Documents

Publication Publication Date Title
WO2021059350A1 (en) Electric motor driving device and refrigeration cycle application apparatus
JP7072714B2 (en) Motor drive device and refrigeration cycle applicable equipment
JP7566174B2 (en) Power conversion devices, motor drive devices and refrigeration cycle application devices
WO2023047486A1 (en) Power conversion device, electric motor drive device, and refrigeration cycle-applicable apparatus
WO2020095377A1 (en) Load driving device, refrigeration cycle device, and air conditioner
CN118160212A (en) Motor drive device and refrigeration cycle application equipment
WO2023073880A1 (en) Power conversion device, motor drive device, and refrigeration-cycle application device
JP7566175B2 (en) Power conversion devices, motor drive devices and refrigeration cycle application devices
JP7515740B2 (en) Power conversion devices, motor drive devices and refrigeration cycle application devices
JP7515739B2 (en) Power conversion devices, motor drive devices and refrigeration cycle application devices
JP7592187B2 (en) Power conversion devices, motor drives, and refrigeration cycle application devices
JP7595807B2 (en) Motor drive device and refrigeration cycle device
JP7361948B2 (en) Electric motor drive equipment, refrigeration cycle equipment, and air conditioners
JP7592188B2 (en) Power conversion devices, motor drives, and refrigeration cycle application devices
JP7330401B2 (en) Power conversion device, motor drive device and refrigeration cycle application equipment
WO2023095311A1 (en) Power conversion device, electric motor drive device, and refrigeration-cycle-applicable apparatus
JP7308949B2 (en) Motor drive device and refrigeration cycle application equipment
WO2025069181A1 (en) Power conversion device, electric motor drive device, and refrigeration cycle application device
WO2025069182A1 (en) Power conversion device, electric-motor drive device, and apparatus in which a cryocooling cycle is applied
WO2025069183A1 (en) Power conversion device, electric motor drive device, and refrigeration cycle application device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19946923

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021548019

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19946923

Country of ref document: EP

Kind code of ref document: A1