WO2021058032A1 - 地图建立方法、自移动设备、自动工作系统 - Google Patents
地图建立方法、自移动设备、自动工作系统 Download PDFInfo
- Publication number
- WO2021058032A1 WO2021058032A1 PCT/CN2020/118908 CN2020118908W WO2021058032A1 WO 2021058032 A1 WO2021058032 A1 WO 2021058032A1 CN 2020118908 W CN2020118908 W CN 2020118908W WO 2021058032 A1 WO2021058032 A1 WO 2021058032A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- shadow area
- area
- shadow
- map
- self
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0268—Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
- G05D1/0274—Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means using mapping information stored in a memory device
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01D—HARVESTING; MOWING
- A01D34/00—Mowers; Mowing apparatus of harvesters
- A01D34/006—Control or measuring arrangements
- A01D34/008—Control or measuring arrangements for automated or remotely controlled operation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/005—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 with correlation of navigation data from several sources, e.g. map or contour matching
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/10—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
- G01C21/12—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
- G01C21/16—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
- G01C21/165—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
- G05D1/0219—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory ensuring the processing of the whole working surface
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0276—Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0276—Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
- G05D1/0278—Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using satellite positioning signals, e.g. GPS
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/20—Control system inputs
- G05D1/24—Arrangements for determining position or orientation
- G05D1/246—Arrangements for determining position or orientation using environment maps, e.g. simultaneous localisation and mapping [SLAM]
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/20—Control system inputs
- G05D1/24—Arrangements for determining position or orientation
- G05D1/247—Arrangements for determining position or orientation using signals provided by artificial sources external to the vehicle, e.g. navigation beacons
- G05D1/248—Arrangements for determining position or orientation using signals provided by artificial sources external to the vehicle, e.g. navigation beacons generated by satellites, e.g. GPS
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/60—Intended control result
- G05D1/648—Performing a task within a working area or space, e.g. cleaning
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/30—Monitoring; Testing of propagation channels
- H04B17/309—Measuring or estimating channel quality parameters
- H04B17/318—Received signal strength
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01D—HARVESTING; MOWING
- A01D2101/00—Lawn-mowers
Definitions
- the present invention relates to a self-mobile device, and in particular, to a map building method, a self-mobile device using the map building method, an automatic working system, a computer-readable storage medium, a computer program product, and an electronic device.
- Satellite navigation signals are usually easily blocked by trees, buildings and obstacles, which weaken the navigation signals.
- a smart lawn mower may not be able to accurately locate it because of its weak GPS signal when working in a shaded area.
- the present invention provides a map building method and a self-moving device using the map building method to solve the problem of low positioning accuracy caused by the processing of the shadow area by the mobile device.
- the present invention provides a method for establishing a map, including the steps:
- the preset condition is: the length of the initial shadow segment The value is less than or equal to 60 times the moving speed value of a mobile device working in the work area;
- the initial shadow area includes an enlarged width from the initial shadow section toward the working area
- the correction shadow area is generated according to the positioning signal quality data and the positioning coordinates, wherein the exploring the initial shadow area includes the steps:
- the positioning signal quality parameters obtained from the mobile device during the movement are The positioning signal quality parameters obtained from the mobile device during the movement;
- the location of the self-mobile device is a shadow area
- the present invention provides a method for establishing a map, which includes the steps:
- a corrected shadow area is generated.
- the initial shadow area includes an enlarged width from the initial shadow section toward the working area.
- the method further includes:
- the preset condition is: the length value of the initial shadow segment is less than or equal to 60 times the moving speed value of a mobile device working in the work area.
- the exploring the initial shadow area includes the steps:
- the positioning signal quality parameters obtained from the mobile device during the movement are The positioning signal quality parameters obtained from the mobile device during the movement;
- the location of the self-mobile device is a shadow area.
- the self-moving device is controlled to move from different directions to the initial shadow area in the work area.
- the method further includes the following steps:
- the exploration start position is generated according to the position of the initial shadow area, and the mobile device starts the exploration from the exploration start position.
- generating a corrected shadow area according to the positioning signal quality data and the positioning coordinates includes the steps:
- the boundary points determined in each direction are connected to form the boundary of the corrected shadow area.
- the exploring the initial shadow area includes the steps:
- the location of the self-mobile device is a shadow area.
- generating a corrected shadow area according to the positioning signal quality data and the positioning coordinates includes the steps:
- the boundary points determined on the planned path are connected to form the boundary of the corrected shadow area.
- the method further includes the following steps:
- the self-moving device enters the corrected shadow area along the entering direction to perform work surface treatment.
- the shaded area includes a first edge extending substantially along the extending direction of the boundary of the working area and close to the boundary of the working area, and the entering direction is along the substantially normal direction of the first edge.
- the shaded area includes a first edge extending substantially along the extending direction of the boundary of the working area and close to the boundary of the working area, and the entering direction is a direction substantially parallel to the first edge.
- the entry direction is a direction substantially perpendicular to the longitudinal axis of the shadow area.
- the shadow area includes a first edge close to the obstacle and a second edge far away from the obstacle
- the entry direction includes a substantially normal direction along the first edge or the second edge, or the entry direction It is the direction in which the distance between the first edge and the second edge is the shortest.
- the method further includes:
- the self-mobile device exits the shadow area in an exit direction opposite to the entry direction.
- map establishment method further includes:
- the mobile device is controlled to enter the shadow area and exit the shadow area so that the sum of the entry time to enter the shadow area and the exit time to exit the shadow area meets the time threshold.
- the present invention also provides a self-moving device, which includes:
- the moving module is used to drive the housing to move
- Task execution module used to perform work tasks
- a control module which is electrically connected to the mobile module and the task execution module, controls the mobile module to drive the mobile device to move, and controls the task execution module to perform work tasks;
- the self-moving device further includes:
- the map generation module generates the work area map and the initial shadow segment, and generates the initial shadow area according to the initial shadow segment;
- the exploration module is used to explore the initial shadow area within the scope of the work area, and collect positioning signal quality data and positioning coordinates during the exploration process to generate a corrected shadow area;
- the shadow area correction module is used to generate a corrected shadow area according to the positioning signal quality data and the positioning coordinates.
- control module controls the mobile device to move toward the initial shadow area from different directions within the working area for exploration.
- the self-moving device further includes:
- the exploration start position determination module is used to generate the exploration start position according to the initial shadow area position, and the control module controls the mobile device to start the exploration from the exploration start position.
- control module is used to identify the characteristic information of the shadow area, determine the entry direction of the self-mobile device into the shadow area according to the characteristics of the shadow area, and enable the self-mobile device to enter the shadow area along the entry direction.
- the shaded area is used to identify the characteristic information of the shadow area, determine the entry direction of the self-mobile device into the shadow area according to the characteristics of the shadow area, and enable the self-mobile device to enter the shadow area along the entry direction. The shaded area.
- the shaded area includes a first edge extending substantially along the extending direction of the boundary of the working area and close to the boundary of the working area, and the entering direction is along the substantially normal direction of the first edge.
- the shaded area includes a first edge extending substantially along the extending direction of the boundary of the working area and close to the boundary of the working area, and the entering direction is a direction substantially parallel to the first edge.
- the entry direction is a direction substantially perpendicular to the longitudinal axis of the shadow area.
- the shadow area includes a first edge close to the obstacle and a second edge far away from the obstacle
- the entry direction includes a substantially normal direction along the first edge or the second edge, or the entry direction It is the direction in which the distance between the first edge and the second edge is the shortest.
- control module causes the self-moving device to enter the shadow area along the entry direction, it causes the self-moving device to exit the shadow area along an exit direction opposite to the entry direction.
- the self-moving device further includes:
- the time preset module is used to preset the time threshold of the mobile device in the shadow area
- the control module controls the mobile device to enter and exit the shadow area so that the sum of the entry time into the shadow area and the exit time to exit the shadow area meets the time threshold.
- the present invention also provides an automatic working system, which includes:
- the self-moving device as described in any one of the above moves and works within a limited working area.
- the present invention also provides a computer-readable storage medium on which a computer program is stored, and when the computer program instructions are executed by a computing device, the computer program instructions are operable to execute the map building method as described in any one of the above items.
- the present invention also provides a computer program product.
- a method for creating a map is executed. The method includes:
- the present invention also provides an electronic device, including:
- Memory for storing computer executable instructions
- the processor is configured to execute computer-executable instructions stored in the memory to execute the map building method described in any one of the above.
- the present invention first explores the actual range of the shadow area and then updates the map, which can improve the working efficiency of the self-mobile device, effectively control the time that the self-mobile device stays in the shadow area, and can reasonably plan
- the processing method of the shadow area improves the positioning accuracy.
- Fig. 1 is a schematic diagram of an automatic working system in an embodiment of the present invention.
- Fig. 2 is a schematic diagram of working in a working area when the self-mobile device is a smart lawn mower in an embodiment of the present invention.
- Fig. 3 is a schematic diagram of an automatic working system including two sub-working areas in an embodiment of the present invention.
- Figure 4 is a schematic diagram of a shadow area on the boundary when a map is created from a mobile device.
- FIG. 5 is a schematic diagram of obtaining the exploration boundary of the shadow area after the mobile device explores the shadow area according to the present invention.
- Fig. 6 is a schematic diagram of the self-mobile device of the present invention using different entry directions to process the explored shadow area.
- Fig. 7 is a schematic flow chart of the map creation method of the present invention.
- FIG. 8 is a schematic flowchart of an embodiment of obtaining a shadow area in the map building method of the present invention.
- FIG. 9 is a schematic flowchart of an embodiment of obtaining a shadow area in the map building method of the present invention.
- FIG. 10 is a schematic diagram of the process of entering the shadow area in the map building method of the present invention.
- FIG. 11 is a schematic diagram of the direction selection of the shadow area in the map building method of the present invention.
- Fig. 12 is a schematic diagram of selecting the entry direction of the shadow area in the map building method of the present invention.
- FIG. 13 is a schematic diagram of part of the structure of the self-mobile device of the present invention.
- FIG. 14 is a schematic block diagram of an electronic device according to an embodiment of the present invention.
- FIG. 15 is a schematic flowchart of a map creation method according to another embodiment of the present invention.
- FIG. 16 is a schematic diagram of path planning from a mobile device according to an embodiment of the present invention.
- FIG. 17 is a schematic diagram of obtaining the shadow area exploration boundary after the mobile device searches for the shadow area according to another embodiment of the present invention.
- Discovery module 600 electronic equipment 610, processor
- Fig. 1 is a schematic diagram of an automatic working system 100 according to a first embodiment of the present invention.
- the automatic working system 100 in the embodiment of the present invention includes a self-moving device.
- Self-mobile devices can move and work within the work area defined by the map.
- the self-moving equipment is an automatic lawn mower 1.
- the self-moving equipment may also be equipment suitable for unattended operation, such as automatic cleaning equipment, automatic watering equipment, and automatic snowplow.
- the automatic lawn mower 1 includes a housing 3, a mobile module 5, a task execution module 7, an energy module, a control module, and the like.
- the working place of the automatic lawn mower 1 is the lawn 6.
- the moving module 5 includes a crawler belt or a wheel set, which is driven by a driving motor to drive the automatic lawn mower 1 to move.
- the task execution module 7 includes a cutting assembly, which is installed at the bottom of the housing 3 and is driven by a cutting motor to rotate and perform the mowing work. Perform mowing work.
- the energy module includes a battery pack (not shown) to provide electrical energy for the movement and operation of the automatic lawn mower 1.
- the control module is electrically connected to the mobile module 5, the task execution module 7 and the energy module, controls the mobile module to drive the automatic lawn mower 1 to move, and controls the task execution module to perform work tasks.
- the automatic working system is used to work in a predetermined working area.
- the working area includes at least two mutually separated sub-work areas, namely, area C and area D.
- a boundary 8 is formed between the working area and the non-working area, and there may be obstacles in the working area, such as trees, pits, etc.
- the automatic working system 100 further includes a charging station 2 for supplying electric power to the automatic lawn mower 1.
- the charging station 2 can be set in an open place beside the house 4.
- the charging station 2 can also be located in the work area or on the boundary of the work area.
- the automatic working system 100 includes a navigation module for outputting the current position of the automatic lawn mower.
- the navigation module includes a mobile station 9.
- the automatic working system 100 further includes a reference point A and a reference point B located in the working area.
- a reference point A and a reference point B located in the working area.
- the signal is used as a reference positioning signal, and the positioning of the automatic lawn mower 1 during the movement is obtained by solving the reference positioning signal.
- the reference point A, the reference point B and the charging station 2 can all be used as reference positions.
- the reference position is an open position, and the satellite signal quality is high.
- the mobile station 9 is electrically connected with the control module to store and process the satellite signals obtained by the automatic lawn mower 1, so that the automatic lawn mower 1 can move and work in the working area.
- the mobile station 9 is used to receive satellite signals, and the satellite signals include satellite angles, clocks, and so on.
- the satellite signal can be a GPS signal, Galileo, Beidou, etc., or several signals can be used at the same time.
- the satellite signals are signals such as differential GPS (DGPS) or GPS-RTK.
- the navigation module can output the accuracy level of the positioning signal while outputting the position information.
- the accuracy level of the positioning signal is the following positioning signal quality parameters.
- the automatic lawn mower 1 can also determine the current positioning state according to the position information output by the navigation module, and output a positioning state indication.
- the basis for judging the quality of the location information output by the navigation module can be the number of satellites that the navigation module can receive signals, or the positioning status indicator, or the accuracy factor, or a combination of multiple factors, setting the importance weight to obtain the location information quality .
- the quality of the location information output by the navigation module can be evaluated by the navigation module itself for error, and the control module can obtain the evaluation result, or the control module can use the output of the navigation module for error evaluation to obtain the evaluation result.
- the automatic lawn mower 1 further includes at least one position sensor, which is electrically connected to the control module, and detects features related to the position of the automatic lawn mower 1.
- Position sensors can include cameras, radars, capacitive sensors, inertial navigation sensors, and so on.
- the position sensor is an inertial navigation sensor.
- the inertial navigation sensor may include an accelerometer, an odometer, a compass, a gyroscope, a posture detection sensor, etc., to detect the speed, acceleration, and driving direction of the mobile device.
- the control module at least partly determines the current location of the automatic lawn mower 1 based on the output of the location sensor.
- the position information output by the navigation module and the output of the position sensor can be fused to obtain the current position of the automatic lawn mower.
- the inertial navigation sensor as an example, if the inertial navigation sensor is continuously used for navigation, the error of the output of the inertial navigation sensor will accumulate over time, resulting in a decrease in the accuracy of the output position information. Therefore, when the quality of the position information output by the navigation module meets the preset condition, the output of the satellite navigation device is used to correct the output of the position sensor, so that the position sensor can maintain a high-precision output.
- the mobile station 9 when the mobile station 9 is working, it can only use GPS positioning signals for navigation, or use GPS positioning signals and inertial navigation data fusion processing positioning signals for navigation, or when the GPS signal is weak , You can also use only inertial navigation data to navigate.
- the mobile station 9 may also include an indicator (not shown) to output an indication of whether the differential GPS signal of the current position is good.
- the mobile station 9 is detachably connected to the housing 3 of the automatic lawn mower 1.
- the mobile station 9 includes a first interface (not shown) connected to the housing of the automatic lawn mower 1.
- the mobile station 9 is installed on the housing 3 of the automatic lawn mower 1.
- the mobile station 9 can realize the electrical connection with the control module of the automatic lawn mower 1.
- the mobile station 9 outputs the current position coordinates of the automatic lawn mower 1, and the control module according to the automatic cutting
- the current position of the lawn mower 1 controls the movement and work of the automatic lawn mower 1.
- the mobile station outputs a control command to the control module according to the current position coordinates.
- the mobile station 9 includes an independent power supply module (not shown in the figure). When the mobile station 9 is separated from the housing 3 of the automatic lawn mower 1, it can work independently. In other embodiments, the mobile station 9 and the housing 3 of the automatic lawn mower 1 may be non-detachable connection. If it is positioned during the operation of the mobile device, the mobile station 9 and the housing 3 of the automatic lawn mower 1 3 Whether it is detachable does not affect the positioning.
- the mobile station 9 obtains error data by using the reference positioning signal before the current positioning signal and obtains current position information based on the error data and the position information processing of the reference positioning signal, instead of using a self-built base station or a shared base station in the current position.
- the satellite signals received in real time are processed to obtain current position information, so self-built base stations or shared base stations can be eliminated, which simplifies user installation and greatly reduces costs.
- an inertial navigation system can be used to assist the navigation accuracy of the automatic lawn mower.
- the errors of inertial navigation will accumulate.
- the positioning coordinates of the satellite navigation system can be used to correct the cumulative error of the inertial navigation after the inertial navigation system has been working for a period of time, so as to ensure that the self-mobile device is in the shadow area. Navigation accuracy.
- the positioning device of the mobile device in this embodiment may be set in the server, or may also be set in the mobile station, which is not limited in the embodiment of the present application.
- the electronic device is, for example, a personal computer (PC), a cloud device or a mobile device
- the mobile device is, for example, a smart phone or a tablet computer.
- execution subject of the embodiments of the present application may be, for example, a server or a central processing unit (CPU) in an electronic device in hardware, and may be, for example, a server or background management in an electronic device in software. Service, there is no restriction on this.
- a physical base station is used, that is, a self-built base station or a shared base station.
- the self-built base station or the shared base station can provide the mobile device with real-time satellite signals for positioning as the reference positioning signal.
- the mobile station 9 The real-time satellite data obtained by the physical base station is used to perform the calculation process to obtain the current position information. There will be no cumulative error. Only from the perspective of the satellite signal, the positioning error is considered to be a constant value or the error difference is relatively small.
- a virtual base station that is, no self-built base station or shared base station that can obtain real-time satellite signals is set, and only the satellite signals obtained at a certain reference point at a certain point in time are used as subsequent positioning
- the reference positioning signal used for example, the satellite signal obtained before the departure of the mobile device is used as the reference positioning signal for subsequent positioning.
- the satellite signal that meets the solution condition before the current positioning signal can also be used as the reference positioning signal.
- the positioning error is a cumulative error, and the error will gradually become larger, that is, with the accumulation of time, if you only use positioning navigation for positioning without using other positioning equipment, the positioning will become more and more inaccurate . Therefore, the self-mobile device will set up an error evaluation. When the error exceeds the set error threshold, the self-mobile device will be controlled to return to the reference point to re-acquire the satellite signal of the reference point position.
- the satellite signal is a new reference for positioning. Positioning signal.
- the automatic lawn mower 1 has a mapping boundary 901 obtained by mapping, and there are obstacles, such as an island 907, in the working area.
- the working area is divided into four blocks, namely area C, area D, area E and area F.
- the way of creating a map can be, for example, the user encircles the working area of the mobile device on the Google map, the mobile station 9 is integrated with the self-mobile device, and the self-mobile device runs a circle along the working area.
- the self-moving device is an automatic lawn mower
- the user can push the automatic lawn mower to operate, the user remotely controls the operation of the automatic lawn mower, the automatic lawn mower follows the trajectory of the user's movement, and the automatic lawn mower runs automatically. Etc., there is no restriction on this.
- the mapping boundary 901 is the boundary on the map or the boundary obtained by walking.
- a map of the working area is generated.
- the basic location data is acquired from the navigation module of the mobile device under manual operation. For example, the user holds the navigation module (or navigation device) and walks a circle around the actual boundary of the working area to obtain positioning.
- a shadow area 30 will be formed.
- the satellite signal received in this shadow area during mapping is relatively weak, resulting in inaccurate positioning of this segment of the boundary in the mapping boundary 901. The inaccurately positioned boundary of this segment can be marked as the initial shadow area.
- the automatic lawn mower can be controlled to move towards the working area and move along the assumed boundary 904 of the shadow area.
- the shadow area is large , It is easy to cause the automatic lawn mower to work longer in the shadow area, thereby affecting the positioning accuracy. Therefore, the shadow area needs to be effectively identified first.
- the self-mobile device can start from the virtual initial position 908 and move toward the initial shadow area to explore the shadow area.
- the explored route can be parallel to the boundary extension direction or perpendicular to the boundary extension direction, of course. It can be inclined relative to the direction in which the boundary extends.
- the shadow area exploration boundary 905 can be obtained through exploration. It can be seen from the figure that the shadow area exploration boundary 905 obtained through exploration and the actual shadow area boundary 906 can be very close. Exploring the shadow area first can make the map more accurate, and exploring the shadow area first, and then processing the shadow area, can improve the positioning accuracy of the automatic lawn mower, and can improve the processing effect of the shadow area.
- Fig. 7 is a schematic flow chart of the map creation method of the present invention. As shown in Fig. 7, the map creation method includes step S101 to step S103.
- S101 Generate a work area map and an initial shadow segment, where the work area map is a boundary map, and the initial shadow segment is a part of the boundary where the positioning signal does not meet the quality requirements.
- the working area map may be obtained based on collecting basic position data of the working area, and the basic position data is obtained under a human operation.
- the basic location data can be obtained by delineating an initial boundary area on a map software on a smart terminal such as a mobile phone, a tablet, or a computer.
- the map software may be Google Maps, Baidu Maps, etc.
- a satellite map is displayed on the smart terminal. The user finds the approximate working area of the automatic lawn mower on the satellite map, selects the area and downloads it, and then draws the initial boundary according to the actual working area, that is, collects boundary position data to obtain the initial
- the boundary area is stored as a map.
- the data in the stored map is the position data corresponding to the boundary drawn on the satellite map.
- the automatic lawn mower includes a receiving device, and the mobile phone, tablet or computer sends the boundary position data related to the delimited initial boundary area to the receiving device of the automatic lawn mower.
- the receiving device of the automatic lawn mower receives and stores the boundary position data related to the delimited initial boundary area.
- the mobile phone, tablet or computer sends the coordinates of the initial boundary area of the garden, etc., to the receiving device in a wireless or wired manner.
- wireless methods include Bluetooth, wifi, and so on.
- the basic location data is obtained by the navigation module of the mobile device under manual operation, for example, the navigation module (or navigation device) of the user's handheld automatic lawn mower walks around the actual boundary of the working area and is obtained by positioning. .
- S102 Generate an initial shadow area according to the initial shadow segment.
- the initial shadow area includes an enlarged width from the initial shadow section toward the working area, and the range of the enlargement width is 5% to 50% of the length value of the initial shadow section.
- the enlargement width is 1 meter.
- the enlargement width is 10 meters.
- the enlargement width is 4 meters.
- the enlargement width is 10% of the length of the initial shadow section as an example, if the initial shadow section is 20 meters, the enlargement width is 2 meters.
- step S102 the following step is further included:
- the preset condition is: the length of the initial shadow segment is less than or equal to 60 times the moving speed value of a self-mobile device working in the work area, for example, the moving speed of the self-mobile device is 0.3 m/s, then the initial The length of the shadow section cannot exceed 18m. If it exceeds this value, the map needs to be rebuilt.
- the moving speed of the mobile device is 0.5m/s, then the length of the initial shadow segment cannot exceed 30m, and if it exceeds this value, the map needs to be rebuilt.
- S104 Generate a corrected shadow area according to the positioning signal quality data and the positioning coordinates.
- the shadow area is an area where the positioning signal output from the navigation module of the mobile device does not meet the quality requirements.
- the mobile device can obtain the boundary information from the map of the working area stored in the mobile device, and the boundary in the map can be obtained by the user's handheld navigation device walking a circle around the boundary of the working area. Obtain the location on the map with unclear boundary information. The location of the unclear boundary information on the map results in incomplete or uncertain boundary location on the map because the received satellite signal is weak. The mobile device explores the shadow area for the location where the boundary information is not clear.
- the same method can be used, that is, when the initial map is created, the user holds the navigation device and walks around the obstacle to obtain the boundary of the obstacle, due to the satellite signal received in the shadow area It is weak, so the location of the obstacle boundary in the acquired map is incomplete or uncertain.
- the mobile device searches the shadow area for the location around the obstacle with unclear boundary information.
- the correction of the work area map can be completed.
- the feature points whose positioning signal quality parameters do not meet the set positioning signal quality threshold are obtained, and the area range of the shadow area is obtained by connecting these feature points, and the feature location data of these feature points are used to perform the map Revise and perfect the map.
- the self-mobile device provided by the embodiment of the present invention can quickly identify the shadow area and improve the map, thereby laying a good foundation for the self-mobile device to select the direction to enter the shadow area, and also provide a foundation for the self-mobile device to work efficiently.
- the shadow area of the exploration work area specifically includes step S201 to step S203.
- S202 Acquire the positioning signal quality parameter acquired from the navigation module of the mobile device during the movement of the mobile device.
- S203 Determine that the location of the self-mobile device is a shadow area according to the acquired positioning signal quality parameter that does not meet the set positioning signal quality threshold.
- the shadow area of the exploration work area specifically includes steps S301 to S304.
- the initial shaded area is the area where the positioning signal of the corresponding position on the work area map does not meet the quality requirements.
- S302 Control the mobile device to move toward the initial shadow area from different directions in the work area.
- S303 Acquire the positioning signal quality parameter acquired by the navigation module in the process of moving the mobile device toward the initial shadow area.
- S304 Determine that the location of the self-mobile device is a shadow area according to the acquired positioning signal quality parameter that does not meet the set positioning signal quality threshold.
- the shadow area can be determined by comparing the detected positioning signal quality parameter with a preset positioning signal quality threshold.
- the determination of the threshold may be based on whether the satellite signal can be accurately positioned. For example, when the machine can accurately locate, even if the GPS is weakened to a certain extent, there is still no need to determine the shadow area.
- a part of the weakened satellite signal area caused by the occlusion of buildings or obstacles can be marked as a shaded area, so as to avoid an increase in the workload of the machine that may be caused by the inability to divide the shaded area properly.
- Determining the boundary of the corrected shadow area includes the steps:
- the boundary points determined in each direction are connected to form the boundary of the corrected shadow area.
- the above method of "identifying the boundary points of the corrected shadow area in each direction according to the coordinate points" is to identify the coordinate points closest to the search start position in each direction, and use this coordinate point as the boundary point of the corrected shadow area.
- step S103 there are further steps S104 to S106.
- the feature information of the shadow area includes: geometric shape features enclosed by the shadow area boundary formed by the outermost points of the shadow area that are explored.
- the feature information of the shadow area includes: geometric shape features highlighted in the entire shadow area discovered.
- a longitudinal axis can be defined for the shadow area.
- the shaded area has a substantially regular shape, such as a substantially rectangular shape, and the longitudinal axis is parallel to the long side direction of the rectangle.
- the longitudinal axis is the major axis of the ellipse.
- the shaded area is an irregular shape, it can be approximated to a regular shape by mathematical methods known in the industry and then processed, or its longitudinal axis can also be determined by other methods, and then based on the determined longitudinal axis. Long axis, proceed to the next steps.
- S105 Determine an entry direction from the mobile device into the shadow area according to the characteristics of the shadow area.
- the shaded area includes a first edge that extends substantially along the extension direction of the boundary of the working area and is close to the boundary of the working area, and the entering direction is along the substantially normal direction of the first edge.
- the shaded area includes a first edge extending substantially along the extending direction of the boundary of the working area and close to the boundary of the working area, and the entering direction is a direction substantially parallel to the first edge.
- the entry direction is a direction substantially perpendicular to the longitudinal axis of the shaded area.
- the shadow area includes a first edge located on one side of the longitudinal axis of the shadow area, and the entering direction is a substantially normal direction along the first edge.
- the shadow area includes a first edge close to the obstacle and a second edge far away from the obstacle
- the entry direction includes a substantially normal direction along the first edge or the second edge, or the entry direction is The direction in which the distance between the first edge and the second edge is the shortest.
- S106 Make the self-moving device enter the shadow area along the entering direction.
- the method may further include: presetting a positioning signal quality threshold in the mobile device; thereby detecting the shadow area in the working area includes: obtaining from the mobile device and determining whether the acquired positioning signal quality parameters do not meet the quality requirements Since the location of the mobile device is the shaded area.
- the method further includes: making the self-mobile device exit the shadow area in an exit direction opposite to the entry direction.
- the processing task of the shadow area can be completed. It can be understood that, for shadow areas of different areas, a variety of the aforementioned entry directions can be used to achieve the processing of entering the shadow area from different directions to achieve the maximum shadow area.
- the direction is within plus or minus 30° of parallel direction/normal. In other optional embodiments, the direction is plus or minus 20°, or 15°, or 10° of parallel direction/normal. , Or 5°, or within 3°.
- the above-mentioned selection principle of the direction can minimize the time that the self-mobile device is in the shadow area, so as to avoid the weak satellite signal from affecting the positioning accuracy of the self-mobile device.
- the direction in which the mobile device enters the shadow area each time may be the same or different.
- the direction from the mobile device into the shadow area can be determined according to the geometric shape characteristics of the shadow area.
- the direction of the automatic lawn mower entering the same shadow area can be the same every time, so as to avoid giving the user a sense of disorder and disorder in the operation of the automatic lawn mower, thereby enhancing the user experience.
- the edges of the shadow area 30 can be divided into a first edge 32 and a second edge 34 located on both sides of the longitudinal axis, and the shadow area 30 is divided by the first edge 32 and the second edge 34 are surrounded by.
- the automatic lawn mower 1 may enter the shadow area 30 in a direction substantially perpendicular to the longitudinal axis, or in a substantially normal direction of the first edge 32 or the second edge 34. It can be understood that this direction is also the direction that makes the distance between the first edge and the second edge the shortest.
- the automatic lawn mower 1 can enter the shadow area 30 along the direction with the shortest distance between the first edge 32 and the second edge 34.
- the automatic lawn mower 1 can select various directions to enter the shaded area 30, and compared with other directions, the direction indicated by the solid arrow is the shortest path from the second edge 34 to the first edge 32.
- the shortest distance here is not limited to the absolute shortest, but the optimal path from the second edge 34 to the first edge 32.
- the shortest distance can also be understood as when the automatic lawn mower 1 completes the cutting of the shadow area 30 with a path parallel to the entering direction, the moving distance of the automatic lawn mower 1 from the first edge 32 to the second edge 34 And the average value of the moving distance from the second edge 34 to the first edge 32 is the shortest.
- the formation of shadow areas in the working area is due to the existence of buildings or other obstacles, thereby forming signal weakening areas on one or more sides of the buildings or obstacles.
- the shape of the shadow area may be a shape extending outward from the lower edge of a building or an obstacle.
- the first edge 32 may be the intersection line between the building or obstacle and the work area, and the second edge 34 may be connected by points located near the building or obstacle and whose signal quality parameters begin to meet the preset threshold. (The principle of the preset threshold is, for example, whether the strength of the satellite signal can accurately navigate).
- the first edge 32 and the second edge 34 may be enclosed to form a closed figure.
- the first and second edges may form a semicircular closed structure.
- the self-moving device When working on a self-moving device, in order to minimize the time that the self-moving device is in the shadow area, for example, it can be along the approximate normal of the first edge 32 or the second edge 34, or between the first edge 32 and the second edge 34. The direction with the shortest distance enters the shaded area.
- the walking path of the self-mobile device can be set by the program.
- the program can simulate various walking modes of the self-mobile device, judge the length of the path through the shadow area in a certain walking mode, and select the shortest path of the self-mobile device in the shadow area. Way of walking.
- the walking direction of the mobile device in a certain area can be consistent and coherent, that is, the direction is not adjusted with the slight change of the boundary shape, so as to avoid giving the user the impression of "unintelligence".
- the shaded area referred to in this embodiment is determined according to the strength of the satellite signal received from the mobile device/mobile station.
- the quality threshold of the received satellite signal can be preset, that is, the aforementioned positioning signal quality threshold, wherein when the satellite signal quality parameter received from the mobile device, that is, the aforementioned positioning signal quality parameter does not meet the preset positioning
- the area is considered to be a shaded area.
- the method further includes: presetting a positioning signal quality threshold in the mobile device. Enabling the mobile device to enter the shadow area along the above direction includes: when the satellite signal quality parameter obtained from the mobile device does not meet the positioning signal quality threshold, starting the inertial navigation signal from the mobile device. When the satellite signal quality parameter obtained from the mobile device meets the positioning signal quality threshold, the satellite navigation signal is restored.
- the embodiment of the present invention realizes the switching between the inertial navigation signal and the satellite navigation signal according to the strength of the signal, which can ensure the accurate positioning of the machine.
- allowing the mobile device to enter the shadow area in the above direction includes: simultaneously enabling satellite navigation and inertial navigation; and using the weighted value of the satellite navigation result and the inertial navigation result as the navigation result.
- the error of inertial navigation will gradually increase with the accumulation of time, which will make the navigation accuracy lower and lower.
- the embodiment of the present invention can learn from each other's strengths, and realize the positioning of the machine in the shadow area more accurately.
- the first positioning device may also be a UWB positioning device, an ultrasonic beacon positioning device, or the like.
- the second positioning device may also be an image acquisition device, a capacitance grass detection device, and the like.
- the map creation method further includes: preset a time threshold in the shadow area; controlling the mobile device to enter the shadow area and exit the shadow area so that the sum of the time of entering the shadow area and the exit time of exiting the shadow area Meet the time threshold.
- step S102 after the initial shadow area is generated according to the initial shadow segment in step S102, as shown in FIG. 15, the following step S103 Go to step S106.
- S104 Make the self-moving device move and/or work according to the planned path
- the mobile device after the mobile device obtains the work area map and the initial shadow area, it ends the mapping and enters the work process, and corrects the initial shadow area during the work process. Generate correction shadow areas.
- the current mapping process can be ended first, and path planning is performed according to the work area map to obtain a path planning diagram as shown in FIG. 16, where the dashed line 903 is the planned path, and the mobile device is controlled to follow The path is walking.
- the self-mobile device detects the positioning signal quality parameters during the walking process. As shown in FIG.
- the positioning signal quality parameter of the current position when it is detected that the positioning signal quality parameter of the current position does not meet the signal quality threshold, it indicates that the current position is near the shaded area, so that the mobile device can record the coordinates of the current position and control it to continue walking.
- the positioning signal quality parameter that does not meet the signal quality threshold can be from the mobile device walking from an area with good signal quality to an area with poor signal quality, as shown in the coordinate point A in Figure 17, or from an area with poor signal quality. Walk to the area with good signal quality as the coordinate point B in Figure 17.
- the mobile device when it is detected that the recorded coordinates that do not meet the signal quality threshold reach a preset value (for example, ten), the mobile device can be controlled to update the map. Alternatively, it can also be controlled to update the map when it is detected that the mobile device has walked a complete work area. Specifically, the following methods can be used to update the map, including:
- the map is updated in combination with the initial shadow area and the boundary points, and a corrected map can be obtained.
- the boundary of the corrected shadow area is marked on the map, as shown in the exploration boundary 905 in FIG. 17. It should be noted that each boundary or path in FIG. 17 is only an example, and does not have a limiting effect on this application.
- the same method can be used for other obstacles forming shadow areas in the work area. That is, in the working process, the shadow area corresponding to the obstacle is explored through the above method. In the working process after the mobile device, it is also possible to continue to explore the shadow area encountered in a similar manner, which is not limited in this application.
- Fig. 13 is a schematic structural diagram of a self-moving device according to an embodiment of the present invention.
- the mobile device further includes a map generation module 110, an exploration module 120 and a shadow area correction module 130.
- the map generation module 110 is used to collect basic location data of the work area, generate a work area map and an initial shadow segment, and generate an initial shadow area according to the initial shadow segment.
- the exploration module 120 is used to explore the initial shadow area within the scope of the work area, and collect positioning signal quality data and positioning coordinates during the exploration process, so as to generate a corrected shadow area.
- the shadow area correction module 130 is used to generate a corrected shadow area according to the positioning signal quality data and the positioning coordinates, so as to complete the correction of the work area map.
- the map generation module 110 and the shadow area correction module 130 in this embodiment may include hardware, such as circuit structure, input and output devices, etc., or software, such as a program that implements a certain function, and may also include software and hardware. The combination of, as long as it can achieve a specific function.
- the basic position data of the work area includes the boundary of the work area, or the obstacles in the work area (including isolation islands), or the channels connecting different work areas, and also includes the location of the charging station, and the automatic lawn mower leaves or returns The path of the charging station, etc.
- the map generation module 110 or the shadow area correction module 130 may automatically collect the basic position data of the working area, or may collect the basic position data of the working area under manual operation.
- the automatic collection of the basic location data of the work area is completed by the control module, which obtains the positioning signal output from the navigation module of the mobile device, and extracts the basic location data in the generated work area map.
- the basic position data of the working area collected under human operation can be realized through the intelligent terminal.
- the map generation module 110 and the shadow area correction module 130 are in communication connection with an external smart terminal, which may be a user's mobile phone, tablet, or the like.
- the map generation module 110 uses existing satellite maps, such as Google Maps, Baidu Maps, etc., to display the satellite maps on the smart terminal, and delineate the work area by the user manually.
- the following descriptions of the steps all take the setting of the boundary of the working area as an example. It can be understood that the way of obtaining other feature position data such as obstacles in the working area is similar.
- a satellite map is displayed on the smart terminal.
- the automatic working system includes application software.
- the application software is loaded on an external intelligent terminal.
- the user obtains a satellite map through the application software on the intelligent terminal, and draws the boundary through the application software, that is, collects boundary position data.
- the self-moving device of an embodiment of the present invention further includes a navigation module for outputting positioning signals.
- the shaded area is an area where the positioning signal output by the navigation module does not meet the quality requirement.
- the mobile device of an embodiment of the present invention further includes a signal quality acquisition module, the signal quality acquisition module is used to acquire the positioning signal quality parameters acquired from the navigation module during the movement of the mobile device, and according to the acquired If the positioning signal quality parameter does not meet the set positioning signal quality threshold, it is determined that the location of the self-mobile device is a shadow area.
- the mobile device of an embodiment of the present invention further includes an initial shadow area acquisition module, and the initial shadow area acquisition module is used to acquire the initial shadow area in the working area.
- the control module controls the mobile device to move from different directions to the initial shadow area in the work area to detect the actual shadow area area.
- the signal quality acquisition module acquires the positioning signal quality parameters output by the navigation module during the process of moving the mobile device toward the initial shadow area, and determines that the self-defined signal quality parameters do not meet the set positioning signal quality threshold according to the acquired positioning signal quality parameters.
- the location of the mobile device is the shaded area.
- the initial shadow area is an area where the positioning signal quality parameter of the corresponding position on the work area map does not meet the positioning signal quality threshold.
- the initial shadow area acquisition module can move toward the initial shadow area within the scope of the work area and detect feature points whose positioning signal quality parameters do not meet the positioning signal quality threshold, and obtain the exploration shape of the shadow area by connecting these feature points.
- the self-mobile device provided by the embodiment of the present invention can quickly identify the shadow area, thereby laying a good foundation for the self-mobile device to select a suitable direction to enter the shadow area and multi-directional planning.
- the control module is used to identify the characteristic information of the shadow area, determine the direction of entry from the mobile device into the shadow area according to the characteristics of the shadow area, and make the self-mobile device enter the shadow area along the Direction into the shaded area.
- the control module is used to identify the boundary of the shadow area, determine the entry direction of the self-mobile device into the shadow area according to the boundary characteristics of the shadow area, and cause the self-mobile device to enter the shadow area along the entry direction.
- the shaded area The present invention first explores the actual range of the shadow area, and then selects the direction from the mobile device to enter the shadow area according to the shadow area boundary obtained after the exploration. This setting can effectively control the time that the mobile device stays in the shadow area. And can reasonably plan the processing method of the shadow area, and can improve the positioning accuracy of the mobile device.
- the method for the exploration module 120 to correct the shadow area can determine the shadow area by detecting the strength of the satellite signal.
- the initial shadow area can be obtained by means of initial mapping.
- the specific method is to set the positioning signal quality threshold of the received differential GPS signal in the control module, and make the mobile device walk along, for example, near a building (or manually The differential GPS mobile station is removed, and it moves around the signal strength and weakness boundary position, and records the points where the signal strength does not meet the quality threshold. Then, connect these points to obtain the shape of the shadow area), thereby positioning The points whose signal quality parameters are less than or equal to the preset positioning signal quality threshold are marked on the map. After selecting enough characteristic signal points, these points on the boundary can be connected to obtain the initial shadow area.
- the construction of the initial shadow area is limited to the artificial walking position.
- the manual is generally to walk along the boundary of the working area or the boundary of the obstacle.
- the area of the initial shadow area obtained is extremely narrow. .
- the control module can use the current position and posture information of the self-mobile device, combined with the shape enclosed by the shadow area boundary and the position information of the shadow area, and control the self-mobile device to adjust its posture when the self-mobile device reaches the outer edge of the shadow area to make the self-movement
- the device enters the shaded area in a specific direction. Or adjust the overall walking direction of the self-mobile device in the area according to the shape enclosed by the boundary of the shaded area in the area, so that the walking has continuity.
- the shaded area includes a first edge that extends substantially along the extension direction of the boundary of the working area and is close to the boundary of the working area, and the entering direction is along the substantially normal direction of the first edge.
- the shaded area includes a first edge extending substantially along the extending direction of the boundary of the working area and close to the boundary of the working area, and the entering direction is a direction substantially parallel to the first edge.
- the entry direction is a direction substantially perpendicular to the longitudinal axis of the shaded area.
- the shadow area includes a first edge located on one side of the longitudinal axis of the shadow area, and the entering direction is a substantially normal direction along the first edge.
- the shadow area includes a first edge close to the obstacle and a second edge far away from the obstacle
- the entry direction includes a substantially normal direction along the first edge or the second edge, or the entry direction is The direction in which the distance between the first edge and the second edge is the shortest.
- the self-moving device is in a direction substantially perpendicular to the longitudinal axis of the shaded area, or in the substantially normal direction of the first edge or the second edge, or in the direction that minimizes the distance between the first edge and the second edge Driving, it can be understood that compared to driving in other directions, the driving distance in the shadow area is shorter, the cumulative error is smaller, and the positioning is more accurate.
- the direction is within plus or minus 30° of the parallel direction/normal direction. In other optional embodiments, the direction is the parallel direction/normal direction plus or minus 20°, or 15°, or 10° , Or 5°, or within 3°.
- the above-mentioned selection principle of the direction can minimize the time that the self-mobile device is in the shadow area, so as to avoid the weak satellite signal from affecting the positioning accuracy of the self-mobile device.
- the direction in which the mobile device enters the shadow area each time may be the same or different.
- the direction from the mobile device into the shadow area can be determined according to the geometric shape characteristics of the shadow area.
- the direction of the automatic lawnmower entering the same shadow area can be the same every time, so as to avoid giving the user a sense of disorder and disorder in the operation of the automatic lawnmower, thereby enhancing the user experience.
- control module causes the self-moving device to enter the shadow area along the entering direction, it causes the self-moving device to exit the shadow area in an exit direction opposite to the entering direction.
- the self-mobile device further includes a time preset module.
- the time preset module is used to preset the time threshold of the mobile device in the shadow area.
- the control module controls the mobile device to enter and exit the shadow area so that the sum of the entry time into the shadow area and the exit time to exit the shadow area meets the time threshold.
- the mobile station 9 also includes an auxiliary positioning device.
- the auxiliary positioning device includes a pedometer, lidar, camera, odometer, ultrasonic, etc., and the inertial navigation device can also be regarded as an auxiliary positioning device.
- the auxiliary positioning device is used to cooperate with the differential GPS positioning when the differential GPS signal is poor, and the correction value output by the auxiliary positioning device is used to correct the positioning error, so that the generated map has a higher accuracy.
- the mobile station 9 includes a path generation module, which generates a path plan according to the work area map.
- the work area is divided according to the boundaries, obstacles, passages, etc. of the work area.
- the division of the work area makes the coverage of the automatic lawn mower more efficient. For example, divide two sub-work areas connected by a channel. When an automatic lawn mower performs mowing work, it first completes the coverage in one of the sub-work areas, and then enters the other sub-work area through the channel to work. In this way, the inefficient work caused by the automatic lawn mower to and from both ends of the channel is avoided. For another example, divide the two parts separated by obstacles in the work area into two sub-areas to avoid frequent obstacles encountered by the automatic lawn mower.
- the regular part and the irregular part of the boundary shape can be divided into different sub-areas.
- the automatic lawn mower can be covered with a regular path in the regular sub-area, and a random path in the irregular sub-area. cover.
- the adjacent sub-regions are made to have overlapping parts to avoid that the part between the adjacent sub-regions cannot be covered.
- the size of the partition is determined by estimating the area of a working area according to the power of the battery pack.
- the preset path of the automatic lawn mower in each sub-area can be a regular path, such as a parallel path, a spiral path, etc., or a random path.
- a computer-readable storage medium has computer program instructions stored thereon, and when the computer program instructions are executed by a processor, the processor executes the steps in the “method for building a map described above” in this specification.
- the computer-readable storage medium may adopt any combination of one or more readable media.
- the readable medium may be a readable signal medium or a readable storage medium.
- the readable storage medium may include, but is not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or a combination of any of the above, for example. More specific examples (non-exhaustive list) of readable storage media include: electrical connections with one or more wires, portable disks, hard disks, random access memory (RAM), read-only memory (ROM), erasable Type programmable read only memory (EPROM or flash memory), optical fiber, portable compact disk read only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above.
- the present invention also provides a computer program product.
- a method for creating a map is executed, and the method includes:
- Control the self-mobile device to start from the position of the reference point in the direction of the boundary and move along the boundary;
- the current positioning signal obtained from the mobile device during the movement, the reference positioning signal from the mobile device before the current positioning signal, and the position information of the reference positioning signal are used to determine the current position information;
- a computer program product which includes computer program instructions that, when run by a processor, causes the processor to execute the steps in the "map building method" described above in this specification.
- the computer program product may use any combination of one or more programming languages to write program codes for performing the operations of the embodiments of the present application.
- the programming languages include object-oriented programming languages, such as Java, C++, etc. , Also includes conventional procedural programming languages, such as "C" language or similar programming languages.
- the program code can be executed entirely on the user's computing device, partly on the user's device, executed as an independent software package, partly on the user's computing device and partly executed on the remote computing device, or entirely on the remote computing device or server Executed on.
- an electronic device which includes:
- Memory for storing computer executable instructions
- the processor is configured to execute computer-executable instructions stored in the memory to execute a map creation method, the method including:
- Control the self-mobile device to start from the position of the reference point in the direction of the boundary and move along the boundary;
- the current positioning signal obtained from the mobile device during the movement, the reference positioning signal from the mobile device before the current positioning signal, and the position information of the reference positioning signal are used to determine the current position information;
- the electronic device may be an electronic device integrated in a mobile station from a mobile device, or a stand-alone device independent of the mobile station, and the stand-alone device may communicate with the mobile station to implement the map establishment method according to an embodiment of the present invention .
- FIG. 14 is a schematic block diagram of an electronic device according to an embodiment of the present invention.
- the electronic device 600 includes one or more processors 610 and a memory 620.
- the processor 610 may be a central processing unit (CPU) or other form of processing unit with data processing capability and/or instruction execution capability, and may control other components in the electronic device 600 to perform desired functions.
- the memory 620 may include one or more computer program products, and the computer program products may include various forms of computer-readable storage media, such as volatile memory and/or non-volatile memory.
- the volatile memory may include random access memory (RAM) and/or cache memory (cache), for example.
- the non-volatile memory may include, for example, read-only memory (ROM), hard disk, flash memory, and the like.
- One or more computer program instructions may be stored on the computer-readable storage medium, and the processor 610 may run the program instructions to implement the positioning fault alarm of the mobile device according to the various embodiments of the present invention described above. Methods and/or other desired functions.
- the computer-readable storage medium may also store various contents such as the position data of the antenna, the installation position of the antenna relative to the mobile device, and the like.
- the electronic device 600 may further include: an input device 630 and an output device 640, and these components are interconnected by a bus system and/or other forms of connection mechanisms (not shown).
- the input device 630 may be used to receive user input.
- the output device 640 can directly output various information to the outside, or control the mobile station to send signals.
- the electronic device 600 may also include any other appropriate components according to specific application conditions.
- each part of the present invention can be implemented by hardware, software, firmware or a combination thereof.
- multiple steps or methods can be implemented by software or firmware stored in a memory and executed by a suitable instruction execution system.
- a suitable instruction execution system For example, if it is implemented by hardware, as in another embodiment, it can be implemented by any one or a combination of the following technologies known in the art: Discrete logic circuits, application-specific integrated circuits with suitable combinational logic gates, programmable gate arrays (PGA), field programmable gate arrays (FPGA), etc.
- the functional units in the various embodiments of the present invention may be integrated into one processing module, or each unit may exist alone physically, or two or more units may be integrated into one module.
- the above-mentioned integrated modules can be implemented in the form of hardware or software function modules. If the integrated module is implemented in the form of a software function module and sold or used as an independent product, it can also be stored in a computer readable storage medium.
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- General Physics & Mathematics (AREA)
- Aviation & Aerospace Engineering (AREA)
- Electromagnetism (AREA)
- Environmental Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Quality & Reliability (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
一种地图建立方法,包括:生成工作区域地图及初始阴影段,工作区域地图为边界的地图,初始阴影段为边界上的定位信号不满足质量要求的部分(S101);根据初始阴影段生成初始阴影区(S102);探索初始阴影区,并采集探索过程中的定位信号质量数据及定位坐标(S103);根据定位信号质量数据及定位坐标生成校正阴影区(S104)。一种自移动设备,包括:控制模块;地图生成模块(110);探索模块(120),阴影区修正模块(130)。一种自动工作系统(100),其具有自移动设备。通过先对阴影区的实际范围进行探索,然后获得校正阴影区,进而能够更新工作区域地图,可以提高自移动设备的工作效率,有效控制自移动设备在阴影区内停留的时间,并可以合理规划对阴影区的处理方式,提高定位精度。
Description
本申请要求了申请日为2019年09月29日,申请号为201910930354.9的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本发明涉及自移动设备,尤其的,涉及一种地图建立方法、采用该地图建立方法的自移动设备、自动工作系统、计算机可读存储介质、计算机程序产品、电子设备。
随着计算机技术和人工智能技术的不断进步,类似于智能机器人的自动行走设备已经开始慢慢的走进人们的生活。三星、伊莱克斯等公司均开发了全自动吸尘器并已经投入市场。这种全自动吸尘器通常体积小巧,集成有环境传感器、自驱系统、吸尘系统、电池和充电系统,能够无需人工操控,自行在室内巡航,在能量低时自动返回充电站,对接并充电,然后继续巡航吸尘。同时,哈斯科瓦纳等公司开发了类似的智能割草机,其能够自动在用户的草坪中割草、充电,无需用户干涉。由于这种自动割草系统一次设置之后就无需再投入精力管理,将用户从清洁、草坪维护等枯燥且费时费力的家务工作中解放出来,因此受到极大欢迎。
现有的自动割草机的工作区域常常存在树木、建筑物和障碍物。这些树木、建筑物和障碍物的周围易形成导航信号弱的阴影区域。卫星导航信号通常容易被树木、建筑物和障碍物等遮挡,从而使导航信号减弱。例如,智能割草机可能会因为其在阴影区域工作时GPS信号弱而不能精确定位。
因此有必要对阴影区域进行合适的处理,以提高定位精度。
发明内容
针对现有技术存在的不足,本发明提供一种地图建立方法及采用该地图建立方法的自移动设备,解决自移动设备对阴影区处理导致的定位精度低的问题。
本发明提供一种地图建立方法,包括步骤:
生成工作区域地图及初始阴影段,所述工作区域地图为边界的地图,所述初始阴影段为边界上的定位信号不满足质量要求的部分;
判断所述初始阴影段的长度值是否满足预设条件,若是,则开始根据初始阴影段生成初始阴影区的步骤,否则,重新建图;所述预设条件为:所述初始阴影段的长度值小于等于工作区域内工作的一自移动设备的移动速度值的60倍;
根据初始阴影段生成初始阴影区,其中,所述初始阴影区包括自初始阴影段朝向工作区域内的放大宽度;
探索初始阴影区,并采集探索过程中的定位信号质量数据及定位坐标;
根据定位信号质量数据及定位坐标生成校正阴影区,其中,所述探索初始阴影区包括步骤:
控制一自移动设备在工作区域内朝向初始阴影区移动;
获取自移动设备移动过程中的定位信号质量参数;
根据获取的定位信号质量参数不满足设定的定位信号质量阈值,判定所述自移动设备所在位置为阴影区;其中,
根据定位信号质量数据及定位坐标生成校正阴影区之后还包括步骤:
识别所述校正阴影区的特征;
根据校正阴影区的特征确定自移动设备进入所述校正阴影区的进入方向;以及使所述自移动设备沿所述进入方向进入所述校正阴影区进行工作表面处理。
本发明提供一种地图建立方法,其包括步骤:
生成工作区域地图及初始阴影段,所述工作区域地图为边界的地图,所述初始阴影段为边界上的定位信号不满足质量要求的部分;
根据初始阴影段生成初始阴影区;
探索初始阴影区,并采集探索过程中的定位信号质量数据及定位坐标;
根据定位信号质量数据及定位坐标生成校正阴影区。
进一步的,所述初始阴影区包括自初始阴影段朝向工作区域内的放大宽度。
进一步的,所述根据初始阴影段生成初始阴影区的步骤之前还包括:
判断所述初始阴影段的长度值是否满足预设条件,若是,则开始根据初始阴影段生成初始阴影区的步骤,否则,重新建图。
进一步的,所述预设条件为:所述初始阴影段的长度值小于等于工作区域内工作的一自移动设备的移动速度值的60倍。
进一步的,所述探索初始阴影区包括步骤:
控制一自移动设备在工作区域内朝向初始阴影区移动;
获取自移动设备移动过程中的定位信号质量参数;
根据获取的定位信号质量参数不满足设定的定位信号质量阈值,判定所述自移动设备所在位置为阴影区。
进一步的,控制自移动设备在工作区域内从不同方向朝向初始阴影区移动。
进一步的,控制自移动设备在工作区域内朝向初始阴影区移动之前还包括步骤:
根据初始阴影区位置生成探索起始位置,自移动设备从探索起始位置出发进行探索。
进一步的,根据定位信号质量数据及定位坐标生成校正阴影区包括步骤:
获取每一方向上自移动设备移动过程中的定位信号质量参数不满足设定的定位信号质量阈值的坐标点;
根据坐标点识别出每一方向上校正阴影区的边界点;
连接各个方向上确定的边界点形成校正阴影区的边界。
进一步的,所述探索初始阴影区包括步骤:
根据所述工作区域地图进行路径规划;
使所述自移动设备按照规划的路径移动和\或工作;
获取所述自移动设备移动过程中的定位信号质量参数;
根据获取的定位信号质量参数不满足设定的定位信号质量阈值,判定所述自移动设备所在位置为阴影区。
进一步的,根据定位信号质量数据及定位坐标生成校正阴影区包括步骤:
获取自移动设备按照所述规划的路径移动过程中,所述定位信号质量参数不满足设定的定位信号质量阈值的坐标点;
根据所述坐标点识别出所述校正阴影区的边界点;
连接所述规划的路径上确定的边界点形成校正阴影区的边界。
进一步的,根据定位信号质量数据及定位坐标生成校正阴影区之后还包括步骤:
识别所述校正阴影区的特征;
根据校正阴影区的特征确定自移动设备进入所述校正阴影区的进入方向;以及
使所述自移动设备沿所述进入方向进入所述校正阴影区进行工作表面处理。
进一步的,所述阴影区包括大致沿工作区域边界的延伸方向延伸且靠近工作区域边界的第一边缘,所述进入方向为沿所述第一边缘的大致法向。
进一步的,所述阴影区包括大致沿工作区域边界的延伸方向延伸且靠近工作区域边界的第一边缘,所述进入方向为大致平行于所述第一边缘的方向。
进一步的,所述进入方向为大致垂直于所述阴影区的纵长轴的方向。
进一步的,所述阴影区包括靠近障碍物的第一边缘和远离该障碍物的第二边缘,所述进入方向包括沿所述第一边缘或第二边缘的大致法向,或者所述进入方向为使所述第一边缘和所述第二边缘之间的距离最短的方向。
进一步的,所述使所述自移动设备沿所述进入方向进入所述阴影区之后还包括:
使所述自移动设备沿与所述进入方向相反的退出方向退出所述阴影区。
进一步的,所述地图建立方法还包括:
预设在阴影区内的时间阈值;
控制自移动设备进入阴影区及退出阴影区,使得进入阴影区的进入时间与退出阴影区的退出时间之和满足时间阈值。
本发明还提供一种自移动设备,其包括:
壳体;
移动模块,用于带动所述壳体移动;
任务执行模块,用于执行工作任务;
控制模块,所述控制模块与移动模块、任务执行模块电连接,控制移动模块带动自移动设备移动,并控制任务执行模块执行工作任务;
所述自移动设备还包括:
地图生成模块,生成工作区域地图及初始阴影段,并根据初始阴影段生成初始阴影区;
探索模块,用于探索工作区域范围内的初始阴影区,并采集探索过程中的定位信号质量数据及定位坐标,从而生成校正阴影区;
阴影区修正模块,用于根据定位信号质量数据及定位坐标生成校正阴影区。
进一步的,所述控制模块控制自移动设备在工作区域内从不同方向朝向初始阴影区移动进行探索。
进一步的,所述自移动设备还包括:
探索起始位置确定模块,用于根据初始阴影区位置生成探索起始位置,所述控制模块控制自移动设备从探索起始位置出发进行探索。
进一步的,所述控制模块用于识别所述阴影区的特征信息,根据阴影区的特征确定自移动设备进入所述阴影区的进入方向,以及使所述自移动设备沿所述进入方向进入所述阴影区。
进一步的,所述阴影区包括大致沿工作区域边界的延伸方向延伸且靠近工作区域边界的第一边缘,所述进入方向为沿所述第一边缘的大致法向。
进一步的,所述阴影区包括大致沿工作区域边界的延伸方向延伸且靠近工作区域边界的第一边缘,所述进入方向为大致平行于所述第一边缘的方向。
进一步的,所述进入方向为大致垂直于所述阴影区的纵长轴的方向。
进一步的,所述阴影区包括靠近障碍物的第一边缘和远离该障碍物的第二边缘,所述进入方向包括沿所述第一边缘或第二边缘的大致法向,或者所述进入方向为使所述第一边缘和所述第二边缘之间的距离最短的方向。
进一步的,所述控制模块使所述自移动设备沿所述进入方向进入所述阴影区之后,使所述自移动设备沿与所述进入方向相反的退出方向退出所述阴影区。
进一步的,所述自移动设备还包括:
时间预设模块,用于预设自移动设备在阴影区内的时间阈值;
所述控制模块控制自移动设备进入阴影区及退出阴影区,使得进入阴影区的进入时间与退出阴影区的退出时间之和满足时间阈值。
本发明还提供一种自动工作系统,其包括:
如上述任意一项所述的自移动设备,在限定的工作区域内移动和工作。
本发明还提供一种计算机可读存储介质,其上存储有计算机程序,当所述计算机程序指令被计算装置执行时,可操作来执行如上述任意一项所述的地图建立方法。
本发明还提供一种计算机程序产品,当所述计算机程序产品中的指令由处理器执行时,执行一种地图建立方法,所述方法包括:
本发明还提供一种电子设备,包括:
存储器,用于存储计算机可执行指令;和
处理器,用于执行所述存储器存储的计算机可执行指令,以执行如上述任意一项所述的地图建立方法。
与现有技术相比,本发明通过先对阴影区的实际范围进行探索,然后更新地图,可以提高自移动设备的工作效率,有效控制自移动设备在阴影区内停留的时间,并可以合理规划对阴影区的处理方式,提高定位精度。
以上所述的本发明解决的技术问题、技术方案以及有益效果可以通过下面的能够实现本发明的较佳的具体实施例的详细描述,同时结合附图描述而清楚地获得。
附图以及说明书中的相同的标号和符号用于代表相同的或者等同的元件。
图1为本发明实施例中自动工作系统的示意图。
图2为本发明实施例中自移动设备为智能割草机时在工作区域内工作的示意图。
图3为本发明实施例中自动工作系统包括两个子工作区域的示意图。
图4为自移动设备建图时边界存在阴影区的示意图。
图5为本发明的自移动设备对阴影区进行探索后获得阴影区探索边界的示意图。
图6为本发明的自移动设备采用不同的进入方向对探索的阴影区进行处理的示意图。
图7为本发明的地图建立方法的流程示意图。
图8为本发明的地图建立方法中阴影区获取的一个实施例的流程示意图。
图9为本发明的地图建立方法中阴影区获取的一个实施例的流程示意图。
图10为本发明的地图建立方法中进入阴影区的流程示意图。
图11为本发明的地图建立方法中阴影区进入方向选择的示意图。
图12为本发明的地图建立方法中阴影区进入方向选择的示意图。
图13为本发明的自移动设备的部分结构示意图。
图14为本发明一实施例的电子设备的示意性框图;
图15为本发明另一实施例的地图建立方法的流程示意图。
图16为本发明一实施例的自移动设备路径规划的示意图。
图17为本发明的另一实施例的自移动设备对阴影区进行探索后获得阴影区探索边界的示意图。
其中,
100、自动工作系统 1、自动割草机 2、充电站
3、壳体 4、房屋 5、移动模块
6、草坪 7、任务执行模块 8、边界
9、移动站 30、阴影区 901、建图边界
902、树木 904、假设边界 905、探索边界
906、实际边界 907、孤岛 908、初始位置
32、第一边缘 34、第二边缘 110、地图生成模块
120、探索模块 600、电子设备 610、处理器
620、存储器 630、输入装置 640、输出装置
130、阴影区修正模块
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。相反,本发明的实施例包括落入所附加权利要求书的精神和内涵范围内的所有变化、修改和等同物。
图1为本发明第一实施例的自动工作系统100的示意图。如图1所示,本发明实施例中自动工作系统100包括自移动设备。自移动设备可以在地图限定的工作区域内移动和工作。本实施例中,自移动设备为自动割草机1,在其他实施例中,自移动设备也可以为自动清洁设备、自动浇灌设备、自动扫雪机等适合无人值守的设备。
如图2所示,自动割草机1包括壳体3,移动模块5,任务执行模块7,能源模块,控制模块等。自动割草机1的工作地点为草坪6。其中,移动模块5包括履带或轮组,由驱动马达驱动以带动自动割草机1移动。任务执行模块7包括切割组件,安装于壳体3的底部,由切割马达驱动以旋转执行割草工作。执行割草工作。能源模块包括电池包(图未示),为自动割草机1的移动和工作提供电能。控制模块与移动模块5、任务执行模块7和能源模块电连接,控制移动模块带动自动割草机1移动,并控制任务执行模块执行工作任务。
如图3所示,自动工作系统用于在预定的工作区域内工作,本一个实施例中,工作 区域包括至少两个相互分离的子工作区域,即区域C和区域D。工作区域与非工作区域之间形成边界8,工作区域内可能会有障碍,比如树木、凹坑等。
如图1所示,自动工作系统100还包括充电站2,用于为自动割草机1补给电能。充电站2可以设置在房屋4旁边的空旷地方。充电站2还可以设在工作区域内或者设在工作区域的边界上。本实施例中,自动工作系统100包括导航模块,用于输出自动割草机的当前位置。具体的,导航模块包括移动站9。
如图1及图3所示,自动工作系统100还包括设于工作区域内地参考点A和参考点B。当自动割草机1不采用实体基站的实时卫星信号进行解算获得自动割草机1移动过程中的定位,而是利用某参考位置在自动割草机1出发前的某个时刻获取的卫星信号作为参考定位信号,利用该参考定位信号进行解算获得自动割草机1移动过程中的定位,参考点A、参考点B和充电站2均可作为参考位置。为了提高自动割草机1的定位精度,参考位置为空旷的位置,并且卫星信号质量较高。
移动站9与控制模块电连接,用来存储和处理自动割草机1获得的卫星信号,使得自动割草机1能够在工作区域内移动并工作。本实施例中,移动站9用以接收卫星信号,卫星信号包括卫星角度、时钟等。卫星信号可以为GPS信号,也可以为伽利略、北斗等信号,或同时使用几种信号。具体的,本实施例中,卫星信号为差分GPS(DGPS)或GPS-RTK等信号。
导航模块输出位置信息的同时,可以输出定位信号的精度等级,定位信号的精度等级即下述的定位信号质量参数。自动割草机1也可以根据导航模块输出的位置信息来判断当前定位状态,输出定位状态指示。判断导航模块输出的位置信息的质量的依据,可以是导航模块能够接收到信号的卫星个数,或者定位状态指示,或者精度因子,或者多种因素综合,设置重要度权重,来获得位置信息质量。导航模块输出的位置信息的质量可以由导航模块本身进行误差评估,控制模块获取评估结果,也可以由控制模块利用导航模块的输出进行误差评估,得到评估结果。
本实施例中,自动割草机1还包括至少一个位置传感器,与控制模块电连接,检测与自动割草机1的位置相关的特征。位置传感器可以包括摄像头、雷达、电容传感器、惯性导航传感器等。本实施例中,位置传感器为惯性导航传感器,惯性导航传感器可以包括加速度计、里程计、罗盘、陀螺仪、姿态检测传感器等,检测自移动设备的速度、加速度、行驶方向等。本实施例中,当导航模块输出的位置信息的质量不满足预设条件时,控制模块至少部分的基于位置传感器的输出判断自动割草机1的当前位置。具体的,可以将导航模块输出的位置信息与位置传感器的输出进行融合处理,来得到自动割草机的当前位置。以惯性导航传感器为例,若持续利用惯性导航传感器进行导航,惯性导航传感器的输出的误差将随时间累积,导致输出的位置信息的精度降低。因此,当导航模块输出的位置信息的质量满足预设条件时,利用卫星导航装置的输出来校正位置传感器的输出,以使得位置传感器能够保持高精度的输出。
所以,本实施例中,移动站9工作时,可以只利用GPS定位信号来导航,也可以利用GPS定位信号与惯性导航数据经融合处理后的定位信号来导航,或者,在GPS信号弱的时候,也可以只利用惯性导航数据来导航。移动站9还可以包括指示器(图未示),输出当前位置的差分GPS信号是否良好的指示。
本实施例中,移动站9与自动割草机1的壳体3可拆卸的连接。移动站9包括与自 动割草机1的壳体连接的第一接口(图未示)。自动割草机1工作时移动站9安装于自动割草机1的壳体3。移动站9与自动割草机1的壳体3连接时,可实现与自动割草机1的控制模块的电连接,移动站9输出自动割草机1的当前位置坐标,控制模块根据自动割草机1的当前位置控制自动割草机1的移动和工作。或者,移动站根据当前位置坐标输出控制指令给控制模块。需要说明的是,本发明实施例中,移动站9包括独立的电源模块(图未示),移动站9与自动割草机1的壳体3分离时,可以独立工作。在其他实施例中,移动站9与自动割草机1的壳体3可以为不可拆卸的连接,如果是自移动设备工作过程中的定位,则移动站9与自动割草机1的壳体3是否可拆卸并不影响定位。
在一个实施例中移动站9通过利用当前定位信号之前的参考定位信号获取误差数据并基于该误差数据及该参考定位信号的位置信息处理获得当前位置信息,并未利用自建基站或共享基站在当前时刻实时收到的卫星信号进行处理而获得当前位置信息,所以可以取消自建基站或共享基站,简化用户安装,大幅降低成本。
在工作区域内可能存在一些卫星导航信号弱的区域,比如阴影区,当自动割草机在这些区域运动时,可能会影响导航精度,进而影响自动割草机的导航效果。
为了防止自动割草机在阴影区工作时的导航精度下降,例如,可以通过惯性导航系统对自动割草机的导航精度进行辅助。然而,随着时间的积累,惯性导航的误差会发生累计现象。为了消除惯性导航系统的累计误差,提高自移动设备的定位精度,可以在惯性导航系统工作一段时间后,由卫星导航系统的定位坐标修正惯性导航的累计误差,从而确保自移动设备在阴影区的导航精度。
本实施例中自移动设备的定位装置可以设置在服务器中,或者也可以设置在移动站中,本申请实施例对此不作限制。
其中,电子设备例如为个人电脑(Personal Computer,PC),云端设备或者移动设备,移动设备例如智能手机,或者平板电脑等。
需要说明的是,本申请实施例的执行主体,在硬件上可以例如为服务器或者电子设备中的中央处理器(Central Processing Unit,CPU),在软件上可以例如为服务器或者电子设备中的后台管理服务,对此不作限制。
本发明的一个实施例中,采用实体基站,即自建基站或共享基站,自建基站或共享基站可以给自移动设备提供定位用的实时卫星信号作为参考定位信号,此种定位方式,移动站9利用的是实体基站获得的实时卫星数据进行解算处理获得当前位置信息,不会存在累计误差,只从卫星信号角度认为定位误差是恒定值或者误差差异较为微小。
本发明的另一个实施例中,采用的是虚拟基站,即不设置任何能够获取实时卫星信号的自建基站或共享基站,仅仅把某个参考点在某个时间点获取的卫星信号作为后续定位用的参考定位信号,比如以自移动设备出发前获取的卫星信号作为后续定位用的参考定位信号。或者,除了用参考点位置的卫星信号作为参考定位信号外,还可以利用当前定位信号之前的符合解算条件的卫星信号作为参考定位信号。该种定位方式随着时间的累积,定位误差是累计误差,误差会逐渐变大,即随着时间的累计,如果只用定位导航进行定位不借助其他的定位设备,定位会越来越不准确。所以自移动设备会设置误差评估,当评估到误差超过设定的误差设定阈值时,会控制自移动设备返回参考点重新获取参考点位置的卫星信号,该卫星信号为定位用的新的参考定位信号。
对于阴影区而言,自动割草机在阴影区停留的时间越长,定位精度越差,而且针对 不采用实体基站的定位方式,自动割草机在阴影区停留的时间超过一定的时间范围即无法实现有效的定位。所以可以通过对阴影区进行有效的识别,控制自动割草机在阴影区的停留时间,使得自动割草机在阴影区的停留时间可以被有效的控制,可以极大的提高自动割草机在工作区域的定位精度。
如图4所示,自动割草机1具有建图获取的建图边界901,工作区域内具有障碍物,比如孤岛907。工作区域分成四块,分别为区域C、区域D、区域E和区域F。建图的方式可以例如,用户在Google地图上圈出自移动设备的工作区域,移动站9与自移动设备一体化设置,自移动设备沿着工作区域运行一圈。在一个实施例中,如果自移动设备为自动割草机,可以是用户推动自动割草机运行,用户遥控自动割草机运行,自动割草机跟随用户移动的轨迹,自动割草机自动运行等,对此不作限制。
建图边界901即是地图上的边界或者行走获得的边界。通过采集工作区域的基础位置数据,生成工作区域地图。在一个实施例中,所述基础位置数据在人为操作下利用自移动设备的导航模块获取。比如,是用户手持导航模块(或导航设备)绕工作区域的实际边界行走一圈定位获取。如图4所示,当在边界附近具有树木902时,会形成阴影区30,建图时在该阴影区收到的卫星信号较弱,导致建图边界901中该段边界定位并不准确,该段定位不准确的边界可以标为初始阴影区。而为了防止自动割草机在该段位置范围内移动出工作区域的边界,可以控制自动割草机朝向工作区域内运动,沿阴影区假设边界904移动,但是该种方式,如果阴影面积较大,容易导致自动割草机在阴影区工作时间较长,从而影响定位精度。所以需要对阴影区先进行有效的识别。
如图5所示,自移动设备可以从虚设的初始位置908出发朝向初始阴影区方向移动进行阴影区探索,探索的路线可以是平行于边界延伸方向,也可以是垂直于边界延伸方向,当然也可以相对边界延伸方向倾斜。通过探索可以获得阴影区探索边界905,从图中可以看到,通过探索获得的阴影区探索边界905与阴影区实际边界906可以非常接近。先对阴影区进行探索,可以让地图更加准确,并且先对阴影区进行探索,然后再对阴影区进行处理,可以提高自动割草机的定位精度,而且可以提高阴影区的处理效果。
图7是本发明地图建立方法的流程示意图。如图7所示,该地图建立方法包括步骤S101至步骤S103。
S101:生成工作区域地图及初始阴影段,所述工作区域地图为边界的地图,所述初始阴影段为边界上的定位信号不满足质量要求的部分。
所述工作区域地图可以根据采集工作区域的基础位置数据获得,所述基础位置数据在人为操作下获取。
在一个实施例中,以自动割草机为例,基础位置数据可以通过在手机、平板或电脑等智能终端上的地图软件上划定初始边界区域获取。其中,地图软件可以为谷歌地图、百度地图等。具体的,智能终端上显示卫星地图,用户在卫星地图上找到自动割草机的大致工作区域,框选该区域并下载,然后根据实际工作区域绘制初始边界,即采集边界位置数据,从而获得初始边界区域,并存储为地图。所存储的地图中的数据为在卫星地图上绘制的边界所对应的位置数据。自动割草机包括接收装置,手机、平板或电脑将与划定的该初始边界区域相关的边界位置数据发送给自动割草机的接收装置。自动割草机的接收装置接收与划定的该初始边界区域相关的边界位置数据,并将其存储。手机、平板或电脑通过无线或有线的方式将划定的该花园的初始边界区域的坐标位置等发送给接 收装置。其中,无线的方式包括蓝牙、wifi等。
在一个实施例中,所述基础位置数据在人为操作下利用自移动设备的导航模块获取,比如用户手持自动割草机的导航模块(或导航设备)绕工作区域的实际边界行走一圈定位获取。
S102:根据初始阴影段生成初始阴影区。
在一个实施例中,所述初始阴影区包括自初始阴影段朝向工作区域内的放大宽度,该放大宽度的范围为所述初始阴影段长度值的5%~50%。以放大宽度为初始阴影段长度值的5%为例,若所述初始阴影段为20米,则所述放大宽度为1米。以放大宽度为初始阴影段长度值的50%为例,若所述初始阴影段为20米,则所述放大宽度为10米。以放大宽度为初始阴影段长度值的20%为例,若所述初始阴影段为20米,则所述放大宽度为4米。以放大宽度为初始阴影段长度值的10%为例,若所述初始阴影段为20米,则所述放大宽度为2米。
在一个实施例中,在步骤S102与步骤S101之间还包括步骤:
判断所述初始阴影段的长度值是否满足预设条件,若是,则开始根据初始阴影段生成初始阴影区的步骤,否则,重新建图。所述预设条件为:所述初始阴影段的长度值小于等于工作区域内工作的一自移动设备的移动速度值的60倍,比如自移动设备的移动速度0.3m/s,那么所述初始阴影段的长度值不能超过18m,如果超过这个值需要重新建图。再比如自移动设备的移动速度0.5m/s,那么所述初始阴影段的长度值不能超过30m,如果超过这个值需要重新建图。
S103:探索初始阴影区,并采集探索过程中的定位信号质量数据及定位坐标。
S104:根据定位信号质量数据及定位坐标生成校正阴影区。
校正阴影区是通过获取自移动设备的导航模块输出的定位信号实现,所述阴影区为自移动设备的导航模块输出的定位信号不满足质量要求的区域。
对于边界而言,自移动设备可以通过自移动设备内存储的工作区域的地图获得边界信息,该地图内的边界可以是用户手持导航设备绕工作区域的边界行走一圈定位获取。获取地图中边界信息不明确的位置,该边界信息不明确的位置由于收到的卫星信号较弱,所以导致地图中边界位置不完整或者不确定。自移动设备针对该边界信息不明确的位置进行阴影区探索。
对于工作区域内的其他形成阴影区的障碍物而言,可以采用相同的方法,即在初始建图时,用户手持导航设备绕障碍物行走获取障碍物的边界,由于阴影区收到的卫星信号较弱,所以获取的地图中的障碍物边界位置不完整或者不确定。自移动设备针对该边界信息不明确的障碍物周边的位置进行阴影区探索。
获取校正阴影区后即可以完成了工作区域地图的修正。获取校正阴影区的过程中,获得定位信号质量参数不满足设定的定位信号质量阈值的特征点,通过将这些特征点连接获得阴影区的区域范围,利用这些特征点的特征位置数据对地图进行修正,完善地图。本发明实施例提供的自移动设备,可以快速的识别阴影区,并完善地图,从而为自移动设备选择进入阴影区的方向打下良好的基础,也为自移动设备高效的工作提供基础。
如图8所示,在一个实施例中,上述步骤S102中,所述探索工作区域的阴影区具体包括步骤S201至步骤S203。
S201:控制一自移动设备在工作区域范围内移动。
S202:获取自移动设备移动过程中自移动设备的导航模块获取的定位信号质量参数。
S203:根据获取的定位信号质量参数不满足设定的定位信号质量阈值,判定所述自移动设备所在位置为阴影区。
如图9所示,在进一步的实施例中,针对已经形成有初始阴影区的情况而言,上述步骤S102中,所述探索工作区域的阴影区具体包括步骤S301至步骤S304。
S301:获取工作区域内的初始阴影区。
所述初始阴影区为工作区域地图上对应位置的定位信号不满足质量要求的区域.
S302:控制自移动设备在工作区域内从不同方向朝向初始阴影区移动。
S303:获取自移动设备朝向初始阴影区移动过程中所述导航模块获取的定位信号质量参数。
S304:根据获取的定位信号质量参数不满足设定的定位信号质量阈值,判定所述自移动设备所在位置为阴影区。
具体地,可以通过检测到的定位信号质量参数与预设的定位信号质量阈值比较来判断阴影区。例如,该阈值的确定可以以卫星信号是否能精确定位为原则。例如,当机器可以精确定位时,即使GPS受到一定削弱,仍然没有必要判定为阴影区。通常情况下,例如,受到建筑物或障碍物的遮挡导致的卫星信号减弱区域的一部分可以被标注为阴影区,从而避免由于阴影区无法恰当的划分,可能导致的机器的工作负担的增加。
确定所述校正阴影区的边界包括步骤:
获取每一方向上自移动设备移动过程中的定位信号质量参数不满足设定的定位信号质量阈值的坐标点;
根据坐标点识别出每一方向上校正阴影区的边界点;
连接各个方向上确定的边界点形成校正阴影区的边界。
上述“根据坐标点识别出每一方向上校正阴影区的边界点”的方法是:识别出每一方向上距离探索起始位置最近的坐标点,将该坐标点作为校正阴影区的边界点。
如图10所示,在一个实施例中,在步骤S103之后,还具有步骤S104至步骤S106。
S104:识别所述阴影区的特征信息。
所述阴影区的特征信息包括:探索到的阴影区最外围的点组成的阴影区边界所围成的几何形状特征。
或者,所述阴影区的特征信息包括:探索到的整个阴影区凸显出来的几何形状特征。
对于上述两种情况,获取该几何形状后可以为阴影区定义一个纵长轴。在部分实施例中,阴影区为大致规则的形状,例如大致长方形形状,则纵长轴平行于长方形的长边方向。或大致椭圆形状,则纵长轴为椭圆的长轴。在部分实施例中,阴影区为不规则形状,则可通过业内已知的数学方法将其近似为规则形状后进行处理,或也可通过其他方法确定其纵长轴,然后基于确定得到的纵长轴,进行后续步骤。
S105:根据阴影区的特征确定自移动设备进入所述阴影区的进入方向。
本实施例中,所述阴影区包括大致沿工作区域边界的延伸方向延伸且靠近工作区域边界的第一边缘,所述进入方向为沿所述第一边缘的大致法向。
或者,所述阴影区包括大致沿工作区域边界的延伸方向延伸且靠近工作区域边界的第一边缘,所述进入方向为大致平行于所述第一边缘的方向。
或者,所述进入方向为大致垂直于所述阴影区的纵长轴的方向。
或者,所述阴影区包括位于阴影区纵长轴一侧的第一边缘,所述进入方向为沿所述第一边缘的大致法向。
或者,所述阴影区包括靠近障碍物的第一边缘和远离该障碍物的第二边缘,所述进入方向包括沿所述第一边缘或第二边缘的大致法向,或者所述进入方向为使所述第一边缘和所述第二边缘之间的距离最短的方向。
S106:使所述自移动设备沿所述进入方向进入所述阴影区。
在一个实施例中,该方法还可以包括:在自移动设备中预设定位信号质量阈值;从而检测工作区域内的阴影区包括:自移动设备获取根据获取的定位信号质量参数不满足质量要求判定自移动设备所在位置为阴影区。
在所述步骤S106之后,还包括:使所述自移动设备沿与所述进入方向相反的退出方向退出所述阴影区。如图6所示,上述进入和退出的过程重复多次后,即可完成对阴影区的处理任务。可以理解,针对不同面积的阴影区,可以使用上述进入方向的多种,实现从不同方向进入阴影区以达到最大限度的阴影区的处理。
大致平行/大致法向应做较宽的理解。在一实施例中,该方向为平行方向/法向正负30°之内,在可选的其他实施例中,该方向为平行方向/法向正负20°,或15°,或10°,或5°,或3°之内。
在一个实施例中,上述方向的选择原则可以使自移动设备处于阴影区的时间尽量少,从而避免由于卫星信号弱影响自移动设备的定位精度。需要说明的是,自移动设备每次进入阴影区的方向可以相同,也可以不同。例如,可以根据阴影区的几何形状特征确定自移动设备进入阴影区的方向。但在割草作业中,优选地,自动割草机每次进入同一阴影区的方向可以相同,避免给用户带来自动割草机的作业杂乱无章的感觉,从而提升用户体验。
如图11所示,根据阴影区30的纵长轴,可以将阴影区30的边缘划分为分别位于纵长轴两侧的第一边缘32和第二边缘34,则阴影区30由第一边缘32和第二边缘34包围而成。自动割草机1可以沿大致垂直于纵长轴的方向,或者沿第一边缘32或第二边缘34的大致法向进入阴影区30。可以理解的是,该方向也是使第一边缘和第二边缘之间的距离最短的方向。
如图12所示,自动割草机1可以沿第一边缘32和第二边缘34之间距离最短的方向进入阴影区30。自动割草机1可以选择各个方向进入阴影区30,而与其他方向相比较,实线箭头所指的方向是从第二边缘34到达第一边缘32最短的一个路径。这里的距离最短并不局限于绝对的最短,而是从第二边缘34到第一边缘32的最优路径。可以理解的是,距离最短也可以理解为,当自动割草机1以平行于进入方向的路径完成阴影区30的切割,自动割草机1从第一边缘32到第二边缘34的移动距离以及从第二边缘34到第一边缘32的移动距离的平均值最短。
工作区域内阴影区的形成是由于建筑物或其它障碍物的存在,从而在建筑物或障碍物的一侧或多侧形成信号减弱区。例如,阴影区的形状可以是从建筑物或障碍物的下边缘向外延伸的形状。此时,第一边缘32可以是建筑物或障碍物与工作区的相交线,而第二边缘34可以是位于该建筑物或障碍物附近且信号质量参数开始满足预设阈值的点连接而成(预设阈值的原则例如是卫星信号的强度能否精确导航)。第一边缘32与第二边缘34可以包围形成封闭图形,例如,第一、第二边缘可以构成半圆形封闭结构。在自移 动设备作业时,为了使自移动设备处于阴影区的时间最短,例如,可以沿第一边缘32或第二边缘34的大致法向,或使第一边缘32和第二边缘34之间距离最短的方向进入阴影区。
自移动设备的行走路径可以由程序设定,程序可以模拟自移动设备的各种行走方式,判断在某一行走方式下经过阴影区的路径长短,从而选择自移动设备在阴影区行走路径最短的行走方式。优选地,自移动设备在某一区域内的行走方向可以是一致和连贯的,即不随边界形状的微小变化调整方向,避免给用户“不智能”的印象。
需要说明的是,本实施例所指阴影区是根据由自移动设备/移动站接收到的卫星信号强弱决定的。具体地,可以预设接收到的卫星信号的质量阈值,即前述的定位信号质量阈值,其中当自移动设备接收到的卫星信号质量参数,即前述的定位信号质量参数不满足该预设的定位信号质量阈值时,认为该区域为阴影区。
在一个实施例中,该方法还包括:在自移动设备中预设定位信号质量阈值。使自移动设备沿上述方向进入阴影区包括:在自移动设备获得的卫星信号质量参数不满足所述定位信号质量阈值时,自移动设备启动惯性导航信号。在自移动设备获得的卫星信号质量参数满足所述定位信号质量阈值时,恢复卫星导航信号。本发明的实施例通过根据信号的强弱实现在惯性导航信号和卫星导航信号之间的切换,可以确保机器的准确定位。
在一个实施例中,例如,使自移动设备沿上述方向进入阴影区包括:同时启用卫星导航和惯性导航;并且将卫星导航结果与惯性导航结果的加权值作为导航结果。如前所述,惯性导航随着时间的累计,误差会逐渐增大,从而会使导航精度越来越低。本发明实施例通过结合惯性导航和卫星导航,可以取长补短,以更精确的实现机器在阴影区的定位。
在其他实施例中,也可以使用其他定位设备代替上述卫星定位设备,称为第一定位设备,输出第一定位信号。第一定位设备还可以是UWB定位设备、超声波beacon定位设备等。
在其他实施例中,也可以使用其他定位设备代替上述惯性导航设备,称为第二定位设备,输出第二定位信号。第二定位设备还可以是图像采集设备、电容草地检测设备等。
在一个实施例中,地图建立方法还包括:预设在阴影区内的时间阈值;控制自移动设备进入阴影区及退出阴影区,使得进入阴影区的进入时间与退出阴影区的退出时间之和满足时间阈值。如此设置,不管阴影区的形状如何,也不管进入方向如何,只要控制好时间即可在保证定位精度的同时进入阴影区进行作业。
在本申请的另一个实施例中,与上述地图建立方法不同的是,在本实施例中,在步骤S102根据初始阴影段生成初始阴影区之后,如图15所示,还可以包括如下步骤S103至步骤S106。
S103:根据工作区域地图进行路径规划;
S104:使自移动设备按照规划的路径移动和\或工作;
S105:获取自移动设备移动过程中的定位信号质量参数;
S106:根据获取的定位信号质量参数不满足设定的定位信号质量阈值,判定自移动设备所在位置为阴影区。
本实施例与上述实施例不同之处在于,本实施例中,自移动设备在得到工作区域地图以及初始阴影区之后,结束建图进入工作过程,并在工作过程中对初始阴影区进行校 正以生成校正阴影区。具体的,在步骤S102之后,可以先结束当前的建图过程,根据该工作区域地图进行路径规划得到如图16所示路径规划图,其中,虚线903为所规划的路径,控制自移动设备按照该路径行走。在行走的过程中,自移动设备检测其行走过程中的定位信号质量参数。如图17所示,当检测到当前位置的定位信号质量参数不满足信号质量阈值时,说明当前位置为在阴影区域附近,从而自移动设备可以记录该当前位置的坐标,并控制其继续行走。值得说明的是,定位信号质量参数不满足信号质量阈值可以是自移动设备从信号质量好的区域行走至信号质量差的区域如图17中的坐标点A,也可以是从信号质量差的区域行走至信号质量好的区域如图17中的坐标点B。
在本实施例中,为保证自移动设备行走工作时的信号质量,可以参考上述地图建立方法实施例中的进行工作表面处理的方式,控制自移动设备进入阴影区及退出阴影区,使其进入阴影区的进入时间与退出阴影区的退出时间之和满足时间阈值。或者,也可以采用类似上述地图建立方法实施例中的进行工作表面处理的行走方式。
在本实施例中,当检测到所记录的不满足信号质量阈值的坐标达到预设值(如十个)时,可以控制自移动设备对地图进行更新。或者,也可以在检测到自移动设备已经行走完整个工作区域时,控制其对地图进行更新。具体的,可以采用下述方式对地图进行更新,包括:
获取自移动设备按照规划的路径移动过程中,定位信号质量参数不满足设定的定位信号质量阈值的坐标点;
根据坐标点识别出校正阴影区的边界点;
连接规划的路径上确定的边界点形成校正阴影区的边界。
采用上述方式,结合初始阴影区以及边界点对地图进行更新,可以得到修正后的地图,该地图中标记有校正阴影区的边界,如图17中的探索边界905所示。值得注意的是,图17中的各个边界或路径等只是一种示例,对本申请不具有限定作用。
同样的,对于工作区域内的其他形成阴影区的障碍物而言,也可以采用相同的方法。即在工作过程中,通过上述方式对该障碍物所对应的阴影区进行探索。在自移动设备之后的工作过程中,也可以继续采用类似的方式对所遇到的阴影区进行探索,本申请对此不作限定。
图13是本发明一个实施例的自移动设备的结构示意图。如图13所示,自移动设备还包括地图生成模块110、探索模块120和阴影区修正模块130。地图生成模块110用于采集工作区域的基础位置数据,生成工作区域地图及初始阴影段,并根据初始阴影段生成初始阴影区。探索模块120用于探索工作区域范围内的初始阴影区,并采集探索过程中的定位信号质量数据及定位坐标,从而生成校正阴影区。阴影区修正模块130用于根据定位信号质量数据及定位坐标生成校正阴影区,进而能完成工作区域地图的修正。
本实施例中的地图生成模块110和阴影区修正模块130,既可以包括硬件,例如电路结构、输入输出设备等,也可以包括软件,例如实现某一功能的程序等,也可以包括软件与硬件的组合,只要能够实现特定的功能即可。
本实施例中,工作区域的基础位置数据包括工作区域的边界,或工作区域内的障碍(包括隔离岛),或连接不同工作区域的通道,还包括充电站位置,自动割草机离开或回归充电站的路径等。
地图生成模块110或阴影区修正模块130可以自动采集工作区域的基础位置数据, 也可以在人为操作下采集工作区域的基础位置数据。
自动采集工作区域的基础位置数据是通过控制模块完成,控制模块获取自移动设备的导航模块输出的定位信号,在生成工作区域地图中提取基础位置数据。
人为操作下采集工作区域的基础位置数据可以通过智能终端实现。具体是,地图生成模块110和阴影区修正模块130与外部智能终端通信连接,外部智能终端可以是用户的手机、平板等。地图生成模块110利用现有的卫星地图,例如谷歌地图、百度地图等,在智能终端上显示卫星地图,通过用户手动圈定的方式划出工作区域。下面对步骤的说明均以设定工作区域的边界为例,可以理解的是,对工作区域内的障碍等其他特征位置数据的获取方式与之类似。具体的,智能终端上显示卫星地图,用户在卫星地图上找到自动割草机的大致工作区域,框选该区域并下载,然后根据实际工作区域绘制边界,即采集边界位置数据,并存储为地图。所存储的地图中的数据,为在卫星地图上绘制的边界所对应的基础位置数据。本实施例中,自动工作系统包括应用软件,应用软件加载于外部智能终端,用户在智能终端上通过应用软件获取卫星地图,并通过应用软件绘制边界,即采集边界位置数据。
在一个实施例中,本发明一个实施例的自移动设备还包括导航模块,用于输出定位信号。所述阴影区为所述导航模块输出的定位信号不满足质量要求的区域。
在一个实施例中,本发明一个实施例的自移动设备还包括信号质量获取模块,所述信号质量获取模块用于获取自移动设备移动过程中导航模块获取的定位信号质量参数,并根据获取的定位信号质量参数不满足设定的定位信号质量阈值,判定所述自移动设备所在位置为阴影区。
在一个实施例中,本发明一个实施例的自移动设备还包括初始阴影区获取模块,初始阴影区获取模块用于获取工作区域内的初始阴影区。所述控制模块控制自移动设备在工作区域内从不同方向朝向初始阴影区移动以探测出实际的阴影区面积。所述信号质量获取模块获取自移动设备朝向初始阴影区移动过程中所述导航模块输出的定位信号质量参数,并根据获取的定位信号质量参数不满足设定的定位信号质量阈值,判定所述自移动设备所在位置为阴影区。所述初始阴影区为工作区域地图上对应位置的定位信号质量参数不满足定位信号质量阈值的区域。通过对阴影区的实际面积进行探索,为自移动设备后续进入阴影区工作提供基础,便于自移动设备规划进入阴影区的方向及进入阴影区的时间,使得自移动设备可以选择最优的进入方向(可以是多方向),以及根据实际阴影区的面积设定合适的阴影区停留时间,确保自移动设备定位精度的同时,能够提升阴影区的处理效率与效果。初始阴影区获取模块可以在工作区域范围内朝向初始阴影区方向移动并检测出定位信号质量参数不满足所述定位信号质量阈值的特征点,并通过将这些特征点连接获得阴影区的探索形状。本发明实施例提供的自移动设备,可以快速的识别阴影区,从而为自移动设备选择进入阴影区的合适方向及多方向的规划打下良好的基础。
在一个实施例中,所述控制模块用于识别所述阴影区的特征信息,根据阴影区的特征确定自移动设备进入所述阴影区的进入方向,以及使所述自移动设备沿所述进入方向进入所述阴影区。具体的,所述控制模块用于识别所述阴影区的边界,根据阴影区的边界特征确定自移动设备进入所述阴影区的进入方向,以及使所述自移动设备沿所述进入方向进入所述阴影区。本发明通过先对阴影区的实际范围进行探索,然后再根据探索后获得的阴影区边界选择自移动设备进入阴影区的方向,如此设置,可以有效控制自移动 设备在阴影区内停留的时间,并可以合理规划对阴影区的处理方式,而且可以提高自移动设备的定位精度。
探索模块120校正阴影区的方法可以通过检测卫星信号的强弱来判定阴影区。具体地,可以采用初始建图的方式获得初始阴影区,具体方法是在控制模块中设置接收到的差分GPS信号的定位信号质量阈值,并使自移动设备沿例如建筑物附近行走(或者人工将差分GPS移动站拆下,携带围绕信号强弱分界位置附近运动,并记录信号强度不满足所述质量阈值的点,随后,将这些点连线,即可获得阴影区的形状),从而将定位信号质量参数小于等于预设的定位信号质量阈值的点在地图中标注出,在选取足够多的特征信号点之后,即可将这些处于边界的点连线,从而获得初始阴影区。
上述由于初始阴影区的建设大多数情况下局限于人工行走位置,由于初始建图时,人工一般都是沿工作区域边界或者障碍物边界行走一圈,获得的初始阴影区面积是及其狭窄的。
控制模块可以通过自移动设备当前的位置和姿态信息,结合阴影区域边界围成的形状和阴影区的位置信息,在自移动设备到达阴影区外边缘时控制自移动设备调整姿态,以使自移动设备沿特定方向进入阴影区。或者根据该区域中阴影区域边界围成的形状,调整自移动设备在该区域中的整体行走方向,使其行走具有连贯性。
本实施例中,所述阴影区包括大致沿工作区域边界的延伸方向延伸且靠近工作区域边界的第一边缘,所述进入方向为沿所述第一边缘的大致法向。
或者,所述阴影区包括大致沿工作区域边界的延伸方向延伸且靠近工作区域边界的第一边缘,所述进入方向为大致平行于所述第一边缘的方向。
或者,所述进入方向为大致垂直于所述阴影区的纵长轴的方向。
或者,所述阴影区包括位于阴影区纵长轴一侧的第一边缘,所述进入方向为沿所述第一边缘的大致法向。
或者,所述阴影区包括靠近障碍物的第一边缘和远离该障碍物的第二边缘,所述进入方向包括沿所述第一边缘或第二边缘的大致法向,或者所述进入方向为使所述第一边缘和所述第二边缘之间的距离最短的方向。
由于自移动设备沿大致垂直于所述阴影区的纵长轴的方向,或者沿第一边缘或第二边缘的大致法向,或者沿使第一边缘和第二边缘之间的距离最短的方向行驶,可以理解,相比于沿其他方向行驶,其在阴影区域中的行驶距离较短,累积误差较小,定位更加准确。
可以理解,针对不同面积的阴影区,可以使用上述进入方向的多种,实现从不同方向进入阴影区以达到最大限度的阴影区的处理。
大致平行/大致法向应做较宽的理解。在一实施例中,该方向为平行方向/法向正负30°之内,在可选的其他实施例中,该方向为平行方向/法向正负20°,或15°,或10°,或5°,或3°之内。
在一个实施例中,上述方向的选择原则可以使自移动设备处于阴影区的时间尽量少,从而避免由于卫星信号弱影响自移动设备的定位精度。需要说明的是,自移动设备每次进入阴影区的方向可以相同,也可以不同。例如,可以根据阴影区的几何形状特征确定自移动设备进入阴影区的方向。但在割草作业中,优选地,自动割草机每次进入同一阴影区的方向可以相同,避免给用户带来自动割草机的作业杂乱无章的感觉,从而提升用 户体验。
如图6所示,所述控制模块使所述自移动设备沿所述进入方向进入所述阴影区之后,使所述自移动设备沿与所述进入方向相反的退出方向退出所述阴影区。
在一个实施例中,所述自移动设备还包括时间预设模块。时间预设模块用于预设自移动设备在阴影区内的时间阈值。所述控制模块控制自移动设备进入阴影区及退出阴影区,使得进入阴影区的进入时间与退出阴影区的退出时间之和满足时间阈值。
本实施例中,移动站9还包括辅助定位装置,辅助定位装置包括计步器、激光雷达、摄像头、里程计、超声波等,惯导装置也可以被认为是辅助定位装置。辅助定位装置用于在差分GPS信号差时配合差分GPS定位,使用辅助定位装置输出的修正值修正定位误差,使生成的地图精度更高。
本发明的一个实施例中,移动站9包括路径生成模块,根据工作区域地图生成路径规划。首先,根据工作区域的边界、障碍、通道等,对工作区域进行分区,工作区域的划分使得自动割草机的覆盖更有效率。例如,划分由通道连接的两个子工作区域,自动割草机执行割草工作时,先在其中一个子工作区域中完成覆盖,再经由通道进入另一个子工作区域工作。这样,避免自动割草机往返通道两端造成的低效工作。又例如,将工作区域中被障碍隔开的两个部分划分为两个子区域,避免自动割草机频繁遇障碍。还可以根据边界形状,将边界形状规则的部分和不规则的部分划分为不同子区域,这样,可以令自动割草机在规则的子区域以规则路径覆盖,在不规则的子区域以随机路径覆盖。本实施例中,令相邻子区域具有重叠部分,避免相邻子区域之间的部分不能被覆盖到。本实施例中,根据电池包电量估算一次工作的区域面积来确定分区大小。本实施例中,还可以根据植物生长状况来分区,使得自动割草机在植物茂盛的区域的切割功率大、切割时间长,在植物稀疏的区域的切割功率小、切割时间短。本实施例中,还可以根据区域重要度来分区,例如将用户的前院和后院划分为不同子区域,使自动割草机以不同工作策略在前院和后院工作。当然,还可以根据障碍物多少等综合因素来分区。
完成区域划分后,对自动割草机在每个子区域内的路径进行规划。自动割草机在每个子区域内的预设路径可以为规则路径,例如平行路径、螺旋路径等,也可以为随机路径。
计算机可读存储介质,其上存储有计算机程序指令,所述计算机程序指令在被处理器运行时使得所述处理器执行本说明书上述地图建立方法”中的步骤。
所述计算机可读存储介质可以采用一个或多个可读介质的任意组合。可读介质可以是可读信号介质或者可读存储介质。可读存储介质例如可以包括但不限于电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。
为了实现上述实施例,本发明还提出一种计算机程序产品,当所述计算机程序产品中的指令由处理器执行时,执行一种地图建立方法,所述方法包括:
获取工作区域的边界信息;
控制自移动设备自参考点位置向边界方向出发并沿边界移动;
获取自移动设备在移动过程中的当前定位信号,自移动设备在所述当前定位信号之前的参考定位信号以及所述参考定位信号的位置信息用于当前位置信息确定;
获取自移动设备在移动过程中的信息数据,当信息数据值达到设定的衡量阈值时,控制自移动设备离开边界。
计算机程序产品,其包括计算机程序指令,所述计算机程序指令在被处理器运行时使得所述处理器执行本说明书上述“地图建立方法”中的步骤。
所述计算机程序产品可以以一种或多种程序设计语言的任意组合来编写用于执行本申请实施例操作的程序代码,所述程序设计语言包括面向对象的程序设计语言,诸如Java、C++等,还包括常规的过程式程序设计语言,诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算设备上执行、部分地在用户设备上执行、作为一个独立的软件包执行、部分在用户计算设备上部分在远程计算设备上执行、或者完全在远程计算设备或服务器上执行。
为了实现上述实施例,本发明还提出一种电子设备,其包括:
存储器,用于存储计算机可执行指令;和
处理器,用于执行所述存储器存储的计算机可执行指令,以执行一种地图建立方法,所述方法包括:
获取工作区域的边界信息;
控制自移动设备自参考点位置向边界方向出发并沿边界移动;
获取自移动设备在移动过程中的当前定位信号,自移动设备在所述当前定位信号之前的参考定位信号以及所述参考定位信号的位置信息用于当前位置信息确定;
获取自移动设备在移动过程中的信息数据,当信息数据值达到设定的衡量阈值时,控制自移动设备离开边界。
该电子设备可以是在自移动设备的移动站中集成的电子设备,或者与该移动站独立的单机设备,该单机设备可以与移动站进行通信,以实现根据本发明一实施例的地图建立方法。
图14为本发明一实施例的电子设备的示意性框图。如图14所示,电子设备600包括一个或多个处理器610和存储器620。处理器610可以是中央处理单元(CPU)或者具有数据处理能力和/或指令执行能力的其他形式的处理单元,并且可以控制电子设备600中的其他组件以执行期望的功能。存储器620可以包括一个或多个计算机程序产品,所述计算机程序产品可以包括各种形式的计算机可读存储介质,例如易失性存储器和/或非易失性存储器。所述易失性存储器例如可以包括随机存取存储器(RAM)和/或高速缓冲存储器(cache)等。所述非易失性存储器例如可以包括只读存储器(ROM)、硬盘、闪存等。在所述计算机可读存储介质上可以存储一个或多个计算机程序指令,处理器610可以运行所述程序指令,以实现上文所述的本发明的各个实施例的自移动设备的定位故障报警方法以及/或者其他期望的功能。在所述计算机可读存储介质中还可以存储诸如天线的位置数据、天线相对于自移动设备的安装位置等各种内容。
在一个示例中,电子设备600还可以包括:输入装置630和输出装置640,这些组件通过总线系统和/或其他形式的连接机构(未示出)互连。
例如,该输入装置630可以是用于接收用户输入。
该输出装置640可以直接向外部输出各种信息,或者控制移动站发送信号。
当然,为了简化,图14中仅示出了该电子设备600中与本申请有关的组件中的一些,省略了诸如总线、输入/输出接口等等的组件。除此之外,根据具体应用情况,电子设备600还可以包括任何其他适当的组件。
应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
此外,在本发明各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
尽管本说明书中仅描述和图示了本发明的几个实施例,但是本领域技术人员应该容易预见用于执行这里描述的功能/或者获得这里描述的结构的其它手段或结构,每个这样的变化或者修改都视为在本发明的范围内。
Claims (32)
- 一种地图建立方法,其特征在于,包括步骤:生成工作区域地图及初始阴影段,所述工作区域地图为边界的地图,所述初始阴影段为边界上的定位信号不满足质量要求的部分;判断所述初始阴影段的长度值是否满足预设条件,若是,则开始根据初始阴影段生成初始阴影区的步骤,否则,重新建图;所述预设条件为:所述初始阴影段的长度值小于等于工作区域内工作的一自移动设备的移动速度值的60倍;根据初始阴影段生成初始阴影区,其中,所述初始阴影区包括自初始阴影段朝向工作区域内的放大宽度;探索初始阴影区,并采集探索过程中的定位信号质量数据及定位坐标;根据定位信号质量数据及定位坐标生成校正阴影区,其中,所述探索初始阴影区包括步骤:控制一自移动设备在工作区域内朝向初始阴影区移动;获取自移动设备移动过程中的定位信号质量参数;根据获取的定位信号质量参数不满足设定的定位信号质量阈值,判定所述自移动设备所在位置为阴影区;其中,根据定位信号质量数据及定位坐标生成校正阴影区之后还包括步骤:识别所述校正阴影区的特征;根据校正阴影区的特征确定自移动设备进入所述校正阴影区的进入方向;以及使所述自移动设备沿所述进入方向进入所述校正阴影区进行工作表面处理。
- 一种地图建立方法,其特征在于,包括步骤:生成工作区域地图及初始阴影段,所述工作区域地图为边界的地图,所述初始阴影段为边界上的定位信号不满足质量要求的部分;根据初始阴影段生成初始阴影区;探索初始阴影区,并采集探索过程中的定位信号质量数据及定位坐标;根据定位信号质量数据及定位坐标生成校正阴影区。
- 根据权利要求2所述的地图建立方法,其特征在于,所述初始阴影区包括自初始阴影段朝向工作区域内的放大宽度。
- 根据权利要求2所述的地图建立方法,其特征在于,所述根据初始阴影段生成初始阴影区的步骤之前还包括:判断所述初始阴影段的长度值是否满足预设条件,若是,则开始根据初始阴影段生成初始阴影区的步骤,否则,重新建图。
- 根据权利要求4所述的地图建立方法,其特征在于,所述预设条件为:所述初始阴影段的长度值小于等于工作区域内工作的一自移动设备的移动速度值的60倍。
- 根据权利要求2所述的地图建立方法,其特征在于,所述探索初始阴影区包括步骤:控制一自移动设备在工作区域内朝向初始阴影区移动;获取自移动设备移动过程中的定位信号质量参数;根据获取的定位信号质量参数不满足设定的定位信号质量阈值,判定所述自移动设备所在位置为阴影区。
- 根据权利要求6所述的地图建立方法,其特征在于,控制自移动设备在工作区域内从 不同方向朝向初始阴影区移动。
- 根据权利要求7所述的地图建立方法,其特征在于,控制自移动设备在工作区域内朝向初始阴影区移动之前还包括步骤:根据初始阴影区位置生成探索起始位置,自移动设备从探索起始位置出发进行探索。
- 根据权利要求7所述的地图建立方法,其特征在于,根据定位信号质量数据及定位坐标生成校正阴影区包括步骤:获取每一方向上自移动设备移动过程中的定位信号质量参数不满足设定的定位信号质量阈值的坐标点;根据坐标点识别出每一方向上校正阴影区的边界点;连接各个方向上确定的边界点形成校正阴影区的边界。
- 根据权利要求2所述的地图建立方法,其特征在于,所述探索初始阴影区包括步骤:根据所述工作区域地图进行路径规划;使所述自移动设备按照规划的路径移动和\或工作;获取所述自移动设备移动过程中的定位信号质量参数;根据获取的定位信号质量参数不满足设定的定位信号质量阈值,判定所述自移动设备所在位置为阴影区。
- 根据权利要求10所述的地图建立方法,其特征在于,根据定位信号质量数据及定位坐标生成校正阴影区包括步骤:获取自移动设备按照所述规划的路径移动过程中,所述定位信号质量参数不满足设定的定位信号质量阈值的坐标点;根据所述坐标点识别出所述校正阴影区的边界点;连接所述规划的路径上确定的边界点形成校正阴影区的边界。
- 根据权利要求2所述的地图建立方法,其特征在于,根据定位信号质量数据及定位坐标生成校正阴影区之后还包括步骤:识别所述校正阴影区的特征;根据校正阴影区的特征确定自移动设备进入所述校正阴影区的进入方向;以及使所述自移动设备沿所述进入方向进入所述校正阴影区进行工作表面处理。
- 根据权利要求12所述的地图建立方法,其特征在于,所述阴影区包括大致沿工作区域边界的延伸方向延伸且靠近工作区域边界的第一边缘,所述进入方向为沿所述第一边缘的大致法向。
- 根据权利要求12所述的地图建立方法,其特征在于,所述阴影区包括大致沿工作区域边界的延伸方向延伸且靠近工作区域边界的第一边缘,所述进入方向为大致平行于所述第一边缘的方向。
- 根据权利要求12所述的地图建立方法,其特征在于,所述进入方向为大致垂直于所述阴影区的纵长轴的方向。
- 根据权利要求12所述的地图建立方法,其特征在于,所述阴影区包括靠近障碍物的第一边缘和远离该障碍物的第二边缘,所述进入方向包括沿所述第一边缘或第二边缘的大致法向,或者所述进入方向为使所述第一边缘和所述第二边缘之间的距离最短的方向。
- 根据权利要求12所述的地图建立方法,其特征在于,所述使所述自移动设备沿所述进入方向进入所述阴影区之后还包括:使所述自移动设备沿与所述进入方向相反的退出方向退出所述阴影区。
- 根据权利要求17所述的地图建立方法,其特征在于,还包括:预设在阴影区内的时间阈值;控制自移动设备进入阴影区及退出阴影区,使得进入阴影区的进入时间与退出阴影区的退出时间之和满足时间阈值。
- 一种自移动设备,其包括:壳体;移动模块,用于带动所述壳体移动;任务执行模块,用于执行工作任务;控制模块,所述控制模块与移动模块、任务执行模块电连接,控制移动模块带动自移动设备移动,并控制任务执行模块执行工作任务;其特征在于,所述自移动设备还包括:地图生成模块,生成工作区域地图及初始阴影段,并根据初始阴影段生成初始阴影区;探索模块,用于探索工作区域范围内的初始阴影区,并采集探索过程中的定位信号质量数据及定位坐标,从而生成校正阴影区;阴影区修正模块,用于根据定位信号质量数据及定位坐标生成校正阴影区。
- 根据权利要求19所述的自移动设备,其特征在于,所述控制模块控制自移动设备在工作区域内从不同方向朝向初始阴影区移动进行探索。
- 根据权利要求19所述的自移动设备,其特征在于,所述自移动设备还包括:探索起始位置确定模块,用于根据初始阴影区位置生成探索起始位置,所述控制模块控制自移动设备从探索起始位置出发进行探索。
- 根据权利要求19所述的自移动设备,其特征在于,所述控制模块用于识别所述阴影区的特征信息,根据阴影区的特征确定自移动设备进入所述阴影区的进入方向,以及使所述自移动设备沿所述进入方向进入所述阴影区。
- 根据权利要求22所述的自移动设备,其特征在于,所述阴影区包括大致沿工作区域边界的延伸方向延伸且靠近工作区域边界的第一边缘,所述进入方向为沿所述第一边缘的大致法向。
- 根据权利要求22所述的自移动设备,其特征在于,所述阴影区包括大致沿工作区域边界的延伸方向延伸且靠近工作区域边界的第一边缘,所述进入方向为大致平行于所述第一边缘的方向。
- 根据权利要求22所述的自移动设备,其特征在于,所述进入方向为大致垂直于所述阴影区的纵长轴的方向。
- 根据权利要求22所述的自移动设备,其特征在于,所述阴影区包括靠近障碍物的第一边缘和远离该障碍物的第二边缘,所述进入方向包括沿所述第一边缘或第二边缘的大致法向,或者所述进入方向为使所述第一边缘和所述第二边缘之间的距离最短的方向。
- 根据权利要求22所述的自移动设备,其特征在于,所述控制模块使所述自移动设备沿所述进入方向进入所述阴影区之后,使所述自移动设备沿与所述进入方向相反的退出方向退出所述阴影区。
- 根据权利要求22所述的自移动设备,其特征在于,所述自移动设备还包括:时间预设模块,用于预设自移动设备在阴影区内的时间阈值;所述控制模块控制自移动设备进入阴影区及退出阴影区,使得进入阴影区的进入时间与退出阴影区的退出时间之和满足时间阈值。
- 一种自动工作系统,其特征在于,包括:如权利要求19到28中任意一项所述的自移动设备,在限定的工作区域内移动和工作。
- 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,当所述计算机程序指令被计算装置执行时,可操作来执行如权利要求2到18中任意一项所述的地图建立方法。
- 一种计算机程序产品,其特征在于,当所述计算机程序产品中的指令由处理器执行时,执行如权利要求2到18中任意一项所述的地图建立方法。
- 一种电子设备,其特征在于,包括:存储器,用于存储计算机可执行指令;和处理器,用于执行所述存储器存储的计算机可执行指令,以执行如权利要求2到18中任意一项所述的地图建立方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/764,888 US12153440B2 (en) | 2019-09-29 | 2020-09-29 | Map building method, self-moving device, and automatic working system |
EP20869776.3A EP4043984B1 (en) | 2019-09-29 | 2020-09-29 | Map building method, self-moving device, and automatic working system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910930354.9A CN112578779A (zh) | 2019-09-29 | 2019-09-29 | 地图建立方法、自移动设备、自动工作系统 |
CN201910930354.9 | 2019-09-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021058032A1 true WO2021058032A1 (zh) | 2021-04-01 |
Family
ID=75110353
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/118908 WO2021058032A1 (zh) | 2019-09-29 | 2020-09-29 | 地图建立方法、自移动设备、自动工作系统 |
Country Status (4)
Country | Link |
---|---|
US (1) | US12153440B2 (zh) |
EP (1) | EP4043984B1 (zh) |
CN (1) | CN112578779A (zh) |
WO (1) | WO2021058032A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE545472C2 (en) * | 2021-05-03 | 2023-09-19 | Husqvarna Ab | System and method for navigating a robotic work tool |
SE2250703A1 (en) * | 2022-06-13 | 2023-12-14 | Husqvarna Ab | Improved navigation for a robotic work tool system |
EP4303686A1 (en) * | 2022-07-05 | 2024-01-10 | Willand (Beijing) Technology Co., Ltd. | Method for constructing map for mower, storage medium, mower, and mobile terminal |
WO2024055412A1 (zh) * | 2022-09-15 | 2024-03-21 | 深圳市正浩创新科技股份有限公司 | 地图构建方法、装置及自移动设备 |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112578779A (zh) * | 2019-09-29 | 2021-03-30 | 苏州宝时得电动工具有限公司 | 地图建立方法、自移动设备、自动工作系统 |
JP2022076339A (ja) * | 2020-11-09 | 2022-05-19 | 本田技研工業株式会社 | 作業機および情報管理装置 |
US12262658B2 (en) * | 2021-01-19 | 2025-04-01 | Louisiana-Pacific Corp. | Technician performance system |
SE544856C2 (en) * | 2021-04-13 | 2022-12-13 | Husqvarna Ab | System and method for determining operating boundaries of a robotic work tool |
CN115248588A (zh) * | 2021-04-27 | 2022-10-28 | 南京泉峰科技有限公司 | 自移动设备及其运动控制方法 |
CN113110497B (zh) * | 2021-05-08 | 2024-06-18 | 珠海一微半导体股份有限公司 | 基于导航路径的沿边绕障路径选择方法、芯片及机器人 |
CN115342804A (zh) * | 2021-05-14 | 2022-11-15 | 苏州宝时得电动工具有限公司 | 一种生成工作地图的方法、装置和自移动设备 |
CN114115363B (zh) * | 2021-12-04 | 2023-07-18 | 中国人民解放军国防科技大学 | 一种基于动态目标追踪的多无人机未知室内空间探索方法 |
CN116466693A (zh) * | 2022-01-11 | 2023-07-21 | 未岚大陆(北京)科技有限公司 | 地图处理方法、自移动的园艺设备、以及自动割草机 |
EP4268565B1 (en) * | 2022-04-28 | 2024-04-17 | Husqvarna AB | Improved navigation for a robotic work tool system |
CN115265601A (zh) * | 2022-07-27 | 2022-11-01 | 格力博(江苏)股份有限公司 | 一种园林工具导航信息校准方法、装置及园林工具 |
CN115309764A (zh) * | 2022-08-30 | 2022-11-08 | 深圳市正浩创新科技股份有限公司 | 地图传输方法、地图构建方法、地图构建系统以及介质 |
CN115509227A (zh) * | 2022-09-16 | 2022-12-23 | 未岚大陆(北京)科技有限公司 | 自主移动设备的控制方法和相关设备 |
WO2024179481A1 (zh) * | 2023-02-28 | 2024-09-06 | 苏州宝时得电动工具有限公司 | 自移动设备及控制方法、自主工作系统 |
WO2025096492A1 (en) * | 2023-10-31 | 2025-05-08 | The Toro Company | Assessing a work site for autonomous navigability |
CN117707138A (zh) * | 2023-11-13 | 2024-03-15 | 深圳库犸科技有限公司 | 自移动设备控制方法、自移动设备及存储介质 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007175286A (ja) * | 2005-12-28 | 2007-07-12 | Funai Electric Co Ltd | 自動掃除システム |
CN203609373U (zh) * | 2013-11-20 | 2014-05-28 | 苏州科沃斯商用机器人有限公司 | 带有矫正装置的自移动机器人 |
CN107239074A (zh) * | 2016-03-29 | 2017-10-10 | 苏州宝时得电动工具有限公司 | 自动工作系统及其工作区域的地图建立方法 |
CN108267752A (zh) * | 2016-12-15 | 2018-07-10 | 苏州宝时得电动工具有限公司 | 自移动设备的工作区域的分区方法、装置和电子设备 |
US20190163175A1 (en) * | 2017-11-30 | 2019-05-30 | Lg Electronics Inc. | Mobile robot and method of controlling the same |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6329642B2 (ja) * | 2013-12-10 | 2018-05-23 | エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd | センサ融合 |
EP3084541B1 (en) * | 2013-12-19 | 2019-05-08 | Husqvarna AB | Navigation for a robotic working tool |
JP5976700B2 (ja) * | 2014-01-22 | 2016-08-24 | 日立建機株式会社 | 地図生成システム |
US9516806B2 (en) * | 2014-10-10 | 2016-12-13 | Irobot Corporation | Robotic lawn mowing boundary determination |
WO2016097891A1 (en) * | 2014-12-18 | 2016-06-23 | Husqvarna Ab | Robotic vehicle for detecting gps shadow zones |
US10021529B2 (en) * | 2015-04-21 | 2018-07-10 | Hewlett Packard Enterprise Development Lp | Calibration of wireless network's signal strength map database for indoor locating techniques |
US9818303B2 (en) * | 2015-06-16 | 2017-11-14 | Verizon Patent And Licensing Inc. | Dynamic navigation of UAVs using three dimensional network coverage information |
JP6849330B2 (ja) * | 2015-08-28 | 2021-03-24 | パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America | 地図生成方法、自己位置推定方法、ロボットシステム、およびロボット |
CN106155053A (zh) * | 2016-06-24 | 2016-11-23 | 桑斌修 | 一种割草方法、装置以及系统 |
WO2019028333A1 (en) * | 2017-08-04 | 2019-02-07 | Walmart Apollo, Llc | SYSTEMS, DEVICES AND METHODS FOR GENERATING ROUTES OF VEHICLES WITHIN SIGNAL COVERAGE ZONES |
CN112578779A (zh) * | 2019-09-29 | 2021-03-30 | 苏州宝时得电动工具有限公司 | 地图建立方法、自移动设备、自动工作系统 |
-
2019
- 2019-09-29 CN CN201910930354.9A patent/CN112578779A/zh active Pending
-
2020
- 2020-09-29 US US17/764,888 patent/US12153440B2/en active Active
- 2020-09-29 WO PCT/CN2020/118908 patent/WO2021058032A1/zh active IP Right Grant
- 2020-09-29 EP EP20869776.3A patent/EP4043984B1/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007175286A (ja) * | 2005-12-28 | 2007-07-12 | Funai Electric Co Ltd | 自動掃除システム |
CN203609373U (zh) * | 2013-11-20 | 2014-05-28 | 苏州科沃斯商用机器人有限公司 | 带有矫正装置的自移动机器人 |
CN107239074A (zh) * | 2016-03-29 | 2017-10-10 | 苏州宝时得电动工具有限公司 | 自动工作系统及其工作区域的地图建立方法 |
CN108267752A (zh) * | 2016-12-15 | 2018-07-10 | 苏州宝时得电动工具有限公司 | 自移动设备的工作区域的分区方法、装置和电子设备 |
US20190163175A1 (en) * | 2017-11-30 | 2019-05-30 | Lg Electronics Inc. | Mobile robot and method of controlling the same |
Non-Patent Citations (1)
Title |
---|
See also references of EP4043984A4 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE545472C2 (en) * | 2021-05-03 | 2023-09-19 | Husqvarna Ab | System and method for navigating a robotic work tool |
SE2250703A1 (en) * | 2022-06-13 | 2023-12-14 | Husqvarna Ab | Improved navigation for a robotic work tool system |
SE546505C2 (en) * | 2022-06-13 | 2024-11-19 | Husqvarna Ab | Improved navigation for a robotic work tool system using reliably received satellites |
EP4303686A1 (en) * | 2022-07-05 | 2024-01-10 | Willand (Beijing) Technology Co., Ltd. | Method for constructing map for mower, storage medium, mower, and mobile terminal |
US11917938B2 (en) | 2022-07-05 | 2024-03-05 | Willand (Beijing) Technology Co., Ltd. | Method for constructing map for mower, storage medium, mower, and mobile terminal |
WO2024055412A1 (zh) * | 2022-09-15 | 2024-03-21 | 深圳市正浩创新科技股份有限公司 | 地图构建方法、装置及自移动设备 |
Also Published As
Publication number | Publication date |
---|---|
US20220342426A1 (en) | 2022-10-27 |
EP4043984B1 (en) | 2025-04-09 |
EP4043984A1 (en) | 2022-08-17 |
EP4043984A4 (en) | 2023-09-06 |
CN112578779A (zh) | 2021-03-30 |
US12153440B2 (en) | 2024-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021058032A1 (zh) | 地图建立方法、自移动设备、自动工作系统 | |
US12061476B2 (en) | Returning method of self-moving device, self-moving device, storage medium, and server | |
CN108226964B (zh) | 自移动设备及其定位故障报警方法和自动工作系统 | |
US11076529B2 (en) | Intelligent mowing system | |
US11841710B2 (en) | Automatic working system, self-moving device, and methods for controlling same | |
WO2021228040A1 (zh) | 一种路径规划方法、自移动设备 | |
WO2018214977A1 (zh) | 移动物体及其定位方法、自动工作系统、存储介质 | |
EP4020112B1 (en) | Robotic mower and control method thereof | |
CN108604098B (zh) | 自动工作系统及其控制方法 | |
KR20190064252A (ko) | 이동 로봇 및 그 제어방법 | |
WO2021058030A1 (zh) | 自移动设备及其控制方法、自动工作系统 | |
WO2022007791A1 (zh) | 自移动设备地图生成方法、系统和自动工作系统 | |
WO2023274339A1 (zh) | 自动工作系统 | |
WO2024055855A1 (en) | Autonomous mobile device and method for controlling the same, and computer readable storage medium | |
CN114010102A (zh) | 一种清洁机器人 | |
WO2023104087A1 (zh) | 自动工作系统、自动工作方法和计算机可读存储介质 | |
WO2025025702A1 (zh) | 一种自移动设备的控制方法、装置及自移动设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20869776 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020869776 Country of ref document: EP Effective date: 20220429 |
|
WWG | Wipo information: grant in national office |
Ref document number: 2020869776 Country of ref document: EP |