[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021056232A1 - Single transmitter transmission during a carrier switching gap of another transmitter - Google Patents

Single transmitter transmission during a carrier switching gap of another transmitter Download PDF

Info

Publication number
WO2021056232A1
WO2021056232A1 PCT/CN2019/107680 CN2019107680W WO2021056232A1 WO 2021056232 A1 WO2021056232 A1 WO 2021056232A1 CN 2019107680 W CN2019107680 W CN 2019107680W WO 2021056232 A1 WO2021056232 A1 WO 2021056232A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
uplink
transmission
uplink transmission
gap
Prior art date
Application number
PCT/CN2019/107680
Other languages
French (fr)
Inventor
Chenxi HAO
Peter Gaal
Hao Xu
Bo Chen
Wanshi Chen
Amir Aminzadeh Gohari
Alexei Yurievitch Gorokhov
Yu Zhang
Chao Wei
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2019/107680 priority Critical patent/WO2021056232A1/en
Publication of WO2021056232A1 publication Critical patent/WO2021056232A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/02Hybrid access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A) or DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A) or DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Allocation of payload; Allocation of data channels, e.g. PDSCH or PUSCH
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Definitions

  • This disclosure relates generally to wireless communications, and more particularly to transmissions by one transmitter of a user equipment (UE) during a carrier switching gap of another transmitter of the UE.
  • UE user equipment
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, broadcasts, etc. These wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (such as bandwidth, transmit power, etc. ) .
  • multiple-access systems include 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) systems, LTE Advanced (LTE-A) systems, code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems.
  • 3GPP 3rd Generation Partnership Project
  • LTE Long Term Evolution
  • LTE-A LTE Advanced
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • New Radio (such as 5G NR) is an example of an emerging telecommunication standard.
  • NR is a set of enhancements to the LTE mobile standard promulgated by 3GPP.
  • NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using OFDMA with a cyclic prefix (CP) on the downlink (DL) and on the uplink (UL) .
  • CP cyclic prefix
  • NR supports beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
  • MIMO multiple-input multiple-output
  • the method generally includes determining a first uplink occasion for a first uplink transmission on a first carrier using a first transmission capability; determining a second uplink occasion for a second uplink transmission on a second carrier using a second transmission capability, different than the first transmission capability; determining a third uplink occasion for a third uplink transmission on the first carrier using a third transmission capability where the third uplink transmission overlaps with a gap between the first and second uplink occasions, where the gap is equal to or greater than a duration of radio frequency (RF) retuning between the first carrier and the second carrier; and transmitting uplink signals during the determined first, second, and third uplink occasions.
  • RF radio frequency
  • determining the third uplink occasion when the first uplink transmission is earlier than the second uplink transmission, then determining the third uplink occasion includes determining the third uplink occasion such that a first symbol of the third uplink transmission begins after an end symbol of the first uplink transmission; and when the first uplink transmission is later than the second uplink transmission, then determining the third uplink occasion includes determining the third uplink occasion such that a last symbol of the third uplink transmission ends before the first uplink transmission begins.
  • determining the third uplink occasion includes determining the third uplink occasion such that there is a gap between the third uplink transmission and the first uplink transmission, where the gap is greater than or equal to a timing threshold.
  • the timing threshold is one symbol regardless of a numerology of the first carrier, or the timing threshold is based on a capability reported by the UE.
  • a first part of a duration of the third uplink transmission is overlapped with the gap between the first and second UL transmission, and a second part of the duration of the third uplink transmission is overlapped with the second UL transmission.
  • determining the third uplink occasion comprises determining the third uplink occasion based at least in part on determining a duration of the third uplink transmission is equal to or shorter than the gap between the first and second uplink occasions.
  • determining the third uplink occasion comprises determining the third uplink occasion based at least in part on determining the duration of the third uplink transmission is equal to or shorter than the gap between the first and second uplink occasions minus the gap between the first and third uplink occasions.
  • a sum of the duration of the third uplink transmission and a duration of the gap between the first and the second uplink transmission is greater than or equal to the duration of the RF retuning.
  • determining the third uplink occasion comprises determining the third uplink occasion based at least in part on determining the duration of the third uplink transmission is greater than or equal to the duration of the RF retuning.
  • the third transmission capability is based at least in part on a difference between the first transmission capability and the second transmission capability.
  • each of the first and second transmission capabilities is based on at least one of: a number of transmit antennas of the UE that can transmit on the first carrier, the second carrier, or a combination of the first carrier and the second carrier; a number of transmit ports on which the UE is capable of transmitting on the first carrier, the second carrier, or a combination of the first carrier and the second carrier; a maximum number of multiple-input multiple-output (MIMO) layers on which the UE is capable of transmitting on the first carrier, the second carrier, or a combination of the first carrier and the second carrier; or a number of transmit antennas to be used for antenna witching to support downlink channel state information (CSI) acquisition that the UE reports on the first carrier, the second carrier, or a combination of the first carrier and the second carrier.
  • MIMO multiple-input multiple-output
  • the method can include transmitting a fourth uplink transmission during the second uplink occasion on the first carrier using the third transmission capability.
  • the third uplink transmission includes at least one of a physical uplink control channel (PUCCH) , a physical random access channel (PRACH) , or a sounding reference signal (SRS) .
  • PUCCH physical uplink control channel
  • PRACH physical random access channel
  • SRS sounding reference signal
  • the second transmission capability is lower than the first transmission capability.
  • the method generally includes transmitting a first scheduling or configuring a user equipment (UE) to transmit a first uplink transmission during a first uplink occasion on a first carrier using a first transmission capability; transmitting a second scheduling or configuring the UE to transmit a second uplink transmission during a second uplink occasion on a second carrier using a second transmission capability different than the first transmission capability; transmitting a third scheduling or configuring the UE to transmit a third uplink transmission during a third uplink occasion on the first carrier using a third transmission capability where the third uplink transmission overlaps with a gap between the first and second uplink occasions, where the gap is equal to or greater than a duration of radio frequency (RF) retuning between the first carrier and the second carrier; and receiving uplink signals from the UE during the first, second, and third uplink occasions.
  • RF radio frequency
  • the third signal configuring or scheduling the UE to transmit the third uplink transmission configures or schedules the UE to transmit a first symbol of the third uplink transmission after an end of the first uplink transmission; and when the first uplink transmission is later than the second uplink transmission, then the third signal configuring or scheduling the UE to transmit the third uplink signal configures or schedules the UE to complete transmission of a last symbol of the third uplink transmission before the first uplink transmission begins.
  • the third signal scheduling or configuring the UE to transmit the third uplink transmission schedules or configures the UE to transmit the third uplink transmission such that there is a gap between the third uplink transmission and the first uplink transmission, where the gap is greater than or equal to a timing threshold.
  • the timing threshold is one symbol regardless of a numerology of the first carrier, or the timing threshold is based on a capability reported by the UE.
  • a first part of a duration of the third uplink transmission is overlapped with the gap between the first and second UL transmission, and a second part of the duration of the third uplink transmission is overlapped with the second UL transmission.
  • a duration of the third uplink transmission is equal to or shorter than the gap between the first and second uplink occasions.
  • the duration of the third uplink transmission is equal to or shorter than the gap between the first and second uplink occasions minus the gap between the first and third uplink occasions.
  • a sum of the duration of the third uplink transmission and a duration of the gap between the first and the second uplink transmission is greater than or equal to the duration of the RF retuning between the first carrier and the second carrier.
  • the duration of the third uplink transmission is greater than or equal to the duration of the RF retuning between the first carrier and the second carrier.
  • the third transmission capability is based at least in part on a difference between the first transmission capability and the second transmission capability.
  • each of the first and second transmission capabilities is based on at least one of: a number of transmit antennas of the UE that can transmit on the first carrier, the second carrier, or a combination of the first carrier and the second carrier; a number of transmit ports on which the UE is capable of transmitting on the first carrier, the second carrier, or a combination of the first carrier and the second carrier; a maximum number of multiple-input multiple-output (MIMO) layers on which the UE is capable of transmitting on the first carrier, the second carrier, or a combination of the first carrier and the second carrier; or a number of transmit antennas to be used for antenna witching to support downlink channel state information (CSI) acquisition that the UE reports on the first carrier, the second carrier, or a combination of the first carrier and the second carrier.
  • MIMO multiple-input multiple-output
  • the method can include receiving a fourth uplink transmission during the second uplink occasion on the first carrier, where the UE transmits the fourth uplink transmission using the third transmission capability.
  • the third uplink transmission includes at least one of a physical uplink control channel (PUCCH) , a physical random access channel (PRACH) , or a sounding reference signal (SRS) .
  • PUCCH physical uplink control channel
  • PRACH physical random access channel
  • SRS sounding reference signal
  • the second transmission capability is lower than the first transmission capability.
  • the apparatus includes a processing system configured to: determine a first uplink occasion for a first uplink transmission on a first carrier using a first transmission capability; determine a second uplink occasion for a second uplink transmission on a second carrier using a second transmission capability, different than the first transmission capability; and determine a third uplink occasion for a third uplink transmission on the first carrier using a third transmission capability where the third uplink transmission overlaps with a gap between the first and second uplink occasions, where the gap is equal to or greater than a duration of radio frequency (RF) retuning between the first carrier and the second carrier; and a first interface configured to output uplink signals for transmission during the determined first, second, and third uplink occasions.
  • RF radio frequency
  • the processing system is configured to: when the first uplink transmission is earlier than the second uplink transmission, determine the third uplink occasion such that a first symbol of the third uplink transmission begins after an end symbol of the first uplink transmission; and when the first uplink transmission is later than the second uplink transmission, determine the third uplink occasion such that a last symbol of the third uplink transmission ends before the first uplink transmission begins.
  • the processing system is configured to determine the third uplink occasion such that there is a gap between the third uplink transmission and the first uplink transmission, where the gap is greater than or equal to a timing threshold.
  • the timing threshold is one symbol regardless of a numerology of the first carrier, or the timing threshold is based on a capability reported by the apparatus.
  • a first part of a duration of the third uplink transmission is overlapped with the gap between the first and second UL transmission, and a second part of the duration of the third uplink transmission is overlapped with the second UL transmission.
  • the processing system is configured to determine the third uplink occasion based at least in part on determining a duration of the third uplink transmission is equal to or shorter than the gap between the first and second uplink occasions.
  • the processing system is configured to determine the third uplink occasion based at least in part on determining the duration of the third uplink transmission is equal to or shorter than the gap between the first and second uplink occasions minus the gap between the first and third uplink occasions.
  • a sum of the duration of the third uplink transmission and a duration of the gap between the first and the second uplink transmission is greater than or equal to the duration of the RF retuning.
  • the processing system is configured to determine the third uplink occasion based at least in part on determining the duration of the third uplink transmission is greater than or equal to the duration of the RF retuning between the first carrier and the second carrier.
  • the third transmission capability is based at least in part on a difference between the first transmission capability and the second transmission capability.
  • each of the first and second transmission capabilities is based on at least one of: a number of transmit antennas of the apparatus that can transmit on the first carrier, the second carrier, or a combination of the first carrier and the second carrier; a number of transmit ports on which the apparatus is capable of transmitting on the first carrier, the second carrier, or a combination of the first carrier and the second carrier; a maximum number of multiple-input multiple-output (MIMO) layers on which the apparatus is capable of transmitting on the first carrier, the second carrier, or a combination of the first carrier and the second carrier; or a number of transmit antennas to be used for antenna witching to support downlink channel state information (CSI) acquisition that the apparatus reports on the first carrier, the second carrier, or a combination of the first carrier and the second carrier.
  • MIMO multiple-input multiple-output
  • the first interface is further configured to output for transmission a fourth uplink signal during the second uplink occasion on the first carrier using the third transmission capability.
  • the third uplink transmission includes at least one of a physical uplink control channel (PUCCH) , a physical random access channel (PRACH) , or a sounding reference signal (SRS) .
  • PUCCH physical uplink control channel
  • PRACH physical random access channel
  • SRS sounding reference signal
  • the second transmission capability is lower than the first transmission capability.
  • the apparatus includes a processing system configured to: generate a first signal scheduling or configuring a user equipment (UE) to transmit a first uplink (UL) transmission during a first uplink occasion on a first carrier using a first transmission capability; generate a second signal scheduling or configuring the UE to transmit a second uplink transmission during a second uplink occasion on a second carrier using a second transmission capability different than the first transmission capability; and generate a third signal scheduling or configuring the UE to transmit a third uplink transmission during a third uplink occasion on the first carrier using a third transmission capability wherein the third uplink transmission overlaps with a gap between the first and second uplink occasions, wherein the gap is equal to or greater than a duration of radio frequency (RF) retuning between the first carrier and the second carrier; and a first interface configured to output for transmission the first, second, and third signals and to obtain uplink signals from the UE during the first, second, and third uplink occasions.
  • RF radio frequency
  • the processing system is configured to: when the first uplink transmission is earlier than the second uplink transmission, generate the third signal such that the third signal schedules or configures the UE to begin transmitting a first symbol of the third uplink transmission after an end of the first uplink transmission; and when the first uplink transmission is later than the second uplink transmission, generate the third signal such that the third signal schedules or configures the UE to complete transmission of a last symbol of the third uplink transmission before the first uplink transmission begins.
  • the first interface is configured to obtain the uplink signals by obtaining the third uplink transmission such that there is a gap between the third uplink transmission and the first uplink transmission, where the gap is greater than or equal to a timing threshold.
  • the timing threshold is one symbol regardless of the numerology of the first carrier, or the timing threshold is based on a capability reported by the UE.
  • a first part of a duration of the third uplink transmission is overlapped with the gap between the first and second UL transmission, and a second part of the duration of the third uplink transmission is overlapped with the second UL transmission.
  • a duration of the third uplink transmission is equal to or shorter than the gap between the first and second uplink occasions.
  • the duration of the third uplink transmission is equal to or shorter than the gap between the first and second uplink occasions minus the gap between the first and third uplink occasions.
  • a sum of the duration of the third uplink transmission and a duration of the gap between the first and the second uplink transmission is greater than or equal to the duration of the RF retuning.
  • the duration of the third uplink transmission is greater than or equal to the duration of the RF retuning between the first carrier and the second carrier.
  • the third transmission capability is based at least in part on a difference between the first transmission capability and the second transmission capability.
  • each of the first and second transmission capabilities is based on at least one of: a number of transmit antennas of the UE that can transmit on the first carrier, the second carrier, or a combination of the first carrier and the second carrier; a number of transmit ports on which the UE is capable of transmitting on the first carrier, the second carrier, or a combination of the first carrier and the second carrier; a maximum number of multiple-input multiple-output (MIMO) layers on which the UE is capable of transmitting on the first carrier, the second carrier, or a combination of the first carrier and the second carrier; or a number of transmit antennas to be used for antenna witching to support downlink channel state information (CSI) acquisition that the UE reports on the first carrier, the second carrier, or a combination of the first carrier and the second carrier.
  • MIMO multiple-input multiple-output
  • the processing system is further configured to: generate a fourth signal scheduling or configuring the UE to transmit a fourth uplink transmission during the second uplink occasion on the first carrier using the third transmission capability; and the first interface is further configured to: obtain a fourth uplink signal from the UE during the second uplink occasion on the first carrier, where the UE transmits the fourth uplink transmission using the third transmission capability.
  • the third uplink transmission includes at least one of a physical uplink control channel (PUCCH) , a physical random access channel (PRACH) , or a sounding reference signal (SRS) .
  • PUCCH physical uplink control channel
  • PRACH physical random access channel
  • SRS sounding reference signal
  • the second transmission capability is lower than the first transmission capability.
  • the apparatus includes means for determining a first uplink occasion for a first uplink transmission on a first carrier using a first transmission capability; means for determining a second uplink occasion for a second uplink transmission on a second carrier using a second transmission capability, different than the first transmission capability; means for determining a third uplink occasion for a third uplink transmission on the first carrier using a third transmission capability where the third uplink transmission overlaps with a gap between the first and second uplink occasions, where the gap is equal to or greater than a duration of radio frequency (RF) retuning between the first carrier and the second carrier; and means for transmitting uplink signals during the determined first, second, and third uplink occasions.
  • RF radio frequency
  • the means for determining the third uplink occasion comprises means for determining the third uplink occasion such that a first symbol of the third uplink transmission begins after an end symbol of the first uplink transmission, when the first uplink transmission is earlier than the second uplink transmission; and the means for determining the third uplink occasion comprises means for determining the third uplink occasion such that a last symbol of the third uplink transmission ends before the first uplink transmission begins, when the first uplink transmission is later than the second uplink transmission.
  • the means for determining the third uplink occasion comprises means for determining the third uplink occasion such that there is a gap between the third uplink transmission and the first uplink transmission, where the gap is greater than or equal to a timing threshold.
  • the timing threshold is one symbol regardless of a numerology of the first carrier, or the timing threshold is based on a capability reported by the UE.
  • a first part of a duration of the third uplink transmission is overlapped with the gap between the first and second UL transmission, and a second part of the duration of the third uplink transmission is overlapped with the second UL transmission.
  • the means for determining the third uplink occasion comprises means for determining the third uplink occasion based at least in part on determining a duration of the third uplink transmission is equal to or shorter than the gap between the first and second uplink occasions.
  • the means for determining the third uplink occasion comprises means for determining the third uplink occasion based at least in part on determining the duration of the third uplink transmission is equal to or shorter than the gap between the first and second uplink occasions minus the gap between the first and third uplink occasions.
  • a sum of the duration of the third uplink transmission and a duration of the gap between the first and the second uplink transmission is greater than or equal to the duration of the RF retuning.
  • the means for determining the third uplink occasion comprises means for determining the third uplink occasion based at least in part on determining the duration of the third uplink transmission is greater than or equal to the duration of the RF retuning between the first carrier and the second carrier.
  • the third transmission capability is based at least in part on a difference between the first transmission capability and the second transmission capability.
  • each of the first and second transmission capabilities is based on at least one of: a number of transmit antennas of the apparatus that can transmit on the first carrier, the second carrier, or a combination of the first carrier and the second carrier; a number of transmit ports on which the apparatus is capable of transmitting on the first carrier, the second carrier, or a combination of the first carrier and the second carrier; a maximum number of multiple-input multiple-output (MIMO) layers on which the apparatus is capable of transmitting on the first carrier, the second carrier, or a combination of the first carrier and the second carrier; or a number of transmit antennas to be used for antenna witching to support downlink channel state information (CSI) acquisition that the apparatus reports on the first carrier, the second carrier, or a combination of the first carrier and the second carrier.
  • MIMO multiple-input multiple-output
  • the apparatus may include means for transmitting a fourth uplink transmission during the second uplink occasion on the first carrier using the third transmission capability.
  • the third uplink transmission includes at least one of a physical uplink control channel (PUCCH) , a physical random access channel (PRACH) , or a sounding reference signal (SRS) .
  • PUCCH physical uplink control channel
  • PRACH physical random access channel
  • SRS sounding reference signal
  • the second transmission capability is lower than the first transmission capability.
  • the apparatus includes means for transmitting a first signal scheduling or configuring a user equipment (UE) to transmit a first uplink transmission during a first uplink occasion on a first carrier using a first transmission capability; means for transmitting a second signal scheduling or configuring the UE to transmit a second uplink transmission during a second uplink occasion on a second carrier using a second transmission capability different than the first transmission capability; means for transmitting a third signal scheduling or configuring the UE to transmit a third uplink transmission during a third uplink occasion on the first carrier using a third transmission capability where the third uplink transmission overlaps with a gap between the first and second uplink occasions, where the gap is equal to or greater than a duration of radio frequency (RF) retuning between the first carrier and the second carrier; and means for receiving uplink signals from the UE during the first, second, and third uplink occasions.
  • RF radio frequency
  • the means for transmitting the third signal comprises means for transmitting the third signal such that the third signal schedules or configures the UE to begin transmitting a first symbol of the third uplink transmission after an end of the first uplink transmission; and when the first uplink transmission is later than the second uplink transmission, then the means for transmitting the third signal comprises means for transmitting the third signal such that the third signal schedules or configures the UE to complete transmission of a last symbol of the third uplink transmission before the first uplink transmission begins.
  • the means for transmitting the third signal scheduling or configuring the third uplink transmission comprises means for transmitting the third signal such that the third signal schedules or configures the UE to transmit the third uplink transmission such that there is a gap between the third uplink transmission and the first uplink transmission, where the gap is greater than or equal to a timing threshold.
  • the timing threshold is one symbol regardless of a numerology of the first carrier, or the timing threshold is based on a capability reported by the UE.
  • a first part of a duration of the third uplink transmission is overlapped with the gap between the first and second UL transmission, and a second part of the duration of the third uplink transmission is overlapped with the second UL transmission.
  • a duration of the third uplink transmission is equal to or shorter than the gap between the first and second uplink occasions.
  • the duration of the third uplink transmission is equal to or shorter than the gap between the first and second uplink occasions minus the gap between the first and third uplink occasions.
  • a sum of the duration of the third uplink transmission and a duration of the gap between the first and the second uplink transmission is greater than or equal to the duration of the RF retuning.
  • the duration of the third uplink transmission is greater than or equal to the duration of the RF retuning.
  • the third transmission capability is based at least in part on a difference between the first transmission capability and the second transmission capability.
  • each of the first and second transmission capabilities is based on at least one of: a number of transmit antennas of the UE that can transmit on the first carrier, the second carrier, or a combination of the first carrier and the second carrier; a number of transmit ports on which the UE is capable of transmitting on the first carrier, the second carrier, or a combination of the first carrier and the second carrier; a maximum number of multiple-input multiple-output (MIMO) layers on which the UE is capable of transmitting on the first carrier, the second carrier, or a combination of the first carrier and the second carrier; or a number of transmit antennas to be used for antenna witching to support downlink channel state information (CSI) acquisition that the UE reports on the first carrier, the second carrier, or a combination of the first carrier and the second carrier.
  • MIMO multiple-input multiple-output
  • the apparatus can include means for receiving a fourth uplink transmission during the second uplink occasion on the first carrier, where the UE transmits the fourth uplink transmission using the third transmission capability.
  • the third uplink transmission includes at least one of a physical uplink control channel (PUCCH) , a physical random access channel (PRACH) , or a sounding reference signal (SRS) .
  • PUCCH physical uplink control channel
  • PRACH physical random access channel
  • SRS sounding reference signal
  • the second transmission capability is lower than the first transmission capability.
  • FIG. 1 Another innovative aspect of the subject matter described in this disclosure can be implemented in a computer-readable medium for wireless communications that, when executed by a processor of a user equipment (UE) , cause the processor to perform operations including determining a first uplink occasion for a first uplink transmission on a first carrier using a first transmission capability; determining a second uplink occasion for a second uplink transmission on a second carrier using a second transmission capability, different than the first transmission capability; determining a third uplink occasion for a third uplink transmission on the first carrier using a third transmission capability where the third uplink transmission overlaps with a gap between the first and second uplink occasions, where the gap is equal to or greater than a duration of radio frequency (RF) retuning between the first carrier and the second carrier; and transmitting uplink signals during the determined first, second, and third uplink occasions.
  • RF radio frequency
  • determining the third uplink occasion comprises determining the third uplink occasion such that a first symbol of the third uplink transmission begins after an end symbol of the first uplink transmission; and when the first uplink transmission is later than the second uplink transmission, then determining the third uplink occasion comprises determining the third uplink occasion such that a last symbol of the third uplink transmission ends before the first uplink transmission begins.
  • determining the third uplink occasion comprises determining the third uplink occasion such that there is a gap between the third uplink transmission and the first uplink transmission, where the gap is greater than or equal to a timing threshold.
  • the timing threshold is one symbol regardless of a numerology of the first carrier, or the timing threshold is based on a capability reported by the UE.
  • a first part of a duration of the third uplink transmission is overlapped with the gap between the first and second UL transmission, and a second part of the duration of the third uplink transmission is overlapped with the second UL transmission.
  • determining the third uplink occasion comprises determining the third uplink occasion based at least in part on determining a duration of the third uplink transmission is equal to or shorter than the gap between the first and second uplink occasions.
  • determining the third uplink occasion comprises determining the third uplink occasion based at least in part on determining the duration of the third uplink transmission is equal to or shorter than the gap between the first and second uplink occasions minus the gap between the first and third uplink occasions.
  • a sum of the duration of the third uplink transmission and a duration of the gap between the first and the second uplink transmission is greater than or equal to the duration of the RF retuning.
  • determining the third uplink occasion comprises determining the third uplink occasion based at least in part on determining the duration of the third uplink transmission is greater than or equal to the duration of the RF retuning between the first carrier and the second carrier.
  • the third transmission capability is based at least in part on a difference between the first transmission capability and the second transmission capability.
  • each of the first and second transmission capabilities is based on at least one of: a number of transmit antennas of the UE that can transmit on the first carrier, the second carrier, or a combination of the first carrier and the second carrier; a number of transmit ports on which the UE is capable of transmitting on the first carrier, the second carrier, or a combination of the first carrier and the second carrier; a maximum number of multiple-input multiple-output (MIMO) layers on which the UE is capable of transmitting on the first carrier, the second carrier, or a combination of the first carrier and the second carrier; or a number of transmit antennas to be used for antenna witching to support downlink channel state information (CSI) acquisition that the UE reports on the first carrier, the second carrier, or a combination of the first carrier and the second carrier.
  • MIMO multiple-input multiple-output
  • the operations may include transmitting a fourth uplink transmission during the second uplink occasion on the first carrier using the third transmission capability.
  • the third uplink transmission includes at least one of a physical uplink control channel (PUCCH) , a physical random access channel (PRACH) , or a sounding reference signal (SRS) .
  • PUCCH physical uplink control channel
  • PRACH physical random access channel
  • SRS sounding reference signal
  • the second transmission capability is lower than the first transmission capability.
  • Another innovative aspect of the subject matter described in this disclosure can be implemented in a computer-readable medium for wireless communications that, when executed by a processor of a base station (BS) , cause the processor to perform operations including transmitting a first scheduling or configuring a user equipment (UE) to transmit a first uplink transmission during a first uplink occasion on a first carrier using a first transmission capability; transmitting a second scheduling or configuring the UE to transmit a second uplink transmission during a second uplink occasion on a second carrier using a second transmission capability different than the first transmission capability; transmitting a third scheduling or configuring the UE to transmit a third uplink transmission during a third uplink occasion on the first carrier using a third transmission capability where the third uplink transmission overlaps with a gap between the first and second uplink occasions, where the gap is equal to or greater than a duration of radio frequency (RF) retuning between the first carrier and the second carrier; and receiving uplink signals from the UE during the first, second, and third uplink occasions.
  • RF radio frequency
  • the third signal configuring or scheduling the UE to transmit the third uplink transmission configures or schedules the UE to transmit a first symbol of the third uplink transmission after an end of the first uplink transmission; and when the first uplink transmission is later than the second uplink transmission, then the third signal configuring or scheduling the UE to transmit the third uplink transmission configures or schedules the UE to complete transmission of a last symbol of the third uplink transmission before the first uplink transmission begins.
  • the third signal scheduling or configuring the UE to transmit the third uplink transmission schedules or configures the UE to transmit the third uplink transmission such that there is a gap between the third uplink transmission and the first uplink transmission, where the gap is greater than or equal to a timing threshold.
  • the timing threshold is one symbol regardless of a numerology of the first carrier, or the timing threshold is based on a capability reported by the UE.
  • a first part of the duration of the third uplink transmission is overlapped with the gap between the first and second UL transmission, and a second part of the duration of the third uplink transmission is overlapped with the second UL transmission.
  • a duration of the third uplink transmission is equal to or shorter than the gap between the first and second uplink occasions.
  • the duration of the third uplink transmission is equal to or shorter than the gap between the first and second uplink occasions minus the gap between the first and third uplink occasions.
  • a sum of the duration of the third uplink transmission and a duration of the gap between the first and the second uplink transmission is greater than or equal to the duration of the RF retuning.
  • the duration of the third uplink transmission is greater than or equal to the duration of the RF retuning.
  • the third transmission capability is based at least in part on a difference between the first transmission capability and the second transmission capability.
  • each of the first and second transmission capabilities is based on at least one of: a number of transmit antennas of the UE that can transmit on the first carrier, the second carrier, or a combination of the first carrier and the second carrier; a number of transmit ports on which the UE is capable of transmitting on the first carrier, the second carrier, or a combination of the first carrier and the second carrier; a maximum number of multiple-input multiple-output (MIMO) layers on which the UE is capable of transmitting on the first carrier, the second carrier, or a combination of the first carrier and the second carrier; or a number of transmit antennas to be used for antenna witching to support downlink channel state information (CSI) acquisition that the UE reports on the first carrier, the second carrier, or a combination of the first carrier and the second carrier.
  • MIMO multiple-input multiple-output
  • the operations may include receiving a fourth uplink transmission during the second uplink occasion on the first carrier, where the UE transmits the fourth uplink transmission using the third transmission capability.
  • the third uplink transmission includes at least one of a physical uplink control channel (PUCCH) , a physical random access channel (PRACH) , or a sounding reference signal (SRS) .
  • PUCCH physical uplink control channel
  • PRACH physical random access channel
  • SRS sounding reference signal
  • the second transmission capability is lower than the first transmission capability.
  • FIG. 1 shows a system diagram of an example network.
  • FIG. 2 shows a block diagram of the example devices shown in the example network of FIG. 1.
  • FIG. 3A shows an example transmission timeline of an example device operating on multiple carriers without retuning.
  • FIG. 3B shows an example transmission timeline of an example device performing carrier aggregation based uplink enhancement.
  • FIG. 4A shows an example transmission timeline of a UE operating with a time-division duplexing carrier and a supplementary uplink (SUL) carrier.
  • SUL supplementary uplink
  • FIG. 4B shows an example transmission timeline of a UE operating with time-division duplexing carrier and a frequency-division duplexing carrier.
  • FIG. 5 shows example operations by components of an example device for transmitting with a transmitter during a carrier switching gap of another transmitter of the device.
  • FIG. 6 shows a flow diagram of example operations for transmitting with a transmitter during a carrier switching gap of another transmitter of the device.
  • FIG. 7 shows a flow diagram of example operations for operating with a device that transmits with a transmitter during a carrier switching gap of another transmitter of the device.
  • FIG. 8A shows an example transmission timeline of a device transmitting with a transmitter during a carrier switching gap of another transmitter of the device.
  • FIG. 8B shows example transmission timelines of a device transmitting with a transmitter during a carrier switching gap of another transmitter of the device.
  • FIG. 9 shows example operations by components of an example device for transmitting with a transmitter during a carrier switching gap of another transmitter of the device.
  • FIG. 10 shows example transmission timelines of a device transmitting with a transmitter during a carrier switching gap of another transmitter of the device.
  • FIG. 11 shows example operations by components of an example device for transmitting with a transmitter during a carrier switching gap of another transmitter of the device.
  • FIG. 12 shows an example transmission timeline of a device transmitting with a transmitter during a carrier switching gap of another transmitter of the device.
  • FIG. 13 shows an example transmission timeline of a device transmitting with a transmitter during a carrier switching gap of another transmitter of the device.
  • FIG. 14 shows an example communications device configured to transmit with a transmitter during a carrier switching gap of another transmitter of the device.
  • FIG. 15 shows an example communications device configured to operate with a device that transmits with a transmitter during a carrier switching gap of another transmitter of the other device.
  • the described implementations may be implemented in any device, system or network that is capable of transmitting and receiving RF signals according to any of the wireless communication standards, including any of the IEEE 802.11 standards, the standard, code division multiple access (CDMA) , frequency division multiple access (FDMA) , time division multiple access (TDMA) , Global System for Mobile communications (GSM) , GSM/General Packet Radio Service (GPRS) , Enhanced Data GSM Environment (EDGE) , Terrestrial Trunked Radio (TETRA) , Wideband-CDMA (W-CDMA) , Evolution Data Optimized (EV-DO) , 1xEV-DO, EV-DO Rev A, EV-DO Rev B, High Speed Packet Access (HSPA) , High Speed Downlink Packet Access (HSDPA) , High Speed Uplink Packet Access (HSUPA) , Evolved High Speed Packet Access (HSPA+) , Long Term Evolution (LTE) , AMPS, or other known signals that are used
  • a user equipment may have two or more transmitters or transmit chains, collectively referred to below as transmitters.
  • the UE may be capable of transmitting on sets of frequencies in widely separated carriers, such as a 2.1 gigahertz (GHz) carrier and a 3.5 GHz carrier.
  • GHz gigahertz
  • a transmitter typically cannot transmit simultaneously on widely separated carriers, but the UE may change the carrier on which the transmitter transmits.
  • a transmitter typically is unable to transmit on any carrier during the period that the transmitter is changing between carriers, and this period is referred herein to as a carrier switching gap, radio frequency (RF) retuning gap, or retuning gap.
  • RF radio frequency
  • a UE may transmit with a transmitter during a carrier switching or retuning gap of another transmitter of the UE. For example, a UE may transmit on a first carrier with a first transmitter, transmit on a second carrier with a second transmitter, switch the second transmitter to the first carrier, transmit on the first carrier with the first transmitter during the carrier switching gap of the second transmitter, transmit with both transmitters on the first carrier, and switch the second transmitter back to the second carrier during another carrier switching gap or retuning gap. Transmitting on the first carrier with the first transmitter during the carrier switching gap of the second transmitter may utilize transmission resources that would otherwise go unused.
  • Transmitting with both transmitters on the first carrier may enable the UE to transmit on additional layers or on a wider bandwidth than the UE can transmit on using the first transmitter alone.
  • uplink slots such as of a time-division duplexing (TDD) cell or a frequency-division duplexing (FDD) cell
  • TDD time-division duplexing
  • FDD frequency-division duplexing
  • the UE may take time resources for the carrier switching gap or retuning gap from uplink slots of either the first carrier (thus reducing the time the UE can transmit on the additional layers or the wider bandwidth) or the second carrier (possibly reducing the time the UE can transmit on the second carrier) .
  • the UE may determine whether to take the time resources for the carrier switching gap or retuning gap from uplink slots of the first carrier or the second carrier according to channel priorities, bandwidths, or power headroom (PHR) on each of the two carriers.
  • PHR power headroom
  • NR new radio
  • LTE long term evolution
  • NR new radio
  • UL uplink
  • an NR cell operating on a 3.5 GHz band suffers approximately 9 dB of coverage loss compared to an LTE cell operating on a 2.1 GHz band.
  • a UE which switches a transmitter from a low (such as 2.1 GHz) band to a high (such as 3.5 GHz) band in a time-division multiplexing (TDM) manner may use two transmitters on the high band and one transmitter in the low band.
  • TDM time-division multiplexing
  • Such a UE may have improved coverage at cell edges due to being scheduled on the low band (i.e., the UE does not suffer the coverage loss during the times that the one transmitter is operating on the low band) and be able to exploit the wider NR bandwidths on the high band (i.e., the UE exploits the wider NR bandwidths during the times that the two transmitters are operating on the high band) when the UE is near a cell-center.
  • a UE implementing the described subject matter may use transmission resources that would otherwise go unused, and thus the UE avoids wasting transmission resources. For example, while a first transmitter of a UE is in a carrier switching gap, the UE can transmit with a second transmitter that is not switching carriers, rather than the UE transmitting nothing during the carrier switching gap. Thus, the UE may achieve a higher data throughput rate than a UE that does not transmit with a second transmitter while a first transmitter is in a carrier switching gap.
  • the UE may achieve higher data throughput rates on both a high band (such as a 3.5 GHz band) and a low band (such as a 2.1 GHz band) .
  • the UE also may have sufficient time to cause the two transmitters to be in-phase at the beginning of times allocated to transmitting on the high band, and thus the UE avoids using time resources allocated to transmitting for phase synchronization of the two transmitters.
  • any number of wireless networks may be deployed in a given geographic area.
  • Each wireless network may support a particular radio access technology (RAT) and may operate on one or more frequencies.
  • a RAT may also be referred to as a radio technology, an air interface, etc.
  • a frequency may also be referred to as a carrier, a subcarrier, a frequency channel, a tone, a subband, etc.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
  • a 5G NR RAT network may be deployed.
  • FIG. 1 shows a system diagram of an example network 100.
  • the wireless communication network 100 may be an NR system (such as a 5G NR network) .
  • the wireless communication network 100 may include a number of base stations (BSs) 110a-z (each also individually referred to herein as BS 110 or collectively as BSs 110) and other network entities.
  • a BS 110 may provide communication coverage for a particular geographic area, sometimes referred to as a “cell” , which may be stationary or may move according to the location of a mobile BS 110.
  • the BSs 110 may be interconnected to one another or to one or more other BSs or network nodes (not shown) in wireless communication network 100 through various types of backhaul interfaces (such as a direct physical connection, a wireless connection, a virtual network, or the like) using any suitable transport network.
  • backhaul interfaces such as a direct physical connection, a wireless connection, a virtual network, or the like
  • the BSs 110a, 110b and 110c may be macro BSs for the macro cells 102a, 102b and 102c, respectively.
  • the BS 110x may be a pico BS for a pico cell 102x.
  • the BSs 110y and 110z may be femto BSs for the femto cells 102y and 102z, respectively.
  • a BS may support one or multiple cells.
  • the BSs 110 communicate with user equipment (UEs) 120a-y (each also individually referred to herein as UE 120 or collectively as UEs 120) in the wireless communication network 100.
  • the UEs 120 (such as 120x, 120y, etc. ) may be dispersed throughout the wireless communication network 100, and each UE 120 may be stationary or mobile.
  • the BSs 110 and UEs 120 may be configured for UEs to transmit with one transmitter during a carrier switching gap of another transmitter.
  • the BS 110a includes a single TX during carrier switch gap manager 112.
  • the single TX during carrier switch gap manager 112 may be configured to transmit a first downlink control information (DCI) directing a user equipment (UE) to transmit a first uplink transmission during a first uplink occasion on a first carrier using a first transmission capability; to transmit a second DCI directing the UE to transmit a second uplink transmission during a second uplink occasion on a second carrier using a second transmission capability different than the first transmission capability; to transmit a third DCI directing the UE to transmit a third uplink transmission on the first carrier using a third transmission capability during a gap between the first and second uplink occasions used for retuning between the first carrier and the second carrier; and to receive uplink signals from the UE during the first, second, and third uplink occasions, in accordance with aspects of
  • DCI downlink
  • the UE 120a includes a single TX during carrier switch gap manager 122.
  • the single TX during carrier switch gap manager 122 may be configured to determine a first uplink occasion for a first uplink transmission on a first carrier using a first transmission capability; to determine a second uplink occasion for a second uplink transmission on a second carrier using a second transmission capability, different than the first transmission capability; to determine a third uplink occasion for a third uplink transmission on the first carrier using a third transmission capability during a gap between the first and second uplink occasions used for radio frequency (RF) retuning between the first carrier and the second carrier; and to transmit uplink signals during the determined first, second, and third uplink occasions, in accordance with aspects of the present disclosure.
  • RF radio frequency
  • Wireless communication network 100 may also include relay stations (such as relay station 110r) , also referred to as relays or the like, that receive a transmission of data or other information from an upstream station (such as a BS 110a or a UE 120r) and sends a transmission of the data or other information to a downstream station (such as a UE 120 or a BS 110) , or that relays transmissions between UEs 120, to facilitate communication between devices.
  • relay stations such as relay station 110r
  • relays or the like that receive a transmission of data or other information from an upstream station (such as a BS 110a or a UE 120r) and sends a transmission of the data or other information to a downstream station (such as a UE 120 or a BS 110) , or that relays transmissions between UEs 120, to facilitate communication between devices.
  • a network controller 130 may couple to a set of BSs 110 and provide coordination and control for these BSs 110.
  • the network controller 130 may communicate with the BSs 110 via a backhaul.
  • the BSs 110 may also communicate with one another (such as directly or indirectly) via wireless or wireline backhaul.
  • FIG. 2 shows a block diagram 200 of the example devices shown in the example network of FIG. 1.
  • the block diagram 200 illustrates example components of BS 110a and UE 120a (such as in the wireless communication network 100 of FIG. 1) , which may be used to implement aspects of the present disclosure.
  • a transmit processor 220 may receive data from a data source 212 and control information from a controller/processor 240.
  • the control information may be for the physical broadcast channel (PBCH) , physical control format indicator channel (PCFICH) , physical hybrid ARQ indicator channel (PHICH) , physical downlink control channel (PDCCH) , group common PDCCH (GC PDCCH) , etc.
  • the data may be for the physical downlink shared channel (PDSCH) , etc.
  • the processor 220 may process (such as encode and symbol map) the data and control information to obtain data symbols and control symbols, respectively.
  • the transmit processor 220 may also generate reference symbols, such as for the primary synchronization signal (PSS) , secondary synchronization signal (SSS) , and cell-specific reference signal (CRS) .
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (such as precoding) on the data symbols, the control symbols, or the reference symbols, if applicable, and may provide output symbol streams to the modulators (MODs) 232a-232t.
  • Each modulator 232 may process a respective output symbol stream (such as for OFDM, etc. ) to obtain an output sample stream.
  • Each modulator may further process (such as convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal.
  • Downlink signals from modulators 232a-232t may be transmitted via the antennas 234a-234t, respectively.
  • the antennas 252a-252r may receive the downlink signals from the BS 110a and may provide received signals to the demodulators (DEMODs) in transceivers 254a-254r, respectively.
  • Each demodulator 254 may condition (such as filter, amplify, downconvert, and digitize) a respective received signal to obtain input samples.
  • Each demodulator may further process the input samples (such as for OFDM, etc. ) to obtain received symbols.
  • a MIMO detector 256 may obtain received symbols from all the demodulators 254a-254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • a receive processor 258 may process (such as demodulate, deinterleave, and decode) the detected symbols, provide decoded data for the UE 120a to a data sink 260, and provide decoded control information to a controller/processor 280.
  • a transmit processor 264 may receive and process data (such as for the physical uplink shared channel (PUSCH) ) from a data source 262 and control information (such as for the physical uplink control channel (PUCCH) from the controller/processor 280.
  • the transmit processor 264 may also generate reference symbols for a reference signal (such as for the sounding reference signal (SRS) ) .
  • the symbols from the transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by the demodulators in transceivers 254a-254r (such as for SC-FDM, etc. ) , and transmitted to the BS 110a.
  • the uplink signals from the UE 120a may be received by the antennas 234, processed by the modulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by the UE 120a.
  • the receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to the controller/processor 240.
  • the memories 242 and 282 may store data and program codes for BS 110a and UE 120a, respectively.
  • a scheduler 244 may schedule UEs for data transmission on the downlink or uplink.
  • the controller/processor 280 or other processors and modules at the UE 120a may perform or direct the execution of processes for the techniques described herein.
  • the controller/processor 240 of the BS 110a has a single TX during carrier switch gap manager 241 that may be configured for transmitting a first downlink control information (DCI) directing a user equipment (UE) to transmit a first uplink transmission during a first uplink occasion on a first carrier using a first transmission capability; transmitting a second DCI directing the UE to transmit a second uplink transmission during a second uplink occasion on a second carrier using a second transmission capability different than the first transmission capability; transmitting a third DCI directing the UE to transmit a third uplink transmission on the first carrier using a third transmission capability during a gap between the first and second uplink occasions used for retuning between the first carrier and the second carrier; and receiving uplink signals from the UE during the first, second, and third uplink occasions, according to aspects described herein.
  • DCI downlink control
  • the controller/processor 280 of the UE 120a has a single TX during carrier switch gap manager 241 that may be configured for determining a first uplink occasion for a first uplink transmission on a first carrier using a first transmission capability; determining a second uplink occasion for a second uplink transmission on a second carrier using a second transmission capability, different than the first transmission capability; determining a third uplink occasion for a third uplink transmission on the first carrier using a third transmission capability during a gap between the first and second uplink occasions used for radio frequency (RF) retuning between the first carrier and the second carrier; and transmitting uplink signals during the determined first, second, and third uplink occasions, according to aspects described herein.
  • RF radio frequency
  • Traditional carrier aggregation supporting two carriers may have a limitation in that UEs supporting carrier aggregation are more complex that UEs that do not support carrier aggregation.
  • a UE having only two transmitters and operating with traditional carrier aggregation can only use one transmitter (of the two) in the high-frequency (such as 3.5 GHz) band and one transmitter in the low-frequency (such as 2.1 GHz) band, thus possibly reducing the UE’s capabilities on each of the bands, such as reducing a number of MIMO layers or a bandwidth the UE can transmit on for each of the bands.
  • FIG. 3A shows an example transmission timeline 300 of an example device operating on multiple carriers without retuning.
  • the example transmission timeline 300 is for a UE operating with traditional carrier aggregation supporting a 3.5 GHz carrier and a 2.1 GHz carrier simultaneously.
  • the TDD timeline for the 3.5 GHz carrier is shown at 310.
  • the UE may receive downlink transmissions on the 3.5 GHz carrier in downlink slots symbolized by boxes containing a “D. ”
  • the 3.5 GHz carrier is configured to switch from downlink transmission to uplink transmissions in special slots symbolized by boxes containing an “S. ”
  • the UE may transmit uplink transmissions on the 3.5 GHz carrier in slots configured for uplink transmissions, as symbolized by boxes containing a “U.
  • the FDD DL carrier timeline is shown at 320, and the FDD UL carrier timeline is shown at 330. Time periods when the UE may transmit uplink transmissions on each of the 3.5 GHz NR TDD carrier and the FDD UL carrier are illustrated by shading in the rectangles of the timelines 310 and 330.
  • a UE which switches a transmitter from a low (such as 2.1 GHz) band to a high (such as 3.5 GHz) band in a time-division multiplexing (TDM) manner may use two transmitters on the high band and one transmitter in the low band.
  • TDM time-division multiplexing
  • a cell-edge UE may have improved coverage due to being scheduled on the low band, while a cell-center UE is able to exploit the wider NR bandwidths on the high band when the UE is near a cell-center, and is also able to achieve fast HARQ-ACK by exploiting the UL resources on low band.
  • FIG. 3B shows an example transmission timeline 350 of an example device performing carrier aggregation based uplink enhancement.
  • the example transmission timeline 350 is for a UE operating in a TDM manner on a 3.5 GHz TDD carrier, a 2.1 GHz FDD DL carrier, and a 2.1 GHz FDD UL carrier.
  • the TDD timeline for the 3.5 GHz carrier is shown at 360.
  • the UE may receive downlink transmissions on the 3.5 GHz carrier in downlink slots symbolized by boxes containing a “D. ”
  • the 3.5 GHz carrier is configured to switch from downlink transmission to uplink transmissions in special slots symbolized by boxes containing an “S.
  • the UE may transmit sounding reference signals (SRS) at the end of each special slot, as shown by the rectangles containing “SRS. ”
  • SRS sounding reference signals
  • the UE may transmit uplink transmissions with two transmitters on the 3.5 GHz carrier in slots configured for uplink transmissions, as symbolized by boxes containing a “U. ”
  • the 2.1 GHz FDD DL carrier transmission timeline is shown at 370.
  • the 2.1 GHz FDD UL carrier transmission timeline is shown at 380. Slots when UL or DL NR transmissions for the UE may occur on each of the carriers are illustrated by shading in the rectangles of the timelines 360, 370, and 380. Unshaded rectangles represent slots when neither UL nor DL transmissions for the UE occur on the corresponding carrier.
  • time-division multiplexing uplink carriers two techniques for time-division multiplexing uplink carriers are described.
  • One technique for time-division multiplexing uplink carriers is through use of a supplementary UL (SUL) carrier, which is supported in NR Rel-15 communications standards.
  • Another technique for time-division multiplexing uplink carriers is through time-division multiplexed carrier aggregation (CA) .
  • SUL supplementary UL
  • CA time-d carrier aggregation
  • a UE when a UE is configured to use a high (such as 3.5 GHz) frequency band as a SUL carrier, then the UE may be configured to operate with two UL carriers (i.e., one UL carrier and one SUL carrier) and one DL carrier.
  • the UE may be assumed to operate on one UL carrier at a time, and can be scheduled for an UL NR transmission on any UL carrier in an arbitrary slot.
  • FIG. 4A shows an example transmission timeline 400 of a UE operating with a time-division duplexing carrier and a supplementary uplink (SUL) carrier.
  • the example timeline 400 is for a UE operating with time-division duplexing (TDD) on a 3.5 GHz carrier with an NR SUL carrier.
  • the TDD timeline for the 3.5 GHz carrier is shown at 410.
  • the UE may receive downlink transmissions on the 3.5 GHz carrier in downlink slots symbolized by boxes containing a “D. ”
  • the 3.5 GHz carrier is configured to switch from downlink transmission to uplink transmissions in special slots symbolized by boxes containing an “S.
  • the UE may transmit sounding reference signals (SRS) at the end of each special slot, as shown by the rectangles containing “SRS. ”
  • SRS sounding reference signals
  • the UE may transmit uplink transmissions on the 3.5 GHz carrier in slots configured for uplink transmissions, as symbolized by boxes containing a “U. ”
  • the NR SUL carrier timeline is shown at 420. Time periods when the UE may transmit uplink transmissions on each of the two carriers are illustrated by shading in the rectangles of the timelines 410 and 420.
  • a UE with two transmitters operating on a 3.5 GHz NR TDD carrier and an NR SUL carrier may use one transmitter on the 3.5 GHz NR TDD carrier and the other transmitter on the NR SUL carrier with 0 ⁇ s switching time between the UL carriers.
  • the same UE may use two transmitters on the 3.5 GHz NR TDD carrier and one transmitter on the NR SUL carrier with a non-zero switching time between the two carriers, such as 35, 70, or 140 ⁇ s.
  • the configuration of the SUL carrier may not be used when the two carriers (i.e., the NR TDD carrier and the SUL carrier) are co-sited, i.e., the two carriers are from one base station.
  • the UE when a UE is configured to perform time-division multiplexed (TDMed) carrier aggregation, then the UE may be configured to operate with two UL carriers (such as one NR TDD carrier one FDD UL carrier) and two DL carriers (such as one NR TDD carrier and one FDD DL carrier) .
  • the UE may be assumed to operate on one UL carrier at a time in, for example, a semi-static pattern or a dynamic pattern.
  • FIG. 4B shows an example transmission timeline 450 of a UE operating with time-division duplexing carrier and a frequency-division duplexing carrier.
  • the example timeline 450 is for a UE operating with time-division multiplexed carrier aggregation on a 3.5 GHz NR TDD carrier with a frequency-division duplex (FDD) UL carrier and an FDD DL carrier.
  • the TDD timeline for the 3.5 GHz carrier is shown at 460.
  • the UE may receive downlink transmissions on the 3.5 GHz carrier in downlink slots symbolized by boxes containing a “D. ”
  • the 3.5 GHz carrier is configured to switch from downlink transmission to uplink transmissions in special slots symbolized by boxes containing an “S.
  • the UE may transmit sounding reference signals (SRS) at the end of each special slot, as shown by the rectangles containing “SRS. ”
  • SRS sounding reference signals
  • the UE may transmit uplink transmissions on the 3.5 GHz carrier in slots configured for uplink transmissions, as symbolized by boxes containing a “U. ”
  • the FDD UL carrier timeline is shown at 470
  • the FDD DL carrier timeline is shown at 480. Time periods when the UE may transmit uplink transmissions on each of the 3.5 GHz NR TDD carrier and the FDD UL carrier are illustrated by shading in the rectangles of the timelines 460 and 470.
  • a UE with two transmitters operating on a 3.5 GHz NR TDD carrier and an NR SUL carrier may use two transmitters on the 3.5 GHz NR TDD carrier and one transmitter on the NR SUL carrier with a non-zero switching time between the two carriers, such as 35, 70, or 140 ⁇ s.
  • a non-zero switching time between the two carriers such as 35, 70, or 140 ⁇ s.
  • the configuration of the NR TDD carrier with the FDD UL carrier and the FDD DL carrier may be used when the carriers are co-sited and when the carriers are not co-sited.
  • a UE may have better power control as compared to being configured with an NR TDD carrier and a SUL carrier, because of the configuration of the UE with the two DL carriers.
  • the UE may also utilize multiple timing advance (TA) processes, because each DL carrier can support a TA process.
  • TA timing advance
  • a UE may use a carrier switching gap for radio frequency (RF) retuning by the UE from high (such as 3.5 GHz) frequency band to another frequency band for uplink transmissions.
  • RF radio frequency
  • a UE has 2 transmit (TX) chains.
  • TX transmit
  • the UE may use both TX chains.
  • the UE uses one TX chain.
  • the UE is switching from transmitting on the high band to transmitting on the low band, (at least) one TX chain retunes from the high band to the low band.
  • FIG. 5 shows example operations 500 by components of an example device for transmitting with a transmitter during a carrier switching gap of another transmitter of the device.
  • the example operations 500 illustrate components of an example UE (such as UE 120a, shown in FIGs. 1 and 2) retuning a transmission chain from high frequency band to a low frequency band, in accordance with aspects of the present disclosure.
  • a first transmit chain 512 is linked with a first high-band antenna 520 and available to make uplink transmissions on the high frequency band.
  • a second transmit chain 514 is linked with a second high-band antenna 522 and available to make uplink transmissions on the high frequency band.
  • the UE uses a carrier switching gap to switch the second transmit chain 514 from the high frequency band to the low frequency band.
  • the first transmit chain 512 is linked to the first high-band antenna 520, but the second transmit chain 514 is linked with a low-band antenna 524.
  • a UE may use at least one transmitter to transmit an uplink signal during a gap for retuning another transmitter of the UE between a first carrier and a second carrier.
  • a set of candidate values for lengths of a carrier switching gap may include 0 ⁇ s, 35 ⁇ s, 70 ⁇ s, 140 ⁇ s, 200 ⁇ s, 300 ⁇ s, and 900 ⁇ s.
  • FIG. 6 shows a flow diagram of example operations 600 for transmitting with a transmitter of a device during a carrier switching gap of another transmitter of the device.
  • Operations 600 may be performed, for example, by a UE, such as UE 120a shown in FIGs. 1–2.
  • Operations 600 begin, at block 602, by the UE determining a first uplink occasion for a first uplink (UL) transmission on a first carrier using a first transmission capability.
  • operations 600 continue with the UE determining a second uplink occasion for a second uplink transmission on a second carrier using a second transmission capability, different than the first transmission capability.
  • Operations 600 continue at block 606 with the UE determining a third uplink occasion for a third uplink transmission on the first carrier using a third transmission capability where the third uplink transmission overlaps with a gap between the first and second uplink occasions, where the gap is equal to or greater than a duration of radio frequency (RF) retuning between the first carrier and the second carrier.
  • RF radio frequency
  • operations 600 continue with the UE transmitting uplink signals during the determined first, second, and third uplink occasions.
  • the second transmission capability is less capable, or otherwise lower, than the first transmission capability.
  • FIG. 7 shows a flow diagram of example operations 700 for operating with a device that transmits with a transmitter during a carrier switching gap of another transmitter of the device.
  • Operations 700 may be performed, for example, by a BS, such as BS 110a 120 shown in FIGs. 1–2.
  • Operations 700 may be complementary to operations 600 described above..
  • Operations 700 begin, at block 702, with the BS transmitting a first signal scheduling or configuring a user equipment (UE) to transmit a first uplink (UL) transmission during a first uplink occasion on a first carrier using a first transmission capability.
  • UE user equipment
  • operations 700 continue with the BS transmitting a second signal scheduling or configuring the UE to transmit a second uplink transmission during a second uplink occasion on a second carrier using a second transmission capability different than the first transmission capability.
  • Operations 700 continue at block 706 with the BS transmitting a third signal scheduling or configuring the UE to transmit a third uplink transmission during a third uplink occasion on the first carrier using a third transmission capability where the third uplink transmission overlaps with a gap between the first and second uplink occasions, where the gap is equal to or greater than a duration of radio frequency (RF) retuning between the first carrier and the second carrier.
  • RF radio frequency
  • operations 700 continue with the BS receiving uplink signals from the UE during the first, second, and third uplink occasions.
  • whether time for the retuning gap is taken from uplink slots on the high band or uplink slots on the low band may depend on one or more of channel priority, scheduled bandwidth, or power headroom (PHR) of transmitters of the UE.
  • PHR power headroom
  • a UE or a BS may determine whether time for a retuning gap is taken from uplink slots on a high-frequency band or uplink slots on a low-frequency band based on channel priority of channels transmitted in the uplink slot (s) on the high-frequency band and channel priority of channels transmitted in the uplink slot (s) on the low-frequency band.
  • a UE may be scheduled to transmit a PUSCH in an uplink slot (s) on a low-frequency band and an aperiodic SRS (A-SRS) in adjacent uplink slot (s) on a high-frequency band, and the UE may determine to take time for a retuning gap from the uplink slot (s) on the low-frequency band, because the A-SRS has a higher priority than the PUSCH.
  • A-SRS aperiodic SRS
  • a BS (such as a gNB) may schedule a UE to transmit a PUSCH in an UL slot (s) on a high-frequency band (PUSCH) and to transmit a PUCCH with HARQ-ACK in an adjacent UL slot (s) on a low-frequency band, and the BS may determine that time for a retuning gap for the UE will be taken on high-frequency band, because the PUCCH with HARQ-ACK has a higher priority than the PUSCH.
  • PUSCH high-frequency band
  • a UE or a BS may determine whether time for a retuning gap is taken from uplink slots on a high-frequency band or uplink slots on a low-frequency band based on scheduled bandwidth of the high-frequency band and the low-frequency band. For example, a UE may be scheduled with a high-frequency band with a 20 MHz bandwidth and a low-frequency band with a 10 MHz bandwidth, and the UE may determine to take time for a retuning gap on the low-frequency band because the 10 MHz bandwidth of the low-frequency band is smaller than the 20 MHz bandwidth of the high-frequency band.
  • a UE or a BS may determine whether time for a retuning gap is taken from uplink slots on a high-frequency band or uplink slots on a low-frequency band based on power headroom (PHR) of the UE on the low-frequency band and the high-frequency band.
  • PHR power headroom
  • a UE may have a PHR of -10 dBm on a high-frequency band a PHR of 0 dBm on a low-frequency band, and the UE may determine to take time for a retuning gap on the high-frequency band because the PHR on the high-frequency band is lower than the PHR on the low-frequency band.
  • transmitting an UL transmission may include transmitting the uplink transmission such that there is a gap, with no transmission by the UE, between the uplink transmission and another uplink transmission (such as the first uplink transmission in blocks 602 and 702 of FIGs. 6 and 7) , where the gap is either fixed to one symbol regardless of the numerology of the first uplink and third uplink transmission, or is greater than or equal to a timing threshold, such as a period long enough for two transmitters of the UE to achieve phase synchronization.
  • a timing threshold such as a period long enough for two transmitters of the UE to achieve phase synchronization.
  • FIG. 8A shows an example transmission timeline of a device transmitting with a transmitter during a carrier switching gap of another transmitter of the device.
  • the example transmission timeline 800 is for a UE configured with a TDD carrier with a bandwidth and an FDD UL carrier with a narrower bandwidth than the TDD carrier, in accordance with aspects of the present disclosure.
  • the timeline for the TDD carrier is shown at 810.
  • the UE may receive downlink transmissions on the TDD carrier in downlink slots symbolized by boxes containing a “D. ”
  • the TDD carrier is configured to switch from downlink transmission to uplink transmissions in special slots symbolized by boxes containing an “S.
  • the UE may start transmitting an uplink signal at the end of each special slot, as shown by the rectangles containing “U” at the end of each special slot.
  • the UE may transmit uplink transmissions on the TDD carrier in slots configured for uplink transmissions, as symbolized by boxes containing a “U” on timeline 810.
  • the FDD UL carrier timeline is shown at 820. Time periods when the UE may transmit uplink transmissions on each of the two carriers are illustrated by shading in the rectangles of the timelines 810 and 820.
  • a retuning gap on the TDD carrier is shown at 812. Retuning gaps on the FDD UL carrier are shown at 822, 824, and 826.
  • a first period with two retuning gaps on the FDD UL carrier is shown at 830.
  • a second with a retuning gap on the TDD carrier is shown at 840.
  • the UE may transmit an UL transmission (such as the third uplink transmission of block 606, described above with reference to FIG. 6) on a high-frequency band with one or more transmitters that do not need carrier switching.
  • an UL transmission such as the third uplink transmission of block 606, described above with reference to FIG. 6
  • a BS may receive an UL transmission (such as the third uplink transmission of block 706, described above with reference to FIG. 7) on a high-frequency band from the UE, where the UL transmission overlaps with a gap that is equal to or greater than a duration of radio frequency (RF) retuning between the high-frequency band and the low-frequency band.
  • RF radio frequency
  • an UL transmission that overlaps with a gap equal to or greater than a duration of RF retuning and is transmitted by one or more transmitters may be a PUCCH, an SRS, or a PRACH.
  • a first symbol of a PUCCH transmitted when a transmitter is retuning (i.e., during a retuning gap) from a low-frequency band to a high-frequency band should be no earlier than the ending of an UL transmission on the low-frequency band.
  • a first symbol of a PUCCH transmitted when a transmitter is retuning (i.e., during a retuning gap) from a low-frequency band to a high-frequency band may be earlier than the ending of an UL transmission on the low-frequency band. That is, a PUCCH transmitted on a high-frequency band when a transmitter is retuning (i.e., during a retuning gap) may partially overlap with another transmission on a low-frequency band.
  • the gap between the ending of an UL transmission on a low-frequency band and the start of another UL transmission on a high-frequency band should be at least the UL RF retuning time of the UE.
  • a BS scheduling the UL transmission on the low-frequency band and the other UL transmission on the high-frequency band may schedule the two UL transmissions to have a gap of at least the UL RF retuning time of the UE between the ending of the UL transmission on the low-frequency band and the start of the other UL transmission on the high-frequency band.
  • FIG. 8B shows example transmission timelines 850 and 860 of a device transmitting with a transmitter during a carrier switching gap of another transmitter of the device.
  • the example transmission timelines 850 and 860 are for a UE configured with a high-frequency band TDD carrier with a bandwidth and a low-frequency band FDD UL carrier with a narrower bandwidth than the TDD carrier, as shown in FIG. 8B.
  • the UE does not transmit during the retuning gap 822.
  • the UE uses one transmit antenna (which is tuned to the high-frequency TDD carrier) to transmit a short PUCCH, per scheduling from a BS such as a gNB, during the retuning gap 822.
  • FIG. 9 shows example operations 950 by components of an example device for transmitting with a transmitter during a carrier switching gap of another transmitter of the device.
  • the example operations 950 may be performed by components of an example UE (such as UE 120a, shown in FIGs. 1-2) retuning a transmission chain from low-frequency band to a high-frequency band, in accordance with aspects of the present disclosure.
  • a first transmit chain 962 is linked with a first high-band antenna 970 and available to make uplink transmissions on the high frequency band.
  • the first transmit chain obtains (such as from a processor/controller) a short PUCCH 980 and transmits the short PUCCH during the antenna retuning gap 822. Also during the antenna retuning gap 822, a second transmit chain 964 switches from being linked with a low-band antenna 974 to being linked with a second high-band antenna 972.
  • time for the retuning gap may be taken on the high-frequency band, as there is frequently a PUCCH on the low-frequency band.
  • the UE may move the PUCCH to be transmitted on the high-frequency band during the retuning gap.
  • the UE may transmit on the low-frequency band with a longer in time set of PUSCH resources.
  • a first symbol of a PUCCH transmitted when a transmitter is retuning (i.e., during a retuning gap) from a high-frequency band to a low-frequency band may be at least one symbol after an end of another uplink transmission on the high-frequency band.
  • a last symbol of the PUCCH transmitted in the retuning gap may be no later than the start of the UL transmission on the low-frequency band.
  • a last symbol of the PUCCH transmitted in the retuning gap may overlap the start of the UL transmission on the low-frequency band.
  • a transmitter when a transmitter is retuning (i.e., during a retuning gap) from a high-frequency band to a low-frequency band, there may be at least a one-symbol gap between the first symbol of the PUCCH in the retuning gap and the ending of another UL transmission on the high-frequency band.
  • the gap between the start of an UL transmission on the low-frequency band and the end of another UL transmission on the high-frequency band should be at least the UL RF retuning time of the UE.
  • FIG. 10 shows example transmission timelines 1000 and 1010 of a device transmitting with a transmitter during a carrier switching gap of another transmitter of the device.
  • the shows example transmission timelines 1000 and 1010 are for a UE configured with a high-frequency band TDD carrier with a bandwidth and a low-frequency band FDD UL carrier with a narrower bandwidth than the TDD carrier, in accordance with aspects of the present disclosure.
  • the UE does not transmit during the retuning gap 812 (see also FIG. 8A) .
  • the UE uses one transmit antenna (which is tuned to the high-frequency TDD carrier) to transmit a short PUCCH during the retuning gap 812.
  • the UE moves the PUCCH 1002 into the short PUCCH 1012 on the high-frequency band.
  • the PUSCH 1014 is transmitted on a longer in time set of frequency resources.
  • FIG. 11 shows example operations 1150 by components of an example device for transmitting with a transmitter during a carrier switching gap of another transmitter of the device.
  • the example operations 1150 may be performed by components of an example UE (such as UE 120a, shown in FIGs. 1-2) retuning a transmission chain from a high-frequency band to a low-frequency band, in accordance with aspects of the present disclosure.
  • a first transmit chain 1162 is linked with a first high-band antenna 1170 and available to make uplink transmissions on the high frequency band.
  • the first transmit chain obtains (such as from a processor/controller) a short PUCCH 1180 and transmits the short PUCCH during the antenna retuning gap 812. Also during the antenna retuning gap 812, a second transmit chain 1164 switches from being linked with a second high-band antenna 1172 to being linked with a low-band antenna 1174.
  • a UE may operate using a combination of TDM CA and concurrent CA.
  • a UE operates with a combination of TDM CA and concurrent CA
  • the UE operates with TDM CA by using two transmitters to transmit on a high-frequency band in some slots of the first set, switching one transmitter to transmit on a low-frequency band during other slots of the first set, and transmitting an uplink transmission (such as a short PUCCH) on the high-frequency band during a retuning gap.
  • the UE operates with concurrent CA by using one transmitter to transmit on the high-frequency band and the other transmitter to transmit on the low-frequency band, with no retuning gaps in the second set of slots.
  • the UE may alternate between the TDM CA and concurrent CA operations.
  • FIG. 12 shows example transmission timelines 1200 and 1210 of a device transmitting with a transmitter during a carrier switching gap of another transmitter of the device.
  • the example transmission timelines 1200 and 1210 are for a UE configured using a combination of TDM CA and concurrent CA on a high-frequency band TDD carrier with a bandwidth and a low-frequency band FDD UL carrier with a narrower bandwidth than the TDD carrier, in accordance with aspects of the present disclosure.
  • the UE does not transmit during the retuning gap 822.
  • the UE uses one transmit antenna (which is tuned to the high-frequency TDD carrier) to transmit a short PUCCH during the retuning gap 822 (see also FIG. 8A) .
  • the UE is operating with TDM CA
  • the UE is operating with concurrent CA.
  • FIG. 13 shows example transmission timelines 1350 and 1360 of a device transmitting with a transmitter during a carrier switching gap of another transmitter of the device.
  • the example transmission timelines 1350 and 1360 are for a UE configured using a combination of TDM CA and concurrent CA on a high-frequency band TDD carrier with a bandwidth and a low-frequency band FDD UL carrier with a narrower bandwidth than the TDD carrier, in accordance with aspects of the present disclosure.
  • the UE does not transmit during the retuning gap 812 (see also FIG. 8A) .
  • the UE uses one transmit antenna (which is tuned to the high-frequency TDD carrier) to transmit a short PUCCH during the retuning gap 812.
  • the UE moves the PUCCH 1352 into the short PUCCH 1362 on the high-frequency band. Also as described above, the PUSCH 1364 is transmitted on a longer in time set of frequency resources. During the period 1372, the UE is operating with TDM CA, and during the period 1374, the UE is operating with concurrent CA.
  • a UE operating using TDM carrier aggregation may transmit on a first carrier and a second carrier at different transmission occasions, subject to the UE’s capability, if the RF retuning time is satisfied.
  • a UE operating using TDM carrier aggregation may be configured with a lower UL transmission capability on a first carrier and a higher UL transmission capability on a second carrier.
  • the UE may transmit a PUCCH or a PRACH on the second carrier without interruption due to the RF retuning time; if there is at least a one-symbol gap between the last symbol of the PUCCH and the start of another UL transmission on the second carrier; and if the gap between the ending of an UL transmission on the first carrier and the start of another UL transmission on the second carrier is at least the UL RF retuning time of the UE. Otherwise, the UE may transmit the PUCCH using a shortened PUCCH format, rate-matching around the RF retuning gap, or puncturing one of the UL transmissions.
  • the first symbol of the PUCCH or PRACH may be no earlier than the ending of UL transmission on the first carrier.
  • a BS scheduling transmissions for a UE operating using TDM carrier aggregation may configure the UE with a lower UL transmission capability on a first carrier and a higher UL transmission capability on a second carrier.
  • the BS may schedule the UE to transmit a PUCCH or a PRACH on the second carrier without interruption due to the RF retuning time if there is at least a one-symbol gap between the last symbol of the PUCCH and the start of another UL transmission on the second carrier; and if the gap between the ending of an UL transmission on the first carrier and the start of another UL transmission on the second carrier is at least the UL RF retuning time of the UE.
  • the UE may transmit the PUCCH using a shortened PUCCH format, rate-matching around the RF retuning gap, or puncturing one of the UL transmissions.
  • a BS scheduling transmissions for a UE operating using TDM carrier aggregation may configure the UE with a lower UL transmission capability on a first carrier and a higher UL transmission capability on a second carrier.
  • the BS may schedule the UE to transmit a PUCCH or a PRACH on the second carrier without interruption due to the RF retuning time scheduling the PUCCH or PRACH such that the first symbol of the PUCCH or PRACH is no earlier than the ending of another UL transmission on the first carrier.
  • the UE may transmit a PUCCH or a PRACH on the second carrier without interruption due to the RF retuning time if there is at least a one-symbol gap between the first symbol of the PUCCH and the ending of another UL transmission on the second carrier; and if the gap between the start of an UL transmission on the first carrier and the ending of another UL transmission on the second carrier is at least the UL RF retuning time of the UE. Otherwise, the UE may transmit the PUCCH using a shortened PUCCH format, rate-matching around the RF retuning gap, or puncturing one of the UL transmissions.
  • FIG. 14 shows an example communications device 1400 configured to transmit with a transmitter during a carrier switching gap of another transmitter of the device.
  • the example communications device 1400 includes various components (such as corresponding to means-plus-function components) configured to perform operations for the techniques disclosed herein, such as the operations illustrated in FIG. 6.
  • the communications device 1400 includes a processing system 1402 coupled to a transceiver 1408.
  • the transceiver 1408 is configured to transmit and receive signals for the communications device 1400 via one or more antennas 1410, such as the various signals as described herein.
  • the processing system 1402 may be configured to perform processing functions for the communications device 1400, including processing signals received or to be transmitted by the communications device 1400.
  • the processing system 1402 includes a processor 1404 coupled to a computer-readable medium/memory 1412 via a bus 1406.
  • the computer-readable medium/memory 1412 is configured to store instructions (such as computer-executable code) that when executed by the processor 1404, cause the processor 1404 to perform the operations illustrated in FIG. 6, or other operations for performing the various techniques discussed herein for a user equipment (UE) to transmit with a transmitter during a carrier switching gap of another transmitter of the UE.
  • instructions such as computer-executable code
  • computer-readable medium/memory 1412 stores code 1414 for determining a first uplink occasion for a first uplink transmission on a first carrier using a first transmission capability; code 1416 for determining a second uplink occasion for a second uplink transmission on a second carrier using a second transmission capability, different than the first transmission capability; code 1418 for determining a third uplink occasion for a third uplink transmission on the first carrier using a third transmission capability where the third uplink transmission overlaps with a gap between the first and second uplink occasions, where the gap is equal to or greater than a duration of radio frequency (RF) retuning between the first carrier and the second carrier; and code 1419 for transmitting uplink signals during the determined first, second, and third uplink occasions.
  • RF radio frequency
  • the processor 1404 has circuitry configured to implement the code stored in the computer-readable medium/memory 1412.
  • the processor 1404 includes circuitry 1420 for determining a first uplink occasion for a first uplink transmission on a first carrier using a first transmission capability; circuitry 1424 for determining a second uplink occasion for a second uplink transmission on a second carrier using a second transmission capability, different than the first transmission capability; circuitry 1426 for determining a third uplink occasion for a third uplink transmission on the first carrier using a third transmission capability where the third uplink transmission overlaps with a gap between the first and second uplink occasions, where the gap is equal to or greater than a duration of radio frequency (RF) retuning between the first carrier and the second carrier; and circuitry 1428 for transmitting uplink signals during the determined first, second, and third uplink occasions.
  • RF radio frequency
  • FIG. 15 shows an example communications device 1500 configured to operate with a device that transmits with a transmitter during a carrier switching gap of another transmitter of the other device.
  • the example communications device 1500 includes various components (such as corresponding to means-plus-function components) configured to perform operations for the techniques disclosed herein, such as the operations illustrated in FIG. 7.
  • the communications device 1500 includes a processing system 1502 coupled to a transceiver 1508.
  • the transceiver 1508 is configured to transmit and receive signals for the communications device 1500 via antennas 1510, such as the various signals as described herein.
  • the processing system 1502 may be configured to perform processing functions for the communications device 1500, including processing signals received or to be transmitted by the communications device 1500.
  • the processing system 1502 includes a processor 1504 coupled to a computer-readable medium/memory 1512 via a bus 1506.
  • the computer-readable medium/memory 1512 is configured to store instructions (such as computer-executable code) that when executed by the processor 1504, cause the processor 1504 to perform the operations illustrated in FIG. 7, or other operations for performing the various techniques discussed herein for a user equipment (UE) to transmit with a transmitter during a carrier switching gap of another transmitter of the UE.
  • instructions such as computer-executable code
  • computer-readable medium/memory 1512 stores code 1514 for transmitting a first signal scheduling or configuring a user equipment (UE) to transmit a first uplink (UL) transmission during a first uplink occasion on a first carrier using a first transmission capability; code 1516 for transmitting a second signal scheduling or configuring the UE to transmit a second uplink transmission during a second uplink occasion on a second carrier using a second transmission capability different than the first transmission capability; code 1518 for transmitting a third signal scheduling or configuring the UE to transmit a third uplink transmission during a third uplink occasion on the first carrier using a third transmission capability where the third uplink transmission overlaps with a gap between the first and second uplink occasions, where the gap is equal to or greater than a duration of radio frequency (RF) retuning between the first carrier and the second carrier; and code 1519 for receiving uplink signals during the first, second, and third uplink occasions.
  • RF radio frequency
  • the processor 1504 has circuitry configured to implement the code stored in the computer-readable medium/memory 1512.
  • the processor 1504 includes circuitry 1520 for transmitting a first signal scheduling or configuring a user equipment (UE) to transmit a first uplink transmission during a first uplink occasion on a first carrier using a first transmission capability; circuitry 1524 for transmitting a second signal scheduling or configuring the UE to transmit a second uplink transmission during a second uplink occasion on a second carrier using a second transmission capability different than the first transmission capability; circuitry 1526 for transmitting a third signal scheduling or configuring the UE to transmit a third uplink transmission during a third uplink occasion on the first carrier using a third transmission capability where the third uplink transmission overlaps with a gap between the first and second uplink occasions, where the gap is equal to or greater than a duration of radio frequency (RF) retuning between the first carrier and the second carrier; and circuitry 1528 for receiving uplink signals during the first, second, and third uplink occasions.
  • RF
  • a phrase referring to “at least one of” a list of items refers to any combination of those items, including single members.
  • “at least one of: a, b, or c” is intended to cover: a, b, c, a-b, a-c, b-c, and a-b-c.
  • the hardware and data processing apparatus used to implement the various illustrative logics, logical blocks, modules and circuits described in connection with the aspects disclosed herein may be implemented or performed with a general purpose single-or multi-chip processor, a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein.
  • a general purpose processor may be a microprocessor, or, any conventional processor, controller, microcontroller, or state machine.
  • a processor also may be implemented as a combination of computing devices, such as a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • particular processes and methods may be performed by circuitry that is specific to a given function.
  • the various operations of methods described above may be performed by any suitable means capable of performing the corresponding functions.
  • the means may include various hardware or software component (s) or module (s) , including, but not limited to a circuit, an application specific integrated circuit (ASIC) , or processor.
  • ASIC application specific integrated circuit
  • the functions described may be implemented in hardware, digital electronic circuitry, computer software, firmware, including the structures disclosed in this specification and their structural equivalents thereof, or in any combination thereof. Implementations of the subject matter described in this specification also can be implemented as one or more computer programs, i.e., one or more modules of computer program instructions, encoded on a computer storage media for execution by, or to control the operation of, data processing apparatus.
  • Computer-readable media includes both computer storage media and communication media including any medium that can be enabled to transfer a computer program from one place to another.
  • a storage media may be any available media that may be accessed by a computer.
  • such computer-readable media may include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that may be used to store desired program code in the form of instructions or data structures and that may be accessed by a computer.
  • Disk and disc includes compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk, and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media. Additionally, the operations of a method or algorithm may reside as one or any combination or set of codes and instructions on a machine readable medium and computer-readable medium, which may be incorporated into a computer program product.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

This disclosure provides methods, apparatuses, wireless nodes and computer-readable mediums for wireless communications. In one aspect, a user equipment (UE) transmits with a transmitter during a carrier switching or retuning gap of another transmitter of the UE. For example, a UE may transmit on a first carrier with a first transmitter, transmit on a second carrier with a second transmitter, switch the second transmitter to the first carrier, transmit on the first carrier with the first transmitter during the carrier switching gap of the second transmitter, transmit with both transmitters on the first carrier, and switch the second transmitter back to the second carrier during another carrier switching gap or retuning gap. Transmitting on the first carrier with the first transmitter during the carrier switching gap of the second transmitter may utilize transmission resources that would otherwise go unused.

Description

SINGLE TRANSMITTER TRANSMISSION DURING A CARRIER SWITCHING GAP OF ANOTHER TRANSMITTER TECHNICAL FIELD
This disclosure relates generally to wireless communications, and more particularly to transmissions by one transmitter of a user equipment (UE) during a carrier switching gap of another transmitter of the UE.
DESCRIPTION OF THE RELATED TECHNOLOGY
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, broadcasts, etc. These wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (such as bandwidth, transmit power, etc. ) . Examples of such multiple-access systems include 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) systems, LTE Advanced (LTE-A) systems, code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems.
These multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different wireless devices to communicate on a municipal, national, regional, and even global level. New Radio (such as 5G NR) is an example of an emerging telecommunication standard. NR is a set of enhancements to the LTE mobile standard promulgated by 3GPP. NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using OFDMA with a cyclic prefix (CP) on the downlink (DL) and on the uplink (UL) . To these ends, NR supports beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
However, as the demand for mobile broadband access continues to increase, there exists a need for further improvements in NR and LTE technology. Preferably, these improvements should be applicable to other multi-access technologies and the telecommunication standards that employ these technologies.
SUMMARY
The methods, apparatuses, computer-readable mediums and wireless nodes of this disclosure each have several innovative aspects, no single one of which is solely responsible for the desirable attributes disclosed herein.
One innovative aspect of the subject matter described in this disclosure can be implemented in a method for wireless communications by a user equipment (UE) . The method generally includes determining a first uplink occasion for a first uplink transmission on a first carrier using a first transmission capability; determining a second uplink occasion for a second uplink transmission on a second carrier using a second transmission capability, different than the first transmission capability; determining a third uplink occasion for a third uplink transmission on the first carrier using a third transmission capability where the third uplink transmission overlaps with a gap between the first and second uplink occasions, where the gap is equal to or greater than a duration of radio frequency (RF) retuning between the first carrier and the second carrier; and transmitting uplink signals during the determined first, second, and third uplink occasions.
In some implementations of the method, when the first uplink transmission is earlier than the second uplink transmission, then determining the third uplink occasion includes determining the third uplink occasion such that a first symbol of the third uplink transmission begins after an end symbol of the first uplink transmission; and when the first uplink transmission is later than the second uplink transmission, then determining the third uplink occasion includes determining the third uplink occasion such that a last symbol of the third uplink transmission ends before the first uplink transmission begins.
In some implementations of the method, determining the third uplink occasion includes determining the third uplink occasion such that there is a gap between  the third uplink transmission and the first uplink transmission, where the gap is greater than or equal to a timing threshold.
In some implementations of the method, the timing threshold is one symbol regardless of a numerology of the first carrier, or the timing threshold is based on a capability reported by the UE.
In some implementations of the method, a first part of a duration of the third uplink transmission is overlapped with the gap between the first and second UL transmission, and a second part of the duration of the third uplink transmission is overlapped with the second UL transmission.
In some implementations of the method, determining the third uplink occasion comprises determining the third uplink occasion based at least in part on determining a duration of the third uplink transmission is equal to or shorter than the gap between the first and second uplink occasions.
In some implementations of the method, determining the third uplink occasion comprises determining the third uplink occasion based at least in part on determining the duration of the third uplink transmission is equal to or shorter than the gap between the first and second uplink occasions minus the gap between the first and third uplink occasions.
In some implementations of the method, a sum of the duration of the third uplink transmission and a duration of the gap between the first and the second uplink transmission is greater than or equal to the duration of the RF retuning.
In some implementations of the method, determining the third uplink occasion comprises determining the third uplink occasion based at least in part on determining the duration of the third uplink transmission is greater than or equal to the duration of the RF retuning.
In some implementations of the method, the third transmission capability is based at least in part on a difference between the first transmission capability and the second transmission capability.
In some implementations of the method, each of the first and second transmission capabilities is based on at least one of: a number of transmit antennas of the UE that can transmit on the first carrier, the second carrier, or a combination of the first carrier and the second carrier; a number of transmit ports on which the UE is capable of transmitting on the first carrier, the second carrier, or a combination of the first carrier and the second carrier; a maximum number of multiple-input multiple-output (MIMO) layers on which the UE is capable of transmitting on the first carrier, the second carrier, or a combination of the first carrier and the second carrier; or a number of transmit antennas to be used for antenna witching to support downlink channel state information (CSI) acquisition that the UE reports on the first carrier, the second carrier, or a combination of the first carrier and the second carrier.
In some implementations, the method can include transmitting a fourth uplink transmission during the second uplink occasion on the first carrier using the third transmission capability.
In some implementations of the method, the third uplink transmission includes at least one of a physical uplink control channel (PUCCH) , a physical random access channel (PRACH) , or a sounding reference signal (SRS) .
In some implementations of the method, the second transmission capability is lower than the first transmission capability.
Another innovative aspect of the subject matter described in this disclosure can be implemented in a method for wireless communications by a base station (BS) . The method generally includes transmitting a first scheduling or configuring a user equipment (UE) to transmit a first uplink transmission during a first uplink occasion on a first carrier using a first transmission capability; transmitting a second scheduling or configuring the UE to transmit a second uplink transmission during a second uplink occasion on a second carrier using a second transmission capability different than the first transmission capability; transmitting a third scheduling or configuring the UE to transmit a third uplink transmission during a third uplink occasion on the first carrier using a third transmission capability where the third uplink transmission overlaps with a gap between the first and second uplink occasions, where the gap is equal to or greater than a duration of radio frequency (RF) retuning between the first carrier and the second  carrier; and receiving uplink signals from the UE during the first, second, and third uplink occasions.
In some implementations of the method, when the first uplink transmission is earlier than the second uplink transmission, then the third signal configuring or scheduling the UE to transmit the third uplink transmission configures or schedules the UE to transmit a first symbol of the third uplink transmission after an end of the first uplink transmission; and when the first uplink transmission is later than the second uplink transmission, then the third signal configuring or scheduling the UE to transmit the third uplink signal configures or schedules the UE to complete transmission of a last symbol of the third uplink transmission before the first uplink transmission begins.
In some implementations of the method, the third signal scheduling or configuring the UE to transmit the third uplink transmission schedules or configures the UE to transmit the third uplink transmission such that there is a gap between the third uplink transmission and the first uplink transmission, where the gap is greater than or equal to a timing threshold.
In some implementations of the method, the timing threshold is one symbol regardless of a numerology of the first carrier, or the timing threshold is based on a capability reported by the UE.
In some implementations of the method, a first part of a duration of the third uplink transmission is overlapped with the gap between the first and second UL transmission, and a second part of the duration of the third uplink transmission is overlapped with the second UL transmission.
In some implementations of the method, a duration of the third uplink transmission is equal to or shorter than the gap between the first and second uplink occasions.
In some implementations of the method, the duration of the third uplink transmission is equal to or shorter than the gap between the first and second uplink occasions minus the gap between the first and third uplink occasions.
In some implementations of the method, a sum of the duration of the third uplink transmission and a duration of the gap between the first and the second uplink  transmission is greater than or equal to the duration of the RF retuning between the first carrier and the second carrier.
In some implementations of the method, the duration of the third uplink transmission is greater than or equal to the duration of the RF retuning between the first carrier and the second carrier.
In some implementations of the method, the third transmission capability is based at least in part on a difference between the first transmission capability and the second transmission capability.
In some implementations of the method, each of the first and second transmission capabilities is based on at least one of: a number of transmit antennas of the UE that can transmit on the first carrier, the second carrier, or a combination of the first carrier and the second carrier; a number of transmit ports on which the UE is capable of transmitting on the first carrier, the second carrier, or a combination of the first carrier and the second carrier; a maximum number of multiple-input multiple-output (MIMO) layers on which the UE is capable of transmitting on the first carrier, the second carrier, or a combination of the first carrier and the second carrier; or a number of transmit antennas to be used for antenna witching to support downlink channel state information (CSI) acquisition that the UE reports on the first carrier, the second carrier, or a combination of the first carrier and the second carrier.
In some implementations, the method can include receiving a fourth uplink transmission during the second uplink occasion on the first carrier, where the UE transmits the fourth uplink transmission using the third transmission capability.
In some implementations of the method, the third uplink transmission includes at least one of a physical uplink control channel (PUCCH) , a physical random access channel (PRACH) , or a sounding reference signal (SRS) .
In some implementations of the method, the second transmission capability is lower than the first transmission capability.
Another innovative aspect of the subject matter described in this disclosure can be implemented in an apparatus for wireless communications. The apparatus includes a processing system configured to: determine a first uplink occasion for a first  uplink transmission on a first carrier using a first transmission capability; determine a second uplink occasion for a second uplink transmission on a second carrier using a second transmission capability, different than the first transmission capability; and determine a third uplink occasion for a third uplink transmission on the first carrier using a third transmission capability where the third uplink transmission overlaps with a gap between the first and second uplink occasions, where the gap is equal to or greater than a duration of radio frequency (RF) retuning between the first carrier and the second carrier; and a first interface configured to output uplink signals for transmission during the determined first, second, and third uplink occasions.
In some implementations of the apparatus, the processing system is configured to: when the first uplink transmission is earlier than the second uplink transmission, determine the third uplink occasion such that a first symbol of the third uplink transmission begins after an end symbol of the first uplink transmission; and when the first uplink transmission is later than the second uplink transmission, determine the third uplink occasion such that a last symbol of the third uplink transmission ends before the first uplink transmission begins.
In some implementations of the apparatus, the processing system is configured to determine the third uplink occasion such that there is a gap between the third uplink transmission and the first uplink transmission, where the gap is greater than or equal to a timing threshold.
In some implementations of the apparatus, the timing threshold is one symbol regardless of a numerology of the first carrier, or the timing threshold is based on a capability reported by the apparatus.
In some implementations of the apparatus, a first part of a duration of the third uplink transmission is overlapped with the gap between the first and second UL transmission, and a second part of the duration of the third uplink transmission is overlapped with the second UL transmission.
In some implementations of the apparatus, the processing system is configured to determine the third uplink occasion based at least in part on determining a duration of the third uplink transmission is equal to or shorter than the gap between the first and second uplink occasions.
In some implementations of the apparatus, the processing system is configured to determine the third uplink occasion based at least in part on determining the duration of the third uplink transmission is equal to or shorter than the gap between the first and second uplink occasions minus the gap between the first and third uplink occasions.
In some implementations of the apparatus, a sum of the duration of the third uplink transmission and a duration of the gap between the first and the second uplink transmission is greater than or equal to the duration of the RF retuning.
In some implementations of the apparatus, the processing system is configured to determine the third uplink occasion based at least in part on determining the duration of the third uplink transmission is greater than or equal to the duration of the RF retuning between the first carrier and the second carrier.
In some implementations of the apparatus, the third transmission capability is based at least in part on a difference between the first transmission capability and the second transmission capability.
In some implementations of the apparatus, each of the first and second transmission capabilities is based on at least one of: a number of transmit antennas of the apparatus that can transmit on the first carrier, the second carrier, or a combination of the first carrier and the second carrier; a number of transmit ports on which the apparatus is capable of transmitting on the first carrier, the second carrier, or a combination of the first carrier and the second carrier; a maximum number of multiple-input multiple-output (MIMO) layers on which the apparatus is capable of transmitting on the first carrier, the second carrier, or a combination of the first carrier and the second carrier; or a number of transmit antennas to be used for antenna witching to support downlink channel state information (CSI) acquisition that the apparatus reports on the first carrier, the second carrier, or a combination of the first carrier and the second carrier.
In some implementations of the apparatus, the first interface is further configured to output for transmission a fourth uplink signal during the second uplink occasion on the first carrier using the third transmission capability.
In some implementations of the apparatus, the third uplink transmission includes at least one of a physical uplink control channel (PUCCH) , a physical random access channel (PRACH) , or a sounding reference signal (SRS) .
In some implementations of the apparatus, the second transmission capability is lower than the first transmission capability.
Another innovative aspect of the subject matter described in this disclosure can be implemented in an apparatus for wireless communications. The apparatus includes a processing system configured to: generate a first signal scheduling or configuring a user equipment (UE) to transmit a first uplink (UL) transmission during a first uplink occasion on a first carrier using a first transmission capability; generate a second signal scheduling or configuring the UE to transmit a second uplink transmission during a second uplink occasion on a second carrier using a second transmission capability different than the first transmission capability; and generate a third signal scheduling or configuring the UE to transmit a third uplink transmission during a third uplink occasion on the first carrier using a third transmission capability wherein the third uplink transmission overlaps with a gap between the first and second uplink occasions, wherein the gap is equal to or greater than a duration of radio frequency (RF) retuning between the first carrier and the second carrier; and a first interface configured to output for transmission the first, second, and third signals and to obtain uplink signals from the UE during the first, second, and third uplink occasions.
In some implementations of the apparatus, the processing system is configured to: when the first uplink transmission is earlier than the second uplink transmission, generate the third signal such that the third signal schedules or configures the UE to begin transmitting a first symbol of the third uplink transmission after an end of the first uplink transmission; and when the first uplink transmission is later than the second uplink transmission, generate the third signal such that the third signal schedules or configures the UE to complete transmission of a last symbol of the third uplink transmission before the first uplink transmission begins.
In some implementations of the apparatus, the first interface is configured to obtain the uplink signals by obtaining the third uplink transmission such that there is a  gap between the third uplink transmission and the first uplink transmission, where the gap is greater than or equal to a timing threshold.
In some implementations of the apparatus, the timing threshold is one symbol regardless of the numerology of the first carrier, or the timing threshold is based on a capability reported by the UE.
In some implementations of the apparatus, a first part of a duration of the third uplink transmission is overlapped with the gap between the first and second UL transmission, and a second part of the duration of the third uplink transmission is overlapped with the second UL transmission.
In some implementations of the apparatus, a duration of the third uplink transmission is equal to or shorter than the gap between the first and second uplink occasions.
In some implementations of the apparatus, the duration of the third uplink transmission is equal to or shorter than the gap between the first and second uplink occasions minus the gap between the first and third uplink occasions.
In some implementations of the apparatus, a sum of the duration of the third uplink transmission and a duration of the gap between the first and the second uplink transmission is greater than or equal to the duration of the RF retuning.
In some implementations of the apparatus, the duration of the third uplink transmission is greater than or equal to the duration of the RF retuning between the first carrier and the second carrier.
In some implementations of the apparatus, the third transmission capability is based at least in part on a difference between the first transmission capability and the second transmission capability.
In some implementations of the apparatus, each of the first and second transmission capabilities is based on at least one of: a number of transmit antennas of the UE that can transmit on the first carrier, the second carrier, or a combination of the first carrier and the second carrier; a number of transmit ports on which the UE is capable of transmitting on the first carrier, the second carrier, or a combination of the  first carrier and the second carrier; a maximum number of multiple-input multiple-output (MIMO) layers on which the UE is capable of transmitting on the first carrier, the second carrier, or a combination of the first carrier and the second carrier; or a number of transmit antennas to be used for antenna witching to support downlink channel state information (CSI) acquisition that the UE reports on the first carrier, the second carrier, or a combination of the first carrier and the second carrier.
In some implementations of the apparatus, the processing system is further configured to: generate a fourth signal scheduling or configuring the UE to transmit a fourth uplink transmission during the second uplink occasion on the first carrier using the third transmission capability; and the first interface is further configured to: obtain a fourth uplink signal from the UE during the second uplink occasion on the first carrier, where the UE transmits the fourth uplink transmission using the third transmission capability.
In some implementations of the apparatus, the third uplink transmission includes at least one of a physical uplink control channel (PUCCH) , a physical random access channel (PRACH) , or a sounding reference signal (SRS) .
In some implementations of the apparatus, the second transmission capability is lower than the first transmission capability.
Another innovative aspect of the subject matter described in this disclosure can be implemented in an apparatus for wireless communications. The apparatus includes means for determining a first uplink occasion for a first uplink transmission on a first carrier using a first transmission capability; means for determining a second uplink occasion for a second uplink transmission on a second carrier using a second transmission capability, different than the first transmission capability; means for determining a third uplink occasion for a third uplink transmission on the first carrier using a third transmission capability where the third uplink transmission overlaps with a gap between the first and second uplink occasions, where the gap is equal to or greater than a duration of radio frequency (RF) retuning between the first carrier and the second carrier; and means for transmitting uplink signals during the determined first, second, and third uplink occasions.
In some implementations of the apparatus, the means for determining the third uplink occasion comprises means for determining the third uplink occasion such that a first symbol of the third uplink transmission begins after an end symbol of the first uplink transmission, when the first uplink transmission is earlier than the second uplink transmission; and the means for determining the third uplink occasion comprises means for determining the third uplink occasion such that a last symbol of the third uplink transmission ends before the first uplink transmission begins, when the first uplink transmission is later than the second uplink transmission.
In some implementations of the apparatus, the means for determining the third uplink occasion comprises means for determining the third uplink occasion such that there is a gap between the third uplink transmission and the first uplink transmission, where the gap is greater than or equal to a timing threshold.
In some implementations of the apparatus, the timing threshold is one symbol regardless of a numerology of the first carrier, or the timing threshold is based on a capability reported by the UE.
In some implementations of the apparatus, a first part of a duration of the third uplink transmission is overlapped with the gap between the first and second UL transmission, and a second part of the duration of the third uplink transmission is overlapped with the second UL transmission.
In some implementations of the apparatus, the means for determining the third uplink occasion comprises means for determining the third uplink occasion based at least in part on determining a duration of the third uplink transmission is equal to or shorter than the gap between the first and second uplink occasions.
In some implementations of the apparatus, the means for determining the third uplink occasion comprises means for determining the third uplink occasion based at least in part on determining the duration of the third uplink transmission is equal to or shorter than the gap between the first and second uplink occasions minus the gap between the first and third uplink occasions.
In some implementations of the apparatus, a sum of the duration of the third uplink transmission and a duration of the gap between the first and the second uplink transmission is greater than or equal to the duration of the RF retuning.
In some implementations of the apparatus, the means for determining the third uplink occasion comprises means for determining the third uplink occasion based at least in part on determining the duration of the third uplink transmission is greater than or equal to the duration of the RF retuning between the first carrier and the second carrier.
In some implementations of the apparatus, the third transmission capability is based at least in part on a difference between the first transmission capability and the second transmission capability.
In some implementations of the apparatus, each of the first and second transmission capabilities is based on at least one of: a number of transmit antennas of the apparatus that can transmit on the first carrier, the second carrier, or a combination of the first carrier and the second carrier; a number of transmit ports on which the apparatus is capable of transmitting on the first carrier, the second carrier, or a combination of the first carrier and the second carrier; a maximum number of multiple-input multiple-output (MIMO) layers on which the apparatus is capable of transmitting on the first carrier, the second carrier, or a combination of the first carrier and the second carrier; or a number of transmit antennas to be used for antenna witching to support downlink channel state information (CSI) acquisition that the apparatus reports on the first carrier, the second carrier, or a combination of the first carrier and the second carrier.
In some implementations, the apparatus may include means for transmitting a fourth uplink transmission during the second uplink occasion on the first carrier using the third transmission capability.
In some implementations of the apparatus, the third uplink transmission includes at least one of a physical uplink control channel (PUCCH) , a physical random access channel (PRACH) , or a sounding reference signal (SRS) .
In some implementations of the apparatus, the second transmission capability is lower than the first transmission capability.
Another innovative aspect of the subject matter described in this disclosure can be implemented in an apparatus for wireless communications. The apparatus includes means for transmitting a first signal scheduling or configuring a user equipment (UE) to transmit a first uplink transmission during a first uplink occasion on a first carrier using a first transmission capability; means for transmitting a second signal scheduling or configuring the UE to transmit a second uplink transmission during a second uplink occasion on a second carrier using a second transmission capability different than the first transmission capability; means for transmitting a third signal scheduling or configuring the UE to transmit a third uplink transmission during a third uplink occasion on the first carrier using a third transmission capability where the third uplink transmission overlaps with a gap between the first and second uplink occasions, where the gap is equal to or greater than a duration of radio frequency (RF) retuning between the first carrier and the second carrier; and means for receiving uplink signals from the UE during the first, second, and third uplink occasions.
In some implementations of the apparatus, when the first uplink transmission is earlier than the second uplink transmission, then the means for transmitting the third signal comprises means for transmitting the third signal such that the third signal schedules or configures the UE to begin transmitting a first symbol of the third uplink transmission after an end of the first uplink transmission; and when the first uplink transmission is later than the second uplink transmission, then the means for transmitting the third signal comprises means for transmitting the third signal such that the third signal schedules or configures the UE to complete transmission of a last symbol of the third uplink transmission before the first uplink transmission begins.
In some implementations of the apparatus, the means for transmitting the third signal scheduling or configuring the third uplink transmission comprises means for transmitting the third signal such that the third signal schedules or configures the UE to transmit the third uplink transmission such that there is a gap between the third uplink transmission and the first uplink transmission, where the gap is greater than or equal to a timing threshold.
In some implementations of the apparatus, the timing threshold is one symbol regardless of a numerology of the first carrier, or the timing threshold is based on a capability reported by the UE.
In some implementations of the apparatus, a first part of a duration of the third uplink transmission is overlapped with the gap between the first and second UL transmission, and a second part of the duration of the third uplink transmission is overlapped with the second UL transmission.
In some implementations of the apparatus, a duration of the third uplink transmission is equal to or shorter than the gap between the first and second uplink occasions.
In some implementations of the apparatus, the duration of the third uplink transmission is equal to or shorter than the gap between the first and second uplink occasions minus the gap between the first and third uplink occasions.
In some implementations of the apparatus, a sum of the duration of the third uplink transmission and a duration of the gap between the first and the second uplink transmission is greater than or equal to the duration of the RF retuning.
In some implementations of the apparatus, the duration of the third uplink transmission is greater than or equal to the duration of the RF retuning.
In some implementations of the apparatus, the third transmission capability is based at least in part on a difference between the first transmission capability and the second transmission capability.
In some implementations of the apparatus, each of the first and second transmission capabilities is based on at least one of: a number of transmit antennas of the UE that can transmit on the first carrier, the second carrier, or a combination of the first carrier and the second carrier; a number of transmit ports on which the UE is capable of transmitting on the first carrier, the second carrier, or a combination of the first carrier and the second carrier; a maximum number of multiple-input multiple-output (MIMO) layers on which the UE is capable of transmitting on the first carrier, the second carrier, or a combination of the first carrier and the second carrier; or a number of transmit antennas to be used for antenna witching to support downlink  channel state information (CSI) acquisition that the UE reports on the first carrier, the second carrier, or a combination of the first carrier and the second carrier.
In some implementations, the apparatus can include means for receiving a fourth uplink transmission during the second uplink occasion on the first carrier, where the UE transmits the fourth uplink transmission using the third transmission capability.
In some implementations of the apparatus, the third uplink transmission includes at least one of a physical uplink control channel (PUCCH) , a physical random access channel (PRACH) , or a sounding reference signal (SRS) .
In some implementations of the apparatus, the second transmission capability is lower than the first transmission capability.
Another innovative aspect of the subject matter described in this disclosure can be implemented in a computer-readable medium for wireless communications that, when executed by a processor of a user equipment (UE) , cause the processor to perform operations including determining a first uplink occasion for a first uplink transmission on a first carrier using a first transmission capability; determining a second uplink occasion for a second uplink transmission on a second carrier using a second transmission capability, different than the first transmission capability; determining a third uplink occasion for a third uplink transmission on the first carrier using a third transmission capability where the third uplink transmission overlaps with a gap between the first and second uplink occasions, where the gap is equal to or greater than a duration of radio frequency (RF) retuning between the first carrier and the second carrier; and transmitting uplink signals during the determined first, second, and third uplink occasions.
In some implementations of the computer-readable medium, when the first uplink transmission is earlier than the second uplink transmission, then determining the third uplink occasion comprises determining the third uplink occasion such that a first symbol of the third uplink transmission begins after an end symbol of the first uplink transmission; and when the first uplink transmission is later than the second uplink transmission, then determining the third uplink occasion comprises determining the third uplink occasion such that a last symbol of the third uplink transmission ends before the first uplink transmission begins.
In some implementations of the computer-readable medium, determining the third uplink occasion comprises determining the third uplink occasion such that there is a gap between the third uplink transmission and the first uplink transmission, where the gap is greater than or equal to a timing threshold.
In some implementations of the computer-readable medium, the timing threshold is one symbol regardless of a numerology of the first carrier, or the timing threshold is based on a capability reported by the UE.
In some implementations of the computer-readable medium, a first part of a duration of the third uplink transmission is overlapped with the gap between the first and second UL transmission, and a second part of the duration of the third uplink transmission is overlapped with the second UL transmission.
In some implementations of the computer-readable medium, determining the third uplink occasion comprises determining the third uplink occasion based at least in part on determining a duration of the third uplink transmission is equal to or shorter than the gap between the first and second uplink occasions.
In some implementations of the computer-readable medium, determining the third uplink occasion comprises determining the third uplink occasion based at least in part on determining the duration of the third uplink transmission is equal to or shorter than the gap between the first and second uplink occasions minus the gap between the first and third uplink occasions.
In some implementations of the computer-readable medium, a sum of the duration of the third uplink transmission and a duration of the gap between the first and the second uplink transmission is greater than or equal to the duration of the RF retuning.
In some implementations of the computer-readable medium, determining the third uplink occasion comprises determining the third uplink occasion based at least in part on determining the duration of the third uplink transmission is greater than or equal to the duration of the RF retuning between the first carrier and the second carrier.
In some implementations of the computer-readable medium, the third transmission capability is based at least in part on a difference between the first transmission capability and the second transmission capability.
In some implementations of the computer-readable medium, each of the first and second transmission capabilities is based on at least one of: a number of transmit antennas of the UE that can transmit on the first carrier, the second carrier, or a combination of the first carrier and the second carrier; a number of transmit ports on which the UE is capable of transmitting on the first carrier, the second carrier, or a combination of the first carrier and the second carrier; a maximum number of multiple-input multiple-output (MIMO) layers on which the UE is capable of transmitting on the first carrier, the second carrier, or a combination of the first carrier and the second carrier; or a number of transmit antennas to be used for antenna witching to support downlink channel state information (CSI) acquisition that the UE reports on the first carrier, the second carrier, or a combination of the first carrier and the second carrier.
In some implementations of the computer-readable medium, the operations may include transmitting a fourth uplink transmission during the second uplink occasion on the first carrier using the third transmission capability.
In some implementations of the computer-readable medium, the third uplink transmission includes at least one of a physical uplink control channel (PUCCH) , a physical random access channel (PRACH) , or a sounding reference signal (SRS) .
In some implementations of the computer-readable medium, the second transmission capability is lower than the first transmission capability.
Another innovative aspect of the subject matter described in this disclosure can be implemented in a computer-readable medium for wireless communications that, when executed by a processor of a base station (BS) , cause the processor to perform operations including transmitting a first scheduling or configuring a user equipment (UE) to transmit a first uplink transmission during a first uplink occasion on a first carrier using a first transmission capability; transmitting a second scheduling or configuring the UE to transmit a second uplink transmission during a second uplink occasion on a second carrier using a second transmission capability different than the first transmission capability; transmitting a third scheduling or configuring the UE to  transmit a third uplink transmission during a third uplink occasion on the first carrier using a third transmission capability where the third uplink transmission overlaps with a gap between the first and second uplink occasions, where the gap is equal to or greater than a duration of radio frequency (RF) retuning between the first carrier and the second carrier; and receiving uplink signals from the UE during the first, second, and third uplink occasions.
In some implementations of the computer-readable medium, when the first uplink transmission is earlier than the second uplink transmission, then the third signal configuring or scheduling the UE to transmit the third uplink transmission configures or schedules the UE to transmit a first symbol of the third uplink transmission after an end of the first uplink transmission; and when the first uplink transmission is later than the second uplink transmission, then the third signal configuring or scheduling the UE to transmit the third uplink transmission configures or schedules the UE to complete transmission of a last symbol of the third uplink transmission before the first uplink transmission begins.
In some implementations of the computer-readable medium, the third signal scheduling or configuring the UE to transmit the third uplink transmission schedules or configures the UE to transmit the third uplink transmission such that there is a gap between the third uplink transmission and the first uplink transmission, where the gap is greater than or equal to a timing threshold.
In some implementations of the computer-readable medium, the timing threshold is one symbol regardless of a numerology of the first carrier, or the timing threshold is based on a capability reported by the UE.
In some implementations of the computer-readable medium, a first part of the duration of the third uplink transmission is overlapped with the gap between the first and second UL transmission, and a second part of the duration of the third uplink transmission is overlapped with the second UL transmission.
In some implementations of the computer-readable medium, a duration of the third uplink transmission is equal to or shorter than the gap between the first and second uplink occasions.
In some implementations of the computer-readable medium, the duration of the third uplink transmission is equal to or shorter than the gap between the first and second uplink occasions minus the gap between the first and third uplink occasions.
In some implementations of the computer-readable medium, a sum of the duration of the third uplink transmission and a duration of the gap between the first and the second uplink transmission is greater than or equal to the duration of the RF retuning.
In some implementations of the computer-readable medium, the duration of the third uplink transmission is greater than or equal to the duration of the RF retuning.
In some implementations of the computer-readable medium, the third transmission capability is based at least in part on a difference between the first transmission capability and the second transmission capability.
In some implementations of the computer-readable medium, each of the first and second transmission capabilities is based on at least one of: a number of transmit antennas of the UE that can transmit on the first carrier, the second carrier, or a combination of the first carrier and the second carrier; a number of transmit ports on which the UE is capable of transmitting on the first carrier, the second carrier, or a combination of the first carrier and the second carrier; a maximum number of multiple-input multiple-output (MIMO) layers on which the UE is capable of transmitting on the first carrier, the second carrier, or a combination of the first carrier and the second carrier; or a number of transmit antennas to be used for antenna witching to support downlink channel state information (CSI) acquisition that the UE reports on the first carrier, the second carrier, or a combination of the first carrier and the second carrier.
In some implementations of the computer-readable medium, the operations may include receiving a fourth uplink transmission during the second uplink occasion on the first carrier, where the UE transmits the fourth uplink transmission using the third transmission capability.
In some implementations of the computer-readable medium, the third uplink transmission includes at least one of a physical uplink control channel (PUCCH) , a physical random access channel (PRACH) , or a sounding reference signal (SRS) .
In some implementations of the computer-readable medium, the second transmission capability is lower than the first transmission capability.
Details of one or more implementations of the subject matter described in this disclosure are set forth in the accompanying drawings and the description below. Other features, aspects, and advantages will become apparent from the description, the drawings and the claims. Note that the relative dimensions of the following figures may not be drawn to scale.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 shows a system diagram of an example network.
FIG. 2 shows a block diagram of the example devices shown in the example network of FIG. 1.
FIG. 3A shows an example transmission timeline of an example device operating on multiple carriers without retuning.
FIG. 3B shows an example transmission timeline of an example device performing carrier aggregation based uplink enhancement.
FIG. 4A shows an example transmission timeline of a UE operating with a time-division duplexing carrier and a supplementary uplink (SUL) carrier.
FIG. 4B shows an example transmission timeline of a UE operating with time-division duplexing carrier and a frequency-division duplexing carrier.
FIG. 5 shows example operations by components of an example device for transmitting with a transmitter during a carrier switching gap of another transmitter of the device.
FIG. 6 shows a flow diagram of example operations for transmitting with a transmitter during a carrier switching gap of another transmitter of the device.
FIG. 7 shows a flow diagram of example operations for operating with a device that transmits with a transmitter during a carrier switching gap of another transmitter of the device.
FIG. 8A shows an example transmission timeline of a device transmitting with a transmitter during a carrier switching gap of another transmitter of the device.
FIG. 8B shows example transmission timelines of a device transmitting with a transmitter during a carrier switching gap of another transmitter of the device.
FIG. 9 shows example operations by components of an example device for transmitting with a transmitter during a carrier switching gap of another transmitter of the device.
FIG. 10 shows example transmission timelines of a device transmitting with a transmitter during a carrier switching gap of another transmitter of the device.
FIG. 11 shows example operations by components of an example device for transmitting with a transmitter during a carrier switching gap of another transmitter of the device.
FIG. 12 shows an example transmission timeline of a device transmitting with a transmitter during a carrier switching gap of another transmitter of the device.
FIG. 13 shows an example transmission timeline of a device transmitting with a transmitter during a carrier switching gap of another transmitter of the device.
FIG. 14 shows an example communications device configured to transmit with a transmitter during a carrier switching gap of another transmitter of the device.
FIG. 15 shows an example communications device configured to operate with a device that transmits with a transmitter during a carrier switching gap of another transmitter of the other device.
Like reference numbers and designations in the various drawings indicate like elements.
DETAILED DESCRIPTION
The following description is directed to certain implementations for the purposes of describing the innovative aspects of this disclosure. However, a person having ordinary skill in the art will readily recognize that the teachings herein can be applied in a multitude of different ways. Some of the examples in this disclosure are  based on wireless and wired local area network (LAN) communication according to the Institute of Electrical and Electronics Engineers (IEEE) 802.11 wireless standards, the IEEE 802.3 Ethernet standards, and the IEEE 1901 Powerline communication (PLC) standards. However, the described implementations may be implemented in any device, system or network that is capable of transmitting and receiving RF signals according to any of the wireless communication standards, including any of the IEEE 802.11 standards, the
Figure PCTCN2019107680-appb-000001
standard, code division multiple access (CDMA) , frequency division multiple access (FDMA) , time division multiple access (TDMA) , Global System for Mobile communications (GSM) , GSM/General Packet Radio Service (GPRS) , Enhanced Data GSM Environment (EDGE) , Terrestrial Trunked Radio (TETRA) , Wideband-CDMA (W-CDMA) , Evolution Data Optimized (EV-DO) , 1xEV-DO, EV-DO Rev A, EV-DO Rev B, High Speed Packet Access (HSPA) , High Speed Downlink Packet Access (HSDPA) , High Speed Uplink Packet Access (HSUPA) , Evolved High Speed Packet Access (HSPA+) , Long Term Evolution (LTE) , AMPS, or other known signals that are used to communicate within a wireless, cellular or internet of things (IOT) network, such as a system utilizing 3G, 4G or 5G, or further implementations thereof, technology.
A user equipment (UE) may have two or more transmitters or transmit chains, collectively referred to below as transmitters. The UE may be capable of transmitting on sets of frequencies in widely separated carriers, such as a 2.1 gigahertz (GHz) carrier and a 3.5 GHz carrier. A transmitter typically cannot transmit simultaneously on widely separated carriers, but the UE may change the carrier on which the transmitter transmits. A transmitter typically is unable to transmit on any carrier during the period that the transmitter is changing between carriers, and this period is referred herein to as a carrier switching gap, radio frequency (RF) retuning gap, or retuning gap.
In some implementations, a UE may transmit with a transmitter during a carrier switching or retuning gap of another transmitter of the UE. For example, a UE may transmit on a first carrier with a first transmitter, transmit on a second carrier with a second transmitter, switch the second transmitter to the first carrier, transmit on the first carrier with the first transmitter during the carrier switching gap of the second transmitter, transmit with both transmitters on the first carrier, and switch the second  transmitter back to the second carrier during another carrier switching gap or retuning gap. Transmitting on the first carrier with the first transmitter during the carrier switching gap of the second transmitter may utilize transmission resources that would otherwise go unused. Transmitting with both transmitters on the first carrier may enable the UE to transmit on additional layers or on a wider bandwidth than the UE can transmit on using the first transmitter alone. If uplink slots (such as of a time-division duplexing (TDD) cell or a frequency-division duplexing (FDD) cell) are configured on either of the two carriers during the carrier switching gaps of the second transmitter, then the second transmitter is unable to transmit on those uplink slots. Thus, the UE may be unable to transmit on the second carrier during the carrier switching gaps, and the UE may be unable to transmit on the additional layers or wider bandwidth on the first carrier during the carrier switching gaps. The UE may take time resources for the carrier switching gap or retuning gap from uplink slots of either the first carrier (thus reducing the time the UE can transmit on the additional layers or the wider bandwidth) or the second carrier (possibly reducing the time the UE can transmit on the second carrier) . The UE may determine whether to take the time resources for the carrier switching gap or retuning gap from uplink slots of the first carrier or the second carrier according to channel priorities, bandwidths, or power headroom (PHR) on each of the two carriers.
Compared to long term evolution (LTE) communications systems, new radio (NR) communications systems frequently have shorter range coverage for uplink (UL) transmissions, due to the NR UL transmissions being on a higher frequency than LTE UL transmissions. For example, an NR cell operating on a 3.5 GHz band suffers approximately 9 dB of coverage loss compared to an LTE cell operating on a 2.1 GHz band.
Traditional carrier aggregation supporting a 3.5 GHz carrier and a 2.1 GHz carrier simultaneously has a limitation in that UEs supporting carrier aggregation are more complex, and a UE with two transmitters can only use one transmitter in the high (such as 3.5 GHz) band and one transmitter in the low (such as 2.1 GHz) band. If the UE stops using carrier aggregation, then the UE can use both transmitters on the 3.5 GHz carrier. If the UE uses both transmitters on the 3.5 GHz carrier, then UE typically suffers a coverage loss, as described above.
A UE which switches a transmitter from a low (such as 2.1 GHz) band to a high (such as 3.5 GHz) band in a time-division multiplexing (TDM) manner may use two transmitters on the high band and one transmitter in the low band. Such a UE may have improved coverage at cell edges due to being scheduled on the low band (i.e., the UE does not suffer the coverage loss during the times that the one transmitter is operating on the low band) and be able to exploit the wider NR bandwidths on the high band (i.e., the UE exploits the wider NR bandwidths during the times that the two transmitters are operating on the high band) when the UE is near a cell-center.
Particular implementations of the subject matter described in this disclosure can be implemented to realize one or more of the following potential advantages. A UE implementing the described subject matter may use transmission resources that would otherwise go unused, and thus the UE avoids wasting transmission resources. For example, while a first transmitter of a UE is in a carrier switching gap, the UE can transmit with a second transmitter that is not switching carriers, rather than the UE transmitting nothing during the carrier switching gap. Thus, the UE may achieve a higher data throughput rate than a UE that does not transmit with a second transmitter while a first transmitter is in a carrier switching gap. The UE may achieve higher data throughput rates on both a high band (such as a 3.5 GHz band) and a low band (such as a 2.1 GHz band) . The UE also may have sufficient time to cause the two transmitters to be in-phase at the beginning of times allocated to transmitting on the high band, and thus the UE avoids using time resources allocated to transmitting for phase synchronization of the two transmitters.
The following description provides examples of transmitting with a transmitter during a carrier switching gap of another transmitter of a UE in communication systems, and is not limiting of the scope, applicability, or examples set forth in the claims. Changes may be made in the function and arrangement of elements discussed without departing from the scope of the disclosure. Various examples may omit, substitute, or add various procedures or components as appropriate. For instance, the methods described may be performed in an order different from that described, and various steps may be added, omitted, or combined. Also, features described with respect to some examples may be combined in some other examples. For example, an apparatus may be implemented or a method may be practiced using any number of the  aspects set forth herein. In addition, the scope of the disclosure is intended to cover such an apparatus or method which is practiced using other structure, functionality, or structure and functionality in addition to, or other than, the various aspects of the disclosure set forth herein. It should be understood that any aspect of the disclosure disclosed herein may be embodied by one or more elements of a claim. The word “exemplary” is used herein to mean “serving as an example, instance, or illustration. ” Any aspect described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects.
In general, any number of wireless networks may be deployed in a given geographic area. Each wireless network may support a particular radio access technology (RAT) and may operate on one or more frequencies. A RAT may also be referred to as a radio technology, an air interface, etc. A frequency may also be referred to as a carrier, a subcarrier, a frequency channel, a tone, a subband, etc. Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs. In some cases, a 5G NR RAT network may be deployed.
FIG. 1 shows a system diagram of an example network 100. One or more aspects of the subject matter described in this disclosure can be implemented in the example network 100. For example, the wireless communication network 100 may be an NR system (such as a 5G NR network) .
As illustrated in FIG. 1, the wireless communication network 100 may include a number of base stations (BSs) 110a-z (each also individually referred to herein as BS 110 or collectively as BSs 110) and other network entities. A BS 110 may provide communication coverage for a particular geographic area, sometimes referred to as a “cell” , which may be stationary or may move according to the location of a mobile BS 110. In some examples, the BSs 110 may be interconnected to one another or to one or more other BSs or network nodes (not shown) in wireless communication network 100 through various types of backhaul interfaces (such as a direct physical connection, a wireless connection, a virtual network, or the like) using any suitable transport network. In the example shown in FIG. 1, the  BSs  110a, 110b and 110c may be macro BSs for the  macro cells  102a, 102b and 102c, respectively. The BS 110x may be a pico BS for a pico cell 102x. The BSs 110y and 110z may be femto BSs for the  femto cells  102y and  102z, respectively. A BS may support one or multiple cells. The BSs 110 communicate with user equipment (UEs) 120a-y (each also individually referred to herein as UE 120 or collectively as UEs 120) in the wireless communication network 100. The UEs 120 (such as 120x, 120y, etc. ) may be dispersed throughout the wireless communication network 100, and each UE 120 may be stationary or mobile.
According to certain aspects, the BSs 110 and UEs 120 may be configured for UEs to transmit with one transmitter during a carrier switching gap of another transmitter. As shown in FIG. 1, the BS 110a includes a single TX during carrier switch gap manager 112. The single TX during carrier switch gap manager 112 may be configured to transmit a first downlink control information (DCI) directing a user equipment (UE) to transmit a first uplink transmission during a first uplink occasion on a first carrier using a first transmission capability; to transmit a second DCI directing the UE to transmit a second uplink transmission during a second uplink occasion on a second carrier using a second transmission capability different than the first transmission capability; to transmit a third DCI directing the UE to transmit a third uplink transmission on the first carrier using a third transmission capability during a gap between the first and second uplink occasions used for retuning between the first carrier and the second carrier; and to receive uplink signals from the UE during the first, second, and third uplink occasions, in accordance with aspects of the present disclosure. As shown in FIG. 1, the UE 120a includes a single TX during carrier switch gap manager 122. The single TX during carrier switch gap manager 122 may be configured to determine a first uplink occasion for a first uplink transmission on a first carrier using a first transmission capability; to determine a second uplink occasion for a second uplink transmission on a second carrier using a second transmission capability, different than the first transmission capability; to determine a third uplink occasion for a third uplink transmission on the first carrier using a third transmission capability during a gap between the first and second uplink occasions used for radio frequency (RF) retuning between the first carrier and the second carrier; and to transmit uplink signals during the determined first, second, and third uplink occasions, in accordance with aspects of the present disclosure..
Wireless communication network 100 may also include relay stations (such as relay station 110r) , also referred to as relays or the like, that receive a transmission of  data or other information from an upstream station (such as a BS 110a or a UE 120r) and sends a transmission of the data or other information to a downstream station (such as a UE 120 or a BS 110) , or that relays transmissions between UEs 120, to facilitate communication between devices.
network controller 130 may couple to a set of BSs 110 and provide coordination and control for these BSs 110. The network controller 130 may communicate with the BSs 110 via a backhaul. The BSs 110 may also communicate with one another (such as directly or indirectly) via wireless or wireline backhaul.
FIG. 2 shows a block diagram 200 of the example devices shown in the example network of FIG. 1. The block diagram 200 illustrates example components of BS 110a and UE 120a (such as in the wireless communication network 100 of FIG. 1) , which may be used to implement aspects of the present disclosure.
At the BS 110a, a transmit processor 220 may receive data from a data source 212 and control information from a controller/processor 240. The control information may be for the physical broadcast channel (PBCH) , physical control format indicator channel (PCFICH) , physical hybrid ARQ indicator channel (PHICH) , physical downlink control channel (PDCCH) , group common PDCCH (GC PDCCH) , etc. The data may be for the physical downlink shared channel (PDSCH) , etc. The processor 220 may process (such as encode and symbol map) the data and control information to obtain data symbols and control symbols, respectively. The transmit processor 220 may also generate reference symbols, such as for the primary synchronization signal (PSS) , secondary synchronization signal (SSS) , and cell-specific reference signal (CRS) . A transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (such as precoding) on the data symbols, the control symbols, or the reference symbols, if applicable, and may provide output symbol streams to the modulators (MODs) 232a-232t. Each modulator 232 may process a respective output symbol stream (such as for OFDM, etc. ) to obtain an output sample stream. Each modulator may further process (such as convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. Downlink signals from modulators 232a-232t may be transmitted via the antennas 234a-234t, respectively.
At the UE 120a, the antennas 252a-252r may receive the downlink signals from the BS 110a and may provide received signals to the demodulators (DEMODs) in transceivers 254a-254r, respectively. Each demodulator 254 may condition (such as filter, amplify, downconvert, and digitize) a respective received signal to obtain input samples. Each demodulator may further process the input samples (such as for OFDM, etc. ) to obtain received symbols. A MIMO detector 256 may obtain received symbols from all the demodulators 254a-254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. A receive processor 258 may process (such as demodulate, deinterleave, and decode) the detected symbols, provide decoded data for the UE 120a to a data sink 260, and provide decoded control information to a controller/processor 280.
On the uplink, at UE 120a, a transmit processor 264 may receive and process data (such as for the physical uplink shared channel (PUSCH) ) from a data source 262 and control information (such as for the physical uplink control channel (PUCCH) from the controller/processor 280. The transmit processor 264 may also generate reference symbols for a reference signal (such as for the sounding reference signal (SRS) ) . The symbols from the transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by the demodulators in transceivers 254a-254r (such as for SC-FDM, etc. ) , and transmitted to the BS 110a. At the BS 110a, the uplink signals from the UE 120a may be received by the antennas 234, processed by the modulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by the UE 120a. The receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to the controller/processor 240.
The  memories  242 and 282 may store data and program codes for BS 110a and UE 120a, respectively. A scheduler 244 may schedule UEs for data transmission on the downlink or uplink.
The controller/processor 280 or other processors and modules at the UE 120a may perform or direct the execution of processes for the techniques described herein. For example, as shown in FIG. 2, the controller/processor 240 of the BS 110a has a single TX during carrier switch gap manager 241 that may be configured for transmitting a first downlink control information (DCI) directing a user equipment (UE)  to transmit a first uplink transmission during a first uplink occasion on a first carrier using a first transmission capability; transmitting a second DCI directing the UE to transmit a second uplink transmission during a second uplink occasion on a second carrier using a second transmission capability different than the first transmission capability; transmitting a third DCI directing the UE to transmit a third uplink transmission on the first carrier using a third transmission capability during a gap between the first and second uplink occasions used for retuning between the first carrier and the second carrier; and receiving uplink signals from the UE during the first, second, and third uplink occasions, according to aspects described herein. As shown in FIG. 2, the controller/processor 280 of the UE 120a has a single TX during carrier switch gap manager 241 that may be configured for determining a first uplink occasion for a first uplink transmission on a first carrier using a first transmission capability; determining a second uplink occasion for a second uplink transmission on a second carrier using a second transmission capability, different than the first transmission capability; determining a third uplink occasion for a third uplink transmission on the first carrier using a third transmission capability during a gap between the first and second uplink occasions used for radio frequency (RF) retuning between the first carrier and the second carrier; and transmitting uplink signals during the determined first, second, and third uplink occasions, according to aspects described herein. Although shown at the Controller/Processor, other components of the UE 120a and BS 110a may be used performing the operations described herein.
Traditional carrier aggregation supporting two carriers (such as a 3.5 GHz carrier and a 2.1 GHz carrier) simultaneously may have a limitation in that UEs supporting carrier aggregation are more complex that UEs that do not support carrier aggregation. Additionally, a UE having only two transmitters and operating with traditional carrier aggregation can only use one transmitter (of the two) in the high-frequency (such as 3.5 GHz) band and one transmitter in the low-frequency (such as 2.1 GHz) band, thus possibly reducing the UE’s capabilities on each of the bands, such as reducing a number of MIMO layers or a bandwidth the UE can transmit on for each of the bands.
FIG. 3A shows an example transmission timeline 300 of an example device operating on multiple carriers without retuning. The example transmission timeline 300  is for a UE operating with traditional carrier aggregation supporting a 3.5 GHz carrier and a 2.1 GHz carrier simultaneously. The TDD timeline for the 3.5 GHz carrier is shown at 310. The UE may receive downlink transmissions on the 3.5 GHz carrier in downlink slots symbolized by boxes containing a “D. ” The 3.5 GHz carrier is configured to switch from downlink transmission to uplink transmissions in special slots symbolized by boxes containing an “S. ” The UE may transmit uplink transmissions on the 3.5 GHz carrier in slots configured for uplink transmissions, as symbolized by boxes containing a “U. ” The FDD DL carrier timeline is shown at 320, and the FDD UL carrier timeline is shown at 330. Time periods when the UE may transmit uplink transmissions on each of the 3.5 GHz NR TDD carrier and the FDD UL carrier are illustrated by shading in the rectangles of the  timelines  310 and 330.
A UE which switches a transmitter from a low (such as 2.1 GHz) band to a high (such as 3.5 GHz) band in a time-division multiplexing (TDM) manner may use two transmitters on the high band and one transmitter in the low band. In this way, a cell-edge UE may have improved coverage due to being scheduled on the low band, while a cell-center UE is able to exploit the wider NR bandwidths on the high band when the UE is near a cell-center, and is also able to achieve fast HARQ-ACK by exploiting the UL resources on low band.
FIG. 3B shows an example transmission timeline 350 of an example device performing carrier aggregation based uplink enhancement. The example transmission timeline 350 is for a UE operating in a TDM manner on a 3.5 GHz TDD carrier, a 2.1 GHz FDD DL carrier, and a 2.1 GHz FDD UL carrier. The TDD timeline for the 3.5 GHz carrier is shown at 360. The UE may receive downlink transmissions on the 3.5 GHz carrier in downlink slots symbolized by boxes containing a “D. ” The 3.5 GHz carrier is configured to switch from downlink transmission to uplink transmissions in special slots symbolized by boxes containing an “S. ” The UE may transmit sounding reference signals (SRS) at the end of each special slot, as shown by the rectangles containing “SRS. ” The UE may transmit uplink transmissions with two transmitters on the 3.5 GHz carrier in slots configured for uplink transmissions, as symbolized by boxes containing a “U. ” The 2.1 GHz FDD DL carrier transmission timeline is shown at 370. The 2.1 GHz FDD UL carrier transmission timeline is shown at 380. Slots when UL or DL NR transmissions for the UE may occur on each of the carriers are illustrated by  shading in the rectangles of the  timelines  360, 370, and 380. Unshaded rectangles represent slots when neither UL nor DL transmissions for the UE occur on the corresponding carrier.
According to aspects of the present disclosure, two techniques for time-division multiplexing uplink carriers are described. One technique for time-division multiplexing uplink carriers is through use of a supplementary UL (SUL) carrier, which is supported in NR Rel-15 communications standards. Another technique for time-division multiplexing uplink carriers is through time-division multiplexed carrier aggregation (CA) .
In aspects of the present disclosure, when a UE is configured to use a high (such as 3.5 GHz) frequency band as a SUL carrier, then the UE may be configured to operate with two UL carriers (i.e., one UL carrier and one SUL carrier) and one DL carrier. The UE may be assumed to operate on one UL carrier at a time, and can be scheduled for an UL NR transmission on any UL carrier in an arbitrary slot.
FIG. 4A shows an example transmission timeline 400 of a UE operating with a time-division duplexing carrier and a supplementary uplink (SUL) carrier. The example timeline 400 is for a UE operating with time-division duplexing (TDD) on a 3.5 GHz carrier with an NR SUL carrier. The TDD timeline for the 3.5 GHz carrier is shown at 410. The UE may receive downlink transmissions on the 3.5 GHz carrier in downlink slots symbolized by boxes containing a “D. ” The 3.5 GHz carrier is configured to switch from downlink transmission to uplink transmissions in special slots symbolized by boxes containing an “S. ” The UE may transmit sounding reference signals (SRS) at the end of each special slot, as shown by the rectangles containing “SRS. ” The UE may transmit uplink transmissions on the 3.5 GHz carrier in slots configured for uplink transmissions, as symbolized by boxes containing a “U. ” The NR SUL carrier timeline is shown at 420. Time periods when the UE may transmit uplink transmissions on each of the two carriers are illustrated by shading in the rectangles of the  timelines  410 and 420.
According to aspects of the present disclosure, a UE with two transmitters operating on a 3.5 GHz NR TDD carrier and an NR SUL carrier (i.e., per the timeline illustrated in FIG. 4A) may use one transmitter on the 3.5 GHz NR TDD carrier and the  other transmitter on the NR SUL carrier with 0 μs switching time between the UL carriers. The same UE may use two transmitters on the 3.5 GHz NR TDD carrier and one transmitter on the NR SUL carrier with a non-zero switching time between the two carriers, such as 35, 70, or 140 μs. It should be noted that the configuration of the SUL carrier may not be used when the two carriers (i.e., the NR TDD carrier and the SUL carrier) are co-sited, i.e., the two carriers are from one base station.
In aspects of the present disclosure, when a UE is configured to perform time-division multiplexed (TDMed) carrier aggregation, then the UE may be configured to operate with two UL carriers (such as one NR TDD carrier one FDD UL carrier) and two DL carriers (such as one NR TDD carrier and one FDD DL carrier) . The UE may be assumed to operate on one UL carrier at a time in, for example, a semi-static pattern or a dynamic pattern.
FIG. 4B shows an example transmission timeline 450 of a UE operating with time-division duplexing carrier and a frequency-division duplexing carrier. The example timeline 450 is for a UE operating with time-division multiplexed carrier aggregation on a 3.5 GHz NR TDD carrier with a frequency-division duplex (FDD) UL carrier and an FDD DL carrier. The TDD timeline for the 3.5 GHz carrier is shown at 460. The UE may receive downlink transmissions on the 3.5 GHz carrier in downlink slots symbolized by boxes containing a “D. ” The 3.5 GHz carrier is configured to switch from downlink transmission to uplink transmissions in special slots symbolized by boxes containing an “S. ” The UE may transmit sounding reference signals (SRS) at the end of each special slot, as shown by the rectangles containing “SRS. ” The UE may transmit uplink transmissions on the 3.5 GHz carrier in slots configured for uplink transmissions, as symbolized by boxes containing a “U. ” The FDD UL carrier timeline is shown at 470, and the FDD DL carrier timeline is shown at 480. Time periods when the UE may transmit uplink transmissions on each of the 3.5 GHz NR TDD carrier and the FDD UL carrier are illustrated by shading in the rectangles of the  timelines  460 and 470.
According to aspects of the present disclosure, a UE with two transmitters operating on a 3.5 GHz NR TDD carrier and an NR SUL carrier (i.e., per the timeline illustrated in FIG. 4A) may use two transmitters on the 3.5 GHz NR TDD carrier and one transmitter on the NR SUL carrier with a non-zero switching time between the two  carriers, such as 35, 70, or 140 μs. It should be noted that the configuration of the NR TDD carrier with the FDD UL carrier and the FDD DL carrier may be used when the carriers are co-sited and when the carriers are not co-sited. In addition, a UE may have better power control as compared to being configured with an NR TDD carrier and a SUL carrier, because of the configuration of the UE with the two DL carriers. The UE may also utilize multiple timing advance (TA) processes, because each DL carrier can support a TA process.
In aspects of the present disclosure, a UE may use a carrier switching gap for radio frequency (RF) retuning by the UE from high (such as 3.5 GHz) frequency band to another frequency band for uplink transmissions. However, in some cases transmission resources may be wasted if nothing is transmitted during the carrier switching gap. For example, a UE has 2 transmit (TX) chains. When the UE is transmitting on a high band configured with TDD, the UE may use both TX chains. When the UE is transmitting on a low band with FDD, the UE uses one TX chain. Thus, when the UE is switching from transmitting on the high band to transmitting on the low band, (at least) one TX chain retunes from the high band to the low band.
FIG. 5 shows example operations 500 by components of an example device for transmitting with a transmitter during a carrier switching gap of another transmitter of the device. The example operations 500 illustrate components of an example UE (such as UE 120a, shown in FIGs. 1 and 2) retuning a transmission chain from high frequency band to a low frequency band, in accordance with aspects of the present disclosure. At time 502, a first transmit chain 512 is linked with a first high-band antenna 520 and available to make uplink transmissions on the high frequency band. Also at time 502, a second transmit chain 514 is linked with a second high-band antenna 522 and available to make uplink transmissions on the high frequency band. At time 504, the UE uses a carrier switching gap to switch the second transmit chain 514 from the high frequency band to the low frequency band. Thus, at time 506, the first transmit chain 512 is linked to the first high-band antenna 520, but the second transmit chain 514 is linked with a low-band antenna 524.
According to aspects of the present disclosure, a UE may use at least one transmitter to transmit an uplink signal during a gap for retuning another transmitter of the UE between a first carrier and a second carrier.
In aspects of the present disclosure, a set of candidate values for lengths of a carrier switching gap may include 0 μs, 35 μs, 70 μs, 140 μs, 200 μs, 300 μs, and 900 μs.
FIG. 6 shows a flow diagram of example operations 600 for transmitting with a transmitter of a device during a carrier switching gap of another transmitter of the device. Operations 600 may be performed, for example, by a UE, such as UE 120a shown in FIGs. 1–2.
Operations 600 begin, at block 602, by the UE determining a first uplink occasion for a first uplink (UL) transmission on a first carrier using a first transmission capability.
At block 604, operations 600 continue with the UE determining a second uplink occasion for a second uplink transmission on a second carrier using a second transmission capability, different than the first transmission capability.
Operations 600 continue at block 606 with the UE determining a third uplink occasion for a third uplink transmission on the first carrier using a third transmission capability where the third uplink transmission overlaps with a gap between the first and second uplink occasions, where the gap is equal to or greater than a duration of radio frequency (RF) retuning between the first carrier and the second carrier.
At block 608, operations 600 continue with the UE transmitting uplink signals during the determined first, second, and third uplink occasions.
According to aspects of the present disclosure, the second transmission capability is less capable, or otherwise lower, than the first transmission capability.
FIG. 7 shows a flow diagram of example operations 700 for operating with a device that transmits with a transmitter during a carrier switching gap of another transmitter of the device. Operations 700 may be performed, for example, by a BS, such as BS 110a 120 shown in FIGs. 1–2. Operations 700 may be complementary to operations 600 described above..
Operations 700 begin, at block 702, with the BS transmitting a first signal scheduling or configuring a user equipment (UE) to transmit a first uplink (UL)  transmission during a first uplink occasion on a first carrier using a first transmission capability.
At block 704, operations 700 continue with the BS transmitting a second signal scheduling or configuring the UE to transmit a second uplink transmission during a second uplink occasion on a second carrier using a second transmission capability different than the first transmission capability.
Operations 700 continue at block 706 with the BS transmitting a third signal scheduling or configuring the UE to transmit a third uplink transmission during a third uplink occasion on the first carrier using a third transmission capability where the third uplink transmission overlaps with a gap between the first and second uplink occasions, where the gap is equal to or greater than a duration of radio frequency (RF) retuning between the first carrier and the second carrier.
At block 708, operations 700 continue with the BS receiving uplink signals from the UE during the first, second, and third uplink occasions.
According to aspects of the present disclosure, whether time for the retuning gap is taken from uplink slots on the high band or uplink slots on the low band (such as part of determining a third uplink occasion for a third uplink transmission as described above in  blocks  606 and 706 in FIGs. 6 and 7) may depend on one or more of channel priority, scheduled bandwidth, or power headroom (PHR) of transmitters of the UE.
In aspects of the present disclosure, a UE or a BS may determine whether time for a retuning gap is taken from uplink slots on a high-frequency band or uplink slots on a low-frequency band based on channel priority of channels transmitted in the uplink slot (s) on the high-frequency band and channel priority of channels transmitted in the uplink slot (s) on the low-frequency band. For example, a UE may be scheduled to transmit a PUSCH in an uplink slot (s) on a low-frequency band and an aperiodic SRS (A-SRS) in adjacent uplink slot (s) on a high-frequency band, and the UE may determine to take time for a retuning gap from the uplink slot (s) on the low-frequency band, because the A-SRS has a higher priority than the PUSCH. In another example, a BS (such as a gNB) may schedule a UE to transmit a PUSCH in an UL slot (s) on a high-frequency band (PUSCH) and to transmit a PUCCH with HARQ-ACK in an adjacent UL slot (s) on a low-frequency band, and the BS may determine that time for a retuning  gap for the UE will be taken on high-frequency band, because the PUCCH with HARQ-ACK has a higher priority than the PUSCH.
According to aspects of the present disclosure, a UE or a BS may determine whether time for a retuning gap is taken from uplink slots on a high-frequency band or uplink slots on a low-frequency band based on scheduled bandwidth of the high-frequency band and the low-frequency band. For example, a UE may be scheduled with a high-frequency band with a 20 MHz bandwidth and a low-frequency band with a 10 MHz bandwidth, and the UE may determine to take time for a retuning gap on the low-frequency band because the 10 MHz bandwidth of the low-frequency band is smaller than the 20 MHz bandwidth of the high-frequency band.
In aspects of the present disclosure, a UE or a BS may determine whether time for a retuning gap is taken from uplink slots on a high-frequency band or uplink slots on a low-frequency band based on power headroom (PHR) of the UE on the low-frequency band and the high-frequency band. For example, a UE may have a PHR of -10 dBm on a high-frequency band a PHR of 0 dBm on a low-frequency band, and the UE may determine to take time for a retuning gap on the high-frequency band because the PHR on the high-frequency band is lower than the PHR on the low-frequency band.
According to aspects of the present disclosure, transmitting an UL transmission (such as the third uplink transmission mentioned in  blocks  606 and 706 in FIGs. 6 and 7) may include transmitting the uplink transmission such that there is a gap, with no transmission by the UE, between the uplink transmission and another uplink transmission (such as the first uplink transmission in  blocks  602 and 702 of FIGs. 6 and 7) , where the gap is either fixed to one symbol regardless of the numerology of the first uplink and third uplink transmission, or is greater than or equal to a timing threshold, such as a period long enough for two transmitters of the UE to achieve phase synchronization.
FIG. 8A shows an example transmission timeline of a device transmitting with a transmitter during a carrier switching gap of another transmitter of the device. The example transmission timeline 800 is for a UE configured with a TDD carrier with a bandwidth and an FDD UL carrier with a narrower bandwidth than the TDD carrier, in accordance with aspects of the present disclosure. The timeline for the TDD carrier is  shown at 810. The UE may receive downlink transmissions on the TDD carrier in downlink slots symbolized by boxes containing a “D. ” The TDD carrier is configured to switch from downlink transmission to uplink transmissions in special slots symbolized by boxes containing an “S. ” The UE may start transmitting an uplink signal at the end of each special slot, as shown by the rectangles containing “U” at the end of each special slot. The UE may transmit uplink transmissions on the TDD carrier in slots configured for uplink transmissions, as symbolized by boxes containing a “U” on timeline 810. The FDD UL carrier timeline is shown at 820. Time periods when the UE may transmit uplink transmissions on each of the two carriers are illustrated by shading in the rectangles of the  timelines  810 and 820. A retuning gap on the TDD carrier is shown at 812. Retuning gaps on the FDD UL carrier are shown at 822, 824, and 826. A first period with two retuning gaps on the FDD UL carrier is shown at 830. A second with a retuning gap on the TDD carrier is shown at 840.
According to aspects of the present disclosure, during a retuning gap (such as retuning  gaps  812, 822, 824, or 826) used by a UE for retuning between a high-frequency band and a low-frequency band, the UE may transmit an UL transmission (such as the third uplink transmission of block 606, described above with reference to FIG. 6) on a high-frequency band with one or more transmitters that do not need carrier switching.
In aspects of the present disclosure, a BS may receive an UL transmission (such as the third uplink transmission of block 706, described above with reference to FIG. 7) on a high-frequency band from the UE, where the UL transmission overlaps with a gap that is equal to or greater than a duration of radio frequency (RF) retuning between the high-frequency band and the low-frequency band.
According to aspects of the present disclosure, an UL transmission that overlaps with a gap equal to or greater than a duration of RF retuning and is transmitted by one or more transmitters may be a PUCCH, an SRS, or a PRACH.
In aspects of the present disclosure, a first symbol of a PUCCH transmitted when a transmitter is retuning (i.e., during a retuning gap) from a low-frequency band to a high-frequency band should be no earlier than the ending of an UL transmission on the low-frequency band.
In aspects of the present disclosure, a first symbol of a PUCCH transmitted when a transmitter is retuning (i.e., during a retuning gap) from a low-frequency band to a high-frequency band may be earlier than the ending of an UL transmission on the low-frequency band. That is, a PUCCH transmitted on a high-frequency band when a transmitter is retuning (i.e., during a retuning gap) may partially overlap with another transmission on a low-frequency band.
According to aspects of the present disclosure, there may be at least a one-symbol gap between the last symbol of a PUCCH transmitted when a transmitter is retuning (i.e., during a retuning gap) from a low-frequency band to a high-frequency band and the start of other UL transmissions on the high-frequency band.
In aspects of the present disclosure, the gap between the ending of an UL transmission on a low-frequency band and the start of another UL transmission on a high-frequency band should be at least the UL RF retuning time of the UE. Thus, a BS scheduling the UL transmission on the low-frequency band and the other UL transmission on the high-frequency band may schedule the two UL transmissions to have a gap of at least the UL RF retuning time of the UE between the ending of the UL transmission on the low-frequency band and the start of the other UL transmission on the high-frequency band.
FIG. 8B shows  example transmission timelines  850 and 860 of a device transmitting with a transmitter during a carrier switching gap of another transmitter of the device. The  example transmission timelines  850 and 860 are for a UE configured with a high-frequency band TDD carrier with a bandwidth and a low-frequency band FDD UL carrier with a narrower bandwidth than the TDD carrier, as shown in FIG. 8B. In the example timeline 850, the UE does not transmit during the retuning gap 822. In the example timeline 860, the UE uses one transmit antenna (which is tuned to the high-frequency TDD carrier) to transmit a short PUCCH, per scheduling from a BS such as a gNB, during the retuning gap 822.
FIG. 9 shows example operations 950 by components of an example device for transmitting with a transmitter during a carrier switching gap of another transmitter of the device. The example operations 950 may be performed by components of an example UE (such as UE 120a, shown in FIGs. 1-2) retuning a transmission chain from  low-frequency band to a high-frequency band, in accordance with aspects of the present disclosure. During the antenna retuning gap 822 (see also FIG. 8A) , a first transmit chain 962 is linked with a first high-band antenna 970 and available to make uplink transmissions on the high frequency band. The first transmit chain obtains (such as from a processor/controller) a short PUCCH 980 and transmits the short PUCCH during the antenna retuning gap 822. Also during the antenna retuning gap 822, a second transmit chain 964 switches from being linked with a low-band antenna 974 to being linked with a second high-band antenna 972.
In aspects of the present disclosure, when a transmitter is retuning (i.e., during a retuning gap) from a high-frequency band to a low-frequency band, time for the retuning gap may be taken on the high-frequency band, as there is frequently a PUCCH on the low-frequency band. According to aspects of the present disclosure, the UE may move the PUCCH to be transmitted on the high-frequency band during the retuning gap. Thus, the UE may transmit on the low-frequency band with a longer in time set of PUSCH resources.
In aspects of the present disclosure, a first symbol of a PUCCH transmitted when a transmitter is retuning (i.e., during a retuning gap) from a high-frequency band to a low-frequency band may be at least one symbol after an end of another uplink transmission on the high-frequency band.
According to aspects of the present disclosure, when a transmitter is retuning (i.e., during a retuning gap) from a high-frequency band to a low-frequency band, a last symbol of the PUCCH transmitted in the retuning gap may be no later than the start of the UL transmission on the low-frequency band.
According to aspects of the present disclosure, when a transmitter is retuning (i.e., during a retuning gap) from a high-frequency band to a low-frequency band, a last symbol of the PUCCH transmitted in the retuning gap may overlap the start of the UL transmission on the low-frequency band.
In aspects of the present disclosure, when a transmitter is retuning (i.e., during a retuning gap) from a high-frequency band to a low-frequency band, there may be at least a one-symbol gap between the first symbol of the PUCCH in the retuning gap and the ending of another UL transmission on the high-frequency band.
According to aspects of the present disclosure, when a transmitter is retuning (i.e., during a retuning gap) from a high-frequency band to a low-frequency band, the gap between the start of an UL transmission on the low-frequency band and the end of another UL transmission on the high-frequency band should be at least the UL RF retuning time of the UE.
FIG. 10 shows  example transmission timelines  1000 and 1010 of a device transmitting with a transmitter during a carrier switching gap of another transmitter of the device. The shows  example transmission timelines  1000 and 1010 are for a UE configured with a high-frequency band TDD carrier with a bandwidth and a low-frequency band FDD UL carrier with a narrower bandwidth than the TDD carrier, in accordance with aspects of the present disclosure. In the example timeline 1000, the UE does not transmit during the retuning gap 812 (see also FIG. 8A) . In the example timeline 1010, the UE uses one transmit antenna (which is tuned to the high-frequency TDD carrier) to transmit a short PUCCH during the retuning gap 812. As described above, the UE moves the PUCCH 1002 into the short PUCCH 1012 on the high-frequency band. Also as described above, the PUSCH 1014 is transmitted on a longer in time set of frequency resources.
FIG. 11 shows example operations 1150 by components of an example device for transmitting with a transmitter during a carrier switching gap of another transmitter of the device. The example operations 1150 may be performed by components of an example UE (such as UE 120a, shown in FIGs. 1-2) retuning a transmission chain from a high-frequency band to a low-frequency band, in accordance with aspects of the present disclosure. During the antenna retuning gap 812 (see also FIG. 8A) , a first transmit chain 1162 is linked with a first high-band antenna 1170 and available to make uplink transmissions on the high frequency band. The first transmit chain obtains (such as from a processor/controller) a short PUCCH 1180 and transmits the short PUCCH during the antenna retuning gap 812. Also during the antenna retuning gap 812, a second transmit chain 1164 switches from being linked with a second high-band antenna 1172 to being linked with a low-band antenna 1174.
According to aspects of the present disclosure, a UE may operate using a combination of TDM CA and concurrent CA. When a UE operates with a combination of TDM CA and concurrent CA, then, in a first set of slots, the UE operates with TDM  CA by using two transmitters to transmit on a high-frequency band in some slots of the first set, switching one transmitter to transmit on a low-frequency band during other slots of the first set, and transmitting an uplink transmission (such as a short PUCCH) on the high-frequency band during a retuning gap. In a second set of slots, the UE operates with concurrent CA by using one transmitter to transmit on the high-frequency band and the other transmitter to transmit on the low-frequency band, with no retuning gaps in the second set of slots. The UE may alternate between the TDM CA and concurrent CA operations.
FIG. 12 shows  example transmission timelines  1200 and 1210 of a device transmitting with a transmitter during a carrier switching gap of another transmitter of the device. The  example transmission timelines  1200 and 1210 are for a UE configured using a combination of TDM CA and concurrent CA on a high-frequency band TDD carrier with a bandwidth and a low-frequency band FDD UL carrier with a narrower bandwidth than the TDD carrier, in accordance with aspects of the present disclosure. In the example timeline 1200, the UE does not transmit during the retuning gap 822. In the example timeline 1210, the UE uses one transmit antenna (which is tuned to the high-frequency TDD carrier) to transmit a short PUCCH during the retuning gap 822 (see also FIG. 8A) . During the period 1202, the UE is operating with TDM CA, and during the period 1204, the UE is operating with concurrent CA.
FIG. 13 shows  example transmission timelines  1350 and 1360 of a device transmitting with a transmitter during a carrier switching gap of another transmitter of the device. The  example transmission timelines  1350 and 1360 are for a UE configured using a combination of TDM CA and concurrent CA on a high-frequency band TDD carrier with a bandwidth and a low-frequency band FDD UL carrier with a narrower bandwidth than the TDD carrier, in accordance with aspects of the present disclosure. In the example timeline 1350, the UE does not transmit during the retuning gap 812 (see also FIG. 8A) . In the example timeline 1360, the UE uses one transmit antenna (which is tuned to the high-frequency TDD carrier) to transmit a short PUCCH during the retuning gap 812. As described above, the UE moves the PUCCH 1352 into the short PUCCH 1362 on the high-frequency band. Also as described above, the PUSCH 1364 is transmitted on a longer in time set of frequency resources. During the period 1372,  the UE is operating with TDM CA, and during the period 1374, the UE is operating with concurrent CA.
According to aspects of the present disclosure, a UE operating using TDM carrier aggregation may transmit on a first carrier and a second carrier at different transmission occasions, subject to the UE’s capability, if the RF retuning time is satisfied.
In aspects of the present disclosure, a UE operating using TDM carrier aggregation may be configured with a lower UL transmission capability on a first carrier and a higher UL transmission capability on a second carrier. When switching from the first carrier to the second carrier, the UE may transmit a PUCCH or a PRACH on the second carrier without interruption due to the RF retuning time; if there is at least a one-symbol gap between the last symbol of the PUCCH and the start of another UL transmission on the second carrier; and if the gap between the ending of an UL transmission on the first carrier and the start of another UL transmission on the second carrier is at least the UL RF retuning time of the UE. Otherwise, the UE may transmit the PUCCH using a shortened PUCCH format, rate-matching around the RF retuning gap, or puncturing one of the UL transmissions.
According to aspects of the present disclosure, the first symbol of the PUCCH or PRACH may be no earlier than the ending of UL transmission on the first carrier.
In aspects of the present disclosure, a BS scheduling transmissions for a UE operating using TDM carrier aggregation may configure the UE with a lower UL transmission capability on a first carrier and a higher UL transmission capability on a second carrier. When the UE is switching from the first carrier to the second carrier, the BS may schedule the UE to transmit a PUCCH or a PRACH on the second carrier without interruption due to the RF retuning time if there is at least a one-symbol gap between the last symbol of the PUCCH and the start of another UL transmission on the second carrier; and if the gap between the ending of an UL transmission on the first carrier and the start of another UL transmission on the second carrier is at least the UL RF retuning time of the UE. Otherwise, the UE may transmit the PUCCH using a  shortened PUCCH format, rate-matching around the RF retuning gap, or puncturing one of the UL transmissions.
According to aspects of the present disclosure, a BS scheduling transmissions for a UE operating using TDM carrier aggregation may configure the UE with a lower UL transmission capability on a first carrier and a higher UL transmission capability on a second carrier. When the UE is switching a transmitter from the first carrier to the second carrier, the BS may schedule the UE to transmit a PUCCH or a PRACH on the second carrier without interruption due to the RF retuning time scheduling the PUCCH or PRACH such that the first symbol of the PUCCH or PRACH is no earlier than the ending of another UL transmission on the first carrier.
When switching from the second carrier to the first carrier, the UE may transmit a PUCCH or a PRACH on the second carrier without interruption due to the RF retuning time if there is at least a one-symbol gap between the first symbol of the PUCCH and the ending of another UL transmission on the second carrier; and if the gap between the start of an UL transmission on the first carrier and the ending of another UL transmission on the second carrier is at least the UL RF retuning time of the UE. Otherwise, the UE may transmit the PUCCH using a shortened PUCCH format, rate-matching around the RF retuning gap, or puncturing one of the UL transmissions.
FIG. 14 shows an example communications device 1400 configured to transmit with a transmitter during a carrier switching gap of another transmitter of the device. The example communications device 1400 includes various components (such as corresponding to means-plus-function components) configured to perform operations for the techniques disclosed herein, such as the operations illustrated in FIG. 6. The communications device 1400 includes a processing system 1402 coupled to a transceiver 1408. The transceiver 1408 is configured to transmit and receive signals for the communications device 1400 via one or more antennas 1410, such as the various signals as described herein. The processing system 1402 may be configured to perform processing functions for the communications device 1400, including processing signals received or to be transmitted by the communications device 1400.
The processing system 1402 includes a processor 1404 coupled to a computer-readable medium/memory 1412 via a bus 1406. In certain aspects, the  computer-readable medium/memory 1412 is configured to store instructions (such as computer-executable code) that when executed by the processor 1404, cause the processor 1404 to perform the operations illustrated in FIG. 6, or other operations for performing the various techniques discussed herein for a user equipment (UE) to transmit with a transmitter during a carrier switching gap of another transmitter of the UE. In certain aspects, computer-readable medium/memory 1412 stores code 1414 for determining a first uplink occasion for a first uplink transmission on a first carrier using a first transmission capability; code 1416 for determining a second uplink occasion for a second uplink transmission on a second carrier using a second transmission capability, different than the first transmission capability; code 1418 for determining a third uplink occasion for a third uplink transmission on the first carrier using a third transmission capability where the third uplink transmission overlaps with a gap between the first and second uplink occasions, where the gap is equal to or greater than a duration of radio frequency (RF) retuning between the first carrier and the second carrier; and code 1419 for transmitting uplink signals during the determined first, second, and third uplink occasions. In certain aspects, the processor 1404 has circuitry configured to implement the code stored in the computer-readable medium/memory 1412. The processor 1404 includes circuitry 1420 for determining a first uplink occasion for a first uplink transmission on a first carrier using a first transmission capability; circuitry 1424 for determining a second uplink occasion for a second uplink transmission on a second carrier using a second transmission capability, different than the first transmission capability; circuitry 1426 for determining a third uplink occasion for a third uplink transmission on the first carrier using a third transmission capability where the third uplink transmission overlaps with a gap between the first and second uplink occasions, where the gap is equal to or greater than a duration of radio frequency (RF) retuning between the first carrier and the second carrier; and circuitry 1428 for transmitting uplink signals during the determined first, second, and third uplink occasions.
FIG. 15 shows an example communications device 1500 configured to operate with a device that transmits with a transmitter during a carrier switching gap of another transmitter of the other device. The example communications device 1500 includes various components (such as corresponding to means-plus-function components) configured to perform operations for the techniques disclosed herein, such as the operations illustrated in FIG. 7. The communications device 1500 includes a  processing system 1502 coupled to a transceiver 1508. The transceiver 1508 is configured to transmit and receive signals for the communications device 1500 via antennas 1510, such as the various signals as described herein. The processing system 1502 may be configured to perform processing functions for the communications device 1500, including processing signals received or to be transmitted by the communications device 1500.
The processing system 1502 includes a processor 1504 coupled to a computer-readable medium/memory 1512 via a bus 1506. In certain aspects, the computer-readable medium/memory 1512 is configured to store instructions (such as computer-executable code) that when executed by the processor 1504, cause the processor 1504 to perform the operations illustrated in FIG. 7, or other operations for performing the various techniques discussed herein for a user equipment (UE) to transmit with a transmitter during a carrier switching gap of another transmitter of the UE. In certain aspects, computer-readable medium/memory 1512 stores code 1514 for transmitting a first signal scheduling or configuring a user equipment (UE) to transmit a first uplink (UL) transmission during a first uplink occasion on a first carrier using a first transmission capability; code 1516 for transmitting a second signal scheduling or configuring the UE to transmit a second uplink transmission during a second uplink occasion on a second carrier using a second transmission capability different than the first transmission capability; code 1518 for transmitting a third signal scheduling or configuring the UE to transmit a third uplink transmission during a third uplink occasion on the first carrier using a third transmission capability where the third uplink transmission overlaps with a gap between the first and second uplink occasions, where the gap is equal to or greater than a duration of radio frequency (RF) retuning between the first carrier and the second carrier; and code 1519 for receiving uplink signals during the first, second, and third uplink occasions. In certain aspects, the processor 1504 has circuitry configured to implement the code stored in the computer-readable medium/memory 1512. The processor 1504 includes circuitry 1520 for transmitting a first signal scheduling or configuring a user equipment (UE) to transmit a first uplink transmission during a first uplink occasion on a first carrier using a first transmission capability; circuitry 1524 for transmitting a second signal scheduling or configuring the UE to transmit a second uplink transmission during a second uplink occasion on a second carrier using a second transmission capability different than the first  transmission capability; circuitry 1526 for transmitting a third signal scheduling or configuring the UE to transmit a third uplink transmission during a third uplink occasion on the first carrier using a third transmission capability where the third uplink transmission overlaps with a gap between the first and second uplink occasions, where the gap is equal to or greater than a duration of radio frequency (RF) retuning between the first carrier and the second carrier; and circuitry 1528 for receiving uplink signals during the first, second, and third uplink occasions.
As used herein, a phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover: a, b, c, a-b, a-c, b-c, and a-b-c.
The various illustrative logics, logical blocks, modules, circuits and algorithm processes described in connection with the implementations disclosed herein may be implemented as electronic hardware, computer software, or combinations of both. The interchangeability of hardware and software has been described generally, in terms of functionality, and illustrated in the various illustrative components, blocks, modules, circuits and processes described above. Whether such functionality is implemented in hardware or software depends upon the particular application and design constraints imposed on the overall system.
The hardware and data processing apparatus used to implement the various illustrative logics, logical blocks, modules and circuits described in connection with the aspects disclosed herein may be implemented or performed with a general purpose single-or multi-chip processor, a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general purpose processor may be a microprocessor, or, any conventional processor, controller, microcontroller, or state machine. A processor also may be implemented as a combination of computing devices, such as a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration. In some implementations, particular processes and methods may be performed by circuitry that is specific to a given function.
The various operations of methods described above may be performed by any suitable means capable of performing the corresponding functions. The means may include various hardware or software component (s) or module (s) , including, but not limited to a circuit, an application specific integrated circuit (ASIC) , or processor.
In one or more aspects, the functions described may be implemented in hardware, digital electronic circuitry, computer software, firmware, including the structures disclosed in this specification and their structural equivalents thereof, or in any combination thereof. Implementations of the subject matter described in this specification also can be implemented as one or more computer programs, i.e., one or more modules of computer program instructions, encoded on a computer storage media for execution by, or to control the operation of, data processing apparatus.
If implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. The processes of a method or algorithm disclosed herein may be implemented in a processor-executable software module which may reside on a computer-readable medium. Computer-readable media includes both computer storage media and communication media including any medium that can be enabled to transfer a computer program from one place to another. A storage media may be any available media that may be accessed by a computer. By way of example, and not limitation, such computer-readable media may include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that may be used to store desired program code in the form of instructions or data structures and that may be accessed by a computer. Also, any connection can be properly termed a computer-readable medium. Disk and disc, as used herein, includes compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk, and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media. Additionally, the operations of a method or algorithm may reside as one or any combination or set of codes and instructions on a machine readable medium and computer-readable medium, which may be incorporated into a computer program product.
Various modifications to the implementations described in this disclosure may be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other implementations without departing from the spirit or scope of this disclosure. Thus, the claims are not intended to be limited to the implementations shown herein, but are to be accorded the widest scope consistent with this disclosure, the principles and the novel features disclosed herein.
Additionally, a person having ordinary skill in the art will readily appreciate, the terms “upper” and “lower” are sometimes used for ease of describing the figures, and indicate relative positions corresponding to the orientation of the figure on a properly oriented page, and may not reflect the proper orientation of any device as implemented.
Certain features that are described in this specification in the context of separate implementations also can be implemented in combination in a single implementation. Conversely, various features that are described in the context of a single implementation also can be implemented in multiple implementations separately or in any suitable subcombination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a subcombination or variation of a subcombination.
Similarly, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. Further, the drawings may schematically depict one more example processes in the form of a flow diagram. However, other operations that are not depicted can be incorporated in the example processes that are schematically illustrated. For example, one or more additional operations can be performed before, after, simultaneously, or between any of the illustrated operations. In certain circumstances, multitasking and parallel processing may be advantageous. Moreover, the separation of various system components in the implementations described above should not be understood as requiring such separation in all implementations, and it should be understood that the described program components and systems can generally  be integrated together in a single software product or packaged into multiple software products. Additionally, other implementations are within the scope of the following claims. In some cases, the actions recited in the claims can be performed in a different order and still achieve desirable results.

Claims (112)

  1. A method for wireless communications performed by a user equipment (UE) , comprising:
    determining a first uplink occasion for a first uplink (UL) transmission on a first carrier using a first transmission capability;
    determining a second uplink occasion for a second uplink transmission on a second carrier using a second transmission capability, different than the first transmission capability;
    determining a third uplink occasion for a third uplink transmission on the first carrier using a third transmission capability wherein the third uplink transmission overlaps with a gap between the first and second uplink occasions, wherein the gap is equal to or greater than a duration of radio frequency (RF) retuning between the first carrier and the second carrier; and
    transmitting uplink signals during the determined first, second, and third uplink occasions.
  2. The method of claim 1, wherein:
    when the first uplink transmission is earlier than the second uplink transmission, then determining the third uplink occasion comprises determining the third uplink occasion such that a first symbol of the third uplink transmission begins after an end symbol of the first uplink transmission; and
    when the first uplink transmission is later than the second uplink transmission, then determining the third uplink occasion comprises transmitting the third uplink occasion such that a last symbol of the third uplink transmission ends before the first uplink transmission begins.
  3. The method of claim 2, wherein determining the third uplink occasion comprises determining the third uplink occasion such that there is a gap between the third uplink transmission and the first uplink transmission, wherein the gap is greater than or equal to a timing threshold.
  4. The method of claim 3, wherein the timing threshold is one symbol regardless of a numerology of the first carrier, or the timing threshold is based on a capability reported by the UE.
  5. The method of claim 1, wherein a first part of a duration of the third uplink transmission is overlapped with the gap between the first and second UL transmission, and a second part of the duration of the third uplink transmission is overlapped with the second UL transmission.
  6. The method of claim 1, wherein determining the third uplink occasion comprises determining the third uplink occasion based at least in part on determining a duration of the third uplink transmission is equal to or shorter than the gap between the first and second uplink occasions.
  7. The method of claim 6, wherein determining the third uplink occasion comprises determining the third uplink occasion based at least in part on determining the duration of the third uplink transmission is equal to or shorter than the gap between the first and second uplink occasions minus the gap between the first and third uplink occasions.
  8. The method of claim 7, wherein a sum of the duration of the third uplink transmission and a duration of the gap between the first and the second the uplink transmission is greater than or equal to the duration of the RF retuning between the first carrier and the second carrier.
  9. The method of claim 6, wherein determining the third uplink occasion comprises determining the third uplink occasion based at least in part on determining the duration of the third uplink transmission is greater than or equal to the duration of the RF retuning between the first carrier and the second carrier.
  10. The method of claim 1, wherein the third transmission capability is based at least in part on a difference between the first transmission capability and the second transmission capability.
  11. The method of claim 1, wherein each of the first and second transmission capabilities is based on at least one of:
    a number of transmit antennas of the UE that can transmit on the first carrier, the second carrier, or a combination of the first carrier and the second carrier;
    a number of transmit ports on which the UE is capable of transmitting on the first carrier, the second carrier, or a combination of the first carrier and the second carrier;
    a maximum number of multiple-input multiple-output (MIMO) layers on which the UE is capable of transmitting on the first carrier, the second carrier, or a combination of the first carrier and the second carrier; or
    a number of transmit antennas to be used for antenna witching to support downlink channel state information (CSI) acquisition that the UE reports on the first carrier, the second carrier, or a combination of the first carrier and the second carrier.
  12. The method of claim 1, further comprising:
    transmitting a fourth uplink transmission during the second uplink occasion on the first carrier using the third transmission capability.
  13. The method of claim 1, wherein the third uplink transmission comprises at least one of a physical uplink control channel (PUCCH) , a physical random access channel (PRACH) , or a sounding reference signal (SRS) .
  14. The method of claim 1, wherein the second transmission capability is lower than the first transmission capability.
  15. A method for wireless communications performed by a base station (BS) , comprising:
    transmitting a first signal scheduling or configuring a user equipment (UE) to transmit a first uplink (UL) transmission during a first uplink occasion on a first carrier using a first transmission capability;
    transmitting a second signal scheduling or configuring the UE to transmit a second uplink transmission during a second uplink occasion on a second carrier using a second transmission capability different than the first transmission capability;
    transmitting a third signal scheduling or configuring the UE to transmit a third uplink transmission during a third uplink occasion on the first carrier using a third transmission capability wherein the third uplink transmission overlaps with a gap between the first and second uplink occasions, wherein the gap is equal to or greater than a duration of radio frequency (RF) retuning between the first carrier and the second carrier; and
    receiving uplink signals from the UE during the first, second, and third uplink occasions.
  16. The method of claim 15, wherein:
    when the first uplink transmission is earlier than the second uplink transmission, then the third signal configuring or scheduling the UE to transmit the third uplink transmission configures or schedules the UE to transmit a first symbol of the third uplink transmission after an end of the first uplink transmission; and
    when the first uplink transmission is later than the second uplink transmission, then the third signal configuring or scheduling the UE to transmit the third uplink transmission configures or schedules the UE to complete transmission of a last symbol of the third uplink transmission before the first uplink transmission begins.
  17. The method of claim 16, wherein the third signal scheduling or configuring the UE to transmit the third uplink transmission schedules or configures the UE to transmit the third uplink transmission such that there is a gap between the third uplink transmission and the first uplink transmission, wherein the gap is greater than or equal to a timing threshold.
  18. The method of claim 17, wherein the timing threshold is one symbol regardless of a numerology of the first carrier, or the timing threshold is based on a capability reported by the UE.
  19. The method of claim 15, wherein a first part of a duration of the third uplink transmission is overlapped with the gap between the first and second UL transmission, and a second part of the duration of the third uplink transmission is overlapped with the second UL transmission.
  20. The method of claim 15, wherein a duration of the third uplink transmission is equal to or shorter than the gap between the first and second uplink occasions.
  21. The method of claim 20, wherein the duration of the third uplink transmission is equal to or shorter than the gap between the first and second uplink occasions minus the gap between the first and third uplink occasions.
  22. The method of claim 21, wherein a sum of the duration of the third uplink transmission and a duration of the gap between the first and the second uplink transmission is greater than or equal to the duration of the RF retuning between the first carrier and the second carrier.
  23. The method of claim 20, wherein the duration of the third uplink transmission is greater than or equal to the duration of the RF retuning between the first carrier and the second carrier.
  24. The method of claim 15, wherein the third transmission capability is based at least in part on a difference between the first transmission capability and the second transmission capability.
  25. The method of claim 15, wherein each of the first and second transmission capabilities is based on at least one of:
    a number of transmit antennas of the UE that can transmit on the first carrier, the second carrier, or a combination of the first carrier and the second carrier;
    a number of transmit ports on which the UE is capable of transmitting on the first carrier, the second carrier, or a combination of the first carrier and the second carrier;
    a maximum number of multiple-input multiple-output (MIMO) layers on which the UE is capable of transmitting on the first carrier, the second carrier, or a combination of the first carrier and the second carrier; or
    a number of transmit antennas to be used for antenna witching to support downlink channel state information (CSI) acquisition that the UE reports on the first carrier, the second carrier, or a combination of the first carrier and the second carrier.
  26. The method of claim 15, further comprising:
    receiving a fourth uplink transmission during the second uplink occasion on the first carrier, wherein the UE transmits the fourth uplink transmission using the third transmission capability.
  27. The method of claim 15, wherein the third uplink transmission comprises at least one of a physical uplink control channel (PUCCH) , a physical random access channel (PRACH) , or a sounding reference signal (SRS) .
  28. The method of claim 15, wherein the second transmission capability is lower than the first transmission capability.
  29. An apparatus for wireless communications, comprising:
    a processing system configured to:
    determine a first uplink occasion for a first uplink (UL) transmission on a first carrier using a first transmission capability;
    determine a second uplink occasion for a second uplink transmission on a second carrier using a second transmission capability, different than the first transmission capability; and
    determine a third uplink occasion for a third uplink transmission on the first carrier using a third transmission capability wherein the third uplink transmission overlaps with a gap between the first and second uplink occasions, wherein the gap is equal to or greater than a duration of radio frequency (RF) retuning between the first carrier and the second carrier; and
    a first interface configured to output uplink signals for transmission during the determined first, second, and third uplink occasions.
  30. The apparatus of claim 29, wherein the processing system is configured to:
    when the first uplink transmission is earlier than the second uplink transmission, determine the third uplink occasion such that a first symbol of the third uplink transmission begins after an end symbol of the first uplink transmission; and
    when the first uplink transmission is later than the second uplink transmission, determine the third uplink occasion such that a last symbol of the third uplink transmission ends before the first uplink transmission begins.
  31. The apparatus of claim 29, wherein the processing system is configured to determine the third uplink occasion such that there is a gap between the third uplink transmission and the first uplink transmission, wherein the gap is greater than or equal to a timing threshold.
  32. The apparatus of claim 31, wherein the timing threshold is one symbol regardless of a numerology of the first carrier, or the timing threshold is based on a capability reported by the apparatus.
  33. The apparatus of claim 29, wherein a first part of a duration of the third uplink transmission is overlapped with the gap between the first and second UL transmission, and a second part of the duration of the third uplink transmission is overlapped with the second UL transmission.
  34. The apparatus of claim 29, wherein the processing system is configured to determine the third uplink occasion based at least in part on determining a duration of the third uplink transmission is equal to or shorter than the gap between the first and second uplink occasions.
  35. The apparatus of claim 34, wherein the processing system is configured to determine the third uplink occasion based at least in part on determining the duration of the third uplink transmission is equal to or shorter than the gap between the first and second uplink occasions minus the gap between the first and third uplink occasions.
  36. The apparatus of claim 35, wherein a sum of the duration of the third uplink transmission and a duration of the gap between the first and the second uplink transmission is greater than or equal to the duration of the RF retuning between the first carrier and the second carrier.
  37. The apparatus of claim 34, wherein the processing system is configured to determine the third uplink occasion based at least in part on determining the duration of the third uplink transmission is greater than or equal to the duration of the RF retuning between the first carrier and the second carrier.
  38. The apparatus of claim 29, wherein the third transmission capability is based at least in part on a difference between the first transmission capability and the second transmission capability.
  39. The apparatus of claim 29, wherein each of the first and second transmission capabilities is based on at least one of:
    a number of transmit antennas of the apparatus that can transmit on the first carrier, the second carrier, or a combination of the first carrier and the second carrier;
    a number of transmit ports on which the apparatus is capable of transmitting on the first carrier, the second carrier, or a combination of the first carrier and the second carrier;
    a maximum number of multiple-input multiple-output (MIMO) layers on which the apparatus is capable of transmitting on the first carrier, the second carrier, or a combination of the first carrier and the second carrier; or
    a number of transmit antennas to be used for antenna witching to support downlink channel state information (CSI) acquisition that the apparatus reports on the first carrier, the second carrier, or a combination of the first carrier and the second carrier.
  40. The apparatus of claim 29, wherein the first interface is further configured to:
    output for transmission a fourth uplink signal during the second uplink occasion on the first carrier using the third transmission capability.
  41. The apparatus of claim 29, wherein the third uplink transmission comprises at least one of a physical uplink control channel (PUCCH) , a physical random access channel (PRACH) , or a sounding reference signal (SRS) .
  42. The apparatus of claim 29, wherein the second transmission capability is lower than the first transmission capability.
  43. An apparatus for wireless communications, comprising:
    a processing system configured to:
    generate a first signal scheduling or configuring a user equipment (UE) to transmit a first uplink (UL) transmission during a first uplink occasion on a first carrier using a first transmission capability;
    generate a second signal scheduling or configuring the UE to transmit a second uplink transmission during a second uplink occasion on a second carrier using a second transmission capability different than the first transmission capability; and
    generate a third signal scheduling or configuring the UE to transmit a third uplink transmission during a third uplink occasion on the first carrier using a third transmission capability wherein the third uplink transmission overlaps with a gap between the first and second uplink occasions, wherein the gap is equal to or greater than a duration of radio frequency (RF) retuning between the first carrier and the second carrier; and
    a first interface configured to output for transmission the first, second, and third signals and to obtain uplink signals from the UE during the first, second, and third uplink occasions.
  44. The apparatus of claim 43, wherein the processing system is configured to:
    when the first uplink transmission is earlier than the second uplink transmission, generate the third signal such that the third signal schedules or configures the UE to begin transmitting a first symbol of the third uplink transmission after an end of the first uplink transmission; and
    when the first uplink transmission is later than the second uplink transmission, generate the third signal such that the third signal schedules or configures the UE to complete transmission of a last symbol of the third uplink transmission before the first uplink transmission begins.
  45. The apparatus of claim 44, wherein the first interface is configured to obtain the uplink signals by obtaining the third uplink transmission such that there is a gap between the third uplink transmission and the first uplink transmission, wherein the gap is greater than or equal to a timing threshold.
  46. The apparatus of claim 45, wherein the timing threshold is one symbol regardless of a numerology of the first carrier, or the timing threshold is based on a capability reported by the UE.
  47. The apparatus of claim 43, wherein a first part of a duration of the third uplink transmission is overlapped with the gap between the first and second UL transmission, and a second part of the duration of the third uplink transmission is overlapped with the second UL transmission.
  48. The apparatus of claim 43, wherein a duration of the third uplink transmission is equal to or shorter than the gap between the first and second uplink occasions.
  49. The apparatus of claim 48, wherein the duration of the third uplink transmission is equal to or shorter than the gap between the first and second uplink occasions minus the gap between the first and third uplink occasions.
  50. The apparatus of claim 49, wherein a sum of the duration of the third uplink transmission and a duration of the gap between the first and the second uplink transmission is greater than or equal to the duration of the RF retuning between the first carrier and the second carrier.
  51. The apparatus of claim 48, wherein the duration of the third uplink transmission is greater than or equal to the duration of the RF retuning between the first carrier and the second carrier.
  52. The apparatus of claim 43, wherein the third transmission capability is based at least in part on a difference between the first transmission capability and the second transmission capability.
  53. The apparatus of claim 43, wherein each of the first and second transmission capabilities is based on at least one of:
    a number of transmit antennas of the UE that can transmit on the first carrier, the second carrier, or a combination of the first carrier and the second carrier;
    a number of transmit ports on which the UE is capable of transmitting on the first carrier, the second carrier, or a combination of the first carrier and the second carrier;
    a maximum number of multiple-input multiple-output (MIMO) layers on which the UE is capable of transmitting on the first carrier, the second carrier, or a combination of the first carrier and the second carrier; or
    a number of transmit antennas to be used for antenna switching to support downlink channel state information (CSI) acquisition that the UE reports on the first carrier, the second carrier, or a combination of the first carrier and the second carrier.
  54. The apparatus of claim 43, wherein:
    the processing system is further configured to:
    generate a fourth signal scheduling or configuring the UE to transmit a fourth uplink transmission during the second uplink occasion on the first carrier using the third transmission capability; and
    the first interface is further configured to:
    obtain a fourth uplink signal from the UE during the second uplink occasion on the first carrier, wherein the UE transmits the fourth uplink transmission using the third transmission capability.
  55. The apparatus of claim 43, wherein the third uplink transmission comprises at least one of a physical uplink control channel (PUCCH) , a physical random access channel (PRACH) , or a sounding reference signal (SRS) .
  56. The apparatus of claim 43, wherein the second transmission capability is lower than the first transmission capability.
  57. An apparatus for wireless communications, comprising:
    means for determining a first uplink occasion for a first uplink (UL) transmission on a first carrier using a first transmission capability;
    means for determining a second uplink occasion for a second uplink transmission on a second carrier using a second transmission capability, different than the first transmission capability;
    means for determining a third uplink occasion for a third uplink transmission on the first carrier using a third transmission capability wherein the third uplink transmission overlaps with a gap between the first and second uplink occasions, wherein the gap is equal to or greater than a duration of radio frequency (RF) retuning between the first carrier and the second carrier; and
    means for transmitting uplink signals during the determined first, second, and third uplink occasions.
  58. The apparatus of claim 57, wherein:
    the means for transmitting the third uplink transmission comprises means for transmitting the third uplink transmission such that a first symbol of the third uplink transmission begins after an end symbol of the first uplink transmission, when the first uplink transmission is earlier than the second uplink transmission; and
    the means for transmitting the third uplink transmission comprises means for transmitting the third uplink transmission such that a last symbol of the third uplink transmission ends before the first uplink transmission begins, when the first uplink transmission is later than the second uplink transmission.
  59. The apparatus of claim 58, wherein the means for transmitting the third uplink transmission comprises means for transmitting the third uplink transmission such that there is a gap between the third uplink transmission and the first uplink transmission, wherein the gap is greater than or equal to a timing threshold.
  60. The apparatus of claim 59, wherein the timing threshold is one symbol regardless of a numerology of the first carrier, or the timing threshold is based on a capability reported by the UE.
  61. The apparatus of claim 57, wherein a first part of a duration of the third uplink transmission is overlapped with the gap between the first and second UL transmission, and a second part of the duration of the third uplink transmission is overlapped with the second UL transmission.
  62. The apparatus of claim 57, wherein the means for transmitting the third uplink transmission comprises means for transmitting the third uplink transmission based at  least in part on determining a duration of the third uplink transmission is equal to or shorter than the gap between the first and second uplink occasions.
  63. The apparatus of claim 62, wherein the means for transmitting the third uplink transmission comprises means for transmitting the third uplink transmission based at least in part on determining the duration of the third uplink transmission is equal to or shorter than the gap between the first and second uplink occasions minus the gap between the first and third uplink occasions.
  64. The apparatus of claim 63, wherein a sum of the duration of the third uplink transmission and a duration of the gap between the first and the second uplink transmission is greater than or equal to the duration of the RF retuning between the first carrier and the second carrier.
  65. The apparatus of claim 62, wherein the means for transmitting the third uplink transmission comprises means for transmitting the third uplink transmission based at least in part on determining the duration of the third uplink transmission is greater than or equal to the duration of the RF retuning between the first carrier and the second carrier.
  66. The apparatus of claim 57, wherein the third transmission capability is based at least in part on a difference between the first transmission capability and the second transmission capability.
  67. The apparatus of claim 57, wherein each of the first and second transmission capabilities is based on at least one of:
    a number of transmit antennas of the apparatus that can transmit on the first carrier, the second carrier, or a combination of the first carrier and the second carrier;
    a number of transmit ports on which the apparatus is capable of transmitting on the first carrier, the second carrier, or a combination of the first carrier and the second carrier;
    a maximum number of multiple-input multiple-output (MIMO) layers on which the apparatus is capable of transmitting on the first carrier, the second carrier, or a combination of the first carrier and the second carrier; or
    a number of transmit antennas to be used for antenna witching to support downlink channel state information (CSI) acquisition that the apparatus reports on the first carrier, the second carrier, or a combination of the first carrier and the second carrier.
  68. The apparatus of claim 57, further comprising:
    means for transmitting a fourth uplink transmission during the second uplink occasion on the first carrier using the third transmission capability.
  69. The apparatus of claim 57, wherein the third uplink transmission comprises at least one of a physical uplink control channel (PUCCH) , a physical random access channel (PRACH) , or a sounding reference signal (SRS) .
  70. The apparatus of claim 57, wherein the second transmission capability is lower than the first transmission capability.
  71. An apparatus for wireless communications, comprising:
    means for transmitting a first signal scheduling or configuring a user equipment (UE) to transmit a first uplink (UL) transmission during a first uplink occasion on a first carrier using a first transmission capability;
    means for transmitting a second signal scheduling or configuring the UE to transmit a second uplink transmission during a second uplink occasion on a second carrier using a second transmission capability different than the first transmission capability;
    means for transmitting a third signal scheduling or configuring the UE to transmit a third uplink transmission during a third uplink occasion on the first carrier using a third transmission capability wherein the third uplink transmission overlaps with a gap between the first and second uplink occasions, wherein the gap is equal to or greater than a duration of radio frequency (RF) retuning between the first carrier and the second carrier; and
    means for receiving uplink signals from the UE during the first, second, and third uplink occasions.
  72. The apparatus of claim 71, wherein:
    when the first uplink transmission is earlier than the second uplink transmission, then the means for transmitting the third signal comprises means for transmitting the third signal such that the third signal schedules or configures the UE to begin transmitting a first symbol of the third uplink transmission after an end of the first uplink transmission; and
    when the first uplink transmission is later than the second uplink transmission, then the means for transmitting the third signal comprises means for transmitting the third signal such that the third signal schedules or configures the UE to complete transmission of a last symbol of the third uplink transmission before the first uplink transmission begins.
  73. The apparatus of claim 72, wherein the means for transmitting the third signal scheduling or configuring the third uplink transmission comprises means for transmitting the third signal such that the third signal schedules or configures the UE to transmit the third uplink transmission such that there is a gap between the third uplink transmission and the first uplink transmission, wherein the gap is greater than or equal to a timing threshold.
  74. The apparatus of claim 73, wherein the timing threshold is one symbol regardless of a numerology of the first carrier, or the timing threshold is based on a capability reported by the UE.
  75. The apparatus of claim 71, wherein a first part of a duration of the third uplink transmission is overlapped with the gap between the first and second UL transmission, and a second part of the duration of the third uplink transmission is overlapped with the second UL transmission.
  76. The apparatus of claim 71, wherein a duration of the third uplink transmission is equal to or shorter than the gap between the first and second uplink occasions.
  77. The apparatus of claim 76, wherein the duration of the third uplink transmission is equal to or shorter than the gap between the first and second uplink occasions minus the gap between the first and third uplink occasions.
  78. The apparatus of claim 77, wherein a sum of the duration of the third uplink transmission and a duration of the gap between the first and the second uplink transmission is greater than or equal to the duration of the RF retuning between the first carrier and the second carrier.
  79. The apparatus of claim 76, wherein the duration of the third uplink transmission is greater than or equal to the duration of the RF retuning between the first carrier and the second carrier.
  80. The apparatus of claim 71, wherein the third transmission capability is based at least in part on a difference between the first transmission capability and the second transmission capability.
  81. The apparatus of claim 71, wherein each of the first and second transmission capabilities is based on at least one of:
    a number of transmit antennas of the UE that can transmit on the first carrier, the second carrier, or a combination of the first carrier and the second carrier;
    a number of transmit ports on which the UE is capable of transmitting on the first carrier, the second carrier, or a combination of the first carrier and the second carrier;
    a maximum number of multiple-input multiple-output (MIMO) layers on which the UE is capable of transmitting on the first carrier, the second carrier, or a combination of the first carrier and the second carrier; or
    a number of transmit antennas to be used for antenna witching to support downlink channel state information (CSI) acquisition that the UE reports on the first carrier, the second carrier, or a combination of the first carrier and the second carrier.
  82. The apparatus of claim 71, further comprising:
    means for receiving a fourth uplink transmission during the second uplink occasion on the first carrier, wherein the UE transmits the fourth uplink transmission using the third transmission capability.
  83. The apparatus of claim 71, wherein the third uplink transmission comprises at least one of a physical uplink control channel (PUCCH) , a physical random access channel (PRACH) , or a sounding reference signal (SRS) .
  84. The apparatus of claim 71, wherein the second transmission capability is lower than the first transmission capability.
  85. A computer-readable medium for wireless communications that, when executed by a processor of a user equipment (UE) , cause the processor to perform operations comprising:
    determining a first uplink occasion for a first uplink (UL) transmission on a first carrier using a first transmission capability;
    determining a second uplink occasion for a second uplink transmission on a second carrier using a second transmission capability, different than the first transmission capability;
    determining a third uplink occasion for a third uplink transmission on the first carrier using a third transmission capability wherein the third uplink transmission overlaps with a gap between the first and second uplink occasions, wherein the gap is equal to or greater than a duration of radio frequency (RF) retuning between the first carrier and the second carrier; and
    transmitting uplink signals during the determined first, second, and third uplink occasions.
  86. The computer-readable medium of claim 85, wherein:
    when the first uplink transmission is earlier than the second uplink transmission, then determining the third uplink occasion comprises determining the third uplink occasion such that a first symbol of the third uplink transmission begins after an end symbol of the first uplink transmission; and
    when the first uplink transmission is later than the second uplink transmission, then determining the third uplink occasion comprises determining the third uplink occasion such that a last symbol of the third uplink transmission ends before the first uplink transmission begins.
  87. The computer-readable medium of claim 86, wherein determining the third uplink occasion comprises determining the third uplink occasion such that there is a gap between the third uplink transmission and the first uplink transmission, wherein the gap is greater than or equal to a timing threshold.
  88. The computer-readable medium of claim 87, wherein the timing threshold is one symbol regardless of a numerology of the first carrier, or the timing threshold is based on a capability reported by the UE.
  89. The computer-readable medium of claim 85, wherein a first part of a duration of the third uplink transmission is overlapped with the gap between the first and second UL transmission, and a second part of the duration of the third uplink transmission is overlapped with the second UL transmission.
  90. The computer-readable medium of claim 85, wherein determining the third uplink occasion comprises determining the third uplink occasion based at least in part on determining a duration of the third uplink transmission is equal to or shorter than the gap between the first and second uplink occasions.
  91. The computer-readable medium of claim 90, wherein determining the third uplink occasion comprises determining the third uplink occasion based at least in part on determining the duration of the third uplink transmission is equal to or shorter than the gap between the first and second uplink occasions minus the gap between the first and third uplink occasions.
  92. The computer-readable medium of claim 91, wherein a sum of the duration of the third uplink transmission and a duration of the gap between the first and the second uplink transmission is greater than or equal to the duration of the RF retuning between the first carrier and the second carrier.
  93. The computer-readable medium of claim 90, wherein determining the third uplink occasion comprises determining the third uplink occasion based at least in part on determining the duration of the third uplink transmission is greater than or equal to the duration of the RF retuning between the first carrier and the second carrier.
  94. The computer-readable medium of claim 85, wherein the third transmission capability is based at least in part on a difference between the first transmission capability and the second transmission capability.
  95. The computer-readable medium of claim 85, wherein each of the first and second transmission capabilities is based on at least one of:
    a number of transmit antennas of the UE that can transmit on the first carrier, the second carrier, or a combination of the first carrier and the second carrier;
    a number of transmit ports on which the UE is capable of transmitting on the first carrier, the second carrier, or a combination of the first carrier and the second carrier;
    a maximum number of multiple-input multiple-output (MIMO) layers on which the UE is capable of transmitting on the first carrier, the second carrier, or a combination of the first carrier and the second carrier; or
    a number of transmit antennas to be used for antenna witching to support downlink channel state information (CSI) acquisition that the UE reports on the first carrier, the second carrier, or a combination of the first carrier and the second carrier.
  96. The computer-readable medium of claim 85, wherein the operations further comprise:
    transmitting a fourth uplink transmission during the second uplink occasion on the first carrier using the third transmission capability.
  97. The computer-readable medium of claim 85, wherein the third uplink transmission comprises at least one of a physical uplink control channel (PUCCH) , a physical random access channel (PRACH) , or a sounding reference signal (SRS) .
  98. The computer-readable medium of claim 85, wherein the second transmission capability is lower than the first transmission capability.
  99. A computer-readable medium for wireless communications that, when executed by a processor of a base station (BS) , cause the processor to perform operations comprising:
    transmitting a first signal scheduling or configuring a user equipment (UE) to transmit a first uplink (UL) transmission during a first uplink occasion on a first carrier using a first transmission capability;
    transmitting a second signal scheduling or configuring the UE to transmit a second uplink transmission during a second uplink occasion on a second carrier using a second transmission capability different than the first transmission capability;
    transmitting a third signal scheduling or configuring the UE to transmit a third uplink transmission during a third uplink occasion on the first carrier using a third transmission capability wherein the third uplink transmission overlaps with a gap between the first and second uplink occasions, wherein the gap is equal to or greater than a duration of radio frequency (RF) retuning between the first carrier and the second carrier; and
    receiving uplink signals from the UE during the first, second, and third uplink occasions.
  100. The computer-readable medium of claim 99, wherein:
    when the first uplink transmission is earlier than the second uplink transmission, then the third signal configuring or scheduling the UE to transmit the third uplink transmission configures or schedules the UE to transmit a first symbol of the third uplink transmission after an end of the first uplink transmission; and
    when the first uplink transmission is later than the second uplink transmission, then the third signal configuring or scheduling the UE to transmit the third uplink transmission configures or schedules the UE to complete transmission of a last symbol of the third uplink transmission before the first uplink transmission begins.
  101. The computer-readable medium of claim 100, wherein the third signal scheduling or configuring the UE to transmit the third uplink transmission schedules or configures the UE to transmit the third uplink transmission such that there is a gap between the third uplink transmission and the first uplink transmission, wherein the gap is greater than or equal to a timing threshold.
  102. The computer-readable medium of claim 101, wherein the timing threshold is one symbol regardless of a numerology of the first carrier, or the timing threshold is based on a capability reported by the UE.
  103. The computer-readable medium of claim 99, wherein a first part of a duration of the third uplink transmission is overlapped with the gap between the first and second UL transmission, and a second part of the duration of the third uplink transmission is overlapped with the second UL transmission.
  104. The computer-readable medium of claim 99, wherein a duration of the third uplink transmission is equal to or shorter than the gap between the first and second uplink occasions.
  105. The computer-readable medium of claim 104, wherein the duration of the third uplink transmission is equal to or shorter than the gap between the first and second uplink occasions minus the gap between the first and third uplink occasions.
  106. The computer-readable medium of claim 105, wherein a sum of the duration of the third uplink transmission and a duration of the gap between the first and the second uplink transmission is greater than or equal to the duration of the RF retuning between the first carrier and the second carrier.
  107. The computer-readable medium of claim 104, wherein the duration of the third uplink transmission is greater than or equal to the duration of the RF retuning between the first carrier and the second carrier.
  108. The computer-readable medium of claim 99, wherein the third transmission capability is based at least in part on a difference between the first transmission capability and the second transmission capability.
  109. The computer-readable medium of claim 99, wherein each of the first and second transmission capabilities is based on at least one of:
    a number of transmit antennas of the UE that can transmit on the first carrier, the second carrier, or a combination of the first carrier and the second carrier;
    a number of transmit ports on which the UE is capable of transmitting on the first carrier, the second carrier, or a combination of the first carrier and the second carrier;
    a maximum number of multiple-input multiple-output (MIMO) layers on which the UE is capable of transmitting on the first carrier, the second carrier, or a combination of the first carrier and the second carrier; or
    a number of transmit antennas to be used for antenna witching to support downlink channel state information (CSI) acquisition that the UE reports on the first carrier, the second carrier, or a combination of the first carrier and the second carrier.
  110. The computer-readable medium of claim 99, wherein the operations further comprise:
    receiving a fourth uplink transmission during the second uplink occasion on the first carrier, wherein the UE transmits the fourth uplink transmission using the third transmission capability.
  111. The computer-readable medium of claim 99, wherein the third uplink transmission comprises at least one of a physical uplink control channel (PUCCH) , a physical random access channel (PRACH) , or a sounding reference signal (SRS) .
  112. The computer-readable medium of claim 99, wherein the second transmission capability is lower than the first transmission capability.
PCT/CN2019/107680 2019-09-25 2019-09-25 Single transmitter transmission during a carrier switching gap of another transmitter WO2021056232A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/107680 WO2021056232A1 (en) 2019-09-25 2019-09-25 Single transmitter transmission during a carrier switching gap of another transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/107680 WO2021056232A1 (en) 2019-09-25 2019-09-25 Single transmitter transmission during a carrier switching gap of another transmitter

Publications (1)

Publication Number Publication Date
WO2021056232A1 true WO2021056232A1 (en) 2021-04-01

Family

ID=75165019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/107680 WO2021056232A1 (en) 2019-09-25 2019-09-25 Single transmitter transmission during a carrier switching gap of another transmitter

Country Status (1)

Country Link
WO (1) WO2021056232A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022241706A1 (en) * 2021-05-20 2022-11-24 Huawei Technologies Co., Ltd. Apparatuses and methods for transmitting multiple control information using a single transmitter chain
WO2022262358A1 (en) * 2021-06-17 2022-12-22 中兴通讯股份有限公司 Wireless communication method and apparatus, and electronic device and computer-readable medium
WO2024036624A1 (en) * 2022-08-19 2024-02-22 Zte Corporation Transmitter switching and band pair patterns for wireless communications
WO2024065741A1 (en) * 2022-09-30 2024-04-04 Zte Corporation Transmitter switching and switching gaps for wireless communications
WO2024197633A1 (en) * 2023-03-29 2024-10-03 Qualcomm Incorporated Scheduling uplink transmissions on multiple frequency bands

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170105197A1 (en) * 2015-10-13 2017-04-13 Telefonaktiebolaget Lm Ericsson (Publ) Method and Devices for Mitigating Error Propagation in Transmission Assignments
US20180007707A1 (en) * 2016-06-29 2018-01-04 Qualcomm Incorporated Multiple antennas and interruption time values for sounding reference signal (srs) switching
CN107896389A (en) * 2016-09-29 2018-04-10 华为技术有限公司 A kind of method and apparatus for data transfer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170105197A1 (en) * 2015-10-13 2017-04-13 Telefonaktiebolaget Lm Ericsson (Publ) Method and Devices for Mitigating Error Propagation in Transmission Assignments
US20180007707A1 (en) * 2016-06-29 2018-01-04 Qualcomm Incorporated Multiple antennas and interruption time values for sounding reference signal (srs) switching
CN107896389A (en) * 2016-09-29 2018-04-10 华为技术有限公司 A kind of method and apparatus for data transfer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "3GPP TSG RAN WG1 NR ad-Hoc#2 R1-1710740", FAST CARRIER SWITCHING FOR SRS TRANSMISSIONS, 30 June 2017 (2017-06-30), XP051299945 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022241706A1 (en) * 2021-05-20 2022-11-24 Huawei Technologies Co., Ltd. Apparatuses and methods for transmitting multiple control information using a single transmitter chain
WO2022262358A1 (en) * 2021-06-17 2022-12-22 中兴通讯股份有限公司 Wireless communication method and apparatus, and electronic device and computer-readable medium
WO2024036624A1 (en) * 2022-08-19 2024-02-22 Zte Corporation Transmitter switching and band pair patterns for wireless communications
WO2024065741A1 (en) * 2022-09-30 2024-04-04 Zte Corporation Transmitter switching and switching gaps for wireless communications
WO2024197633A1 (en) * 2023-03-29 2024-10-03 Qualcomm Incorporated Scheduling uplink transmissions on multiple frequency bands
WO2024197973A1 (en) * 2023-03-29 2024-10-03 Qualcomm Incorporated Scheduling uplink transmissions on multiple frequency bands

Similar Documents

Publication Publication Date Title
US11924700B2 (en) L1/L2 based cell selection
JP6998967B2 (en) Synchronous signal transmission in new radio wireless communication system
CN109845352B (en) Techniques for power control and management
US11290251B2 (en) Techniques for unified synchronization channel design in new radio
KR102710145B1 (en) Decoupling of synchronization raster and channel raster
WO2021056232A1 (en) Single transmitter transmission during a carrier switching gap of another transmitter
CN114946208B (en) User Equipment (UE) capability and enable flags for L1/L2 inter-cell mobility
KR101602242B1 (en) STRUCTURE OF ENHANCED PHYSICAL DOWNLINK CONTROL CHANNEL (e-PDCCH) IN LONG TERM EVOLUTION (LTE)
US9602145B2 (en) Insertion loss improvement in a multi-band device
CN109964438B (en) Techniques and apparatus for configuring common uplink portion in new radio
KR20210144715A (en) Reuse Beam Marks
JP2020503806A (en) Downlink Channel Rate Matching of Synchronous Signal Block Transmission in New Radio Wireless Communication System
CN109661842B (en) Method and apparatus for transmission scheme management for common channels in NR
KR102564096B1 (en) Dedicated reference signal for physical broadcast channels
TWI754713B (en) Retuning in machine type communications
WO2019200212A1 (en) Method and apparatus for uplink preemption indication management
WO2021119007A1 (en) User equipment capability and enablement indication for downlink control information (dci) based beam and path loss (pl) reference signal (rs) activation
WO2021042315A1 (en) Slot format configuration for time-division multiplexing modes
WO2021046833A1 (en) Physical uplink control channel transmission for time division multiplexed uplink carriers
WO2021062856A1 (en) Handling uplink channel and carrier switching gap collisions
US10560294B2 (en) Methods and apparatus for transmission and reception with partial allocation in orthogonal frequency division multiple access/single-carrier frequency division multiple access systems
US12348463B2 (en) Frame structure design for downlink TDD-TDD carrier aggregation with pusch-less cell
US20230239084A1 (en) Indicating carrier grouping for supplemental uplink (sul) communications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19947292

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19947292

Country of ref document: EP

Kind code of ref document: A1