[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021054470A1 - Air pressure control device, air pressure control method, and air pressure control program for brake - Google Patents

Air pressure control device, air pressure control method, and air pressure control program for brake Download PDF

Info

Publication number
WO2021054470A1
WO2021054470A1 PCT/JP2020/035599 JP2020035599W WO2021054470A1 WO 2021054470 A1 WO2021054470 A1 WO 2021054470A1 JP 2020035599 W JP2020035599 W JP 2020035599W WO 2021054470 A1 WO2021054470 A1 WO 2021054470A1
Authority
WO
WIPO (PCT)
Prior art keywords
air pressure
vehicle
air
pressure
brake mechanism
Prior art date
Application number
PCT/JP2020/035599
Other languages
French (fr)
Japanese (ja)
Inventor
毅史 北村
健一 松原
Original Assignee
ナブテスコオートモーティブ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナブテスコオートモーティブ株式会社 filed Critical ナブテスコオートモーティブ株式会社
Priority to CN202080079811.9A priority Critical patent/CN114728650B/en
Priority to JP2021547002A priority patent/JPWO2021054470A1/ja
Publication of WO2021054470A1 publication Critical patent/WO2021054470A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/24Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being gaseous
    • B60T13/26Compressed-air systems
    • B60T13/36Compressed-air systems direct, i.e. brakes applied directly by compressed air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T15/00Construction arrangement, or operation of valves incorporated in power brake systems and not covered by groups B60T11/00 or B60T13/00
    • B60T15/02Application and release valves
    • B60T15/36Other control devices or valves characterised by definite functions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/18Safety devices; Monitoring
    • B60T17/20Safety devices operable by passengers other than the driver, e.g. for railway vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/58Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration responsive to speed and another condition or to plural speed conditions

Definitions

  • the present disclosure relates to an air pressure control device, an air pressure control method, and an air pressure control program.
  • An object of the present disclosure is to provide an air pressure control device, an air pressure control method, and an air pressure control program capable of suppressing a load applied to an occupant when a vehicle makes an emergency stop.
  • an air pressure control device includes an air pressure circuit configured to supply air to a brake mechanism that applies braking force to the wheels, and a control unit configured to control the air pressure supplied from the air pressure circuit to the brake mechanism.
  • the control unit supplies air to the brake mechanism based on a signal for urgently stopping the vehicle to decelerate the vehicle, and when the vehicle becomes equal to or lower than a predetermined speed, the brake mechanism It is configured to reduce the pressure of the air supplied to the wheel.
  • the braking force is weakened by reducing the air pressure supplied to the braking mechanism when the vehicle falls below a predetermined speed during deceleration, and the acceleration change (jerk) at the moment when the vehicle completely stops. Can be reduced. Therefore, it is possible to suppress the load applied to the occupants when the vehicle makes an emergency stop.
  • control unit may be configured to increase the air pressure after decompression to a predetermined value or more after a predetermined time has elapsed from the time when the vehicle becomes the predetermined speed or less.
  • the braking force of the brake mechanism is increased by increasing the air pressure supplied to the brake mechanism to the predetermined value or more. It can be enlarged to prevent the vehicle from moving from a stopped state.
  • control unit may be configured to increase the air pressure supplied to the brake mechanism to a predetermined value or more after a lapse of a predetermined time from the time when the air pressure becomes equal to or lower than the lower limit pressure due to the decompression. ..
  • the braking force of the brake mechanism is increased by increasing the air pressure supplied to the brake mechanism to a predetermined value or more. , The vehicle can be prevented from moving from a stopped state.
  • the control unit makes the air pressure supplied to the brake mechanism constant at the upper limit pressure when the air pressure supplied to the brake mechanism becomes equal to or higher than the upper limit pressure during deceleration of the vehicle. It may be configured in.
  • the braking force of the brake mechanism can be made constant by making the air pressure supplied to the brake mechanism constant when the vehicle decelerates to some extent during deceleration, and a sudden change in speed can be suppressed. be able to.
  • control unit may be configured to determine the air pressure supplied to the brake mechanism at predetermined time intervals. According to the above configuration, since the air pressure supplied to the brake mechanism is determined at predetermined time intervals, the calculation amount can be suppressed as compared with the case where the air pressure supplied to the brake mechanism is determined at any time.
  • the air pressure circuit may be configured to supply air to the brake mechanism instead of a brake valve that supplies air to the brake mechanism when a brake operation is performed.
  • the brake valve supplies air to the brake mechanism by the driver's brake operation, but when the driver is abnormal, the control unit controls the pneumatic circuit instead of this brake valve to make the brake mechanism.
  • the vehicle can be stopped urgently by supplying air.
  • the control unit is configured to supply air pressure for slow braking to the brake mechanism when an abnormal signal indicating an abnormality due to an operation of an occupant switch is acquired as a signal for urgently stopping the vehicle. It may have been done. According to the above configuration, if the occupant is suddenly braked immediately after the operation of the occupant switch, the occupant is surprised. Therefore, it is possible to call attention by first causing the brake mechanism to perform slow braking.
  • the air pressure circuit has a first port connected to the air tank of the vehicle, a second port connected to a brake valve that outputs an air pressure signal when a brake operation is performed, and a wheel based on the air pressure signal. It has a third port connected to a braking mechanism that applies braking force, and supplies air from the second port to the third port in a first communication state and from the first port to the third port.
  • the control unit is configured to switch from the second communication state, and the control unit is configured to switch the pneumatic circuit from the first communication state to the second communication state based on a signal for urgently stopping the vehicle. You may.
  • the air tank and the brake mechanism are connected to the first port to the third port. Switch to the second communication state that supplies air to the. Therefore, air can be automatically supplied from the air tank to the brake mechanism to generate a braking force.
  • a method for controlling the air pressure of the air pressure control device includes an air pressure circuit configured to supply air to a brake mechanism that applies braking force to the wheels, and a control unit configured to control the air pressure supplied from the air pressure circuit to the brake mechanism. And.
  • the air pressure control method includes a deceleration step in which air is supplied to the brake mechanism to decelerate the vehicle based on a signal for urgently stopping the vehicle, and when the vehicle during deceleration becomes a predetermined speed or less. Is provided with an air pressure reducing step for reducing the air pressure supplied to the brake mechanism.
  • the braking force is weakened by reducing the air pressure supplied to the braking mechanism when the vehicle falls below a predetermined speed during deceleration, and the acceleration change (jerk) at the moment when the vehicle completely stops. Can be reduced. Therefore, it is possible to suppress the load applied to the occupants when the vehicle makes an emergency stop.
  • an air pressure control program for an air pressure control device includes an air pressure circuit configured to supply air to a brake mechanism that applies braking force to the wheels, and a control unit configured to control the air pressure supplied from the air pressure circuit to the brake mechanism. And.
  • the pneumatic control program operates in the computer of the pneumatic control device, the deceleration step of supplying air to the brake mechanism based on a signal for urgently stopping the vehicle to the pneumatic control device to decelerate the vehicle.
  • the air pressure reduction step of reducing the air pressure supplied to the brake mechanism when the vehicle during deceleration becomes equal to or lower than a predetermined speed.
  • the braking force is weakened by reducing the air pressure supplied to the braking mechanism when the vehicle drops below a predetermined speed during deceleration, and the acceleration change (jerk) at the moment when the vehicle completely stops. Can be reduced. Therefore, it is possible to suppress the load applied to the occupants when the vehicle makes an emergency stop.
  • a non-transitory computer-readable medium for storing a pneumatic control program includes an air pressure circuit configured to supply air to a brake mechanism that applies braking force to the wheels, and a control unit configured to control the air pressure supplied from the air pressure circuit to the brake mechanism.
  • the air pressure control device When operating in the computer of the air pressure control device including the above, the air pressure control device is supplied with air to the brake mechanism based on a signal for urgently stopping the vehicle to decelerate the vehicle, and the deceleration is performed. When the vehicle inside becomes a predetermined speed or less, the air pressure supplied to the brake mechanism is reduced.
  • FIG. 6 is a schematic view showing an overall configuration of a pneumatic brake system including the pneumatic control device for one embodiment of the pneumatic control device.
  • the perspective view which shows the appearance of the air pressure control device of the same embodiment.
  • the schematic diagram of the emergency response system of the same embodiment. The circuit diagram of the first communication state in which the brake valve and the brake mechanism are communicated with each other in the pneumatic circuit of the same embodiment.
  • the circuit diagram of the 2nd communication state which communicates with the air tank and the brake mechanism in the air pressure circuit of the same embodiment.
  • the flowchart which shows the processing procedure of the abnormal state response system of the same embodiment.
  • the graph which shows the control example of the abnormal state response system of the same embodiment.
  • the flowchart which shows the processing procedure of the abnormal state response system of the same embodiment.
  • FIG. 6 is a schematic view showing a part of a pneumatic braking system including a pneumatic control device for a modified example of the pneumatic control device.
  • FIG. 6 is a schematic view showing a part of a pneumatic braking system including a pneumatic control device for a modified example of the pneumatic control device.
  • the pneumatic control device is provided in the pneumatic braking system mounted on a vehicle such as a bus.
  • the pneumatic brake system 11 mounted on the vehicle 10 is a full-air brake system in which the command system of the brake mechanism is controlled by air pressure and the brake mechanism is pneumatically driven.
  • the pneumatic brake system 11 includes an air tank 12 for storing compressed air generated by a compressor (not shown).
  • the air tank 12 has a first tank 12A, a second tank 12B, and a third tank 12C.
  • the first tank 12A is a tank for storing compressed air for applying a braking force to the front wheels of the vehicle 10.
  • the second tank 12B is a tank for storing compressed air for applying a braking force to the rear wheels.
  • the third tank 12C is a tank for storing compressed air used for other purposes.
  • the first tank 12A and the second tank 12B are connected to the front pressure chamber 13A and the rear pressure chamber 13B of the brake valve 13. Further, the first tank 12A and the second tank 12B are connected to the air horn device 14B via the protection valve 14A.
  • the brake valve 13 is connected to the relay valve 15 via the air pipe 18.
  • an air pressure signal is output from the brake valve 13 to the relay valve 15.
  • the relay valve 15 is connected to the air tank 12 by an air pipe (not shown).
  • the relay valve 15 inputs an air pressure signal from the brake valve 13
  • a large amount of compressed air stored in the air tank 12 is supplied to the relay valve 15 via the air pipe.
  • a large amount of compressed air supplied to the relay valve 15 is supplied to the brake chamber 17 via the ABS (Anti-lock Break System) control valve 16.
  • the brake chamber 17 generates a braking force on the wheels by supplying air.
  • the ABS control valve 16 and the brake chamber 17 constitute a pneumatically driven brake mechanism.
  • a pressure control module (PCM: Pressure Control Module) 20 is provided in the middle of the pipe 18.
  • the pressure control module 20 has a first port P1 connected to the air tank 12 (third tank 12C), a second port P2 connected to the brake valve 13, and a third port P3 connected to the brake mechanism including the relay valve 15. ing.
  • the pressure control module 20 corresponds to the air pressure control device. Since the pressure control module 20 is provided between the brake valve 13 and the relay valve 15, it can be attached to a pneumatic brake system 11 having a braking mechanism other than the pneumatically driven type.
  • the pressure control module 20 includes a case 210 that houses a control device and the like.
  • the case 210 is made of, for example, resin.
  • a body 211 having a flow path or the like is connected to the case 210.
  • the body 211 is formed by a casting method such as aluminum die casting.
  • the body 211 is provided with a port connection portion 212 for connecting various ports.
  • the port connection portion 212 is provided with a pair of second ports P2 on the first surface 213.
  • a pair of third ports P3 are provided on the second surface 214 perpendicular to the first surface 213 on which the second port P2 is provided.
  • a first port P1 to which a first supply path 23 to which compressed air from the air tank 12 is supplied is connected is provided.
  • a discharge unit 58 containing a silencer (silencer) is provided on the lower side of the body 211. Further, the body 211 is provided with a protruding portion 215 protruding toward the back surface side. Further, on the lower surface of the case 210, a connection portion (not shown) for connecting the control device and the like housed in the case 210 to an external power supply or an electric system cable for an in-vehicle network is provided.
  • the pressure control module 20 is a unit in which a control device for controlling a pneumatic circuit and a flow path are integrated.
  • the protrusion 215 is fixed at a predetermined position on the vehicle body.
  • the first port P1 is connected to the pipe connected to the air tank 12
  • the second port P2 is connected to the pipe connected to the brake valve 13
  • the third port P3 is connected to the relay valve 15. Also, connect the electrical cable to the connection. That is, only the pressure control module 20 may be the main component to be retrofitted to the pneumatic brake system 11 in order to deal with an abnormality.
  • the pneumatic circuit of the pressure control module 20 will be described in detail with reference to FIG.
  • the pressure control module 20 includes a pneumatic circuit 22 and a sub-ECU (electronic control unit: Electronic Control Unit) 32.
  • the pressure control module 20 together with the main ECU 31 constitutes an abnormality response system 50.
  • the main ECU 31 may be provided outside the case 210 or may be housed inside the case 210.
  • the main ECU 31 and the sub ECU 32 each include a calculation unit, a communication interface unit, a volatile storage unit, and a non-volatile storage unit.
  • the arithmetic unit is a computer processor and controls the pneumatic braking system 11 according to a control program stored in the non-volatile storage unit (storage medium).
  • the arithmetic unit may realize at least a part of the processing executed by itself by a circuit (cyclery) such as an ASIC.
  • the control program may be executed by one computer processor or may be executed by a plurality of computer processors.
  • the main ECU 31 and the sub ECU 32 are connected to an in-vehicle network such as CAN (Control Area Network) 33, and transmit and receive various information to and from each other.
  • the control program includes an air pressure control program. Further, the main ECU 31 controls based on the air pressure control method.
  • the pneumatic control program may be stored on a non-temporary computer-readable medium.
  • the main ECU 31 inputs an on signal output from the driver's seat operation switch 51 and the release switch 52 when they are turned on.
  • the driver's seat operation switch 51 and the release switch 52 are switches that are supposed to be operated by the driver, and are provided in the vicinity of the driver's seat.
  • the release switch 52 is a switch for stopping the operation of the abnormality response system 50 when it is erroneously activated.
  • the on signal output when the driver's seat operation switch 51 is turned on corresponds to a signal for urgently stopping the vehicle.
  • the passenger seat operation switch 53 is a switch that is supposed to be operated by an occupant other than the driver.
  • the passenger seat operation switch 53 is provided at a position other than the driver's seat and can be operated by an occupant other than the driver.
  • the on signal output when the passenger seat operation switch 53 is turned on corresponds to a signal for urgently stopping the vehicle.
  • the main ECU 31 acquires acceleration information from the acceleration sensor 54 via the CAN 33.
  • the main ECU 31 directly acquires vehicle speed information from the vehicle speed sensor 55.
  • the main ECU 31 calculates the target air pressure of the pneumatic brake system 11 so that the deceleration obtained from the vehicle speed approaches the target deceleration, which is the target value, when the abnormality response system 50 starts operating, and causes the sub ECU 32 to calculate the target air pressure. Indicate the calculated target air pressure.
  • This target deceleration can be changed by updating the data stored in the storage unit such as the main ECU 31. For example, when the vehicle 10 is a shared bus, it is assumed that there are passengers standing in the vehicle, so the absolute value of the target deceleration is reduced. Further, when the vehicle 10 is a high-speed bus in which all passengers are seated, the absolute value of the target deceleration may be larger than that of the shared bus. It is also possible to change the target deceleration according to the weight and length of the vehicle 10.
  • the main ECU 31 outputs an instruction signal to the vehicle interior device 56 and the vehicle outdoor device 57 when the abnormality response system 50 is activated.
  • the vehicle interior device 56 is, for example, an accelerator interlock mechanism that makes it impossible to operate the accelerator pedal.
  • the main ECU 31 activates the accelerator interlock mechanism when the error response system 50 is activated.
  • a notification buzzer provided in the vehicle interior, a notification lamp provided in the vehicle interior, and the like may be provided.
  • the main ECU 31 outputs a sound from the notification buzzer and turns on or blinks the notification lamp.
  • the vehicle outdoor device 57 is, for example, an air horn device 14B (see FIG.
  • the main ECU 31 drives the protection valve 14A and the like to supply air to the air horn device 14B to generate a warning sound and turn on the hazard lamp and the brake lamp. Or make it blink.
  • the sub ECU 32 is housed in the case 210 of the pressure control module 20 and controls various valves of the pressure control module 20.
  • the pressure control module 20 has a first supply path 23 connected to the air tank 12.
  • the first supply path 23 is a front air supply path 37 connected to the brake chamber 17 provided on the front wheel via a relay valve 15 and a rear air supply path 37 connected to the brake chamber 17 provided on the rear wheel. It is connected to 38.
  • the front air supply path 37 and the rear air supply path 38 are connected to a pair of third ports P3, respectively.
  • a relay valve 25 is connected in the middle of the first supply path 23.
  • the relay valve 25 has a discharge port 25A.
  • the discharge port 25A is connected to a discharge unit 58 having a silencer.
  • the relay valve 25 has a pilot port 25B.
  • the pilot port 25B is connected to a branch path 26 branching from the first supply path 23.
  • the air pressure applied from the branch path 26 to the pilot port 25B is a predetermined pressure such as atmospheric pressure
  • the first supply path 23 is cut off by the urging force of the urging spring or the like.
  • the relay valve 25 is in the exhaust state, the air flow from the air tank 12 to the front air supply path 37 and the rear air supply path 38 is cut off.
  • the downstream side of the relay valve 25 in the first supply path 23 and the discharge portion 58 are communicated with each other, and the compressed air on the downstream side of the relay valve 25 in the first supply path 23 is communicated with each other. Is discharged and reaches a predetermined pressure such as atmospheric pressure.
  • the supply state is such that the first supply path 23 is communicated with each other.
  • the relay valve 25 When the relay valve 25 is in the supply state, air is supplied from the air tank 12 to the front air supply path 37 and the rear air supply path 38.
  • the relay valve 25 When the relay valve 25 is in the supply state, the first supply path 23 is communicated with the front air supply path 37 and the rear air supply path 38. Further, when the pressure on the outlet side (secondary side) of the relay valve 25 becomes excessively high, the communication state of the first supply path 23 is cut off and the relay valve 25 becomes an exhaust state.
  • One end of the branch path 26 is connected to the first supply path 23, and the other end is connected to the discharge section 58.
  • An intake valve 27 and an exhaust valve 28 are provided in the middle of the branch path 26.
  • the intake valve 27 and the exhaust valve 28 are solenoid valves and are driven by the sub ECU 32.
  • the intake valve 27 is provided on the branch path 26 closer to the upstream side (closer to the air tank 12) than the exhaust valve 28.
  • the operation of the intake valve 27 is switched by turning on / off (driving / non-driving) the power supply from the sub ECU 32 via the wiring 27A.
  • the intake valve 27 is in a closed position that closes the branch path 26 in a non-driven state in which the power is turned off. Further, the intake valve 27 is in an open position that opens the branch path 26 in a driven state in which the power is turned on.
  • the exhaust valve 28 is a solenoid valve whose operation is switched by turning on / off (driving / non-driving) the power supply from the sub ECU 32 via the wiring 28A.
  • the exhaust valve 28 is in an open position that communicates with the branch path 26 in a non-driven state in which the power is turned off. Further, the exhaust valve 28 is in a closed position that closes the branch path 26 in the driven state in which the power is turned on. That is, the exhaust valve 28 opens the signal supply path 29 downstream of the intake valve 27 to the atmosphere when the intake valve 27 is not driven and is in the closed position. Further, in the driven state, the exhaust valve 28 has atmospheric pressure on the upstream side of the intake valve 27 in the branch path 26 and on the upstream side of the relay valve 25 in the first supply path 23.
  • a signal supply path 29 for supplying an air pressure signal to the relay valve 25 and a first pressure sensor 35 are connected in the middle of the intake valve 27 and the exhaust valve 28.
  • the first pressure sensor 35 detects the pressure between the intake valve 27 and the exhaust valve 28 in the branch path 26 and outputs the pressure to the sub ECU 32.
  • the first supply path 23 is connected to the third supply path 30.
  • the third supply path 30 is connected to a pair of double check valves 36.
  • the double check valve 36A includes a third supply path 30, a front signal supply path 24A connected to the front pressure chamber 13A of the brake valve 13, and a front air supply path 37 for generating braking force on the front wheels. It is connected to the.
  • the double check valve 36A allows the supply of compressed air from the higher pressure side of the third supply path 30 and the forward signal supply path 24A, and shuts off the supply of compressed air from the lower pressure side.
  • a second pressure sensor 39 is connected to the front air supply path 37.
  • the second pressure sensor 39 outputs the detected pressure to the sub ECU 32.
  • the pressure detected by the second pressure sensor 39 is the "supply pressure" supplied to the brake chamber 17.
  • the other double check valve 36B is connected to a third supply path 30, a rear signal supply path 24B connected to the rear pressure chamber 13B of the brake valve 13, and a rear air supply path 38 that applies braking force to the rear wheels. ing.
  • the double check valve 36B allows the supply of compressed air from the higher pressure side of the third supply path 30 and the rear signal supply path 24B, and shuts off the supply of compressed air from the lower pressure side.
  • the front signal supply path 24A and the rear signal supply path 24B are connected to a pair of second ports P2, respectively.
  • FIG. 4 shows a pneumatic circuit 22 when the driver's seat operation switch 51 and the passenger seat operation switch 53 are not turned on.
  • the sub ECU 32 does not drive the intake valve 27 and the exhaust valve 28.
  • the intake valve 27 is in the closed position and the exhaust valve 28 is in the open position.
  • the exhaust valve 28 is in the open position, so that the pressure becomes a predetermined pressure such as atmospheric pressure. Therefore, the air pressure applied to the pilot port 25B also becomes a predetermined pressure, so that the relay valve 25 is in the exhaust state.
  • the air pressure signal is supplied from the front signal supply path 24A and the rear signal supply path 24B to the front air supply path 37 and the rear air supply path 38.
  • a large amount of compressed air is supplied from the air tank 12 to the relay valve 15 by supplying the air pressure signal to the relay valve 15.
  • the relay valve 15 supplies compressed air to the brake chamber 17, braking force is applied to the wheels.
  • the pneumatic circuit including the front signal supply path 24A and the rear signal supply path 24B corresponds to the brake control circuit.
  • FIG. 5 shows a pneumatic circuit 22 when at least one of the driver's seat operation switch 51 and the audience seat operation switch 53 is turned on.
  • the sub-ECU 32 receives the pressure instruction transmitted from the main ECU 31.
  • the sub ECU 32 drives the intake valve 27 and the exhaust valve 28 based on the pressure instruction.
  • the intake valve 27 is in the open position and the exhaust valve 28 is in the closed position.
  • the compressed air of the air tank 12 is supplied to the branch path 26 between the intake valve 27 and the exhaust valve 28 via the first supply path 23.
  • the double check valve 36 allows the flow of air from the third supply path 30 to the front air supply path 37 and the rear air supply path 38, and allows the front air from the front signal supply path 24A and the rear signal supply path 24B.
  • the flow of air to the supply path 37 and the rear air supply path 38 is blocked.
  • the air pressure circuit including the intake valve 27, the exhaust valve 28, the flow path (first supply path 23, branch path 26, etc.) connecting the relay valve 25, and the third supply path 30 is a brake control circuit when an abnormality occurs. Corresponds to.
  • the pressure control module 20 between the brake valve 13 and the relay valve 15 in this way, when the driver's seat operation switch 51 and the passenger seat operation switch 53 are turned on, the pneumatically driven command system is provided. , The system via the brake valve 13 is switched to the system in which air is directly supplied from the air tank 12. Therefore, the brake chamber 17 can be operated to generate a braking force without inputting the air pressure signal from the brake valve 13.
  • the sub ECU 32 acquires the detected pressure from the first pressure sensor 35 and the second pressure sensor 39 at a predetermined timing. For example, when the relay valve 25 is maintained in the supply state, the sub ECU 32 drives or does not drive the intake valve 27 and the exhaust valve 28 so that the pressure detected by the first pressure sensor 35 falls within a predetermined range. To. Further, when the main ECU 31 transmits a pressure instruction to the sub ECU 32 so as to gradually increase the pressure in order to gently stop the vehicle 10, the sub ECU 32 uses the pressure detected by the second pressure sensor 39. Determines whether or not has reached the first pressure threshold. When the sub ECU 32 determines that the detected pressure has not reached the first pressure threshold value, it drives the intake valve 27 and the exhaust valve 28 to maintain the relay valve 25 in the supply state.
  • the sub ECU 32 when the pressure detected by the second pressure sensor 39 reaches the first pressure threshold value, the sub ECU 32 does not drive the intake valve 27 and the exhaust valve 28 and puts the relay valve 25 in the exhaust state. Then, it waits for the next pressure instruction from the main ECU 31.
  • the air pressure in the signal supply path 29 is controlled by the intake valve 27 and the exhaust valve 28, and the relay valve 25 is driven to supply the desired air pressure to the third supply path 30.
  • the process shown in FIG. 6 is a process for controlling the air system, which is triggered by the operation of the driver's seat operation switch 51 or the passenger seat operation switch 53 and the main ECU 31 inputting the operation signals transmitted from those switches. It shall be started. Further, it is premised that the main ECU 31 acquires vehicle information from the acceleration sensor 54 and the vehicle speed sensor 55 at a predetermined timing.
  • the speed V of the vehicle is shown by a solid line
  • the pressure Pa of the air supplied to the brake chamber 17 is shown by a thick line
  • the deceleration a is shown by a chain line.
  • step S1 the main ECU 31 determines whether or not the audience seat operation switch 53 has been operated. That is, the main ECU 31 determines whether the input operation signal is a signal from the driver's seat operation switch 51 or a signal from the audience seat operation switch 53. Then, when the main ECU 31 determines that the driver's seat operation switch 51 has been operated (step S1: NO), the main ECU 31 proceeds to step S4.
  • the phase up to the time t1 when the audience seat operation switch 53 is operated is referred to as "system standby section S0".
  • step S2 when the main ECU 31 determines that the audience seat operation switch 53 has been operated (step S1: YES), the main ECU 31 instructs the sub ECU 32 of the slow braking pressure Pa1 required for slow braking (step S2).
  • Slow braking is braking in which the absolute value of deceleration is relatively small, or braking in which the braking time is short, and it is possible to return to normal running when the release switch 52 is operated immediately afterwards. To do.
  • the slow braking pressure is transmitted to the sub ECU 32.
  • the sub ECU 32 drives the intake valve 27 and the exhaust valve 28 based on the pressure instruction to supply the brake chamber 17 (see FIG. 5).
  • the main ECU 31 determines whether or not the slow braking time T1 has elapsed (step S3). That is, whether or not the slow braking time T1 has elapsed depending on the elapsed time from the time when the main ECU 31 transmits the pressure instruction to the sub ECU 32, the time when the vehicle 10 starts decelerating, or the time when a predetermined response signal is received from the sub ECU 32.
  • the slow braking time T1 is a time required for the driver to operate the release switch 52 when the passenger seat operation switch 53 is erroneously operated even though the driver is in a normal state.
  • step S3 NO
  • the main ECU 31 continues the slow braking while instructing the sub ECU 32 of the slow braking pressure Pa1 (step S2).
  • the phase from the time t1 to the time t2 when the slow braking time T1 has elapsed is referred to as a "warning braking section Ph1".
  • step S3 when the main ECU 31 determines that the slow braking time has elapsed (step S3: YES), the main ECU 31 instructs the sub ECU 32 to perform the main braking.
  • This braking is for decelerating the vehicle 10 with a deceleration having a larger absolute value than slow braking, and finally stopping the vehicle 10.
  • the main ECU 31 acquires a target deceleration for main braking stored in its own storage unit, and calculates an increased predetermined pressure ⁇ Pa2 and a decreased predetermined pressure ⁇ Pa4 in comparison with the deceleration obtained from the acquired vehicle speed. Then, the calculated air pressure is transmitted to the sub ECU 32.
  • the sub ECU 32 drives the intake valve 27 and the exhaust valve 28 based on the pressure instruction (see FIG. 5).
  • the following steps S4 and subsequent steps correspond to "deceleration steps" in which air is supplied to the brake chamber 17 to decelerate the vehicle.
  • the main ECU 31 increases the supply pressure by increasing the increased predetermined pressure ⁇ Pa2 every predetermined time ⁇ T2 (step S4). That is, the main ECU 31 determines the supply pressure every predetermined time ⁇ T2.
  • the main ECU 31 transmits the determined air pressure to the sub ECU 32.
  • the sub-ECU 32 drives the intake valve 27 and the exhaust valve 28 based on the pressure instruction transmitted from the main ECU 31 to supply the brake chamber 17 to the determined target pressure.
  • the main ECU 31 determines whether or not the supply pressure is equal to or higher than the upper limit pressure Pa3 (step S5). That is, since the supply pressure increases as the increased predetermined pressure ⁇ Pa2 increases, the main ECU 31 determines whether or not the increased supply pressure is equal to or higher than the upper limit pressure Pa3. Then, when the main ECU 31 determines that the supply pressure is less than the upper limit pressure Pa3 (step S5: NO), the main ECU 31 proceeds to step S4 and increases the increased predetermined pressure ⁇ Pa2 every predetermined time ⁇ T2. Supply.
  • the phase from the time t2 to the time t3 when the upper limit pressure Pa3 or more is defined as the "braking force generation section Ph2".
  • Non-Patent Document 1 provides an upper limit of deceleration in an emergency stop, and when it is larger than the deceleration upper limit (for example, 2.45 m / ss), deceleration is interrupted or the supply pressure is the upper limit pressure Pa3. It is necessary to exhaust so that it is less than.
  • the deceleration upper limit for example, 2.45 m / ss
  • step S5 when the main ECU 31 determines that the supply pressure is equal to or higher than the upper limit pressure Pa3 (step S5: YES), the main ECU 31 keeps the supply pressure constant at the upper limit pressure Pa3 (step S6). That is, by keeping the supply pressure constant at the upper limit pressure Pa3, the main ECU 31 can keep the braking force of the brake chamber 17 constant and suppress a sudden change in speed.
  • the main ECU 31 transmits the determined air pressure to the sub ECU 32.
  • the sub-ECU 32 drives the intake valve 27 and the exhaust valve 28 based on the pressure instruction transmitted from the main ECU 31 to supply the brake chamber 17 to the determined target pressure.
  • the main ECU 31 determines whether or not the speed of the vehicle is equal to or less than the predetermined speed Vth (step S7). That is, the main ECU 31 determines whether or not the speed of the vehicle is reduced by braking the brake chamber 17 and is equal to or lower than the predetermined speed Vth.
  • the predetermined speed Vth is a speed at which the vehicle can easily stop in a short time, for example, a low speed such as 10 to 20 km / h, a speed immediately before stopping, or a measurable lower limit value of the vehicle speed sensor 55.
  • step S7 NO
  • the main ECU 31 instructs the sub ECU 32 of the upper limit pressure Pa3 until the speed of the vehicle becomes equal to or lower than the predetermined speed Vth.
  • step S7 the phase from the time t3 to the time t4 when the predetermined speed is Vth or less is referred to as "constant deceleration braking section Ph3".
  • step S7 when the main ECU 31 determines that the speed of the vehicle is equal to or less than the predetermined speed Vth (step S7: YES), the main ECU 31 reduces the air pressure for supplying the reduced predetermined pressure ⁇ Pa4 every predetermined time ⁇ T4 (step S8). That is, the main ECU 31 determines the supply pressure every predetermined time ⁇ T4.
  • the main ECU 31 transmits the determined air pressure to the sub ECU 32.
  • the sub-ECU 32 drives the intake valve 27 and the exhaust valve 28 based on the pressure instruction transmitted from the main ECU 31 to supply the brake chamber 17 to the determined target pressure.
  • step S8 corresponds to the "air pressure reduction step" in which the air pressure supplied to the brake chamber 17 is reduced when the decelerating vehicle becomes the predetermined speed Vth or less.
  • the main ECU 31 determines whether or not the supply pressure is equal to or lower than the lower limit pressure Pa4 (step S9). That is, since the supply pressure decreases as the decrease predetermined pressure ⁇ Pa4 decreases, the main ECU 31 determines whether or not the reduced supply pressure is equal to or less than the lower limit pressure Pa4. Then, when the main ECU 31 determines that the supply pressure is larger than the lower limit pressure Pa4 (step S9: NO), the main ECU 31 proceeds to step S8 and supplies the reduced predetermined pressure ⁇ Pa4 by decreasing it every ⁇ T4 for a predetermined time.
  • step S9 when the main ECU 31 determines that the supply pressure is equal to or lower than the lower limit pressure Pa4 (step S9: YES), the main ECU 31 keeps the supply pressure constant at the lower limit pressure Pa4 (step S10). That is, by keeping the supply pressure constant at the lower limit pressure Pa4, the main ECU 31 can keep the braking force of the brake chamber 17 constant and suppress a sudden change in speed.
  • the main ECU 31 transmits the determined air pressure to the sub ECU 32.
  • the sub-ECU 32 drives the intake valve 27 and the exhaust valve 28 based on the pressure instruction transmitted from the main ECU 31 to supply the brake chamber 17 to the determined target pressure.
  • the main ECU 31 determines whether or not the stop determination time T4 has elapsed since the lower limit pressure Pa4 was reached (step S11). That is, the main ECU 31 determines whether or not the stop determination time T4, which is the time required for the vehicle to stop, has elapsed. Then, when the main ECU 31 determines that the stop determination time T4 has not elapsed (step S11: NO), the main ECU 31 repeats the determination until the stop determination time T4 elapses while instructing the sub ECU 32 of the lower limit pressure Pa4 (step S11: NO). Step S11).
  • the stop determination time T4 corresponds to a predetermined time.
  • the phase from the time t4 to the time t5 when the stop determination time T4 elapses after the lower limit pressure Pa4 is reached is referred to as the "braking force relaxation section Ph4". Further, the phase after the time t5 is set as "stop braking section Ph5".
  • step S11 determines that the stop determination time T4 has elapsed (step S11: YES)
  • the supply pressure is kept constant at the stop pressure Pa5 (step S12). That is, the main ECU 31 increases the supply pressure from the lower limit pressure Pa4 to the stop pressure Pa5 and continues to supply the stop pressure Pa5 until the end.
  • the main ECU 31 transmits the determined air pressure to the sub ECU 32.
  • the sub-ECU 32 drives the intake valve 27 and the exhaust valve 28 based on the pressure instruction transmitted from the main ECU 31 to supply the brake chamber 17 to the determined target pressure.
  • the stop pressure Pa5 corresponds to a predetermined value.
  • the main ECU 31 determines whether or not the response to an abnormality has been completed (step S13).
  • the response to an abnormality may be determined to have ended when the vehicle 10 has stopped and the parking brake has been activated, or it may have been determined to have ended when the ignition switch has been turned off, or at other timings. You may judge that it is finished.
  • the main ECU 31 determines that the response to an abnormality has not been completed (step S13: NO)
  • the main ECU 31 continues while instructing the sub ECU 32 to stop pressure Pa5 (step S4).
  • the main ECU 31 determines that the abnormality response has been completed (step S13: YES)
  • the main ECU 31 ends the abnormality response process.
  • the main ECU 31 operates the vehicle interior device 56 and the vehicle outdoor device 57 at a predetermined timing such as the timing at which the main braking is started, in addition to the response to the abnormality of the air system. As a result, it is possible to notify the occupants of the vehicle 10 that an abnormality has occurred and to call attention to other vehicles traveling around the vehicle 10.
  • the main ECU 31 determines whether or not the release switch 52 has been operated (step S20). That is, the main ECU 31 determines whether or not an operation signal has been input from the release switch 52. Then, when the main ECU 31 determines that the release switch 52 has been operated (step S20: YES), the main ECU 31 transmits a braking release instruction to the sub ECU 32 (step S21). Upon receiving the release instruction, the sub ECU 32 does not drive the intake valve 27 and the exhaust valve 28, and shuts off the supply of air from the air tank 12 to the brake chamber 17 side.
  • step S20 determines whether or not the response to an abnormality has been completed. Then, when the main ECU 31 determines that the response to an abnormality has not been completed (step S22: NO), the main ECU 31 proceeds to step S20. On the other hand, when the main ECU 31 determines that the response to an abnormality has been completed (step S22: YES), the main ECU 31 ends the release process.
  • the braking force is weakened by reducing the air pressure supplied to the brake chamber 17 when the vehicle becomes less than the predetermined speed Vth during deceleration, and the acceleration change (jerk) at the moment when the vehicle completely stops is obtained. Can be reduced. Therefore, it is possible to suppress the load applied to the occupants when the vehicle makes an emergency stop.
  • the braking force of the brake chamber 17 can be made constant by making the air pressure supplied to the brake chamber 17 constant at the upper limit pressure Pa3, and a sudden change in the speed V of the vehicle can be caused. It can be suppressed.
  • the brake valve supplies air to the brake chamber 17 by the driver's brake operation, but when the driver is abnormal, the control unit controls the pneumatic circuit instead of this brake valve to supply air to the brake chamber 17.
  • the vehicle can be stopped urgently by supplying.
  • the predetermined time ⁇ T2 and the predetermined time ⁇ T4 may be the same or different.
  • the main ECU 31 determines the pressure supplied to the brake chamber 17 every predetermined time ⁇ T2 and predetermined time ⁇ T4.
  • the main ECU 31 may perform calculations at any time to determine the pressure supplied to the brake chamber 17. In this way, the pressure supplied to the brake chamber 17 can be accurately determined according to the speed of the vehicle, and braking can be performed.
  • the stop determination time T4 it is determined whether or not the stop determination time T4 has elapsed since the lower limit pressure Pa4 was reached. However, it may be determined whether or not the stop determination time has elapsed since the predetermined speed Vth was reached. According to such a configuration, since the vehicle is stopped after the stop determination time T4 elapses from the time when the predetermined speed becomes Vth or less, the brake is applied by increasing the air pressure supplied to the brake chamber 17 to the stop pressure Pa5 or more. The braking force of the chamber 17 is increased, and the vehicle can be prevented from moving from the stopped state.
  • the stop pressure Pa5 is constant after the stop determination time T4 elapses, but the parking brake or the electric parking brake may be activated to keep the vehicle in the stopped state.
  • the slow braking pressure Pa1 is supplied to the brake chamber 17 during the slow braking time T1.
  • the pressure may not be supplied to the brake chamber 17 with the slow braking time T1 as the alert time.
  • the air pressure control device and the air pressure circuit are applied to the vehicle 10 with the full air brake.
  • the pneumatic control device and the pneumatic circuit are also applicable to vehicles having other types of braking systems.
  • the pressure control module 20 can be applied to a vehicle 10 having an air-over hydraulic braking mechanism.
  • This brake mechanism connects the pressure control module 20 to the brake boosters 100 to 102 via the ABS control valve 16.
  • the brake boosters 100 to 102 are boosters for front wheels, rear left wheels, and rear right wheels, and generate braking force on the wheels by increasing the hydraulic pressure of the hydraulic circuit by using air pressure. Further, as shown in FIG.
  • the pressure control module 20 is attached to a brake mechanism including a brake booster 103 for front wheels, a brake booster 104 for rear wheels, and an ABS control valve 105 provided in a hydraulic circuit. May be applied.
  • the air pressure control device and the air pressure circuit can also be applied to those of a brake mechanism other than those in FIGS. 10 and 11.
  • the body 211 is made of metal, but instead of this, it may be formed of resin.
  • the body 211 may be formed by a casting method, the body 211 may be formed by combining parts formed by pressing or cutting instead of or in addition to the body 211.
  • the air tank 12 is divided into three tanks, but one tank may be used, or two or four or more tanks may be used. Further, the connection relationship between the air tank 12 and the pneumatic device can be changed as appropriate.
  • the first port P1 of the pressure control module 20 may be connected to a tank other than the third tank 12C.
  • the main ECU 31 may receive an on signal or the like from the driver's seat operation switch 51, the release switch 52, and the audience seat operation switch 53 via an in-vehicle network such as CAN 33.
  • an in-vehicle network such as CAN 33.
  • a network such as FlexRay (registered trademark) or Ethernet (registered trademark) may be used in addition to CAN33.
  • the main ECU 31 acquires the acceleration information from the acceleration sensor 54, but instead of this, the acceleration information may be acquired from the vehicle speed sensor 55. Acceleration is also included in the "vehicle speed" of the claims.
  • the abnormality response system 50 includes a main ECU 31 and a sub ECU 32.
  • the main ECU 31 and the sub-ECU 32 may be composed of one ECU having the function of the first control unit and the function of the second control unit, or another control circuit. Alternatively, these functions may be distributed and configured in three or more ECUs or other control circuits.
  • the abnormality response system 50 may include a main switch (not shown) capable of turning on / off the function of the system.
  • a main switch capable of turning on / off the function of the system.
  • the pneumatic circuit 22 drives the pneumatically driven relay valve 25 by the intake valve 27 and the exhaust valve 28.
  • a solenoid valve may be provided in the first supply path 23, and the first supply path 23 may be opened and closed by the solenoid valve.
  • the relay valve 25 may be omitted and the signal supply path 29 may be directly connected to the third supply path. Even with such a configuration, a desired air pressure can be supplied to the third supply path 30 by controlling the air pressure of the signal supply path 29 with the intake valve 27 and the exhaust valve 28.
  • the pneumatic circuit 22 includes a double check valve 36 that switches the air supply direction according to the air pressure.
  • a double check valve 36 that switches the air supply direction according to the air pressure.
  • an electromagnetic valve that is driven and not driven by the sub ECU 32 may be provided.
  • the sub-ECU 32 drives (or does not drive) its solenoid valve to switch the air supply direction.
  • the configuration of the first pressure sensor 35 may be omitted.
  • the sub-ECU 32 controls using the pressure detected by the second pressure sensor 39 instead of the pressure detected by the first pressure sensor 35.
  • an abnormality response is executed by turning on the driver's seat operation switch 51 and the audience seat operation switch 53.
  • a biological detection device that detects the driver's fatigue or health condition may be used.
  • the biological detection device detects the driver's driving condition using one or more parameters such as the position of the driver's face and head, posture, eyelids, eye condition such as line of sight, pulse rate, heart rate, body temperature, etc. To do.
  • an abnormality signal is transmitted.
  • the ECU mounted on the vehicle may compare the vehicle state such as the vehicle speed, the presence / absence of operation of the accelerator pedal or the brake pedal with the road information, and transmit an abnormality signal when a driving abnormality is detected. Good.
  • the pneumatic control device has been described as being retrofitted to a vehicle in use in which the command system of the brake is a pneumatic circuit, but it may be retrofitted to a vehicle equipped with EBS.
  • the air pressure control device may be installed in a new vehicle.
  • the air pressure control device has been described as being mounted on a vehicle such as a bus.
  • vehicle such as a bus.
  • the vehicle may be a truck, a construction machine, or the like, in addition to a bus.
  • the air pressure control device may be mounted on another vehicle such as a passenger car or a railroad vehicle.
  • the pressure control module 20 of the above embodiment may be applied to a vehicle in which the command system to the brake mechanism is hydraulically applied.
  • the pressure control module 20 operates in the same manner as in the above embodiment.
  • the brake mechanism to be controlled may be a mechanism other than the brake chamber.
  • the hydraulic circuit and the pneumatic circuit are examples of circuits driven by the pressure of a fluid.
  • a hydraulic control device configured to supply oil to a brake mechanism that applies braking force to wheels, and a control unit configured to control the hydraulic pressure supplied from the hydraulic circuit to the brake mechanism.
  • the control unit supplies oil to the brake mechanism based on a signal for urgently stopping the vehicle to decelerate the vehicle, and when the vehicle becomes equal to or lower than a predetermined speed, the brake mechanism It is configured to reduce the pressure of the oil supplied to the wheel.
  • the braking force is weakened by reducing the hydraulic pressure supplied to the brake mechanism when the vehicle becomes less than a predetermined speed during deceleration, and the acceleration change (jerk) at the moment when the vehicle completely stops. Can be reduced. Therefore, it is possible to suppress the load applied to the occupants when the vehicle makes an emergency stop.
  • control unit may be configured to increase the oil pressure after decompression to a predetermined value or more after a predetermined time has elapsed from the time when the vehicle becomes the predetermined speed or less.
  • the braking force of the brake mechanism is increased by increasing the oil pressure supplied to the brake mechanism to the predetermined value or more. It can be enlarged to prevent the vehicle from moving from a stopped state.
  • control unit may be configured to increase the hydraulic pressure supplied to the brake mechanism to a predetermined value or more after a lapse of a predetermined time from the time when the hydraulic pressure becomes equal to or lower than the lower limit pressure due to the depressurization. ..
  • the braking force of the brake mechanism is increased by increasing the hydraulic pressure supplied to the brake mechanism to a predetermined value or more. , The vehicle can be prevented from moving from a stopped state.
  • the control unit makes the hydraulic pressure supplied to the brake mechanism constant at the upper limit pressure when the hydraulic pressure supplied to the brake mechanism becomes equal to or higher than the upper limit pressure during deceleration of the vehicle. It may be configured in.
  • the braking force of the brake mechanism can be made constant by making the oil pressure supplied to the brake mechanism constant when the vehicle decelerates to some extent during deceleration, and a sudden change in speed can be suppressed. be able to.
  • control unit may be configured to determine the hydraulic pressure supplied to the brake mechanism at predetermined time intervals. According to the above configuration, since the oil pressure supplied to the brake mechanism is determined at predetermined time intervals, the amount of calculation can be suppressed as compared with the case where the oil pressure supplied to the brake mechanism is determined at any time.
  • the hydraulic circuit may be configured to supply oil to the brake mechanism instead of a brake valve that supplies oil to the brake mechanism when a brake operation is performed.
  • the brake valve supplies oil to the brake mechanism by the driver's brake operation, but when the driver's abnormality occurs, the control unit controls the hydraulic circuit instead of this brake valve to the brake mechanism.
  • the vehicle can be stopped urgently by supplying oil.
  • the control unit when the control unit acquires an abnormal signal indicating an abnormality due to the operation of the occupant switch as a signal for urgently stopping the vehicle, the control unit is configured to supply a slow braking hydraulic pressure to the brake mechanism. It may have been done. According to the above configuration, if the occupant is suddenly braked immediately after the operation of the occupant switch, the occupant is surprised. Therefore, it is possible to call attention by first causing the brake mechanism to perform slow braking.
  • a method for controlling the hydraulic pressure of the hydraulic control device includes a hydraulic circuit configured to supply oil to a brake mechanism that applies braking force to wheels, and a control unit configured to control the hydraulic pressure supplied from the hydraulic circuit to the brake mechanism. And.
  • the flood control control method includes a deceleration step of supplying oil to the brake mechanism to decelerate the vehicle based on a signal for urgently stopping the vehicle, and when the vehicle during deceleration becomes a predetermined speed or less. Is provided with a hydraulic pressure reduction step for reducing the hydraulic pressure supplied to the brake mechanism.
  • the braking force is weakened by reducing the hydraulic pressure supplied to the braking mechanism when the vehicle becomes less than a predetermined speed during deceleration, and the acceleration change (jerk) at the moment when the vehicle completely stops. Can be reduced. Therefore, it is possible to suppress the load applied to the occupants when the vehicle makes an emergency stop.
  • a hydraulic control program for a hydraulic control device includes a hydraulic circuit configured to supply oil to a brake mechanism that applies braking force to wheels, and a control unit configured to control the hydraulic pressure supplied from the hydraulic circuit to the brake mechanism. And.
  • a deceleration step of supplying oil to the brake mechanism to decelerate the vehicle based on a signal for the hydraulic control device to make an emergency stop of the vehicle.
  • the oil pressure reduction step of reducing the oil pressure supplied to the brake mechanism when the speed of the vehicle during deceleration becomes equal to or lower than a predetermined speed.
  • the braking force is weakened by reducing the hydraulic pressure supplied to the braking mechanism when the vehicle drops below a predetermined speed during deceleration, and the acceleration change (jerk) at the moment when the vehicle completely stops. Can be reduced. Therefore, it is possible to suppress the load applied to the occupants when the vehicle makes an emergency stop.
  • a non-transitory computer-readable medium for storing the hydraulic control program includes a hydraulic circuit configured to supply oil to a brake mechanism that applies braking force to wheels, and a control unit configured to control the hydraulic pressure supplied from the hydraulic circuit to the brake mechanism.
  • the hydraulic control device When operating in the computer of the flood control device including the above, the hydraulic control device is supplied with oil to the brake mechanism based on a signal for urgently stopping the vehicle to decelerate the vehicle, and the deceleration is performed. When the vehicle inside becomes less than a predetermined speed, the oil pressure supplied to the brake mechanism is reduced.
  • an electric control device configured to control electric power supplied from the electric circuit to the brake mechanism.
  • the control unit supplies electric power to the brake mechanism based on a signal for urgently stopping the vehicle to decelerate the vehicle, and when the vehicle becomes equal to or lower than a predetermined speed, the brake mechanism It is configured to supply power to the vehicle to slow down and decelerate.
  • control unit may be configured to increase the power supply after deceleration to a predetermined value or more after a lapse of a predetermined time from the time when the vehicle becomes the predetermined speed or less.
  • the braking force of the brake mechanism is increased by increasing the power supplied to the brake mechanism to the predetermined value or more. It can be enlarged to prevent the vehicle from moving from a stopped state.
  • control unit is configured to increase the electric power supplied to the brake mechanism to a predetermined value or more after a lapse of a predetermined time from the time when the braking force becomes equal to or lower than the lower limit value due to the deceleration. Good.
  • the braking force of the brake mechanism is increased by increasing the power supplied to the brake mechanism to the predetermined value or more. , The vehicle can be prevented from moving from a stopped state.
  • control unit is configured so that when the braking force of the braking mechanism exceeds the upper limit value during deceleration of the vehicle, the braking force of the braking mechanism becomes constant at the upper limit value. You may.
  • the braking force of the braking mechanism can be made constant when the vehicle decelerates to some extent during deceleration, and a sudden change in speed can be suppressed.
  • the control unit may be configured to determine the electric power supplied to the brake mechanism at predetermined time intervals.
  • the amount of calculation can be suppressed as compared with the case where the electric power supplied to the brake mechanism is determined at any time.
  • the control unit is configured to supply electric power for slow braking to the brake mechanism when an abnormal signal indicating an abnormality due to an operation of an occupant switch is acquired as a signal for urgently stopping the vehicle. It may have been done. According to the above configuration, if the occupant is suddenly braked immediately after the operation of the occupant switch, the occupant is surprised. Therefore, it is possible to call attention by first causing the brake mechanism to perform slow braking.
  • an electric control method for an electric control device includes an electric circuit configured to supply electric power to a brake mechanism that applies braking force to wheels, and a control unit configured to control electric power supplied from the electric circuit to the brake mechanism. And.
  • the electric control method includes a deceleration step of supplying electric power to the brake mechanism to decelerate the vehicle based on a signal for urgently stopping the vehicle, and when the vehicle during deceleration becomes a predetermined speed or less. It is provided with a slow braking step by controlling the electric power supplied to the brake mechanism.
  • the braking force is weakened by controlling the electric power supplied to the braking mechanism when the vehicle falls below a predetermined speed during deceleration, and the acceleration change (jerk) at the moment when the vehicle completely stops. ) Can be reduced. Therefore, it is possible to suppress the load applied to the occupants when the vehicle makes an emergency stop.
  • an electric control program for the electric control device includes an electric circuit configured to supply electric power to a brake mechanism that applies braking force to wheels, and a control unit configured to control electric power supplied from the electric circuit to the brake mechanism. And.
  • the electric control program operates in the computer of the electric control device, the deceleration step of supplying electric power to the brake mechanism based on a signal for urgently stopping the vehicle to the electric control device to decelerate the vehicle. Then, when the speed of the decelerating vehicle becomes equal to or lower than a predetermined speed, the electric power supplied to the braking mechanism is controlled to execute the slow braking step.
  • the braking force is weakened by reducing the electric power supplied to the braking mechanism when the vehicle falls below a predetermined speed during deceleration, and the acceleration change (jerk) at the moment when the vehicle completely stops. Can be reduced. Therefore, it is possible to suppress the load applied to the occupants when the vehicle makes an emergency stop.
  • a non-temporary computer-readable medium for storing the electric control program includes an electric circuit configured to supply electric power to a brake mechanism that applies braking force to wheels, and a control unit configured to control electric power supplied from the electric circuit to the brake mechanism.
  • the electric control device When operating in the computer of the electric control device including the above, the electric control device is supplied with electric power to the brake mechanism based on a signal for urgently stopping the vehicle to decelerate the vehicle, and the deceleration is performed.
  • the electric power supplied to the braking mechanism is controlled to perform slow braking.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Regulating Braking Force (AREA)
  • Valves And Accessory Devices For Braking Systems (AREA)

Abstract

An air pressure control device comprising: an air pressure circuit configured to supply air to a brake mechanism that applies braking force to a wheel; and a control unit configured to control air pressure that is supplied from the air pressure circuit to the brake mechanism. The control unit is configured to decelerate a vehicle by supplying the air to the brake mechanism on the basis of a signal for urgently stopping the vehicle, and, when the vehicle reaches a speed equal to or lower than a predetermined speed, to reduce the air pressure that is supplied to the brake mechanism.

Description

[規則37.2に基づきISAが決定した発明の名称] ブレーキの空気圧制御装置、空気圧制御方法、及び空気圧制御プログラム[Name of invention determined by ISA based on Rule 37.2.] Brake air pressure control device, air pressure control method, and air pressure control program
 本開示は、空気圧制御装置、空気圧制御方法、及び空気圧制御プログラムに関する。 The present disclosure relates to an air pressure control device, an air pressure control method, and an air pressure control program.
 車両の運転者の体調急変等により、運転中に急にドライバーが安全運転を継続できなくなった場合に、緊急措置として、運転者以外の乗員の操作により車両を停止させるドライバー異常時対応システムのガイドラインが策定されている(例えば、非特許文献1参照)。また、このガイドラインに沿って、各種のブレーキシステム等が提案されている。 Guidelines for a driver abnormality response system that stops the vehicle by the operation of a occupant other than the driver as an emergency measure when the driver suddenly becomes unable to continue safe driving while driving due to sudden changes in the physical condition of the driver of the vehicle. Has been formulated (see, for example, Non-Patent Document 1). In addition, various brake systems and the like have been proposed in line with this guideline.
 ところで、上記ブレーキシステムにおいて、車両を緊急停止させるときには、急ぎつつも安全に停止することが求められている。すなわち、車両が緊急停止するときに乗員に掛かる負荷を抑制することが求められている。 By the way, in the above braking system, when the vehicle is stopped urgently, it is required to stop safely while hurrying. That is, it is required to suppress the load applied to the occupants when the vehicle makes an emergency stop.
 本開示の目的は、車両が緊急停止するときに乗員に掛かる負荷を抑制可能な空気圧制御装置、空気圧制御方法、及び空気圧制御プログラムを提供することにある。 An object of the present disclosure is to provide an air pressure control device, an air pressure control method, and an air pressure control program capable of suppressing a load applied to an occupant when a vehicle makes an emergency stop.
 本開示の一態様によれば、空気圧制御装置が提供される。前記空気圧制御装置は、車輪に制動力を与えるブレーキ機構に空気を供給するように構成された空気圧回路と、前記空気圧回路から前記ブレーキ機構に供給される空気圧を制御するように構成された制御部とを備え、前記制御部は、車両を緊急停止させるための信号に基づいて前記ブレーキ機構に空気を供給して前記車両の減速を行い、前記車両が所定速度以下になったときに前記ブレーキ機構に供給される空気圧の減圧を行うように構成されている。 According to one aspect of the present disclosure, an air pressure control device is provided. The air pressure control device includes an air pressure circuit configured to supply air to a brake mechanism that applies braking force to the wheels, and a control unit configured to control the air pressure supplied from the air pressure circuit to the brake mechanism. The control unit supplies air to the brake mechanism based on a signal for urgently stopping the vehicle to decelerate the vehicle, and when the vehicle becomes equal to or lower than a predetermined speed, the brake mechanism It is configured to reduce the pressure of the air supplied to the wheel.
 上記構成によれば、車両が減速中に所定速度以下になったときにブレーキ機構に供給される空気圧を減らすことで制動力が弱くなり、車両が完全に停止する瞬間の加速度変化(加加速度)を低減することができる。よって、車両が緊急停止するときに乗員に掛かる負荷を抑制することができる。 According to the above configuration, the braking force is weakened by reducing the air pressure supplied to the braking mechanism when the vehicle falls below a predetermined speed during deceleration, and the acceleration change (jerk) at the moment when the vehicle completely stops. Can be reduced. Therefore, it is possible to suppress the load applied to the occupants when the vehicle makes an emergency stop.
 上記空気圧制御装置について、前記制御部は、前記車両が前記所定速度以下になったときから所定時間経過後に前記減圧後の空気圧を所定値以上に増やすように構成されていてもよい。 Regarding the air pressure control device, the control unit may be configured to increase the air pressure after decompression to a predetermined value or more after a predetermined time has elapsed from the time when the vehicle becomes the predetermined speed or less.
 上記構成によれば、車両が所定速度以下になったときから所定時間経過後には車両が停止しているので、ブレーキ機構に供給される空気圧を所定値以上に増やすことでブレーキ機構の制動力が大きくなり、車両が停止状態から動かないようにすることができる。 According to the above configuration, since the vehicle is stopped after a predetermined time has elapsed from the time when the vehicle becomes below the predetermined speed, the braking force of the brake mechanism is increased by increasing the air pressure supplied to the brake mechanism to the predetermined value or more. It can be enlarged to prevent the vehicle from moving from a stopped state.
 上記空気圧制御装置について、前記制御部は、前記減圧によって空気圧が下限圧力以下になったときから所定時間経過後に前記ブレーキ機構に供給される空気圧を所定値以上に増やすように構成されていてもよい。 Regarding the air pressure control device, the control unit may be configured to increase the air pressure supplied to the brake mechanism to a predetermined value or more after a lapse of a predetermined time from the time when the air pressure becomes equal to or lower than the lower limit pressure due to the decompression. ..
 上記構成によれば、下限圧力以下になったときから所定時間経過後には車両が停止しているので、ブレーキ機構に供給される空気圧を所定値以上に増やすことでブレーキ機構の制動力が大きくなり、車両が停止状態から動かないようにすることができる。 According to the above configuration, since the vehicle is stopped after a predetermined time has elapsed from the time when the pressure falls below the lower limit pressure, the braking force of the brake mechanism is increased by increasing the air pressure supplied to the brake mechanism to a predetermined value or more. , The vehicle can be prevented from moving from a stopped state.
 上記空気圧制御装置について、前記制御部は、前記車両の減速中に前記ブレーキ機構に供給される空気圧が上限圧力以上になったとき、前記ブレーキ機構に供給される空気圧を上限圧力で一定にするように構成されていてもよい。 With respect to the air pressure control device, the control unit makes the air pressure supplied to the brake mechanism constant at the upper limit pressure when the air pressure supplied to the brake mechanism becomes equal to or higher than the upper limit pressure during deceleration of the vehicle. It may be configured in.
 上記構成によれば、車両が減速中にある程度減速した時点でブレーキ機構に供給される空気圧を一定にすることでブレーキ機構の制動力を一定とすることができ、速度の急激な変化を抑制することができる。 According to the above configuration, the braking force of the brake mechanism can be made constant by making the air pressure supplied to the brake mechanism constant when the vehicle decelerates to some extent during deceleration, and a sudden change in speed can be suppressed. be able to.
 上記空気圧制御装置について、前記制御部は、前記ブレーキ機構に供給される空気圧を所定時間毎に決定するように構成されていてもよい。
 上記構成によれば、所定時間毎にブレーキ機構に供給される空気圧を決定するため、ブレーキ機構に供給される空気圧を随時決定するものと比較して演算量を抑制することができる。
Regarding the air pressure control device, the control unit may be configured to determine the air pressure supplied to the brake mechanism at predetermined time intervals.
According to the above configuration, since the air pressure supplied to the brake mechanism is determined at predetermined time intervals, the calculation amount can be suppressed as compared with the case where the air pressure supplied to the brake mechanism is determined at any time.
 上記空気圧制御装置について、前記空気圧回路は、ブレーキ操作が行われたときに前記ブレーキ機構に空気を供給するブレーキバルブに代わって前記ブレーキ機構に空気を供給するように構成されていてもよい。 Regarding the air pressure control device, the air pressure circuit may be configured to supply air to the brake mechanism instead of a brake valve that supplies air to the brake mechanism when a brake operation is performed.
 上記構成によれば、通常は運転者のブレーキ操作によってブレーキバルブがブレーキ機構に空気を供給するが、運転者の異常時にはこのブレーキバルブではなく、制御部が空気圧回路を制御することでブレーキ機構に空気を供給することで車両を緊急停止することができる。 According to the above configuration, normally, the brake valve supplies air to the brake mechanism by the driver's brake operation, but when the driver is abnormal, the control unit controls the pneumatic circuit instead of this brake valve to make the brake mechanism. The vehicle can be stopped urgently by supplying air.
 上記空気圧制御装置について、前記制御部は、前記車両を緊急停止させるための信号として乗員スイッチの操作による異常を示す異常信号を取得すると、緩制動となる空気圧を前記ブレーキ機構に供給するように構成されていてもよい。上記構成によれば、乗員スイッチの操作後すぐに急制動を行うと乗員が驚くので、まずブレーキ機構に緩制動を行わせることで、注意喚起を行うことができる。 With respect to the air pressure control device, the control unit is configured to supply air pressure for slow braking to the brake mechanism when an abnormal signal indicating an abnormality due to an operation of an occupant switch is acquired as a signal for urgently stopping the vehicle. It may have been done. According to the above configuration, if the occupant is suddenly braked immediately after the operation of the occupant switch, the occupant is surprised. Therefore, it is possible to call attention by first causing the brake mechanism to perform slow braking.
 上記空気圧制御装置について、前記空気圧回路は、車両のエアタンクに接続する第1ポート、ブレーキ操作が行われたときに空気圧信号を出力するブレーキバルブに接続する第2ポート、前記空気圧信号に基づき車輪に制動力を加えるブレーキ機構に接続する第3ポートを有し、前記第2ポートから前記第3ポートに空気を供給する第1連通状態と、前記第1ポートから前記第3ポートに空気を供給する第2連通状態とを切り替えるように構成され、前記制御部は、車両を緊急停止させるための信号に基づいて前記空気圧回路を前記第1連通状態から前記第2連通状態に切り替えるように構成されていてもよい。 Regarding the air pressure control device, the air pressure circuit has a first port connected to the air tank of the vehicle, a second port connected to a brake valve that outputs an air pressure signal when a brake operation is performed, and a wheel based on the air pressure signal. It has a third port connected to a braking mechanism that applies braking force, and supplies air from the second port to the third port in a first communication state and from the first port to the third port. The control unit is configured to switch from the second communication state, and the control unit is configured to switch the pneumatic circuit from the first communication state to the second communication state based on a signal for urgently stopping the vehicle. You may.
 上記構成によれば、ブレーキバルブとブレーキ機構とを接続して第2ポートから第3ポートに空気を供給する第1連通状態から、エアタンクとブレーキ機構とを接続して第1ポートから第3ポートに空気を供給する第2連通状態に切り替える。このため、エアタンクからブレーキ機構に自動的に空気を供給して制動力を発生させることができる。 According to the above configuration, from the first communication state in which the brake valve and the brake mechanism are connected to supply air from the second port to the third port, the air tank and the brake mechanism are connected to the first port to the third port. Switch to the second communication state that supplies air to the. Therefore, air can be automatically supplied from the air tank to the brake mechanism to generate a braking force.
 本開示の一態様によれば、空気圧制御装置の空気圧制御方法が提供される。前記空気圧制御装置は、車輪に制動力を与えるブレーキ機構に空気を供給するように構成された空気圧回路と、前記空気圧回路から前記ブレーキ機構に供給される空気圧を制御するように構成された制御部とを備える。前記空気圧制御方法は、車両を緊急停止させるための信号に基づいて前記ブレーキ機構に空気を供給して前記車両の減速を行う減速ステップと、前記減速中の前記車両が所定速度以下になったときに前記ブレーキ機構に供給される空気圧を減らす空気圧減少ステップとを備える。 According to one aspect of the present disclosure, a method for controlling the air pressure of the air pressure control device is provided. The air pressure control device includes an air pressure circuit configured to supply air to a brake mechanism that applies braking force to the wheels, and a control unit configured to control the air pressure supplied from the air pressure circuit to the brake mechanism. And. The air pressure control method includes a deceleration step in which air is supplied to the brake mechanism to decelerate the vehicle based on a signal for urgently stopping the vehicle, and when the vehicle during deceleration becomes a predetermined speed or less. Is provided with an air pressure reducing step for reducing the air pressure supplied to the brake mechanism.
 上記方法によれば、車両が減速中に所定速度以下になったときにブレーキ機構に供給される空気圧を減らすことで制動力が弱くなり、車両が完全に停止する瞬間の加速度変化(加加速度)を低減することができる。よって、車両が緊急停止するときに乗員に掛かる負荷を抑制することができる。 According to the above method, the braking force is weakened by reducing the air pressure supplied to the braking mechanism when the vehicle falls below a predetermined speed during deceleration, and the acceleration change (jerk) at the moment when the vehicle completely stops. Can be reduced. Therefore, it is possible to suppress the load applied to the occupants when the vehicle makes an emergency stop.
 本開示の一態様によれば、空気圧制御装置の空気圧制御プログラムが提供される。前記空気圧制御装置は、車輪に制動力を与えるブレーキ機構に空気を供給するように構成された空気圧回路と、前記空気圧回路から前記ブレーキ機構に供給される空気圧を制御するように構成された制御部とを備える。前記空気圧制御プログラムは、前記空気圧制御装置のコンピュータにおいて動作するとき、前記空気圧制御装置に車両を緊急停止させるための信号に基づいて前記ブレーキ機構に空気を供給して前記車両の減速を行う減速ステップと、前記減速中の前記車両が所定速度以下になったときに前記ブレーキ機構に供給される空気圧を減らす空気圧減少ステップとを実行させる。 According to one aspect of the present disclosure, an air pressure control program for an air pressure control device is provided. The air pressure control device includes an air pressure circuit configured to supply air to a brake mechanism that applies braking force to the wheels, and a control unit configured to control the air pressure supplied from the air pressure circuit to the brake mechanism. And. When the pneumatic control program operates in the computer of the pneumatic control device, the deceleration step of supplying air to the brake mechanism based on a signal for urgently stopping the vehicle to the pneumatic control device to decelerate the vehicle. And the air pressure reduction step of reducing the air pressure supplied to the brake mechanism when the vehicle during deceleration becomes equal to or lower than a predetermined speed.
 上記プログラムによれば、車両が減速中に所定速度以下になったときにブレーキ機構に供給される空気圧を減らすことで制動力が弱くなり、車両が完全に停止する瞬間の加速度変化(加加速度)を低減することができる。よって、車両が緊急停止するときに乗員に掛かる負荷を抑制することができる。 According to the above program, the braking force is weakened by reducing the air pressure supplied to the braking mechanism when the vehicle drops below a predetermined speed during deceleration, and the acceleration change (jerk) at the moment when the vehicle completely stops. Can be reduced. Therefore, it is possible to suppress the load applied to the occupants when the vehicle makes an emergency stop.
 本開示の一態様によれば、空気圧制御プログラムを記憶する非一時的なコンピュータ可読媒体が提供される。前記空気圧制御プログラムは、車輪に制動力を与えるブレーキ機構に空気を供給するように構成された空気圧回路と、前記空気圧回路から前記ブレーキ機構に供給される空気圧を制御するように構成された制御部とを備える空気圧制御装置のコンピュータにおいて動作するとき、前記空気圧制御装置に、車両を緊急停止させるための信号に基づいて前記ブレーキ機構に空気を供給して前記車両の減速を行うことと、前記減速中の前記車両が所定速度以下になったときに前記ブレーキ機構に供給される空気圧を減らすこととを実行させる。 According to one aspect of the present disclosure, a non-transitory computer-readable medium for storing a pneumatic control program is provided. The air pressure control program includes an air pressure circuit configured to supply air to a brake mechanism that applies braking force to the wheels, and a control unit configured to control the air pressure supplied from the air pressure circuit to the brake mechanism. When operating in the computer of the air pressure control device including the above, the air pressure control device is supplied with air to the brake mechanism based on a signal for urgently stopping the vehicle to decelerate the vehicle, and the deceleration is performed. When the vehicle inside becomes a predetermined speed or less, the air pressure supplied to the brake mechanism is reduced.
空気圧制御装置の一実施形態について、空気圧制御装置を含む空気圧ブレーキシステムの全体構成を示す概略図。FIG. 6 is a schematic view showing an overall configuration of a pneumatic brake system including the pneumatic control device for one embodiment of the pneumatic control device. 同実施形態の空気圧制御装置の外観を示す斜視図。The perspective view which shows the appearance of the air pressure control device of the same embodiment. 同実施形態の異常時対応システムの概略図。The schematic diagram of the emergency response system of the same embodiment. 同実施形態の空気圧回路であって、ブレーキバルブとブレーキ機構とを連通する第1連通状態の回路図。The circuit diagram of the first communication state in which the brake valve and the brake mechanism are communicated with each other in the pneumatic circuit of the same embodiment. 同実施形態の空気圧回路であって、エアタンクとブレーキ機構とを連通する第2連通状態の回路図。The circuit diagram of the 2nd communication state which communicates with the air tank and the brake mechanism in the air pressure circuit of the same embodiment. 同実施形態の異常時対応システムの処理手順を示すフローチャート。The flowchart which shows the processing procedure of the abnormal state response system of the same embodiment. 同実施形態の異常時対応システムの制御例を示すグラフ。The graph which shows the control example of the abnormal state response system of the same embodiment. 同実施形態の異常時対応システムの処理手順を示すフローチャート。The flowchart which shows the processing procedure of the abnormal state response system of the same embodiment. 異常時対応システムの制御例の変形例を示すグラフ。The graph which shows the modification of the control example of the abnormal case response system. 空気圧制御装置の変形例について、空気圧制御装置を含む空気圧ブレーキシステムの一部を示す概略図。FIG. 6 is a schematic view showing a part of a pneumatic braking system including a pneumatic control device for a modified example of the pneumatic control device. 空気圧制御装置の変形例について、空気圧制御装置を含む空気圧ブレーキシステムの一部を示す概略図。FIG. 6 is a schematic view showing a part of a pneumatic braking system including a pneumatic control device for a modified example of the pneumatic control device.
 図1~図8を参照して、空気圧制御装置、及び空気圧制御装置に設けられる空気圧回路の一実施形態について説明する。なお、空気圧制御装置は、バス等の車両に搭載された空気圧ブレーキシステムに設けられている。 An embodiment of the air pressure control device and the air pressure circuit provided in the air pressure control device will be described with reference to FIGS. 1 to 8. The pneumatic control device is provided in the pneumatic braking system mounted on a vehicle such as a bus.
 図1に示すように、車両10に搭載された空気圧ブレーキシステム11は、ブレーキ機構の命令系統を空気圧で制御するとともに空気圧駆動式のブレーキ機構を備えるフルエアブレーキのシステムである。空気圧ブレーキシステム11は、コンプレッサ(図示略)が生成した圧縮空気を貯留するエアタンク12を備えている。エアタンク12は、第1タンク12Aと、第2タンク12Bと、第3タンク12Cとを有している。例えば、第1タンク12Aは、車両10の前輪に制動力を加えるための圧縮空気を貯留するタンクである。第2タンク12Bは、後輪に制動力を加えるための圧縮空気を貯留するタンクである。また、第3タンク12Cは、その他の用途で用いられる圧縮空気を貯留するタンクである。第1タンク12A及び第2タンク12Bは、ブレーキバルブ13の前方圧力室13A及び後方圧力室13Bに接続されている。また、第1タンク12A及び第2タンク12Bは、プロテクションバルブ14Aを介してエアホーン装置14Bに接続されている。 As shown in FIG. 1, the pneumatic brake system 11 mounted on the vehicle 10 is a full-air brake system in which the command system of the brake mechanism is controlled by air pressure and the brake mechanism is pneumatically driven. The pneumatic brake system 11 includes an air tank 12 for storing compressed air generated by a compressor (not shown). The air tank 12 has a first tank 12A, a second tank 12B, and a third tank 12C. For example, the first tank 12A is a tank for storing compressed air for applying a braking force to the front wheels of the vehicle 10. The second tank 12B is a tank for storing compressed air for applying a braking force to the rear wheels. The third tank 12C is a tank for storing compressed air used for other purposes. The first tank 12A and the second tank 12B are connected to the front pressure chamber 13A and the rear pressure chamber 13B of the brake valve 13. Further, the first tank 12A and the second tank 12B are connected to the air horn device 14B via the protection valve 14A.
 また、ブレーキバルブ13は、空気配管18を介して、リレーバルブ15に接続されている。ブレーキバルブ13のブレーキペダル13Cが運転者によって操作されると、ブレーキバルブ13からリレーバルブ15に空気圧信号が出力される。また、リレーバルブ15は図示しない空気配管によってエアタンク12に接続されている。リレーバルブ15がブレーキバルブ13から空気圧信号を入力すると、エアタンク12に貯留された多量の圧縮空気が、その空気配管を介してリレーバルブ15に供給される。リレーバルブ15に供給された多量の圧縮空気は、ABS(Anti-lock Brake System)コントロールバルブ16を介してブレーキチャンバー17に供給される。ブレーキチャンバー17は、空気が供給されることによって車輪に制動力を発生させる。ABSコントロールバルブ16及びブレーキチャンバー17は、空気圧駆動式のブレーキ機構を構成する。 Further, the brake valve 13 is connected to the relay valve 15 via the air pipe 18. When the brake pedal 13C of the brake valve 13 is operated by the driver, an air pressure signal is output from the brake valve 13 to the relay valve 15. Further, the relay valve 15 is connected to the air tank 12 by an air pipe (not shown). When the relay valve 15 inputs an air pressure signal from the brake valve 13, a large amount of compressed air stored in the air tank 12 is supplied to the relay valve 15 via the air pipe. A large amount of compressed air supplied to the relay valve 15 is supplied to the brake chamber 17 via the ABS (Anti-lock Break System) control valve 16. The brake chamber 17 generates a braking force on the wheels by supplying air. The ABS control valve 16 and the brake chamber 17 constitute a pneumatically driven brake mechanism.
 使用過程車両(既存車両)の空気圧ブレーキシステム11に、運転者以外の乗員の操作により車両を停止させる異常時対応システムを搭載する場合、ブレーキバルブ13とリレーバルブ15とを接続する命令系統の空気配管18の途中に、圧力制御モジュール(PCM:Pressure Control Module)20を設ける。圧力制御モジュール20は、エアタンク12(第3タンク12C)に接続する第1ポートP1、ブレーキバルブ13に接続する第2ポートP2、リレーバルブ15を含むブレーキ機構に接続する第3ポートP3を有している。圧力制御モジュール20は、空気圧制御装置に対応する。なお、圧力制御モジュール20は、ブレーキバルブ13とリレーバルブ15との間に設けられるので、空気圧駆動式以外のブレーキ機構を有する空気圧ブレーキシステム11にも取り付けが可能である。 In the process of use When the pneumatic brake system 11 of a vehicle (existing vehicle) is equipped with an abnormality response system that stops the vehicle by the operation of an occupant other than the driver, the air of the command system that connects the brake valve 13 and the relay valve 15 A pressure control module (PCM: Pressure Control Module) 20 is provided in the middle of the pipe 18. The pressure control module 20 has a first port P1 connected to the air tank 12 (third tank 12C), a second port P2 connected to the brake valve 13, and a third port P3 connected to the brake mechanism including the relay valve 15. ing. The pressure control module 20 corresponds to the air pressure control device. Since the pressure control module 20 is provided between the brake valve 13 and the relay valve 15, it can be attached to a pneumatic brake system 11 having a braking mechanism other than the pneumatically driven type.
 次に図2を参照して、圧力制御モジュール20の外観を含めた構成について説明する。
 図2に示すように、圧力制御モジュール20は、制御装置等を収容するケース210を備えている。ケース210は、例えば樹脂から形成されている。ケース210には、流路等が形成されたボディ211が連結されている。ボディ211は、例えばアルミダイカスト等の鋳造法により形成されている。ボディ211には、各種ポートを接続するポート接続部212が設けられている。ポート接続部212は、第1面213に1対の第2ポートP2が設けられている。
Next, with reference to FIG. 2, the configuration including the appearance of the pressure control module 20 will be described.
As shown in FIG. 2, the pressure control module 20 includes a case 210 that houses a control device and the like. The case 210 is made of, for example, resin. A body 211 having a flow path or the like is connected to the case 210. The body 211 is formed by a casting method such as aluminum die casting. The body 211 is provided with a port connection portion 212 for connecting various ports. The port connection portion 212 is provided with a pair of second ports P2 on the first surface 213.
 ポート接続部212のうち、第2ポートP2が設けられた第1面213に対して垂直な第2面214に1対の第3ポートP3が設けられている。第3ポートP3の隣には、エアタンク12からの圧縮空気が供給される第1供給路23が接続する第1ポートP1が設けられている。 Of the port connection portions 212, a pair of third ports P3 are provided on the second surface 214 perpendicular to the first surface 213 on which the second port P2 is provided. Next to the third port P3, a first port P1 to which a first supply path 23 to which compressed air from the air tank 12 is supplied is connected is provided.
 ボディ211の下側には、サイレンサ(消音器)が収容された排出部58が設けられている。また、ボディ211には、背面側に突出する突出部215が設けられている。また、ケース210の下面には、ケース210に収容された制御装置等を外部電源又は車載ネットワーク用の電気系統のケーブルを接続する接続部(図示略)が設けられている。 A discharge unit 58 containing a silencer (silencer) is provided on the lower side of the body 211. Further, the body 211 is provided with a protruding portion 215 protruding toward the back surface side. Further, on the lower surface of the case 210, a connection portion (not shown) for connecting the control device and the like housed in the case 210 to an external power supply or an electric system cable for an in-vehicle network is provided.
 上述したように、圧力制御モジュール20は、空気圧回路を制御する制御装置及び流路が一体化したユニットである。圧力制御モジュール20を車両10に取り付ける際は、突出部215を車体の所定の位置に固定する。また、第1ポートP1をエアタンク12に接続する配管に接続し、第2ポートP2をブレーキバルブ13に接続する配管に接続し、第3ポートP3をリレーバルブ15に接続する。また、電気系統のケーブルを、接続部に接続する。つまり、異常時対応のために空気圧ブレーキシステム11に後付けする主要部品としては、圧力制御モジュール20のみでよい。 As described above, the pressure control module 20 is a unit in which a control device for controlling a pneumatic circuit and a flow path are integrated. When the pressure control module 20 is attached to the vehicle 10, the protrusion 215 is fixed at a predetermined position on the vehicle body. Further, the first port P1 is connected to the pipe connected to the air tank 12, the second port P2 is connected to the pipe connected to the brake valve 13, and the third port P3 is connected to the relay valve 15. Also, connect the electrical cable to the connection. That is, only the pressure control module 20 may be the main component to be retrofitted to the pneumatic brake system 11 in order to deal with an abnormality.
 図3を参照して、圧力制御モジュール20の空気圧回路について詳細に説明する。
 圧力制御モジュール20は、空気圧回路22及びサブECU(電子制御装置:Electronic Control Unit)32を備えている。圧力制御モジュール20は、メインECU31とともに、異常時対応システム50を構成する。メインECU31は、ケース210の外部に設けられてもよいし、ケース210内に収容されてもよい。
The pneumatic circuit of the pressure control module 20 will be described in detail with reference to FIG.
The pressure control module 20 includes a pneumatic circuit 22 and a sub-ECU (electronic control unit: Electronic Control Unit) 32. The pressure control module 20 together with the main ECU 31 constitutes an abnormality response system 50. The main ECU 31 may be provided outside the case 210 or may be housed inside the case 210.
 メインECU31及びサブECU32は、演算部、通信インターフェース部、揮発性記憶部、不揮発性記憶部をそれぞれ備えている。演算部は、コンピュータプロセッサであって、不揮発性記憶部(記憶媒体)に記憶された制御プログラムにしたがって、空気圧ブレーキシステム11を制御する。演算部は、自身が実行する処理の少なくとも一部を、ASIC等の回路(circuitry)により実現してもよい。制御プログラムは、一つのコンピュータプロセッサによって実行されてもよいし、複数のコンピュータプロセッサによって実行されてもよい。また、メインECU31及びサブECU32は、CAN(Controller Area Network)33等の車載ネットワークに接続され、互いに各種情報を送受信する。なお、制御プログラムには、空気圧制御プログラムが含まれる。また、メインECU31は、空気圧制御方法に基づいて制御を行う。なお、空気圧制御プログラムは、非一時的なコンピュータ可読媒体に記憶されていてもよい。 The main ECU 31 and the sub ECU 32 each include a calculation unit, a communication interface unit, a volatile storage unit, and a non-volatile storage unit. The arithmetic unit is a computer processor and controls the pneumatic braking system 11 according to a control program stored in the non-volatile storage unit (storage medium). The arithmetic unit may realize at least a part of the processing executed by itself by a circuit (cyclery) such as an ASIC. The control program may be executed by one computer processor or may be executed by a plurality of computer processors. Further, the main ECU 31 and the sub ECU 32 are connected to an in-vehicle network such as CAN (Control Area Network) 33, and transmit and receive various information to and from each other. The control program includes an air pressure control program. Further, the main ECU 31 controls based on the air pressure control method. The pneumatic control program may be stored on a non-temporary computer-readable medium.
 メインECU31は、運転席操作スイッチ51及び解除スイッチ52がオン操作された場合に、それらから出力されるオン信号を入力する。運転席操作スイッチ51及び解除スイッチ52は、運転者の操作が想定されたスイッチであって、運転席近傍に設けられている。運転席操作スイッチ51がオン操作された場合には、異常時対応システム50が作動する。解除スイッチ52は、異常時対応システム50が誤って発動された場合等に、その動作を停止するためのスイッチである。なお、運転席操作スイッチ51がオン操作されて出力されるオン信号が車両を緊急停止させるための信号に相当する。 The main ECU 31 inputs an on signal output from the driver's seat operation switch 51 and the release switch 52 when they are turned on. The driver's seat operation switch 51 and the release switch 52 are switches that are supposed to be operated by the driver, and are provided in the vicinity of the driver's seat. When the driver's seat operation switch 51 is turned on, the error response system 50 is activated. The release switch 52 is a switch for stopping the operation of the abnormality response system 50 when it is erroneously activated. The on signal output when the driver's seat operation switch 51 is turned on corresponds to a signal for urgently stopping the vehicle.
 また、メインECU31は、客席操作スイッチ53がオン操作された場合に、それらから出力されるオン信号を入力する。客席操作スイッチ53は、運転者以外の乗員の操作が想定されたスイッチである。客席操作スイッチ53は、運転席以外の位置であって、運転者以外の乗員であっても操作可能な位置に設けられている。なお、客席操作スイッチ53がオン操作されて出力されるオン信号が車両を緊急停止させるための信号に相当する。 Further, when the audience seat operation switch 53 is turned on, the main ECU 31 inputs an on signal output from them. The passenger seat operation switch 53 is a switch that is supposed to be operated by an occupant other than the driver. The passenger seat operation switch 53 is provided at a position other than the driver's seat and can be operated by an occupant other than the driver. The on signal output when the passenger seat operation switch 53 is turned on corresponds to a signal for urgently stopping the vehicle.
 メインECU31は、CAN33を介して加速度センサ54から加速度情報を取得する。メインECU31は、車速センサ55から車速情報を直接取得する。メインECU31は、異常時対応システム50が作動を開始する場合に、車速から得られる減速度を目標値である目標減速度に近づけるように、空気圧ブレーキシステム11の目標空気圧を算出し、サブECU32に算出した目標空気圧を指示する。この目標減速度は、メインECU31等の記憶部に記憶されたデータを更新することによって変更することができる。例えば、車両10が乗合バスである場合には、車内で立つ乗客が存在することが想定されるため、目標減速度の絶対値を小さくする。また、車両10が、乗客全員が着座する高速バスである場合には、乗合バスに比べ、目標減速度の絶対値を大きくしてもよい。また、車両10の重量や車長に応じて、目標減速度を変更することも可能である。 The main ECU 31 acquires acceleration information from the acceleration sensor 54 via the CAN 33. The main ECU 31 directly acquires vehicle speed information from the vehicle speed sensor 55. The main ECU 31 calculates the target air pressure of the pneumatic brake system 11 so that the deceleration obtained from the vehicle speed approaches the target deceleration, which is the target value, when the abnormality response system 50 starts operating, and causes the sub ECU 32 to calculate the target air pressure. Indicate the calculated target air pressure. This target deceleration can be changed by updating the data stored in the storage unit such as the main ECU 31. For example, when the vehicle 10 is a shared bus, it is assumed that there are passengers standing in the vehicle, so the absolute value of the target deceleration is reduced. Further, when the vehicle 10 is a high-speed bus in which all passengers are seated, the absolute value of the target deceleration may be larger than that of the shared bus. It is also possible to change the target deceleration according to the weight and length of the vehicle 10.
 さらに、メインECU31は、異常時対応システム50が発動した場合に、車室内装置56及び車室外装置57に指示信号を出力する。車室内装置56は、例えばアクセルペダルの操作を不能にするアクセルインターロック機構である。メインECU31は、異常時対応システム50が発動した場合にはアクセルインターロック機構を作動させる。他にも、車室内装置56として、車室内に設けられた報知ブザー、車室内に設けられた報知ランプ等を設けてもよい。例えば、メインECU31は、異常時対応システム50が発動した場合には、報知ブザーから音を出力させ、報知ランプを点灯又は点滅させる。車室外装置57は、例えば、エアホーン装置14B(図1参照)、ハザードランプ、ブレーキランプ等である。例えば、メインECU31は、異常時対応システム50が発動した場合には、プロテクションバルブ14A等を駆動して、エアホーン装置14Bに空気を供給して警告音を発生させるとともに、ハザードランプ及びブレーキランプを点灯又は点滅させる。 Further, the main ECU 31 outputs an instruction signal to the vehicle interior device 56 and the vehicle outdoor device 57 when the abnormality response system 50 is activated. The vehicle interior device 56 is, for example, an accelerator interlock mechanism that makes it impossible to operate the accelerator pedal. The main ECU 31 activates the accelerator interlock mechanism when the error response system 50 is activated. In addition, as the vehicle interior device 56, a notification buzzer provided in the vehicle interior, a notification lamp provided in the vehicle interior, and the like may be provided. For example, when the abnormality response system 50 is activated, the main ECU 31 outputs a sound from the notification buzzer and turns on or blinks the notification lamp. The vehicle outdoor device 57 is, for example, an air horn device 14B (see FIG. 1), a hazard lamp, a brake lamp, or the like. For example, when the abnormality response system 50 is activated, the main ECU 31 drives the protection valve 14A and the like to supply air to the air horn device 14B to generate a warning sound and turn on the hazard lamp and the brake lamp. Or make it blink.
 サブECU32は、圧力制御モジュール20のケース210内に収容され、圧力制御モジュール20の各種バルブを制御する。圧力制御モジュール20は、エアタンク12に接続する第1供給路23を有している。第1供給路23は、前方の車輪に設けられたブレーキチャンバー17にリレーバルブ15を介して接続する前方空気供給路37と、後方の車輪に設けられたブレーキチャンバー17に接続する後方空気供給路38とに接続されている。前方空気供給路37及び後方空気供給路38は、1対の第3ポートP3にそれぞれ接続されている。 The sub ECU 32 is housed in the case 210 of the pressure control module 20 and controls various valves of the pressure control module 20. The pressure control module 20 has a first supply path 23 connected to the air tank 12. The first supply path 23 is a front air supply path 37 connected to the brake chamber 17 provided on the front wheel via a relay valve 15 and a rear air supply path 37 connected to the brake chamber 17 provided on the rear wheel. It is connected to 38. The front air supply path 37 and the rear air supply path 38 are connected to a pair of third ports P3, respectively.
 第1供給路23の途中には、リレーバルブ25が接続されている。リレーバルブ25は、排出口25Aを有している。排出口25Aは、サイレンサを有する排出部58に接続されている。また、リレーバルブ25は、パイロットポート25Bを有する。パイロットポート25Bは、第1供給路23から分岐する分岐路26に接続されている。分岐路26からパイロットポート25Bに印加される空気圧が大気圧等の所定圧の場合には、付勢ばね等の付勢力により、第1供給路23が遮断された排気状態となる。リレーバルブ25が排気状態となると、エアタンク12から前方空気供給路37及び後方空気供給路38への空気の流れが遮断される。また、リレーバルブ25が排気状態となると、第1供給路23のうちリレーバルブ25の下流側と排出部58とが連通されて、第1供給路23のうちリレーバルブ25の下流側の圧縮空気が排出され、大気圧等の所定圧になる。 A relay valve 25 is connected in the middle of the first supply path 23. The relay valve 25 has a discharge port 25A. The discharge port 25A is connected to a discharge unit 58 having a silencer. Further, the relay valve 25 has a pilot port 25B. The pilot port 25B is connected to a branch path 26 branching from the first supply path 23. When the air pressure applied from the branch path 26 to the pilot port 25B is a predetermined pressure such as atmospheric pressure, the first supply path 23 is cut off by the urging force of the urging spring or the like. When the relay valve 25 is in the exhaust state, the air flow from the air tank 12 to the front air supply path 37 and the rear air supply path 38 is cut off. When the relay valve 25 is in the exhaust state, the downstream side of the relay valve 25 in the first supply path 23 and the discharge portion 58 are communicated with each other, and the compressed air on the downstream side of the relay valve 25 in the first supply path 23 is communicated with each other. Is discharged and reaches a predetermined pressure such as atmospheric pressure.
 一方、分岐路26からパイロットポート25Bに印加される空気圧が大気圧等の所定圧よりも大きい駆動圧力に達している場合には、リレーバルブ25は、付勢ばね等の付勢力に抗して、第1供給路23を連通する供給状態となる。リレーバルブ25が供給状態となると、エアタンク12から前方空気供給路37及び後方空気供給路38への空気が供給される。リレーバルブ25が供給状態となると、第1供給路23と前方空気供給路37及び後方空気供給路38とが連通される。また、リレーバルブ25は、出口側(二次側)の圧力が過度に高くなると、第1供給路23の連通状態を遮断して排気状態となる。 On the other hand, when the air pressure applied from the branch path 26 to the pilot port 25B reaches a driving pressure larger than a predetermined pressure such as atmospheric pressure, the relay valve 25 resists the urging force of the urging spring or the like. , The supply state is such that the first supply path 23 is communicated with each other. When the relay valve 25 is in the supply state, air is supplied from the air tank 12 to the front air supply path 37 and the rear air supply path 38. When the relay valve 25 is in the supply state, the first supply path 23 is communicated with the front air supply path 37 and the rear air supply path 38. Further, when the pressure on the outlet side (secondary side) of the relay valve 25 becomes excessively high, the communication state of the first supply path 23 is cut off and the relay valve 25 becomes an exhaust state.
 分岐路26は、一方の端部が第1供給路23に接続され、他方の端部が排出部58に接続されている。この分岐路26の途中には、吸気用バルブ27及び排気用バルブ28が設けられている。吸気用バルブ27及び排気用バルブ28は電磁弁であり、サブECU32によって駆動される。吸気用バルブ27は、分岐路26のうち排気用バルブ28よりも上流寄り(エアタンク12寄り)に設けられている。吸気用バルブ27は、サブECU32から配線27Aを介しての電源の入り切り(駆動/非駆動)で動作が切り換わる。吸気用バルブ27は、電源が切られた非駆動の状態で分岐路26を閉じる閉位置となる。また、吸気用バルブ27は、電源が入れられた駆動の状態で分岐路26を開く開位置となる。 One end of the branch path 26 is connected to the first supply path 23, and the other end is connected to the discharge section 58. An intake valve 27 and an exhaust valve 28 are provided in the middle of the branch path 26. The intake valve 27 and the exhaust valve 28 are solenoid valves and are driven by the sub ECU 32. The intake valve 27 is provided on the branch path 26 closer to the upstream side (closer to the air tank 12) than the exhaust valve 28. The operation of the intake valve 27 is switched by turning on / off (driving / non-driving) the power supply from the sub ECU 32 via the wiring 27A. The intake valve 27 is in a closed position that closes the branch path 26 in a non-driven state in which the power is turned off. Further, the intake valve 27 is in an open position that opens the branch path 26 in a driven state in which the power is turned on.
 排気用バルブ28は、サブECU32から配線28Aを介しての電源の入り切り(駆動/非駆動)で動作が切り換わる電磁弁である。排気用バルブ28は、電源が切られた非駆動の状態で分岐路26を連通する開位置となる。また、排気用バルブ28は、電源が入れられた駆動の状態で分岐路26を閉塞する閉位置となる。つまり、排気用バルブ28は、吸気用バルブ27が非駆動の状態で閉位置になると吸気用バルブ27よりも下流及び信号供給路29を大気開放する。また、排気用バルブ28は、駆動状態で分岐路26のうち吸気用バルブ27の上流側及び第1供給路23のうちリレーバルブ25の上流側を大気圧とする。 The exhaust valve 28 is a solenoid valve whose operation is switched by turning on / off (driving / non-driving) the power supply from the sub ECU 32 via the wiring 28A. The exhaust valve 28 is in an open position that communicates with the branch path 26 in a non-driven state in which the power is turned off. Further, the exhaust valve 28 is in a closed position that closes the branch path 26 in the driven state in which the power is turned on. That is, the exhaust valve 28 opens the signal supply path 29 downstream of the intake valve 27 to the atmosphere when the intake valve 27 is not driven and is in the closed position. Further, in the driven state, the exhaust valve 28 has atmospheric pressure on the upstream side of the intake valve 27 in the branch path 26 and on the upstream side of the relay valve 25 in the first supply path 23.
 また、分岐路26のうち、吸気用バルブ27及び排気用バルブ28の途中には、リレーバルブ25に空気圧信号を供給する信号供給路29と、第1圧力センサ35とが接続されている。第1圧力センサ35は、分岐路26のうち吸気用バルブ27及び排気用バルブ28の間の圧力を検知して、サブECU32に出力する。 Further, in the branch path 26, a signal supply path 29 for supplying an air pressure signal to the relay valve 25 and a first pressure sensor 35 are connected in the middle of the intake valve 27 and the exhaust valve 28. The first pressure sensor 35 detects the pressure between the intake valve 27 and the exhaust valve 28 in the branch path 26 and outputs the pressure to the sub ECU 32.
 また、第1供給路23は、第3供給路30に接続されている。第3供給路30は、1対のダブルチェックバルブ36に接続されている。一方のダブルチェックバルブ36Aは、第3供給路30と、ブレーキバルブ13の前方圧力室13Aに接続する前方信号供給路24Aと、前方の車輪に制動力を発生させるための前方空気供給路37とに接続されている。このダブルチェックバルブ36Aは、第3供給路30及び前方信号供給路24Aのうち圧力が高い方からの圧縮空気の供給を許容し、低い方からの圧縮空気の供給を遮断する。前方空気供給路37には、第2圧力センサ39が接続されている。第2圧力センサ39は、検知した圧力をサブECU32に出力する。第2圧力センサ39が検知した圧力がブレーキチャンバー17に供給される「供給圧力」である。 Further, the first supply path 23 is connected to the third supply path 30. The third supply path 30 is connected to a pair of double check valves 36. On the other hand, the double check valve 36A includes a third supply path 30, a front signal supply path 24A connected to the front pressure chamber 13A of the brake valve 13, and a front air supply path 37 for generating braking force on the front wheels. It is connected to the. The double check valve 36A allows the supply of compressed air from the higher pressure side of the third supply path 30 and the forward signal supply path 24A, and shuts off the supply of compressed air from the lower pressure side. A second pressure sensor 39 is connected to the front air supply path 37. The second pressure sensor 39 outputs the detected pressure to the sub ECU 32. The pressure detected by the second pressure sensor 39 is the "supply pressure" supplied to the brake chamber 17.
 他方のダブルチェックバルブ36Bは、第3供給路30と、ブレーキバルブ13の後方圧力室13Bに接続する後方信号供給路24Bと、後方の車輪に制動力を加える後方空気供給路38とに接続されている。このダブルチェックバルブ36Bは、第3供給路30及び後方信号供給路24Bのうち圧力が高い方からの圧縮空気の供給を許容し、低い方からの圧縮空気の供給を遮断する。前方信号供給路24A及び後方信号供給路24Bは、1対の第2ポートP2にそれぞれ接続されている。 The other double check valve 36B is connected to a third supply path 30, a rear signal supply path 24B connected to the rear pressure chamber 13B of the brake valve 13, and a rear air supply path 38 that applies braking force to the rear wheels. ing. The double check valve 36B allows the supply of compressed air from the higher pressure side of the third supply path 30 and the rear signal supply path 24B, and shuts off the supply of compressed air from the lower pressure side. The front signal supply path 24A and the rear signal supply path 24B are connected to a pair of second ports P2, respectively.
 次に図4及び図5を参照して、圧力制御モジュール20の動作について説明する。図4は、運転席操作スイッチ51及び客席操作スイッチ53がオン操作されていない場合の空気圧回路22を示す。 Next, the operation of the pressure control module 20 will be described with reference to FIGS. 4 and 5. FIG. 4 shows a pneumatic circuit 22 when the driver's seat operation switch 51 and the passenger seat operation switch 53 are not turned on.
 図4に示すように、運転席操作スイッチ51及び客席操作スイッチ53がオン操作されていない場合、サブECU32は、吸気用バルブ27及び排気用バルブ28を非駆動とする。この場合、吸気用バルブ27は閉位置となり、排気用バルブ28は開位置となる。これにより、分岐路26のうち、吸気用バルブ27よりも下流は、排気用バルブ28が開位置となることにより大気圧等の所定圧となる。このため、パイロットポート25Bに加わる空気圧も所定圧となることから、リレーバルブ25が排気状態になる。リレーバルブ25が排気状態となると、第3供給路30及び第1供給路23のうちリレーバルブ25よりも下流の圧縮空気が排出部58から排出され、第3供給路30が所定圧となる。さらにブレーキペダル13Cに対し踏み込み操作等がなされると、前方信号供給路24A及び後方信号供給路24Bに空気圧信号が供給される。これにより、第3供給路30よりも前方信号供給路24A及び後方信号供給路24Bの圧力が高くなるため、ダブルチェックバルブ36A,36Bは、第3供給路30から前方空気供給路37及び後方空気供給路38への空気の流れをそれぞれ遮断する。そして、前方信号供給路24A及び後方信号供給路24Bから前方空気供給路37及び後方空気供給路38に空気圧信号を供給する。その結果、リレーバルブ15に空気圧信号が供給されることによって、エアタンク12からリレーバルブ15に多量の圧縮空気が供給される。リレーバルブ15がブレーキチャンバー17に圧縮空気を供給すると、車輪に制動力が加わる。なお、前方信号供給路24A及び後方信号供給路24Bを含む空気圧回路がブレーキ制御回路に対応する。 As shown in FIG. 4, when the driver's seat operation switch 51 and the passenger seat operation switch 53 are not turned on, the sub ECU 32 does not drive the intake valve 27 and the exhaust valve 28. In this case, the intake valve 27 is in the closed position and the exhaust valve 28 is in the open position. As a result, in the branch path 26, downstream of the intake valve 27, the exhaust valve 28 is in the open position, so that the pressure becomes a predetermined pressure such as atmospheric pressure. Therefore, the air pressure applied to the pilot port 25B also becomes a predetermined pressure, so that the relay valve 25 is in the exhaust state. When the relay valve 25 is in the exhaust state, compressed air downstream of the relay valve 25 in the third supply path 30 and the first supply path 23 is discharged from the discharge section 58, and the third supply path 30 becomes a predetermined pressure. Further, when the brake pedal 13C is depressed, an air pressure signal is supplied to the front signal supply path 24A and the rear signal supply path 24B. As a result, the pressure in the front signal supply path 24A and the rear signal supply path 24B becomes higher than that in the third supply path 30, so that the double check valves 36A and 36B have the front air supply path 37 and the rear air from the third supply path 30. The air flow to the supply path 38 is blocked. Then, the air pressure signal is supplied from the front signal supply path 24A and the rear signal supply path 24B to the front air supply path 37 and the rear air supply path 38. As a result, a large amount of compressed air is supplied from the air tank 12 to the relay valve 15 by supplying the air pressure signal to the relay valve 15. When the relay valve 15 supplies compressed air to the brake chamber 17, braking force is applied to the wheels. The pneumatic circuit including the front signal supply path 24A and the rear signal supply path 24B corresponds to the brake control circuit.
 図5は、運転席操作スイッチ51及び客席操作スイッチ53の少なくとも一方がオン操作された場合の空気圧回路22を示す。運転席操作スイッチ51及び客席操作スイッチ53の少なくとも一方がオン操作された場合、サブECU32は、メインECU31から送信された圧力指示を受信する。サブECU32は、圧力指示に基づいて、吸気用バルブ27及び排気用バルブ28を駆動する。これにより、吸気用バルブ27は開位置、排気用バルブ28は閉位置となる。エアタンク12の圧縮空気は、第1供給路23を介して、吸気用バルブ27と排気用バルブ28の間の分岐路26に供給される。吸気用バルブ27と排気用バルブ28の間の分岐路26の圧力が駆動圧力に到達すると、この圧力がパイロットポート25Bを介してリレーバルブ25に加わることにより、リレーバルブ25は供給状態になる。これにより、第1供給路23、リレーバルブ25を介して第3供給路30に圧縮空気が供給される。 FIG. 5 shows a pneumatic circuit 22 when at least one of the driver's seat operation switch 51 and the audience seat operation switch 53 is turned on. When at least one of the driver's seat operation switch 51 and the passenger seat operation switch 53 is turned on, the sub-ECU 32 receives the pressure instruction transmitted from the main ECU 31. The sub ECU 32 drives the intake valve 27 and the exhaust valve 28 based on the pressure instruction. As a result, the intake valve 27 is in the open position and the exhaust valve 28 is in the closed position. The compressed air of the air tank 12 is supplied to the branch path 26 between the intake valve 27 and the exhaust valve 28 via the first supply path 23. When the pressure in the branch path 26 between the intake valve 27 and the exhaust valve 28 reaches the driving pressure, this pressure is applied to the relay valve 25 via the pilot port 25B, so that the relay valve 25 is in the supply state. As a result, compressed air is supplied to the third supply path 30 via the first supply path 23 and the relay valve 25.
 第3供給路30に圧縮空気が供給されると、第3供給路30の圧力が、前方信号供給路24A及び後方信号供給路24Bよりも高くなる。このため、ダブルチェックバルブ36は、第3供給路30から、前方空気供給路37及び後方空気供給路38への空気の流れを許容し、前方信号供給路24A及び後方信号供給路24Bから前方空気供給路37及び後方空気供給路38への空気の流れを遮断する。なお、吸気用バルブ27、排気用バルブ28、及びリレーバルブ25を接続する流路(第1供給路23、分岐路26等)、第3供給路30を含む空気圧回路が、異常時ブレーキ制御回路に対応する。 When compressed air is supplied to the third supply path 30, the pressure in the third supply path 30 becomes higher than that in the front signal supply path 24A and the rear signal supply path 24B. Therefore, the double check valve 36 allows the flow of air from the third supply path 30 to the front air supply path 37 and the rear air supply path 38, and allows the front air from the front signal supply path 24A and the rear signal supply path 24B. The flow of air to the supply path 37 and the rear air supply path 38 is blocked. The air pressure circuit including the intake valve 27, the exhaust valve 28, the flow path (first supply path 23, branch path 26, etc.) connecting the relay valve 25, and the third supply path 30 is a brake control circuit when an abnormality occurs. Corresponds to.
 このように、ブレーキバルブ13とリレーバルブ15との間に圧力制御モジュール20を設けることにより、運転席操作スイッチ51及び客席操作スイッチ53がオン操作された場合には、空気圧駆動式の命令系統が、ブレーキバルブ13を介する系統から、エアタンク12から直接的に空気が供給される系統に切り替わる。このため、ブレーキバルブ13からの空気圧信号を入力しなくても、ブレーキチャンバー17を動作させて制動力を発生させることができる。 By providing the pressure control module 20 between the brake valve 13 and the relay valve 15 in this way, when the driver's seat operation switch 51 and the passenger seat operation switch 53 are turned on, the pneumatically driven command system is provided. , The system via the brake valve 13 is switched to the system in which air is directly supplied from the air tank 12. Therefore, the brake chamber 17 can be operated to generate a braking force without inputting the air pressure signal from the brake valve 13.
 また、サブECU32は、第1圧力センサ35及び第2圧力センサ39から所定のタイミングで検知圧力を取得する。例えば、サブECU32は、リレーバルブ25を供給状態に維持する場合には、第1圧力センサ35が検知した圧力が所定範囲となるように、吸気用バルブ27及び排気用バルブ28を駆動又は非駆動にする。また、メインECU31が、車両10を緩やかに停止させるため段階的に圧力を上昇させるようにサブECU32に対して圧力指示を送信する場合には、サブECU32は、第2圧力センサ39が検知した圧力が第1圧力閾値に到達したか否かを判断する。サブECU32が、検知圧力が第1圧力閾値に到達していないと判断した場合には、吸気用バルブ27及び排気用バルブ28を駆動してリレーバルブ25を供給状態に維持する。一方、サブECU32は、第2圧力センサ39が検知した圧力が第1圧力閾値に到達した場合には、吸気用バルブ27及び排気用バルブ28を非駆動にしてリレーバルブ25を排気状態とする。そして、メインECU31からの次の圧力指示を待機する。なお、信号供給路29の空気圧を吸気用バルブ27及び排気用バルブ28で制御して、リレーバルブ25を駆動することで所望の空気圧を第3供給路30に供給する。 Further, the sub ECU 32 acquires the detected pressure from the first pressure sensor 35 and the second pressure sensor 39 at a predetermined timing. For example, when the relay valve 25 is maintained in the supply state, the sub ECU 32 drives or does not drive the intake valve 27 and the exhaust valve 28 so that the pressure detected by the first pressure sensor 35 falls within a predetermined range. To. Further, when the main ECU 31 transmits a pressure instruction to the sub ECU 32 so as to gradually increase the pressure in order to gently stop the vehicle 10, the sub ECU 32 uses the pressure detected by the second pressure sensor 39. Determines whether or not has reached the first pressure threshold. When the sub ECU 32 determines that the detected pressure has not reached the first pressure threshold value, it drives the intake valve 27 and the exhaust valve 28 to maintain the relay valve 25 in the supply state. On the other hand, when the pressure detected by the second pressure sensor 39 reaches the first pressure threshold value, the sub ECU 32 does not drive the intake valve 27 and the exhaust valve 28 and puts the relay valve 25 in the exhaust state. Then, it waits for the next pressure instruction from the main ECU 31. The air pressure in the signal supply path 29 is controlled by the intake valve 27 and the exhaust valve 28, and the relay valve 25 is driven to supply the desired air pressure to the third supply path 30.
 次に図6~図8を参照して、メインECU31が行う異常時対応の処理の手順について説明する。図6に示す処理は、空気系統を制御する処理であって、運転席操作スイッチ51又は客席操作スイッチ53が操作され、メインECU31がそれらのスイッチから送信された操作信号を入力することを契機に開始されるものとする。また、メインECU31は、所定のタイミングで加速度センサ54及び車速センサ55から車両情報を取得していることを前提とする。図7では、車両の速度Vを実線で示し、ブレーキチャンバー17に供給する空気の圧力Paを太線で示し、減速度aを一点鎖線で示している。 Next, with reference to FIGS. 6 to 8, the procedure of the processing for dealing with abnormalities performed by the main ECU 31 will be described. The process shown in FIG. 6 is a process for controlling the air system, which is triggered by the operation of the driver's seat operation switch 51 or the passenger seat operation switch 53 and the main ECU 31 inputting the operation signals transmitted from those switches. It shall be started. Further, it is premised that the main ECU 31 acquires vehicle information from the acceleration sensor 54 and the vehicle speed sensor 55 at a predetermined timing. In FIG. 7, the speed V of the vehicle is shown by a solid line, the pressure Pa of the air supplied to the brake chamber 17 is shown by a thick line, and the deceleration a is shown by a chain line.
 図6及び図7に示すように、メインECU31は、時刻t1において操作信号が入力すると、客席操作スイッチ53が操作されたか否かを判断する(ステップS1)。すなわち、メインECU31は、入力した操作信号が、運転席操作スイッチ51からの信号であるか又は客席操作スイッチ53からの信号であるかを判断する。そして、メインECU31は、運転席操作スイッチ51が操作されたと判断した場合には(ステップS1:NO)、ステップS4に移行する。ここで、客席操作スイッチ53が操作された時刻t1までのフェーズを「システム待機区間S0」とする。 As shown in FIGS. 6 and 7, when the operation signal is input at time t1, the main ECU 31 determines whether or not the audience seat operation switch 53 has been operated (step S1). That is, the main ECU 31 determines whether the input operation signal is a signal from the driver's seat operation switch 51 or a signal from the audience seat operation switch 53. Then, when the main ECU 31 determines that the driver's seat operation switch 51 has been operated (step S1: NO), the main ECU 31 proceeds to step S4. Here, the phase up to the time t1 when the audience seat operation switch 53 is operated is referred to as "system standby section S0".
 一方、メインECU31は、客席操作スイッチ53が操作されたと判断した場合には(ステップS1:YES)、緩制動に必要な緩制動圧力Pa1をサブECU32に指示する(ステップS2)。緩制動とは、減速度の絶対値が比較的小さい制動、又はブレーキのかかる時間が短い制動であって、直後の解除スイッチ52の操作が行われた場合に通常の走行に戻ることを可能とする。そして、緩制動圧力を、サブECU32に送信する。サブECU32は、圧力指示に基づき吸気用バルブ27及び排気用バルブ28を駆動して、ブレーキチャンバー17に供給させる(図5参照)。 On the other hand, when the main ECU 31 determines that the audience seat operation switch 53 has been operated (step S1: YES), the main ECU 31 instructs the sub ECU 32 of the slow braking pressure Pa1 required for slow braking (step S2). Slow braking is braking in which the absolute value of deceleration is relatively small, or braking in which the braking time is short, and it is possible to return to normal running when the release switch 52 is operated immediately afterwards. To do. Then, the slow braking pressure is transmitted to the sub ECU 32. The sub ECU 32 drives the intake valve 27 and the exhaust valve 28 based on the pressure instruction to supply the brake chamber 17 (see FIG. 5).
 メインECU31は、緩制動時間T1が経過したか否かを判断する(ステップS3)。すなわち、メインECU31は、サブECU32に圧力指示を送信した時点、車両10が減速を開始した時点又はサブECU32から所定の応答信号を受信した時点からの経過時間によって緩制動時間T1が経過したか否かを判断する。この緩制動時間T1は、運転者が正常な状態であるにもかかわらず、客席操作スイッチ53が誤操作された場合に、運転者が解除スイッチ52を操作するために要する時間である。そして、メインECU31は、緩制動時間T1が経過していないと判断した場合には(ステップS3:NO)、緩制動圧力Pa1をサブECU32に指示しながら緩制動を継続する(ステップS2)。ここで、時刻t1から緩制動時間T1が経過した時刻t2までのフェーズを「注意喚起制動区間Ph1」とする。 The main ECU 31 determines whether or not the slow braking time T1 has elapsed (step S3). That is, whether or not the slow braking time T1 has elapsed depending on the elapsed time from the time when the main ECU 31 transmits the pressure instruction to the sub ECU 32, the time when the vehicle 10 starts decelerating, or the time when a predetermined response signal is received from the sub ECU 32. To judge. The slow braking time T1 is a time required for the driver to operate the release switch 52 when the passenger seat operation switch 53 is erroneously operated even though the driver is in a normal state. Then, when the main ECU 31 determines that the slow braking time T1 has not elapsed (step S3: NO), the main ECU 31 continues the slow braking while instructing the sub ECU 32 of the slow braking pressure Pa1 (step S2). Here, the phase from the time t1 to the time t2 when the slow braking time T1 has elapsed is referred to as a "warning braking section Ph1".
 一方、メインECU31は、緩制動時間が経過したと判断した場合には(ステップS3:YES)、本制動をサブECU32に指示する。本制動とは、車両10を緩制動よりも絶対値が大きい減速度で減速させ、最終的に停止させるためのものである。メインECU31は、自身の記憶部に記憶された本制動のための目標減速度を取得し、取得した車速から得られる減速度と比較して増加所定圧力ΔPa2及び減少所定圧力ΔPa4を算出する。そして、算出した空気圧を、サブECU32に送信する。サブECU32は、圧力指示に基づき、吸気用バルブ27及び排気用バルブ28を駆動する(図5参照)。なお、以下のステップS4以降がブレーキチャンバー17に空気を供給して車両の減速を行う「減速ステップ」に相当する。 On the other hand, when the main ECU 31 determines that the slow braking time has elapsed (step S3: YES), the main ECU 31 instructs the sub ECU 32 to perform the main braking. This braking is for decelerating the vehicle 10 with a deceleration having a larger absolute value than slow braking, and finally stopping the vehicle 10. The main ECU 31 acquires a target deceleration for main braking stored in its own storage unit, and calculates an increased predetermined pressure ΔPa2 and a decreased predetermined pressure ΔPa4 in comparison with the deceleration obtained from the acquired vehicle speed. Then, the calculated air pressure is transmitted to the sub ECU 32. The sub ECU 32 drives the intake valve 27 and the exhaust valve 28 based on the pressure instruction (see FIG. 5). The following steps S4 and subsequent steps correspond to "deceleration steps" in which air is supplied to the brake chamber 17 to decelerate the vehicle.
 メインECU31は、増加所定圧力ΔPa2を所定時間ΔT2毎に増加させることで供給圧力を増加させる(ステップS4)。すなわち、メインECU31は、所定時間ΔT2毎に供給圧力を決定する。メインECU31は、決定した空気圧をサブECU32に送信する。サブECU32は、メインECU31から送信された圧力指示に基づき吸気用バルブ27及び排気用バルブ28を駆動して、決定した目標圧力になるようにブレーキチャンバー17に供給させる。 The main ECU 31 increases the supply pressure by increasing the increased predetermined pressure ΔPa2 every predetermined time ΔT2 (step S4). That is, the main ECU 31 determines the supply pressure every predetermined time ΔT2. The main ECU 31 transmits the determined air pressure to the sub ECU 32. The sub-ECU 32 drives the intake valve 27 and the exhaust valve 28 based on the pressure instruction transmitted from the main ECU 31 to supply the brake chamber 17 to the determined target pressure.
 続いて、メインECU31は、供給圧力が上限圧力Pa3以上か否かを判断する(ステップS5)。すなわち、メインECU31は、増加所定圧力ΔPa2が増加されることで供給圧力が増加するので、増加した供給圧力が上限圧力Pa3以上か否かを判断する。そして、メインECU31は、供給圧力が上限圧力Pa3未満であると判断した場合には(ステップS5:NO)、ステップS4に移行して、増加所定圧力ΔPa2を所定時間ΔT2毎に増加させた供給圧力を供給する。ここで、時刻t2から上限圧力Pa3以上となった時刻t3までのフェーズを「制動力発生区間Ph2」とする。なお、非特許文献1には、緊急停止における減速度の上限が設けられており、減速度上限(例えば2.45m/ss)よりも大きいときには、減速を中断したり、供給圧力が上限圧力Pa3未満になるように排気したりする必要がある。 Subsequently, the main ECU 31 determines whether or not the supply pressure is equal to or higher than the upper limit pressure Pa3 (step S5). That is, since the supply pressure increases as the increased predetermined pressure ΔPa2 increases, the main ECU 31 determines whether or not the increased supply pressure is equal to or higher than the upper limit pressure Pa3. Then, when the main ECU 31 determines that the supply pressure is less than the upper limit pressure Pa3 (step S5: NO), the main ECU 31 proceeds to step S4 and increases the increased predetermined pressure ΔPa2 every predetermined time ΔT2. Supply. Here, the phase from the time t2 to the time t3 when the upper limit pressure Pa3 or more is defined as the "braking force generation section Ph2". In addition, Non-Patent Document 1 provides an upper limit of deceleration in an emergency stop, and when it is larger than the deceleration upper limit (for example, 2.45 m / ss), deceleration is interrupted or the supply pressure is the upper limit pressure Pa3. It is necessary to exhaust so that it is less than.
 一方、メインECU31は、供給圧力が上限圧力Pa3以上であると判断した場合には(ステップS5:YES)、供給圧力を上限圧力Pa3で一定とする(ステップS6)。すなわち、メインECU31は、供給圧力を上限圧力Pa3で一定とすることで、ブレーキチャンバー17の制動力を一定として、速度の急激な変化を抑制することができる。メインECU31は、決定した空気圧をサブECU32に送信する。サブECU32は、メインECU31から送信された圧力指示に基づき吸気用バルブ27及び排気用バルブ28を駆動して、決定した目標圧力になるようにブレーキチャンバー17に供給させる。 On the other hand, when the main ECU 31 determines that the supply pressure is equal to or higher than the upper limit pressure Pa3 (step S5: YES), the main ECU 31 keeps the supply pressure constant at the upper limit pressure Pa3 (step S6). That is, by keeping the supply pressure constant at the upper limit pressure Pa3, the main ECU 31 can keep the braking force of the brake chamber 17 constant and suppress a sudden change in speed. The main ECU 31 transmits the determined air pressure to the sub ECU 32. The sub-ECU 32 drives the intake valve 27 and the exhaust valve 28 based on the pressure instruction transmitted from the main ECU 31 to supply the brake chamber 17 to the determined target pressure.
 続いて、メインECU31は、車両の速度が所定速度Vth以下であるか否かを判断する(ステップS7)。すなわち、メインECU31は、ブレーキチャンバー17の制動によって車両の速度が減少して、所定速度Vth以下であるか否かを判断する。所定速度Vthは、車両が短時間で容易に停止することができる速度であり、例えば時速10~20km等の低い速度、停止する直前の速度、又は車速センサ55の測定可能な下限値である。そして、メインECU31は、車両の速度が所定速度Vthよりも大きいと判断した場合には(ステップS7:NO)、上限圧力Pa3をサブECU32に指示しながら車両の速度が所定速度Vth以下になるまで判断を繰り返す(ステップS7)。ここで、時刻t3から所定速度Vth以下となった時刻t4までのフェーズを「一定減速制動区間Ph3」とする。 Subsequently, the main ECU 31 determines whether or not the speed of the vehicle is equal to or less than the predetermined speed Vth (step S7). That is, the main ECU 31 determines whether or not the speed of the vehicle is reduced by braking the brake chamber 17 and is equal to or lower than the predetermined speed Vth. The predetermined speed Vth is a speed at which the vehicle can easily stop in a short time, for example, a low speed such as 10 to 20 km / h, a speed immediately before stopping, or a measurable lower limit value of the vehicle speed sensor 55. Then, when the main ECU 31 determines that the speed of the vehicle is higher than the predetermined speed Vth (step S7: NO), the main ECU 31 instructs the sub ECU 32 of the upper limit pressure Pa3 until the speed of the vehicle becomes equal to or lower than the predetermined speed Vth. The determination is repeated (step S7). Here, the phase from the time t3 to the time t4 when the predetermined speed is Vth or less is referred to as "constant deceleration braking section Ph3".
 一方、メインECU31は、車両の速度が所定速度Vth以下であると判断した場合には(ステップS7:YES)、減少所定圧力ΔPa4を所定時間ΔT4毎に供給する空気圧を減少させる(ステップS8)。すなわち、メインECU31は、所定時間ΔT4毎に供給圧力を決定する。メインECU31は、決定した空気圧をサブECU32に送信する。サブECU32は、メインECU31から送信された圧力指示に基づき吸気用バルブ27及び排気用バルブ28を駆動して、決定した目標圧力になるようにブレーキチャンバー17に供給させる。なお、ステップS8が減速中の車両が所定速度Vth以下になったときにブレーキチャンバー17に供給される空気圧を減らす「空気圧減少ステップ」に相当する。 On the other hand, when the main ECU 31 determines that the speed of the vehicle is equal to or less than the predetermined speed Vth (step S7: YES), the main ECU 31 reduces the air pressure for supplying the reduced predetermined pressure ΔPa4 every predetermined time ΔT4 (step S8). That is, the main ECU 31 determines the supply pressure every predetermined time ΔT4. The main ECU 31 transmits the determined air pressure to the sub ECU 32. The sub-ECU 32 drives the intake valve 27 and the exhaust valve 28 based on the pressure instruction transmitted from the main ECU 31 to supply the brake chamber 17 to the determined target pressure. It should be noted that step S8 corresponds to the "air pressure reduction step" in which the air pressure supplied to the brake chamber 17 is reduced when the decelerating vehicle becomes the predetermined speed Vth or less.
 続いて、メインECU31は、供給圧力が下限圧力Pa4以下であるか否かを判断する(ステップS9)。すなわち、メインECU31は、減少所定圧力ΔPa4が減少されることで供給圧力が減少するので、減少した供給圧力が下限圧力Pa4以下か否かを判断する。そして、メインECU31は、供給圧力が下限圧力Pa4より大きいと判断した場合には(ステップS9:NO)、ステップS8に移行して、減少所定圧力ΔPa4を所定時間ΔT4毎に減少させて供給する。 Subsequently, the main ECU 31 determines whether or not the supply pressure is equal to or lower than the lower limit pressure Pa4 (step S9). That is, since the supply pressure decreases as the decrease predetermined pressure ΔPa4 decreases, the main ECU 31 determines whether or not the reduced supply pressure is equal to or less than the lower limit pressure Pa4. Then, when the main ECU 31 determines that the supply pressure is larger than the lower limit pressure Pa4 (step S9: NO), the main ECU 31 proceeds to step S8 and supplies the reduced predetermined pressure ΔPa4 by decreasing it every ΔT4 for a predetermined time.
 一方、メインECU31は、供給圧力が下限圧力Pa4以下であると判断した場合には(ステップS9:YES)、供給圧力を下限圧力Pa4で一定とする(ステップS10)。すなわち、メインECU31は、供給圧力を下限圧力Pa4で一定とすることで、ブレーキチャンバー17の制動力を一定として、速度の急激な変化を抑制することができる。メインECU31は、決定した空気圧をサブECU32に送信する。サブECU32は、メインECU31から送信された圧力指示に基づき吸気用バルブ27及び排気用バルブ28を駆動して、決定した目標圧力になるようにブレーキチャンバー17に供給させる。 On the other hand, when the main ECU 31 determines that the supply pressure is equal to or lower than the lower limit pressure Pa4 (step S9: YES), the main ECU 31 keeps the supply pressure constant at the lower limit pressure Pa4 (step S10). That is, by keeping the supply pressure constant at the lower limit pressure Pa4, the main ECU 31 can keep the braking force of the brake chamber 17 constant and suppress a sudden change in speed. The main ECU 31 transmits the determined air pressure to the sub ECU 32. The sub-ECU 32 drives the intake valve 27 and the exhaust valve 28 based on the pressure instruction transmitted from the main ECU 31 to supply the brake chamber 17 to the determined target pressure.
 続いて、メインECU31は、下限圧力Pa4になってから停止判定時間T4が経過したか否かを判断する(ステップS11)。すなわち、メインECU31は、車両が停止するまでに必要な時間である停止判定時間T4が経過したか否かを判断する。そして、メインECU31は、停止判定時間T4が経過していないと判断した場合には(ステップS11:NO)、下限圧力Pa4をサブECU32に指示しながら停止判定時間T4が経過するまで判断を繰り返す(ステップS11)。なお、停止判定時間T4が所定時間に相当する。ここで、時刻t4から下限圧力Pa4になってから停止判定時間T4が経過した時刻t5までのフェーズを「制動力緩和区間Ph4」とする。また、時刻t5以降のフェーズを「停車制動区間Ph5」とする。 Subsequently, the main ECU 31 determines whether or not the stop determination time T4 has elapsed since the lower limit pressure Pa4 was reached (step S11). That is, the main ECU 31 determines whether or not the stop determination time T4, which is the time required for the vehicle to stop, has elapsed. Then, when the main ECU 31 determines that the stop determination time T4 has not elapsed (step S11: NO), the main ECU 31 repeats the determination until the stop determination time T4 elapses while instructing the sub ECU 32 of the lower limit pressure Pa4 (step S11: NO). Step S11). The stop determination time T4 corresponds to a predetermined time. Here, the phase from the time t4 to the time t5 when the stop determination time T4 elapses after the lower limit pressure Pa4 is reached is referred to as the "braking force relaxation section Ph4". Further, the phase after the time t5 is set as "stop braking section Ph5".
 一方、メインECU31は、停止判定時間T4が経過したと判断した場合には(ステップS11:YES)、供給圧力を停止圧力Pa5で一定とする(ステップS12)。すなわち、メインECU31は、供給圧力を下限圧力Pa4から停止圧力Pa5に増加させて終了まで停止圧力Pa5を供給させ続ける。メインECU31は、決定した空気圧をサブECU32に送信する。サブECU32は、メインECU31から送信された圧力指示に基づき吸気用バルブ27及び排気用バルブ28を駆動して、決定した目標圧力になるようにブレーキチャンバー17に供給させる。なお、停止圧力Pa5が所定値に相当する。 On the other hand, when the main ECU 31 determines that the stop determination time T4 has elapsed (step S11: YES), the supply pressure is kept constant at the stop pressure Pa5 (step S12). That is, the main ECU 31 increases the supply pressure from the lower limit pressure Pa4 to the stop pressure Pa5 and continues to supply the stop pressure Pa5 until the end. The main ECU 31 transmits the determined air pressure to the sub ECU 32. The sub-ECU 32 drives the intake valve 27 and the exhaust valve 28 based on the pressure instruction transmitted from the main ECU 31 to supply the brake chamber 17 to the determined target pressure. The stop pressure Pa5 corresponds to a predetermined value.
 続いて、メインECU31は、異常時対応が終了したか否かを判断する(ステップS13)。異常時対応は、車両10が停止しパーキングブレーキが作動した場合等に終了したと判断してもよいし、イグニッションスイッチがオフされた場合に終了したと判断してもよいし、その他のタイミングで終了したと判断してもよい。そして、メインECU31は、異常時対応が終了していないと判断した場合には(ステップS13:NO)、停止圧力Pa5をサブECU32に指示しながら継続する(ステップS4)。一方、メインECU31は、異常時対応が終了したと判断すると(ステップS13:YES)、異常時対応の処理を終了する。 Subsequently, the main ECU 31 determines whether or not the response to an abnormality has been completed (step S13). The response to an abnormality may be determined to have ended when the vehicle 10 has stopped and the parking brake has been activated, or it may have been determined to have ended when the ignition switch has been turned off, or at other timings. You may judge that it is finished. Then, when the main ECU 31 determines that the response to an abnormality has not been completed (step S13: NO), the main ECU 31 continues while instructing the sub ECU 32 to stop pressure Pa5 (step S4). On the other hand, when the main ECU 31 determines that the abnormality response has been completed (step S13: YES), the main ECU 31 ends the abnormality response process.
 また、メインECU31は、空気系統の異常時対応とは別に、本制動を実行開始するタイミング等の所定のタイミングで、車室内装置56及び車室外装置57を作動させる。これにより、車両10の乗員に異常が発生したことを報知するとともに、車両10の周辺を走行する他車両にも注意喚起を促すことができる。 Further, the main ECU 31 operates the vehicle interior device 56 and the vehicle outdoor device 57 at a predetermined timing such as the timing at which the main braking is started, in addition to the response to the abnormality of the air system. As a result, it is possible to notify the occupants of the vehicle 10 that an abnormality has occurred and to call attention to other vehicles traveling around the vehicle 10.
 次に図8にしたがって、解除スイッチ52が操作された場合の解除処理の手順について説明する。図8に示す処理は、運転席操作スイッチ51又は客席操作スイッチ53が操作され、メインECU31がその操作信号を入力することを契機に開始されるものとする。 Next, the procedure of the release process when the release switch 52 is operated will be described with reference to FIG. The process shown in FIG. 8 is assumed to be started when the driver's seat operation switch 51 or the passenger seat operation switch 53 is operated and the main ECU 31 inputs the operation signal.
 図8に示すように、メインECU31は、解除スイッチ52が操作されたか否かを判断する(ステップS20)。すなわち、メインECU31は、解除スイッチ52から操作信号が入力したか否かを判断する。そして、メインECU31は、解除スイッチ52が操作されたと判断した場合には(ステップS20:YES)、サブECU32に制動の解除指示を送信する(ステップS21)。解除指示を受信したサブECU32は、吸気用バルブ27及び排気用バルブ28を非駆動として、エアタンク12からブレーキチャンバー17側への空気の供給を遮断する。 As shown in FIG. 8, the main ECU 31 determines whether or not the release switch 52 has been operated (step S20). That is, the main ECU 31 determines whether or not an operation signal has been input from the release switch 52. Then, when the main ECU 31 determines that the release switch 52 has been operated (step S20: YES), the main ECU 31 transmits a braking release instruction to the sub ECU 32 (step S21). Upon receiving the release instruction, the sub ECU 32 does not drive the intake valve 27 and the exhaust valve 28, and shuts off the supply of air from the air tank 12 to the brake chamber 17 side.
 一方、メインECU31は、解除スイッチ52が操作されていないと判断した場合には(ステップS20:NO)、異常時対応が終了したか否かを判断する(ステップS22)。そして、メインECU31は、異常時対応が終了していないと判断した場合には(ステップS22:NO)、ステップS20に移行する。一方、メインECU31は、異常時対応が終了したと判断すると(ステップS22:YES)、解除処理を終了する。 On the other hand, when the main ECU 31 determines that the release switch 52 has not been operated (step S20: NO), the main ECU 31 determines whether or not the response to an abnormality has been completed (step S22). Then, when the main ECU 31 determines that the response to an abnormality has not been completed (step S22: NO), the main ECU 31 proceeds to step S20. On the other hand, when the main ECU 31 determines that the response to an abnormality has been completed (step S22: YES), the main ECU 31 ends the release process.
 次に、本実施形態の効果について説明する。
 (1)車両が減速中に所定速度Vth以下になったときにブレーキチャンバー17に供給される空気圧を減らすことで制動力が弱くなり、車両が完全に停止する瞬間の加速度変化(加加速度)を低減することができる。よって、車両が緊急停止するときに乗員に掛かる負荷を抑制することができる。
Next, the effect of this embodiment will be described.
(1) The braking force is weakened by reducing the air pressure supplied to the brake chamber 17 when the vehicle becomes less than the predetermined speed Vth during deceleration, and the acceleration change (jerk) at the moment when the vehicle completely stops is obtained. Can be reduced. Therefore, it is possible to suppress the load applied to the occupants when the vehicle makes an emergency stop.
 (2)下限圧力Pa4以下になったときから所定時間経過後には車両が停止しているので、ブレーキチャンバー17に供給される空気圧を停止圧力Pa5以上に増やすことでブレーキチャンバー17の制動力が大きくなり、車両が停止状態から動かないようにすることができる。 (2) Since the vehicle has stopped after a predetermined time has passed since the lower limit pressure Pa4 or less, the braking force of the brake chamber 17 is increased by increasing the air pressure supplied to the brake chamber 17 to the stop pressure Pa5 or more. Therefore, the vehicle can be prevented from moving from a stopped state.
 (3)減速中にある程度減速するとブレーキチャンバー17に供給される空気圧を上限圧力Pa3で一定にすることでブレーキチャンバー17の制動力を一定とすることができ、車両の速度Vの急激な変化を抑制することができる。 (3) When the vehicle decelerates to some extent during deceleration, the braking force of the brake chamber 17 can be made constant by making the air pressure supplied to the brake chamber 17 constant at the upper limit pressure Pa3, and a sudden change in the speed V of the vehicle can be caused. It can be suppressed.
 (4)所定時間ΔT2及び所定時間ΔT4毎にブレーキチャンバー17に供給される空気圧を決定するため、ブレーキチャンバー17に供給される空気圧を随時決定するものと比較して演算量を抑制することができる。 (4) Since the air pressure supplied to the brake chamber 17 is determined every predetermined time ΔT2 and predetermined time ΔT4, the calculation amount can be suppressed as compared with the case where the air pressure supplied to the brake chamber 17 is determined at any time. ..
 (5)通常は運転者のブレーキ操作によってブレーキバルブがブレーキチャンバー17に空気を供給するが、運転者の異常時にはこのブレーキバルブではなく、制御部が空気圧回路を制御することでブレーキチャンバー17に空気を供給することで車両を緊急停止することができる。 (5) Normally, the brake valve supplies air to the brake chamber 17 by the driver's brake operation, but when the driver is abnormal, the control unit controls the pneumatic circuit instead of this brake valve to supply air to the brake chamber 17. The vehicle can be stopped urgently by supplying.
 (6)乗員スイッチの操作後すぐに急制動を行うと乗員が驚くので、まずブレーキチャンバー17に緩制動を行わせることで、注意喚起を行うことができる。
 (7)ブレーキバルブとブレーキチャンバー17とを接続して第2ポートから第3ポートに空気を供給する第1連通状態から、エアタンクとブレーキチャンバー17とを接続して第1ポートから第3ポートに空気を供給する第2連通状態に切り替える。このため、エアタンクからブレーキチャンバー17に自動的に空気を供給して制動力を発生させることができる。
(6) Since the occupant is surprised if sudden braking is performed immediately after the operation of the occupant switch, attention can be alerted by first causing the brake chamber 17 to perform slow braking.
(7) From the first communication state in which the brake valve and the brake chamber 17 are connected to supply air from the second port to the third port, the air tank and the brake chamber 17 are connected from the first port to the third port. Switch to the second communication state that supplies air. Therefore, air can be automatically supplied from the air tank to the brake chamber 17 to generate a braking force.
 (他の実施形態)
 上記実施形態は、以下のように変更して実施することができる。上記実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
(Other embodiments)
The above embodiment can be modified and implemented as follows. The above embodiment and the following modified examples can be implemented in combination with each other within a technically consistent range.
 ・上記実施形態において、所定時間ΔT2と所定時間ΔT4とは同じであってもよいし、異なってもよい。
 ・上記実施形態では、メインECU31が所定時間ΔT2及び所定時間ΔT4毎にブレーキチャンバー17に供給される圧力を決定した。しかしながら、図9に示すように、メインECU31が随時演算を行いブレーキチャンバー17に供給される圧力を決定してもよい。このようにすれば、車両の速度に応じてブレーキチャンバー17に供給される圧力を的確に決定して、制動を行うことができる。
-In the above embodiment, the predetermined time ΔT2 and the predetermined time ΔT4 may be the same or different.
In the above embodiment, the main ECU 31 determines the pressure supplied to the brake chamber 17 every predetermined time ΔT2 and predetermined time ΔT4. However, as shown in FIG. 9, the main ECU 31 may perform calculations at any time to determine the pressure supplied to the brake chamber 17. In this way, the pressure supplied to the brake chamber 17 can be accurately determined according to the speed of the vehicle, and braking can be performed.
 ・上記実施形態では、下限圧力Pa4になってから停止判定時間T4が経過したか否かを判断した。しかしながら、所定速度Vthになってから停止判定時間が経過したか否かを判断してもよい。このような構成によれば、所定速度Vth以下になったときから停止判定時間T4経過後には車両が停止しているので、ブレーキチャンバー17に供給される空気圧を停止圧力Pa5以上に増やすことでブレーキチャンバー17の制動力が大きくなり、車両が停止状態から動かないようにすることができる。 -In the above embodiment, it is determined whether or not the stop determination time T4 has elapsed since the lower limit pressure Pa4 was reached. However, it may be determined whether or not the stop determination time has elapsed since the predetermined speed Vth was reached. According to such a configuration, since the vehicle is stopped after the stop determination time T4 elapses from the time when the predetermined speed becomes Vth or less, the brake is applied by increasing the air pressure supplied to the brake chamber 17 to the stop pressure Pa5 or more. The braking force of the chamber 17 is increased, and the vehicle can be prevented from moving from the stopped state.
 ・上記実施形態では、停止判定時間T4経過後に、停止圧力Pa5で一定としたが、パーキングブレーキや、電動パーキングブレーキを作動させて車両を停止状態に維持してもよい。 -In the above embodiment, the stop pressure Pa5 is constant after the stop determination time T4 elapses, but the parking brake or the electric parking brake may be activated to keep the vehicle in the stopped state.
 ・上記実施形態では、客席操作スイッチ53が操作されると緩制動時間T1の間、緩制動圧力Pa1をブレーキチャンバー17に供給させた。しかしながら、緩制動時間T1を注意喚起時間として、ブレーキチャンバー17に圧力を供給しないでもよい。 -In the above embodiment, when the audience seat operation switch 53 is operated, the slow braking pressure Pa1 is supplied to the brake chamber 17 during the slow braking time T1. However, the pressure may not be supplied to the brake chamber 17 with the slow braking time T1 as the alert time.
 ・上記実施形態では、フルエアブレーキの車両10に、空気圧制御装置及び空気圧回路を適用した。これに限らず、空気圧制御装置及び空気圧回路は、その他の形式のブレーキシステムを有する車両にも適用可能である。図10に示すように、圧力制御モジュール20は、エアオーバーハイドロリック式のブレーキ機構を有する車両10に適用することができる。このブレーキ機構は、圧力制御モジュール20を、ABSコントロールバルブ16を介して、ブレーキブースター100~102に接続する。ブレーキブースター100~102は、前輪用、後方左側の車輪用、後方右側の車輪用のブースターであり、空気圧を利用して液圧回路の液圧を高めることによって車輪に制動力を発生させる。また、図11に示すように、圧力制御モジュール20を、前輪用のブレーキブースター103と、後輪用のブレーキブースター104と、液圧回路に設けられたABSコントロールバルブ105とを備えたブレーキ機構に適用してもよい。又は、空気圧制御装置及び空気圧回路は、図10及び図11以外のブレーキ機構のものにも適用可能である。 -In the above embodiment, the air pressure control device and the air pressure circuit are applied to the vehicle 10 with the full air brake. Not limited to this, the pneumatic control device and the pneumatic circuit are also applicable to vehicles having other types of braking systems. As shown in FIG. 10, the pressure control module 20 can be applied to a vehicle 10 having an air-over hydraulic braking mechanism. This brake mechanism connects the pressure control module 20 to the brake boosters 100 to 102 via the ABS control valve 16. The brake boosters 100 to 102 are boosters for front wheels, rear left wheels, and rear right wheels, and generate braking force on the wheels by increasing the hydraulic pressure of the hydraulic circuit by using air pressure. Further, as shown in FIG. 11, the pressure control module 20 is attached to a brake mechanism including a brake booster 103 for front wheels, a brake booster 104 for rear wheels, and an ABS control valve 105 provided in a hydraulic circuit. May be applied. Alternatively, the air pressure control device and the air pressure circuit can also be applied to those of a brake mechanism other than those in FIGS. 10 and 11.
 ・上記実施形態では、ボディ211を金属製としたが、これに代えて、樹脂により形成してもよい。例えばまた、ボディ211は鋳造法により形成されたものとしたが、これに代えて若しくは加えてプレス加工や切削加工により形成された部品を組み合わせてボディ211を構成してもよい。 -In the above embodiment, the body 211 is made of metal, but instead of this, it may be formed of resin. For example, although the body 211 is formed by a casting method, the body 211 may be formed by combining parts formed by pressing or cutting instead of or in addition to the body 211.
 ・上記実施形態では、エアタンク12を3つのタンクに分けたが、1つのタンクでもよく、2つ又は4つ以上のタンクであってもよい。また、エアタンク12と空気圧機器との接続関係は適宜変更可能である。例えば圧力制御モジュール20の第1ポートP1は、第3タンク12C以外のタンクに接続されてもよい。 -In the above embodiment, the air tank 12 is divided into three tanks, but one tank may be used, or two or four or more tanks may be used. Further, the connection relationship between the air tank 12 and the pneumatic device can be changed as appropriate. For example, the first port P1 of the pressure control module 20 may be connected to a tank other than the third tank 12C.
 ・上記実施形態において、メインECU31は、運転席操作スイッチ51、解除スイッチ52、客席操作スイッチ53から、CAN33等の車載ネットワークを介してオン信号などを受信してもよい。車載ネットワークは、CAN33以外に、FlexRay(登録商標)、Ethernet(登録商標)等のネットワークを用いてもよい。 -In the above embodiment, the main ECU 31 may receive an on signal or the like from the driver's seat operation switch 51, the release switch 52, and the audience seat operation switch 53 via an in-vehicle network such as CAN 33. As the in-vehicle network, a network such as FlexRay (registered trademark) or Ethernet (registered trademark) may be used in addition to CAN33.
 ・上記実施形態では、メインECU31は、加速度センサ54から加速度情報を取得したが、これに代えて、車速センサ55から加速度情報を取得してもよい。なお、加速度も特許請求の範囲の「車両の速度」に含まれる。 -In the above embodiment, the main ECU 31 acquires the acceleration information from the acceleration sensor 54, but instead of this, the acceleration information may be acquired from the vehicle speed sensor 55. Acceleration is also included in the "vehicle speed" of the claims.
 ・上記実施形態では、異常時対応システム50は、メインECU31及びサブECU32を備えた。これに代えて若しくは加えて、メインECU31及びサブECU32を、第1制御部の機能と第2制御部の機能とを有する1つのECU又はその他の制御回路から構成してもよい。又は、これらの機能を3つ以上のECU又はその他の制御回路に分散させて構成してもよい。 -In the above embodiment, the abnormality response system 50 includes a main ECU 31 and a sub ECU 32. Alternatively or additionally, the main ECU 31 and the sub-ECU 32 may be composed of one ECU having the function of the first control unit and the function of the second control unit, or another control circuit. Alternatively, these functions may be distributed and configured in three or more ECUs or other control circuits.
 ・上記実施形態において、異常時対応システム50は、当該システムの機能をオン/オフできる主スイッチ(図示略)を備えてもよい。主スイッチに対して所定の操作を行うこと、又は主スイッチを所定の制御装置等により制御することで、例えば運転席操作スイッチ51、解除スイッチ52及び客席操作スイッチ53の操作を無効にすることができる。 -In the above embodiment, the abnormality response system 50 may include a main switch (not shown) capable of turning on / off the function of the system. By performing a predetermined operation on the main switch or controlling the main switch by a predetermined control device or the like, for example, the operation of the driver's seat operation switch 51, the release switch 52, and the passenger seat operation switch 53 can be invalidated. it can.
 ・上記実施形態では、空気圧回路22は、吸気用バルブ27及び排気用バルブ28によって空気圧駆動式のリレーバルブ25を駆動した。これに代えて、第1供給路23に電磁弁を設け、この電磁弁により、第1供給路23を開閉してもよい。 -In the above embodiment, the pneumatic circuit 22 drives the pneumatically driven relay valve 25 by the intake valve 27 and the exhaust valve 28. Instead of this, a solenoid valve may be provided in the first supply path 23, and the first supply path 23 may be opened and closed by the solenoid valve.
 ・上記実施形態において、リレーバルブ25を省略して、信号供給路29を第3供給路に直接接続してもよい。このような構成にしても、信号供給路29の空気圧を吸気用バルブ27及び排気用バルブ28で制御することで所望の空気圧を第3供給路30に供給することができる。 -In the above embodiment, the relay valve 25 may be omitted and the signal supply path 29 may be directly connected to the third supply path. Even with such a configuration, a desired air pressure can be supplied to the third supply path 30 by controlling the air pressure of the signal supply path 29 with the intake valve 27 and the exhaust valve 28.
 ・上記実施形態では、空気圧回路22は、空気圧によって空気の供給方向を切り替えるダブルチェックバルブ36を備えた。ダブルチェックバルブ36に代えて、サブECU32によって駆動及び非駆動とされる電磁弁を設けてもよい。運転席操作スイッチ51又は客席操作スイッチ53がオン操作されると、サブECU32は、その電磁弁を駆動(又は非駆動)して、空気の供給方向を切り替える。 -In the above embodiment, the pneumatic circuit 22 includes a double check valve 36 that switches the air supply direction according to the air pressure. Instead of the double check valve 36, an electromagnetic valve that is driven and not driven by the sub ECU 32 may be provided. When the driver's seat operation switch 51 or the passenger seat operation switch 53 is turned on, the sub-ECU 32 drives (or does not drive) its solenoid valve to switch the air supply direction.
 ・上記実施形態において、第1圧力センサ35の構成を省略してもよい。この場合、サブECU32は、第1圧力センサ35が検知した圧力の代わりに、第2圧力センサ39が検知した圧力を使用して制御を行う。 -In the above embodiment, the configuration of the first pressure sensor 35 may be omitted. In this case, the sub-ECU 32 controls using the pressure detected by the second pressure sensor 39 instead of the pressure detected by the first pressure sensor 35.
 ・上記実施形態では、運転席操作スイッチ51及び客席操作スイッチ53のオン操作により異常時対応を実行した。これに代えて若しくは加えて、運転者の疲労状態又は健康状態を検知する生体検知装置を用いてもよい。生体検知装置は、運転者の顔や頭部の位置、姿勢、瞼、視線等の目の状態、脈拍数、心拍数、体温等、1又は複数のパラメータを用いて運転者の運転状態を検知する。この態様においては、生体検知装置が運転者の異常を検知した場合に異常信号を送信する。或いは、車両に搭載されたECUが、車速、アクセルペダルやブレーキペダルの操作の有無等の車両状態と道路情報とを比較して、運転の異常を検知した場合には異常信号を送信してもよい。 -In the above embodiment, an abnormality response is executed by turning on the driver's seat operation switch 51 and the audience seat operation switch 53. Alternatively or additionally, a biological detection device that detects the driver's fatigue or health condition may be used. The biological detection device detects the driver's driving condition using one or more parameters such as the position of the driver's face and head, posture, eyelids, eye condition such as line of sight, pulse rate, heart rate, body temperature, etc. To do. In this aspect, when the biological detection device detects an abnormality of the driver, an abnormality signal is transmitted. Alternatively, the ECU mounted on the vehicle may compare the vehicle state such as the vehicle speed, the presence / absence of operation of the accelerator pedal or the brake pedal with the road information, and transmit an abnormality signal when a driving abnormality is detected. Good.
 ・上記実施形態では、空気圧制御装置は、ブレーキの命令系統を空気圧回路とする使用過程車両に後付けされるものとして説明したが、EBSを搭載した車両に後付けされてもよい。また、空気圧制御装置は、新車に搭載されてもよい。 -In the above embodiment, the pneumatic control device has been described as being retrofitted to a vehicle in use in which the command system of the brake is a pneumatic circuit, but it may be retrofitted to a vehicle equipped with EBS. In addition, the air pressure control device may be installed in a new vehicle.
 ・上記実施形態では、空気圧制御装置は、バス等の車両に搭載されるものとして説明した。車両は、バスの他、トラック、建機等でもよい。また、これ以外の態様として、空気圧制御装置は、乗用車、鉄道車両等、他の車両に搭載されてもよい。 -In the above embodiment, the air pressure control device has been described as being mounted on a vehicle such as a bus. The vehicle may be a truck, a construction machine, or the like, in addition to a bus. In addition, as another aspect, the air pressure control device may be mounted on another vehicle such as a passenger car or a railroad vehicle.
 ・油圧回路でブレーキ機構を制御する新車又は使用過程車両においても運転者の異常は発生し得るため、同様な課題が存在する。このため、上記実施形態の圧力制御モジュール20を、ブレーキ機構への命令系統を油圧で行う車両に適用してもよい。油圧回路においても圧力制御モジュール20は上記実施形態と同様に作動する。この態様において、制御対象となるブレーキ機構は、ブレーキチャンバー以外の機構でもよい。なお、油圧回路及び空気圧回路は、流体の圧力によって駆動する回路としての一例である。 ・ A similar problem exists because a driver's abnormality can occur in a new vehicle or a vehicle in use whose brake mechanism is controlled by a hydraulic circuit. Therefore, the pressure control module 20 of the above embodiment may be applied to a vehicle in which the command system to the brake mechanism is hydraulically applied. In the hydraulic circuit, the pressure control module 20 operates in the same manner as in the above embodiment. In this aspect, the brake mechanism to be controlled may be a mechanism other than the brake chamber. The hydraulic circuit and the pneumatic circuit are examples of circuits driven by the pressure of a fluid.
 ・本件発明は空気圧ブレーキに限らず油圧ブレーキにも適用することができる。
 本油圧ブレーキの一態様によれば、油圧制御装置が提供される。前記油圧制御装置は、車輪に制動力を与えるブレーキ機構に油を供給するように構成された油圧回路と、前記油圧回路から前記ブレーキ機構に供給される油圧を制御するように構成された制御部とを備え、前記制御部は、車両を緊急停止させるための信号に基づいて前記ブレーキ機構に油を供給して前記車両の減速を行い、前記車両が所定速度以下になったときに前記ブレーキ機構に供給される油圧の減圧を行うように構成されている。
-The present invention can be applied not only to pneumatic brakes but also to hydraulic brakes.
According to one aspect of the hydraulic brake, a hydraulic control device is provided. The hydraulic control device includes a hydraulic circuit configured to supply oil to a brake mechanism that applies braking force to wheels, and a control unit configured to control the hydraulic pressure supplied from the hydraulic circuit to the brake mechanism. The control unit supplies oil to the brake mechanism based on a signal for urgently stopping the vehicle to decelerate the vehicle, and when the vehicle becomes equal to or lower than a predetermined speed, the brake mechanism It is configured to reduce the pressure of the oil supplied to the wheel.
 上記構成によれば、車両が減速中に所定速度以下になったときにブレーキ機構に供給される油圧を減らすことで制動力が弱くなり、車両が完全に停止する瞬間の加速度変化(加加速度)を低減することができる。よって、車両が緊急停止するときに乗員に掛かる負荷を抑制することができる。 According to the above configuration, the braking force is weakened by reducing the hydraulic pressure supplied to the brake mechanism when the vehicle becomes less than a predetermined speed during deceleration, and the acceleration change (jerk) at the moment when the vehicle completely stops. Can be reduced. Therefore, it is possible to suppress the load applied to the occupants when the vehicle makes an emergency stop.
 上記油圧制御装置について、前記制御部は、前記車両が前記所定速度以下になったときから所定時間経過後に前記減圧後の油圧を所定値以上に増やすように構成されていてもよい。 Regarding the oil pressure control device, the control unit may be configured to increase the oil pressure after decompression to a predetermined value or more after a predetermined time has elapsed from the time when the vehicle becomes the predetermined speed or less.
 上記構成によれば、車両が所定速度以下になったときから所定時間経過後には車両が停止しているので、ブレーキ機構に供給される油圧を所定値以上に増やすことでブレーキ機構の制動力が大きくなり、車両が停止状態から動かないようにすることができる。 According to the above configuration, since the vehicle is stopped after a predetermined time has elapsed from the time when the vehicle becomes below the predetermined speed, the braking force of the brake mechanism is increased by increasing the oil pressure supplied to the brake mechanism to the predetermined value or more. It can be enlarged to prevent the vehicle from moving from a stopped state.
 上記油圧制御装置について、前記制御部は、前記減圧によって油圧が下限圧力以下になったときから所定時間経過後に前記ブレーキ機構に供給される油圧を所定値以上に増やすように構成されていてもよい。 Regarding the hydraulic control device, the control unit may be configured to increase the hydraulic pressure supplied to the brake mechanism to a predetermined value or more after a lapse of a predetermined time from the time when the hydraulic pressure becomes equal to or lower than the lower limit pressure due to the depressurization. ..
 上記構成によれば、下限圧力以下になったときから所定時間経過後には車両が停止しているので、ブレーキ機構に供給される油圧を所定値以上に増やすことでブレーキ機構の制動力が大きくなり、車両が停止状態から動かないようにすることができる。 According to the above configuration, since the vehicle is stopped after a predetermined time has elapsed from the time when the pressure falls below the lower limit pressure, the braking force of the brake mechanism is increased by increasing the hydraulic pressure supplied to the brake mechanism to a predetermined value or more. , The vehicle can be prevented from moving from a stopped state.
 上記油圧制御装置について、前記制御部は、前記車両の減速中に前記ブレーキ機構に供給される油圧が上限圧力以上になったとき、前記ブレーキ機構に供給される油圧を上限圧力で一定にするように構成されていてもよい。 With respect to the hydraulic control device, the control unit makes the hydraulic pressure supplied to the brake mechanism constant at the upper limit pressure when the hydraulic pressure supplied to the brake mechanism becomes equal to or higher than the upper limit pressure during deceleration of the vehicle. It may be configured in.
 上記構成によれば、車両が減速中にある程度減速した時点でブレーキ機構に供給される油圧を一定にすることでブレーキ機構の制動力を一定とすることができ、速度の急激な変化を抑制することができる。 According to the above configuration, the braking force of the brake mechanism can be made constant by making the oil pressure supplied to the brake mechanism constant when the vehicle decelerates to some extent during deceleration, and a sudden change in speed can be suppressed. be able to.
 上記油圧制御装置について、前記制御部は、前記ブレーキ機構に供給される油圧を所定時間毎に決定するように構成されていてもよい。
 上記構成によれば、所定時間毎にブレーキ機構に供給される油圧を決定するため、ブレーキ機構に供給される油圧を随時決定するものと比較して演算量を抑制することができる。
With respect to the hydraulic control device, the control unit may be configured to determine the hydraulic pressure supplied to the brake mechanism at predetermined time intervals.
According to the above configuration, since the oil pressure supplied to the brake mechanism is determined at predetermined time intervals, the amount of calculation can be suppressed as compared with the case where the oil pressure supplied to the brake mechanism is determined at any time.
 上記油圧制御装置について、前記油圧回路は、ブレーキ操作が行われたときに前記ブレーキ機構に油を供給するブレーキバルブに代わって前記ブレーキ機構に油を供給するように構成されていてもよい。 Regarding the hydraulic control device, the hydraulic circuit may be configured to supply oil to the brake mechanism instead of a brake valve that supplies oil to the brake mechanism when a brake operation is performed.
 上記構成によれば、通常は運転者のブレーキ操作によってブレーキバルブがブレーキ機構に油を供給するが、運転者の異常時にはこのブレーキバルブではなく、制御部が油圧回路を制御することでブレーキ機構に油を供給することで車両を緊急停止することができる。 According to the above configuration, normally, the brake valve supplies oil to the brake mechanism by the driver's brake operation, but when the driver's abnormality occurs, the control unit controls the hydraulic circuit instead of this brake valve to the brake mechanism. The vehicle can be stopped urgently by supplying oil.
 上記油圧制御装置について、前記制御部は、前記車両を緊急停止させるための信号として乗員スイッチの操作による異常を示す異常信号を取得すると、緩制動となる油圧を前記ブレーキ機構に供給するように構成されていてもよい。上記構成によれば、乗員スイッチの操作後すぐに急制動を行うと乗員が驚くので、まずブレーキ機構に緩制動を行わせることで、注意喚起を行うことができる。 With respect to the hydraulic control device, when the control unit acquires an abnormal signal indicating an abnormality due to the operation of the occupant switch as a signal for urgently stopping the vehicle, the control unit is configured to supply a slow braking hydraulic pressure to the brake mechanism. It may have been done. According to the above configuration, if the occupant is suddenly braked immediately after the operation of the occupant switch, the occupant is surprised. Therefore, it is possible to call attention by first causing the brake mechanism to perform slow braking.
 本油圧ブレーキの一態様によれば、油圧制御装置の油圧制御方法が提供される。前記油圧制御装置は、車輪に制動力を与えるブレーキ機構に油を供給するように構成された油圧回路と、前記油圧回路から前記ブレーキ機構に供給される油圧を制御するように構成された制御部とを備える。前記油圧制御方法は、車両を緊急停止させるための信号に基づいて前記ブレーキ機構に油を供給して前記車両の減速を行う減速ステップと、前記減速中の前記車両が所定速度以下になったときに前記ブレーキ機構に供給される油圧を減らす油圧減少ステップとを備える。 According to one aspect of the present hydraulic brake, a method for controlling the hydraulic pressure of the hydraulic control device is provided. The hydraulic control device includes a hydraulic circuit configured to supply oil to a brake mechanism that applies braking force to wheels, and a control unit configured to control the hydraulic pressure supplied from the hydraulic circuit to the brake mechanism. And. The flood control control method includes a deceleration step of supplying oil to the brake mechanism to decelerate the vehicle based on a signal for urgently stopping the vehicle, and when the vehicle during deceleration becomes a predetermined speed or less. Is provided with a hydraulic pressure reduction step for reducing the hydraulic pressure supplied to the brake mechanism.
 上記方法によれば、車両が減速中に所定速度以下になったときにブレーキ機構に供給される油圧を減らすことで制動力が弱くなり、車両が完全に停止する瞬間の加速度変化(加加速度)を低減することができる。よって、車両が緊急停止するときに乗員に掛かる負荷を抑制することができる。 According to the above method, the braking force is weakened by reducing the hydraulic pressure supplied to the braking mechanism when the vehicle becomes less than a predetermined speed during deceleration, and the acceleration change (jerk) at the moment when the vehicle completely stops. Can be reduced. Therefore, it is possible to suppress the load applied to the occupants when the vehicle makes an emergency stop.
 本油圧ブレーキの一態様によれば、油圧制御装置の油圧制御プログラムが提供される。前記油圧制御装置は、車輪に制動力を与えるブレーキ機構に油を供給するように構成された油圧回路と、前記油圧回路から前記ブレーキ機構に供給される油圧を制御するように構成された制御部とを備える。前記油圧制御プログラムは、前記油圧制御装置のコンピュータにおいて動作するとき、前記油圧制御装置に車両を緊急停止させるための信号に基づいて前記ブレーキ機構に油を供給して前記車両の減速を行う減速ステップと、前記減速中の前記車両が所定速度以下になったときに前記ブレーキ機構に供給される油圧を減らす油圧減少ステップとを実行させる。 According to one aspect of this hydraulic brake, a hydraulic control program for a hydraulic control device is provided. The hydraulic control device includes a hydraulic circuit configured to supply oil to a brake mechanism that applies braking force to wheels, and a control unit configured to control the hydraulic pressure supplied from the hydraulic circuit to the brake mechanism. And. When the hydraulic control program operates in the computer of the hydraulic control device, a deceleration step of supplying oil to the brake mechanism to decelerate the vehicle based on a signal for the hydraulic control device to make an emergency stop of the vehicle. And the oil pressure reduction step of reducing the oil pressure supplied to the brake mechanism when the speed of the vehicle during deceleration becomes equal to or lower than a predetermined speed.
 上記プログラムによれば、車両が減速中に所定速度以下になったときにブレーキ機構に供給される油圧を減らすことで制動力が弱くなり、車両が完全に停止する瞬間の加速度変化(加加速度)を低減することができる。よって、車両が緊急停止するときに乗員に掛かる負荷を抑制することができる。 According to the above program, the braking force is weakened by reducing the hydraulic pressure supplied to the braking mechanism when the vehicle drops below a predetermined speed during deceleration, and the acceleration change (jerk) at the moment when the vehicle completely stops. Can be reduced. Therefore, it is possible to suppress the load applied to the occupants when the vehicle makes an emergency stop.
 本油圧ブレーキの一態様によれば、油圧制御プログラムを記憶する非一時的なコンピュータ可読媒体が提供される。前記油圧制御プログラムは、車輪に制動力を与えるブレーキ機構に油を供給するように構成された油圧回路と、前記油圧回路から前記ブレーキ機構に供給される油圧を制御するように構成された制御部とを備える油圧制御装置のコンピュータにおいて動作するとき、前記油圧制御装置に、車両を緊急停止させるための信号に基づいて前記ブレーキ機構に油を供給して前記車両の減速を行うことと、前記減速中の前記車両が所定速度以下になったときに前記ブレーキ機構に供給される油圧を減らすこととを実行させる。 According to one aspect of the hydraulic brake, a non-transitory computer-readable medium for storing the hydraulic control program is provided. The hydraulic control program includes a hydraulic circuit configured to supply oil to a brake mechanism that applies braking force to wheels, and a control unit configured to control the hydraulic pressure supplied from the hydraulic circuit to the brake mechanism. When operating in the computer of the flood control device including the above, the hydraulic control device is supplied with oil to the brake mechanism based on a signal for urgently stopping the vehicle to decelerate the vehicle, and the deceleration is performed. When the vehicle inside becomes less than a predetermined speed, the oil pressure supplied to the brake mechanism is reduced.
 ・本件発明を電動ブレーキにも適用することができる。
 本電動ブレーキの一態様によれば、電動制御装置が提供される。前記電動制御装置は、車輪に制動力を与えるブレーキ機構に電力を供給するように構成された電動回路と、前記電動回路から前記ブレーキ機構に供給される電力を制御するように構成された制御部とを備え、前記制御部は、車両を緊急停止させるための信号に基づいて前記ブレーキ機構に電力を供給して前記車両の減速を行い、前記車両が所定速度以下になったときに前記ブレーキ機構に電力を供給して緩減速を行うように構成されている。
-The present invention can also be applied to an electric brake.
According to one aspect of the electric brake, an electric control device is provided. The electric control device includes an electric circuit configured to supply electric power to a brake mechanism that applies braking force to wheels, and a control unit configured to control electric power supplied from the electric circuit to the brake mechanism. The control unit supplies electric power to the brake mechanism based on a signal for urgently stopping the vehicle to decelerate the vehicle, and when the vehicle becomes equal to or lower than a predetermined speed, the brake mechanism It is configured to supply power to the vehicle to slow down and decelerate.
 上記構成によれば、車両が減速中に所定速度以下になったときにブレーキ機構に電力を供給して制動力を弱め、車両が完全に停止する瞬間の加速度変化(加加速度)を低減することができる。よって、車両が緊急停止するときに乗員に掛かる負荷を抑制することができる。 According to the above configuration, when the vehicle falls below a predetermined speed during deceleration, power is supplied to the braking mechanism to weaken the braking force and reduce the acceleration change (jerk) at the moment when the vehicle completely stops. Can be done. Therefore, it is possible to suppress the load applied to the occupants when the vehicle makes an emergency stop.
 上記電動制御装置について、前記制御部は、前記車両が前記所定速度以下になったときから所定時間経過後に前記減速後の供給電力を所定値以上に増やすように構成されていてもよい。 Regarding the electric control device, the control unit may be configured to increase the power supply after deceleration to a predetermined value or more after a lapse of a predetermined time from the time when the vehicle becomes the predetermined speed or less.
 上記構成によれば、車両が所定速度以下になったときから所定時間経過後には車両が停止しているので、ブレーキ機構に供給される電力を所定値以上に増やすことでブレーキ機構の制動力が大きくなり、車両が停止状態から動かないようにすることができる。 According to the above configuration, since the vehicle is stopped after a predetermined time has elapsed from the time when the vehicle becomes below the predetermined speed, the braking force of the brake mechanism is increased by increasing the power supplied to the brake mechanism to the predetermined value or more. It can be enlarged to prevent the vehicle from moving from a stopped state.
 上記電動制御装置について、前記制御部は、前記減速によってブレーキ力が下限値以下になったときから所定時間経過後に前記ブレーキ機構に供給される電力を所定値以上に増やすように構成されていてもよい。 Regarding the electric control device, even if the control unit is configured to increase the electric power supplied to the brake mechanism to a predetermined value or more after a lapse of a predetermined time from the time when the braking force becomes equal to or lower than the lower limit value due to the deceleration. Good.
 上記構成によれば、下限値以下になったときから所定時間経過後には車両が停止しているので、ブレーキ機構に供給される電力を所定値以上に増やすことでブレーキ機構の制動力が大きくなり、車両が停止状態から動かないようにすることができる。 According to the above configuration, since the vehicle is stopped after a predetermined time has elapsed from the time when the value falls below the lower limit value, the braking force of the brake mechanism is increased by increasing the power supplied to the brake mechanism to the predetermined value or more. , The vehicle can be prevented from moving from a stopped state.
 上記電動制御装置について、前記制御部は、前記車両の減速中に前記ブレーキ機構のブレーキ力が上限値以上になったとき、前記ブレーキ機構のブレーキ力が上限値で一定にするように構成されていてもよい。 With respect to the electric control device, the control unit is configured so that when the braking force of the braking mechanism exceeds the upper limit value during deceleration of the vehicle, the braking force of the braking mechanism becomes constant at the upper limit value. You may.
 上記構成によれば、車両が減速中にある程度減速した時点でブレーキ機構の制動力を一定とすることができ、速度の急激な変化を抑制することができる。
 上記電動制御装置について、前記制御部は、前記ブレーキ機構に供給される電力を所定時間毎に決定するように構成されていてもよい。
According to the above configuration, the braking force of the braking mechanism can be made constant when the vehicle decelerates to some extent during deceleration, and a sudden change in speed can be suppressed.
Regarding the electric control device, the control unit may be configured to determine the electric power supplied to the brake mechanism at predetermined time intervals.
 上記構成によれば、所定時間毎にブレーキ機構に供給される電力を決定するため、ブレーキ機構に供給される電動を随時決定するものと比較して演算量を抑制することができる。 According to the above configuration, since the electric power supplied to the brake mechanism is determined at predetermined time intervals, the amount of calculation can be suppressed as compared with the case where the electric power supplied to the brake mechanism is determined at any time.
 上記電動制御装置について、前記制御部は、前記車両を緊急停止させるための信号として乗員スイッチの操作による異常を示す異常信号を取得すると、緩制動となる電力を前記ブレーキ機構に供給するように構成されていてもよい。上記構成によれば、乗員スイッチの操作後すぐに急制動を行うと乗員が驚くので、まずブレーキ機構に緩制動を行わせることで、注意喚起を行うことができる。 With respect to the electric control device, the control unit is configured to supply electric power for slow braking to the brake mechanism when an abnormal signal indicating an abnormality due to an operation of an occupant switch is acquired as a signal for urgently stopping the vehicle. It may have been done. According to the above configuration, if the occupant is suddenly braked immediately after the operation of the occupant switch, the occupant is surprised. Therefore, it is possible to call attention by first causing the brake mechanism to perform slow braking.
 本電動ブレーキの一態様によれば、電動制御装置の電動制御方法が提供される。前記電動制御装置は、車輪に制動力を与えるブレーキ機構に電力を供給するように構成された電動回路と、前記電動回路から前記ブレーキ機構に供給される電力を制御するように構成された制御部とを備える。前記電動制御方法は、車両を緊急停止させるための信号に基づいて前記ブレーキ機構に電力を供給して前記車両の減速を行う減速ステップと、前記減速中の前記車両が所定速度以下になったときに前記ブレーキ機構に供給される電力を制御して緩制動ステップとを備える。 According to one aspect of the electric brake, an electric control method for an electric control device is provided. The electric control device includes an electric circuit configured to supply electric power to a brake mechanism that applies braking force to wheels, and a control unit configured to control electric power supplied from the electric circuit to the brake mechanism. And. The electric control method includes a deceleration step of supplying electric power to the brake mechanism to decelerate the vehicle based on a signal for urgently stopping the vehicle, and when the vehicle during deceleration becomes a predetermined speed or less. It is provided with a slow braking step by controlling the electric power supplied to the brake mechanism.
 上記方法によれば、車両が減速中に所定速度以下になったときにブレーキ機構に供給される電力を制御することで制動力が弱くし、車両が完全に停止する瞬間の加速度変化(加加速度)を低減することができる。よって、車両が緊急停止するときに乗員に掛かる負荷を抑制することができる。 According to the above method, the braking force is weakened by controlling the electric power supplied to the braking mechanism when the vehicle falls below a predetermined speed during deceleration, and the acceleration change (jerk) at the moment when the vehicle completely stops. ) Can be reduced. Therefore, it is possible to suppress the load applied to the occupants when the vehicle makes an emergency stop.
 本電動ブレーキの一態様によれば、電動制御装置の電動制御プログラムが提供される。前記電動制御装置は、車輪に制動力を与えるブレーキ機構に電力を供給するように構成された電動回路と、前記電動回路から前記ブレーキ機構に供給される電力を制御するように構成された制御部とを備える。前記電動制御プログラムは、前記電動制御装置のコンピュータにおいて動作するとき、前記電動制御装置に車両を緊急停止させるための信号に基づいて前記ブレーキ機構に電力を供給して前記車両の減速を行う減速ステップと、前記減速中の前記車両が所定速度以下になったときに前記ブレーキ機構に供給される電力を制御して緩制動ステップとを実行させる。 According to one aspect of the electric brake, an electric control program for the electric control device is provided. The electric control device includes an electric circuit configured to supply electric power to a brake mechanism that applies braking force to wheels, and a control unit configured to control electric power supplied from the electric circuit to the brake mechanism. And. When the electric control program operates in the computer of the electric control device, the deceleration step of supplying electric power to the brake mechanism based on a signal for urgently stopping the vehicle to the electric control device to decelerate the vehicle. Then, when the speed of the decelerating vehicle becomes equal to or lower than a predetermined speed, the electric power supplied to the braking mechanism is controlled to execute the slow braking step.
 上記プログラムによれば、車両が減速中に所定速度以下になったときにブレーキ機構に供給される電力を減らすことで制動力が弱くなり、車両が完全に停止する瞬間の加速度変化(加加速度)を低減することができる。よって、車両が緊急停止するときに乗員に掛かる負荷を抑制することができる。 According to the above program, the braking force is weakened by reducing the electric power supplied to the braking mechanism when the vehicle falls below a predetermined speed during deceleration, and the acceleration change (jerk) at the moment when the vehicle completely stops. Can be reduced. Therefore, it is possible to suppress the load applied to the occupants when the vehicle makes an emergency stop.
 本電動ブレーキの一態様によれば、電動制御プログラムを記憶する非一時的なコンピュータ可読媒体が提供される。前記電動制御プログラムは、車輪に制動力を与えるブレーキ機構に電力を供給するように構成された電動回路と、前記電動回路から前記ブレーキ機構に供給される電力を制御するように構成された制御部とを備える電動制御装置のコンピュータにおいて動作するとき、前記電動制御装置に、車両を緊急停止させるための信号に基づいて前記ブレーキ機構に電力を供給して前記車両の減速を行うことと、前記減速中の前記車両が所定速度以下になったときに前記ブレーキ機構に供給される電力を制御して緩制動をすることとを実行させる。 According to one aspect of the electric brake, a non-temporary computer-readable medium for storing the electric control program is provided. The electric control program includes an electric circuit configured to supply electric power to a brake mechanism that applies braking force to wheels, and a control unit configured to control electric power supplied from the electric circuit to the brake mechanism. When operating in the computer of the electric control device including the above, the electric control device is supplied with electric power to the brake mechanism based on a signal for urgently stopping the vehicle to decelerate the vehicle, and the deceleration is performed. When the vehicle inside becomes equal to or lower than a predetermined speed, the electric power supplied to the braking mechanism is controlled to perform slow braking.
 10…車両、11…空気圧ブレーキシステム、12…エアタンク、13…ブレーキバルブ、13A…前方圧力室、13B…後方圧力室、13C…ブレーキペダル、14A…プロテクションバルブ、14B…エアホーン装置、15…リレーバルブ、16…ABSコントロールバルブ、17…ブレーキチャンバー、18…空気配管、20…圧力制御モジュール、21…ケース、21A…ポート接続部、21D…突出部、22…空気圧回路、23…第1供給路、24A…前方信号供給路、24B…後方信号供給路、25…リレーバルブ、25A…排出口、25B…パイロットポート、26…分岐路、27…吸気用バルブ、27A…配線、28…排気用バルブ、28A…配線、29…信号供給路、30…第3供給路、31…メインECU、32…サブECU、33…CAN、35…第1圧力センサ、36,36A,36B…ダブルチェックバルブ、37…前方空気供給路、38…前方空気供給路、39…第2圧力センサ、39…圧力センサ、50…異常時対応システム、51…運転席操作スイッチ、52…解除スイッチ、53…客席操作スイッチ、54…加速度センサ、55…車速センサ、56…車室内装置、57…車室外装置、58…排出部、100~104…ブレーキブースター、105…ABSコントロールバルブ、P1…第1ポート、P2…第2ポート、P3…第3ポート。 10 ... Vehicle, 11 ... Pneumatic braking system, 12 ... Air tank, 13 ... Brake valve, 13A ... Front pressure chamber, 13B ... Rear pressure chamber, 13C ... Brake pedal, 14A ... Protection valve, 14B ... Air horn device, 15 ... Relay valve , 16 ... ABS control valve, 17 ... brake chamber, 18 ... air piping, 20 ... pressure control module, 21 ... case, 21A ... port connection, 21D ... protrusion, 22 ... pneumatic circuit, 23 ... first supply path, 24A ... front signal supply path, 24B ... rear signal supply path, 25 ... relay valve, 25A ... outlet, 25B ... pilot port, 26 ... branch path, 27 ... intake valve, 27A ... wiring, 28 ... exhaust valve, 28A ... wiring, 29 ... signal supply path, 30 ... third supply path, 31 ... main ECU, 32 ... sub ECU, 33 ... CAN, 35 ... first pressure sensor, 36, 36A, 36B ... double check valve, 37 ... Front air supply path, 38 ... Front air supply path, 39 ... Second pressure sensor, 39 ... Pressure sensor, 50 ... Abnormal response system, 51 ... Driver's seat operation switch, 52 ... Release switch, 53 ... Audience seat operation switch, 54 ... Acceleration sensor, 55 ... Vehicle speed sensor, 56 ... Vehicle interior device, 57 ... Vehicle exterior device, 58 ... Discharge section, 100-104 ... Brake booster, 105 ... ABS control valve, P1 ... 1st port, P2 ... 2nd port , P3 ... 3rd port.

Claims (10)

  1.  車輪に制動力を与えるブレーキ機構に空気を供給するように構成された空気圧回路と、
     前記空気圧回路から前記ブレーキ機構に供給される空気圧を制御するように構成された制御部とを備え、
     前記制御部は、車両を緊急停止させるための信号に基づいて前記ブレーキ機構に空気を供給して前記車両の減速を行い、前記車両が所定速度以下になったときに前記ブレーキ機構に供給される空気圧の減圧を行うように構成されている
     空気圧制御装置。
    A pneumatic circuit configured to supply air to the braking mechanism that applies braking force to the wheels,
    A control unit configured to control the air pressure supplied from the air pressure circuit to the brake mechanism is provided.
    The control unit supplies air to the brake mechanism based on a signal for urgently stopping the vehicle to decelerate the vehicle, and is supplied to the brake mechanism when the vehicle becomes equal to or lower than a predetermined speed. An air pressure control device that is configured to reduce the air pressure.
  2.  前記制御部は、前記車両が前記所定速度以下になったときから所定時間経過後に前記減圧後の空気圧を所定値以上に増やすように構成されている
     請求項1に記載の空気圧制御装置。
    The air pressure control device according to claim 1, wherein the control unit is configured to increase the air pressure after decompression to a predetermined value or more after a lapse of a predetermined time from the time when the vehicle becomes the predetermined speed or less.
  3.  前記制御部は、前記減圧によって空気圧が下限圧力以下になったときから所定時間経過後に前記ブレーキ機構に供給される空気圧を所定値以上に増やすように構成されている
     請求項1に記載の空気圧制御装置。
    The air pressure control according to claim 1, wherein the control unit is configured to increase the air pressure supplied to the brake mechanism to a predetermined value or more after a lapse of a predetermined time from the time when the air pressure becomes equal to or lower than the lower limit pressure due to the decompression. apparatus.
  4.  前記制御部は、前記車両の減速中に前記ブレーキ機構に供給される空気圧が上限圧力以上になったとき、前記ブレーキ機構に供給される空気圧を上限圧力で一定にするように構成されている
     請求項1~3のいずれか一項に記載の空気圧制御装置。
    The control unit is configured to keep the air pressure supplied to the brake mechanism constant at the upper limit pressure when the air pressure supplied to the brake mechanism becomes equal to or higher than the upper limit pressure during deceleration of the vehicle. The air pressure control device according to any one of Items 1 to 3.
  5.  前記制御部は、前記ブレーキ機構に供給される空気圧を所定時間毎に決定するように構成されている
     請求項1~4のいずれか一項に記載の空気圧制御装置。
    The air pressure control device according to any one of claims 1 to 4, wherein the control unit is configured to determine the air pressure supplied to the brake mechanism at predetermined time intervals.
  6.  前記空気圧回路は、ブレーキ操作が行われたときに前記ブレーキ機構に空気を供給するブレーキバルブに代わって前記ブレーキ機構に空気を供給するように構成されている
     請求項1~5のいずれか一項に記載の空気圧制御装置。
    Any one of claims 1 to 5, wherein the pneumatic circuit is configured to supply air to the brake mechanism in place of a brake valve that supplies air to the brake mechanism when a brake operation is performed. The air pressure control device according to.
  7.  前記制御部は、前記車両を緊急停止させるための信号として乗員スイッチの操作による異常を示す異常信号を取得すると、緩制動となる空気圧を前記ブレーキ機構に供給するように構成されている
     請求項1~6のいずれか一項に記載の空気圧制御装置。
    The control unit is configured to supply air pressure for slow braking to the brake mechanism when an abnormal signal indicating an abnormality due to an operation of an occupant switch is acquired as a signal for urgently stopping the vehicle. The air pressure control device according to any one of 6 to 6.
  8.  前記空気圧回路は、車両のエアタンクに接続する第1ポート、ブレーキ操作が行われたときに空気圧信号を出力するブレーキバルブに接続する第2ポート、前記空気圧信号に基づき車輪に制動力を加えるブレーキ機構に接続する第3ポートを有し、前記第2ポートから前記第3ポートに空気を供給する第1連通状態と、前記第1ポートから前記第3ポートに空気を供給する第2連通状態とを切り替えるように構成され、
     前記制御部は、車両を緊急停止させるための信号に基づいて前記空気圧回路を前記第1連通状態から前記第2連通状態に切り替えるように構成されている
     請求項1~7のいずれか一項に記載の空気圧制御装置。
    The pneumatic circuit includes a first port connected to an air tank of a vehicle, a second port connected to a brake valve that outputs an pneumatic signal when a brake operation is performed, and a braking mechanism that applies braking force to wheels based on the pneumatic signal. A first communication state in which air is supplied from the second port to the third port and a second communication state in which air is supplied from the first port to the third port. Configured to switch,
    The control unit is configured to switch the pneumatic circuit from the first communication state to the second communication state based on a signal for urgently stopping the vehicle according to any one of claims 1 to 7. The pneumatic control device described.
  9.  車輪に制動力を与えるブレーキ機構に空気を供給するように構成された空気圧回路と、
     前記空気圧回路から前記ブレーキ機構に供給される空気圧を制御するように構成された制御部とを備える空気圧制御装置の空気圧制御方法であって、
     車両を緊急停止させるための信号に基づいて前記ブレーキ機構に空気を供給して前記車両の減速を行う減速ステップと、
     前記減速中の前記車両が所定速度以下になったときに前記ブレーキ機構に供給される空気圧を減らす空気圧減少ステップとを備える
     空気圧制御方法。
    A pneumatic circuit configured to supply air to the braking mechanism that applies braking force to the wheels,
    A method for controlling air pressure of an air pressure control device including a control unit configured to control the air pressure supplied from the air pressure circuit to the brake mechanism.
    A deceleration step in which air is supplied to the brake mechanism to decelerate the vehicle based on a signal for urgently stopping the vehicle.
    An air pressure control method comprising an air pressure reduction step of reducing the air pressure supplied to the brake mechanism when the vehicle during deceleration falls below a predetermined speed.
  10.  空気圧制御プログラムであって、
     車輪に制動力を与えるブレーキ機構に空気を供給するように構成された空気圧回路と、
     前記空気圧回路から前記ブレーキ機構に供給される空気圧を制御するように構成された制御部とを備える空気圧制御装置のコンピュータにおいて動作するとき、前記空気圧制御装置に
     車両を緊急停止させるための信号に基づいて前記ブレーキ機構に空気を供給して前記車両の減速を行う減速ステップと、
     前記減速中の前記車両が所定速度以下になったときに前記ブレーキ機構に供給される空気圧を減らす空気圧減少ステップとを実行させる
     空気圧制御プログラム。
    Pneumatic control program
    A pneumatic circuit configured to supply air to the braking mechanism that applies braking force to the wheels,
    When operating in a computer of an air pressure control device including a control unit configured to control the air pressure supplied from the air pressure circuit to the brake mechanism, the air pressure control device is based on a signal for making an emergency stop of the vehicle. A deceleration step that supplies air to the brake mechanism to decelerate the vehicle,
    An air pressure control program that executes an air pressure reduction step of reducing the air pressure supplied to the brake mechanism when the vehicle during deceleration falls below a predetermined speed.
PCT/JP2020/035599 2019-09-20 2020-09-18 Air pressure control device, air pressure control method, and air pressure control program for brake WO2021054470A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080079811.9A CN114728650B (en) 2019-09-20 2020-09-18 Air pressure control device, air pressure control method, and air pressure control program for brake
JP2021547002A JPWO2021054470A1 (en) 2019-09-20 2020-09-18

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-171584 2019-09-20
JP2019171584 2019-09-20

Publications (1)

Publication Number Publication Date
WO2021054470A1 true WO2021054470A1 (en) 2021-03-25

Family

ID=74883541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/035599 WO2021054470A1 (en) 2019-09-20 2020-09-18 Air pressure control device, air pressure control method, and air pressure control program for brake

Country Status (3)

Country Link
JP (1) JPWO2021054470A1 (en)
CN (1) CN114728650B (en)
WO (1) WO2021054470A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114407852A (en) * 2022-03-31 2022-04-29 山西维度空间信息科技有限公司 Mine car brake control method and device, mine car and storage medium
WO2023214520A1 (en) * 2022-05-02 2023-11-09 日野自動車株式会社 Deceleration control device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6474154A (en) * 1987-09-16 1989-03-20 Toyota Motor Corp Brake device for vehicle providing function preventing back swing in stopping
JPH1170875A (en) * 1997-07-01 1999-03-16 Denso Corp Vehicle brake device
JP2007038867A (en) * 2005-08-03 2007-02-15 Hino Motors Ltd Brake device of vehicle
JP2007314087A (en) * 2006-05-26 2007-12-06 Toyota Motor Corp Vehicle traveling control device and method thereof
JP2007320475A (en) * 2006-06-02 2007-12-13 Advics:Kk Vehicular brake control device
JP2018030518A (en) * 2016-08-26 2018-03-01 いすゞ自動車株式会社 Brake device of vehicle

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3812903A1 (en) * 1988-04-18 1989-10-26 Lucas Ind Plc METHOD FOR REGULATING BRAKE PRESSURE IN AN ABS BRAKE SYSTEM
JP2008230326A (en) * 2007-03-19 2008-10-02 Hitachi Ltd Brake control system
JP5228209B2 (en) * 2008-02-28 2013-07-03 日産自動車株式会社 Vehicle braking force control device
EP2570320B1 (en) * 2010-05-13 2017-01-04 Honda Motor Co., Ltd. Vehicle control device
CN105523031B (en) * 2015-12-24 2019-01-08 浙江电咖汽车科技有限公司 A kind of electric car vacuum system failure supplementary security system and its control method
JP6605985B2 (en) * 2016-02-24 2019-11-13 ナブテスコオートモーティブ株式会社 Air supply system
DE102016005318A1 (en) * 2016-05-02 2017-11-02 Wabco Gmbh Electronically controllable pneumatic braking system in a utility vehicle and method for electronically controlling a pneumatic braking system.
JP6579497B2 (en) * 2017-09-01 2019-09-25 マツダ株式会社 Braking device for vehicle
US20190111900A1 (en) * 2017-10-16 2019-04-18 Cnh Industrial Canada, Ltd. Braking force control system and method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6474154A (en) * 1987-09-16 1989-03-20 Toyota Motor Corp Brake device for vehicle providing function preventing back swing in stopping
JPH1170875A (en) * 1997-07-01 1999-03-16 Denso Corp Vehicle brake device
JP2007038867A (en) * 2005-08-03 2007-02-15 Hino Motors Ltd Brake device of vehicle
JP2007314087A (en) * 2006-05-26 2007-12-06 Toyota Motor Corp Vehicle traveling control device and method thereof
JP2007320475A (en) * 2006-06-02 2007-12-13 Advics:Kk Vehicular brake control device
JP2018030518A (en) * 2016-08-26 2018-03-01 いすゞ自動車株式会社 Brake device of vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114407852A (en) * 2022-03-31 2022-04-29 山西维度空间信息科技有限公司 Mine car brake control method and device, mine car and storage medium
CN114407852B (en) * 2022-03-31 2022-07-15 山西维度空间信息科技有限公司 Mine car brake control method and device, mine car and storage medium
WO2023214520A1 (en) * 2022-05-02 2023-11-09 日野自動車株式会社 Deceleration control device

Also Published As

Publication number Publication date
CN114728650B (en) 2024-10-29
CN114728650A (en) 2022-07-08
JPWO2021054470A1 (en) 2021-03-25

Similar Documents

Publication Publication Date Title
JP6896901B2 (en) Parking brake system
US8348350B2 (en) Two-stage electromechanically controlled braking system for a multiaxle road vehicles
JP2024114874A (en) Pneumatic pressure control device, pneumatic circuit and brake control system
WO2012175927A1 (en) Vehicle braking system
WO2021054470A1 (en) Air pressure control device, air pressure control method, and air pressure control program for brake
JP2009149111A (en) Vehicular brake device
JPWO2017221836A1 (en) Air supply system
JP2007145285A (en) Vehicular brake controller
JP2020015477A (en) Brake system
KR20120051531A (en) Control method of automatic emergency brake system based on antilock brake system for vehicle
JP2010120444A (en) Warning device for vehicle rollover suppression
JP6802338B2 (en) Brake system and control method of brake system
JP7362926B2 (en) Brake control device and brake control system
JP2018030518A (en) Brake device of vehicle
JP2000264092A (en) Vehicle-to-vehicle distance control device
JP6933083B2 (en) Vehicle braking device
JP2005343248A (en) Parking assist brake controlling device
JP7547482B2 (en) Brake control device and brake control system
JP6595400B2 (en) Air supply system
JP4742713B2 (en) Vehicle warning device
JP5261941B2 (en) Vehicle motion control device
JP7053769B2 (en) Brake system and control method of brake system
JP2011116260A (en) Vehicular brake control device
JP2016141231A (en) Collision avoidance system
JP2009220639A (en) Electronic brake control device of vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20864735

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021547002

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20864735

Country of ref document: EP

Kind code of ref document: A1