[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021054116A1 - リン吸着材 - Google Patents

リン吸着材 Download PDF

Info

Publication number
WO2021054116A1
WO2021054116A1 PCT/JP2020/033172 JP2020033172W WO2021054116A1 WO 2021054116 A1 WO2021054116 A1 WO 2021054116A1 JP 2020033172 W JP2020033172 W JP 2020033172W WO 2021054116 A1 WO2021054116 A1 WO 2021054116A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphorus
mass
cement
parts
lantern
Prior art date
Application number
PCT/JP2020/033172
Other languages
English (en)
French (fr)
Inventor
聡 浅岡
弘平 川上
市成 剛
博之 齊藤
隆仁 及川
渡辺 健一
秀彰 野原
Original Assignee
国立大学法人神戸大学
フジクリーン工業株式会社
中国電力株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人神戸大学, フジクリーン工業株式会社, 中国電力株式会社 filed Critical 国立大学法人神戸大学
Priority to AU2020351421A priority Critical patent/AU2020351421A1/en
Priority to JP2021546586A priority patent/JP7174967B2/ja
Priority to US17/642,798 priority patent/US20220379283A1/en
Publication of WO2021054116A1 publication Critical patent/WO2021054116A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/105Phosphorus compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to a phosphorus adsorbent.
  • Sewage such as industrial wastewater, domestic wastewater, and agricultural wastewater contains nutrient salts such as nitrogen and phosphorus that bring about eutrophication, and when they flow into rivers, lakes, marshes, the sea, etc., red tides, blue-green algae, etc. It is known to occur in large numbers.
  • These sewage are purified at sewage treatment plants in urban areas.
  • the sewerage penetration rate per capita in Japan is 78.8% (FY2017), and septic tanks are installed as wastewater treatment systems in suburbs, depopulated areas, and other undeveloped sewerage areas.
  • a general septic tank does not have a function of removing nitrogen and phosphorus.
  • a coagulation sedimentation method using a metal salt or lime as a coagulant a biological dephosphorization method (activated sludge method) utilizing the metabolism of microorganisms, an adsorption method and the like are known. ..
  • the coagulation-precipitation method requires the addition of many expensive coagulants and discharges a large amount of sludge that is difficult to treat, so that the initial cost and running cost performance are high.
  • the biological dephosphorization method (activated sludge method) requires fine control of dissolved oxygen concentration and sludge control in the final settling basin, as well as treatment and disposal of sludge with a high phosphorus content. .. Therefore, when applying these methods to distributed wastewater treatment equipment such as septic tanks, it is necessary to constantly manage the operation by specialists in addition to increasing the equipment.
  • Patent Document 2 describes as a phosphate ion removing agent contained in raw water, a phosphate ion removing agent which is an iron ion treatment material ion-exchanged and / or supported by an iron ion-containing aqueous solution.
  • a phosphate ion removing agent which is an iron ion treatment material ion-exchanged and / or supported by an iron ion-containing aqueous solution.
  • this phosphate ion removing agent is inefficient and cannot sufficiently remove phosphate ions.
  • commercially available phosphorus adsorbents are expensive, it is difficult to apply them to distributed wastewater treatment equipment such as septic tanks.
  • An object of the present invention is to provide an inexpensive phosphorus adsorbent capable of exhibiting high phosphorus adsorbing performance.
  • the present invention is as follows.
  • Item 1. Phosphorus adsorbent containing incineration ash, cement, and lanthanum.
  • Item 2. Phosphorus adsorbent obtained from incineration ash, cement, and lanterns.
  • Item 3. A phosphorus adsorbent produced by reacting incineration ash, cement, and lanthanum.
  • Item 4. The phosphorus adsorbent according to any one of the above items 1 to 3, wherein the incineration ash is coal ash.
  • Item 5. The phosphorus adsorbent according to any one of Items 1 to 4, wherein the cement is contained in an amount of 5 to 150 parts by mass with respect to 100 parts by mass of the incinerated ash.
  • a distributed wastewater treatment apparatus provided with the phosphorus adsorbent according to any one of the above items 1 to 9.
  • Item 13 A septic tank provided with the phosphorus adsorbent according to any one of the above items 1 to 9.
  • Item 14 A method for producing a phosphorus adsorbent, which obtains a phosphorus adsorbent from incineration ash, cement, and lanthanum.
  • Item 15. A method for producing a phosphorus adsorbent, which comprises a step of granulating incineration ash, cement, and lanthanum using a solvent.
  • Item 16 The method for producing a phosphorus adsorbent according to Item 14, further comprising a step of curing the obtained granulated product.
  • Item 18 The method for producing a phosphorus adsorbent according to any one of Items 14 to 17, wherein 5 to 150 parts by mass of the cement is blended with 100 parts by mass of the incinerated ash.
  • Item 19 The method for producing a phosphorus adsorbent according to any one of Items 14 to 17, wherein 0.1 to 15 parts by mass of the lanthanum is added to 100 parts by mass of the total amount of the incinerated ash and the cement.
  • Item 20 The method for producing a phosphorus adsorbent according to any one of Items 14 to 16, wherein the incineration ash is coal ash.
  • the incineration ash, the cement, and the lantern are mixed with 5 to 150 parts by mass of the cement with respect to 100 parts by mass of the incineration ash, and the total amount of the incineration ash and the cement is 100 parts by mass.
  • the incineration ash, the cement, and the lantern are mixed with 5 to 150 parts by mass of the cement with respect to 100 parts by mass of the incineration ash, and the total amount of the incineration ash and the cement is 100 parts by mass.
  • Item 22. The method for producing a phosphorus adsorbent according to any one of Items 14 to 21, wherein the granulated product is cured after granulation and then fired.
  • Item 23. Item 2. The method for producing a phosphorus adsorbent according to Item 22, wherein the firing temperature is 600 to 1000 ° C.
  • Item 24. A method for adsorbing phosphorus, wherein the phosphorus adsorbent according to any one of the above items 1 to 9 is brought into contact with a liquid containing phosphorus.
  • Item 25. A method for removing phosphorus by adsorbing and removing phosphorus in sewage using the phosphorus adsorbent according to any one of the above items 1 to 9.
  • the phosphorus adsorbent of the present invention has a high phosphorus adsorption amount and a high phosphorus adsorption rate, so that it can exhibit high phosphorus adsorption performance. Since the phosphorus adsorbent of the present invention uses incineration ash, cement, and lantern as raw materials, it is inexpensive and can be applied to a dispersed wastewater treatment device such as a septic tank.
  • FIG. Samples 5 to 7 (calcination temperature 600 to 800 ° C.) in Example 2 and Sample A (without calcination) prepared in the same manner as in Example 2 except that calcination was not performed were tested according to the following test examples. After that, it is a photograph of the Erlenmeyer flask containing each solution taken from the top to the bottom of the Erlenmeyer flask. It is a graph which shows the relationship between the reaction time of a sample 10-14 and a phosphoric acid aqueous solution in Example 3 and a phosphoric acid concentration.
  • Phosphorus Adsorbent Phosphorus adsorbents include incineration ash, cement, and lanthanum. By mixing the incineration ash and cement, the structure of the obtained mixture is densified, the strength is improved, and the lantern adsorbs phosphorus. Therefore, the phosphorus adsorbent of the present invention has a high phosphorus adsorption amount. The phosphorus adsorption rate is high.
  • the incineration ash is not particularly limited as long as it contains silica (SiO 2 ) and alumina (Al 2 O 3) in its components.
  • examples of the incineration ash include waste incineration ash such as city waste, wood chips, tire chips, paper sludge, sewage sludge, and biomass; incineration ash such as coal, waste solidified fuel, paper or plastic solidified fuel, and the like. .. These can be used alone or in combination of two or more.
  • incineration ash (coal ash) of coal generated by an electric power company is preferably used because there are few impurities such as arsenic.
  • coal ash so-called fly ash, which is discharged from a thermal power plant using coal as fuel, can be used.
  • Fly ash contains silica (SiO 2 ) and alumina (Al 2 O 3 ), which account for 70 to 90% of the total, as the main components, and Fe 2 O 3 , CaO, MgO, SO 3 , and Na 2 O as other components. , containing K 2 O, oxides such as MnO. Fly ash is produced in large quantities when coal is burned, and reuse is desired. Therefore, fly ash is useful as a raw material for the phosphorus adsorbent of the present invention.
  • the type of cement is not particularly limited, and examples thereof include general cements for concrete production such as portoride cement and alumina cement. From the viewpoint of environmental maintenance, cement is preferable because toxic components do not elute into water such as oceans and lakes. Examples of cements having low elution of toxic components include blast furnace cements (particularly, class B blast furnace cements). It is preferable not to use a portolide cement called ordinary cement, which has a large elution amount of toxic hexavalent chromium or the like.
  • a water-soluble lanthanum compound can be used as a raw material for the lantern.
  • water-soluble lanthanum compounds include lanthanum chloride (LaCl 3 ), lanthanum nitrate (La (NO 3 ) 3 ), lanthanum sulfate (La 2 (SO 4 ) 3 ), and lanthanum acetate (La (CH 3 CO 2 ) 3 ). ); Or their hydrates and the like.
  • the content of lantern in the phosphorus adsorbent can be measured, for example, by fluorescent X-ray analysis.
  • the phosphorus adsorbent of the present invention contains incineration ash, cement, and lantern, but the raw material may include incineration ash, cement, and lantern, and is, for example, a raw material.
  • the raw material may include incineration ash, cement, and lantern, and is, for example, a raw material.
  • These "phosphorus adsorbents obtained from incineration ash, cement, and lanterns", "phosphorus adsorbents produced by reacting incineration ash, cement, and lanterns” and the like may also be included. What kind of components are contained in the "phosphorus adsorbent obtained from incineration ash, cement, and lantern” here, to the extent that it is impossible or almost impractical to specify all of them. Due to the difficulty, phosphorus adsorbents are listed in the product-by-process claim.
  • the content of incineration ash, cement, and lantern contained in the phosphorus adsorbent is preferably 5 to 150 parts by mass, more preferably 15 to 70 parts by mass, and further preferably 30 parts by mass with respect to 100 parts by mass of incineration ash.
  • the lantern is preferably 0.1 to 15 parts by mass, more preferably 0.2 to 10 parts by mass, and further preferably 0. Includes 5-5 parts by mass.
  • the content of lantern is preferably 0.5 to 4 parts by mass, and 0.7 to 2 parts by mass with respect to 100 parts by mass of the total amount of incineration ash and cement. Is more preferable, and 0.9 to 1.1 parts by mass is particularly preferable.
  • the phosphorus adsorbent is preferably a granulated product containing incineration ash, cement, and lanthanum. Since the incineration ash contains silica (SiO 2 ) and alumina (Al 2 O 3 ), when mixed with cement, it reacts with calcium hydroxide produced during hydration of cement (porazone reaction). , Calcium silicate hydrate, calcium aluminate hydrate and the like are produced, and the structure of the obtained mixture becomes finer and the strength is improved. Further, the lanterns present on the surface and inside of the granulated product have an action of adsorbing phosphorus. Therefore, the phosphorus adsorbent of the present invention is preferably porous.
  • the phosphorus to be adsorbed is not particularly limited as long as it contains a phosphorus element, and examples thereof include ions containing a phosphorus element (phosphate ion).
  • the phosphate ions occurs at the stage of orthophosphoric acid (H 3 PO 4) is dissociated, orthophosphate ions (PO 4 3-), dihydrogen phosphate ion (H 2 PO 4 -) and hydrogen phosphate ions (HPO 4 2- ), phosphite ion, polyphosphate ion and the like are included.
  • BET specific surface area of the phosphorus adsorbent is preferably at least 1 m 2 / g, more preferably at least 10 m 2 / g, more 20 m 2 / g is more preferred.
  • the upper limit of the BET specific surface area is not particularly limited, but is about 100 m 2 / g.
  • the phosphorus adsorbent is preferably in the form of particles.
  • the particle size is not limited, and can be appropriately set according to the application, usage conditions (phosphorus adsorption conditions), and the like.
  • the average particle size may be about 1 to 30 mm.
  • 5 mm or more is preferable, 5 to 20 mm is more preferable, and 5 to 10 mm is further preferable from the viewpoint of handling.
  • These particle size adjustments can be carried out, for example, by using known methods of classification and crushing towers.
  • the particle shape of the phosphorus adsorbent is not limited, and may be any shape such as spherical shape, flake shape, and indefinite shape. In particular, it is preferably spherical from the viewpoint of filling property to a fixed floor (column or the like), liquid flowability, and the like.
  • the phosphorus adsorbing amount of the phosphorus adsorbent of the present invention is 5 mg / g or more, preferably about 10 to 24 mg / g.
  • the phosphorus adsorption rate of the phosphorus adsorbent of the present invention is about 0.8 to 1 mg / L / hour (see Examples).
  • the phosphorus adsorbent of the present invention has high phosphorus adsorption performance (high phosphorus adsorption amount and high phosphorus adsorption rate), and thus can be used for removing phosphorus in water.
  • the phosphorus adsorbent of the present invention is inexpensive and has high phosphorus adsorption performance, so that it can be applied to a dispersed wastewater treatment device, particularly a septic tank.
  • phosphorus adsorbent of the present invention When the phosphorus adsorbent of the present invention is applied to a septic tank, phosphorus can be continuously adsorbed and removed for a period of about one year without maintenance, as shown in Examples described later.
  • the phosphorus adsorbent of the present invention can be obtained by granulating incineration ash, cement and lantern with a solvent.
  • the solvent used for granulation is not particularly limited as long as it can form a granulated product.
  • the solvent preferably contains water, and water (tap water, distilled water, ion-exchanged water, etc.), seawater, steam water, groundwater, river water, sodium chloride aqueous solution, lithium nitrite aqueous solution, and the like can be used. ..
  • the amount of the solvent used can be appropriately adjusted so that a granulated product is formed according to the blending amount of each raw material.
  • incineration ash, cement, lantern and solvent for example, water
  • incineration ash, cement and solvent for example, water
  • incineration ash, cement and solvent for example, water
  • incineration ash, cement and solvent for example, water
  • Incineration ash and lantern are mixed, and the mixture, cement, and solvent (for example, water) are mixed to prepare the granulated product.
  • examples thereof include a method of granulating, (4) a method of mixing cement and lantern, and mixing the mixture, incineration ash and a solvent (for example, water) for granulation.
  • a method of supporting the lantern on the granulated product containing incineration ash and cement for example, a method of immersing the granulated product in a lanthanum aqueous solution in which a water-soluble lantern compound is dissolved in water and drying the granulated product.
  • Examples thereof include a method of spraying the lanthanum aqueous solution on the granulated product.
  • water-soluble lanthanum compounds include lanthanum chloride (LaCl 3 ), lanthanum nitrate (La (NO 3 ) 3 ), lanthanum sulfate (La 2 (SO 4 ) 3 ), and lanthanum acetate (La (CH 3 CO 2 ) 3 ). ), And these hydrates and the like.
  • the concentration of the aqueous lanthanum solution to be used may be appropriately adjusted so that the phosphorus content contained in the phosphorus adsorbent, which is the final product, is in the following range.
  • the incineration ash and the cement are preferably 95 to 40: 5 to 60, more preferably 60 to 80: 40 to 20, and further preferably 65 to 75: 35 to 25.
  • the lantern is preferably used with respect to 100 parts by mass of the obtained granulated product.
  • the obtained granulated product is further cured and then fired.
  • the curing conditions can be appropriately adjusted according to the temperature, humidity and the like. Curing includes, for example, natural drying for several days to several weeks.
  • the firing temperature is preferably 500 to 1000 ° C., more preferably 600 to 1000 ° C., further preferably 600 to 800 ° C., and particularly preferably 800 ° C. from the viewpoint of the strength after firing of the granulated product and the amount of phosphorus saturated adsorption. ..
  • the firing atmosphere is not particularly limited, and may be, for example, in an oxidizing atmosphere (in the air), in a reducing atmosphere, in an inert gas atmosphere, or the like.
  • the firing time can also be appropriately adjusted according to the firing temperature and the like.
  • the obtained sintered body is in the form of particles and can be used as it is for phosphorus adsorption. It can also be used for phosphorus adsorption after being crushed, classified, etc., if necessary.
  • the present invention also includes a method for adsorbing phosphorus, which comprises a step of bringing the phosphorus adsorbent into contact with a liquid containing phosphorus.
  • the phosphorus contained in the liquid is not particularly limited as long as it contains a phosphorus element, and examples thereof include ions containing a phosphorus element (phosphate ion).
  • the form is not particularly limited as long as the adsorbent can come into contact with a liquid containing phosphorus.
  • a batch method of contacting the liquid a continuous method of continuously supplying and flowing the liquid, and the like may be used. It is also possible to use a fixed floor process or a mobile floor process.
  • the liquid containing phosphorus (particularly a liquid using water as a medium) is not particularly limited, and examples thereof include sewage such as industrial wastewater, domestic wastewater, and agricultural wastewater; lake water, seawater, river water, and the like. Further, the phosphoric acid concentration of these liquids is not limited, and can be adjusted in advance to, for example, about 0.1 to 200 mg-P / L.
  • the unit of the concentration (mg-P / L) is the concentration of phosphate phosphorus, and indicates the mass concentration of phosphorus existing as a phosphate ion.
  • the temperature at which the liquid is brought into contact with the phosphorus-containing liquid (that is, the liquid temperature of the liquid) is also not particularly limited as long as the liquid state is maintained.
  • the amount of the ion adsorbent of the present invention used for the liquid containing phosphorus is not particularly limited, and can be appropriately determined according to the concentration of phosphorus and the like.
  • the phosphorus adsorbent of the present invention can be applied to, for example, a collective wastewater (sewage) treatment facility, a distributed wastewater treatment device, and the like. Therefore, the present invention also includes a method for removing phosphorus, which comprises a step of adsorbing and removing phosphorus in a collective wastewater (sewage) treatment facility or phosphorus in a distributed wastewater treatment device using the phosphorus adsorbent. Included. Examples of collective wastewater (sewage) treatment facilities include sewage treatment plants, agricultural settlement wastewater treatment facilities, and urine treatment plants. Dispersed wastewater treatment (also referred to as individual distributed wastewater treatment) refers to treatment at the place where wastewater is generated.
  • the distributed wastewater treatment device refers to a device used in the distributed wastewater treatment, and examples thereof include septic tanks, septic tanks (septic tanks), small-scale business wastewater treatment devices, and vegetation purification devices. Since the phosphorus adsorbent of the present invention is inexpensive and requires less maintenance, it can be preferably applied to a distributed wastewater treatment apparatus.
  • the adsorbent after being used in the adsorption method of the present invention can be desorbed from the adsorbed phosphorus by subjecting it to a physical treatment or a chemical treatment.
  • the physical treatment include ultrasonic waves, heating, boosting voltage, atmospheric pressure, water pressure control, and the like.
  • the chemical treatment include pH control with an acid or an alkali.
  • the desorbed phosphorus component can be separated from the phosphorus adsorbent and recovered.
  • the phosphorus adsorbent from which the phosphorus component has been separated can also be reused.
  • the adsorbent adsorbing phosphorus can be used as it is as fertilizer.
  • Example 1 Put coal ash 35g into a beaker, there was added a 1.0mol / L LaCl 3 ⁇ 7H 2 O aqueous solution 175 mL, After stirring for 24 hours at 1000 rpm, a glass fiber filter paper grade GF / F (diameter 47 mm, particle retention 0 It was filtered through 0.7 ⁇ m) and dried at 45 ° C. for 24 hours.
  • the obtained lantern-supported coal ash and blast furnace cement were mixed at a mass ratio of 70:30, water corresponding to 20% of the mass of the obtained mixture was added, and the angle of the granulated pan was added using a granulator.
  • a granulated product having a diameter of 1 mm or more and 5 mm or less prepared by granulating and curing in the same manner as described above was used as Sample 3 , except that an aqueous LaCl 3.7H 2 O solution was not used.
  • a batch-type adsorption test of phosphoric acid was performed on Samples 1 to 3 as follows.
  • Sodium dihydrogen phosphate (NaH 2 PO 4 ) was used as a phosphoric acid component, and an aqueous phosphoric acid solution having a phosphoric acid concentration of 100 mg-P / L was prepared.
  • 0.5 g of the above sample was added to 100 mL of this aqueous phosphoric acid solution, and the sample was shaken at 100 rpm while being maintained at 25 ° C. in an incubator.
  • the supernatant was sampled with a 1.5 mL syringe. This was filtered with a syringe filter having a nominal pore size of 0.45 ⁇ m.
  • the concentration of phosphate ions in the filtrate was measured by the molybdenum blue method using a spectrophotometer (UV-2600, manufactured by Shimadzu Corporation) to measure the absorbance at 880 nm, and the amount of phosphoric acid adsorbed was calculated by the following formula. The results are shown in Table 1 and FIG.
  • ⁇ Phosphoric acid adsorption amount> q S rem (C con- C sam ) / (1000 ⁇ a) q: Phosphoric acid adsorption amount (mg-P / g) REM : Remaining amount of solution (mL) C con : Control concentration (mg-P / L) C sam : Sample concentration (mg-P / L) a: Adsorbent dose (g) The unit of the adsorption amount (mg-P / g) is the amount of phosphate phosphorus, and indicates the mass of phosphorus existing as a phosphate ion.
  • Coal ash and blast furnace cement are mixed at a mass ratio of 70:30, water corresponding to 20% of the mass of the obtained mixture is added, and the angle of the granulation pan is 30 degrees and the speed is 35 rpm in the granulator. Then, a granulated product having a diameter of about 1 to 5 mm was prepared. The granulated product was cured for 4 weeks to be cured (porous). Water was sprayed on the granules every day for the first 7 days. After the granulated product 4.2g was immersed for 24 hours in LaCl 3 ⁇ 7H 2 O aqueous solution of 0.5 mol / L, were dried for 24 hours at 45 ° C. in a dryer.
  • the obtained granulated product was used as sample 4.
  • the sample 4 contained lantern corresponding to 10.7% of the total mass of the coal ash and the blast furnace cement.
  • the sample 4 and the above sample 3 in the same manner as above, before adding the above sample to a 1 mg-P / L phosphoric acid aqueous solution (0 hours), 0.5 hours after the addition of the above sample, 1 hour. After that, sampling was performed after 2 hours, 3 hours, and 168 hours, and the concentration of phosphoric acid in the solution was measured by the molybdenum blue method. The results are shown in Table 2 and FIG.
  • Example 2 Coal ash and blast furnace cement are mixed at a mass ratio of 70:30, water corresponding to 20% of the mass of the obtained mixture is added, and granulated in a granulator at 30 ° C. and 35 rpm, and the diameter is increased. A granulated product having a size of about 1 to 5 mm was produced. The granulated product was cured for 4 weeks to be cured (porous). Water was sprayed on the granules every day for the first 7 days.
  • the obtained phosphorus adsorbent was calcined at 600 ° C. (Sample 5), 700 ° C. (Sample 6), 800 ° C. (Sample 7), 900 ° C. (Sample 8), and 1000 ° C. (Sample 9).
  • the firing was carried out under the conditions that the firing temperature was 125 ° C. for 3 hours after the start, the firing temperature was maintained for 2 hours after that, and the firing temperature was maintained for 2 hours, and then cooled to room temperature.
  • Samples 5 to 9 were subjected to a batch-type adsorption test of phosphoric acid in the same manner as in Example 1.
  • This white turbidity can be removed by a known removal or purification method, for example, removing the white turbidity with a filter, collecting the supernatant after standing, and using the supernatant. As a result, even for Samples 5 and 6 having a high amount of phosphoric acid adsorbed, by removing the white turbidity by the above method, treated water without white turbidity can be obtained and used.
  • Example 3 Coal ash and blast furnace cement are mixed at a mass ratio of 70:30, water corresponding to 20% of the mass of the obtained mixture is added, and the diameter is about 1 at 30 ° C. and 35 rpm in a granulator.
  • a granulated product of ⁇ 5 mm was prepared. The granulated product was cured for 4 weeks to be cured (porous). Water was sprayed on the granules every day for the first 7 days. Its granulation (less than a diameter of 3.35 mm 4.75 mm) normal temperature 5g of LaCl 3 ⁇ 7H 2 O solution of 10 mL (0.67 g / 10 mL) (about 25 ° C.) at soaked for 24 hours.
  • the sample 10 contained lantern corresponding to 4.2% of the total mass of the coal ash and the blast furnace cement. Further, a sample 10 obtained by firing the sample 10 at 600 ° C. for 3 hours (diameter 3.35 mm or more and less than 4.75 mm) was used as the sample 11.
  • Comparative Example As a comparative example, two types of commercially available phosphorus adsorbents were used. Kamihata Phosphate Adsorption Filter Phosphate Remover (product name) manufactured by Kamihata Fish Farm Co., Ltd. was used as sample 13, and Eheim phosphoric acid remover (product name) manufactured by Eheim Co., Ltd. was used as sample 14. The particle diameters of Sample 13 and Sample 14 were both 3.35 mm or more and less than 4.75 mm. Samples 10 to 14 were subjected to a batch-type adsorption test of phosphoric acid in the same manner as in Example 1.
  • the samples 10 to 12 had a higher phosphoric acid adsorption rate than the samples 13 and 14 (commercially available phosphorus adsorbent).
  • the pH of the solution of the samples 10 to 12 is in the range of pH 6 to 8 in each case, and the wastewater reference value (drainage reference value) without separately adjusting the pH. It was found that the pH was 5.8 to 8.6).
  • Example 4 Coal ash and blast furnace cement are mixed at a mass ratio of 70:30, water corresponding to 20% of the mass of the obtained mixture is added, and the angle of the granulation pan is 30 degrees and the speed is 35 rpm in the granulator. To prepare a granulated product having a diameter of about 1 to 5 mm. The granulated product was cured for 4 weeks to be cured (porous). Water was sprayed on the granules every day for the first 7 days.
  • the theoretical loading of lanthanum (La) to the mass of the granulated product is 0.1%, 0.5%, 1%, 2%, or to be 4%, LaCl 3 ⁇ 7H 2 in ultrapure water 50mL
  • An aqueous solution in which O was dissolved was prepared. More specifically, in order to produce La loading of 0.1% of the granulated product was dissolved 0.107g of LaCl 3 ⁇ 7H 2 O in ultrapure water 50 mL (aqueous 15). To produce La loading of 0.5% of the granulated product was dissolved 0.535g of LaCl 3 ⁇ 7H 2 O in ultrapure water 50 mL (aqueous 16).
  • La loading of 1% granules it was dissolved 1.07g of LaCl 3 ⁇ 7H 2 O in ultrapure water 50 mL (aqueous 17).
  • To produce La loading of 2% of the granules were dissolved 2.14g of LaCl 3 ⁇ 7H 2 O in ultrapure water 50 mL (aqueous 18).
  • To produce La loading of 4% of the granulated material was dissolved 4.28g of LaCl 3 ⁇ 7H 2 O in ultrapure water 50 mL (aqueous 19).
  • the lantern carrying ratio of each sample was 0.08% (Sample 15), 0. Granulated products having a lantern carrying ratio of 50% (sample 16), 0.91% (sample 17), 2.19% (sample 18), and 3.95% (sample 19) were obtained.
  • Example 15 Granulated products having a lantern carrying ratio of 50%
  • sample 16 0.91%
  • sample 17 0.91%
  • sample 18 2.19%
  • sample 19 3.95%
  • the amount of phosphoric acid adsorbed was measured 168 hours after the addition of the sample using the same measuring method as in Example 1.
  • the pH of the surface of the sample, the strength of the sample, and the BET specific surface area were measured by the methods shown below.
  • the pH results are shown in Tables 8 and 9, the intensity results are shown in Tables 9 and 10, and the BET specific surface area results are shown in Tables 10 and 11.
  • the BET specific surface area with nitrogen gas was measured by an automatic specific surface area measuring device (Gemini VII 2390 manufactured by Shimadzu Corporation).
  • the phosphorus adsorbent of the present invention has a high phosphorus adsorption amount and a high phosphorus adsorption rate, and is therefore useful for removing phosphorus in water.
  • it is inexpensive and can exhibit phosphorus adsorption performance for a long period of time. It can be applied to distributed wastewater treatment equipment such as.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本発明は、高いリン吸着性能を発揮することができ、安価なリン吸着材を提供することを目的とする。 本発明は、焼却灰、セメント、及びランタンを含むリン吸着材に関する。

Description

リン吸着材
 本発明は、リン吸着材に関する。
 産業廃水、生活排水、農業排水等の汚水には、窒素、リン等の富栄養化をもたらす栄養塩類が含まれており、これが河川、湖沼、海等に流入することによって、赤潮、アオコ等が大量に発生することが知られている。これらの汚水は、都市部では下水処理場で浄化されている。日本の人口当たりの下水道普及率は78.8%(平成29年度)であり、郊外、過疎地域等の下水道未整備地域には、排水処理システムとして浄化槽が設置されている。一般的な浄化槽は、窒素及びリンの除去機能を有していない。そのため、全窒素及び全リンの環境基準達成率(平成27年度)は、湖沼において51.2%と低迷している。よって、下水道未整備地域に設置される浄化槽においても、窒素及びリンの除去を目的とした高度処理を施す必要がある。
 さらに、リン資源枯渇の観点からも、排水からリンを回収する必要がある。従来、水中のリンを除去する方法として、凝集剤として金属塩又は石灰を用いる凝集沈殿法、微生物の代謝を利用する生物学的脱リン法(活性汚泥法)、吸着法等が知られている。凝集沈殿法は、多くの高価な凝集剤の添加を必要とし、多量の処理しにくい汚泥を排出することから、イニシャルコスト及びランニングコストパフォーマンスが高い。生物学的脱リン法(活性汚泥法)は、細かな溶存酸素濃度の管理、及び最終沈殿池における汚泥管理を必要とすることに加え、高リン含有率の汚泥の処理及び処分が必要となる。よって、浄化槽等の分散型排水処理装置でこれらの方法を適用する場合には、設備の増加に加え、常時、専門家による運転管理を行う必要がある。
 上記の課題を解決する方法として、近年、吸着法が提案されている。本発明者らは以前、石炭灰100重量部に対しセメント10~15重量部を配合して造粒した石炭灰造粒物を用いて、水中の硫化水素を吸着、酸化し、硫化水素濃度を低減する、水質環境改善方法を提案した(特許文献1参照)。しかしながら、特許文献1には、石炭灰造粒物が水中の硫化水素を吸着することしか記載されていない。
 また、特許文献2には、原水中に含有するリン酸イオンの除去剤として、鉄イオン含有水溶液でイオン交換及び/又は担持させた鉄イオン処理材であるリン酸イオンの除去剤が記載されている。しかしながら、このリン酸イオン除去剤は効率が悪く、十分にリン酸イオンを除去することはできないと考えられる。また、市販されているリン吸着材は高価であるため、浄化槽等の分散型排水処理装置に適用することは難しい。
特開2012-223733号公報 特開平10-192845号公報
 本発明の目的は、高いリン吸着性能を発揮することができ、安価なリン吸着材を提供することである。
 本発明者らが高いリン吸着性能を発揮することができ、安価なリン吸着材を開発すべく鋭意検討した結果、焼却灰、セメント、及びランタンを造粒することで、リン吸着量が高く、リン吸着速度が速いリン吸着材が得られることを見出した。本発明はこのような知見に基づき完成されたものである。
 すなわち、本発明は、以下のとおりである。
項1.
 焼却灰、セメント、及びランタンを含むリン吸着材。
項2.
 焼却灰、セメント、及びランタンから得られるリン吸着材。
項3.
 焼却灰、セメント、及びランタンを反応させて製造されるリン吸着材。
項4.
 前記焼却灰が石炭灰である、上記項1~3のいずれか一項に記載のリン吸着材。
項5.
 前記焼却灰100質量部に対して前記セメントが5~150質量部含まれる、上記項1~4のいずれか一項に記載のリン吸着材。
項6.
 前記焼却灰及び前記セメントの合計量100質量部に対して前記ランタンが0.1~15質量部含まれる、上記項1~4のいずれか一項に記載のリン吸着材。
項7.
 前記焼却灰100質量部に対して前記セメントが5~150質量部含まれ、かつ、前記焼却灰及び前記セメントの合計量100質量部に対して前記ランタンが0.1~15質量部含まれる、上記項1~4のいずれか一項に記載のリン吸着材。
項8.
 前記焼却灰100質量部に対して前記セメントが5~150質量部含まれ、かつ、前記焼却灰及び前記セメントの合計量100質量部に対して前記ランタンが0.5~4質量部含まれる、上記項1~4のいずれか一項に記載のリン吸着材。
項9.
 多孔質である、上記項1~8のいずれか一項に記載のリン吸着材。
項10.
 分散型排水処理装置に含まれるリンを除去するために用いられる、上記項1~9のいずれか一項に記載のリン吸着材。
項11.
 汚水に含まれるリンを除去するために用いられる、上記項1~9のいずれか一項に記載のリン吸着材。
項12.
 上記項1~9のいずれか一項に記載のリン吸着材を備えた分散型排水処理装置。
項13.
 上記項1~9のいずれか一項に記載のリン吸着材を備えた浄化槽。
項14.
 焼却灰、セメント、及びランタンから、リン吸着材を得る、リン吸着材の製造方法。
項15.
 焼却灰、セメント、及びランタンを、溶媒を用いて造粒する工程を備える、リン吸着材の製造方法。
項16.
 さらに、得られた造粒物を養生する工程を備える、上記項14に記載のリン吸着材の製造方法。
項17.
 前記焼却灰が石炭灰である、上記項14~16のいずれか一項に記載のリン吸着材の製造方法。
項18.
 前記焼却灰100質量部に対して前記セメントを5~150質量部配合する、上記項14~17のいずれか一項に記載のリン吸着材の製造方法。
項19.
 前記焼却灰及び前記セメントの合計量100質量部に対して前記ランタンを0.1~15質量部配合する、上記項14~17のいずれか一項に記載のリン吸着材の製造方法。
項20.
 前記焼却灰、前記セメント、及び前記ランタンを、前記焼却灰100質量部に対して前記セメントを5~150質量部配合し、かつ、前記焼却灰及び前記セメントの合計量100質量部に対して前記ランタンを0.1~15質量部配合する、上記項14~17のいずれか一項に記載のリン吸着材の製造方法。
項21.
 前記焼却灰、前記セメント、及び前記ランタンを、前記焼却灰100質量部に対して前記セメントを5~150質量部配合し、かつ、前記焼却灰及び前記セメントの合計量100質量部に対して前記ランタンを0.5~4質量部配合する、上記項14~17のいずれか一項に記載のリン吸着材の製造方法。
項22.
 造粒した後、造粒物を養生し、その後に焼成する、上記項14~21のいずれか一項に記載のリン吸着材の製造方法。
項23.
 前記焼成温度が600~1000℃である、上記項22に記載のリン吸着材の製造方法。
項24.
 上記項1~9のいずれか一項に記載のリン吸着材を、リンを含む液体に接触させる、リンの吸着方法。
項25.
 上記項1~9のいずれか一項に記載のリン吸着材を用いて、汚水中のリンを吸着除去する、リンの除去方法。
 本発明のリン吸着材は、リン吸着量が高く、リン吸着速度が速いことから、高いリン吸着性能を発揮することができる。本発明のリン吸着材は、原料として、焼却灰、セメント、及びランタンを使用するため、安価であり、浄化槽等の分散型排水処理装置に適用することが可能である。
実施例1における試料1~3とリン酸水溶液との反応時間と、リン酸吸着量との関係を示すグラフである。 試料3及び試料4とリン酸水溶液との反応時間と、リン酸濃度との関係を示すグラフである。 実施例2における試料5~9とリン酸水溶液との反応時間と、リン酸濃度との関係を示すグラフである。 実施例2における試料5~9とリン酸水溶液との反応時間と、リン酸吸着量との関係を示すグラフである。 実施例2における試料5~9(焼成温度600~1000℃)とリン吸着量との関係を示すグラフである。 実施例2における試料5~7(焼成温度600~800℃)、及び焼成を行わない以外は実施例2と同様にして作製した試料A(焼成なし)について、下記試験例に沿って試験を行った後、各溶液が入った三角フラスコを、三角フラスコの上から底に向かって撮影した写真である。 実施例3における試料10~14とリン酸水溶液との反応時間と、リン酸濃度との関係を示すグラフである。 実施例3における試料10~14とリン酸水溶液との反応時間と、溶液のpHとの関係を示すグラフである。 実施例4における試料15~19のランタン担持率とリン酸吸着量及び表面のpHとの関係を示すグラフである。 実施例4における試料15~19のランタン担持率と強度との関係を示すグラフである。 実施例4における試料15~19のランタン担持率とBET比表面積との関係を示すグラフである。
1.リン吸着材
 リン吸着材は、焼却灰、セメント、及びランタンを含む。焼却灰とセメントとが混合されることにより、得られる混合物の組織が緻密化し、強度が向上するとともに、ランタンがリンを吸着することから、本発明のリン吸着材は、リン吸着量が高く、リン吸着速度が速い。
 焼却灰は、成分中にシリカ(SiO)及びアルミナ(Al)が含まれているものであれば、特に限定されない。焼却灰として、例えば、都市ゴミ、木材チップ、タイヤチップ、製紙スラッジ、下水汚泥、バイオマス等の廃棄物焼却灰;石炭、ゴミ固形化燃料、紙又はプラスチック固形化燃料等の焼却灰等が挙げられる。これらはいずれか単独で、又は2種以上を混合して使用することができる。
 これらの中で、ヒ素等の不純物が少ないことから、電力会社で発生する石炭の焼却灰(石炭灰)が好ましく用いられる。石炭灰としては、石炭を燃料として火力発電所から排出される、いわゆるフライアッシュを使用することができる。フライアッシュは、全体の70~90%を占めるシリカ(SiO)及びアルミナ(Al)を主成分とし、その他の成分として、Fe、CaO、MgO、SO、NaO、KO、MnO等の酸化物を含有する。フライアッシュは、石炭の燃焼時に大量に生成されるものであり、再利用が望まれていることから、本発明のリン吸着材の原料として有用である。
 セメントの種類については特に限定されず、例えば、ポルトライドセメント、アルミナセメント等のコンクリート製造用の一般的なセメントが挙げられる。環境維持の観点から、海洋、湖沼等の水中に有毒な成分が溶出しないセメントが好ましい。有毒成分の溶出が低いセメントの一例として、高炉セメント(特に、B種高炉セメント)等が挙げられる。なお、普通セメントと呼ばれるポルトライドセメントで、有毒な六価クロム等の溶出量が多いものは使用しないことが好ましい。
 ランタンの原料として、水溶性のランタン化合物を使用することができる。水溶性のランタン化合物として、例えば、塩化ランタン(LaCl)、硝酸ランタン(La(NO)、硫酸ランタン(La(SO)、酢酸ランタン(La(CHCO);又はそれらの水和物等が挙げられる。リン吸着材中のランタンの含有量は、例えば、蛍光X線分析法により測定することができる。
 なお、本発明のリン吸着材は、上述したとおり、焼却灰、セメント、及びランタンを含むものであるが、原料として、焼却灰、セメント、及びランタンを含むものであればよく、例えば、原料である、これら「焼却灰、セメント、及びランタンから得られるリン吸着材」、「焼却灰、セメント、及びランタンを反応させて製造されるリン吸着材」等も含んでいてもよい。ここでいう「焼却灰、セメント、及びランタンから得られるリン吸着材」は、現時点でどのような成分までが含まれているのか、その全て特定することが不可能又はおよそ実際的ではない程度に困難であるため、プロダクトバイプロセスクレームによってリン吸着材を記載している。
 リン吸着材に含まれる焼却灰、セメント、及びランタンの含有量は、焼却灰100質量部に対して、セメントが好ましくは5~150質量部、より好ましくは15~70質量部、さらに好ましくは30~50質量部含まれ、かつ、焼却灰及びセメントの合計量100質量部に対してランタンが好ましくは0.1~15質量部、より好ましくは0.2~10質量部、さらに好ましくは0.5~5質量部含まれる。各成分の含有量の上記範囲にすることで、より高いリン吸着性能を発揮することができる造粒物を得ることができる。
 高い吸着性能、リン吸着材の強度等の観点から、ランタンの含有量は、焼却灰及びセメントの合計量100質量部に対して0.5~4質量部が好ましく、0.7~2質量部がより好ましく、0.9~1.1質量部が特に好ましい。
 リン吸着材は、焼却灰、セメント、及びランタンを含む造粒物であることが好ましい。焼却灰にはシリカ(SiO)及びアルミナ(Al)が含まれているので、セメントと混合すると、セメントの水和の際に生成される水酸化カルシウムと反応(ポラゾン反応)して、ケイ酸カルシウム水和物及びアルミン酸カルシウム水和物等が生成され、得られる混合物の組織が細密化し、強度が向上する。さらに、造粒物の表面及び内部に存在するランタンが、リンを吸着する作用を有する。よって、本発明のリン吸着材は、多孔質であることが好ましい。
 吸着の対象となるリンは、リン元素を含むものであれば特に限定されず、例えば、リン元素を含むイオン(リン酸イオン)が挙げられる。リン酸イオンには、オルトリン酸(HPO)が解離する段階で生じる、オルトリン酸イオン(PO 3-)、リン酸二水素イオン(HPO )及びリン酸水素イオン(HPO 2-)、及び、亜リン酸イオン、ポリリン酸イオン等が含まれる。
 リン吸着材のBET比表面積は、1m/g以上が好ましく、10m/g以上がより好ましく、20m/g以上がさらに好ましい。リン吸着材のBET比表面積が1m/g以上であることで、高いリン吸着性能を発揮することができる。なお、BET比表面積の上限は、特に限定されないが、100m/g程度である。
 リン吸着材は粒子状であることが好ましい。その粒径は限定的でなく、その用途、使用条件(リン吸着条件)等に応じて適宜設定することができる。例えば、平均粒径を1~30mm程度とすればよい。浄化槽で使用する場合には、取り扱いの観点から、5mm以上が好ましく、5~20mmがより好ましく、5~10mmがさらに好ましい。これらの粒度調整は、例えば、分級、粉砕塔の公知の方法を用いることによって実施することができる。また、リン吸着材の粒子形状も限定的でなく、例えば、球状、フレーク状、不定形状等のいずれの形態であってもよい。特に、固定床(カラム等)への充填性、液体の流通性等の見地より、球状であることが好ましい。
 実験条件により変化するが、例えば、本発明のリン吸着材のリン吸着量は5mg/g以上であり、好ましくは10~24mg/g程度である。本発明のリン吸着材のリン吸着速度は、0.8~1mg/L/時程度である(実施例参照)。このように、本発明のリン吸着材は、リン吸着性能が高い(リン吸着量が高く、リン吸着速度が速い)ことから、水中のリンを除去するために用いることができる。特に、本発明のリン吸着材は、安価で、リン吸着性能が高いことから、分散型排水処理装置、特に浄化槽に適用することができる。本発明のリン吸着材を浄化槽に適用した場合、後述の実施例で示すが、1年程度の期間、メンテナンスを行わなくても持続してリンを吸着除去することが可能となる。
2.リン吸着材の製造方法
 本発明のリン吸着材は、焼却灰、セメント、及びランタンを、溶媒を用いて造粒することにより得られる。焼却灰、セメント、及びランタンを含む造粒物が得られる限り、その製造方法は、特に限定されない。造粒に用いる溶媒は、造粒物を形成することができれば、特に限定されない。溶媒には、水が含まれることが好ましく、水(水道水、蒸留水、イオン交換水等)、海水、汽水、地下水、河川水、塩化ナトリウム水溶液、亜硝酸リチウム水溶液等を使用することができる。溶媒の使用量は、各原料の配合量に応じて、造粒物が形成されるように適宜調整することができる。
 製造方法として、例えば、(1)焼却灰とセメントとランタンと溶媒(例えば、水)とを同時に混合して造粒する方法、(2)焼却灰とセメントと溶媒(例えば、水)とを混合して造粒し、得られた造粒物にランタンを担持させる方法、(3)焼却灰とランタンとを混合しておき、その混合物とセメントと溶媒(例えば、水)とを混合して造粒する方法、(4)セメントとランタンとを混合しておき、その混合物と焼却灰と溶媒(例えば、水)とを混合して造粒する方法等が挙げられる。上記製造方法の中で、ランタンの配合量を制御し易いことから、(2)焼却灰とセメントと溶媒(例えば、水)とを混合して造粒し、得られた造粒物にランタンを担持させる方法が好ましい。
 上記(2)において、焼却灰及びセメントを含む造粒物にランタンを担持させる方法として、例えば、水溶性のランタン化合物を水に溶解させたランタン水溶液に造粒物を浸漬させ、乾燥させる方法、前記造粒物に前記ランタン水溶液を噴霧する方法等が挙げられる。水溶性のランタン化合物として、例えば、塩化ランタン(LaCl)、硝酸ランタン(La(NO)、硫酸ランタン(La(SO)、酢酸ランタン(La(CHCO)、及びこれらの水和物等が挙げられる。使用するランタン水溶液の濃度は、最終生成物であるリン吸着材に含まれるリン含有量が以下の範囲となるように適宜調整すればよい。
 焼却灰100質量部に対して、セメントを好ましくは5~150質量部、より好ましくは15~70質量部、さらに好ましくは30~50質量部配合し、かつ、前記焼却灰及び前記セメントの合計量100質量部に対してランタンを好ましくは0.1~15質量部、より好ましくは0.2~10質量部、さらに好ましくは0.5~5質量部、特に好ましくは0.9~1.1質量部配合することができる。
 また、上記(2)の方法であれば、焼却灰とセメントとを、好ましくは95~40:5~60、より好ましくは60~80:40~20、さらに好ましくは65~75:35~25の質量比で混合し、その合計量の20~30質量%の溶媒(例えば、水)を加えて混合、及び造粒を行い、得られた造粒物100質量部に対して、ランタンを好ましくは0.1~15質量部、より好ましくは0.2~10質量部、さらに好ましくは0.5~5質量部、特に好ましくは0.9~1.1質量部担持させることができる。
 得られた造粒物は、さらに養生し、その後に焼成することが好ましい。造粒物を養生することで多孔質化し、それを焼成することにより、焼却灰又はセメントとランタンとの結合を強め、ランタンのリン吸着性能を高めることができる。養生条件は、気温、湿度等に応じて適宜調整することができる。養生として、例えば、数日から数週間程度自然乾燥させることが挙げられる。焼成温度は、造粒物の焼成後の強度、及びリン飽和吸着量の観点から、500~1000℃が好ましく、600~1000℃がより好ましく、600~800℃がさらに好ましく、800℃が特に好ましい。
 焼成雰囲気は特に限定されず、例えば、酸化性雰囲気中(大気中)、還元性雰囲気中、不活性ガス雰囲気中等のいずれであってもよい。焼成時間も、焼成温度等に応じて適宜調整することができる。
 得られた焼結体は、粒子状であり、そのままリン吸着用途に使用することができる。必要に応じて粉砕、分級等の処理を行った後に、リン吸着用途に使用することもできる。
3.リンの吸着方法
 本発明は、上記リン吸着材を、リンを含む液体に接触させる工程を含むリンの吸着方法も包含する。液体に含まれるリンは、リン元素を含むものであれば特に限定されず、例えば、リン元素を含むイオン(リン酸イオン)が挙げられる。
 本発明の吸着方法では、上記吸着材がリンを含む液体と接触できるようにする限り、その形態は特に限定されない。例えば、バッチ式で上記液体と接触させる方法、連続式で上記液体を連続的に供給及び流動させながら接触させる方法等のいずれであってもよい。また、固定床方式プロセス又は移動床式プロセスを用いることもできる。
 リンを含む液体(特に水を媒体とする液体)は特に限定されず、例えば、産業廃水、生活排水、農業排水等の汚水;湖沼水、海水、河川水等が挙げられる。また、これらの液体のリン酸濃度も限定的でなく、例えば0.1~200mg-P/L程度に予め調整しておくことができる。なお、前記濃度の単位(mg-P/L)は、リン酸態リンの濃度であり、リン酸イオンとして存在するリンの質量濃度を示している。
 リンを含む液体と接触させる際の温度(すなわち、前記液体の液温)も、液体状態が維持されている限り、特に限定されない。
 リンを含む液体に対する本発明のイオン吸着材の使用量は特に限定されず、リンの濃度等に応じて適宜決定することができる。
 上述したように、本発明のリン吸着材は、例えば、集合型の廃水(汚水)処理施設、分散型排水処理装置等に適用することができる。したがって、本発明には、上記リン吸着材を用いて、集合型の廃水(汚水)処理施設中のリン、又は分散型排水処理装置中のリンを吸着除去する工程を含む、リンの除去方法も包含される。集合型の廃水(汚水)処理施設としては、例えば、下水処理場、農業集落排水処理施設、し尿処理場等が挙げられる。分散型排水処理(個別分散型排水処理ともいう)とは、排水の発生場所で処理を行うことをいう。分散型排水処理装置とは、前記分散型排水処理で使用される装置をいい、例えば、浄化槽、セプティックタンク(腐敗槽)、小規模事業所排水処理装置、植生浄化装置等が挙げられる。本発明のリン吸着材は、安価であり、かつメンテナンス頻度が少なくすむことから、分散型排水処理装置に好ましく適用することができる。
 本発明の吸着方法で使用した後の吸着材は、物理的処理又は化学的処理を施すことで、吸着したリンを脱離させることができる。物理的処理として、例えば、超音波、加熱、加電圧、気圧又は水圧制御等を挙げることができる。化学的処理として、酸又はアルカリによるpH制御等を挙げることができる。脱離したリン成分は、リン吸着材と分離して回収することができる。リン成分を分離したリン吸着材も、再利用することができる。あるいは、リンを吸着した吸着材をそのまま肥料として使用することもできる。
 以下、実施例により本発明をより具体的に説明するが、本発明の技術的範囲はこれらの例示に限定されるものではない。
 実施例1
 ビーカーに石炭灰35gを入れ、そこに1.0mol/L LaCl・7HO水溶液175mLを加えて、1000rpmで24時間攪拌した後、ガラス繊維ろ紙 グレードGF/F(直径47mm、粒子保持能0.7μm)で濾過し、45℃で24時間乾燥させた。得られたランタン担持石炭灰と高炉セメントとを70:30の質量比で混合し、得られた混合物の質量の20%に相当する水を添加し、造粒機を用いて造粒パンの角度が30度かつ35rpmの速度で造粒し、得られた造粒物を4週間養生させて硬化(多孔質化)させた。なお、最初の7日間は毎日造粒物に水を噴霧した。得られた造粒物のうちの、直径1mm以上3.35mm未満の造粒物を試料1とし、直径3.35mm以上4.75mm以下の造粒物を試料2とした。なお、蛍光X線分析装置(株式会社リガク製、Supermini200)によりランタンの含有量を測定した結果、試料1及び試料2には、石炭灰と高炉セメントとの合計質量の3.9%に相当するランタンが含まれていた。
 また、LaCl・7HO水溶液を使用しないことを除き、上記と同様の方法で造粒及び養生することにより作製した直径1mm以上5mm以下の造粒物を試料3とした。
 試料1~3について、リン酸のバッチ式の吸着試験を以下のように行った。リン酸成分としてリン酸二水素ナトリウム(NaHPO)を用い、リン酸濃度が100mg-P/Lとなるリン酸水溶液を調製した。このリン酸水溶液100mLに、上記試料0.5gを添加し、恒温器内で25℃に保持しながら100rpmで振とうした。リン酸水溶液へ上記試料を添加する前(0時間)、上記試料の添加から3時間後、9時間後、24時間後、72時間後、及び168時間後に上澄みを1.5mLシリンジでサンプリングし、これを公称孔径0.45μmのシリンジフィルターでろ過した。ろ液のリン酸イオンの濃度を、モリブデンブルー法により分光光度計(株式会社島津製作所製、UV-2600)を用いて880nmの吸光度を測定し、以下の式によりリン酸吸着量を算出した。その結果を表1及び図1に示す。
<リン酸吸着量>
q = Srem(Ccon-Csam) / (1000・a)
 q:リン酸吸着量(mg-P/g)
 Srem:溶液残量(mL)
 Ccon:コントロール濃度(mg-P/L)
 Csam:試料濃度(mg-P/L)
 a:吸着材投与量(g)
 なお、前記吸着量の単位(mg-P/g)は、リン酸態リンの量であり、リン酸イオンとして存在するリンの質量を示している。
Figure JPOXMLDOC01-appb-T000001
 
 表1及び図1より、石炭灰、セメント、及びランタンを含む試料1及び2は、ランタンを含まない試料3に比べてリン酸吸着量が多いことがわかった。特に、168時間後の吸着量(飽和吸着量)は、試料1が16.8mg-P/g、試料2が13.2mg-P/gであることから、試料1又は2を浄化槽で使用した場合、1年程度メンテナンスをする必要がないことがわかった。
 なお、サンプリングした各溶液のpHをpH測定器(株式会社堀場製作所製、堀場コンパクトpHメータLAQUAtwin B-711)により測定したところ、試料1及び2の溶液のpHはいずれの場合もpH7~8.2の範囲内であり、排水基準値(pH5.8~8.6)を満たすことがわかった。それに対し、試料3の溶液のpHは8.6を超える場合があった。
 石炭灰と高炉セメントとを70:30の質量比で混合し、得られた混合物の質量の20%に相当する水を添加し、造粒機において造粒パンの角度が30度かつ35rpmの速度で、直径が約1~5mmの造粒物を作製した。その造粒物を4週間養生させて硬化(多孔質化)させた。なお、最初の7日間は毎日造粒物に水を噴霧した。その造粒物4.2gを0.5mol/LのLaCl・7HO水溶液に24時間浸漬した後、乾燥機内で24時間45℃にて乾燥させた。得られた造粒物を試料4とした。なお、上記蛍光X線分析装置によりランタンの含有量を測定した結果、試料4には、石炭灰と高炉セメントとの合計質量の10.7%に相当するランタンが含まれていた。
 この試料4と、上記試料3について、上記と同様にして、1mg-P/Lのリン酸水溶液へ上記試料を添加する前(0時間)、上記試料の添加から0.5時間後、1時間後、2時間後、及び3時間後、及び168時間後にサンプリングを行い、溶液のリン酸の濃度を、モリブデンブルー法により測定した。その結果を表2及び図2に示す。
Figure JPOXMLDOC01-appb-T000002
 
 表2及び図2より、ランタンを含む試料4は、ランタンを含まない試料3に比べてリン酸を吸着する速度が速いことがわかった。
 実施例2
 石炭灰と高炉セメントとを70:30の質量比で混合し、得られた混合物の質量の20%に相当する水を添加し、造粒機において30℃及び35rpmの条件で造粒し、直径が約1~5mmの造粒物を作製した。その造粒物を4週間養生させて硬化(多孔質化)させた。なお、最初の7日間は毎日造粒物に水を噴霧した。
 得られた造粒物40gを蒸発皿に入れ、ここに超純水50mLにLaCl・7HOを4.4561g溶かした水溶液を加え、常温(約25℃)で1日含浸させた。その後、蒸発皿をオーブンに入れ、105℃で8時間乾燥した。上記蛍光X線分析装置によりランタンの含有量を2回測定した。その結果、得られたリン吸着材には、石炭灰と高炉セメントとの合計質量の3.42%(1回目)又は3.95%(2回目)に相当するランタンが含まれていた。
 得られたリン吸着材について、600℃(試料5)、700℃(試料6)、800℃(試料7)、900℃(試料8)、及び1000℃(試料9)で焼成を行った。なお、焼成は、スタート後3時間で125℃、その後2時間で上記焼成温度、上記焼成温度を2時間保持、その後常温まで冷却する条件で行った。
 試料5~9について、実施例1と同様にリン酸のバッチ式の吸着試験を行った。リン酸濃度が100mg-P/Lとなるリン酸水溶液50mLに、上記試料0.25gを添加し、25℃に保持しながら振とうした。リン酸水溶液へ上記試料を添加する前(0時間)、上記試料の添加から24時間後、及び168時間後にサンプリングを行い、実施例1と同様にして、溶液のリン酸の濃度を測定し、吸着量を算出した。また、リン吸着材を添加しない場合(コントロール)についても、同様にしてリン酸濃度を求めた。リン酸濃度の結果を表3及び図3に示し、リン酸吸着量の結果を表4及び図4に示す。
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000004
 
 さらに、168時間後のリン酸水溶液の外観を肉眼で観察した結果を、168時間後のリン酸吸着量とともに表5及び図5に示す。さらに、試料5~9、及び焼成を行わない以外は実施例2と同様にして作成した試料(焼成なし)について、上記試験を行った後、各溶液が入った三角フラスコを、三角フラスコの上から底に向かって撮影した写真を図6に示す。
Figure JPOXMLDOC01-appb-T000005
 
 表3、表4、図3、図4及び図5より、試料5~7のように焼成温度が低いほうが、リン酸吸着速度が速く、飽和吸着量も多いことがわかった。表5及び図6より、焼成温度が800℃以上であると、リン酸ランタンの沈殿が生成しないことがわかった。なお、リン酸ランタンの白濁が容器の底に沈んだものが沈殿であり、「沈殿なし」は「白濁なし」と同じ意味である。
 リン吸着材で処理された水は、沈殿(白濁)がない方が好ましい。図6に示された、焼成なしの試料、試料5及び試料6において観察される白濁は、吸着材が一部剥がれたものと考えられる。この白濁は、公知の除去又は精製方法、例えば、フィルターにより白濁を除去する、静置後に上澄みを回収して使用する等により除去することができる。これより、リン酸吸着量が高い試料5及び試料6についても、上記方法により白濁を除去することで、白濁のない処理水が得られ、それを使用することができる。
 実施例3
 石炭灰と高炉セメントとを70:30の質量比で混合し、得られた混合物の質量の20%に相当する水を添加し、造粒機において30℃及び35rpmの条件で、直径が約1~5mmの造粒物を作製した。その造粒物を4週間養生させて硬化(多孔質化)させた。なお、最初の7日間は毎日造粒物に水を噴霧した。その造粒物(直径3.35mm以上4.75mm未満)5gを10mLのLaCl・7HO溶液(0.67g/10mL)に常温(約25℃)にて24時間浸漬させた。その後、オーブンで105℃にてLaCl・7HO溶液をドライアップしたものを試料10とした。なお、上記蛍光X線分析装置によりランタンの含有量を測定した結果、試料10には、石炭灰と高炉セメントとの合計質量の4.2%に相当するランタンが含まれていた。また、試料10を600℃で3時間焼成させたもの(直径3.35mm以上4.75mm未満)を試料11とした。
 石炭灰50gに0.25mol/L LaCl・7HO水溶液30mLを噴霧し、得られたランタン担持石炭灰と高炉セメントとを70:30の質量比で混合し、得られた混合物の質量の20%に相当する水を添加し、造粒機を用いて30℃及び35rpmの条件で造粒し、得られた造粒物を4週間養生させて硬化(多孔質化)させた。なお、最初の7日間は毎日造粒物に水を噴霧した。得られた造粒物を600℃で3時間焼成したもの(直径1mm以上3.35mm未満)を試料12とした。
 比較例
 比較例として市販の2種類のリン吸着材を使用した。神畑養魚株式会社製、カミハタ リン酸塩吸着ろ材 フォスフェイト リムーバー(製品名)を試料13とし、エーハイム社製、エーハイム リン酸除去剤(製品名)を試料14とした。なお、試料13及び試料14の粒子の直径は、いずれも3.35mm以上4.75mm未満であった。
 試料10~14について、実施例1と同様にリン酸のバッチ式の吸着試験を行った。リン酸濃度が10mg/Lとなるリン酸水溶液100mLに、上記試料0.5gを添加し、25℃に保持しながら100rpmで振とうした。リン酸水溶液へ上記試料を添加する前(0時間)、上記試料の添加から3時間後、9時間後、24時間後、72時間後、及び168時間後にサンプリングを行い、実施例1と同様にして、溶液のリン酸の濃度及びpHを測定した。pHの測定には、上記と同じpH測定器を用いた。また、リン吸着材を添加しない場合(コントロール)についても、同様にしてリン酸濃度及びpHを測定した。結果を表6、図7、表7及び図8に示す。
Figure JPOXMLDOC01-appb-T000006
 
Figure JPOXMLDOC01-appb-T000007
 
 表6及び図7より、試料10~12(本発明のリン吸着材)は、試料13及び14(市販のリン吸着材)よりもリン酸の吸着速度が速いことがわかった。また、表7及び図8より、試料10~12(本発明のリン吸着材)の溶液のpHはいずれの場合もpH6~8の範囲内であり、別途pH調整を行わなくとも排水基準値(pH5.8~8.6)を満たすことがわかった。
 実施例4
 石炭灰と高炉セメントとを70:30の質量比で混合し、得られた混合物の質量の20%に相当する水を添加し、造粒機において造粒パンの角度が30度かつ35rpmの速度で造粒し、直径が約1~5mmの造粒物を作製した。その造粒物を4週間養生させて硬化(多孔質化)させた。なお、最初の7日間は毎日造粒物に水を噴霧した。
 造粒物の質量に対するランタン(La)の理論的担持率が0.1%、0.5%、1%、2%、又は4%になるように、超純水50mLにLaCl・7HOを溶解させた水溶液を調製した。具体的には、La担持率0.1%の造粒物を製造するために、超純水50mLにLaCl・7HOを0.107g溶解させた(水溶液15)。La担持率0.5%の造粒物を製造するために、超純水50mLにLaCl・7HOを0.535g溶解させた(水溶液16)。La担持率1%の造粒物を製造するために、超純水50mLにLaCl・7HOを1.07g溶解させた(水溶液17)。La担持率2%の造粒物を製造するために、超純水50mLにLaCl・7HOを2.14g溶解させた(水溶液18)。La担持率4%の造粒物を製造するために、超純水50mLにLaCl・7HOを4.28g溶解させた(水溶液19)。
 得られた造粒物40gを蒸発皿に入れ、そこに水溶液15~19を50mL加え、常温(約25℃)で1日含浸させた。その後、蒸発皿をオーブンに入れ、105℃で3時間乾燥し、ランタンを造粒物へ担持させた。さらに、ランタンを担持した造粒物を電気炉にて800℃で2時間焼成し、電気炉内で自然放冷することにより、試料15~19を得た。
 なお、上記蛍光X線分析装置により試料15~19中のランタンの含有量を測定し、ランタン担持率を測定したところ、各試料のランタン担持率は、0.08%(試料15)、0.50%(試料16)、0.91%(試料17)、2.19%(試料18)、及び3.95%(試料19)であり、理論値に近いランタン担持率の造粒物が得られた。
 得られた試料15~19について、実施例1と同様の測定方法を用いて、試料添加後168時間後にリン酸吸着量を測定した。また、下記に示す方法で、試料の表面のpH、試料の強度、及びBET比表面積を測定した。pHの結果を表8及び図9に示し、強度の結果を表9及び図10に示し、BET比表面積の結果を表10及び図11に示す。
<pH>
 各試料の表面のpHは、上記と同じpH測定器(株式会社堀場製作所製 堀場コンパクトpHメータLAQUAtwin B-711)により測定した。
<強度>
 各試料について、荷重測定器(株式会社イマダ製、デジタルフォースゲージS-3)により点荷重を測定した。
<BET比表面積>
 各試料について、自動比表面積測定装置(株式会社島津製作所製、ジェミニVII2390)により窒素ガスによるBET比表面積を測定した。
Figure JPOXMLDOC01-appb-T000008
 
Figure JPOXMLDOC01-appb-T000009
 
Figure JPOXMLDOC01-appb-T000010
 
 表8及び図9より、ランタン担持率が0.1~1%のリン吸着材(試料15~17)はリン酸吸着量が高いことがわかった。また、ランタン担持率が増えるに従い、表面のpHの値が低くなることがわかった。表9及び図10より、ランタン担持率が1%以上のリン吸着材(試料17~19)は、十分な強度を有していることがわかった。また、表10及び図11より、ランタン担持率が0.1%~4%のリン吸着材(試料15~19)はいずれもBET比表面積が1m/g以上であり、高いリン酸吸着性能を発揮することができる。
 本発明のリン吸着材は、リン吸着量が高く、リン吸着速度が速いことから、水中のリンを除去する用途に有用であり、特に、安価で、長期間リン吸着性能を発揮できることから、浄化槽等の分散型排水処理装置に適用することが可能である。

Claims (14)

  1.  焼却灰、セメント、及びランタンを含むリン吸着材。
  2.  前記焼却灰が石炭灰である、請求項1に記載のリン吸着材。
  3.  前記焼却灰100質量部に対して前記セメントが5~150質量部含まれ、かつ、前記焼却灰及び前記セメントの合計量100質量部に対して前記ランタンが0.1~15質量部含まれる、請求項1又は2に記載のリン吸着材。
  4.  前記焼却灰100質量部に対して前記セメントが5~150質量部含まれ、かつ、前記焼却灰及び前記セメントの合計量100質量部に対して前記ランタンが0.5~4質量部含まれる、請求項1~3のいずれか一項に記載のリン吸着材。
  5.  多孔質である、請求項1~4のいずれか一項に記載のリン吸着材。
  6.  汚水に含まれるリンを除去するために用いられる、請求項1~5のいずれか一項に記載のリン吸着材。
  7.  焼却灰、セメント、及びランタンを、溶媒を用いて造粒する、リン吸着材の製造方法。
  8.  前記焼却灰が石炭灰である、請求項7に記載のリン吸着材の製造方法。
  9.  前記焼却灰、前記セメント、及び前記ランタンを、前記焼却灰100質量部に対して前記セメントを5~150質量部配合し、かつ、前記焼却灰及び前記セメントの合計量100質量部に対して前記ランタンを0.1~15質量部配合する、請求項7又は8に記載のリン吸着材の製造方法。
  10.  前記焼却灰、前記セメント、及び前記ランタンを、前記焼却灰100質量部に対して前記セメントを5~150質量部配合し、かつ、前記焼却灰及び前記セメントの合計量100質量部に対して前記ランタンを0.5~4質量部配合する、請求項7~9のいずれか一項に記載のリン吸着材の製造方法。
  11.  造粒した後、造粒物を養生し、その後に焼成する、請求項7~10のいずれか一項に記載のリン吸着材の製造方法。
  12.  前記焼成温度が600~1000℃である、請求項11に記載のリン吸着材の製造方法。
  13.  請求項1~5のいずれか一項に記載のリン吸着材を、リンを含む液体に接触させる、リンの吸着方法。
  14.  請求項1~5のいずれか一項に記載のリン吸着材を用いて、汚水中のリンを吸着除去する、リンの除去方法。
PCT/JP2020/033172 2019-09-19 2020-09-02 リン吸着材 WO2021054116A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2020351421A AU2020351421A1 (en) 2019-09-19 2020-09-02 Phosphorus adsorbent
JP2021546586A JP7174967B2 (ja) 2019-09-19 2020-09-02 リン吸着材
US17/642,798 US20220379283A1 (en) 2019-09-19 2020-09-02 Phosphorus adsorbent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-170334 2019-09-19
JP2019170334 2019-09-19

Publications (1)

Publication Number Publication Date
WO2021054116A1 true WO2021054116A1 (ja) 2021-03-25

Family

ID=74884056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/033172 WO2021054116A1 (ja) 2019-09-19 2020-09-02 リン吸着材

Country Status (4)

Country Link
US (1) US20220379283A1 (ja)
JP (1) JP7174967B2 (ja)
AU (1) AU2020351421A1 (ja)
WO (1) WO2021054116A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113200580A (zh) * 2021-03-29 2021-08-03 江苏省中国科学院植物研究所 一种基于生物质电厂灰的水体磷去除材料及其制备方法和应用
CN113415833A (zh) * 2021-05-28 2021-09-21 嘉兴市禾晟生物制品有限公司 一种新型污水除磷剂的生产工艺
CN115739019A (zh) * 2022-11-17 2023-03-07 武汉大学 一种基于高毒性剩余污泥的功能化生物炭及其制备方法和其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03101834A (ja) * 1989-09-14 1991-04-26 Iseki Tory Tech Inc 吸着剤及びその吸着剤を用いた水処理方法
JP2001340756A (ja) * 2000-03-27 2001-12-11 Natl Inst Of Advanced Industrial Science & Technology Meti 有害陰イオン吸着粒子およびその製造方法
JP2004113885A (ja) * 2002-09-25 2004-04-15 Chugoku Electric Power Co Inc:The 水質浄化材料
JP2006514600A (ja) * 2002-08-14 2006-05-11 アルティアー ナノマテリアルズ インコーポレイテッド 希土類金属化合物、製造方法及び該化合物を用いた方法
CN101560110A (zh) * 2009-05-26 2009-10-21 上海电力学院 用于废水处理的球型轻质多孔材料
JP2012223733A (ja) * 2011-04-21 2012-11-15 Hiroshima Univ 水質環境改善方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03101834A (ja) * 1989-09-14 1991-04-26 Iseki Tory Tech Inc 吸着剤及びその吸着剤を用いた水処理方法
JP2001340756A (ja) * 2000-03-27 2001-12-11 Natl Inst Of Advanced Industrial Science & Technology Meti 有害陰イオン吸着粒子およびその製造方法
JP2006514600A (ja) * 2002-08-14 2006-05-11 アルティアー ナノマテリアルズ インコーポレイテッド 希土類金属化合物、製造方法及び該化合物を用いた方法
JP2004113885A (ja) * 2002-09-25 2004-04-15 Chugoku Electric Power Co Inc:The 水質浄化材料
CN101560110A (zh) * 2009-05-26 2009-10-21 上海电力学院 用于废水处理的球型轻质多孔材料
JP2012223733A (ja) * 2011-04-21 2012-11-15 Hiroshima Univ 水質環境改善方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113200580A (zh) * 2021-03-29 2021-08-03 江苏省中国科学院植物研究所 一种基于生物质电厂灰的水体磷去除材料及其制备方法和应用
CN113200580B (zh) * 2021-03-29 2023-08-18 江苏省中国科学院植物研究所 一种基于生物质电厂灰的水体磷去除材料及其制备方法和应用
CN113415833A (zh) * 2021-05-28 2021-09-21 嘉兴市禾晟生物制品有限公司 一种新型污水除磷剂的生产工艺
CN115739019A (zh) * 2022-11-17 2023-03-07 武汉大学 一种基于高毒性剩余污泥的功能化生物炭及其制备方法和其应用

Also Published As

Publication number Publication date
JPWO2021054116A1 (ja) 2021-03-25
AU2020351421A1 (en) 2022-02-24
JP7174967B2 (ja) 2022-11-18
US20220379283A1 (en) 2022-12-01

Similar Documents

Publication Publication Date Title
Katsou et al. Use of ultrafiltration membranes and aluminosilicate minerals for nickel removal from industrial wastewater
Yu et al. Phosphate removal from domestic wastewater using thermally modified steel slag
Ma et al. Simultaneous adsorption of ammonia and phosphate using ferric sulfate modified carbon/zeolite composite from coal gasification slag
WO2021054116A1 (ja) リン吸着材
CN102115234A (zh) 一种赤泥除磷絮凝剂制备方法
CN111848130A (zh) 一种高效除磷的改性陶粒及其制备方法
Kamarzamann et al. Hydroxyapatite/Dolomite alkaline activated material reaction in the formation of low temperature sintered ceramic as adsorbent materials
CN113145073A (zh) 二次碳化镧改性污泥生物炭的制备方法及其应用
KR101739286B1 (ko) 인 흡착용 흡착제의 제조방법
Yang et al. Using desulfurization slag as the aquacultural amendment for fish pond water quality improvement: Mechanisms and effectiveness studies
JP5713735B2 (ja) リン吸着材ならびにそれを用いた土壌改良剤または肥料
US20240173695A1 (en) Organic Soil Amendments with Ions Bound Thereto for Removing Contaminants from Aqueous Streams
CN110575812B (zh) 一种陶土/软锰矿高效除磷的环保吸附材料及制备方法
JP7210049B2 (ja) 汚泥の処理方法、汚泥の処理システムおよび吸着剤の製造方法
CN102078795B (zh) 一种用于控制景观水体藻类生长的粉煤灰成型材料及其应用方法
Li et al. REMOVAL OF NH+ 4-N FROM AQUEOUS SOLUTION BY CERAMSITE COATED WITH Mg (OH) 2 COMBINED WITH AIR STRIPPING.
JP3103473B2 (ja) 水質浄化材及びその製造法
KR100272451B1 (ko) 인 제거용 여재 및 그 제조방법
JP4822369B2 (ja) 水質改善処理剤及びその製造方法
Wang et al. Denitrification performance and kinetics of an attapulgite lightweight ceramsite biofilter
KR101399586B1 (ko) 인 제거제
KR20210069366A (ko) Po4-p 및 nh3-n 제거용 하수처리재의 제조방법, 이에 의해 제조된 하수처리재, 및 이를 포함하는 하수처리시스템
JP2004298668A (ja) 水質浄化方法および水質浄化装置
Zhen et al. Porous Red Mud Ceramsite Manufactured from Spent Mushroom Substrate: Its Application in Constructed Wetlands
JP2022029369A (ja) 陰イオン吸着剤、吸着剤袋、陰イオン吸着剤の使用方法、及び井戸水の浄化方法。

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20866136

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021546586

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020351421

Country of ref document: AU

Date of ref document: 20200902

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20866136

Country of ref document: EP

Kind code of ref document: A1