WO2021054173A1 - Heat transfer fin and manufacturing method therefor - Google Patents
Heat transfer fin and manufacturing method therefor Download PDFInfo
- Publication number
- WO2021054173A1 WO2021054173A1 PCT/JP2020/033772 JP2020033772W WO2021054173A1 WO 2021054173 A1 WO2021054173 A1 WO 2021054173A1 JP 2020033772 W JP2020033772 W JP 2020033772W WO 2021054173 A1 WO2021054173 A1 WO 2021054173A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat transfer
- strip
- fin
- shaped
- side wall
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 238000007663 fining method Methods 0.000 title 1
- 230000000630 rising effect Effects 0.000 claims description 18
- 239000002184 metal Substances 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 4
- 230000005540 biological transmission Effects 0.000 abstract 1
- 239000002826 coolant Substances 0.000 description 25
- 239000012530 fluid Substances 0.000 description 19
- 238000012986 modification Methods 0.000 description 11
- 230000004048 modification Effects 0.000 description 11
- 238000003860 storage Methods 0.000 description 6
- 238000004088 simulation Methods 0.000 description 4
- 238000005452 bending Methods 0.000 description 2
- 238000005219 brazing Methods 0.000 description 2
- 239000000110 cooling liquid Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/12—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
- F28F1/24—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
- F28F1/30—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means being attachable to the element
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F13/00—Arrangements for modifying heat-transfer, e.g. increasing, decreasing
- F28F13/06—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
- F28F13/12—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
Definitions
- the present invention relates to, for example, a heat transfer fin used in a heat exchanger and a method for manufacturing the same.
- a corrugated fin is joined to a heat transfer member, and a fluid such as air is passed between the fins of the corrugated fin to exchange heat between the heat transfer member and the fluid via the corrugated fin.
- a fluid such as air
- the corrugated fin in order to increase the surface area of the corrugated fin, it is conceivable to reduce the fin pitch of the corrugated fin or to make the flow path wavy. Further, in order to improve the heat transfer coefficient between the corrugated fin and the fluid, it is considered that the upper surface and the bottom surface of the corrugated fin are cut up inward to form protrusions.
- the present invention has been made to solve the above-mentioned problems, and its main object is to improve the heat exchange efficiency between the heat transfer member and the fluid while suppressing the increase in pressure loss. Is.
- the heat transfer fin according to the present invention includes a corrugated fin main body portion formed by connecting the top and valley portions with side wall portions, and a strip-shaped portion extending from one side or both sides of each of the plurality of side wall portions.
- the present invention is characterized in that at least one of the plurality of strip-shaped portions has a twisted shape.
- the strip-shaped portion provided on the side wall of the fin body has a twisted shape, so that the fluid passing through the heat transfer fin is wasted along the twisted shape of the strip-shaped portion.
- the fluid flows while stirring the laminar flow or a state close to the laminar flow without generating a vortex.
- the agitated fluid thins the boundary film between the heat transfer member provided with the heat transfer fins and the fluid, and its thermal resistance can be reduced.
- the corrugated fins do not rely on fine shapes such as pinching pitch and unevenness, so that it is possible to prevent performance deterioration due to clogging of foreign matter such as dust.
- every other strip-shaped portion having a twisted shape is provided along the arrangement direction of the plurality of side wall portions.
- flat plate-shaped strip-shaped portions and twisted strip-shaped portions having a twisted shape are alternately provided.
- all of the plurality of strip-shaped portions may have the twisted shape.
- heat transfer fin When joining a heat transfer fin to a heat transfer member such as a heat transfer plate, in order to enable joining not only the fin body but also the band-shaped part to the heat transfer member, heat transfer is performed to the free end of the band-shaped part. It is desirable that a rising joint portion to be joined to the thermal member is provided. With this configuration, the free ends of the plurality of strips can be aligned to accurately determine the spacing between the plurality of strips, and the durability of the heat transfer fins can be improved.
- a corrugated second fin main body portion formed by connecting the top portion and the valley portion with a side wall portion is connected to the free end portions of the plurality of strip-shaped portions.
- the distance between the plurality of strips is determined by the pair of fin main bodies.
- the pair of fin main bodies may be joined to a heat transfer member such as a heat transfer plate, assembly becomes easy.
- the durability of the heat transfer fins can be improved.
- the heat transfer fin When the heat transfer fin is composed of a plurality of parts, the parts are joined by brazing or welding, but in that case, the heat exchange performance of the heat transfer fin deteriorates due to the contact heat resistance of each part. It ends up. In addition, it also causes a vortex to be generated at the joint portion. Therefore, it is desirable that the strip-shaped portion is integrally formed with the side wall portion.
- a metal plate is bent to form a corrugated fin main body portion in which a top portion and a valley portion are connected by a side wall portion, and each of the plurality of side wall portions is formed. It is characterized in that a band-shaped portion extending from one side or both sides is formed, and a twisted shape is formed in at least one of the plurality of the strip-shaped portions.
- the heat transfer fin 100 of the present embodiment has a corrugated fin main body 2 formed by connecting a top portion 21 and a valley portion 22 by a side wall portion 23, and from one side of each of the plurality of side wall portions 23. It is provided with a strip-shaped portion 3 provided by stretching.
- the fin main body 2 has a flat plate-shaped top portion 21, a flat plate-shaped valley portion 22, and a flat plate-shaped side wall portion 23 connecting them. That is, the fin main body 2 has a rectangular wavy cross section. Further, the fin main body portion 2 is a flat-top-shaped corrugated fin in which at least two or more basic shapes including one top portion 21 and a pair of side wall portions 23 connected to the top portion 21 are continuously formed. In addition, as shown in ⁇ Modification Example> of FIG. 2, at least one of the top portion 21 and the valley portion 22 of the fin main body portion 2 may have an arcuate cross section. In the ⁇ modification example> of FIG. 2, a round top-shaped corrugated fin in which both the top portion 21 and the valley portion 22 have an arcuate cross section is illustrated.
- the fin main body 2 is joined to a heat transfer member (not shown) so that a fluid flows between the side walls 23 adjacent to each other.
- a heat transfer member (not shown) so that a fluid flows between the side walls 23 adjacent to each other.
- at least the top 21 or the valley 22 is formed.
- One is joined to the heat transfer member.
- one of the top 21 or the valley 22 is joined to the heat transfer member, and when joined to two heat transfer members, the top 21 and the valley 22 are joined.
- the strip-shaped portion 3 has an elongated shape, and is in the width direction of the side wall portion 23 (direction of the flow path formed between the side wall portions 23) from one side of the side wall portion 23. It is provided so as to extend to the outside of the side wall portion 23 along the above. That is, a flow path is formed between the strips 3 adjacent to each other.
- the band-shaped portion 3 of the present embodiment is integrally formed with the side wall portion 23.
- the torsional shape is formed by rotating the free end portion 3a of the strip-shaped portion 3 around the central axis of the strip-shaped portion 3 by, for example, 180 degrees, and not only the torsional shape that changes continuously (smoothly). , It may be a twisted shape that changes stepwise.
- FIG. 1 illustrates a twisted shape that changes continuously (smoothly).
- the twist angle of the twist shape is not limited to 180 degrees and can be various angles.
- the twisted shape may be twisted with a uniform degree of twist in the direction of the central axis of the strip-shaped portion 3, or may have a degree of twist changed in the middle.
- the strip-shaped portion 3 having a twisted shape (hereinafter, also referred to as “twisted strip-shaped portion 3X”) is along the arrangement direction of the plurality of side wall portions 23 (direction in which the side wall portions 23 face each other). It is provided every other one (see FIG. 1). That is, the flat plate-shaped strips 3 having no twisted shape (hereinafter, also referred to as “flat strip strips 3Y”) and the twisted strips 3X are alternately provided. Further, the plurality of twisted strips 3X have the same twisting shape as each other.
- the twisted shape and twisting direction of the plurality of twisted strips 3X may be different from each other. Further, the lengths of the twisted strips 3X and the flat strips 3Y may be different from each other, the lengths of the twisted strips 3X may be different from each other, or the flat strips 3Ys may be different from each other. The lengths may be different from each other.
- the rising joint portion 4 is provided at the free end portion 3a of the strip-shaped portion 3.
- the rising joint portion 4 is joined to the heat transfer member, whereby the free end portion 3a of the strip-shaped portion 3 is fixed.
- the rising joint portion 4 of the present embodiment is provided at the same height position as the fin main body portion 2.
- the rising joint portion 4 may be provided at a height position different from that of the fin main body portion 2.
- the rising joint portion 4 has a first joint end portion 41 joined to one heat transfer member, a second joint end portion 42 to the other heat transfer member, and a first joint. It has a connecting portion 43 that connects the end portion 41 and the second joint end portion 42.
- the connecting portion 43 is integrally formed with the free end portion 3a of the strip-shaped portion 3.
- the rising joint 4 shown in FIG. 3 has a Z-shaped cross section, but as shown in ⁇ Modification 1> of FIG. 3, for example, it may have a U-shaped cross section. , As shown in ⁇ Modification 2> of FIG. 3, the cross section may be S-shaped. Further, the rising joint portion 4 may be provided on all the strip-shaped portions 3, or may be provided on either the twisted strip-shaped portion 3X or the flat plate strip-shaped portion 3Y.
- the heat transfer fin 100 configured in this way basically has a rectangular shape in a plan view, but as shown in FIG. 4, it can also be deformed into a curved shape in a plan view. That is, instead of arranging the plurality of side wall portions 23 and / or the plurality of strip-shaped portions 3 of the fin main body portion 2 in parallel, the free end portions 3a of the plurality of side wall portions 23 and / or the plurality of strip-shaped portions 3 are expanded and contracted with each other.
- the heat transfer fin 100 can be formed into a curved shape.
- one metal plate is cut into a shape having a portion to be a fin main body portion and a plurality of strip-shaped portions (including a portion to be a rising joint portion 4).
- the cut metal plate is bent to form a corrugated fin body 2.
- a band-shaped portion 3 extending from one side of each of the plurality of side wall portions 23 is formed.
- the strip-shaped portion has the same flat plate shape as the side wall portion 23.
- the twisted strip-shaped portion 3X is formed.
- a constricted portion 3K narrowed vertically is provided at the connecting portion between the side wall portion 23 of the fin main body portion 2 and the strip-shaped portion 3.
- the rising joint portion 4 may be formed by bending a metal plate before forming the fin main body 2, or may be formed by bending the metal plate after forming the fin main body 2, or twisting. After forming the strip-shaped portion 3X, the metal plate may be bent to form the strip-shaped portion 3X.
- the heat transfer fin 100 of the present embodiment since the strip-shaped portion 3 provided on the side wall portion 23 of the fin main body portion 2 has a twisted shape, the fluid passing through the heat transfer fin 100 has a twisted shape of the strip-shaped portion 3. Along the flow, the fluid is agitated and flows in a laminar flow or a state close to a laminar flow without generating a useless vortex. When the agitated fluid hits the heat transfer member, the boundary film between the heat transfer member provided with the heat transfer fins and the fluid becomes thin, and the thermal resistance thereof can be reduced. As a result, it is possible to improve the heat exchange efficiency between the heat transfer member and the fluid while suppressing the increase in pressure loss due to the heat transfer fin 100. Further, since heat transfer does not rely on fine shapes such as pinching pitch of corrugated fins and unevenness as in the conventional case, it is possible to prevent performance deterioration due to clogging of foreign substances such as dust.
- the heat transfer fin 100 of the above embodiment has a configuration having a rising joint portion 4, but as shown in FIG. 5, it may be configured not to have a rising joint portion 4.
- strip-shaped portion 3 of the above embodiment is integrally formed with the side wall portion 23, the fin main body portion 2 and the strip-shaped portion 3 are separate parts, and the strip-shaped portion 3 is formed on the fin main body portion 2, for example. It may be joined by brazing or welding.
- the heat transfer fin 100 is provided with the strip-shaped portion 3 on one side of the side wall portion 23.
- the strip-shaped portion 3 is extended from both sides of the side wall portion 23. May be provided.
- the strip-shaped portion 3 provided on one side of the side wall portion 23 and the strip-shaped portion 3 provided on the other side of the side wall portion 23 do not have to have the same shape, and have, for example, different lengths and twisted shapes. They may have different shapes such as different shapes.
- the twisted band-shaped portions 3X provided on both sides of the plurality of side wall portions 23 may be provided so as to be staggered with respect to the fin main body portion 2.
- FIG. 7 shows the simulation results of the heat exchange performance of the heat transfer fins of the present invention and the conventional heat transfer fins.
- each heat transfer fin was joined to the heat source surface, and the heat exchange amount (W) and pressure loss (Pa) of the heat source surface when air was passed through the heat transfer fins were obtained.
- the heat transfer fin of the present invention is a heat transfer fin provided by extending the band-shaped portion 3 as shown in FIG. 7 from both sides of the side wall portion 23. Further, all the conventional heat transfer fins are corrugated fins.
- the heat transfer fin of the present invention can reduce the pressure loss while increasing the amount of heat exchange on the heat source surface.
- the twisted strips 3X are provided every other time, but as shown in FIG. 8, all the strips 3 may be twisted strips 3X. Further, the twisted strip 3X may be provided in another arrangement.
- a corrugated second fin main body portion 5 having a top portion and a valley portion connected by a side wall portion may be connected to the free end portion 3a of the plurality of strip-shaped portions 3. .. That is, the side wall portion 23 of the fin main body portion (first fin main body portion 2) of the embodiment and the side wall portion of the second fin main body portion 5 are connected by the band-shaped portion 3. Further, the strip-shaped portion 3 may be extended from the side wall portion of the second fin main body portion 5 to the side opposite to the first fin main body portion 2.
- top and valley portions are connected by the side wall portions to the free end portion 3a of the strip-shaped portion 3 extending from the side wall portion of the second fin main body portion 5 to the side opposite to the first fin main body portion 2.
- a corrugated third fin body 6 may be connected. That is, a configuration may be configured in which two or more fin main bodies are connected by a band-shaped portion 3. In this configuration, both ends of the strip 3 are fixed ends, so when forming a twisted shape of the strip 3, for example, the intermediate portion of the strip 3 is rotated around the central axis of the strip 3. Let me. At this time, the strip-shaped portion 3 is formed with two twisted shapes having different twisting directions.
- a rising surface 3Y1 for strengthening the joint may be provided on at least one of the upper end portion and the lower end portion of the flat plate strip-shaped portion 3Y.
- FIG. 8 illustrates a case where the rising surface 3Y1 is provided on both the upper end portion and the lower end portion of the flat plate strip-shaped portion 3Y.
- FIG. 10 shows a main part (part) of the EGR heat exchanger 200 configured by using the heat transfer fins 100.
- a heat transfer fin 100 is provided in a heat transfer case 201 having an internal space having a rectangular cross section to form a heat transfer unit 202.
- the heat transfer case 201 has a flat rectangular parallelepiped shape with openings on both end faces.
- the heat transfer units 202 are stacked in a plurality of stages so as to leave a gap between them, and surrounded by a housing 203 for circulating the cooling liquid on the outside and the gap, thereby forming the EGR heat exchanger 200.
- the housing 203 is provided with a coolant introduction port P1 for introducing the coolant and a coolant outlet port P2 for leading the coolant. Then, when high-temperature exhaust gas flows in from one end opening of the heat transfer case 201, heat is exchanged between the heat transfer case 201 and the coolant by the heat transfer fin 100, and the cooled exhaust gas flows out from the other end opening.
- FIG. 11 shows a main part (part) of the radiator 300 configured by using the heat transfer fins 100.
- the radiator 300 has a plurality of flat tubes 301 through which the cooling liquid flows, and heat transfer fins 100 provided between the flat tubes 301. Both ends of the plurality of flat pipes 301 are connected to the header 302, one header 302 is provided with a coolant introduction port P1, and the other header 302 is provided with a coolant outlet port P2. Has been done. Then, air flows through the heat transfer fins 100 provided between the flat tubes 301, so that the high-temperature coolant into which the coolant introduction port P1 is introduced is between the flat tubes 301 and the air by the heat transfer fins 100. The low-temperature coolant is led out from the coolant outlet port P2 by heat exchange at.
- FIG. 12 shows a main part (part) of the heat exchanger 400 in which the heat transfer fins 100 are wound around the outer peripheral surface of the coolant storage pipe 401 for storing the coolant.
- the heat exchanger 400 has a double pipe structure, and an outer pipe 402 is provided outside the coolant storage pipe 401. Then, a heat transfer fin 100 bent in a cylindrical shape is provided between the coolant storage pipe 401 and the outer pipe 402.
- the coolant storage pipe 401 is provided with a coolant introduction port P1 for introducing the coolant and a coolant outlet port P2 for leading out the coolant. Further, both ends of the outer tube 402 are open, and the air flowing in from one opening passes through the heat transfer fin 100 and flows out from the other opening.
- the heat transfer fin 100 of the present invention can be used in various types of heat exchangers.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Geometry (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
The present invention suppresses an increase in pressure loss, and improves heat transmission efficiency. The present invention includes: a fin body part 2 that has a corrugated shape and that is formed by connecting peak parts 21 and valley parts 22 with side-wall parts 23; and belt-shaped parts 3 that are provided extending from one or both sides of each of the plurality of side-wall parts 23. At least one of the plurality of belt-shaped parts 3 has a twisted shape.
Description
本発明は、例えば熱交換器に用いられる伝熱フィン及びその製造方法に関するものである。
The present invention relates to, for example, a heat transfer fin used in a heat exchanger and a method for manufacturing the same.
従来、熱交換器においては、伝熱部材にコルゲートフィンを接合し、当該コルゲートフィンのフィン間に空気などの流体を流すことにより、コルゲートフィンを介して伝熱部材と流体との間で熱交換を行うものがある。
Conventionally, in a heat exchanger, a corrugated fin is joined to a heat transfer member, and a fluid such as air is passed between the fins of the corrugated fin to exchange heat between the heat transfer member and the fluid via the corrugated fin. There is something to do.
このとき、熱交換器の熱交換効率を向上させるためには、特許文献1や特許文献2に示すように、コルゲートフィンの表面積の拡大や、コルゲートフィンと流体との熱伝達率の向上を図ることが考えられる。
At this time, in order to improve the heat exchange efficiency of the heat exchanger, as shown in Patent Document 1 and Patent Document 2, the surface area of the corrugated fin is increased and the heat transfer coefficient between the corrugated fin and the fluid is improved. Can be considered.
例えば、コルゲートフィンの表面積を拡大するためには、コルゲートフィンのフィンピッチを小さくしたり、流路をウェーブ形状にしたりすることが考えられる。また、コルゲートフィンと流体との熱伝達率の向上を図るためには、コルゲートフィンの上面や底面等を内側に切り起こして突起を形成したりすることが考えられている。
For example, in order to increase the surface area of the corrugated fin, it is conceivable to reduce the fin pitch of the corrugated fin or to make the flow path wavy. Further, in order to improve the heat transfer coefficient between the corrugated fin and the fluid, it is considered that the upper surface and the bottom surface of the corrugated fin are cut up inward to form protrusions.
しかしながら、上記の構成は何れも、コルゲートフィンによる圧力損失が大きくなってしまう。
However, in any of the above configurations, the pressure loss due to the corrugated fin becomes large.
そこで本発明は、上記の問題点を解決すべくなされたものであり、圧力損失の上昇を抑えつつ、伝熱部材と流体との間の熱交換効率を向上させることをその主たる課題とするものである。
Therefore, the present invention has been made to solve the above-mentioned problems, and its main object is to improve the heat exchange efficiency between the heat transfer member and the fluid while suppressing the increase in pressure loss. Is.
すなわち本発明に係る伝熱フィンは、頂部及び谷部を側壁部で連結してなるコルゲート状のフィン本体部と、複数の前記側壁部それぞれの片側又は両側から延伸して設けられた帯状部とを備え、複数の前記帯状部の少なくとも1つがねじり形状を有することを特徴とする。
That is, the heat transfer fin according to the present invention includes a corrugated fin main body portion formed by connecting the top and valley portions with side wall portions, and a strip-shaped portion extending from one side or both sides of each of the plurality of side wall portions. The present invention is characterized in that at least one of the plurality of strip-shaped portions has a twisted shape.
このように構成された伝熱フィンであれば、フィン本体部の側壁部に設けられた帯状部がねじり形状を有するので、伝熱フィンを通過する流体は帯状部のねじり形状に沿って無駄な渦を発生させることなく層流又は層流に近い状態で流体を撹拌しながら流れることになる。この撹拌された流体により、伝熱フィンが設けられた伝熱部材と流体との間の境膜が薄くなり、その熱抵抗を減少させることができる。その結果、その結果、伝熱フィンによる圧力損失の上昇を抑えつつ、伝熱部材と流体との間の熱交換効率を向上させることができる。また、従来のようにコルゲートフィンの挟ピッチ化や凹凸などの微細形状に頼らないので、粉塵等の異物の詰まりによる性能低下を防ぐことができる。
With the heat transfer fins configured in this way, the strip-shaped portion provided on the side wall of the fin body has a twisted shape, so that the fluid passing through the heat transfer fin is wasted along the twisted shape of the strip-shaped portion. The fluid flows while stirring the laminar flow or a state close to the laminar flow without generating a vortex. The agitated fluid thins the boundary film between the heat transfer member provided with the heat transfer fins and the fluid, and its thermal resistance can be reduced. As a result, it is possible to improve the heat exchange efficiency between the heat transfer member and the fluid while suppressing the increase in pressure loss due to the heat transfer fins. Further, unlike the conventional case, the corrugated fins do not rely on fine shapes such as pinching pitch and unevenness, so that it is possible to prevent performance deterioration due to clogging of foreign matter such as dust.
複数の前記帯状部において、前記ねじり形状を有する帯状部は、複数の前記側壁部の配列方向に沿って、1つおきに設けられていることが望ましい。この場合、例えば、複数の帯状部において、平板状をなす平板帯状部とねじり形状を有するねじり帯状部とが交互に設けられる。
この構成であれば、ねじり形状によって撹拌された流体が伝熱部材に接触しやすくなり、伝熱部材と流体との間の境膜が薄くなり、伝熱部材と流体との間の熱交換効率を向上させることができる。 In the plurality of strip-shaped portions, it is desirable that every other strip-shaped portion having a twisted shape is provided along the arrangement direction of the plurality of side wall portions. In this case, for example, in a plurality of strip-shaped portions, flat plate-shaped strip-shaped portions and twisted strip-shaped portions having a twisted shape are alternately provided.
With this configuration, the fluid agitated by the twisted shape easily comes into contact with the heat transfer member, the boundary film between the heat transfer member and the fluid becomes thin, and the heat exchange efficiency between the heat transfer member and the fluid becomes thin. Can be improved.
この構成であれば、ねじり形状によって撹拌された流体が伝熱部材に接触しやすくなり、伝熱部材と流体との間の境膜が薄くなり、伝熱部材と流体との間の熱交換効率を向上させることができる。 In the plurality of strip-shaped portions, it is desirable that every other strip-shaped portion having a twisted shape is provided along the arrangement direction of the plurality of side wall portions. In this case, for example, in a plurality of strip-shaped portions, flat plate-shaped strip-shaped portions and twisted strip-shaped portions having a twisted shape are alternately provided.
With this configuration, the fluid agitated by the twisted shape easily comes into contact with the heat transfer member, the boundary film between the heat transfer member and the fluid becomes thin, and the heat exchange efficiency between the heat transfer member and the fluid becomes thin. Can be improved.
また、複数の前記帯状部の全てが、前記ねじり形状を有するものであっても良い。
Further, all of the plurality of strip-shaped portions may have the twisted shape.
伝熱フィンを伝熱板等の伝熱部材に接合する場合に、フィン本体部だけでなく帯状部を伝熱部材に接合できるようにするためには、前記帯状部の自由端部に、伝熱部材に接合される立ち上がり接合部が設けられていることが望ましい。
この構成であれば、複数の帯状部の自由端部を整列させて複数の帯状部の間隔を正確に決めることができるとともに、伝熱フィンの耐久性を向上させることができる。 When joining a heat transfer fin to a heat transfer member such as a heat transfer plate, in order to enable joining not only the fin body but also the band-shaped part to the heat transfer member, heat transfer is performed to the free end of the band-shaped part. It is desirable that a rising joint portion to be joined to the thermal member is provided.
With this configuration, the free ends of the plurality of strips can be aligned to accurately determine the spacing between the plurality of strips, and the durability of the heat transfer fins can be improved.
この構成であれば、複数の帯状部の自由端部を整列させて複数の帯状部の間隔を正確に決めることができるとともに、伝熱フィンの耐久性を向上させることができる。 When joining a heat transfer fin to a heat transfer member such as a heat transfer plate, in order to enable joining not only the fin body but also the band-shaped part to the heat transfer member, heat transfer is performed to the free end of the band-shaped part. It is desirable that a rising joint portion to be joined to the thermal member is provided.
With this configuration, the free ends of the plurality of strips can be aligned to accurately determine the spacing between the plurality of strips, and the durability of the heat transfer fins can be improved.
複数の前記帯状部の自由端部に、頂部及び谷部を側壁部で連結してなるコルゲート状の第2のフィン本体部が連結されていることが望ましい。
この構成であれば、複数の帯状部の間隔は、一対のフィン本体部によって決まる。また、一対のフィン本体部を伝熱板などの伝熱部材に接合すれば良いので、組み立てが容易となる。また、伝熱フィンの耐久性を向上させることができる。 It is desirable that a corrugated second fin main body portion formed by connecting the top portion and the valley portion with a side wall portion is connected to the free end portions of the plurality of strip-shaped portions.
In this configuration, the distance between the plurality of strips is determined by the pair of fin main bodies. Further, since the pair of fin main bodies may be joined to a heat transfer member such as a heat transfer plate, assembly becomes easy. In addition, the durability of the heat transfer fins can be improved.
この構成であれば、複数の帯状部の間隔は、一対のフィン本体部によって決まる。また、一対のフィン本体部を伝熱板などの伝熱部材に接合すれば良いので、組み立てが容易となる。また、伝熱フィンの耐久性を向上させることができる。 It is desirable that a corrugated second fin main body portion formed by connecting the top portion and the valley portion with a side wall portion is connected to the free end portions of the plurality of strip-shaped portions.
In this configuration, the distance between the plurality of strips is determined by the pair of fin main bodies. Further, since the pair of fin main bodies may be joined to a heat transfer member such as a heat transfer plate, assembly becomes easy. In addition, the durability of the heat transfer fins can be improved.
伝熱フィンを複数の部品により構成する場合、各部品をろう付けや溶接等で接合されることになるが、そうすると、各部品の接触熱抵抗により、伝熱フィンの熱交換性能が低下してしまう。また、その接合部分で渦流が発生する原因にもなってしまう。
このため、前記帯状部は、前記側壁部に一体に形成されていることが望ましい。 When the heat transfer fin is composed of a plurality of parts, the parts are joined by brazing or welding, but in that case, the heat exchange performance of the heat transfer fin deteriorates due to the contact heat resistance of each part. It ends up. In addition, it also causes a vortex to be generated at the joint portion.
Therefore, it is desirable that the strip-shaped portion is integrally formed with the side wall portion.
このため、前記帯状部は、前記側壁部に一体に形成されていることが望ましい。 When the heat transfer fin is composed of a plurality of parts, the parts are joined by brazing or welding, but in that case, the heat exchange performance of the heat transfer fin deteriorates due to the contact heat resistance of each part. It ends up. In addition, it also causes a vortex to be generated at the joint portion.
Therefore, it is desirable that the strip-shaped portion is integrally formed with the side wall portion.
また、本発明に係る伝熱フィンの製造方法は、金属板を折り曲げて、頂部及び谷部を側壁部で連結してなるコルゲート状のフィン本体部を形成するとともに、複数の前記側壁部それぞれの片側又は両側から延伸して設けられた帯状部を形成し、複数の前記帯状部の少なくとも1つにねじり形状を形成することを特徴とする。
Further, in the method for manufacturing a heat transfer fin according to the present invention, a metal plate is bent to form a corrugated fin main body portion in which a top portion and a valley portion are connected by a side wall portion, and each of the plurality of side wall portions is formed. It is characterized in that a band-shaped portion extending from one side or both sides is formed, and a twisted shape is formed in at least one of the plurality of the strip-shaped portions.
上述した本発明によれば、圧力損失の上昇を抑えつつ、熱伝達効率を向上させることができる。
According to the above-mentioned invention, it is possible to improve the heat transfer efficiency while suppressing the increase in pressure loss.
100・・・伝熱フィン
2・・・フィン本体部
21・・・頂部
22・・・谷部
23・・・側壁部
3・・・帯状部
3X・・・ねじり形状を有する帯状部
4・・・立ち上がり接合部 100 ...Heat transfer fin 2 ... Fin body 21 ... Top 22 ... Valley 23 ... Side wall 3 ... Strip 3X ... Twisted strip 4 ...・ Rising joint
2・・・フィン本体部
21・・・頂部
22・・・谷部
23・・・側壁部
3・・・帯状部
3X・・・ねじり形状を有する帯状部
4・・・立ち上がり接合部 100 ...
以下、本発明に係る伝熱フィンの一実施形態を、図1及び図2を参照して説明する。
Hereinafter, an embodiment of the heat transfer fin according to the present invention will be described with reference to FIGS. 1 and 2.
<伝熱フィンの構成>
本実施形態の伝熱フィン100は、図1に示すように、頂部21及び谷部22を側壁部23で連結してなるコルゲート状のフィン本体部2と、複数の側壁部23それぞれの片側から延伸して設けられた帯状部3とを備えている。 <Structure of heat transfer fins>
As shown in FIG. 1, theheat transfer fin 100 of the present embodiment has a corrugated fin main body 2 formed by connecting a top portion 21 and a valley portion 22 by a side wall portion 23, and from one side of each of the plurality of side wall portions 23. It is provided with a strip-shaped portion 3 provided by stretching.
本実施形態の伝熱フィン100は、図1に示すように、頂部21及び谷部22を側壁部23で連結してなるコルゲート状のフィン本体部2と、複数の側壁部23それぞれの片側から延伸して設けられた帯状部3とを備えている。 <Structure of heat transfer fins>
As shown in FIG. 1, the
フィン本体部2は、図2に示すように、平板状をなす頂部21と、平板状をなす谷部22と、それらを連結する平板状をなす側壁部23とを有している。つまり、フィン本体部2は、断面矩形波状をなすものである。また、フィン本体部2は、1つの頂部21及びそれに繋がる一対の側壁部23からなる基本形状が少なくとも2つ以上連続して形成されたフラットトップ形状のコルゲートフィンである。
その他、フィン本体部2は、図2の<変形例>に示すように、頂部21又は谷部22の少なくとも一方が、断面円弧状をなすものであっても良い。図2の<変形例>には、頂部21及び谷部22の両方が断面円弧状をなすラウンドトップ形状のコルゲートフィンを例示している。 As shown in FIG. 2, the finmain body 2 has a flat plate-shaped top portion 21, a flat plate-shaped valley portion 22, and a flat plate-shaped side wall portion 23 connecting them. That is, the fin main body 2 has a rectangular wavy cross section. Further, the fin main body portion 2 is a flat-top-shaped corrugated fin in which at least two or more basic shapes including one top portion 21 and a pair of side wall portions 23 connected to the top portion 21 are continuously formed.
In addition, as shown in <Modification Example> of FIG. 2, at least one of thetop portion 21 and the valley portion 22 of the fin main body portion 2 may have an arcuate cross section. In the <modification example> of FIG. 2, a round top-shaped corrugated fin in which both the top portion 21 and the valley portion 22 have an arcuate cross section is illustrated.
その他、フィン本体部2は、図2の<変形例>に示すように、頂部21又は谷部22の少なくとも一方が、断面円弧状をなすものであっても良い。図2の<変形例>には、頂部21及び谷部22の両方が断面円弧状をなすラウンドトップ形状のコルゲートフィンを例示している。 As shown in FIG. 2, the fin
In addition, as shown in <Modification Example> of FIG. 2, at least one of the
そして、フィン本体部2は、互いに隣接する側壁部23の間を流体が流れるように伝熱部材(不図示)に接合されるものであり、具体的には、頂部21又は谷部22の少なくとも一方が伝熱部材に接合される。例えば、1つの伝熱部材に接合される場合には、頂部21又は谷部22の一方が伝熱部材に接合され、2つの伝熱部材に接合される場合には、頂部21及び谷部22のそれぞれが異なる伝熱部材に接合される。
The fin main body 2 is joined to a heat transfer member (not shown) so that a fluid flows between the side walls 23 adjacent to each other. Specifically, at least the top 21 or the valley 22 is formed. One is joined to the heat transfer member. For example, when joined to one heat transfer member, one of the top 21 or the valley 22 is joined to the heat transfer member, and when joined to two heat transfer members, the top 21 and the valley 22 are joined. Are joined to different heat transfer members.
帯状部3は、図1に示すように、長尺形状をなすものであり、側壁部23の一方の片側から、側壁部23の幅方向(側壁部23の間に形成される流路方向)に沿って、側壁部23の外側に延伸して設けられている。つまり、互いに隣接する帯状部3の間に流路が形成される。なお、本実施形態の帯状部3は、側壁部23に一体に形成されている。
As shown in FIG. 1, the strip-shaped portion 3 has an elongated shape, and is in the width direction of the side wall portion 23 (direction of the flow path formed between the side wall portions 23) from one side of the side wall portion 23. It is provided so as to extend to the outside of the side wall portion 23 along the above. That is, a flow path is formed between the strips 3 adjacent to each other. The band-shaped portion 3 of the present embodiment is integrally formed with the side wall portion 23.
そして、これら複数の帯状部3の少なくとも1つがねじり形状を有している。ここで、ねじり形状は、帯状部3の自由端部3aを、帯状部3の中心軸周りに例えば180度回転させて形成されており、連続的に(滑らかに)変化するねじり形状だけでなく、段階的に変化するねじり形状であっても良い。図1には、連続的に(滑らかに)変化するねじり形状を例示している。
And at least one of these plurality of strips 3 has a twisted shape. Here, the torsional shape is formed by rotating the free end portion 3a of the strip-shaped portion 3 around the central axis of the strip-shaped portion 3 by, for example, 180 degrees, and not only the torsional shape that changes continuously (smoothly). , It may be a twisted shape that changes stepwise. FIG. 1 illustrates a twisted shape that changes continuously (smoothly).
なお、ねじり形状のねじり角は180度に限られず、種々の角度にすることができる。ねじり形状は、帯状部3の中心軸方向において均一なねじり度でねじられたものであっても良いし、途中でねじり度が変化したものであっても良い。
The twist angle of the twist shape is not limited to 180 degrees and can be various angles. The twisted shape may be twisted with a uniform degree of twist in the direction of the central axis of the strip-shaped portion 3, or may have a degree of twist changed in the middle.
また、複数の帯状部3において、ねじり形状を有する帯状部3(以下、「ねじり帯状部3X」ともいう。)は、複数の側壁部23の配列方向(側壁部23同士の対向方向)に沿って、1つおきに設けられている(図1参照)。つまり、ねじり形状を有さない平板状の帯状部3(以下、「平板帯状部3Y」ともいう。)とねじり帯状部3Xとが交互に設けられている。また、複数のねじり帯状部3Xは互いに同じねじり形状を有するものである。
Further, in the plurality of strip-shaped portions 3, the strip-shaped portion 3 having a twisted shape (hereinafter, also referred to as “twisted strip-shaped portion 3X”) is along the arrangement direction of the plurality of side wall portions 23 (direction in which the side wall portions 23 face each other). It is provided every other one (see FIG. 1). That is, the flat plate-shaped strips 3 having no twisted shape (hereinafter, also referred to as “flat strip strips 3Y”) and the twisted strips 3X are alternately provided. Further, the plurality of twisted strips 3X have the same twisting shape as each other.
なお、複数のねじり帯状部3Xにおいて互いにねじり形状やねじり方向が異なるものであっても良い。また、ねじり帯状部3Xと平板帯状部3Yとの長さが互いに異なるものであっても良いし、ねじり帯状部3X同士で互いに長さが異なるようにしても良いし、平板帯状部3Y同士で互いに長さが異なるようにしても良い。
Note that the twisted shape and twisting direction of the plurality of twisted strips 3X may be different from each other. Further, the lengths of the twisted strips 3X and the flat strips 3Y may be different from each other, the lengths of the twisted strips 3X may be different from each other, or the flat strips 3Ys may be different from each other. The lengths may be different from each other.
さらに本実施形態では、帯状部3の自由端部3aに立ち上がり接合部4が設けられている。立ち上がり接合部4は、伝熱部材に接合されるものであり、これにより帯状部3の自由端部3aが固定される。本実施形態の立ち上がり接合部4は、フィン本体部2と同じ高さ位置に設けられている。なお、伝熱フィン100が設けられる部材の形状によっては、立ち上がり接合部4は、フィン本体部2とは異なる高さ位置に設けられる場合もある。
Further, in the present embodiment, the rising joint portion 4 is provided at the free end portion 3a of the strip-shaped portion 3. The rising joint portion 4 is joined to the heat transfer member, whereby the free end portion 3a of the strip-shaped portion 3 is fixed. The rising joint portion 4 of the present embodiment is provided at the same height position as the fin main body portion 2. Depending on the shape of the member on which the heat transfer fin 100 is provided, the rising joint portion 4 may be provided at a height position different from that of the fin main body portion 2.
具体的に立ち上がり接合部4は、図3に示すように、一方の伝熱部材に接合される第1接合端部41と、他方の伝熱部材に第2接合端部42と、第1接合端部41及び第2接合端部42を連結する連結部43とを有している。連結部43は帯状部3の自由端部3aに一体に形成されている。
Specifically, as shown in FIG. 3, the rising joint portion 4 has a first joint end portion 41 joined to one heat transfer member, a second joint end portion 42 to the other heat transfer member, and a first joint. It has a connecting portion 43 that connects the end portion 41 and the second joint end portion 42. The connecting portion 43 is integrally formed with the free end portion 3a of the strip-shaped portion 3.
図3に示す立ち上がり接合部4は、断面Z字形状をなすものであるが、図3の<変形例1>に示すように、例えば、断面コの字形状をなすものであっても良いし、図3の<変形例2>に示すように、断面S字形状をなすものであっても良い。また、立ち上がり接合部4は、全ての帯状部3に設けても良いし、ねじり帯状部3X又は平板帯状部3Yの一方に設けてもよい。
The rising joint 4 shown in FIG. 3 has a Z-shaped cross section, but as shown in <Modification 1> of FIG. 3, for example, it may have a U-shaped cross section. , As shown in <Modification 2> of FIG. 3, the cross section may be S-shaped. Further, the rising joint portion 4 may be provided on all the strip-shaped portions 3, or may be provided on either the twisted strip-shaped portion 3X or the flat plate strip-shaped portion 3Y.
このように構成した伝熱フィン100は、基本的には平面視矩形状をなすものであるが、図4に示すように、平面視において湾曲した形状に変形させることもできる。つまり、フィン本体部2の複数の側壁部23及び/又は複数の帯状部3を平行に配置するのではなく、複数の側壁部23及び/又は複数の帯状部3の自由端部3aを互いに拡縮させて、伝熱フィン100を湾曲した形状にすることができる。
The heat transfer fin 100 configured in this way basically has a rectangular shape in a plan view, but as shown in FIG. 4, it can also be deformed into a curved shape in a plan view. That is, instead of arranging the plurality of side wall portions 23 and / or the plurality of strip-shaped portions 3 of the fin main body portion 2 in parallel, the free end portions 3a of the plurality of side wall portions 23 and / or the plurality of strip-shaped portions 3 are expanded and contracted with each other. The heat transfer fin 100 can be formed into a curved shape.
<伝熱フィン100の製造方法>
次に、本実施形態の伝熱フィン100の製造方法について簡単に説明する。 <Manufacturing method ofheat transfer fin 100>
Next, a method for manufacturing theheat transfer fin 100 of the present embodiment will be briefly described.
次に、本実施形態の伝熱フィン100の製造方法について簡単に説明する。 <Manufacturing method of
Next, a method for manufacturing the
まず、1枚の金属板を、フィン本体部となる部分と複数の帯状部となる部分(立ち上がり接合部4となる部分を含む。)とを有する形状に切断する。
First, one metal plate is cut into a shape having a portion to be a fin main body portion and a plurality of strip-shaped portions (including a portion to be a rising joint portion 4).
そして、この切断された金属板を折り曲げて、コルゲート状のフィン本体部2を形成する。このフィン本体部2を形成すると同時に、複数の側壁部23それぞれの片側から延伸した帯状部3が形成される。この状態では、帯状部は側壁部23と同一の平板状をなしている。
Then, the cut metal plate is bent to form a corrugated fin body 2. At the same time as forming the fin main body portion 2, a band-shaped portion 3 extending from one side of each of the plurality of side wall portions 23 is formed. In this state, the strip-shaped portion has the same flat plate shape as the side wall portion 23.
そして、複数の帯状部3において1つおきの帯状部3にねじり形状を形成することにより、ねじり帯状部3Xが形成される。なお、帯状部3にねじり形状を形成しやすくするために、フィン本体部2の側壁部23と帯状部3との連結部分には、上下に狭くなったくびれ部3Kが設けられている。
Then, by forming a twisted shape in every other strip-shaped portion 3 in the plurality of strip-shaped portions 3, the twisted strip-shaped portion 3X is formed. In order to facilitate the formation of a twisted shape in the strip-shaped portion 3, a constricted portion 3K narrowed vertically is provided at the connecting portion between the side wall portion 23 of the fin main body portion 2 and the strip-shaped portion 3.
なお、立ち上がり接合部4は、フィン本体部2を形成する前に金属板を折り曲げて形成しても良いし、フィン本体部2を形成した後に金属板を折り曲げて形成しても良いし、ねじり帯状部3Xを形成した後に金属板を折り曲げて形成しても良い。
The rising joint portion 4 may be formed by bending a metal plate before forming the fin main body 2, or may be formed by bending the metal plate after forming the fin main body 2, or twisting. After forming the strip-shaped portion 3X, the metal plate may be bent to form the strip-shaped portion 3X.
<本実施形態の効果>
本実施形態の伝熱フィン100によれば、フィン本体部2の側壁部23に設けられた帯状部3がねじり形状を有するので、伝熱フィン100を通過する流体は帯状部3のねじり形状に沿って無駄な渦を発生させることなく層流又は層流に近い状態で流体を撹拌しながら流れることになる。この撹拌された流体が伝熱部材に当たることにより、伝熱フィンが設けられた伝熱部材と流体との間の境膜が薄くなり、その熱抵抗を減少させることができる。その結果、伝熱フィン100による圧力損失の上昇を抑えつつ、伝熱部材と流体との間の熱交換効率を向上させることができる。また、従来のようにコルゲートフィンの挟ピッチ化や凹凸などの微細形状に頼らない熱伝達なので、粉塵等の異物の詰まりによる性能低下を防ぐことができる。 <Effect of this embodiment>
According to theheat transfer fin 100 of the present embodiment, since the strip-shaped portion 3 provided on the side wall portion 23 of the fin main body portion 2 has a twisted shape, the fluid passing through the heat transfer fin 100 has a twisted shape of the strip-shaped portion 3. Along the flow, the fluid is agitated and flows in a laminar flow or a state close to a laminar flow without generating a useless vortex. When the agitated fluid hits the heat transfer member, the boundary film between the heat transfer member provided with the heat transfer fins and the fluid becomes thin, and the thermal resistance thereof can be reduced. As a result, it is possible to improve the heat exchange efficiency between the heat transfer member and the fluid while suppressing the increase in pressure loss due to the heat transfer fin 100. Further, since heat transfer does not rely on fine shapes such as pinching pitch of corrugated fins and unevenness as in the conventional case, it is possible to prevent performance deterioration due to clogging of foreign substances such as dust.
本実施形態の伝熱フィン100によれば、フィン本体部2の側壁部23に設けられた帯状部3がねじり形状を有するので、伝熱フィン100を通過する流体は帯状部3のねじり形状に沿って無駄な渦を発生させることなく層流又は層流に近い状態で流体を撹拌しながら流れることになる。この撹拌された流体が伝熱部材に当たることにより、伝熱フィンが設けられた伝熱部材と流体との間の境膜が薄くなり、その熱抵抗を減少させることができる。その結果、伝熱フィン100による圧力損失の上昇を抑えつつ、伝熱部材と流体との間の熱交換効率を向上させることができる。また、従来のようにコルゲートフィンの挟ピッチ化や凹凸などの微細形状に頼らない熱伝達なので、粉塵等の異物の詰まりによる性能低下を防ぐことができる。 <Effect of this embodiment>
According to the
<その他の実施形態>
なお、本発明は前記実施形態に限られるものではない。 <Other Embodiments>
The present invention is not limited to the above embodiment.
なお、本発明は前記実施形態に限られるものではない。 <Other Embodiments>
The present invention is not limited to the above embodiment.
例えば、前記実施形態の伝熱フィン100は、立ち上がり接合部4を有する構成であったが、図5に示すように、立ち上がり接合部4を有さない構成としても良い。
For example, the heat transfer fin 100 of the above embodiment has a configuration having a rising joint portion 4, but as shown in FIG. 5, it may be configured not to have a rising joint portion 4.
その上、前記実施形態の帯状部3は、側壁部23に一体に形成されたものであったが、フィン本体部2及び帯状部3を別部品として、帯状部3をフィン本体部2に例えばろう付けや溶接等により接合しても良い。
Further, although the strip-shaped portion 3 of the above embodiment is integrally formed with the side wall portion 23, the fin main body portion 2 and the strip-shaped portion 3 are separate parts, and the strip-shaped portion 3 is formed on the fin main body portion 2, for example. It may be joined by brazing or welding.
加えて、前記実施形態では、帯状部3を側壁部23の一方の片側に設けた伝熱フィン100であったが、図6に示すように、帯状部3を側壁部23の両側から延伸して設けても良い。この場合、側壁部23の一方側に設けた帯状部3と側壁部23の他方側に設けた帯状部3とは、互いに同一形状である必要はなく、例えば互いに長さが異なる、ねじり形状が異なる等のように互いに異なる形状であっても良い。また、複数の側壁部23の両側に設けられたねじり帯状部3Xをフィン本体部2に対して互い違いとなるように設けても良い。
In addition, in the above-described embodiment, the heat transfer fin 100 is provided with the strip-shaped portion 3 on one side of the side wall portion 23. However, as shown in FIG. 6, the strip-shaped portion 3 is extended from both sides of the side wall portion 23. May be provided. In this case, the strip-shaped portion 3 provided on one side of the side wall portion 23 and the strip-shaped portion 3 provided on the other side of the side wall portion 23 do not have to have the same shape, and have, for example, different lengths and twisted shapes. They may have different shapes such as different shapes. Further, the twisted band-shaped portions 3X provided on both sides of the plurality of side wall portions 23 may be provided so as to be staggered with respect to the fin main body portion 2.
次に、本発明の伝熱フィン及び従来の伝熱フィンにおける熱交換性能のシミュレーション結果を図7に示す。このシミュレーションでは、熱源面に各伝熱フィンを接合して、伝熱フィンの空気を流したときの、熱源面の熱交換量(W)と圧力損失(Pa)を求めた。
Next, FIG. 7 shows the simulation results of the heat exchange performance of the heat transfer fins of the present invention and the conventional heat transfer fins. In this simulation, each heat transfer fin was joined to the heat source surface, and the heat exchange amount (W) and pressure loss (Pa) of the heat source surface when air was passed through the heat transfer fins were obtained.
ここで、本発明の伝熱フィンは、図7に示すような帯状部3を側壁部23の両側から延伸して設けた伝熱フィンである。また、従来の伝熱フィンは、何れもコルゲートフィンである。
Here, the heat transfer fin of the present invention is a heat transfer fin provided by extending the band-shaped portion 3 as shown in FIG. 7 from both sides of the side wall portion 23. Further, all the conventional heat transfer fins are corrugated fins.
図7のシミュレーション結果から分かるように、従来の伝熱フィン(コルゲートフィン)では、フィンピッチが小さいほど熱交換量が大きくなるが、それに伴って圧力損失が大きくなっている。一方、本発明の伝熱フィンでは、熱源面の熱交換量を大きくしつつ、圧力損失を低くすることが可能であることが分かる。
As can be seen from the simulation results of FIG. 7, in the conventional heat transfer fins (corrugated fins), the smaller the fin pitch, the larger the heat exchange amount, but the pressure loss increases accordingly. On the other hand, it can be seen that the heat transfer fin of the present invention can reduce the pressure loss while increasing the amount of heat exchange on the heat source surface.
更に加えて、前記実施形態では、ねじり帯状部3Xを1つおきに設けた構成であったが、図8に示すように、全ての帯状部3をねじり帯状部3Xとしても良い。また、ねじり帯状部3Xをその他の配置態様で設けても良い。
Furthermore, in the above-described embodiment, the twisted strips 3X are provided every other time, but as shown in FIG. 8, all the strips 3 may be twisted strips 3X. Further, the twisted strip 3X may be provided in another arrangement.
また、図9に示すように、複数の帯状部3の自由端部3aに、頂部及び谷部を側壁部で連結してなるコルゲート状の第2のフィン本体部5を連結する構成としても良い。つまり、前記実施形態のフィン本体部(第1のフィン本体部2)の側壁部23と第2のフィン本体部5の側壁部とを帯状部3で連結する構成となる。さらに、第2のフィン本体部5の側壁部から、第1のフィン本体部2とは反対側に帯状部3を延伸して設けても良い。このとき、第2のフィン本体部5の側壁部から第1のフィン本体部2とは反対側に延伸した帯状部3の自由端部3aに、頂部及び谷部を側壁部で連結してなるコルゲート状の第3のフィン本体部6を連結する構成としても良い。つまり、2つ以上のフィン本体部の間を帯状部3で連結する構成としても良い。このように構成した場合、帯状部3の両端部は固定端となるので、帯状部3をねじり形状を形成する場合には、例えば帯状部3の中間部を帯状部3の中心軸周りに回転させる。このとき、帯状部3には、ねじり方向が互いに異なる2つのねじり形状が形成されることになる。
Further, as shown in FIG. 9, a corrugated second fin main body portion 5 having a top portion and a valley portion connected by a side wall portion may be connected to the free end portion 3a of the plurality of strip-shaped portions 3. .. That is, the side wall portion 23 of the fin main body portion (first fin main body portion 2) of the embodiment and the side wall portion of the second fin main body portion 5 are connected by the band-shaped portion 3. Further, the strip-shaped portion 3 may be extended from the side wall portion of the second fin main body portion 5 to the side opposite to the first fin main body portion 2. At this time, the top and valley portions are connected by the side wall portions to the free end portion 3a of the strip-shaped portion 3 extending from the side wall portion of the second fin main body portion 5 to the side opposite to the first fin main body portion 2. A corrugated third fin body 6 may be connected. That is, a configuration may be configured in which two or more fin main bodies are connected by a band-shaped portion 3. In this configuration, both ends of the strip 3 are fixed ends, so when forming a twisted shape of the strip 3, for example, the intermediate portion of the strip 3 is rotated around the central axis of the strip 3. Let me. At this time, the strip-shaped portion 3 is formed with two twisted shapes having different twisting directions.
また、図9に示すように、平板帯状部3Yの上端部又は下端部の少なくとも一方に、接合強化用の立ち上がり面3Y1を設けても良い。なお、図8では、平板帯状部3Yの上端部及び下端部の両方に立ち上がり面3Y1を設けた場合を例示している。これにより、伝熱フィンの耐久性を向上させることができる。
Further, as shown in FIG. 9, a rising surface 3Y1 for strengthening the joint may be provided on at least one of the upper end portion and the lower end portion of the flat plate strip-shaped portion 3Y. Note that FIG. 8 illustrates a case where the rising surface 3Y1 is provided on both the upper end portion and the lower end portion of the flat plate strip-shaped portion 3Y. Thereby, the durability of the heat transfer fin can be improved.
上述した伝熱フィン100の用途としては例えば以下が考えられる。
図10には、伝熱フィン100を用いて構成されたEGR用熱交換器200の主要部(一部)を示している。このEGR用熱交換器200では、断面矩形状の内部空間を有する伝熱ケース201に伝熱フィン100を設けて伝熱ユニット202を構成する。伝熱ケース201は、両端面に開口を有する扁平した直方体形状をなすものである。そして、この伝熱ユニット202を互いに隙間が空くように複数段重ね合わせて、それらの外側及び隙間に冷却液を循環させるためのハウジング203で囲うことによりEGR用熱交換器200が構成される。ハウジング203には、内部に冷却液を導入するための冷却液導入ポートP1と、冷却液を導出するための冷却液導出ポートP2が設けられている。そして、伝熱ケース201の一端開口から高温の排ガスが流入すると、伝熱フィン100によって伝熱ケース201と冷却液との間で熱交換し、他端開口から冷却された排ガスが流出する。 The following can be considered as applications of the above-mentionedheat transfer fin 100, for example.
FIG. 10 shows a main part (part) of theEGR heat exchanger 200 configured by using the heat transfer fins 100. In the EGR heat exchanger 200, a heat transfer fin 100 is provided in a heat transfer case 201 having an internal space having a rectangular cross section to form a heat transfer unit 202. The heat transfer case 201 has a flat rectangular parallelepiped shape with openings on both end faces. Then, the heat transfer units 202 are stacked in a plurality of stages so as to leave a gap between them, and surrounded by a housing 203 for circulating the cooling liquid on the outside and the gap, thereby forming the EGR heat exchanger 200. The housing 203 is provided with a coolant introduction port P1 for introducing the coolant and a coolant outlet port P2 for leading the coolant. Then, when high-temperature exhaust gas flows in from one end opening of the heat transfer case 201, heat is exchanged between the heat transfer case 201 and the coolant by the heat transfer fin 100, and the cooled exhaust gas flows out from the other end opening.
図10には、伝熱フィン100を用いて構成されたEGR用熱交換器200の主要部(一部)を示している。このEGR用熱交換器200では、断面矩形状の内部空間を有する伝熱ケース201に伝熱フィン100を設けて伝熱ユニット202を構成する。伝熱ケース201は、両端面に開口を有する扁平した直方体形状をなすものである。そして、この伝熱ユニット202を互いに隙間が空くように複数段重ね合わせて、それらの外側及び隙間に冷却液を循環させるためのハウジング203で囲うことによりEGR用熱交換器200が構成される。ハウジング203には、内部に冷却液を導入するための冷却液導入ポートP1と、冷却液を導出するための冷却液導出ポートP2が設けられている。そして、伝熱ケース201の一端開口から高温の排ガスが流入すると、伝熱フィン100によって伝熱ケース201と冷却液との間で熱交換し、他端開口から冷却された排ガスが流出する。 The following can be considered as applications of the above-mentioned
FIG. 10 shows a main part (part) of the
図11には、伝熱フィン100を用いて構成されたラジエータ300の主要部(一部)を示している。このラジエータ300は、冷却液が流れる複数の扁平管301と、当該扁平管301の間に設けられた伝熱フィン100とを有している。複数の扁平管301の両端部それぞれはヘッダ302に接続されており、一方のヘッダ302には、冷却液導入ポートP1が設けられており、他方のヘッダ302には、冷却液導出ポートP2が設けられている。そして、扁平管301の間に設けられた伝熱フィン100に空気が流れることにより、冷却液導入ポートP1が導入された高温の冷却液は、伝熱フィン100によって扁平管301と空気との間で熱交換して、低温の冷却液が冷却液導出ポートP2から導出される。
FIG. 11 shows a main part (part) of the radiator 300 configured by using the heat transfer fins 100. The radiator 300 has a plurality of flat tubes 301 through which the cooling liquid flows, and heat transfer fins 100 provided between the flat tubes 301. Both ends of the plurality of flat pipes 301 are connected to the header 302, one header 302 is provided with a coolant introduction port P1, and the other header 302 is provided with a coolant outlet port P2. Has been done. Then, air flows through the heat transfer fins 100 provided between the flat tubes 301, so that the high-temperature coolant into which the coolant introduction port P1 is introduced is between the flat tubes 301 and the air by the heat transfer fins 100. The low-temperature coolant is led out from the coolant outlet port P2 by heat exchange at.
図12には、冷却液を貯留する冷却液貯留管401の外側周面に伝熱フィン100を巻き設けた熱交換器400の主要部(一部)を示している。この熱交換器400は、二重管構造のものであり、冷却液貯留管401の外部に外管402が設けられている。そして、冷却液貯留管401と外管402との間に円筒状に曲げられた伝熱フィン100が設けられる。冷却液貯留管401には、冷却液を導入するための冷却液導入ポートP1と、冷却液を導出するための冷却液導出ポートP2が設けられている。また、外管402の両端部は開口しており、一方の開口から流入した空気が伝熱フィン100を通過して、他方の開口から流出する。そして、冷却液貯留管401と外管402との間に設けられた伝熱フィン100に空気が流れることにより、冷却液導入ポートP1から導入された高温の冷却液は、伝熱フィン100によって冷却液貯留管401と空気との間で熱交換して、低温の冷却液が冷却液導出ポートP2から導出される。
FIG. 12 shows a main part (part) of the heat exchanger 400 in which the heat transfer fins 100 are wound around the outer peripheral surface of the coolant storage pipe 401 for storing the coolant. The heat exchanger 400 has a double pipe structure, and an outer pipe 402 is provided outside the coolant storage pipe 401. Then, a heat transfer fin 100 bent in a cylindrical shape is provided between the coolant storage pipe 401 and the outer pipe 402. The coolant storage pipe 401 is provided with a coolant introduction port P1 for introducing the coolant and a coolant outlet port P2 for leading out the coolant. Further, both ends of the outer tube 402 are open, and the air flowing in from one opening passes through the heat transfer fin 100 and flows out from the other opening. Then, air flows through the heat transfer fins 100 provided between the coolant storage pipe 401 and the outer pipe 402, so that the high-temperature coolant introduced from the coolant introduction port P1 is cooled by the heat transfer fins 100. Heat is exchanged between the liquid storage pipe 401 and the air, and the low-temperature coolant is led out from the coolant outlet port P2.
上記の適用例に限られず、本発明の伝熱フィン100は、種々の形式の熱交換器に用いることができる。
Not limited to the above application examples, the heat transfer fin 100 of the present invention can be used in various types of heat exchangers.
その他、本発明は前記実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能であるのは言うまでもない。
In addition, the present invention is not limited to the above-described embodiment, and it goes without saying that various modifications can be made without departing from the spirit of the present invention.
本発明によれば、圧力損失の上昇を抑えつつ、熱伝達効率を向上させることができる。
According to the present invention, it is possible to improve the heat transfer efficiency while suppressing the increase in pressure loss.
According to the present invention, it is possible to improve the heat transfer efficiency while suppressing the increase in pressure loss.
Claims (7)
- 頂部及び谷部を側壁部で連結してなるコルゲート状のフィン本体部と、
複数の前記側壁部それぞれの片側又は両側から延伸して設けられた帯状部とを備え、
複数の前記帯状部の少なくとも1つがねじり形状を有する、伝熱フィン。 A corrugated fin body that connects the top and valley with a side wall,
A band-shaped portion extending from one side or both sides of each of the plurality of side wall portions is provided.
A heat transfer fin in which at least one of the plurality of strips has a twisted shape. - 複数の前記帯状部において、前記ねじり形状を有する帯状部は、複数の前記側壁部の配列方向に沿って、1つおきに設けられている、請求項1に記載の伝熱フィン。 The heat transfer fin according to claim 1, wherein in the plurality of the strip-shaped portions, the strip-shaped portions having a twisted shape are provided every other along the arrangement direction of the plurality of the side wall portions.
- 複数の前記帯状部の全てが、前記ねじり形状を有する、請求項1に記載の伝熱フィン。 The heat transfer fin according to claim 1, wherein all of the plurality of strip-shaped portions have the twisted shape.
- 前記帯状部の自由端部に、伝熱部材に接合される立ち上がり接合部が設けられている、請求項1に記載の伝熱フィン。 The heat transfer fin according to claim 1, wherein a rising joint portion to be joined to the heat transfer member is provided at the free end portion of the strip-shaped portion.
- 複数の前記帯状部の自由端部に、頂部及び谷部を側壁部で連結してなるコルゲート状の第2のフィン本体部が連結されている、請求項1に記載の伝熱フィン。 The heat transfer fin according to claim 1, wherein a corrugated second fin main body portion formed by connecting a top portion and a valley portion with a side wall portion is connected to a plurality of free ends of the strip-shaped portion.
- 前記帯状部は、前記側壁部に一体に形成されている、請求項1に記載の伝熱フィン。 The heat transfer fin according to claim 1, wherein the band-shaped portion is integrally formed with the side wall portion.
- 金属板を折り曲げて、頂部及び谷部を側壁部で連結してなるコルゲート状のフィン本体部を形成するとともに、複数の前記側壁部それぞれの片側又は両側から延伸して設けられた帯状部を形成し、複数の前記帯状部の少なくとも1つにねじり形状を形成する、伝熱フィンの製造方法。
A metal plate is bent to form a corrugated fin main body formed by connecting the top and valley portions at a side wall portion, and a strip-shaped portion extended from one side or both sides of each of the plurality of side wall portions is formed. A method for manufacturing a heat transfer fin, which forms a twisted shape in at least one of the plurality of strip-shaped portions.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021546615A JPWO2021054173A1 (en) | 2019-09-18 | 2020-09-07 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-169572 | 2019-09-18 | ||
JP2019169572 | 2019-09-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021054173A1 true WO2021054173A1 (en) | 2021-03-25 |
Family
ID=74884466
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/033772 WO2021054173A1 (en) | 2019-09-18 | 2020-09-07 | Heat transfer fin and manufacturing method therefor |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2021054173A1 (en) |
WO (1) | WO2021054173A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58213195A (en) * | 1982-06-04 | 1983-12-12 | Ishikawajima Harima Heavy Ind Co Ltd | Plate fin type heat exchanger |
JP2001050678A (en) * | 1999-08-09 | 2001-02-23 | Tokyo Radiator Mfg Co Ltd | Heat exchanger |
JP2007278571A (en) * | 2006-04-05 | 2007-10-25 | Denso Corp | Heat transfer member and heat exchanger using the same |
JP2009139085A (en) * | 2007-12-04 | 2009-06-25 | Valeo Systemes Thermiques | Louver type corrugated insert for heat exchanger |
JP2009204279A (en) * | 2008-02-29 | 2009-09-10 | Nippon Light Metal Co Ltd | Heat exchanger |
-
2020
- 2020-09-07 JP JP2021546615A patent/JPWO2021054173A1/ja active Pending
- 2020-09-07 WO PCT/JP2020/033772 patent/WO2021054173A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58213195A (en) * | 1982-06-04 | 1983-12-12 | Ishikawajima Harima Heavy Ind Co Ltd | Plate fin type heat exchanger |
JP2001050678A (en) * | 1999-08-09 | 2001-02-23 | Tokyo Radiator Mfg Co Ltd | Heat exchanger |
JP2007278571A (en) * | 2006-04-05 | 2007-10-25 | Denso Corp | Heat transfer member and heat exchanger using the same |
JP2009139085A (en) * | 2007-12-04 | 2009-06-25 | Valeo Systemes Thermiques | Louver type corrugated insert for heat exchanger |
JP2009204279A (en) * | 2008-02-29 | 2009-09-10 | Nippon Light Metal Co Ltd | Heat exchanger |
Also Published As
Publication number | Publication date |
---|---|
JPWO2021054173A1 (en) | 2021-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8069905B2 (en) | EGR gas cooling device | |
US8235098B2 (en) | Heat exchanger flat tube with oblique elongate dimples | |
US10048020B2 (en) | Heat transfer surfaces with flanged apertures | |
US8656986B2 (en) | Fin, heat exchanger and heat exchanger assembly | |
CN107314573B (en) | A kind of micro channel heat exchanger | |
JP4143966B2 (en) | Flat tube for EGR cooler | |
US20060289152A1 (en) | Heat exchange element and heat exchanger produced therewith | |
US20090133860A1 (en) | Heat exchanger | |
US8167028B2 (en) | Heat exchanger fin with planar crests and troughs having slits | |
US20070227715A1 (en) | Heat exchanger | |
WO2010150877A1 (en) | Heat exchanger using multiple-conduit pipes | |
JP2020094791A5 (en) | ||
CN104937362A (en) | heat exchanger | |
JP2011112331A (en) | Heat exchanger for exhaust gas | |
WO2020017176A1 (en) | Heat exchanger | |
US20210010727A1 (en) | Heat exchanger | |
JP2010121925A (en) | Heat exchanger | |
US20230168039A1 (en) | Heat exchanger | |
CN104034195B (en) | Tooth finned tube turned round by H type and tooth finned tube heat-exchanging tube bundle turned round by H type | |
KR20150030201A (en) | Heat transfer pipe for fin-and-tube type heat exchanger, and fin-and-tube type heat exchanger | |
JP2007183076A (en) | Heat exchanger | |
WO2021054173A1 (en) | Heat transfer fin and manufacturing method therefor | |
JP7244440B2 (en) | Header plateless heat exchanger | |
JPH0510694A (en) | Heat transfer tube for heat exchanger | |
JP6377628B2 (en) | Finned tube element, method for manufacturing the same, and heat exchanger provided with finned tube element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20865428 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021546615 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20865428 Country of ref document: EP Kind code of ref document: A1 |