WO2021049487A1 - Water absorbent resin particles, absorbent article, and production method for water absorbent resin particles - Google Patents
Water absorbent resin particles, absorbent article, and production method for water absorbent resin particles Download PDFInfo
- Publication number
- WO2021049487A1 WO2021049487A1 PCT/JP2020/033951 JP2020033951W WO2021049487A1 WO 2021049487 A1 WO2021049487 A1 WO 2021049487A1 JP 2020033951 W JP2020033951 W JP 2020033951W WO 2021049487 A1 WO2021049487 A1 WO 2021049487A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- water
- absorbent resin
- less
- mass
- resin particles
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/15—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
- A61F13/53—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/26—Synthetic macromolecular compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F8/00—Chemical modification by after-treatment
- C08F8/14—Esterification
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/24—Crosslinking, e.g. vulcanising, of macromolecules
Definitions
- the present invention relates to water-absorbent resin particles, absorbent articles, and a method for producing water-absorbent resin particles.
- the polymer particles constituting the water-absorbent resin particles may be surface-crosslinked by various surface-crosslinking agents (for example, Patent Document 1).
- the present invention provides water-absorbent resin particles that enable the sheet-shaped absorber to absorb water at a sufficiently high permeation rate even in a curved state.
- One aspect of the present invention provides water-absorbent resin particles containing polymer particles surface-crosslinked by a surface-crosslinking agent.
- the static water absorption rate of the water-absorbent resin particles is A [seconds] and the dynamic water absorption rate of the water-absorbent resin particles is B [seconds]
- the A / B is 21 or less.
- the static water absorption rate is such that when the water-absorbent resin particles of 1.00 g are absorbed with physiological saline by the non-pressurized DW method, the water-absorbent resin particles have 25 mL of physiological saline after the absorption is started. It is the time to absorb water.
- the dynamic water absorption rate is the water absorption rate measured by the Vortex method.
- Another aspect of the present invention provides an absorbent article comprising an absorber containing the water-absorbent resin particles.
- the ratio of the water absorption rate when statically absorbing water in a non-pressurized state to the water absorption rate when dynamically absorbing water in a fluid state is a liquid to a curved absorber. Correlates with the permeation rate of. In particular, when the ratio A / B of the static water absorption rate A to the dynamic water absorption rate B is 21 or less, the permeation rate of the liquid into the curved absorber can be remarkably improved.
- Yet another aspect of the present invention provides a method of producing water-absorbent resin particles.
- the method comprises a step of surface cross-linking the polymer particles by heating a reaction mixture containing the polymer particles and an aqueous solution of a surface cross-linking agent containing water and a surface cross-linking agent.
- the surface cross-linking of the polymer particles forms a layer (surface cross-linking layer) in which the cross-linking density of the polymer constituting the polymer particles is increased on the surface layer of the polymer particles.
- the above X and Y are considered to be related to the efficiency of the surface cross-linking reaction on the surface layer of the polymer particles.
- the value of X is small, the phenomenon that the surface cross-linking agent reacts with water in the reaction mixture can be suppressed, so that the surface cross-linking of the polymer particles can be efficiently performed and the cross-linking density of the surface can be increased. It is thought that it can be done.
- the polymer particles surface-crosslinked under the condition that X ⁇ Y is 110,000 or less tend to have a strong surface-crosslinked layer with a high crosslink density. If the surface crosslinked layer is strong, the water-absorbent resin after swelling is less likely to be crushed, so that gel blocking is less likely to occur. If gel blocking is unlikely to occur, the static water absorption rate becomes relatively high, and as a result, the ratio A / B of the static water absorption rate A to the dynamic water absorption rate B is considered to be small.
- water-absorbent resin particles capable of absorbing water at a sufficiently high permeation rate even when the sheet-shaped absorber is in a curved state.
- (meth) acrylic means both acrylic and methacrylic.
- acrylate and “methacrylate” are also referred to as “(meth) acrylate”.
- (Poly) shall mean both with and without the "poly” prefix.
- the upper limit value or the lower limit value of the numerical range of one step can be arbitrarily combined with the upper limit value or the lower limit value of the numerical range of another step.
- the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
- Water-soluble means that it exhibits a solubility in water of 5% by mass or more at 25 ° C. The materials exemplified in the present specification may be used alone or in combination of two or more.
- the water-absorbent resin particles according to the embodiment include polymer particles surface-crosslinked by a surface-crosslinking agent.
- the static water absorption rate of the water-absorbent resin particles is A [seconds]
- the dynamic water absorption rate of the water-absorbent resin particles is B [seconds]
- the A / B is 21 or less.
- the static water absorption rate is such that when 1.00 g of water-absorbent resin particles absorb physiological saline by the non-pressurized DW method, the water-absorbent resin particles start absorbing 25 mL of physiological saline after the absorption is started. It is the time to absorb.
- water-absorbent resin particles are placed on a liquid-permeable sheet (mesh sheet) placed on a measuring table having a through hole, and a physiological saline solution supplied from the through hole without pressurization. Is a water absorption test in which water-absorbent resin particles absorb the water. Normally, the inner diameter of the through hole is 2 mm.
- the amount of the water-absorbent resin particles used in the test is 1.00 ⁇ 0.01 g, and this amount of the water-absorbent resin particles is uniformly arranged in a circular region having a diameter of 30 mm centered on the position directly above the through hole. Will be done.
- the measurement of the static water absorption rate by the non-pressurized DW method is performed in an environment of a temperature of 25 ° C. ⁇ 2 ° C. and a humidity of 50 ⁇ 10%.
- the physiological saline solution is an aqueous solution containing 0.9% by mass of salt based on the volume (mL) of the physiological saline solution. Other details of the test conditions will be described in Examples described later.
- the dynamic water absorption rate is the time required to completely absorb and eliminate the vortex after adding 2.00 g of water-absorbent resin particles to 50 mL of physiological saline, which is measured by the Vortex method.
- the water absorption test by the Vortex method can be performed by measuring the time until the vortex disappears using an instrument according to the method specified in JIS K7224: 1996. Put 50 mL of physiological saline in a glass beaker with a capacity of 100 mL and stir at 600 ⁇ 10 rpm.
- the curved absorber tends to absorb water at a faster permeation rate.
- the A / B may be 21 or less, an absorber having a sufficiently fast permeation rate can be obtained.
- the A / B may be 19 or less, 17 or less, 15 or less, or 12 or less.
- the lower limit of A / B is not particularly limited, but may be, for example, 1 or more, 2 or more, 3 or more, 4 or more, or 5 or more.
- a / B may be 19 or less and 1 or more, 2 or more, 3 or more, 4 or more, or 5 or more, and 17 or less and 1 or more, 2 or more, 3 or more, 4 or more, or 5 or more. Often, 15 or less may be 1 or more, 2 or more, 3 or more, 4 or more, or 5 or more, and 12 or less may be 1 or more, 2 or more, 3 or more, 4 or more, or 5 or more.
- the static water absorption rate A may be 50 seconds or more, 100 seconds or more, 150 seconds or more, 200 seconds or more, 250 seconds or more, or 300 seconds or more, 2000 seconds or less, 1800 seconds or less, 1600 seconds or less, 1500. It may be less than a second or less than 1400 seconds.
- the static water absorption rate A may be 50 seconds or more and 2000 seconds or less, 1800 seconds or less, 1600 seconds or less, 1500 seconds or less, or 1400 seconds or less, and 100 seconds or more and 2000 seconds or less, 1800 seconds or less, 1600.
- the dynamic water absorption rate B may be 20 seconds or more, 30 seconds or more, 40 seconds or more, 50 seconds or more, or 60 seconds or more, 120 seconds or less, 110 seconds or less, 100 seconds or less, 90 seconds or less, 80. It may be less than a second or less than 70 seconds.
- the dynamic water absorption rate B may be 20 seconds or more and 120 seconds or less, 110 seconds or less, 100 seconds or less, 90 seconds or less, 80 seconds or less, or 70 seconds or less, and 30 seconds or more and 120 seconds or less, 110.
- the static water absorption rate A and the dynamic water absorption rate B are within these ranges, a better permeation rate tends to be exhibited.
- the amount of water absorption of the water-absorbent resin particles with respect to physiological saline may be 30 g / g or more, 35 g / g or more, 40 g / g or more, or 45 g / g or more, 80 g / g or less, 75 g / g or less, 70 g. It may be / g or less, 65 g / g or less, 60 g / g or less, or 55 g / g or less. When the water absorption amount of the water-absorbent resin particles is within these ranges, a better permeation rate tends to be exhibited.
- the amount of water-absorbent resin particles retained in physiological saline can be measured by the method described in Examples described later.
- the medium particle size of the water-absorbent resin particles may be 100 to 800 ⁇ m, 150 to 700 ⁇ m, 200 to 600 ⁇ m, or 250 to 500 ⁇ m.
- the medium particle size can be measured by the following method. From the top of the JIS standard sieve, a sieve with a mesh size of 600 ⁇ m, a sieve with a mesh size of 500 ⁇ m, a sieve with a mesh size of 425 ⁇ m, a sieve with a mesh size of 300 ⁇ m, a sieve with a mesh size of 250 ⁇ m, a sieve with a mesh size of 180 ⁇ m, a sieve with a mesh size of 150 ⁇ m, and , Combine in the order of the saucer.
- the mass of the particles remaining on each sieve is calculated as a mass percentage with respect to the total amount to obtain the particle size distribution.
- the relationship between the mesh size of the sieve and the integrated value of the mass percentage of the particles remaining on the sieve is plotted on the logarithmic probability paper by integrating the particles on the sieve in order from the one having the largest particle size with respect to this particle size distribution. By connecting the plots on the probability paper with a straight line, the particle size corresponding to the cumulative mass percentage of 50% by mass is obtained as the medium particle size.
- the shape of the water-absorbent resin particles is not particularly limited, and may be, for example, substantially spherical, crushed, or granular, and particles in which primary particles having these shapes are aggregated are formed. May be good.
- the polymer particles may be water-absorbent particles containing a polymer containing an ethylenically unsaturated monomer as a monomer unit.
- the ethylenically unsaturated monomer may be a water-soluble monomer, and examples thereof include (meth) acrylic acid and salts thereof, 2- (meth) acrylamide-2-methylpropanesulfonic acid and its salts.
- the ethylenically unsaturated monomer may be used alone or in combination of two or more.
- the proportion of the polymer containing the ethylenically unsaturated monomer as a monomer unit in the polymer particles is 50 to 100% by mass, 60 to 100% by mass, and 70 to 100% by mass based on the mass of the polymer particles. , Or 80 to 100% by mass.
- the polymer particles may be particles containing a (meth) acrylic acid-based polymer containing at least one of (meth) acrylic acid or (meth) acrylate as a monomer unit.
- the total ratio of the monomer units derived from (meth) acrylic acid or (meth) acrylate in the (meth) acrylic acid-based polymer may be 90 to 100% by mass based on the mass of the polymer. Good.
- the surface cross-linking agent may be, for example, a compound having two or more functional groups (reactive functional groups) having reactivity with a functional group derived from an ethylenically unsaturated monomer.
- the surface cross-linking agent examples include alkylene carbonate compounds such as ethylene carbonate and propylene carbonate; polyols such as 1,4-butanediol, trimethylolpropane, glycerin, polyoxyethylene glycol, polyoxypropylene glycol and polyglycerin; Polyglycidyl compounds such as (poly) ethylene glycol diglycidyl ether, (poly) glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, (poly) propylene glycol polyglycidyl ether, (poly) glycerol polyglycidyl ether; epichlorohydrin, epibrom Haloepoxy compounds such as hydrin and ⁇ -methylepicrolhydrin; compounds having two or more reactive functional groups such as isocyanate compounds such as 2,4-tolylene diisocyanate and hexamethylene diisocyanate; 3-methyl-3-ox
- the surface cross-linking agent may contain an alkylene carbonate compound.
- the ratio of the alkylene carbonate compound in the surface cross-linking agent is 50 to 100% by mass, 60 to 100% by mass, 70 to 100% by mass, 80 to 100% by mass, or 90 to 100% by mass based on the total mass of the surface cross-linking agent. It may be.
- the polymer may be internally crosslinked by self-crosslinking, cross-linking by reaction with an internal cross-linking agent, or both.
- the internal cross-linking agent is, for example, a compound having two or more polymerizable unsaturated groups, a compound having two or more reactive functional groups having reactivity with a functional group of an ethylenically unsaturated monomer, or a compound thereof. It can contain one or more compounds, including combinations.
- polyethylene glycol As an example of a compound having two or more polymerizable unsaturated groups, (poly) ethylene glycol (in this specification, for example, “polyethylene glycol” and “ethylene glycol” are collectively referred to as “(poly) ethylene glycol”.
- Di or tri (meth) acrylic acid esters of polyols such as (poly) propylene glycol, trimethylolpropane, glycerin polyoxyethylene glycol, polyoxypropylene glycol, and (poly) glycerin; Unsaturated polyesters obtained by reacting with unsaturated acids such as maleic acid and fumaric acid; bisacrylamides such as N, N'-methylenebis (meth) acrylamide; by reacting polyepoxide with (meth) acrylic acid.
- polyols such as (poly) propylene glycol, trimethylolpropane, glycerin polyoxyethylene glycol, polyoxypropylene glycol, and (poly) glycerin
- Unsaturated polyesters obtained by reacting with unsaturated acids such as maleic acid and fumaric acid
- bisacrylamides such as N, N'-methylenebis (meth) acrylamide
- di (meth) acrylic acid esters obtained di (meth) acrylic acid carbamil esters obtained by reacting polyisocyanates such as tolylene diisocyanate and hexamethylene diisocyanate with hydroxyethyl (meth) acrylic acid; Alylated starch; allylated cellulose; diallyl phthalate; N, N', N''-triallyl isocyanurate; divinylbenzene.
- Examples of compounds having two or more reactive functional groups include glycidyl group-containing compounds such as (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, and (poly) glycerin diglycidyl ether; (poly). ) Ethylene glycol, (poly) propylene glycol, (poly) glycerin, pentaerythritol, ethylenediamine, polyethyleneimine, glycidyl (meth) acrylate.
- glycidyl group-containing compounds such as (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, and (poly) glycerin diglycidyl ether; (poly). ) Ethylene glycol, (poly) propylene glycol, (poly) glycerin, pentaerythritol, ethylenedi
- the polymer particles may contain a certain amount of water in addition to the polymer of the ethylenically unsaturated monomer, and may further contain various additional components therein.
- additional ingredients include gel stabilizers, metal chelating agents.
- the water-absorbent resin particles may further contain inorganic particles adhering to the surface of the polymer particles.
- the inorganic particles include silica particles such as amorphous silica.
- the amount of inorganic particles adhering to the surface of the polymer particles is 0.05% by mass or more, 0.1% by mass or more, 0.15% by mass or more, or 0.2% by mass based on the mass of the polymer particles. % Or more, 5.0% by mass or less, 3.0% by mass or less, 1.0% by mass or less, 0.5% by mass or less, or 0.3% by mass or less.
- the average particle size of the inorganic particles may be 0.1 to 50 ⁇ m, 0.5 to 30 ⁇ m, or 1 to 20 ⁇ m. The average particle size can be measured by the pore electric resistance method or the laser diffraction / scattering method depending on the characteristics of the particles.
- the water-absorbent resin particles surface-crosslink the polymer particles by heating, for example, a reaction mixture containing the polymer particles and an aqueous solution of a surface-crosslinking agent containing water and a surface-crosslinking agent. It can be manufactured by a method comprising a step.
- the mass of water in the reaction mixture is the total mass including not only the amount of water in the aqueous surface cross-linking agent solution but also the amount of water contained in the polymer particles subjected to surface cross-linking.
- the dry mass of the polymer particles is the mass obtained by subtracting the amount of water contained in the polymer particles from the mass of the polymer particles subjected to surface cross-linking.
- the water content in the polymer particles based on the mass of the polymer particles (hereinafter referred to as "moisture content of the polymer particles") is measured, and the value is used to determine the water content in the polymer particles.
- the water content of the polymer particles can be determined from the change in mass when the water content is removed by heating the polymer particles at 105 ° C. for 2 hours.
- the water content of the polymer particles mixed with the surface cross-linking agent aqueous solution and subjected to surface cross-linking may be, for example, 30% by mass or less, or 15% by mass or less, and 0% by mass or more, 2% by mass or more, 4 It may be 5% by mass or more, or 6% by mass or more.
- X / Y may be 10,000 or less, 9000 or less, 8000 or less, or 7000 or less, and may be 50 or more, or 100 or more.
- X / Y may be 10,000 or less and 50 or more or 100 or more, 9000 or less and 50 or more or 100 or more, 8000 or less and 50 or more or 100 or more, and 7000 or less. It may be 50 or more or 100 or more.
- X may be 1 or more, 2 or more, or 3 or more, and may be 50 or less, 40 or less, 30 or less, or 20 or less.
- X may be 1 or more and 50 or less, 40 or less, 30 or less, or 20 or less, 2 or more and 50 or less, 40 or less, 30 or less, or 20 or less, and 3 or more and 50 or less. , 40 or less, 30 or less, or 20 or less.
- Y may be 10 or more, 20 or more, or 30 or more, and may be 250 or less, or 200 or less. Y may be 10 or more and 250 or less, or 200 or less, 20 or more and 250 or less, or 200 or less, and 30 or more and 250 or less, or 200 or less.
- the surface cross-linking agent aqueous solution contains water and a surface cross-linking agent dissolved in water.
- the aqueous surface cross-linking agent solution may further contain a hydrophilic organic solvent.
- the organic solvent may be, for example, an alcohol such as 2-propanol, ethanol, methanol, ethylene glycol, or propylene glycol.
- the contents of water and the surface cross-linking agent in the surface cross-linking agent aqueous solution, and the mixing ratio of the surface cross-linking agent aqueous solution to the polymer particles can be adjusted so that X ⁇ Y is in an appropriate range.
- the ratio of water to the total amount of water and the organic solvent is 100% by mass or less, and may be 50% by mass or more, 60% by mass or more, 70% by mass or more, 80% by mass or more, and 90% by mass or more.
- the polymer particles can be surface-crosslinked by mixing the polymer particles and the aqueous surface cross-linking agent solution and heating the reaction mixture formed with stirring, if necessary.
- the heating temperature for surface cross-linking may be appropriately adjusted so that the surface cross-linking proceeds, for example, 70 to 300 ° C., 100 to 270 ° C., 120 to 250 ° C., 150 to 220 ° C., or 170 to 200 ° C. You may.
- the reaction time for surface cross-linking may be, for example, 1 to 200 minutes, 10 to 100 minutes, 20 to 80 minutes, 30 to 70 minutes, 40 to 60 minutes, or 5 to 100 minutes.
- the surface cross-linking step may be carried out twice or more.
- the polymer particles to be subjected to surface cross-linking can be obtained, for example, by a method including a step of polymerizing a monomer containing an ethylenically unsaturated monomer.
- the polymerization method of the monomer can be selected from, for example, a reverse phase suspension polymerization method, an aqueous solution polymerization method, a bulk polymerization method, and a precipitation polymerization method.
- Internally crosslinked polymer particles may be obtained by polymerizing an ethylenically unsaturated monomer in the presence of an internal crosslinking agent.
- Polymer particles containing inorganic particles may be obtained by polymerizing an ethylenically unsaturated monomer in the presence of inorganic particles such as silica.
- a part or all of the ethylene-based unsaturated monomer may form a salt such as an alkali metal salt.
- the ethylenically unsaturated monomer is polymerized in a monomer aqueous solution containing an ethylenically unsaturated monomer and water to form a hydrogel polymer containing the polymer.
- the polymer particles before surface cross-linking can be obtained by a method including the above and drying of the hydrogel polymer.
- a lumpy hydrogel polymer is formed, it may be coarsely crushed and the crude product of the hydrogel polymer may be dried.
- the hydrogel polymer or a crude product thereof may be dried and then pulverized, or the particles obtained by pulverization may be classified.
- the polymer particles to be subjected to surface cross-linking may be dried coarsely crushed products or particles obtained by further pulverizing the coarsely crushed products.
- the polymer particles obtained by pulverizing the coarsely crushed product may be classified, the particle size of the polymer particles may be adjusted as necessary, and then subjected to surface cross-linking.
- the concentration of the ethylenically unsaturated monomer in the aqueous monomer solution may be 20% by mass or more and less than the saturated concentration, 25 to 70% by mass, or 30 to 50% by mass based on the mass of the aqueous monomer solution. Good.
- the monomer aqueous solution may further contain a polymerization initiator.
- the polymerization initiator may be a photopolymerization initiator or a thermal radical polymerization initiator, or may be a water-soluble thermal radical polymerization initiator.
- the thermally radically polymerizable compound may be an azo compound, a peroxide, or a combination thereof.
- the amount of the polymerization initiator may be 0.00005 to 0.01 mol per 1 mol of the ethylenically unsaturated monomer.
- the monomer aqueous solution may further contain the above-mentioned internal cross-linking agent.
- the amount of the internal cross-linking agent is 0 mmol or more, 0.001 mmol or more, 0.01 mmol or more, 0.015 mmol or more, or 0.020 mmol or more with respect to 1 mol of the ethylenically unsaturated monomer. It may be 2 mmol or less, 1 mmol or less, 0.5 mmol or less, or 0.1 mmol or less.
- the aqueous monomer solution may further contain other additives such as a chain transfer agent and a thickener.
- the polymerization temperature varies depending on the polymerization initiator used, but may be, for example, 0 to 130 ° C. or 10 to 110 ° C.
- the polymerization time may be 1 to 200 minutes or 5 to 100 minutes.
- the water content of the hydrogel polymer formed by polymerization (water content based on the mass of the hydrogel polymer) is 30 to 80% by mass, 40 to 75% by mass, or 50 to 70% by mass. May be.
- the coarsely crushed product obtained by the coarse crushing may be in the form of particles or may have an elongated shape such that particles are connected.
- the minimum width of the pyroclastic material may be, for example, about 0.1 to 15 mm or 1.0 to 10 mm.
- the maximum width of the pyroclastic material may be about 0.1 to 200 mm or 1.0 to 150 mm.
- devices for crushing include kneaders (eg, pressurized kneaders, double-armed kneaders, etc.), meat choppers, cutter mills, and pharmacomills. If necessary, the lumpy hydrogel polymer may be cut before coarse crushing.
- the hydrogel polymer or its crude product is dried mainly to remove water.
- the drying method may be a general method such as natural drying, heat drying, and vacuum drying.
- the crushing method is not particularly limited, and for example, a roller mill (roll mill), a stamp mill, a jet mill, a high-speed rotary crusher (hammer mill, pin mill, rotor beater mill, etc.), or a container-driven mill (rotary mill, vibration mill, etc.). , Planet mill, etc.) can be applied.
- the classification method is also not particularly limited, and for example, a method using a vibrating sieve, a rotary shifter, a cylindrical stirring sieve, a blower shifter, or a low-tap type shaker can be applied.
- a suspension containing an activator an ethylenically unsaturated monomer is polymerized to form a particulate hydrogel polymer containing the polymer, and hydrocarbon dispersion from the suspension.
- Polymer particles to be subjected to surface cross-linking can be obtained by methods including removing the medium and water.
- the hydrocarbon dispersion medium may contain at least one compound selected from the group consisting of chain aliphatic hydrocarbons having 6 to 8 carbon atoms and alicyclic hydrocarbons having 6 to 8 carbon atoms.
- Hydrocarbon dispersion media include chain aliphatic hydrocarbons such as n-hexane, n-heptane, 2-methylhexane, 3-methylhexane, 2,3-dimethylpentane, 3-ethylpentane, and n-octane; cyclohexane.
- the hydrocarbon dispersion medium may be used alone or in combination of two or more.
- the amount of the hydrocarbon dispersion medium may be 30 to 1000 parts by mass, 40 to 500 parts by mass, or 50 to 300 parts by mass with respect to 100 parts by mass of the aqueous monomer solution containing the monomer.
- thermal radical polymerization initiators include persulfates, peroxides, and azo compounds.
- the amount of the radical polymerization initiator may be 0.00005 to 0.01 mol per 1 mol of the ethylenically unsaturated monomer.
- the suspension for reverse phase suspension polymerization may further contain the above-mentioned internal cross-linking agent.
- the internal cross-linking agent is usually added to a monomer aqueous solution containing an ethylene-based unsaturated monomer.
- the amount of the internal cross-linking agent is 0 mmol or more, 0.001 mmol or more, 0.01 mmol or more, 0.015 mmol or more, or 0.020 mmol or more with respect to 1 mol of the ethylenically unsaturated monomer. It may be 2 mmol or less, 1 mmol or less, 0.5 mmol or less, or 0.1 mmol or less.
- Suspensions for reverse phase suspension polymerization usually further contain a surfactant.
- the surfactant may be a nonionic surfactant, an anionic surfactant or the like.
- nonionic surfactants include sorbitan fatty acid ester and (poly) glycerin fatty acid ester (“(poly)” means both with and without the prefix “poly”. The same applies hereinafter.), Sucrose fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene glycerin fatty acid ester, sorbitol fatty acid ester, polyoxyethylene sorbitol fatty acid ester, polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxy.
- Examples thereof include ethylene castor oil, polyoxyethylene cured castor oil, alkylallyl formaldehyde condensed polyoxyethylene ether, polyoxyethylene polyoxypropylene block copolymer, polyoxyethylene polyoxypropyl alkyl ether, polyethylene glycol fatty acid ester and the like.
- anionic surfactants include fatty acid salts, alkylbenzene sulfonates, alkylmethyl taur phosphates, polyoxyethylene alkylphenyl ether sulfates, polyoxyethylene alkyl ether sulfonates, and phosphorus in polyoxyethylene alkyl ethers.
- Examples thereof include acid esters and phosphoric acid esters of polyoxyethylene alkyl allyl ethers.
- the surfactant may be used alone or in combination of two or more.
- the amount of the surfactant may be 0.05 to 10 parts by mass, 0.08 to 5 parts by mass, or 0.1 to 3 parts by mass with respect to 100 parts by mass of the aqueous monomer solution.
- the suspension for reverse phase suspension polymerization may further contain a polymer-based residual agent.
- polymer dispersants include maleic anhydride-modified polyethylene, maleic anhydride-modified polypropylene, maleic anhydride-modified ethylene / propylene copolymer, maleic anhydride-modified EPDM (ethylene / propylene / diene / terpolymer), and anhydrous.
- maleic acid-modified polybutadiene maleic anhydride / ethylene copolymer, maleic anhydride / propylene copolymer, maleic anhydride / ethylene / propylene copolymer, maleic anhydride / butadiene copolymer, polyethylene, polypropylene, ethylene / propylene Examples thereof include copolymers, oxidized polyethylene, oxidized polypropylene, oxidized ethylene / propylene copolymers, ethylene / acrylic acid copolymers, ethyl cellulose, ethyl hydroxyethyl cellulose and the like.
- the polymer-based dispersant may be used alone or in combination of two or more.
- the amount of the polymer-based dispersant may be 0.05 to 10 parts by mass, 0.08 to 5 parts by mass, or 0.1 to 3 parts by mass with respect to 100 parts by mass of the aqueous monomer solution.
- the suspension for reverse phase suspension polymerization may contain other components such as a chain transfer agent and a thickener, if necessary.
- the temperature of the polymerization reaction varies depending on the radical polymerization initiator used, but may be, for example, 20 to 150 ° C. or 40 to 120 ° C.
- the reaction time is usually 0.5-4 hours.
- the reverse phase suspension polymerization may be carried out in a plurality of times.
- the polymer particles before surface cross-linking can be obtained.
- azeotropic distillation, decantation, filtration, vacuum drying, or a combination thereof can remove the hydrocarbon dispersion medium and water. Water, hydrocarbon dispersion medium, or both may remain to some extent in the polymer particles before surface cross-linking.
- Water and hydrocarbon dispersion medium are removed from the polymer particles after surface cross-linking, if necessary.
- the polymer particles after surface cross-linking may be further treated by drying, grinding, classification or a combination thereof.
- the method for producing the water-absorbent resin particles may further include a step of adhering the above-mentioned inorganic particles to the surface of the polymer particles after surface cross-linking.
- FIG. 1 is a cross-sectional view showing an example of an absorbent article.
- the absorbent article 100 shown in FIG. 1 includes a sheet-shaped absorbent body 10, core wraps 20a and 20b, a liquid permeable sheet 30, and a liquid permeable sheet 40.
- the liquid permeable sheet 40, the core wrap 20b, the absorbent body 10, the core wrap 20a, and the liquid permeable sheet 30 are laminated in this order.
- FIG. 1 there is a portion shown so that there is a gap between the members, but the members may be in close contact with each other without the gap.
- the absorber 10 has the water-absorbent resin particles 10a according to the above-described embodiment and the fiber layer 10b containing a fibrous material.
- the water-absorbent resin particles 10a are dispersed in the fiber layer 10b.
- the core wrap 20a is arranged on one side of the absorber 10 (upper side of the absorber 10 in FIG. 1) in contact with the absorber 10.
- the core wrap 20b is arranged on the other side of the absorber 10 (lower side of the absorber 10 in FIG. 1) in contact with the absorber 10.
- the absorber 10 is arranged between the core wrap 20a and the core wrap 20b.
- Examples of the core wraps 20a and 20b include tissues, non-woven fabrics and the like.
- the core wrap 20a and the core wrap 20b have, for example, a main surface having the same size as the absorber 10.
- the liquid permeable sheet 30 is arranged on the outermost side on the side where the liquid to be absorbed enters.
- the liquid permeable sheet 30 is arranged on the core wrap 20a in contact with the core wrap 20a.
- Examples of the liquid permeable sheet 30 include non-woven fabrics made of synthetic resins such as polyethylene, polypropylene, polyester and polyamide, and porous sheets.
- the liquid permeable sheet 40 is arranged on the outermost side of the absorbent article 100 on the opposite side of the liquid permeable sheet 30.
- the liquid impermeable sheet 40 is arranged under the core wrap 20b in contact with the core wrap 20b.
- liquid impermeable sheet 40 examples include a sheet made of a synthetic resin such as polyethylene, polypropylene, and polyvinyl chloride, and a sheet made of a composite material of these synthetic resins and a non-woven fabric.
- the liquid permeable sheet 30 and the liquid permeable sheet 40 have, for example, a main surface wider than the main surface of the absorber 10, and the outer edges of the liquid permeable sheet 30 and the liquid permeable sheet 40 are It extends around the absorber 10 and the core wraps 20a, 20b.
- the magnitude relationship between the absorbent body 10, the core wraps 20a and 20b, the liquid permeable sheet 30, and the liquid permeable sheet 40 is not particularly limited, and is appropriately adjusted according to the use of the absorbent article and the like. Further, the method of retaining the shape of the absorber 10 using the core wraps 20a and 20b is not particularly limited, and as shown in FIG. 1, the absorber may be wrapped by a plurality of core wraps, and the absorber is wrapped by one core wrap. But it may be.
- Example 1 Water-absorbent resin particles (Example 1) Polymer particles (before surface cross-linking) A round-bottomed cylindrical separable flask having an inner diameter of 11 cm and a volume of 2 L equipped with a reflux condenser, a dropping funnel, a nitrogen gas introduction pipe, and a stirring blade having two stages of four inclined paddle blades having a blade diameter of 5 cm was prepared. In this separable flask, 293 g of n-heptane and 0.736 g of a maleic anhydride-modified ethylene-propylene copolymer (manufactured by Mitsui Chemicals, Inc., High Wax 1105A) as a polymer-based dispersant were placed and mixed. The dispersant was dissolved in n-heptane by raising the temperature to 80 ° C. while stirring the mixture in the separable flask with a stirrer. The formed solution was cooled to 50 ° C.
- the first-stage monomer aqueous solution was added to the n-heptane solution containing the dispersant in the separable flask, and the formed reaction solution was stirred for 10 minutes.
- a surfactant solution in which 0.736 g of sucrose stearic acid ester (Mitsubishi Chemical Foods Co., Ltd., Ryoto Sugar Ester S-370, HLB: 3), which is a surfactant, is dissolved in 6.62 g of n-heptane is dissolved therein. Further, the inside of the system was sufficiently replaced with nitrogen while stirring the reaction solution at a rotation speed of the stirrer of 550 rpm. Then, the separable flask was immersed in a water bath at 70 ° C. to raise the temperature of the reaction solution, and the polymerization reaction was allowed to proceed for 60 minutes to obtain a first-stage polymerized slurry solution.
- the first-stage polymerized slurry solution in the separable flask was cooled to 25 ° C. while stirring at a stirring speed of 1000 rpm, and the entire amount of the second-stage monomer aqueous solution was added thereto. After replacing the inside of the separable flask with nitrogen for 30 minutes, the separable flask is immersed again in a water bath at 70 ° C. to raise the temperature of the reaction solution, and the second-stage polymerization reaction for 60 minutes causes a hydrogel-like weight. I got a coalescence.
- the above operation was performed again to obtain a dried product of polymer particles. This was mixed with the polymer particles obtained for the first time, and all the polymer particles were passed through a sieve having an opening of 850 ⁇ m. After passing through the sieve, the amount of polymer particles recovered was 505.2 g, and the medium particle size thereof was 352 ⁇ m. The obtained polymer particles were subjected to surface cross-linking to obtain water-absorbent resin particles.
- the polymer particles were passed through a sieve having an opening of 850 ⁇ m to obtain polymer particles.
- Amorphous silica Oriental Silicas Corporation, Toxile NP-S
- water-absorbent resin particles containing the amorphous silica It was.
- Example 2 Water-absorbent resin particles were obtained in the same manner as in Example 1 except that the aqueous surface cross-linking agent was changed to a mixture of 0.30 g (3.407 mmol) of ethylene carbonate and 0.30 g of water.
- Example 3 Water-absorbent resin particles were obtained in the same manner as in Example 1 except that the aqueous surface cross-linking agent was changed to a mixture of 0.45 g (5.110 mmol) of ethylene carbonate and 1.80 g of water.
- Example 4 Water-absorbent resin particles were obtained in the same manner as in Example 1 except that the aqueous surface cross-linking agent was changed to a mixture of 0.30 g (3.407 mmol) of ethylene carbonate and 1.20 g of water.
- Example 5 Water-absorbent resin particles were obtained in the same manner as in Example 1 except that the aqueous surface cross-linking agent was changed to a mixture of 0.21 g (2.385 mmol) of ethylene carbonate and 1.89 g of water.
- Example 6 Water-absorbent resin particles were obtained in the same manner as in Example 1 except that the aqueous surface cross-linking agent was changed to a mixture of 0.30 g (3.407 mmol) of ethylene carbonate and 2.70 g of water.
- Example 7 Water-absorbent resin particles were obtained in the same manner as in Example 1 except that the aqueous surface cross-linking agent was changed to a mixture of 0.18 g (2.044 mmol) of ethylene carbonate and 3.42 g of water.
- Example 8 Water-absorbent resin particles were obtained in the same manner as in Example 1 except that the aqueous surface cross-linking agent was changed to a mixture of 0.15 g (1.703 mmol) of ethylene carbonate and 2.85 g of water.
- Example 2 Water-absorbent resin particles were obtained in the same manner as in Example 1 except that the aqueous surface cross-linking agent was changed to a mixture of 0.12 g (1.363 mmol) of ethylene carbonate and 5.88 g of water.
- Example 3 A hydrogel-like polymer was obtained by the same first-stage and second-stage polymerization reactions as in Example 1 except that the temperature was changed to 31 ° C. when the entire amount of the second-stage aqueous solution was added. It was. To the obtained hydrogel polymer, 0.589 g of a 45% by mass diethylenetriamine-5 sodium acetate aqueous solution was added under stirring. Then, the separable flask was immersed in an oil bath set at 125 ° C., and 275.8 g of water was extracted from the system by azeotropic distillation of n-heptane and water. The mass of the polymer particles containing water in the separable flask was 257.2 g.
- n-heptane was evaporated by heating at 125 ° C. to obtain a dried product of surface-cross-linked polymer particles.
- the polymer particles are passed through a sieve having an opening of 850 ⁇ m, and 0.1% by mass of amorphous silica (Oriental Silicas Corporation, Toxile NP-S) with respect to the mass of the polymer particles is mixed with the polymer particles.
- amorphous silica Oriental Silicas Corporation, Toxile NP-S
- 233.0 g of water-absorbent resin particles containing amorphous silica were obtained.
- the medium particle size of the water-absorbent resin particles was 128 ⁇ m.
- X and Y were obtained by the following formula, and X ⁇ Y was further calculated. The obtained values are shown in Table 1.
- X (mass of water in reaction mixture (g)) / (mass of surface cross-linking agent in reaction mixture (g))
- Y (dry mass (g) of polymer particles in the reaction mixture) / (mass (g) of surface cross-linking agent in the reaction mixture)
- the mass of water in the reaction mixture was the total mass of water in the polymer particles and water in the aqueous surface cross-linking agent solution.
- Static water absorption rate A The static water absorption rate A was measured using the measuring device by the non-pressurized DW method shown in FIG. The measurement was carried out 5 times for one type of water-absorbent resin particles, and the average value of the measured values at three points excluding the minimum value and the maximum value was obtained.
- the measuring device shown in FIG. 2 has a burette portion 1, a conduit 5, a measuring table 13, a nylon mesh sheet 15, a frame 11, and a clamp 3.
- the burette portion 1 includes a burette tube 21 on which a scale is described, a rubber stopper 23 for sealing the opening at the upper part of the burette tube 21, a cock 22 connected to the tip of the lower portion of the burette tube 21, and a lower portion of the burette tube 21. It has an air introduction pipe 25 and a cock 24 connected to the burette.
- the burette portion 1 is fixed by a clamp 3.
- the flat plate-shaped measuring table 13 has a circular through hole 13a having a diameter of 2 mm formed in the central portion thereof, and is supported by a frame 11 having a variable height.
- the through hole 13a of the measuring table 13 and the cock 22 of the burette portion 1 are connected by a conduit 5.
- the inner diameter of the conduit 5 is 6 mm.
- the measurement was performed in an environment with a temperature of 25 ° C and a humidity of 60 ⁇ 10%.
- the cock 22 and the cock 24 of the burette portion 1 were closed, and the physiological saline 50 adjusted to 25 ° C. was put into the burette tube 21 through the opening at the upper part of the burette tube 21.
- the cock 22 and the cock 24 were opened.
- the inside of the conduit 5 was filled with physiological saline 50 to prevent air bubbles from entering.
- the height of the measuring table 13 was adjusted so that the height of the water surface of the physiological saline solution that reached the inside of the through hole 13a was the same as the height of the upper surface of the measuring table 13.
- the height of the water surface of the physiological saline solution 50 in the burette tube 21 was read by the scale of the burette tube 21, and the position was set as the zero point (reading value at 0 seconds).
- a nylon mesh sheet 15 (100 mm ⁇ 100 mm, 250 mesh, thickness about 50 ⁇ m) was laid in the vicinity of the through hole 13a on the measuring table 13, and a cylinder having an inner diameter of 30 mm and a height of 20 mm was placed in the center thereof. 1.00 g of water-absorbent resin particles 10a were uniformly sprayed in this cylinder. Then, the cylinder was carefully removed to obtain a sample in which the water-absorbent resin particles 10a were dispersed in a circle in the central portion of the nylon mesh sheet 15.
- the nylon mesh sheet 15 on which the water-absorbent resin particles 10a were placed was quickly moved so that the center thereof was at the position of the through hole 13a so that the water-absorbent resin particles 10a did not dissipate, and the measurement was started. ..
- the time when the air bubbles were first introduced from the air introduction pipe 25 into the burette pipe 21 was defined as the start of water absorption (0 seconds).
- the time from the start of absorption until the water-absorbent resin particles 10a absorbed 25 mL of physiological saline 50 was recorded as the static water absorption rate A [seconds].
- Dynamic water absorption rate B The dynamic water absorption rate B of the water-absorbent resin particles with respect to physiological saline was measured by the following procedure based on the Vortex method. First, 50 ⁇ 0.1 mL of physiological saline adjusted to a temperature of 25 ⁇ 0.2 ° C. in a constant temperature water tank was weighed in a beaker having a capacity of 100 mL. Next, a vortex was generated by stirring at 600 rpm using a magnetic stirrer bar (8 mm ⁇ ⁇ 30 mm, without ring). 2.0 ⁇ 0.002 g of water-absorbent resin particles were added to physiological saline at one time.
- the time [seconds] from the addition of the water-absorbent resin particles to the time when the vortex on the liquid surface converged was measured.
- the measurement was performed 5 times for one type of water-absorbent resin particles, and the average value of the measured values at three points excluding the minimum value and the maximum value was recorded as the dynamic water absorption rate B of the water-absorbent resin particles.
- a polyethylene-polypropylene air-through porous liquid permeable sheet having the same size as the absorber and having a basis weight of 22 g / m 2 is placed on the upper surface of the tissue paper to form a tissue paper / absorber / tissue paper / air-through porous sheet.
- An evaluation absorbent article having a laminated structure of liquid permeable sheets was obtained.
- FIG. 3 is a schematic diagram showing a method of a water absorption test for evaluating the permeation rate of the liquid into the curved absorber.
- the water absorption test was conducted in an environment with a temperature of 25 ⁇ 2 ° C. and a humidity of 50% ⁇ 10%.
- the U-shaped instrument 52 shown in FIG. 3 is a molded body made of acrylic resin having a curved surface 52a having a U-shaped cross section having an opening at the upper side.
- the curved surface 52a has an opening width w of 22 cm, a depth d of 18.5 cm, and a depth of 10 cm.
- a liquid permeable sheet 53 (polyethylene film) was placed on the curved surface 52a.
- the evaluation absorbent article 100' was placed on the liquid impermeable sheet 53 so that the central portion thereof was located at the deepest part of the curved surface 52a.
- a liquid injection cylinder 54 having a capacity of 100 mL and having an inner diameter of 3 cm was fixed to the center of the evaluation absorbent article 100'.
- 80 mL of the test liquid 51 was charged into the liquid charging cylinder 54 at a rate of 10 mL / sec using a dropping funnel.
- the time from the time when the test liquid 51 first reached the evaluation absorbent article 100'to the time when the test liquid 51 completely disappeared from the liquid charging cylinder 54 was defined as the first permeation time (seconds).
- test liquid 51 After the test liquid 51 completely disappeared from the inside of the cylinder 54, the cylinder 54 was removed from the water-absorbent article 100'for evaluation. This series of operations of adding the test solution 51 was performed twice more at 10-minute intervals, for a total of three times. The total time of each permeation time for 3 injections was recorded.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Analytical Chemistry (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Vascular Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Biomedical Technology (AREA)
- Engineering & Computer Science (AREA)
- Epidemiology (AREA)
- Absorbent Articles And Supports Therefor (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
The present invention discloses water absorbent resin particles 10a comprising polymer particles having a surface cross-linked by a surface-crosslinking agent. The ratio A/B is 21 or less where A is the static water absorption rate [seconds] of the water absorbent resin particles and B is the dynamic water absorption rate [seconds] of the water absorbent resin particles. The static water absorption rate is the time required for 1.00 g of the water absorbent resin particles to absorb 25 ml of physiological saline solution from the start of absorption in a DW test under no pressure. The dynamic water absorption rate is the water absorption rate measured by a Vortex test.
Description
本発明は、吸水性樹脂粒子、吸収性物品、及び吸水性樹脂粒子の製造方法に関する。
The present invention relates to water-absorbent resin particles, absorbent articles, and a method for producing water-absorbent resin particles.
吸水性樹脂粒子を構成する重合体粒子は、各種の表面架橋剤によって表面架橋されることがある(例えば、特許文献1)。
The polymer particles constituting the water-absorbent resin particles may be surface-crosslinked by various surface-crosslinking agents (for example, Patent Document 1).
おむつ等の吸収性物品において、湾曲したシート状の吸収体内に液を速やかに浸透させることが必要とされることがある。そこで本発明は、シート状の吸収体が、湾曲した状態であっても十分に速い浸透速度で水分を吸収することを可能にする吸水性樹脂粒子を提供する。
In absorbent articles such as diapers, it may be necessary to quickly allow the liquid to penetrate into the curved sheet-shaped absorbent body. Therefore, the present invention provides water-absorbent resin particles that enable the sheet-shaped absorber to absorb water at a sufficiently high permeation rate even in a curved state.
本発明の一側面は、表面架橋剤によって表面架橋された重合体粒子を含む、吸水性樹脂粒子を提供する。当該吸水性樹脂粒子の静的吸水速度がA[秒]で、当該吸水性樹脂粒子の動的吸水速度がB[秒]であるとき、A/Bが21以下である。前記静的吸水速度は、1.00gの当該吸水性樹脂粒子に、生理食塩水を無加圧DW法によって吸収させたときに、吸収を開始してから当該吸水性樹脂粒子が25mLの生理食塩水を吸収するまでの時間である。前記動的吸水速度は、Vortex法によって測定される吸水速度である。
One aspect of the present invention provides water-absorbent resin particles containing polymer particles surface-crosslinked by a surface-crosslinking agent. When the static water absorption rate of the water-absorbent resin particles is A [seconds] and the dynamic water absorption rate of the water-absorbent resin particles is B [seconds], the A / B is 21 or less. The static water absorption rate is such that when the water-absorbent resin particles of 1.00 g are absorbed with physiological saline by the non-pressurized DW method, the water-absorbent resin particles have 25 mL of physiological saline after the absorption is started. It is the time to absorb water. The dynamic water absorption rate is the water absorption rate measured by the Vortex method.
本発明の別の一側面は、上記吸水性樹脂粒子を含む吸収体を備える、吸収性物品を提供する。
Another aspect of the present invention provides an absorbent article comprising an absorber containing the water-absorbent resin particles.
本発明者の知見によれば、無加圧状態で静的に吸水するときの吸水速度と、流動した状態で動的に吸水するときの吸水速度との比率が、湾曲した吸収体への液の浸透速度と相関する。特に、上記の動的吸水速度Bに対する静的吸水速度Aの比率A/Bが21以下であると、湾曲した吸収体への液の浸透速度を顕著に改善することができる。
According to the findings of the present inventor, the ratio of the water absorption rate when statically absorbing water in a non-pressurized state to the water absorption rate when dynamically absorbing water in a fluid state is a liquid to a curved absorber. Correlates with the permeation rate of. In particular, when the ratio A / B of the static water absorption rate A to the dynamic water absorption rate B is 21 or less, the permeation rate of the liquid into the curved absorber can be remarkably improved.
本発明の更に別の一側面は、吸水性樹脂粒子を製造する方法を提供する。当該方法は、重合体粒子と水及び表面架橋剤を含有する表面架橋剤水溶液とを含む反応混合物を加熱することによって、前記重合体粒子を表面架橋する工程を備える。X及びYが下記式:
X=(前記反応混合物中の水の質量)/(前記反応混合物中の前記表面架橋剤の質量)
Y=(前記反応混合物中の前記重合体粒子の乾燥質量)/(前記反応混合物中の前記表面架橋剤の質量)
によって算出される値であるとき、X×Yが11000以下である。 Yet another aspect of the present invention provides a method of producing water-absorbent resin particles. The method comprises a step of surface cross-linking the polymer particles by heating a reaction mixture containing the polymer particles and an aqueous solution of a surface cross-linking agent containing water and a surface cross-linking agent. X and Y are the following formulas:
X = (mass of water in the reaction mixture) / (mass of the surface cross-linking agent in the reaction mixture)
Y = (dry mass of the polymer particles in the reaction mixture) / (mass of the surface cross-linking agent in the reaction mixture)
X × Y is 11000 or less when it is a value calculated by.
X=(前記反応混合物中の水の質量)/(前記反応混合物中の前記表面架橋剤の質量)
Y=(前記反応混合物中の前記重合体粒子の乾燥質量)/(前記反応混合物中の前記表面架橋剤の質量)
によって算出される値であるとき、X×Yが11000以下である。 Yet another aspect of the present invention provides a method of producing water-absorbent resin particles. The method comprises a step of surface cross-linking the polymer particles by heating a reaction mixture containing the polymer particles and an aqueous solution of a surface cross-linking agent containing water and a surface cross-linking agent. X and Y are the following formulas:
X = (mass of water in the reaction mixture) / (mass of the surface cross-linking agent in the reaction mixture)
Y = (dry mass of the polymer particles in the reaction mixture) / (mass of the surface cross-linking agent in the reaction mixture)
X × Y is 11000 or less when it is a value calculated by.
重合体粒子の表面架橋によって、重合体粒子を構成する重合体の架橋密度が高められた層(表面架橋層)が重合体粒子の表層に形成されると考えられる。そして、上記のX及びYは、重合体粒子の表層における表面架橋反応の効率に関連すると考えられる。Xの値が小さいと、表面架橋剤と反応混合物中の水が反応する現象を抑えることができるため、重合体粒子の表面架橋を効率的に行うことができ、表面の架橋密度を高めることができると考えられる。Yの値が小さいと、表面架橋剤が重合体粒子に対し多いため、より強固な表面架橋層が形成されると考えられる。したがって、X×Yが110000以下となる条件で表面架橋された重合体粒子は、架橋密度が高く強固な表面架橋層を有する傾向がある。表面架橋層が強固であると、膨潤後の吸水性樹脂が潰れにくくなるため、ゲルブロッキングが起こり難くなる。ゲルブロッキングが起こり難いと、静的吸水速度が比較的速くなり、その結果、動的吸水速度Bに対する静的吸水速度Aの比率A/Bが小さくなると考えられる。
It is considered that the surface cross-linking of the polymer particles forms a layer (surface cross-linking layer) in which the cross-linking density of the polymer constituting the polymer particles is increased on the surface layer of the polymer particles. The above X and Y are considered to be related to the efficiency of the surface cross-linking reaction on the surface layer of the polymer particles. When the value of X is small, the phenomenon that the surface cross-linking agent reacts with water in the reaction mixture can be suppressed, so that the surface cross-linking of the polymer particles can be efficiently performed and the cross-linking density of the surface can be increased. It is thought that it can be done. When the value of Y is small, it is considered that a stronger surface cross-linking layer is formed because the surface cross-linking agent is larger than that of the polymer particles. Therefore, the polymer particles surface-crosslinked under the condition that X × Y is 110,000 or less tend to have a strong surface-crosslinked layer with a high crosslink density. If the surface crosslinked layer is strong, the water-absorbent resin after swelling is less likely to be crushed, so that gel blocking is less likely to occur. If gel blocking is unlikely to occur, the static water absorption rate becomes relatively high, and as a result, the ratio A / B of the static water absorption rate A to the dynamic water absorption rate B is considered to be small.
本発明によれば、シート状の吸収体が湾曲した状態であっても十分に速い浸透速度で水分を吸収することを可能にする吸水性樹脂粒子が提供される。
According to the present invention, there is provided water-absorbent resin particles capable of absorbing water at a sufficiently high permeation rate even when the sheet-shaped absorber is in a curved state.
以下、本発明のいくつかの実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。
Hereinafter, some embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments.
本明細書において「(メタ)アクリル」はアクリル及びメタクリルの両方を意味する。「アクリレート」及び「メタクリレート」も同様に「(メタ)アクリレート」と表記する。他の類似の用語も同様である。「(ポリ)」とは、「ポリ」の接頭語がある場合及びない場合の双方を意味するものとする。本明細書に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値と任意に組み合わせることができる。本明細書に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。「水溶性」とは、25℃において水に5質量%以上の溶解性を示すことをいう。本明細書に例示する材料は、1種単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。
In this specification, "(meth) acrylic" means both acrylic and methacrylic. Similarly, "acrylate" and "methacrylate" are also referred to as "(meth) acrylate". The same is true for other similar terms. "(Poly)" shall mean both with and without the "poly" prefix. In the numerical range described stepwise in the present specification, the upper limit value or the lower limit value of the numerical range of one step can be arbitrarily combined with the upper limit value or the lower limit value of the numerical range of another step. In the numerical range described in the present specification, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples. "Water-soluble" means that it exhibits a solubility in water of 5% by mass or more at 25 ° C. The materials exemplified in the present specification may be used alone or in combination of two or more.
(吸水性樹脂粒子)
一実施形態に係る吸水性樹脂粒子は、表面架橋剤によって表面架橋された重合体粒子を含む。吸水性樹脂粒子の静的吸水速度がA[秒]で、吸水性樹脂粒子の動的吸水速度がB[秒]であるとき、A/Bが21以下である。 (Water-absorbent resin particles)
The water-absorbent resin particles according to the embodiment include polymer particles surface-crosslinked by a surface-crosslinking agent. When the static water absorption rate of the water-absorbent resin particles is A [seconds] and the dynamic water absorption rate of the water-absorbent resin particles is B [seconds], the A / B is 21 or less.
一実施形態に係る吸水性樹脂粒子は、表面架橋剤によって表面架橋された重合体粒子を含む。吸水性樹脂粒子の静的吸水速度がA[秒]で、吸水性樹脂粒子の動的吸水速度がB[秒]であるとき、A/Bが21以下である。 (Water-absorbent resin particles)
The water-absorbent resin particles according to the embodiment include polymer particles surface-crosslinked by a surface-crosslinking agent. When the static water absorption rate of the water-absorbent resin particles is A [seconds] and the dynamic water absorption rate of the water-absorbent resin particles is B [seconds], the A / B is 21 or less.
静的吸水速度は、1.00gの吸水性樹脂粒子に、生理食塩水を無加圧DW法によって吸収させたときに、吸収を開始してから当該吸水性樹脂粒子が25mLの生理食塩水を吸収するまでの時間である。無加圧DW法は、貫通孔を有する測定台上に置かれた液透過性シート(メッシュシート)の上に吸水性樹脂粒子を配置し、貫通孔から無加圧で供給される生理食塩水を、吸水性樹脂粒子に吸収させる吸水試験である。通常、貫通孔の内径は2mmである。試験に供される吸水性樹脂粒子の量は1.00±0.01gであり、この量の吸水性樹脂粒子が、貫通孔の直上の位置を中心として直径30mmの円形の領域に均一に配置される。無加圧DW法による静的吸水速度の測定は温度25℃±2℃、湿度50±10%の環境下で行なわれる。生理食塩水は、生理食塩水の体積(mL)を基準として0.9質量%の濃度の食塩を含有する水溶液である。その他、試験条件の詳細は後述の実施例において説明される。
The static water absorption rate is such that when 1.00 g of water-absorbent resin particles absorb physiological saline by the non-pressurized DW method, the water-absorbent resin particles start absorbing 25 mL of physiological saline after the absorption is started. It is the time to absorb. In the non-pressurized DW method, water-absorbent resin particles are placed on a liquid-permeable sheet (mesh sheet) placed on a measuring table having a through hole, and a physiological saline solution supplied from the through hole without pressurization. Is a water absorption test in which water-absorbent resin particles absorb the water. Normally, the inner diameter of the through hole is 2 mm. The amount of the water-absorbent resin particles used in the test is 1.00 ± 0.01 g, and this amount of the water-absorbent resin particles is uniformly arranged in a circular region having a diameter of 30 mm centered on the position directly above the through hole. Will be done. The measurement of the static water absorption rate by the non-pressurized DW method is performed in an environment of a temperature of 25 ° C. ± 2 ° C. and a humidity of 50 ± 10%. The physiological saline solution is an aqueous solution containing 0.9% by mass of salt based on the volume (mL) of the physiological saline solution. Other details of the test conditions will be described in Examples described later.
動的吸水速度は、Vortex法によって測定される、50mLの生理食塩水に対する2.00gの吸水性樹脂粒子を投入してから全て吸収し渦が消失するのに要する時間である。Vortex法による吸水試験は、JIS K7224:1996に規定される方法に準じた器具を用いて、渦が消失するまでの時間を測定することで行うことができる。容量100mLのガラスビーカーに生理食塩水50mLを入れ、600±10rpmで撹拌する。精秤した吸水性樹脂粒子2.0gをこのビーカー入れた時点から、生理食塩水が吸水性樹脂粒子に吸収され、撹拌による渦が消失するまでの時間を測定し、その時間[秒]を動的吸水速度の測定値とする。その他、試験条件の詳細は後述の実施例において説明される。
The dynamic water absorption rate is the time required to completely absorb and eliminate the vortex after adding 2.00 g of water-absorbent resin particles to 50 mL of physiological saline, which is measured by the Vortex method. The water absorption test by the Vortex method can be performed by measuring the time until the vortex disappears using an instrument according to the method specified in JIS K7224: 1996. Put 50 mL of physiological saline in a glass beaker with a capacity of 100 mL and stir at 600 ± 10 rpm. From the time when 2.0 g of the finely weighed water-absorbent resin particles were placed in this beaker, the time until the physiological saline was absorbed by the water-absorbent resin particles and the vortex due to stirring disappeared was measured, and the time [seconds] was moved. It is a measured value of the target water absorption rate. Other details of the test conditions will be described in Examples described later.
本発明者らの知見によれば、A/Bが小さいと、湾曲した吸収体がより速い浸透速度で水を吸収できる傾向がある。特に、A/Bが21以下であると、十分に速い浸透速度を有する吸収体を得ることができる。同様の観点から、A/Bは19以下、17以下、15以下、又は12以下であってもよい。A/Bの下限は特に制限されないが、例えば1以上、2以上、3以上、4以上、又は5以上であってもよい。A/Bは19以下で1以上、2以上、3以上、4以上、又は5以上であってもよく、17以下で1以上、2以上、3以上、4以上、又は5以上であってもよく、15以下で1以上、2以上、3以上、4以上、又は5以上であってもよく、12以下で1以上、2以上、3以上、4以上、又は5以上あってもよい。
According to the findings of the present inventors, when the A / B is small, the curved absorber tends to absorb water at a faster permeation rate. In particular, when the A / B is 21 or less, an absorber having a sufficiently fast permeation rate can be obtained. From the same viewpoint, the A / B may be 19 or less, 17 or less, 15 or less, or 12 or less. The lower limit of A / B is not particularly limited, but may be, for example, 1 or more, 2 or more, 3 or more, 4 or more, or 5 or more. A / B may be 19 or less and 1 or more, 2 or more, 3 or more, 4 or more, or 5 or more, and 17 or less and 1 or more, 2 or more, 3 or more, 4 or more, or 5 or more. Often, 15 or less may be 1 or more, 2 or more, 3 or more, 4 or more, or 5 or more, and 12 or less may be 1 or more, 2 or more, 3 or more, 4 or more, or 5 or more.
静的吸水速度Aは、50秒以上、100秒以上、150秒以上、200秒以上、250秒以上、又は300秒以上であってもよく、2000秒以下、1800秒以下、1600秒以下、1500秒以下、又は1400秒以下であってもよい。静的吸水速度Aは、50秒以上で2000秒以下、1800秒以下、1600秒以下、1500秒以下、又は1400秒以下であってもよく、100秒以上で2000秒以下、1800秒以下、1600秒以下、1500秒以下、又は1400秒以下であってもよく、150秒以上で2000秒以下、1800秒以下、1600秒以下、1500秒以下、又は1400秒以下であってもよく、200秒以上で2000秒以下、1800秒以下、1600秒以下、1500秒以下、又は1400秒以下であってもよく、250秒以上で2000秒以下、1800秒以下、1600秒以下、1500秒以下、又は1400秒以下であってもよく、250秒以上で2000秒以下、1800秒以下、1600秒以下、1500秒以下、又は1400秒以下であってもよく、300秒以上で2000秒以下、1800秒以下、1600秒以下、1500秒以下、又は1400秒以下であってもよい。動的吸水速度Bは、20秒以上、30秒以上、40秒以上、50秒以上、又は60秒以上であってもよく、120秒以下、110秒以下、100秒以下、90秒以下、80秒以下、又は70秒以下であってもよい。動的吸水速度Bは、20秒以上で120秒以下、110秒以下、100秒以下、90秒以下、80秒以下、又は70秒以下であってもよく、30秒以上で120秒以下、110秒以下、100秒以下、90秒以下、80秒以下、又は70秒以下であってもよく、40秒以上で120秒以下、110秒以下、100秒以下、90秒以下、80秒以下、又は70秒以下であってもよく、50秒以上で120秒以下、110秒以下、100秒以下、90秒以下、80秒以下、又は70秒以下であってもよく、60秒以上で120秒以下、110秒以下、100秒以下、90秒以下、80秒以下、又は70秒以下であってもよい。静的吸水速度A及び動的吸水速度Bがこれら範囲内であると、より優れた浸透速度が発現される傾向がある。
The static water absorption rate A may be 50 seconds or more, 100 seconds or more, 150 seconds or more, 200 seconds or more, 250 seconds or more, or 300 seconds or more, 2000 seconds or less, 1800 seconds or less, 1600 seconds or less, 1500. It may be less than a second or less than 1400 seconds. The static water absorption rate A may be 50 seconds or more and 2000 seconds or less, 1800 seconds or less, 1600 seconds or less, 1500 seconds or less, or 1400 seconds or less, and 100 seconds or more and 2000 seconds or less, 1800 seconds or less, 1600. Seconds or less, 1500 seconds or less, or 1400 seconds or less, 150 seconds or more, 2000 seconds or less, 1800 seconds or less, 1600 seconds or less, 1500 seconds or less, or 1400 seconds or less, 200 seconds or more 2000 seconds or less, 1800 seconds or less, 1600 seconds or less, 1500 seconds or less, or 1400 seconds or less, 250 seconds or more and 2000 seconds or less, 1800 seconds or less, 1600 seconds or less, 1500 seconds or less, or 1400 seconds It may be 250 seconds or more and 2000 seconds or less, 1800 seconds or less, 1600 seconds or less, 1500 seconds or less, or 1400 seconds or less, and 300 seconds or more and 2000 seconds or less, 1800 seconds or less, 1600. It may be seconds or less, 1500 seconds or less, or 1400 seconds or less. The dynamic water absorption rate B may be 20 seconds or more, 30 seconds or more, 40 seconds or more, 50 seconds or more, or 60 seconds or more, 120 seconds or less, 110 seconds or less, 100 seconds or less, 90 seconds or less, 80. It may be less than a second or less than 70 seconds. The dynamic water absorption rate B may be 20 seconds or more and 120 seconds or less, 110 seconds or less, 100 seconds or less, 90 seconds or less, 80 seconds or less, or 70 seconds or less, and 30 seconds or more and 120 seconds or less, 110. It may be seconds or less, 100 seconds or less, 90 seconds or less, 80 seconds or less, or 70 seconds or less, 40 seconds or more and 120 seconds or less, 110 seconds or less, 100 seconds or less, 90 seconds or less, 80 seconds or less, or It may be 70 seconds or less, 50 seconds or more and 120 seconds or less, 110 seconds or less, 100 seconds or less, 90 seconds or less, 80 seconds or less, or 70 seconds or less, 60 seconds or more and 120 seconds or less. , 110 seconds or less, 100 seconds or less, 90 seconds or less, 80 seconds or less, or 70 seconds or less. When the static water absorption rate A and the dynamic water absorption rate B are within these ranges, a better permeation rate tends to be exhibited.
吸水性樹脂粒子の生理食塩水に対する吸水量は、30g/g以上、35g/g以上、40g/g以上、又は45g/g以上であってもよく、80g/g以下、75g/g以下、70g/g以下、65g/g以下、60g/g以下、又は、55g/g以下であってもよい。吸水性樹脂粒子の吸水量がこれら範囲内であると、より優れた浸透速度が発現される傾向がある。吸水性樹脂粒子の生理食塩水に対する保水量は、後述する実施例に記載の方法によって測定できる。
The amount of water absorption of the water-absorbent resin particles with respect to physiological saline may be 30 g / g or more, 35 g / g or more, 40 g / g or more, or 45 g / g or more, 80 g / g or less, 75 g / g or less, 70 g. It may be / g or less, 65 g / g or less, 60 g / g or less, or 55 g / g or less. When the water absorption amount of the water-absorbent resin particles is within these ranges, a better permeation rate tends to be exhibited. The amount of water-absorbent resin particles retained in physiological saline can be measured by the method described in Examples described later.
吸水性樹脂粒子(又は重合体粒子)の中位粒子径は、100~800μm、150~700μm、200~600μm、又は250~500μmであってもよい。中位粒子径は、以下の方法で測定することができる。JIS標準篩を上から、目開き600μmの篩、目開き500μmの篩、目開き425μmの篩、目開き300μmの篩、目開き250μmの篩、目開き180μmの篩、目開き150μmの篩、及び、受け皿の順に組み合わせる。組み合わせた最上の篩に、吸水性樹脂粒子50gを入れ、ロータップ式振とう器(株式会社飯田製作所製)を用いてJIS Z 8815(1994)に準じて分級する。分級後、各篩上に残った粒子の質量を全量に対する質量百分率として算出し粒度分布を求める。この粒度分布に関して粒子径の大きい方から順に篩上を積算することにより、篩の目開きと篩上に残った粒子の質量百分率の積算値との関係を対数確率紙にプロットする。確率紙上のプロットを直線で結ぶことにより、積算質量百分率50質量%に相当する粒子径を中位粒子径として得る。
The medium particle size of the water-absorbent resin particles (or polymer particles) may be 100 to 800 μm, 150 to 700 μm, 200 to 600 μm, or 250 to 500 μm. The medium particle size can be measured by the following method. From the top of the JIS standard sieve, a sieve with a mesh size of 600 μm, a sieve with a mesh size of 500 μm, a sieve with a mesh size of 425 μm, a sieve with a mesh size of 300 μm, a sieve with a mesh size of 250 μm, a sieve with a mesh size of 180 μm, a sieve with a mesh size of 150 μm, and , Combine in the order of the saucer. 50 g of water-absorbent resin particles are placed in the best combined sieve, and the mixture is classified according to JIS Z8815 (1994) using a low-tap shaker (manufactured by Iida Seisakusho Co., Ltd.). After classification, the mass of the particles remaining on each sieve is calculated as a mass percentage with respect to the total amount to obtain the particle size distribution. The relationship between the mesh size of the sieve and the integrated value of the mass percentage of the particles remaining on the sieve is plotted on the logarithmic probability paper by integrating the particles on the sieve in order from the one having the largest particle size with respect to this particle size distribution. By connecting the plots on the probability paper with a straight line, the particle size corresponding to the cumulative mass percentage of 50% by mass is obtained as the medium particle size.
吸水性樹脂粒子(又は重合体粒子)の形状は、特に限定されず、例えば略球状、破砕状又は顆粒状であってもよく、これらの形状を有する一次粒子が凝集した粒子が形成されていてもよい。
The shape of the water-absorbent resin particles (or polymer particles) is not particularly limited, and may be, for example, substantially spherical, crushed, or granular, and particles in which primary particles having these shapes are aggregated are formed. May be good.
重合体粒子は、エチレン性不飽和単量体を単量体単位として含む重合体を含有する吸水性の粒子であってもよい。エチレン性不飽和単量体は、水溶性の単量体であってもよく、その例としては、(メタ)アクリル酸及びその塩、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸及びその塩、(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、2-ヒドロキシエチル(メタ)アクリレート、N-メチロール(メタ)アクリルアミド、ポリエチレングリコールモノ(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノプロピル(メタ)アクリレート、並びにジエチルアミノプロピル(メタ)アクリルアミドが挙げられる。エチレン性不飽和単量体は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。重合体粒子における、エチレン性不飽和単量体を単量体単位として含む重合体の割合は、重合体粒子の質量を基準として50~100質量%、60~100質量%、70~100質量%、又は80~100質量%であってもよい。重合体粒子は、(メタ)アクリル酸又は(メタ)アクリル酸塩のうち少なくとも一方を単量体単位として含む(メタ)アクリル酸系重合体を含有する粒子であってもよい。(メタ)アクリル酸系重合体における(メタ)アクリル酸又は(メタ)アクリル酸塩に由来する単量体単位の合計の割合は、重合体の質量を基準として90~100質量%であってもよい。
The polymer particles may be water-absorbent particles containing a polymer containing an ethylenically unsaturated monomer as a monomer unit. The ethylenically unsaturated monomer may be a water-soluble monomer, and examples thereof include (meth) acrylic acid and salts thereof, 2- (meth) acrylamide-2-methylpropanesulfonic acid and its salts. Salt, (meth) acrylamide, N, N-dimethyl (meth) acrylamide, 2-hydroxyethyl (meth) acrylate, N-methylol (meth) acrylamide, polyethylene glycol mono (meth) acrylate, N, N-diethylaminoethyl (meth) ) Acrylate, N, N-diethylaminopropyl (meth) acrylate, and diethylaminopropyl (meth) acrylamide. The ethylenically unsaturated monomer may be used alone or in combination of two or more. The proportion of the polymer containing the ethylenically unsaturated monomer as a monomer unit in the polymer particles is 50 to 100% by mass, 60 to 100% by mass, and 70 to 100% by mass based on the mass of the polymer particles. , Or 80 to 100% by mass. The polymer particles may be particles containing a (meth) acrylic acid-based polymer containing at least one of (meth) acrylic acid or (meth) acrylate as a monomer unit. The total ratio of the monomer units derived from (meth) acrylic acid or (meth) acrylate in the (meth) acrylic acid-based polymer may be 90 to 100% by mass based on the mass of the polymer. Good.
重合体粒子のうち少なくとも表層部分の重合体は、表面架橋剤との反応によって架橋されている。表面架橋剤は、例えば、エチレン性不飽和単量体由来の官能基との反応性を有する官能基(反応性官能基)を2個以上有する化合物であってよい。表面架橋剤としては、例えば、エチレンカーボネート、プロピレンカーボネート等のアルキレンカーボネート化合物;1,4-ブタンジオール、トリメチロールプロパン、グリセリン、ポリオキシエチレングリコール、ポリオキシプロピレングリコール、ポリグリセリン等のポリオール類;(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル、(ポリ)グリセリントリグリシジルエーテル、(ポリ)プロピレングリコールポリグリシジルエーテル、(ポリ)グリセロールポリグリシジルエーテル等のポリグリシジル化合物;エピクロルヒドリン、エピブロムヒドリン、α-メチルエピクロルヒドリン等のハロエポキシ化合物;2,4-トリレンジイソシアネート、ヘキサメチレンジイソシアネート等のイソシアネート化合物等の反応性官能基を2個以上有する化合物;3-メチル-3-オキセタンメタノール、3-エチル-3-オキセタンメタノール、3-ブチル-3-オキセタンメタノール、3-メチル-3-オキセタンエタノール、3-エチル-3-オキセタンエタノール、3-ブチル-3-オキセタンエタノール等のオキセタン化合物;1,2-エチレンビスオキサゾリン等のオキサゾリン化合物;ビス[N,N-ジ(β-ヒドロキシエチル)]アジプアミド等のヒドロキシアルキルアミド化合物等が挙げられる。表面架橋剤が、アルキレンカーボネート化合物を含んでいてもよい。表面架橋剤におけるアルキレンカーボネート化合物の比率が、表面架橋剤の総質量を基準として50~100質量%、60~100質量%、70~100質量%、80~100質量%、又は90~100質量%であってもよい。
Of the polymer particles, at least the polymer in the surface layer portion is crosslinked by the reaction with the surface cross-linking agent. The surface cross-linking agent may be, for example, a compound having two or more functional groups (reactive functional groups) having reactivity with a functional group derived from an ethylenically unsaturated monomer. Examples of the surface cross-linking agent include alkylene carbonate compounds such as ethylene carbonate and propylene carbonate; polyols such as 1,4-butanediol, trimethylolpropane, glycerin, polyoxyethylene glycol, polyoxypropylene glycol and polyglycerin; Polyglycidyl compounds such as (poly) ethylene glycol diglycidyl ether, (poly) glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, (poly) propylene glycol polyglycidyl ether, (poly) glycerol polyglycidyl ether; epichlorohydrin, epibrom Haloepoxy compounds such as hydrin and α-methylepicrolhydrin; compounds having two or more reactive functional groups such as isocyanate compounds such as 2,4-tolylene diisocyanate and hexamethylene diisocyanate; 3-methyl-3-oxetane methanol, 3 -Oxetane compounds such as ethyl-3-oxetane methanol, 3-butyl-3-oxetane methanol, 3-methyl-3-oxetane ethanol, 3-ethyl-3-oxetane ethanol, 3-butyl-3-oxetane ethanol; 1, Examples thereof include oxazoline compounds such as 2-ethylenebisoxazoline; and hydroxyalkylamide compounds such as bis [N, N-di (β-hydroxyethyl)] adipamide. The surface cross-linking agent may contain an alkylene carbonate compound. The ratio of the alkylene carbonate compound in the surface cross-linking agent is 50 to 100% by mass, 60 to 100% by mass, 70 to 100% by mass, 80 to 100% by mass, or 90 to 100% by mass based on the total mass of the surface cross-linking agent. It may be.
重合体粒子の内部においても、重合体が、自己架橋、内部架橋剤との反応による架橋、又はこれらの両方によって内部架橋されていてもよい。
Even inside the polymer particles, the polymer may be internally crosslinked by self-crosslinking, cross-linking by reaction with an internal cross-linking agent, or both.
内部架橋剤は、例えば、重合性不飽和基を2個以上有する化合物、エチレン性不飽和単量体が有する官能基との反応性を有する反応性官能基を2個以上有する化合物、又はこれらの組み合わせを含む1種又は2種以上の化合物を含むことができる。
The internal cross-linking agent is, for example, a compound having two or more polymerizable unsaturated groups, a compound having two or more reactive functional groups having reactivity with a functional group of an ethylenically unsaturated monomer, or a compound thereof. It can contain one or more compounds, including combinations.
重合性不飽和基を2個以上有する化合物の例としては、(ポリ)エチレングリコール(本明細書において、例えば、「ポリエチレングリコール」と「エチレングリコール」を合わせて「(ポリ)エチレングリコール」と記す。以下同様)、(ポリ)プロピレングリコール、トリメチロールプロパン、グリセリンポリオキシエチレングリコール、ポリオキシプロピレングリコール、及び(ポリ)グリセリン等のポリオール類のジ又はトリ(メタ)アクリル酸エステル類;上記ポリオールとマレイン酸及びフマル酸等の不飽和酸類とを反応させて得られる不飽和ポリエステル類;N,N’-メチレンビス(メタ)アクリルアミド等のビスアクリルアミド類;ポリエポキシドと(メタ)アクリル酸とを反応させて得られるジ又はトリ(メタ)アクリル酸エステル類;トリレンジイソシアネート及びヘキサメチレンジイソシアネート等のポリイソシアネートと(メタ)アクリル酸ヒドロキシエチルとを反応させて得られるジ(メタ)アクリル酸カルバミルエステル類;アリル化澱粉;アリル化セルロース;ジアリルフタレート;N,N’,N’’-トリアリルイソシアヌレート;ジビニルベンゼンが挙げられる。
As an example of a compound having two or more polymerizable unsaturated groups, (poly) ethylene glycol (in this specification, for example, "polyethylene glycol" and "ethylene glycol" are collectively referred to as "(poly) ethylene glycol". Di or tri (meth) acrylic acid esters of polyols such as (poly) propylene glycol, trimethylolpropane, glycerin polyoxyethylene glycol, polyoxypropylene glycol, and (poly) glycerin; Unsaturated polyesters obtained by reacting with unsaturated acids such as maleic acid and fumaric acid; bisacrylamides such as N, N'-methylenebis (meth) acrylamide; by reacting polyepoxide with (meth) acrylic acid. Di or tri (meth) acrylic acid esters obtained; di (meth) acrylic acid carbamil esters obtained by reacting polyisocyanates such as tolylene diisocyanate and hexamethylene diisocyanate with hydroxyethyl (meth) acrylic acid; Alylated starch; allylated cellulose; diallyl phthalate; N, N', N''-triallyl isocyanurate; divinylbenzene.
反応性官能基を2個以上有する化合物の例としては、(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、及び(ポリ)グリセリンジグリシジルエーテル等のグリシジル基含有化合物;(ポリ)エチレングリコール、(ポリ)プロピレングリコール、(ポリ)グリセリン、ペンタエリスリトール、エチレンジアミン、ポリエチレンイミン、グリシジル(メタ)アクリレートが挙げられる。
Examples of compounds having two or more reactive functional groups include glycidyl group-containing compounds such as (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, and (poly) glycerin diglycidyl ether; (poly). ) Ethylene glycol, (poly) propylene glycol, (poly) glycerin, pentaerythritol, ethylenediamine, polyethyleneimine, glycidyl (meth) acrylate.
重合体粒子は、エチレン性不飽和単量体の重合体に加えて、ある程度の水を含んでいてもよく、その内部に各種の追加の成分を更に含んでいてもよい。追加の成分の例としては、ゲル安定剤、金属キレート剤が挙げられる。
The polymer particles may contain a certain amount of water in addition to the polymer of the ethylenically unsaturated monomer, and may further contain various additional components therein. Examples of additional ingredients include gel stabilizers, metal chelating agents.
吸水性樹脂粒子は、重合体粒子の表面に付着した無機粒子を更に含んでいてもよい。無機粒子としては、例えば、非晶質シリカ等のシリカ粒子が挙げられる。重合体粒子の表面に付着した無機粒子の量は、重合体粒子の質量を基準として、0.05質量%以上、0.1質量%以上、0.15質量%以上、又は、0.2質量%以上であってもよく、5.0質量%以下、3.0質量%以下、1.0質量%以下、0.5質量%以下、又は0.3質量%以下であってもよい。無機粒子の平均粒子径は、0.1~50μm、0.5~30μm、又は、1~20μmであってよい。平均粒子径は、粒子の特性に応じて、細孔電気抵抗法又はレーザー回折・散乱法によって測定できる。
The water-absorbent resin particles may further contain inorganic particles adhering to the surface of the polymer particles. Examples of the inorganic particles include silica particles such as amorphous silica. The amount of inorganic particles adhering to the surface of the polymer particles is 0.05% by mass or more, 0.1% by mass or more, 0.15% by mass or more, or 0.2% by mass based on the mass of the polymer particles. % Or more, 5.0% by mass or less, 3.0% by mass or less, 1.0% by mass or less, 0.5% by mass or less, or 0.3% by mass or less. The average particle size of the inorganic particles may be 0.1 to 50 μm, 0.5 to 30 μm, or 1 to 20 μm. The average particle size can be measured by the pore electric resistance method or the laser diffraction / scattering method depending on the characteristics of the particles.
(吸水性樹脂粒子を製造する方法)
以上例示された実施形態に係る吸水性樹脂粒子は、例えば、重合体粒子と水及び表面架橋剤を含有する表面架橋剤水溶液とを含む反応混合物を加熱することによって、重合体粒子を表面架橋する工程を備える方法によって、製造することができる。この方法において、X及びYが下記式:
X=(反応混合物中の水の質量)/(反応混合物中の表面架橋剤の質量)
Y=(反応混合物中の重合体粒子の乾燥質量)/(反応混合物中の表面架橋剤の質量)
によって算出される値であるとき、X×Yが11000以下となるように、重合体粒子、表面架橋剤及び水の量比を調整することによって、上述のA/Bが適切に制御された吸水性樹脂粒子を容易に得ることができる。 (Method of manufacturing water-absorbent resin particles)
The water-absorbent resin particles according to the above-exemplified embodiment surface-crosslink the polymer particles by heating, for example, a reaction mixture containing the polymer particles and an aqueous solution of a surface-crosslinking agent containing water and a surface-crosslinking agent. It can be manufactured by a method comprising a step. In this method, X and Y are the following formulas:
X = (mass of water in reaction mixture) / (mass of surface cross-linking agent in reaction mixture)
Y = (dry mass of polymer particles in the reaction mixture) / (mass of surface cross-linking agent in the reaction mixture)
Water absorption in which the above-mentioned A / B is appropriately controlled by adjusting the amount ratio of the polymer particles, the surface cross-linking agent, and water so that X × Y becomes 11000 or less when it is the value calculated by. Sex resin particles can be easily obtained.
以上例示された実施形態に係る吸水性樹脂粒子は、例えば、重合体粒子と水及び表面架橋剤を含有する表面架橋剤水溶液とを含む反応混合物を加熱することによって、重合体粒子を表面架橋する工程を備える方法によって、製造することができる。この方法において、X及びYが下記式:
X=(反応混合物中の水の質量)/(反応混合物中の表面架橋剤の質量)
Y=(反応混合物中の重合体粒子の乾燥質量)/(反応混合物中の表面架橋剤の質量)
によって算出される値であるとき、X×Yが11000以下となるように、重合体粒子、表面架橋剤及び水の量比を調整することによって、上述のA/Bが適切に制御された吸水性樹脂粒子を容易に得ることができる。 (Method of manufacturing water-absorbent resin particles)
The water-absorbent resin particles according to the above-exemplified embodiment surface-crosslink the polymer particles by heating, for example, a reaction mixture containing the polymer particles and an aqueous solution of a surface-crosslinking agent containing water and a surface-crosslinking agent. It can be manufactured by a method comprising a step. In this method, X and Y are the following formulas:
X = (mass of water in reaction mixture) / (mass of surface cross-linking agent in reaction mixture)
Y = (dry mass of polymer particles in the reaction mixture) / (mass of surface cross-linking agent in the reaction mixture)
Water absorption in which the above-mentioned A / B is appropriately controlled by adjusting the amount ratio of the polymer particles, the surface cross-linking agent, and water so that X × Y becomes 11000 or less when it is the value calculated by. Sex resin particles can be easily obtained.
反応混合物中の水の質量は、表面架橋剤水溶液中の水の量だけでなく、表面架橋に供される重合体粒子が含む水の量も含む総質量である。重合体粒子の乾燥質量は、表面架橋に供される重合体粒子の質量から、重合体粒子に含まれる水分量を除いた質量である。重合体粒子における、重合体粒子の質量を基準とする水の含有量(以下、「重合体粒子の水分率」という。)を測定し、その値を用いて、重合体粒子中の水分量、及び重合体粒子の乾燥質量を以下の式によって算出することができる。
重合体粒子中の水分量(g)=重合体粒子の質量×重合体粒子の水分率/100
重合体粒子の乾燥質量(g)=重合体粒子の質量×(100-重合体粒子の水分率)/100 The mass of water in the reaction mixture is the total mass including not only the amount of water in the aqueous surface cross-linking agent solution but also the amount of water contained in the polymer particles subjected to surface cross-linking. The dry mass of the polymer particles is the mass obtained by subtracting the amount of water contained in the polymer particles from the mass of the polymer particles subjected to surface cross-linking. The water content in the polymer particles based on the mass of the polymer particles (hereinafter referred to as "moisture content of the polymer particles") is measured, and the value is used to determine the water content in the polymer particles. And the dry mass of the polymer particles can be calculated by the following formula.
Moisture content in polymer particles (g) = mass of polymer particles x water content of polymer particles / 100
Dry mass (g) of polymer particles = mass of polymer particles x (100-moisture content of polymer particles) / 100
重合体粒子中の水分量(g)=重合体粒子の質量×重合体粒子の水分率/100
重合体粒子の乾燥質量(g)=重合体粒子の質量×(100-重合体粒子の水分率)/100 The mass of water in the reaction mixture is the total mass including not only the amount of water in the aqueous surface cross-linking agent solution but also the amount of water contained in the polymer particles subjected to surface cross-linking. The dry mass of the polymer particles is the mass obtained by subtracting the amount of water contained in the polymer particles from the mass of the polymer particles subjected to surface cross-linking. The water content in the polymer particles based on the mass of the polymer particles (hereinafter referred to as "moisture content of the polymer particles") is measured, and the value is used to determine the water content in the polymer particles. And the dry mass of the polymer particles can be calculated by the following formula.
Moisture content in polymer particles (g) = mass of polymer particles x water content of polymer particles / 100
Dry mass (g) of polymer particles = mass of polymer particles x (100-moisture content of polymer particles) / 100
重合体粒子の水分率は、重合体粒子を105℃で2時間加熱することによって水分を除去したときの質量変化から、求めることができる。表面架橋剤水溶液と混合され、表面架橋に供される重合体粒子の水分率は、例えば30質量%以下、又は15質量%以下であってもよく、0質量%以上、2質量%以上、4質量%以上、5質量%以上、又は6質量%以上であってもよい。
The water content of the polymer particles can be determined from the change in mass when the water content is removed by heating the polymer particles at 105 ° C. for 2 hours. The water content of the polymer particles mixed with the surface cross-linking agent aqueous solution and subjected to surface cross-linking may be, for example, 30% by mass or less, or 15% by mass or less, and 0% by mass or more, 2% by mass or more, 4 It may be 5% by mass or more, or 6% by mass or more.
X/Yは、10000以下、9000以下、8000以下、又は7000以下であってもよく、50以上、又は100以上であってもよい。X/Yは、10000以下で50以上又は100以上であってもよく、9000以下で50以上又は100以上であってもよく、8000以下で50以上又は100以上であってもよく、7000以下で50以上又は100以上であってもよい。Xは、1以上、2以上又は3以上であってもよく、50以下、40以下、30以下、又は20以下であってもよい。Xは、1以上で50以下、40以下、30以下、又は20以下であってもよく、2以上で50以下、40以下、30以下、又は20以下であってもよく、3以上で50以下、40以下、30以下、又は20以下であってもよい。Yは、10以上、20以上、又は30以上であってもよく、250以下、又は200以下であってもよい。Yは、10以上で250以下、又は200以下であってもよく、20以上で250以下、又は200以下であってもよく、30以上で250以下、又は200以下であってもよい。
X / Y may be 10,000 or less, 9000 or less, 8000 or less, or 7000 or less, and may be 50 or more, or 100 or more. X / Y may be 10,000 or less and 50 or more or 100 or more, 9000 or less and 50 or more or 100 or more, 8000 or less and 50 or more or 100 or more, and 7000 or less. It may be 50 or more or 100 or more. X may be 1 or more, 2 or more, or 3 or more, and may be 50 or less, 40 or less, 30 or less, or 20 or less. X may be 1 or more and 50 or less, 40 or less, 30 or less, or 20 or less, 2 or more and 50 or less, 40 or less, 30 or less, or 20 or less, and 3 or more and 50 or less. , 40 or less, 30 or less, or 20 or less. Y may be 10 or more, 20 or more, or 30 or more, and may be 250 or less, or 200 or less. Y may be 10 or more and 250 or less, or 200 or less, 20 or more and 250 or less, or 200 or less, and 30 or more and 250 or less, or 200 or less.
表面架橋剤水溶液は、水と、水に溶解した表面架橋剤とを含有する。表面架橋剤水溶液が、親水性の有機溶媒を更に含有していてもよい。有機溶媒は、例えば、2-プロパノール、エタノール、メタノール、エチレングリコール、プロピレングリコール等のアルコールであってもよい。表面架橋剤水溶液における水及び表面架橋剤の含有量、及び重合体粒子に対する表面架橋剤水溶液の混合比は、X×Yが適切な範囲になるように、調整することができる。水及び有機溶媒の合計量に対する水の比率は、100質量%以下であり、50質量%以上、60質量%以上、70質量%以上、80質量%以上、90質量%以上であってもよい。
The surface cross-linking agent aqueous solution contains water and a surface cross-linking agent dissolved in water. The aqueous surface cross-linking agent solution may further contain a hydrophilic organic solvent. The organic solvent may be, for example, an alcohol such as 2-propanol, ethanol, methanol, ethylene glycol, or propylene glycol. The contents of water and the surface cross-linking agent in the surface cross-linking agent aqueous solution, and the mixing ratio of the surface cross-linking agent aqueous solution to the polymer particles can be adjusted so that X × Y is in an appropriate range. The ratio of water to the total amount of water and the organic solvent is 100% by mass or less, and may be 50% by mass or more, 60% by mass or more, 70% by mass or more, 80% by mass or more, and 90% by mass or more.
重合体粒子と表面架橋剤水溶液とを混合し、形成される反応混合物を、必要により撹拌しながら加熱することによって、重合体粒子を表面架橋することができる。表面架橋のための加熱温度は、表面架橋が進行するように適宜調整すればよく、例えば70~300℃、100~270℃、120~250℃、150~220℃、又は170~200℃であってもよい。表面架橋の反応時間は、例えば1~200分、10~100分、20~80分、30~70分、40~60分、又は5~100分であってもよい。表面架橋の工程を2回以上実施してもよい。
The polymer particles can be surface-crosslinked by mixing the polymer particles and the aqueous surface cross-linking agent solution and heating the reaction mixture formed with stirring, if necessary. The heating temperature for surface cross-linking may be appropriately adjusted so that the surface cross-linking proceeds, for example, 70 to 300 ° C., 100 to 270 ° C., 120 to 250 ° C., 150 to 220 ° C., or 170 to 200 ° C. You may. The reaction time for surface cross-linking may be, for example, 1 to 200 minutes, 10 to 100 minutes, 20 to 80 minutes, 30 to 70 minutes, 40 to 60 minutes, or 5 to 100 minutes. The surface cross-linking step may be carried out twice or more.
表面架橋に供される重合体粒子は、例えば、エチレン性不飽和単量体を含む単量体を重合する工程を含む方法によって、得ることができる。単量体の重合方法は、例えば、逆相懸濁重合法、水溶液重合法、バルク重合法、及び沈殿重合法から選択され得る。エチレン性不飽和単量体を内部架橋剤の存在下で重合することによって、内部架橋された重合体粒子を得てもよい。エチレン性不飽和単量体をシリカ等の無機粒子の存在下で重合することによって、無機粒子を内部に含む重合体粒子を得てもよい。エチレン系不飽和単量体のうち一部又は全部が、アルカリ金属塩等の塩を形成していてもよい。
The polymer particles to be subjected to surface cross-linking can be obtained, for example, by a method including a step of polymerizing a monomer containing an ethylenically unsaturated monomer. The polymerization method of the monomer can be selected from, for example, a reverse phase suspension polymerization method, an aqueous solution polymerization method, a bulk polymerization method, and a precipitation polymerization method. Internally crosslinked polymer particles may be obtained by polymerizing an ethylenically unsaturated monomer in the presence of an internal crosslinking agent. Polymer particles containing inorganic particles may be obtained by polymerizing an ethylenically unsaturated monomer in the presence of inorganic particles such as silica. A part or all of the ethylene-based unsaturated monomer may form a salt such as an alkali metal salt.
水溶液重合法の場合、例えば、エチレン性不飽和単量体及び水を含有する単量体水溶液中でエチレン性不飽和単量体を重合して、重合体を含む含水ゲル状重合体を形成することと、含水ゲル状重合体を乾燥することとを含む方法によって、表面架橋前の重合体粒子を得ることができる。塊状の含水ゲル状重合体が形成される場合、これを粗砕し、含水ゲル状重合体の粗砕物を乾燥してもよい。含水ゲル状重合体又はその粗砕物を、乾燥後、粉砕してもよく、粉砕により得られる粒子を分級してもよい。表面架橋に供される重合体粒子は、乾燥した粗砕物であってもよいし、粗砕物を更に粉砕して得られる粒子であってもよい。粗砕物を粉砕して得られる重合体粒子を分級し、重合体粒子の粒度を必要に応じて調整してから表面架橋に供してもよい。
In the case of the aqueous solution polymerization method, for example, the ethylenically unsaturated monomer is polymerized in a monomer aqueous solution containing an ethylenically unsaturated monomer and water to form a hydrogel polymer containing the polymer. The polymer particles before surface cross-linking can be obtained by a method including the above and drying of the hydrogel polymer. When a lumpy hydrogel polymer is formed, it may be coarsely crushed and the crude product of the hydrogel polymer may be dried. The hydrogel polymer or a crude product thereof may be dried and then pulverized, or the particles obtained by pulverization may be classified. The polymer particles to be subjected to surface cross-linking may be dried coarsely crushed products or particles obtained by further pulverizing the coarsely crushed products. The polymer particles obtained by pulverizing the coarsely crushed product may be classified, the particle size of the polymer particles may be adjusted as necessary, and then subjected to surface cross-linking.
単量体水溶液におけるエチレン性不飽和単量体の濃度は、単量体水溶液の質量を基準として、20質量%以上飽和濃度以下、25~70質量%、又は30~50質量%であってもよい。
The concentration of the ethylenically unsaturated monomer in the aqueous monomer solution may be 20% by mass or more and less than the saturated concentration, 25 to 70% by mass, or 30 to 50% by mass based on the mass of the aqueous monomer solution. Good.
単量体水溶液は、重合開始剤を更に含有してもいてもよい。重合開始剤は、光重合開始剤又は熱ラジカル重合開始剤であってもよく、水溶性の熱ラジカル重合開始剤であってもよい。熱ラジカル重合性化合物が、アゾ化合物、過酸化物又はこれらの組み合わせであってもよい。重合開始剤の量は、エチレン性不飽和単量体1モルに対して0.00005~0.01モルであってもよい。
The monomer aqueous solution may further contain a polymerization initiator. The polymerization initiator may be a photopolymerization initiator or a thermal radical polymerization initiator, or may be a water-soluble thermal radical polymerization initiator. The thermally radically polymerizable compound may be an azo compound, a peroxide, or a combination thereof. The amount of the polymerization initiator may be 0.00005 to 0.01 mol per 1 mol of the ethylenically unsaturated monomer.
単量体水溶液が、上述の内部架橋剤を更に含有してもよい。内部架橋剤の量は、エチレン性不飽和単量体1モルに対して、0ミリモル以上、0.001ミリモル以上、0.01ミリモル以上、0.015ミリモル以上、又は0.020ミリモル以上であってもよく、2ミリモル以下、1ミリモル以下、0.5ミリモル以下、又は0.1ミリモル以下であってもよい。単量体水溶液は、必要に応じて、連鎖移動剤、増粘剤等のその他の添加剤を更に含有してもよい。
The monomer aqueous solution may further contain the above-mentioned internal cross-linking agent. The amount of the internal cross-linking agent is 0 mmol or more, 0.001 mmol or more, 0.01 mmol or more, 0.015 mmol or more, or 0.020 mmol or more with respect to 1 mol of the ethylenically unsaturated monomer. It may be 2 mmol or less, 1 mmol or less, 0.5 mmol or less, or 0.1 mmol or less. If necessary, the aqueous monomer solution may further contain other additives such as a chain transfer agent and a thickener.
重合温度は、使用する重合開始剤によって異なるが、例えば、0~130℃、10~110℃であってもよい。重合時間は、1~200分、又は5~100分であってもよい。
The polymerization temperature varies depending on the polymerization initiator used, but may be, for example, 0 to 130 ° C. or 10 to 110 ° C. The polymerization time may be 1 to 200 minutes or 5 to 100 minutes.
重合によって形成される含水ゲル状重合体の含水率(含水ゲル状重合体の質量を基準とする水の含有量)は、30~80質量%、40~75質量%、又は50~70質量%であってもよい。
The water content of the hydrogel polymer formed by polymerization (water content based on the mass of the hydrogel polymer) is 30 to 80% by mass, 40 to 75% by mass, or 50 to 70% by mass. May be.
塊状の含水ゲル状重合体を粗砕する場合、粗砕により得られる粗砕物は、粒子状であってよく、粒子が連なったような細長い形状であってもよい。粗砕物の最小幅は、例えば、0.1~15mm、又は1.0~10mm程度であってもよい。粗砕物の最大幅は、0.1~200mm、又は1.0~150mm程度であってもよい。粗砕のための装置の例としては、ニーダー(例えば、加圧式ニーダー、双腕型ニーダー等)、ミートチョッパー、カッターミル、ファーマミルが挙げられる。塊状の含水ゲル状重合体を、必要により粗砕前に裁断してもよい。
When a lumpy hydrogel polymer is coarsely crushed, the coarsely crushed product obtained by the coarse crushing may be in the form of particles or may have an elongated shape such that particles are connected. The minimum width of the pyroclastic material may be, for example, about 0.1 to 15 mm or 1.0 to 10 mm. The maximum width of the pyroclastic material may be about 0.1 to 200 mm or 1.0 to 150 mm. Examples of devices for crushing include kneaders (eg, pressurized kneaders, double-armed kneaders, etc.), meat choppers, cutter mills, and pharmacomills. If necessary, the lumpy hydrogel polymer may be cut before coarse crushing.
含水ゲル状重合体又はその粗砕物は、主に水を除去するために、乾燥される。乾燥の方法は、自然乾燥、加熱乾燥、減圧乾燥等の一般的な方法であってよい。乾燥後の含水ゲル状重合体又はその粗砕物を更に粉砕し、得られる粒子を必要により分級することによって、適度な粒径を有する重合体粒子を得ることができる。粉砕の方法は特に限定されず、例えば、ローラーミル(ロールミル)、スタンプミル、ジェットミル、高速回転粉砕機(ハンマーミル、ピンミル、ロータビータミル等)、又は容器駆動型ミル(回転ミル、振動ミル、遊星ミル等)を使用する方法が適用できる。分級の方法も特に限定されず、例えば、振動篩、ロータリシフタ、円筒撹拌篩、ブロワシフタ、又はロータップ式振とう器を使用する方法が適用できる。
The hydrogel polymer or its crude product is dried mainly to remove water. The drying method may be a general method such as natural drying, heat drying, and vacuum drying. By further pulverizing the dried hydrogel polymer or a crude product thereof and classifying the obtained particles as necessary, polymer particles having an appropriate particle size can be obtained. The crushing method is not particularly limited, and for example, a roller mill (roll mill), a stamp mill, a jet mill, a high-speed rotary crusher (hammer mill, pin mill, rotor beater mill, etc.), or a container-driven mill (rotary mill, vibration mill, etc.). , Planet mill, etc.) can be applied. The classification method is also not particularly limited, and for example, a method using a vibrating sieve, a rotary shifter, a cylindrical stirring sieve, a blower shifter, or a low-tap type shaker can be applied.
逆相懸濁重合法の場合、例えば、炭化水素分散媒と、炭化水素分散媒中に分散した、エチレン性不飽和単量体、ラジカル重合開始剤及び水等を含む単量体水溶液と、界面活性剤とを含有する懸濁液中で、エチレン性不飽和単量体を重合し、それによって重合体を含む粒子状の含水ゲル状重合体を形成することと、懸濁液から炭化水素分散媒及び水を除去することとを含む方法によって、表面架橋に供される重合体粒子を得ることができる。
In the case of the reverse phase suspension polymerization method, for example, an interface between a hydrocarbon dispersion medium and a monomer aqueous solution containing an ethylenically unsaturated monomer, a radical polymerization initiator, water, etc. dispersed in the hydrocarbon dispersion medium. In a suspension containing an activator, an ethylenically unsaturated monomer is polymerized to form a particulate hydrogel polymer containing the polymer, and hydrocarbon dispersion from the suspension. Polymer particles to be subjected to surface cross-linking can be obtained by methods including removing the medium and water.
炭化水素分散媒は、炭素数6~8の鎖状脂肪族炭化水素、及び、炭素数6~8の脂環式炭化水素からなる群より選ばれる少なくとも1種の化合物を含んでいてもよい。炭化水素分散媒としては、n-ヘキサン、n-ヘプタン、2-メチルヘキサン、3-メチルヘキサン、2,3-ジメチルペンタン、3-エチルペンタン、n-オクタン等の鎖状脂肪族炭化水素;シクロヘキサン、メチルシクロヘキサン、シクロペンタン、メチルシクロペンタン、trans-1,2-ジメチルシクロペンタン、cis-1,3-ジメチルシクロペンタン、trans-1,3-ジメチルシクロペンタン等の脂環式炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素などが挙げられる。炭化水素分散媒は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。炭化水素分散媒の量は、単量体を含む単量体水溶液100質量部に対して、30~1000質量部、40~500質量部、又は50~300質量部であってもよい。
The hydrocarbon dispersion medium may contain at least one compound selected from the group consisting of chain aliphatic hydrocarbons having 6 to 8 carbon atoms and alicyclic hydrocarbons having 6 to 8 carbon atoms. Hydrocarbon dispersion media include chain aliphatic hydrocarbons such as n-hexane, n-heptane, 2-methylhexane, 3-methylhexane, 2,3-dimethylpentane, 3-ethylpentane, and n-octane; cyclohexane. , Methylcyclohexane, cyclopentane, methylcyclopentane, trans-1,2-dimethylcyclopentane, cis-1,3-dimethylcyclopentane, trans-1,3-dimethylcyclopentane and other alicyclic hydrocarbons; benzene, Examples include aromatic hydrocarbons such as toluene and xylene. The hydrocarbon dispersion medium may be used alone or in combination of two or more. The amount of the hydrocarbon dispersion medium may be 30 to 1000 parts by mass, 40 to 500 parts by mass, or 50 to 300 parts by mass with respect to 100 parts by mass of the aqueous monomer solution containing the monomer.
熱ラジカル重合開始剤の例としては、過硫酸塩、過酸化物、及びアゾ化合物が挙げられる。ラジカル重合開始剤の量は、エチレン性不飽和単量体1モルに対して0.00005~0.01モルであってもよい。
Examples of thermal radical polymerization initiators include persulfates, peroxides, and azo compounds. The amount of the radical polymerization initiator may be 0.00005 to 0.01 mol per 1 mol of the ethylenically unsaturated monomer.
逆相懸濁重合のための懸濁液が、上述の内部架橋剤を更に含有してもよい。内部架橋剤は、通常、エチレン系不飽和単量体を含む単量体水溶液に添加される。内部架橋剤の量は、エチレン性不飽和単量体1モルに対して、0ミリモル以上、0.001ミリモル以上、0.01ミリモル以上、0.015ミリモル以上、又は0.020ミリモル以上であってもよく、2ミリモル以下、1ミリモル以下、0.5ミリモル以下、又は0.1ミリモル以下であってもよい。
The suspension for reverse phase suspension polymerization may further contain the above-mentioned internal cross-linking agent. The internal cross-linking agent is usually added to a monomer aqueous solution containing an ethylene-based unsaturated monomer. The amount of the internal cross-linking agent is 0 mmol or more, 0.001 mmol or more, 0.01 mmol or more, 0.015 mmol or more, or 0.020 mmol or more with respect to 1 mol of the ethylenically unsaturated monomer. It may be 2 mmol or less, 1 mmol or less, 0.5 mmol or less, or 0.1 mmol or less.
逆相懸濁重合のための懸濁液は、通常、界面活性剤を更に含有する。界面活性剤は、ノニオン系界面活性剤、アニオン系界面活性剤等であってよい。ノニオン系界面活性剤の例としては、ソルビタン脂肪酸エステル、(ポリ)グリセリン脂肪酸エステル(「(ポリ)」とは、「ポリ」の接頭語がある場合及びない場合の双方を意味するものとする。以下同じ。)、ショ糖脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレングリセリン脂肪酸エステル、ソルビトール脂肪酸エステル、ポリオキシエチレンソルビトール脂肪酸エステル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンヒマシ油、ポリオキシエチレン硬化ヒマシ油、アルキルアリルホルムアルデヒド縮合ポリオキシエチレンエーテル、ポリオキシエチレンポリオキシプロピレンブロックコポリマー、ポリオキシエチレンポリオキシプロピルアルキルエーテル、ポリエチレングリコール脂肪酸エステル等が挙げられる。アニオン系界面活性剤の例としては、脂肪酸塩、アルキルベンゼンスルホン酸塩、アルキルメチルタウリン酸塩、ポリオキシエチレンアルキルフェニルエーテル硫酸エステル塩、ポリオキシエチレンアルキルエーテルスルホン酸塩、ポリオキシエチレンアルキルエーテルのリン酸エステル、及びポリオキシエチレンアルキルアリルエーテルのリン酸エステル等が挙げられる。界面活性剤は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。界面活性剤の量は、単量体水溶液100質量部に対して、0.05~10質量部、0.08~5質量部、又は0.1~3質量部であってもよい。
Suspensions for reverse phase suspension polymerization usually further contain a surfactant. The surfactant may be a nonionic surfactant, an anionic surfactant or the like. Examples of nonionic surfactants include sorbitan fatty acid ester and (poly) glycerin fatty acid ester (“(poly)” means both with and without the prefix “poly”. The same applies hereinafter.), Sucrose fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene glycerin fatty acid ester, sorbitol fatty acid ester, polyoxyethylene sorbitol fatty acid ester, polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxy. Examples thereof include ethylene castor oil, polyoxyethylene cured castor oil, alkylallyl formaldehyde condensed polyoxyethylene ether, polyoxyethylene polyoxypropylene block copolymer, polyoxyethylene polyoxypropyl alkyl ether, polyethylene glycol fatty acid ester and the like. Examples of anionic surfactants include fatty acid salts, alkylbenzene sulfonates, alkylmethyl taur phosphates, polyoxyethylene alkylphenyl ether sulfates, polyoxyethylene alkyl ether sulfonates, and phosphorus in polyoxyethylene alkyl ethers. Examples thereof include acid esters and phosphoric acid esters of polyoxyethylene alkyl allyl ethers. The surfactant may be used alone or in combination of two or more. The amount of the surfactant may be 0.05 to 10 parts by mass, 0.08 to 5 parts by mass, or 0.1 to 3 parts by mass with respect to 100 parts by mass of the aqueous monomer solution.
逆相懸濁重合のための懸濁液は、高分子系分残剤を更に含有してもよい。高分子系分散剤の例としては、無水マレイン酸変性ポリエチレン、無水マレイン酸変性ポリプロピレン、無水マレイン酸変性エチレン・プロピレン共重合体、無水マレイン酸変性EPDM(エチレン・プロピレン・ジエン・ターポリマー)、無水マレイン酸変性ポリブタジエン、無水マレイン酸・エチレン共重合体、無水マレイン酸・プロピレン共重合体、無水マレイン酸・エチレン・プロピレン共重合体、無水マレイン酸・ブタジエン共重合体、ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体、酸化型ポリエチレン、酸化型ポリプロピレン、酸化型エチレン・プロピレン共重合体、エチレン・アクリル酸共重合体、エチルセルロース、エチルヒドロキシエチルセルロース等が挙げられる。高分子系分散剤は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。高分子系分散剤の量は、単量体水溶液100質量部に対して、0.05~10質量部、0.08~5質量部、又は0.1~3質量部であってもよい。
The suspension for reverse phase suspension polymerization may further contain a polymer-based residual agent. Examples of polymer dispersants include maleic anhydride-modified polyethylene, maleic anhydride-modified polypropylene, maleic anhydride-modified ethylene / propylene copolymer, maleic anhydride-modified EPDM (ethylene / propylene / diene / terpolymer), and anhydrous. Maleic acid-modified polybutadiene, maleic anhydride / ethylene copolymer, maleic anhydride / propylene copolymer, maleic anhydride / ethylene / propylene copolymer, maleic anhydride / butadiene copolymer, polyethylene, polypropylene, ethylene / propylene Examples thereof include copolymers, oxidized polyethylene, oxidized polypropylene, oxidized ethylene / propylene copolymers, ethylene / acrylic acid copolymers, ethyl cellulose, ethyl hydroxyethyl cellulose and the like. The polymer-based dispersant may be used alone or in combination of two or more. The amount of the polymer-based dispersant may be 0.05 to 10 parts by mass, 0.08 to 5 parts by mass, or 0.1 to 3 parts by mass with respect to 100 parts by mass of the aqueous monomer solution.
逆相懸濁重合のための懸濁液は、必要により、連鎖移動剤、増粘剤等のその他の成分を含有してもよい。重合反応の温度は、使用するラジカル重合開始剤によって異なるが、例えば20~150℃、又は40~120℃であってもよい。反応時間は、通常、0.5~4時間である。逆相懸濁重合を、複数回に分けて行ってもよい。
The suspension for reverse phase suspension polymerization may contain other components such as a chain transfer agent and a thickener, if necessary. The temperature of the polymerization reaction varies depending on the radical polymerization initiator used, but may be, for example, 20 to 150 ° C. or 40 to 120 ° C. The reaction time is usually 0.5-4 hours. The reverse phase suspension polymerization may be carried out in a plurality of times.
含水ゲル状重合体及び炭化水素分散媒を含む懸濁液から炭化水素分散媒及び水を除去することによって、表面架橋前の重合体粒子を得ることができる。例えば、共沸蒸留、デカンテーション、濾過、減圧乾燥、又はこれらの組み合わせによって、炭化水素分散媒及び水を除去することができる。表面架橋前の重合体粒子中に、水、炭化水素分散媒又はこれらの両方がある程度残存していてもよい。
By removing the hydrocarbon dispersion medium and water from the suspension containing the hydrogel polymer and the hydrocarbon dispersion medium, the polymer particles before surface cross-linking can be obtained. For example, azeotropic distillation, decantation, filtration, vacuum drying, or a combination thereof can remove the hydrocarbon dispersion medium and water. Water, hydrocarbon dispersion medium, or both may remain to some extent in the polymer particles before surface cross-linking.
表面架橋後の重合体粒子から、必要により水及び炭化水素分散媒が除去される。表面架橋後の重合体粒子を、乾燥、粉砕、分級又はこれらの組み合わせによって更に処理してもよい。
Water and hydrocarbon dispersion medium are removed from the polymer particles after surface cross-linking, if necessary. The polymer particles after surface cross-linking may be further treated by drying, grinding, classification or a combination thereof.
吸水性樹脂粒子を製造する方法は、表面架橋後、重合体粒子の表面に上述の無機粒子を付着させる工程を更に含んでいてもよい。
The method for producing the water-absorbent resin particles may further include a step of adhering the above-mentioned inorganic particles to the surface of the polymer particles after surface cross-linking.
(吸収性物品)
図1は、吸収性物品の一例を示す断面図である。図1に示す吸収性物品100は、シート状の吸収体10と、コアラップ20a,20bと、液体透過性シート30と、液体不透過性シート40と、を備える。吸収性物品100において、液体不透過性シート40、コアラップ20b、吸収体10、コアラップ20a、及び、液体透過性シート30がこの順に積層している。図1において、部材間に間隙があるように図示されている部分があるが、当該間隙が存在することなく部材間が密着していてよい。 (Absorbent article)
FIG. 1 is a cross-sectional view showing an example of an absorbent article. Theabsorbent article 100 shown in FIG. 1 includes a sheet-shaped absorbent body 10, core wraps 20a and 20b, a liquid permeable sheet 30, and a liquid permeable sheet 40. In the absorbent article 100, the liquid permeable sheet 40, the core wrap 20b, the absorbent body 10, the core wrap 20a, and the liquid permeable sheet 30 are laminated in this order. In FIG. 1, there is a portion shown so that there is a gap between the members, but the members may be in close contact with each other without the gap.
図1は、吸収性物品の一例を示す断面図である。図1に示す吸収性物品100は、シート状の吸収体10と、コアラップ20a,20bと、液体透過性シート30と、液体不透過性シート40と、を備える。吸収性物品100において、液体不透過性シート40、コアラップ20b、吸収体10、コアラップ20a、及び、液体透過性シート30がこの順に積層している。図1において、部材間に間隙があるように図示されている部分があるが、当該間隙が存在することなく部材間が密着していてよい。 (Absorbent article)
FIG. 1 is a cross-sectional view showing an example of an absorbent article. The
吸収体10は、上述の実施形態に係る吸水性樹脂粒子10aと、繊維状物を含む繊維層10bと、を有する。吸水性樹脂粒子10aは、繊維層10b内に分散している。
The absorber 10 has the water-absorbent resin particles 10a according to the above-described embodiment and the fiber layer 10b containing a fibrous material. The water-absorbent resin particles 10a are dispersed in the fiber layer 10b.
コアラップ20aは、吸収体10に接した状態で吸収体10の一方面側(図1中、吸収体10の上側)に配置されている。コアラップ20bは、吸収体10に接した状態で吸収体10の他方面側(図1中、吸収体10の下側)に配置されている。吸収体10は、コアラップ20aとコアラップ20bとの間に配置されている。コアラップ20a,20bとしては、ティッシュ、不織布等が挙げられる。コアラップ20a及びコアラップ20bは、例えば、吸収体10と同等の大きさの主面を有している。
The core wrap 20a is arranged on one side of the absorber 10 (upper side of the absorber 10 in FIG. 1) in contact with the absorber 10. The core wrap 20b is arranged on the other side of the absorber 10 (lower side of the absorber 10 in FIG. 1) in contact with the absorber 10. The absorber 10 is arranged between the core wrap 20a and the core wrap 20b. Examples of the core wraps 20a and 20b include tissues, non-woven fabrics and the like. The core wrap 20a and the core wrap 20b have, for example, a main surface having the same size as the absorber 10.
液体透過性シート30は、吸収対象の液が浸入する側の最外部に配置されている。液体透過性シート30は、コアラップ20aに接した状態でコアラップ20a上に配置されている。液体透過性シート30としては、ポリエチレン、ポリプロピレン、ポリエステル、ポリアミド等の合成樹脂からなる不織布、多孔質シートなどが挙げられる。液体不透過性シート40は、吸収性物品100において液体透過性シート30とは反対側の最外部に配置されている。液体不透過性シート40は、コアラップ20bに接した状態でコアラップ20bの下側に配置されている。液体不透過性シート40としては、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等の合成樹脂からなるシート、これらの合成樹脂と不織布との複合材料からなるシートなどが挙げられる。液体透過性シート30及び液体不透過性シート40は、例えば、吸収体10の主面よりも広い主面を有しており、液体透過性シート30及び液体不透過性シート40の外縁部は、吸収体10及びコアラップ20a,20bの周囲に延在している。
The liquid permeable sheet 30 is arranged on the outermost side on the side where the liquid to be absorbed enters. The liquid permeable sheet 30 is arranged on the core wrap 20a in contact with the core wrap 20a. Examples of the liquid permeable sheet 30 include non-woven fabrics made of synthetic resins such as polyethylene, polypropylene, polyester and polyamide, and porous sheets. The liquid permeable sheet 40 is arranged on the outermost side of the absorbent article 100 on the opposite side of the liquid permeable sheet 30. The liquid impermeable sheet 40 is arranged under the core wrap 20b in contact with the core wrap 20b. Examples of the liquid impermeable sheet 40 include a sheet made of a synthetic resin such as polyethylene, polypropylene, and polyvinyl chloride, and a sheet made of a composite material of these synthetic resins and a non-woven fabric. The liquid permeable sheet 30 and the liquid permeable sheet 40 have, for example, a main surface wider than the main surface of the absorber 10, and the outer edges of the liquid permeable sheet 30 and the liquid permeable sheet 40 are It extends around the absorber 10 and the core wraps 20a, 20b.
吸収体10、コアラップ20a,20b、液体透過性シート30、及び、液体不透過性シート40の大小関係は、特に限定されず、吸収性物品の用途等に応じて適宜調整される。また、コアラップ20a,20bを用いて吸収体10を保形する方法は、特に限定されず、図1に示すように複数のコアラップにより吸収体を包んでよく、1枚のコアラップにより吸収体を包んでもよい。
The magnitude relationship between the absorbent body 10, the core wraps 20a and 20b, the liquid permeable sheet 30, and the liquid permeable sheet 40 is not particularly limited, and is appropriately adjusted according to the use of the absorbent article and the like. Further, the method of retaining the shape of the absorber 10 using the core wraps 20a and 20b is not particularly limited, and as shown in FIG. 1, the absorber may be wrapped by a plurality of core wraps, and the absorber is wrapped by one core wrap. But it may be.
以下、実施例を挙げて本発明についてさらに具体的に説明する。ただし、本発明はこれら実施例に限定されるものではない。
Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
1.吸水性樹脂粒子
(実施例1)
重合体粒子(表面架橋前)
還流冷却器、滴下ロート、窒素ガス導入管、及び、翼径5cmの4枚傾斜パドル翼を2段有する撹拌翼を備えた内径11cm、容積2Lの丸底円筒型セパラブルフラスコを準備した。このセパラブルフラスコに、n-ヘプタン293g、及び高分子系分散剤として無水マレイン酸変性エチレン・プロピレン共重合体(三井化学株式会社製、ハイワックス1105A)0.736gを入れ、これらを混合した。セパラブルフラスコ内の混合物を撹拌機で撹拌しつつ、80℃まで昇温することにより、分散剤をn-ヘプタンに溶解させた。形成された溶液を50℃まで冷却した。 1. 1. Water-absorbent resin particles (Example 1)
Polymer particles (before surface cross-linking)
A round-bottomed cylindrical separable flask having an inner diameter of 11 cm and a volume of 2 L equipped with a reflux condenser, a dropping funnel, a nitrogen gas introduction pipe, and a stirring blade having two stages of four inclined paddle blades having a blade diameter of 5 cm was prepared. In this separable flask, 293 g of n-heptane and 0.736 g of a maleic anhydride-modified ethylene-propylene copolymer (manufactured by Mitsui Chemicals, Inc., High Wax 1105A) as a polymer-based dispersant were placed and mixed. The dispersant was dissolved in n-heptane by raising the temperature to 80 ° C. while stirring the mixture in the separable flask with a stirrer. The formed solution was cooled to 50 ° C.
(実施例1)
重合体粒子(表面架橋前)
還流冷却器、滴下ロート、窒素ガス導入管、及び、翼径5cmの4枚傾斜パドル翼を2段有する撹拌翼を備えた内径11cm、容積2Lの丸底円筒型セパラブルフラスコを準備した。このセパラブルフラスコに、n-ヘプタン293g、及び高分子系分散剤として無水マレイン酸変性エチレン・プロピレン共重合体(三井化学株式会社製、ハイワックス1105A)0.736gを入れ、これらを混合した。セパラブルフラスコ内の混合物を撹拌機で撹拌しつつ、80℃まで昇温することにより、分散剤をn-ヘプタンに溶解させた。形成された溶液を50℃まで冷却した。 1. 1. Water-absorbent resin particles (Example 1)
Polymer particles (before surface cross-linking)
A round-bottomed cylindrical separable flask having an inner diameter of 11 cm and a volume of 2 L equipped with a reflux condenser, a dropping funnel, a nitrogen gas introduction pipe, and a stirring blade having two stages of four inclined paddle blades having a blade diameter of 5 cm was prepared. In this separable flask, 293 g of n-heptane and 0.736 g of a maleic anhydride-modified ethylene-propylene copolymer (manufactured by Mitsui Chemicals, Inc., High Wax 1105A) as a polymer-based dispersant were placed and mixed. The dispersant was dissolved in n-heptane by raising the temperature to 80 ° C. while stirring the mixture in the separable flask with a stirrer. The formed solution was cooled to 50 ° C.
容量300mLのビーカーに、水溶性エチレン性不飽和単量体として80.5質量%のアクリル酸水溶液92.0g(1.03モル)を入れ、外部より冷却しつつ、20.9質量%の水酸化ナトリウム水溶液147.7gをビーカー内に滴下することにより、75モル%のアクリル酸を中和した。その後、増粘剤としてヒドロキシルエチルセルロース0.092g(住友精化株式会社、HEC AW-15F)、ラジカル重合開始剤として過硫酸カリウム0.0736g(0.272ミリモル)、及び内部架橋剤としてのエチレングリコールジグリシジルエーテル0.010g(0.057ミリモル)を加えてこれらを溶解することにより、第1段目の単量体水溶液を調製した。
In a beaker with a capacity of 300 mL, 92.0 g (1.03 mol) of an 80.5 mass% acrylic acid aqueous solution as a water-soluble ethylenically unsaturated monomer was placed, and 20.9 mass% of water was cooled from the outside. 75 mol% of acrylic acid was neutralized by dropping 147.7 g of an aqueous sodium oxide solution into a beaker. Then, 0.092 g of hydroxylethyl cellulose (Sumitomo Seika Co., Ltd., HEC AW-15F) as a thickener, 0.0736 g (0.272 mmol) of potassium persulfate as a radical polymerization initiator, and ethylene glycol as an internal cross-linking agent. By adding 0.010 g (0.057 mmol) of diglycidyl ether and dissolving them, the first-stage monomer aqueous solution was prepared.
第1段目の単量体水溶液を、上記セパラブルフラスコ内の分散剤を含むn-ヘプタン溶液に添加し、形成された反応液を10分間撹拌した。そこに、n-ヘプタン6.62gに界面活性剤であるショ糖ステアリン酸エステル(三菱化学フーズ株式会社、リョートーシュガーエステルS-370、HLB:3)0.736gが溶解した界面活性剤溶液を更に加え、撹拌機の回転数を550rpmとして反応液を撹拌しながら系内を窒素で十分に置換した。その後、セパラブルフラスコを70℃の水浴に浸漬して反応液を昇温し、60分間重合反応を進行させることにより、第1段目の重合スラリー液を得た。
The first-stage monomer aqueous solution was added to the n-heptane solution containing the dispersant in the separable flask, and the formed reaction solution was stirred for 10 minutes. A surfactant solution in which 0.736 g of sucrose stearic acid ester (Mitsubishi Chemical Foods Co., Ltd., Ryoto Sugar Ester S-370, HLB: 3), which is a surfactant, is dissolved in 6.62 g of n-heptane is dissolved therein. Further, the inside of the system was sufficiently replaced with nitrogen while stirring the reaction solution at a rotation speed of the stirrer of 550 rpm. Then, the separable flask was immersed in a water bath at 70 ° C. to raise the temperature of the reaction solution, and the polymerization reaction was allowed to proceed for 60 minutes to obtain a first-stage polymerized slurry solution.
別の容量500mLのビーカーに、濃度80.5質量%のアクリル酸水溶液128.8g(1.44モル)を入れた。そこに、外部より冷却しつつ、濃度27質量%の水酸化ナトリウム水溶液159.0gを滴下することにより、75モル%のアクリル酸を中和した。中和後のアクリル酸水溶液に、ラジカル重合開始剤として過硫酸カリウム0.103g(0.381ミリモル)と、内部架橋剤としてエチレングリコールジグリシジルエーテル0.0116g(0.067ミリモル)とを加えてこれらを溶解することにより、第2段目の単量体水溶液を調製した。
128.8 g (1.44 mol) of an acrylic acid aqueous solution having a concentration of 80.5 mass% was placed in another beaker having a capacity of 500 mL. 75 mol% of acrylic acid was neutralized by dropping 159.0 g of a sodium hydroxide aqueous solution having a concentration of 27% by mass while cooling from the outside. To the neutralized acrylic acid aqueous solution, 0.103 g (0.381 mmol) of potassium persulfate as a radical polymerization initiator and 0.0116 g (0.067 mmol) of ethylene glycol diglycidyl ether as an internal cross-linking agent were added. By dissolving these, a second-stage monomer aqueous solution was prepared.
セパラブルフラスコ内の第1段目の重合スラリー液を、撹拌機の回転数を1000rpmとして撹拌しながら25℃に冷却し、そこに第2段目の単量体水溶液の全量を加えた。セパラブルフラスコ内を窒素で30分間置換した後、再度、セパラブルフラスコを70℃の水浴に浸漬して反応液を昇温し、60分の第2段目の重合反応により、含水ゲル状重合体を得た。
The first-stage polymerized slurry solution in the separable flask was cooled to 25 ° C. while stirring at a stirring speed of 1000 rpm, and the entire amount of the second-stage monomer aqueous solution was added thereto. After replacing the inside of the separable flask with nitrogen for 30 minutes, the separable flask is immersed again in a water bath at 70 ° C. to raise the temperature of the reaction solution, and the second-stage polymerization reaction for 60 minutes causes a hydrogel-like weight. I got a coalescence.
第2段目の重合後の含水ゲル状重合体に、45質量%のジエチレントリアミン5酢酸5ナトリウム水溶液0.589gを撹拌下で添加した。その後、セパラブルフラスコを125℃に設定した油浴に浸漬し、n-ヘプタンと水を共沸蒸留させ還流脱水を行うことにより234.2gの水を系外へ抜き出した。続いて、125℃での乾燥によりn-ヘプタン及び水を更に除去して、重合体粒子の乾燥品を得た。
0.589 g of a 45% by mass diethylenetriamine-5 sodium acetate aqueous solution was added to the hydrogel polymer after the second stage polymerization under stirring. Then, the separable flask was immersed in an oil bath set at 125 ° C., and 234.2 g of water was extracted from the system by azeotropic distillation of n-heptane and water and reflux dehydration. Subsequently, n-heptane and water were further removed by drying at 125 ° C. to obtain a dried product of the polymer particles.
以上の操作を再度行って、重合体粒子の乾燥品を得た。これを1回目に得られた重合体粒子と混ぜ合わせ、全ての重合体粒子に目開き850μmの篩を通過させた。篩を通過後、回収された重合体粒子の量は505.2gであり、その中位粒子径は352μmであった。得られた重合体粒子を、吸水性樹脂粒子を得るための表面架橋に供した。
The above operation was performed again to obtain a dried product of polymer particles. This was mixed with the polymer particles obtained for the first time, and all the polymer particles were passed through a sieve having an opening of 850 μm. After passing through the sieve, the amount of polymer particles recovered was 505.2 g, and the medium particle size thereof was 352 μm. The obtained polymer particles were subjected to surface cross-linking to obtain water-absorbent resin particles.
表面架橋
重合体粒子30gを、フッ素樹脂製の碇型撹拌翼を備えた内径11cmの丸底円筒型セパラブルフラスコに入れた。セパラブルフラスコ内の重合体粒子を300rpmで撹拌しながら、そこに表面架橋剤としてのエチレンカーボネート0.75g(8.517ミリモル)と水0.75gとの混合物である表面架橋剤水溶液を、パスツールピペットによって滴下した。その後、セパラブルフラスコを200℃に設定した油浴に浸漬し、反応混合物を攪拌しながら40分間加熱することにより、エチレンカーボネートによる表面架橋反応を進行させた。 30 g of surface-crosslinked polymer particles were placed in a round-bottomed cylindrical separable flask having an inner diameter of 11 cm equipped with a fluororesin-made anchor-shaped stirring blade. While stirring the polymer particles in the separable flask at 300 rpm, a surface cross-linking agent aqueous solution, which is a mixture of 0.75 g (8.517 mmol) of ethylene carbonate as a surface cross-linking agent and 0.75 g of water, is passed therethrough. Dropped with a tool pipette. Then, the separable flask was immersed in an oil bath set at 200 ° C., and the reaction mixture was heated for 40 minutes with stirring to proceed the surface cross-linking reaction with ethylene carbonate.
重合体粒子30gを、フッ素樹脂製の碇型撹拌翼を備えた内径11cmの丸底円筒型セパラブルフラスコに入れた。セパラブルフラスコ内の重合体粒子を300rpmで撹拌しながら、そこに表面架橋剤としてのエチレンカーボネート0.75g(8.517ミリモル)と水0.75gとの混合物である表面架橋剤水溶液を、パスツールピペットによって滴下した。その後、セパラブルフラスコを200℃に設定した油浴に浸漬し、反応混合物を攪拌しながら40分間加熱することにより、エチレンカーボネートによる表面架橋反応を進行させた。 30 g of surface-crosslinked polymer particles were placed in a round-bottomed cylindrical separable flask having an inner diameter of 11 cm equipped with a fluororesin-made anchor-shaped stirring blade. While stirring the polymer particles in the separable flask at 300 rpm, a surface cross-linking agent aqueous solution, which is a mixture of 0.75 g (8.517 mmol) of ethylene carbonate as a surface cross-linking agent and 0.75 g of water, is passed therethrough. Dropped with a tool pipette. Then, the separable flask was immersed in an oil bath set at 200 ° C., and the reaction mixture was heated for 40 minutes with stirring to proceed the surface cross-linking reaction with ethylene carbonate.
分級及びシリカ添加
反応混合物を室温まで冷却した後、重合体粒子に目開き850μmの篩を通過させ、重合体粒子を得た。この重合体粒子の質量に対して0.1質量%の非晶質シリカ(オリエンタルシリカズコーポレーション、トクシールNP-S)を重合体粒子と混合し、非晶質シリカを含む吸水性樹脂粒子を得た。 After the classification and silica addition reaction mixture was cooled to room temperature, the polymer particles were passed through a sieve having an opening of 850 μm to obtain polymer particles. Amorphous silica (Oriental Silicas Corporation, Toxile NP-S) in an amount of 0.1% by mass based on the mass of the polymer particles is mixed with the polymer particles to obtain water-absorbent resin particles containing the amorphous silica. It was.
反応混合物を室温まで冷却した後、重合体粒子に目開き850μmの篩を通過させ、重合体粒子を得た。この重合体粒子の質量に対して0.1質量%の非晶質シリカ(オリエンタルシリカズコーポレーション、トクシールNP-S)を重合体粒子と混合し、非晶質シリカを含む吸水性樹脂粒子を得た。 After the classification and silica addition reaction mixture was cooled to room temperature, the polymer particles were passed through a sieve having an opening of 850 μm to obtain polymer particles. Amorphous silica (Oriental Silicas Corporation, Toxile NP-S) in an amount of 0.1% by mass based on the mass of the polymer particles is mixed with the polymer particles to obtain water-absorbent resin particles containing the amorphous silica. It was.
(実施例2)
表面架橋剤水溶液を、エチレンカーボネート0.30g(3.407ミリモル)と水0.30gとの混合物に変更したこと以外は実施例1と同様にして、吸水性樹脂粒子を得た。 (Example 2)
Water-absorbent resin particles were obtained in the same manner as in Example 1 except that the aqueous surface cross-linking agent was changed to a mixture of 0.30 g (3.407 mmol) of ethylene carbonate and 0.30 g of water.
表面架橋剤水溶液を、エチレンカーボネート0.30g(3.407ミリモル)と水0.30gとの混合物に変更したこと以外は実施例1と同様にして、吸水性樹脂粒子を得た。 (Example 2)
Water-absorbent resin particles were obtained in the same manner as in Example 1 except that the aqueous surface cross-linking agent was changed to a mixture of 0.30 g (3.407 mmol) of ethylene carbonate and 0.30 g of water.
(実施例3)
表面架橋剤水溶液を、エチレンカーボネート0.45g(5.110ミリモル)と水1.80gとの混合物に変更したこと以外は実施例1と同様にして、吸水性樹脂粒子を得た。 (Example 3)
Water-absorbent resin particles were obtained in the same manner as in Example 1 except that the aqueous surface cross-linking agent was changed to a mixture of 0.45 g (5.110 mmol) of ethylene carbonate and 1.80 g of water.
表面架橋剤水溶液を、エチレンカーボネート0.45g(5.110ミリモル)と水1.80gとの混合物に変更したこと以外は実施例1と同様にして、吸水性樹脂粒子を得た。 (Example 3)
Water-absorbent resin particles were obtained in the same manner as in Example 1 except that the aqueous surface cross-linking agent was changed to a mixture of 0.45 g (5.110 mmol) of ethylene carbonate and 1.80 g of water.
(実施例4)
表面架橋剤水溶液を、エチレンカーボネート0.30g(3.407ミリモル)と水1.20gとの混合物に変更したこと以外は実施例1と同様にして、吸水性樹脂粒子を得た。 (Example 4)
Water-absorbent resin particles were obtained in the same manner as in Example 1 except that the aqueous surface cross-linking agent was changed to a mixture of 0.30 g (3.407 mmol) of ethylene carbonate and 1.20 g of water.
表面架橋剤水溶液を、エチレンカーボネート0.30g(3.407ミリモル)と水1.20gとの混合物に変更したこと以外は実施例1と同様にして、吸水性樹脂粒子を得た。 (Example 4)
Water-absorbent resin particles were obtained in the same manner as in Example 1 except that the aqueous surface cross-linking agent was changed to a mixture of 0.30 g (3.407 mmol) of ethylene carbonate and 1.20 g of water.
(実施例5)
表面架橋剤水溶液を、エチレンカーボネート0.21g(2.385ミリモル)と水1.89gとの混合物に変更したこと以外は実施例1と同様にして、吸水性樹脂粒子を得た。 (Example 5)
Water-absorbent resin particles were obtained in the same manner as in Example 1 except that the aqueous surface cross-linking agent was changed to a mixture of 0.21 g (2.385 mmol) of ethylene carbonate and 1.89 g of water.
表面架橋剤水溶液を、エチレンカーボネート0.21g(2.385ミリモル)と水1.89gとの混合物に変更したこと以外は実施例1と同様にして、吸水性樹脂粒子を得た。 (Example 5)
Water-absorbent resin particles were obtained in the same manner as in Example 1 except that the aqueous surface cross-linking agent was changed to a mixture of 0.21 g (2.385 mmol) of ethylene carbonate and 1.89 g of water.
(実施例6)
表面架橋剤水溶液を、エチレンカーボネート0.30g(3.407ミリモル)と水2.70gとの混合物に変更したこと以外は実施例1と同様にして、吸水性樹脂粒子を得た。 (Example 6)
Water-absorbent resin particles were obtained in the same manner as in Example 1 except that the aqueous surface cross-linking agent was changed to a mixture of 0.30 g (3.407 mmol) of ethylene carbonate and 2.70 g of water.
表面架橋剤水溶液を、エチレンカーボネート0.30g(3.407ミリモル)と水2.70gとの混合物に変更したこと以外は実施例1と同様にして、吸水性樹脂粒子を得た。 (Example 6)
Water-absorbent resin particles were obtained in the same manner as in Example 1 except that the aqueous surface cross-linking agent was changed to a mixture of 0.30 g (3.407 mmol) of ethylene carbonate and 2.70 g of water.
(実施例7)
表面架橋剤水溶液を、エチレンカーボネート0.18g(2.044ミリモル)と水3.42gとの混合物に変更したこと以外は実施例1と同様にして、吸水性樹脂粒子を得た。 (Example 7)
Water-absorbent resin particles were obtained in the same manner as in Example 1 except that the aqueous surface cross-linking agent was changed to a mixture of 0.18 g (2.044 mmol) of ethylene carbonate and 3.42 g of water.
表面架橋剤水溶液を、エチレンカーボネート0.18g(2.044ミリモル)と水3.42gとの混合物に変更したこと以外は実施例1と同様にして、吸水性樹脂粒子を得た。 (Example 7)
Water-absorbent resin particles were obtained in the same manner as in Example 1 except that the aqueous surface cross-linking agent was changed to a mixture of 0.18 g (2.044 mmol) of ethylene carbonate and 3.42 g of water.
(実施例8)
表面架橋剤水溶液を、エチレンカーボネート0.15g(1.703ミリモル)と水2.85gとの混合物に変更したこと以外は実施例1と同様にして、吸水性樹脂粒子を得た。 (Example 8)
Water-absorbent resin particles were obtained in the same manner as in Example 1 except that the aqueous surface cross-linking agent was changed to a mixture of 0.15 g (1.703 mmol) of ethylene carbonate and 2.85 g of water.
表面架橋剤水溶液を、エチレンカーボネート0.15g(1.703ミリモル)と水2.85gとの混合物に変更したこと以外は実施例1と同様にして、吸水性樹脂粒子を得た。 (Example 8)
Water-absorbent resin particles were obtained in the same manner as in Example 1 except that the aqueous surface cross-linking agent was changed to a mixture of 0.15 g (1.703 mmol) of ethylene carbonate and 2.85 g of water.
(比較例1)
表面架橋剤水溶液を、エチレンカーボネート0.15g(1.703ミリモル)と水7.35gとの混合物に変更したこと以外は実施例1と同様にして、吸水性樹脂粒子を得た。 (Comparative Example 1)
Water-absorbent resin particles were obtained in the same manner as in Example 1 except that the aqueous surface cross-linking agent was changed to a mixture of 0.15 g (1.703 mmol) of ethylene carbonate and 7.35 g of water.
表面架橋剤水溶液を、エチレンカーボネート0.15g(1.703ミリモル)と水7.35gとの混合物に変更したこと以外は実施例1と同様にして、吸水性樹脂粒子を得た。 (Comparative Example 1)
Water-absorbent resin particles were obtained in the same manner as in Example 1 except that the aqueous surface cross-linking agent was changed to a mixture of 0.15 g (1.703 mmol) of ethylene carbonate and 7.35 g of water.
(比較例2)
表面架橋剤水溶液を、エチレンカーボネート0.12g(1.363ミリモル)と水5.88gとの混合物に変更したこと以外は実施例1と同様にして、吸水性樹脂粒子を得た。 (Comparative Example 2)
Water-absorbent resin particles were obtained in the same manner as in Example 1 except that the aqueous surface cross-linking agent was changed to a mixture of 0.12 g (1.363 mmol) of ethylene carbonate and 5.88 g of water.
表面架橋剤水溶液を、エチレンカーボネート0.12g(1.363ミリモル)と水5.88gとの混合物に変更したこと以外は実施例1と同様にして、吸水性樹脂粒子を得た。 (Comparative Example 2)
Water-absorbent resin particles were obtained in the same manner as in Example 1 except that the aqueous surface cross-linking agent was changed to a mixture of 0.12 g (1.363 mmol) of ethylene carbonate and 5.88 g of water.
(比較例3)
第2段目の水溶液の全量を加える際に温度を31℃に変更したこと以外は、実施例1と同様の第1段目及び第2段目の重合反応により、含水ゲル状重合体を得た。得られた含水ゲル状重合体に、45質量%のジエチレントリアミン5酢酸5ナトリウム水溶液0.589gを撹拌下で添加した。その後、セパラブルフラスコを125℃に設定した油浴に浸漬し、n-ヘプタンと水との共沸蒸留により275.8gの水を系外へ抜き出した。セパラブルフラスコ内の水分を含む重合体粒子の質量は、257.2gであった。 (Comparative Example 3)
A hydrogel-like polymer was obtained by the same first-stage and second-stage polymerization reactions as in Example 1 except that the temperature was changed to 31 ° C. when the entire amount of the second-stage aqueous solution was added. It was. To the obtained hydrogel polymer, 0.589 g of a 45% by mass diethylenetriamine-5 sodium acetate aqueous solution was added under stirring. Then, the separable flask was immersed in an oil bath set at 125 ° C., and 275.8 g of water was extracted from the system by azeotropic distillation of n-heptane and water. The mass of the polymer particles containing water in the separable flask was 257.2 g.
第2段目の水溶液の全量を加える際に温度を31℃に変更したこと以外は、実施例1と同様の第1段目及び第2段目の重合反応により、含水ゲル状重合体を得た。得られた含水ゲル状重合体に、45質量%のジエチレントリアミン5酢酸5ナトリウム水溶液0.589gを撹拌下で添加した。その後、セパラブルフラスコを125℃に設定した油浴に浸漬し、n-ヘプタンと水との共沸蒸留により275.8gの水を系外へ抜き出した。セパラブルフラスコ内の水分を含む重合体粒子の質量は、257.2gであった。 (Comparative Example 3)
A hydrogel-like polymer was obtained by the same first-stage and second-stage polymerization reactions as in Example 1 except that the temperature was changed to 31 ° C. when the entire amount of the second-stage aqueous solution was added. It was. To the obtained hydrogel polymer, 0.589 g of a 45% by mass diethylenetriamine-5 sodium acetate aqueous solution was added under stirring. Then, the separable flask was immersed in an oil bath set at 125 ° C., and 275.8 g of water was extracted from the system by azeotropic distillation of n-heptane and water. The mass of the polymer particles containing water in the separable flask was 257.2 g.
続いて、セパラブルフラスコに表面架橋剤として2質量%のエチレングリコールジグリシジルエーテル水溶液4.42g(0.507ミリモル)を添加した。セパラブルフラスコ内の反応混合物を83℃で2時間保持することによって、エチレングリコールジグリシジルエーテルによる表面架橋を進行させた。
Subsequently, 4.42 g (0.507 mmol) of a 2% by mass ethylene glycol diglycidyl ether aqueous solution was added to the separable flask as a surface cross-linking agent. Surface cross-linking with ethylene glycol diglycidyl ether was promoted by holding the reaction mixture in the separable flask at 83 ° C. for 2 hours.
表面架橋後、125℃での加熱によりn-ヘプタンを蒸発させて、表面架橋された重合体粒子の乾燥品を得た。この重合体粒子に目開き850μmの篩を通過させ、重合体粒子の質量に対して0.1質量%の非晶質シリカ(オリエンタルシリカズコーポレーション、トクシールNP-S)を重合体粒子と混合し、非晶質シリカを含む吸水性樹脂粒子を233.0g得た。該吸水性樹脂粒子の中位粒子径は128μmであった。
After surface cross-linking, n-heptane was evaporated by heating at 125 ° C. to obtain a dried product of surface-cross-linked polymer particles. The polymer particles are passed through a sieve having an opening of 850 μm, and 0.1% by mass of amorphous silica (Oriental Silicas Corporation, Toxile NP-S) with respect to the mass of the polymer particles is mixed with the polymer particles. , 233.0 g of water-absorbent resin particles containing amorphous silica were obtained. The medium particle size of the water-absorbent resin particles was 128 μm.
2.表面架橋のX,Y
表面架橋に供される重合体粒子の粉体1.00gを、予め恒量(W1(g))としたアルミホイルケースに入れ、アルミホイルケースと重合体粒子の合計質量W2(g)を精秤した。続いて、アルミホイルケースに入った重合体粒子を、内温を105℃に設定した熱風乾燥機(ADVANTEC社製、型式:FV-320)で2時間乾燥させた。乾燥後の重合体粒子をデシケーター中で室温まで放冷した。その後、アルミホイルと乾燥後の重合体粒子の合計質量W3(g)を測定した。以下の式から、重合体粒子の水分率(重合体粒子の質量を基準とする水の含有量)を算出した。
重合体粒子の水分率(質量%)=[{(W2-W1)-(W3-W1)}/(W2-W1)]×100 2. Surface cross-linking X, Y
1.00 g of polymer particle powder to be subjected to surface cross-linking is placed in an aluminum foil case having a constant amount (W1 (g)) in advance, and the total mass W2 (g) of the aluminum foil case and the polymer particles is precisely weighed. did. Subsequently, the polymer particles contained in the aluminum foil case were dried for 2 hours in a hot air dryer (manufactured by ADVANTEC, model: FV-320) in which the internal temperature was set to 105 ° C. The dried polymer particles were allowed to cool to room temperature in a desiccator. Then, the total mass W3 (g) of the aluminum foil and the dried polymer particles was measured. From the following formula, the water content of the polymer particles (water content based on the mass of the polymer particles) was calculated.
Moisture content (mass%) of polymer particles = [{(W2-W1)-(W3-W1)} / (W2-W1)] × 100
表面架橋に供される重合体粒子の粉体1.00gを、予め恒量(W1(g))としたアルミホイルケースに入れ、アルミホイルケースと重合体粒子の合計質量W2(g)を精秤した。続いて、アルミホイルケースに入った重合体粒子を、内温を105℃に設定した熱風乾燥機(ADVANTEC社製、型式:FV-320)で2時間乾燥させた。乾燥後の重合体粒子をデシケーター中で室温まで放冷した。その後、アルミホイルと乾燥後の重合体粒子の合計質量W3(g)を測定した。以下の式から、重合体粒子の水分率(重合体粒子の質量を基準とする水の含有量)を算出した。
重合体粒子の水分率(質量%)=[{(W2-W1)-(W3-W1)}/(W2-W1)]×100 2. Surface cross-linking X, Y
1.00 g of polymer particle powder to be subjected to surface cross-linking is placed in an aluminum foil case having a constant amount (W1 (g)) in advance, and the total mass W2 (g) of the aluminum foil case and the polymer particles is precisely weighed. did. Subsequently, the polymer particles contained in the aluminum foil case were dried for 2 hours in a hot air dryer (manufactured by ADVANTEC, model: FV-320) in which the internal temperature was set to 105 ° C. The dried polymer particles were allowed to cool to room temperature in a desiccator. Then, the total mass W3 (g) of the aluminum foil and the dried polymer particles was measured. From the following formula, the water content of the polymer particles (water content based on the mass of the polymer particles) was calculated.
Moisture content (mass%) of polymer particles = [{(W2-W1)-(W3-W1)} / (W2-W1)] × 100
算出された水分率を用いて、各実施例又は比較例において表面架橋に供された重合体粒子中の水分量(g)と、該重合体粒子から水分を除いた質量(重合体粒子の乾燥質量、g)を求めた。
重合体粒子中の水分量(g)=重合体粒子の質量(g)×重合体粒子の水分率/100
重合体粒子の乾燥質量(g)=重合体粒子の質量(g)×(100-重合体粒子の水分率)/100 Using the calculated water content, the amount of water (g) in the polymer particles subjected to surface cross-linking in each Example or Comparative Example and the mass of the polymer particles excluding water (drying of the polymer particles). The mass, g) was determined.
Moisture content in polymer particles (g) = mass of polymer particles (g) x water content of polymer particles / 100
Dry mass of polymer particles (g) = mass of polymer particles (g) x (100-moisture content of polymer particles) / 100
重合体粒子中の水分量(g)=重合体粒子の質量(g)×重合体粒子の水分率/100
重合体粒子の乾燥質量(g)=重合体粒子の質量(g)×(100-重合体粒子の水分率)/100 Using the calculated water content, the amount of water (g) in the polymer particles subjected to surface cross-linking in each Example or Comparative Example and the mass of the polymer particles excluding water (drying of the polymer particles). The mass, g) was determined.
Moisture content in polymer particles (g) = mass of polymer particles (g) x water content of polymer particles / 100
Dry mass of polymer particles (g) = mass of polymer particles (g) x (100-moisture content of polymer particles) / 100
下記式により、X、Yを求め、さらにX×Yを算出した。得られた値を表1に示す。
X=(反応混合物中の水の質量(g))/(反応混合物中の表面架橋剤の質量(g))
Y=(反応混合物中の重合体粒子の乾燥質量(g))/(反応混合物中の表面架橋剤の質量(g))
ここで、反応混合物中の水の質量は、重合体粒子中の水と、表面架橋剤水溶液中の水との合計質量とした。 X and Y were obtained by the following formula, and X × Y was further calculated. The obtained values are shown in Table 1.
X = (mass of water in reaction mixture (g)) / (mass of surface cross-linking agent in reaction mixture (g))
Y = (dry mass (g) of polymer particles in the reaction mixture) / (mass (g) of surface cross-linking agent in the reaction mixture)
Here, the mass of water in the reaction mixture was the total mass of water in the polymer particles and water in the aqueous surface cross-linking agent solution.
X=(反応混合物中の水の質量(g))/(反応混合物中の表面架橋剤の質量(g))
Y=(反応混合物中の重合体粒子の乾燥質量(g))/(反応混合物中の表面架橋剤の質量(g))
ここで、反応混合物中の水の質量は、重合体粒子中の水と、表面架橋剤水溶液中の水との合計質量とした。 X and Y were obtained by the following formula, and X × Y was further calculated. The obtained values are shown in Table 1.
X = (mass of water in reaction mixture (g)) / (mass of surface cross-linking agent in reaction mixture (g))
Y = (dry mass (g) of polymer particles in the reaction mixture) / (mass (g) of surface cross-linking agent in the reaction mixture)
Here, the mass of water in the reaction mixture was the total mass of water in the polymer particles and water in the aqueous surface cross-linking agent solution.
2.吸水性樹脂粒子の評価
2-1.吸水量(生理食塩水)
容量500mLのビーカーに、生理食塩水500gを量り取った。そこに、スターラーバー(8mmφ×30mm、リング無し)を用い600rpmで撹拌しながら、吸水性樹脂粒子2.0gを、ママコが発生しないように分散させた。その状態で60分間放置し、吸水性樹脂粒子を十分に膨潤させた。続いてビーカー中の内容物を、目開き75μm標準篩(質量Wa(g))を用いてろ過した。篩を水平に対して約30度の傾斜角となるように傾けた状態で30分間放置することにより、篩上の膨潤ゲルから余剰の水分をろ別した。その後、篩と篩上の膨潤ゲルとの合計質量Wb(g)を測定した。以下の式により、生理食塩水の吸水量を求めた。
生理食塩水の吸水量[g/g]=(Wb-Wa)/2.0 2. Evaluation of water-absorbent resin particles 2-1. Water absorption (saline)
500 g of physiological saline was weighed in a beaker having a capacity of 500 mL. There, 2.0 g of water-absorbent resin particles were dispersed so as not to generate mamaco while stirring at 600 rpm using a stirrer bar (8 mmφ × 30 mm, without ring). It was left in that state for 60 minutes to sufficiently swell the water-absorbent resin particles. Subsequently, the contents in the beaker were filtered using a standard sieve having a mesh size of 75 μm (mass Wa (g)). Excess water was filtered off from the swollen gel on the sieve by leaving the sieve tilted at an inclination angle of about 30 degrees with respect to the horizontal for 30 minutes. Then, the total mass Wb (g) of the sieve and the swollen gel on the sieve was measured. The amount of water absorption of physiological saline was determined by the following formula.
Water absorption of saline [g / g] = (Wb-Wa) /2.0
2-1.吸水量(生理食塩水)
容量500mLのビーカーに、生理食塩水500gを量り取った。そこに、スターラーバー(8mmφ×30mm、リング無し)を用い600rpmで撹拌しながら、吸水性樹脂粒子2.0gを、ママコが発生しないように分散させた。その状態で60分間放置し、吸水性樹脂粒子を十分に膨潤させた。続いてビーカー中の内容物を、目開き75μm標準篩(質量Wa(g))を用いてろ過した。篩を水平に対して約30度の傾斜角となるように傾けた状態で30分間放置することにより、篩上の膨潤ゲルから余剰の水分をろ別した。その後、篩と篩上の膨潤ゲルとの合計質量Wb(g)を測定した。以下の式により、生理食塩水の吸水量を求めた。
生理食塩水の吸水量[g/g]=(Wb-Wa)/2.0 2. Evaluation of water-absorbent resin particles 2-1. Water absorption (saline)
500 g of physiological saline was weighed in a beaker having a capacity of 500 mL. There, 2.0 g of water-absorbent resin particles were dispersed so as not to generate mamaco while stirring at 600 rpm using a stirrer bar (8 mmφ × 30 mm, without ring). It was left in that state for 60 minutes to sufficiently swell the water-absorbent resin particles. Subsequently, the contents in the beaker were filtered using a standard sieve having a mesh size of 75 μm (mass Wa (g)). Excess water was filtered off from the swollen gel on the sieve by leaving the sieve tilted at an inclination angle of about 30 degrees with respect to the horizontal for 30 minutes. Then, the total mass Wb (g) of the sieve and the swollen gel on the sieve was measured. The amount of water absorption of physiological saline was determined by the following formula.
Water absorption of saline [g / g] = (Wb-Wa) /2.0
2-2.静的吸水速度A
図2に示す無加圧DW法による測定装置を用いて、静的吸水速度Aを測定した。測定は1種類の吸水性樹脂粒子に関して5回実施し、最低値と最高値とを除いた3点の測定値の平均値を求めた。 2-2. Static water absorption rate A
The static water absorption rate A was measured using the measuring device by the non-pressurized DW method shown in FIG. The measurement was carried out 5 times for one type of water-absorbent resin particles, and the average value of the measured values at three points excluding the minimum value and the maximum value was obtained.
図2に示す無加圧DW法による測定装置を用いて、静的吸水速度Aを測定した。測定は1種類の吸水性樹脂粒子に関して5回実施し、最低値と最高値とを除いた3点の測定値の平均値を求めた。 2-2. Static water absorption rate A
The static water absorption rate A was measured using the measuring device by the non-pressurized DW method shown in FIG. The measurement was carried out 5 times for one type of water-absorbent resin particles, and the average value of the measured values at three points excluding the minimum value and the maximum value was obtained.
図2に示す測定装置は、ビュレット部1、導管5、測定台13、ナイロンメッシュシート15、架台11、及びクランプ3を有する。ビュレット部1は、目盛が記載されたビュレット管21と、ビュレット管21の上部の開口を密栓するゴム栓23と、ビュレット管21の下部の先端に連結されたコック22と、ビュレット管21の下部に連結された空気導入管25及びコック24とを有する。ビュレット部1はクランプ3で固定されている。平板状の測定台13は、その中央部に形成された直径2mmの円形の貫通孔13aを有しており、高さが可変の架台11によって支持されている。測定台13の貫通孔13aとビュレット部1のコック22とが導管5によって連結されている。導管5の内径は6mmである。
The measuring device shown in FIG. 2 has a burette portion 1, a conduit 5, a measuring table 13, a nylon mesh sheet 15, a frame 11, and a clamp 3. The burette portion 1 includes a burette tube 21 on which a scale is described, a rubber stopper 23 for sealing the opening at the upper part of the burette tube 21, a cock 22 connected to the tip of the lower portion of the burette tube 21, and a lower portion of the burette tube 21. It has an air introduction pipe 25 and a cock 24 connected to the burette. The burette portion 1 is fixed by a clamp 3. The flat plate-shaped measuring table 13 has a circular through hole 13a having a diameter of 2 mm formed in the central portion thereof, and is supported by a frame 11 having a variable height. The through hole 13a of the measuring table 13 and the cock 22 of the burette portion 1 are connected by a conduit 5. The inner diameter of the conduit 5 is 6 mm.
測定は温度25℃、湿度60±10%の環境下で行なわれた。まずビュレット部1のコック22とコック24を閉め、25℃に調節された生理食塩水50をビュレット管21上部の開口からビュレット管21に入れた。ゴム栓23でビュレット管21の開口の密栓した後、コック22及びコック24を開けた。気泡が入らないよう導管5内部を生理食塩水50で満たした。貫通孔13a内に到達した生理食塩水の水面の高さが、測定台13の上面の高さと同じになるように、測定台13の高さを調整した。調整後、ビュレット管21内の生理食塩水50の水面の高さをビュレット管21の目盛で読み取り、その位置をゼロ点(0秒時点の読み値)とした。
The measurement was performed in an environment with a temperature of 25 ° C and a humidity of 60 ± 10%. First, the cock 22 and the cock 24 of the burette portion 1 were closed, and the physiological saline 50 adjusted to 25 ° C. was put into the burette tube 21 through the opening at the upper part of the burette tube 21. After sealing the opening of the burette tube 21 with the rubber stopper 23, the cock 22 and the cock 24 were opened. The inside of the conduit 5 was filled with physiological saline 50 to prevent air bubbles from entering. The height of the measuring table 13 was adjusted so that the height of the water surface of the physiological saline solution that reached the inside of the through hole 13a was the same as the height of the upper surface of the measuring table 13. After the adjustment, the height of the water surface of the physiological saline solution 50 in the burette tube 21 was read by the scale of the burette tube 21, and the position was set as the zero point (reading value at 0 seconds).
測定台13上の貫通孔13aの近傍にてナイロンメッシュシート15(100mm×100mm、250メッシュ、厚さ約50μm)を敷き、その中央部に、内径30mm、高さ20mmのシリンダーを置いた。このシリンダー内に、1.00gの吸水性樹脂粒子10aを均一に散布した。その後、シリンダーを注意深く取り除き、ナイロンメッシュシート15の中央部に吸水性樹脂粒子10aが円状に分散されたサンプルを得た。次いで、吸水性樹脂粒子10aが載置されたナイロンメッシュシート15を、その中心が貫通孔13aの位置になるように、吸水性樹脂粒子10aが散逸しない程度にすばやく移動させて、測定を開始した。空気導入管25からビュレット管21内に気泡が最初に導入された時点を吸水開始(0秒)とした。吸収開始から吸水性樹脂粒子10aが25mLの生理食塩水50を吸収するまでの時間を、静的吸水速度A[秒]として記録した。
A nylon mesh sheet 15 (100 mm × 100 mm, 250 mesh, thickness about 50 μm) was laid in the vicinity of the through hole 13a on the measuring table 13, and a cylinder having an inner diameter of 30 mm and a height of 20 mm was placed in the center thereof. 1.00 g of water-absorbent resin particles 10a were uniformly sprayed in this cylinder. Then, the cylinder was carefully removed to obtain a sample in which the water-absorbent resin particles 10a were dispersed in a circle in the central portion of the nylon mesh sheet 15. Next, the nylon mesh sheet 15 on which the water-absorbent resin particles 10a were placed was quickly moved so that the center thereof was at the position of the through hole 13a so that the water-absorbent resin particles 10a did not dissipate, and the measurement was started. .. The time when the air bubbles were first introduced from the air introduction pipe 25 into the burette pipe 21 was defined as the start of water absorption (0 seconds). The time from the start of absorption until the water-absorbent resin particles 10a absorbed 25 mL of physiological saline 50 was recorded as the static water absorption rate A [seconds].
2-2.動的吸水速度B
吸水性樹脂粒子の生理食塩水に対する動的吸水速度Bを、Vortex法に基づき下記手順で測定した。まず、恒温水槽にて25±0.2℃の温度に調整した生理食塩水50±0.1mLを容量100mLのビーカーに量りとった。次に、マグネチックスターラーバー(8mmφ×30mm、リング無し)を用いて600rpmで撹拌することにより渦を発生させた。吸水性樹脂粒子2.0±0.002gを生理食塩水中に一度に添加した。吸水性樹脂粒子の添加から、液面の渦が収束する時点までの時間[秒]を測定した。測定は1種類の吸水性樹脂粒子に関して5回実施し、最低値と最高値とを除いた3点の測定値の平均値を吸水性樹脂粒子の動的吸水速度Bとして記録した。 2-2. Dynamic water absorption rate B
The dynamic water absorption rate B of the water-absorbent resin particles with respect to physiological saline was measured by the following procedure based on the Vortex method. First, 50 ± 0.1 mL of physiological saline adjusted to a temperature of 25 ± 0.2 ° C. in a constant temperature water tank was weighed in a beaker having a capacity of 100 mL. Next, a vortex was generated by stirring at 600 rpm using a magnetic stirrer bar (8 mmφ × 30 mm, without ring). 2.0 ± 0.002 g of water-absorbent resin particles were added to physiological saline at one time. The time [seconds] from the addition of the water-absorbent resin particles to the time when the vortex on the liquid surface converged was measured. The measurement was performed 5 times for one type of water-absorbent resin particles, and the average value of the measured values at three points excluding the minimum value and the maximum value was recorded as the dynamic water absorption rate B of the water-absorbent resin particles.
吸水性樹脂粒子の生理食塩水に対する動的吸水速度Bを、Vortex法に基づき下記手順で測定した。まず、恒温水槽にて25±0.2℃の温度に調整した生理食塩水50±0.1mLを容量100mLのビーカーに量りとった。次に、マグネチックスターラーバー(8mmφ×30mm、リング無し)を用いて600rpmで撹拌することにより渦を発生させた。吸水性樹脂粒子2.0±0.002gを生理食塩水中に一度に添加した。吸水性樹脂粒子の添加から、液面の渦が収束する時点までの時間[秒]を測定した。測定は1種類の吸水性樹脂粒子に関して5回実施し、最低値と最高値とを除いた3点の測定値の平均値を吸水性樹脂粒子の動的吸水速度Bとして記録した。 2-2. Dynamic water absorption rate B
The dynamic water absorption rate B of the water-absorbent resin particles with respect to physiological saline was measured by the following procedure based on the Vortex method. First, 50 ± 0.1 mL of physiological saline adjusted to a temperature of 25 ± 0.2 ° C. in a constant temperature water tank was weighed in a beaker having a capacity of 100 mL. Next, a vortex was generated by stirring at 600 rpm using a magnetic stirrer bar (8 mmφ × 30 mm, without ring). 2.0 ± 0.002 g of water-absorbent resin particles were added to physiological saline at one time. The time [seconds] from the addition of the water-absorbent resin particles to the time when the vortex on the liquid surface converged was measured. The measurement was performed 5 times for one type of water-absorbent resin particles, and the average value of the measured values at three points excluding the minimum value and the maximum value was recorded as the dynamic water absorption rate B of the water-absorbent resin particles.
3.吸収性物品の作製及びその評価
3-1.吸収性物品の作製
気流型混合装置(有限会社オーテック社製、パッドフォーマー)を用いて、吸水性樹脂粒子10.0g及び粉砕パルプ10.0gを空気抄造によって均一混合することにより、40cm×10cmの大きさのシート状の吸収体を作製した。吸収体を、吸収体と同じ大きさで坪量16g/m2の2枚のティッシュッペーパー(コアラップ)で上下から挟み、その状態で全体を141kPaの荷重で30秒間プレスした。ティッシュペーパーの上面に、吸収体と同じ大きさで坪量22g/m2のポリエチレン-ポリプロピレン製エアスルー型多孔質液体透過性シートを配置して、ティッシュペーパー/吸収体/ティッシュペーパー/エアスルー型多孔質液体透過性シートの積層構成を有する評価用吸収性物品を得た。 3. 3. Preparation of absorbent articles and their evaluation 3-1. Preparation ofabsorbent article 40 cm x 10 cm by uniformly mixing 10.0 g of water-absorbent resin particles and 10.0 g of crushed pulp by air papermaking using a flow-type mixer (Padformer manufactured by Otec Co., Ltd.). A sheet-shaped absorber of the size of 1 was prepared. The absorber was sandwiched from above and below with two sheets of tissue paper (core wrap) having the same size as the absorber and having a basis weight of 16 g / m 2 , and in that state, the whole was pressed with a load of 141 kPa for 30 seconds. A polyethylene-polypropylene air-through porous liquid permeable sheet having the same size as the absorber and having a basis weight of 22 g / m 2 is placed on the upper surface of the tissue paper to form a tissue paper / absorber / tissue paper / air-through porous sheet. An evaluation absorbent article having a laminated structure of liquid permeable sheets was obtained.
3-1.吸収性物品の作製
気流型混合装置(有限会社オーテック社製、パッドフォーマー)を用いて、吸水性樹脂粒子10.0g及び粉砕パルプ10.0gを空気抄造によって均一混合することにより、40cm×10cmの大きさのシート状の吸収体を作製した。吸収体を、吸収体と同じ大きさで坪量16g/m2の2枚のティッシュッペーパー(コアラップ)で上下から挟み、その状態で全体を141kPaの荷重で30秒間プレスした。ティッシュペーパーの上面に、吸収体と同じ大きさで坪量22g/m2のポリエチレン-ポリプロピレン製エアスルー型多孔質液体透過性シートを配置して、ティッシュペーパー/吸収体/ティッシュペーパー/エアスルー型多孔質液体透過性シートの積層構成を有する評価用吸収性物品を得た。 3. 3. Preparation of absorbent articles and their evaluation 3-1. Preparation of
3-2.吸水試験
容量10Lの容器に、塩化ナトリウム60g、塩化カルシウム二水和物1.8g、塩化マグネシウム六水和物3.6g及び適量の蒸留水を入れ、各金属塩化合物を水に完全に溶解させた。得られた溶液に、ポリオキシエチレンノニルフェニルエーテル0.02gを添加し、蒸留水を追加することにより水溶液全体の質量を6000gに調整した。続いて、青色1号0.15gで着色して、試験液(人工尿)を得た。 3-2. Water absorption test Put 60 g of sodium chloride, 1.8 g of calcium chloride dihydrate, 3.6 g of magnesium chloride hexahydrate and an appropriate amount of distilled water in a container with a capacity of 10 L, and completely dissolve each metal salt compound in water. It was. 0.02 g of polyoxyethylene nonylphenyl ether was added to the obtained solution, and distilled water was added to adjust the total mass of the aqueous solution to 6000 g. Subsequently, it was colored with 0.15 g of Blue No. 1 to obtain a test solution (artificial urine).
容量10Lの容器に、塩化ナトリウム60g、塩化カルシウム二水和物1.8g、塩化マグネシウム六水和物3.6g及び適量の蒸留水を入れ、各金属塩化合物を水に完全に溶解させた。得られた溶液に、ポリオキシエチレンノニルフェニルエーテル0.02gを添加し、蒸留水を追加することにより水溶液全体の質量を6000gに調整した。続いて、青色1号0.15gで着色して、試験液(人工尿)を得た。 3-2. Water absorption test Put 60 g of sodium chloride, 1.8 g of calcium chloride dihydrate, 3.6 g of magnesium chloride hexahydrate and an appropriate amount of distilled water in a container with a capacity of 10 L, and completely dissolve each metal salt compound in water. It was. 0.02 g of polyoxyethylene nonylphenyl ether was added to the obtained solution, and distilled water was added to adjust the total mass of the aqueous solution to 6000 g. Subsequently, it was colored with 0.15 g of Blue No. 1 to obtain a test solution (artificial urine).
図3は、湾曲した吸収体への液の浸透速度を評価するための吸水試験の方法を示す模式図である。吸水試験は、温度25±2℃、湿度50%±10%の環境下で行った。図3に示すU字型器具52は、上方に開口部を有する断面U字型の湾曲面52aを有するアクリル樹脂製の成形体である。湾曲面52aは、22cmの開口幅w、18.5cmの深さd、及び10cmの奥行きを有する。湾曲面52a上に、液体不透過性シート53(ポリエチレンフィルム)を載せた。液体不透過性シート53の上に、評価用吸収性物品100’を、その中心部が湾曲面52aの最深部に位置するように置いた。評価用吸収性物品100’の中心部に、内径3cmの投入口を有する、容量100mLの液投入用シリンダー54を固定した。液投入用シリンダー54に、80mLの試験液51を、滴下ロートを用いて10mL/秒の速度で投入した。試験液51が最初に評価用吸収性物品100’に到達した時点から、試験液51が液投入用シリンダー54内から完全に消失するまでの時間を、1回目の浸透時間(秒)とした。試験液51がシリンダー54内から完全に消失後、シリンダー54を評価用吸水性物品100’から外した。この一連の試験液51投入の操作を10分間隔で更に2回、合計3回行った。3回の投入における各浸透時間の合計時間を記録した。
FIG. 3 is a schematic diagram showing a method of a water absorption test for evaluating the permeation rate of the liquid into the curved absorber. The water absorption test was conducted in an environment with a temperature of 25 ± 2 ° C. and a humidity of 50% ± 10%. The U-shaped instrument 52 shown in FIG. 3 is a molded body made of acrylic resin having a curved surface 52a having a U-shaped cross section having an opening at the upper side. The curved surface 52a has an opening width w of 22 cm, a depth d of 18.5 cm, and a depth of 10 cm. A liquid permeable sheet 53 (polyethylene film) was placed on the curved surface 52a. The evaluation absorbent article 100'was placed on the liquid impermeable sheet 53 so that the central portion thereof was located at the deepest part of the curved surface 52a. A liquid injection cylinder 54 having a capacity of 100 mL and having an inner diameter of 3 cm was fixed to the center of the evaluation absorbent article 100'. 80 mL of the test liquid 51 was charged into the liquid charging cylinder 54 at a rate of 10 mL / sec using a dropping funnel. The time from the time when the test liquid 51 first reached the evaluation absorbent article 100'to the time when the test liquid 51 completely disappeared from the liquid charging cylinder 54 was defined as the first permeation time (seconds). After the test liquid 51 completely disappeared from the inside of the cylinder 54, the cylinder 54 was removed from the water-absorbent article 100'for evaluation. This series of operations of adding the test solution 51 was performed twice more at 10-minute intervals, for a total of three times. The total time of each permeation time for 3 injections was recorded.
表2に示されるように、各実施例の吸収性樹脂粒子を含む評価用吸収性物品は、短い浸透時間を示しており、湾曲した状態でも高い吸水速度で水分を吸収できることが確認された。
As shown in Table 2, it was confirmed that the evaluation absorbent articles containing the absorbent resin particles of each example showed a short permeation time and could absorb water at a high water absorption rate even in a curved state.
1…ビュレット部、3…クランプ、5…導管、10…吸収体、10a…吸水性樹脂粒子、10b…繊維層、11…架台、13…測定台、13a…貫通孔、15…ナイロンメッシュシート、20a,20b…コアラップ、21…ビュレット管、22,24…コック、23…ゴム栓、25…空気導入管、30…液体透過性シート、40,53…液体不透過性シート、51…試験液、52…U字型器具、52a…湾曲面、54…液投入用シリンダー、100…吸収性物品。
1 ... Burette part, 3 ... Clamp, 5 ... Conduit, 10 ... Absorbent, 10a ... Water-absorbent resin particles, 10b ... Fiber layer, 11 ... Stand, 13 ... Measuring table, 13a ... Through hole, 15 ... Nylon mesh sheet, 20a, 20b ... core wrap, 21 ... burette tube, 22, 24 ... cock, 23 ... rubber stopper, 25 ... air introduction tube, 30 ... liquid permeable sheet, 40, 53 ... liquid permeable sheet, 51 ... test solution, 52 ... U-shaped instrument, 52a ... Curved surface, 54 ... Liquid injection cylinder, 100 ... Absorbent article.
Claims (9)
- 表面架橋剤によって表面架橋された重合体粒子を含む、吸水性樹脂粒子であって、
当該吸水性樹脂粒子の静的吸水速度がA[秒]で、当該吸水性樹脂粒子の動的吸水速度がB[秒]であるとき、A/Bが21以下であり、
前記静的吸水速度が、1.00gの当該吸水性樹脂粒子に、生理食塩水を無加圧のDW法によって吸収させたときに、吸収を開始してから当該吸水性樹脂粒子が25mLの生理食塩水を吸収するまでの時間であり、
前記動的吸水速度がVortex法によって測定される吸水速度である、
吸水性樹脂粒子。 Water-absorbent resin particles containing polymer particles surface-crosslinked by a surface-crosslinking agent.
When the static water absorption rate of the water-absorbent resin particles is A [seconds] and the dynamic water absorption rate of the water-absorbent resin particles is B [seconds], the A / B is 21 or less.
When the water-absorbent resin particles having a static water absorption rate of 1.00 g were absorbed with physiological saline by the non-pressurized DW method, the water-absorbent resin particles were physiologically 25 mL after the absorption was started. It is the time it takes to absorb the saline solution.
The dynamic water absorption rate is the water absorption rate measured by the Vortex method.
Water-absorbent resin particles. - 前記重合体粒子が、(メタ)アクリル酸又はその塩のうち少なくとも一方を単量体単位として有するポリ(メタ)アクリル酸系重合体を含有する、請求項1に記載の吸水性樹脂粒子。 The water-absorbent resin particle according to claim 1, wherein the polymer particles contain a poly (meth) acrylic acid-based polymer having at least one of (meth) acrylic acid or a salt thereof as a monomer unit.
- 前記表面架橋剤がアルキレンカーボネート化合物を含む、請求項1又は2に記載の吸水性樹脂粒子。 The water-absorbent resin particles according to claim 1 or 2, wherein the surface cross-linking agent contains an alkylene carbonate compound.
- 請求項1~3のいずれか一項に記載の吸水性樹脂粒子を含む吸収体を備える、吸収性物品。 An absorbent article comprising an absorber containing the water-absorbent resin particles according to any one of claims 1 to 3.
- 重合体粒子と水及び表面架橋剤を含有する表面架橋剤水溶液とを含む反応混合物を加熱することによって、前記重合体粒子を表面架橋する工程を備え、
X及びYが下記式:
X=(前記反応混合物中の水の質量)/(前記反応混合物中の前記表面架橋剤の質量)
Y=(前記反応混合物中の前記重合体粒子の乾燥質量)/(前記反応混合物中の前記表面架橋剤の質量)
によって算出される値であるとき、X×Yが11000以下である、
吸水性樹脂粒子を製造する方法。 A step of surface cross-linking the polymer particles by heating a reaction mixture containing the polymer particles and an aqueous solution of a surface cross-linking agent containing water and a surface cross-linking agent is provided.
X and Y are the following formulas:
X = (mass of water in the reaction mixture) / (mass of the surface cross-linking agent in the reaction mixture)
Y = (dry mass of the polymer particles in the reaction mixture) / (mass of the surface cross-linking agent in the reaction mixture)
X × Y is 11000 or less when it is a value calculated by
A method for producing water-absorbent resin particles. - Yが200以下である、請求項5に記載の方法。 The method according to claim 5, wherein Y is 200 or less.
- 前記重合体粒子の質量を基準として20質量%以下の水を含有する前記重合体粒子を、前記表面架橋剤水溶液と混合し、それにより前記反応混合物を形成する、請求項5又は6に記載の方法。 The fifth or six claim, wherein the polymer particles containing 20% by mass or less of water based on the mass of the polymer particles are mixed with the surface cross-linking agent aqueous solution to form the reaction mixture. Method.
- 前記重合体粒子が、(メタ)アクリル酸又はその塩のうち少なくとも一方を単量体単位として有するポリ(メタ)アクリル酸系重合体を含有する、請求項5~7のいずれか一項に記載の方法。 The invention according to any one of claims 5 to 7, wherein the polymer particles contain a poly (meth) acrylic acid-based polymer having at least one of (meth) acrylic acid or a salt thereof as a monomer unit. the method of.
- 前記表面架橋剤がアルキレンカーボネート化合物を含む、請求項5~8のいずれか一項に記載の方法。 The method according to any one of claims 5 to 8, wherein the surface cross-linking agent contains an alkylene carbonate compound.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021545547A JPWO2021049487A1 (en) | 2019-09-09 | 2020-09-08 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-163799 | 2019-09-09 | ||
JP2019163799 | 2019-09-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021049487A1 true WO2021049487A1 (en) | 2021-03-18 |
Family
ID=74866143
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/033951 WO2021049487A1 (en) | 2019-09-09 | 2020-09-08 | Water absorbent resin particles, absorbent article, and production method for water absorbent resin particles |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2021049487A1 (en) |
WO (1) | WO2021049487A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015093594A1 (en) * | 2013-12-20 | 2015-06-25 | 株式会社日本触媒 | Polyacrylic acid (salt) water absorbent, and method for producing same |
WO2015129917A1 (en) * | 2014-02-28 | 2015-09-03 | 株式会社日本触媒 | Poly(meth)acrylic acid (salt)-based particulate absorbent, and production method |
WO2016158975A1 (en) * | 2015-03-31 | 2016-10-06 | 株式会社日本触媒 | Super absorbent polyacrylic acid (salt)-based resin powder, method for manufacturing same, and method for evaluating same |
-
2020
- 2020-09-08 WO PCT/JP2020/033951 patent/WO2021049487A1/en active Application Filing
- 2020-09-08 JP JP2021545547A patent/JPWO2021049487A1/ja active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015093594A1 (en) * | 2013-12-20 | 2015-06-25 | 株式会社日本触媒 | Polyacrylic acid (salt) water absorbent, and method for producing same |
WO2015129917A1 (en) * | 2014-02-28 | 2015-09-03 | 株式会社日本触媒 | Poly(meth)acrylic acid (salt)-based particulate absorbent, and production method |
WO2016158975A1 (en) * | 2015-03-31 | 2016-10-06 | 株式会社日本触媒 | Super absorbent polyacrylic acid (salt)-based resin powder, method for manufacturing same, and method for evaluating same |
Also Published As
Publication number | Publication date |
---|---|
JPWO2021049487A1 (en) | 2021-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110446726B (en) | Water-absorbent resin particles | |
JP5889349B2 (en) | Polyacrylic acid water-absorbing resin powder and method for producing the same | |
JP4676625B2 (en) | Method for producing water absorbent resin powder | |
JP5320305B2 (en) | Binding method of water absorbent resin | |
KR20150054796A (en) | Water-absorbing resin, water-absorbing body, and water-absorbing product | |
JP2019518821A (en) | Method of manufacturing super absorbent resin | |
JP2010502415A (en) | Water absorbing agent and method for producing the same | |
WO2018117391A1 (en) | Highly absorbent resin and method for producing same | |
WO2018159802A1 (en) | Water-absorbing resin, and absorbent article | |
WO2020122209A1 (en) | Water absorbent resin particles | |
EP3896097A1 (en) | Water-absorptive resin particle, absorption body, and absorptive article | |
JP3175790B2 (en) | Method for producing particulate hydrogel polymer and water absorbent resin | |
JP2004217911A (en) | Water-absorbing resin composition | |
WO2020184386A1 (en) | Water absorbing resin particles, absorbent article, method for manufacturing water absorbing resin particles, method for facilitating permeation of physiological saline solution into absorbent body | |
EP3936540A1 (en) | Water absorbing resin particles and method for producing same, absorbent body, and absorbent article | |
EP3936538A1 (en) | Water absorbing resin particles and method for producing same, absorbent body. absorbent article, and method for adjusting permeation speed | |
WO2021049487A1 (en) | Water absorbent resin particles, absorbent article, and production method for water absorbent resin particles | |
JP2005081204A (en) | Method for manufacturing water absorbing resin composition | |
WO2021049488A1 (en) | Water-absorbing resin particles and absorbent article | |
KR20240089202A (en) | Absorbent resin composition, absorbent body, absorbent article, and method for separating and processing absorbent resin particles from the absorbent article | |
JP7441179B2 (en) | Absorbent bodies and absorbent articles | |
EP3936530A1 (en) | Absorbent body, absorbent article and method for adjusting permeation speed | |
WO2021049631A1 (en) | Liquid leakage inhibitor used in absorbent containing water absorbent resin particles, and water absorbent resin particles | |
WO2021187501A1 (en) | Water-absorbing sheet and absorbent article | |
WO2024071258A1 (en) | Method for producing water absorbent resin particles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20862980 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021545547 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20862980 Country of ref document: EP Kind code of ref document: A1 |