[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021044653A1 - Power conversion apparatus and system interconnection system - Google Patents

Power conversion apparatus and system interconnection system Download PDF

Info

Publication number
WO2021044653A1
WO2021044653A1 PCT/JP2020/009436 JP2020009436W WO2021044653A1 WO 2021044653 A1 WO2021044653 A1 WO 2021044653A1 JP 2020009436 W JP2020009436 W JP 2020009436W WO 2021044653 A1 WO2021044653 A1 WO 2021044653A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
power
power supply
inverter
conversion device
Prior art date
Application number
PCT/JP2020/009436
Other languages
French (fr)
Japanese (ja)
Inventor
康志 津田
結 永池
小林 健二
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Publication of WO2021044653A1 publication Critical patent/WO2021044653A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to a power conversion device and a grid interconnection system.
  • a power conditioner for connecting a power generation facility used for a power generation system equipped with a power generation facility such as a solar panel and a commercial power system (hereinafter, also simply referred to as a system) has been known. Further, as such a power conditioner, a DC output unit for a storage battery is provided, the storage battery is charged by electric power from a power generation facility or a system, and the electric power charged in the storage battery is discharged and used. (See, for example, Patent Document 1).
  • the power conditioner when the power conditioner is supplied with power from the grid to recover, the power conditioner is supplied with power from the storage battery (or power generation equipment) to the control power supply, and the grid (other AC power supply). ) Requires two types of power supply circuits that supply power to the control power supply.
  • the present invention has been made in view of the above circumstances, and in a power conversion device, the control unit that controls the device can be supplied with power from either a DC power source or an AC power source. At the same time, it is an object of the present invention to provide a technique capable of simplifying the device configuration.
  • the power conversion device is DC power supply connection connected to DC power supply and The AC power connection connected to the AC power and the AC power connection Inverter part and Control unit and A control power supply unit that supplies power to the control unit, A first circuit that connects the DC power supply connection unit and the AC power supply connection unit and arranges the inverter unit, and In the first circuit, it is arranged between the inverter unit and the AC power supply connection unit, and when the inverter unit is in a stopped state, the connection between the inverter unit and the AC power supply connection unit is opened.
  • 1 relay part and A second circuit that branches from between the DC power supply connection unit and the inverter unit and transmits DC power to the control power supply unit.
  • a first diode section arranged in the second circuit and having the control power supply section on the downstream side A third circuit that branches from between the AC power connection unit and the inverter unit and transmits AC power to the control power supply unit.
  • An inverter-side power supply line that is arranged in the third circuit and branches from between the inverter and the first relay, and an AC power supply that branches from between the first relay and the AC power connection.
  • the second relay unit which connects the power supply line to the control power supply unit side in a switchable manner,
  • a second diode section arranged between the second relay section and the control power supply section and having the control power supply section on the downstream side and a second diode section.
  • a DC / DC converter that is shared by the second circuit and the third circuit and that transforms the electric power transmitted to the second circuit and the third circuit to a predetermined voltage and supplies the power to the control power supply unit.
  • Have and The control unit When the inverter unit is in an operating state, the second relay unit is controlled so that the power supply line on the inverter side and the second diode unit are connected to each other. When the inverter unit is in the stopped state, the second relay unit is controlled so that the AC power supply side power supply line and the second diode unit are connected. It is characterized by that.
  • control unit includes a processor such as an MPU (Micro Processing Unit), an IC (Integrated Circuit) including the processor, a control circuit for controlling each unit of the power conversion device, and the like.
  • control power supply unit refers to a configuration including a so-called power supply IC or the like, which receives power input of a predetermined voltage and supplies power to the control unit.
  • the power conversion device has a circuit for transmitting DC power to the control power supply unit of the device and a circuit for transmitting AC power, and the converter of both circuits can be shared. Therefore, the device configuration can be simplified and the device cost can be reduced. Further, since the third circuit is not interrupted even when the inverter is in operation, even if some trouble occurs in the second circuit and DC power cannot be transmitted to the control power supply unit, the first circuit is used. It becomes possible to supply AC power from three circuits. That is, it can function as a backup circuit.
  • the DC power supply may be a storage battery or a power generation device
  • the AC power supply connection unit may be an input / output terminal connected to a commercial power system
  • the inverter unit may be a bidirectional inverter. Further, it may include a PCS (Power Conditioning System) for these.
  • the power generation device referred to here includes a power generation device using natural energy such as solar power and wind power, a power generation device using fossil fuel, and a so-called fuel cell. With such a configuration, the present invention can be preferably carried out.
  • the DC / DC converter may be an isolated converter that insulates the control power supply unit from the first circuit, the second circuit, and the third circuit.
  • the control power supply unit can be insulated from the main circuit, and safety can be improved.
  • the DC power supply connection unit may be an input / output terminal connected to a storage battery
  • the AC power supply connection unit may be an input / output terminal connected to a commercial power system
  • the inverter unit may be a bidirectional inverter. ..
  • the control unit may determine that the inverter unit is in an operating state and control the second relay unit. .. Since the inverter is provided with a means for measuring a normal voltage, it is possible to make a determination for switching the second relay unit without adding an additional configuration to the device. In addition, it is easy to set a threshold value for determination.
  • control unit when the control unit detects the switching operation start signal of the inverter unit, it may determine that the inverter unit is in the operating state and control the second relay unit. Even with such a configuration, it is possible to make a determination for switching the second relay unit without adding an additional configuration to the device. Since the actual switching operation is detected, it is possible to surely grasp that the inverter is operating.
  • the control unit may determine that the inverter unit is in an operating state and control the second relay unit. .. Further, the control unit may determine that the inverter unit is in an operating state and control the second relay unit when the output alternating current from the inverter unit exceeds a predetermined threshold value. .. When the AC voltage or current output from the inverter unit can be measured, it can be said that the AC power is output from the inverter unit, that is, the inverter is operating.
  • control unit when the voltage level of the contact of the third circuit with the inverter side power supply line and the contact with the AC power supply side power supply line in the first circuit is the same, the control unit is said to be the same. It may be determined that the inverter unit is in the operating state, and the second relay unit may be controlled.
  • the control unit determines that the inverter unit is in an operating state and controls the second relay unit. May be good.
  • control unit determines that the inverter unit is in an operating state when the output DC current from the DC power supply connection unit to the storage battery exceeds a predetermined threshold value, and controls the second relay unit. May be done.
  • the storage battery includes a storage battery control system, and the control unit acquires information related to charging / discharging of the storage battery from the storage battery control system, and when the storage battery is in a predetermined charging / discharging state, the storage battery is in a predetermined charging / discharging state. It may be determined that the inverter unit is in an operating state, and the second relay unit may be controlled. Even if the operation of the inverter unit cannot be determined from the status in the power converter, if the information on charging / discharging is obtained from the storage battery, it means that the inverter unit is operating. It can be determined.
  • the present invention can also be regarded as a grid interconnection system including the above power conversion device.
  • the control unit that controls the device can be supplied with power from either a DC power source or an AC power source, and the device configuration can be simplified. Can be provided.
  • FIG. 1 is a block diagram showing a schematic configuration of a power conversion device 9 according to an application example of the present invention.
  • FIG. 2 is a block diagram showing a schematic configuration of a grid-connected power storage system according to the first embodiment.
  • FIG. 3 is a timing chart showing the timing of relay control performed by the power conversion device according to the first embodiment.
  • FIG. 4 is a block diagram showing a schematic configuration of the system according to the first modification of the first embodiment.
  • FIG. 5 is a block diagram showing a schematic configuration of a system according to a second modification of the first embodiment.
  • FIG. 1 is a block diagram showing a schematic configuration of a power conversion device 9 according to this application example.
  • the power conversion device 9 according to this application example corresponds to a so-called power conditioner that converts DC power input from a storage battery, a photovoltaic power generation panel, another power generation system, or the like into AC power and outputs it.
  • the power conversion device 9 includes a DC power supply connection unit 911, an AC power supply connection unit 912, an inverter 913, a first relay unit 914, a main circuit noise filter 915, a booster circuit 916, a first diode 921, and a first diode. It has two relay units 931, a second diode 932, a control power supply noise filter 933, a control unit 941, a control power supply unit 942, and an isolated power supply 943.
  • the DC power supply connection unit 911 and the AC power supply connection unit 912 are connected, and the first circuit 91 in which the inverter 913 is arranged, and between the DC power supply connection unit 911 and the inverter 913.
  • a second circuit 92 that branches and is connected to the control power supply unit 942, and a third circuit 93 that branches from between the AC power supply connection unit 912 and the inverter 913 and is connected to the control power supply unit 942 are formed. Will be done.
  • the DC power supply connection unit 911 includes an input / output terminal for inputting / outputting DC power to and from the outside, and a sensor for measuring the input / output DC voltage and current (neither is shown). Further, the AC power supply connection unit includes an input / output terminal for inputting / outputting AC power to / from the outside, and a sensor for measuring the input / output AC voltage and current.
  • the inverter 913 is provided with a switching circuit that converts DC power and AC power in both directions, and converts the input DC power into AC power or converts the input AC power into DC power and outputs the power. It is a bidirectional DC / AC inverter. When DC is input to the DC power supply connection unit 911 from the outside, the inverter 913 converts the DC power into AC power and outputs it to the AC power supply connection unit 912 side. On the other hand, when AC is input to the AC power supply connection unit 912 from the outside, the AC power is converted into DC power and output to the DC power supply connection unit 911 side. Further, the inverter 913 includes a sensor (not shown) for measuring input / output voltage and current on both the DC side and the AC side.
  • the first relay unit 914 is arranged between the AC power supply connection unit 912 and the inverter 913, and opens and closes the circuit between the two.
  • the control unit 941 which will be described later, relays on the AC power connection unit 912 and the inverter 913 when the inverter 913 is in operation, and relays on the AC power connection unit 912 and the inverter when the inverter 913 is stopped. Relay off with 913. That is, when the power conversion is not performed, the AC power connection unit 912 and the inverter 913 are electrically cut off.
  • the main circuit noise filter 915 is arranged on the AC output side of the inverter 913 to reduce the noise generated in the AC power output from the inverter 913.
  • the booster circuit 916 is, for example, a DC / DC converter, and boosts the DC voltage output from the DC power supply connection unit 911 to a predetermined level.
  • the first diode 921 is arranged in the second circuit 92, and rectifies the DC power flowing through the second circuit 92 with the DC power supply connection portion 911 side as the anode and the control power supply portion 942 side as the cathode.
  • the second diode 932 is arranged in the third circuit 93, and rectifies the AC power flowing through the third circuit 93 with the second relay 931 side as the anode and the control power supply unit 942 side as the cathode.
  • the second relay unit 931 is a so-called C-contact relay, which is arranged in the third circuit and has an inverter-side power supply line that branches from between the inverter 913 and the first relay unit 914, and the first relay unit 914.
  • the AC power supply side power supply line branched from the AC power supply connection unit 912 is connected to the control power supply unit 942 so as to be switchable.
  • the control power supply noise filter 933 is arranged closer to the control power supply unit 942 than the second relay unit 931 in the third circuit 93 to reduce AC power noise.
  • the control unit 941 is configured to include, for example, a processor such as an MCU, an IC including the processor, a control circuit for controlling each part of the power conversion device, and the like, and controls each part of the power conversion device 9.
  • the control power supply unit 942 is composed of a so-called power supply IC or the like, and receives the power supplied by the isolated power supply 943 described later, and transforms the power required for each configuration of the control unit 941 to perform its function as necessary. Supply while supplying.
  • the insulated power supply 943 is an isolated DC / DC converter such as a flyback system, and transforms the power input from the second circuit 92 and the third circuit 93 to a predetermined voltage (for example, 25V) to transform the first to the first to the power input. It is output to the control power supply unit 942 in an insulated state from the third circuit.
  • control unit 941 determines whether or not the inverter 913 is in an operating state by measuring the voltages of the DC power and the AC power input to the inverter 913.
  • the input voltage (and current) is measured by the sensor provided in the inverter 913, so that the inverter 913 operates. It can be determined that it is.
  • the inverter 913 is stopped. Specifically, when the input voltage measured by the sensor of the inverter 913 falls below a predetermined value, it can be determined that the inverter 913 has stopped (or will soon stop) its operation.
  • the control unit 941 relays on the first relay unit 914 and controls the second relay unit 931 so as to be connected to the power supply line on the inverter side.
  • the first relay unit 914 is relayed off, and the second relay unit 931 is controlled to be connected to the AC power supply side power supply line.
  • the control unit 941 sets the second relay unit 931 on the AC power supply side before the power supply to the control power supply unit 942 is completely cut off. It may be switched to connect to the power supply line.
  • the above power conversion device 9 When the above power conversion device 9 is used in a power conversion system in which the AC power supply is a commercial power system and the DC power supply is a storage battery, for example, the power supply from the AC power supply is interrupted for some reason, and the storage battery further becomes Even if the power converter 9 is stopped due to over-discharging, the system can be restored when the power supply from the AC power source is restored.
  • the device can be downsized and manufactured. The cost can be reduced.
  • the control power supply unit 942 is always supplied with power from the third circuit 93 because the third circuit 93 is connected by the inverter side power supply line. Will be. Therefore, even if some trouble occurs in the second circuit 92 and the power cannot be supplied to the control power supply unit 942 via the second circuit 92, the power can be supplied from the third circuit 93.
  • the grid-connected power storage system 1 has a power conversion device 10 and a storage battery unit 20, and the power conversion device 10 is connected to the storage battery unit 20 by the DC power supply connection unit 111 and the system 30 by the AC power supply connection unit 112. ing.
  • the power conversion device 10 includes a DC power supply connection unit 111, an AC power supply connection unit 112, an inverter 113, a first relay unit (interconnection relay unit) 114, a booster circuit 115, a first diode 121, and a second relay unit (switching relay unit). ) 131, a second diode 132, a control unit 141, a control power supply unit 142, an isolated power supply 143, and a main circuit noise filter and a control power supply noise filter (not shown).
  • the power conversion device 10 has the same configuration as the power conversion device 9 described in the application example and each component is also the same as that described in the application example, detailed description of each component is omitted. To do. Further, the first circuit that connects the DC power supply connection unit 111 and the AC power supply connection unit 112, and the second circuit that branches from between the DC power supply connection unit 111 and the inverter 113 and is connected to the control power supply unit 142. The same applies to the fact that a third circuit, which is branched from between the AC power supply connection unit 112 and the inverter 113 and is connected to the control power supply unit 142, is formed. The same applies to the fact that the third circuit includes an inverter-side power supply line and an AC power supply-side power supply line.
  • the storage battery unit 20 includes a storage battery 21, a DC input / output unit 22, a DC relay unit 23, a circuit breaker 24, a control power supply unit 25, and a BMS (Battery Management Unit) 26.
  • a BMS Battery Management Unit
  • the storage battery 21 is, for example, a storage battery such as a lithium ion battery, and charges and discharges electric power according to the control of the BMS 26.
  • the DC input / output unit 22 includes a DC input / output terminal connected to the power conversion device 10 and a sensor for measuring voltage and current.
  • the DC relay unit 23 switches the connection and disconnection of the current with the DC input / output unit 22 according to the control of the BMS 26.
  • the BMS 26 functions as a control unit that controls each component of the storage battery unit 20.
  • the grid-connected power storage system 1 receives power from the system 30 (purchases) during a time when the power charge is low, such as at night, and converts the power from alternating current to direct current with the power conversion device 10. , Output to the storage battery unit 20 to charge the storage battery 21 with electric power.
  • a predetermined value for example, about 10% SOC
  • the BMS 26 controls to relay off the DC relay unit 23 and stops the supply of electric power from the storage battery 21 to the power conversion device 10.
  • the power supply from the storage battery 21 to the control power supply unit 25 is continuously performed, and if the power supply to the control power supply unit 25 is exhausted, the circuit breaker 24 is operated to connect the storage battery 21 and the circuit. To protect the circuit. In this case, manual recovery by the user is required.
  • the electric power converter 10 When the supply of electric power from the storage battery 21 to the electric power converter 10 is stopped, if the electric power can be supplied from the system 30, the electric power converter 10 receives the electric power from the system 30 and maintains the operating state. be able to. Then, electric power can be converted as needed to supply electric power to the storage battery 21. In this case, the BMS 26 controls to relay on the DC relay unit 23 to connect the circuit.
  • control unit 141 relays off the first relay unit 114 as described in the application example, and the first relay and the second relay so that the third circuit is connected by the AC power supply side power supply line. To control. Then, when the power supply from the system 30 is restored, the power is supplied to the control power supply unit 142 and the control unit 141 via the third circuit connected by the AC power supply side power supply line.
  • the control unit 141 that receives the power supply communicates with the BMS 26 by a communication method such as CAN (Controller Area Network), and transmits the recovery of the power supply. Then, the BMS 26 outputs the recovery power remaining in the storage battery 21 to the power conversion device 10 to operate the inverter 113.
  • CAN Controller Area Network
  • FIG. 3 shows the relationship between the operating / stopped state of the inverter 113 and the connection state of each relay unit in this series.
  • various methods for detecting the operation of the inverter 113 can be considered. For example, when the input DC voltage to the inverter 113 exceeds a predetermined threshold value, it may be determined that the inverter 113 is in operation.
  • the switching operation start signal of the inverter 113 when the switching operation start signal of the inverter 113 is detected, it may be determined that the operation of the inverter 113 is ON. Further, when the output AC voltage from the inverter 113 exceeds a predetermined threshold value, it may be determined that the inverter 113 is in operation. Further, when the output alternating current from the inverter 113 exceeds a predetermined threshold value, it may be determined that the operation of the inverter 113 is ON. Further, when the voltage levels at both ends of the second relay unit 131 are the same, it may be determined that the inverter 113 is in operation.
  • the inverter 113 when the input DC current to the DC power supply connection unit 111 exceeds a predetermined threshold value, it may be determined that the inverter 113 is in operation. Further, when the output DC current from the DC power supply connection unit 111 to the DC input / output unit 22 exceeds a predetermined threshold value, it may be determined that the inverter 113 is in operation. Further, when the information that the storage battery 21 is in a predetermined charge / discharge state is acquired from the BMS 26, it may be determined that the inverter 113 is in operation.
  • the detection that the operation of the inverter 113 is OFF, that is, the stopped state can also be performed by various methods as described above.
  • the above-described embodiment is merely an example of the present invention, and the present invention is not limited to the above-mentioned specific embodiment.
  • the present invention can be modified in various ways within the scope of its technical idea. For example, it may be a system for connecting power generation equipment instead of the configuration of the storage battery of the first embodiment, or a system for connecting another power generation system or a load in addition to the embodiment of the first embodiment.
  • FIG. 4 is a schematic diagram showing a system configuration of a first modification of the grid-connected power storage system 1 according to the first embodiment.
  • the self-sustaining load 40, the photovoltaic power generation panel 50, and the photovoltaic power generation power conditioning system 51 are connected to the power conversion device 100. It differs in that it is the same as the configuration of the first embodiment in other points.
  • the same components as those in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the power conversion device 100 of the grid-connected power storage system 2 branches from between the inverter 113 and the first relay unit 114, and has an independent output terminal 151 that supplies AC power to an external independent load, and a photovoltaic power conditioning system. It is provided with an independent input terminal 152 that receives AC power from 51.
  • the photovoltaic power generation system and the power storage system can be combined and implemented.
  • the power generation system is not limited to sunlight, and can be combined with other power generation equipment such as a wind power generation system.
  • the grid-connected power storage system 1 and the grid-connected power storage system 2 are examples of the grid-connected power storage system according to the present invention, and the power conversion device according to the present invention does not necessarily have to be used in combination with a storage battery.
  • An example of such a grid interconnection system will be described with reference to FIG.
  • FIG. 5 is a diagram showing a schematic configuration of a grid interconnection system 3 according to another modification of the first embodiment.
  • the photovoltaic power generation panel 50 is connected to the power conversion device 100 instead of the storage battery unit 20 as compared with the grid interconnection power storage system 1 of the first embodiment. It differs in that it is the same as the configuration of the first embodiment in other points.
  • the same components as those in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the DC / DC converter connected to the control power supply unit is an isolated type converter, but the converter does not necessarily have to be an isolated type.
  • One aspect of the present invention is The DC power supply connection (911) connected to the DC power supply and The AC power connection (912) connected to the AC power and Inverter section (913) and Control unit (941) and A control power supply unit (942) that supplies electric power to the control unit, and A first circuit (91) that connects the DC power supply connection unit and the AC power supply connection unit and arranges the inverter unit, and In the first circuit, it is arranged between the inverter unit and the AC power supply connection unit, and when the inverter unit is in a stopped state, the connection between the inverter unit and the AC power supply connection unit is opened.
  • An inverter-side power supply line that is arranged in the third circuit and branches from between the inverter and the first relay, and an AC power supply that branches from between the first relay and the AC power connection.
  • a second diode unit (932) arranged between the second relay unit and the control power supply unit and having the control power supply unit on the downstream side and a second diode unit (932).
  • a DC / DC converter (943) that transforms the electric power shared in the second circuit and the third circuit and transmitted to the second circuit and the third circuit to a predetermined voltage and supplies the power to the control power supply unit.
  • the control unit When the inverter unit is in an operating state, the second relay unit is controlled so that the power supply line on the inverter side and the second diode unit are connected to each other. When the inverter unit is in the stopped state, the second relay unit is controlled so that the AC power supply side power supply line and the second diode unit are connected.
  • the power conversion device (9) is characterized in that.
  • Boost circuit 121 921 ... ⁇ ⁇ 1st diode 131, 931 ⁇ ⁇ ⁇ 2nd relay part 132, 932 ⁇ ⁇ ⁇ 2nd diode 141, 941 ⁇ ⁇ ⁇ Control part 142, 942 ⁇ ⁇ ⁇ Control power supply part 143, 943 ⁇ ⁇ ⁇ Insulated power supply 20 ⁇ ⁇ ⁇ Storage battery unit 21 ⁇ ⁇ ⁇ Storage battery 22 ⁇ ⁇ ⁇ DC input / output unit 23 ⁇ ⁇ ⁇ DC relay unit 24 ⁇ ⁇ ⁇ Circuit breaker 25 ⁇ ⁇ ⁇ Control power supply unit 26 ⁇ ⁇ ⁇ BMS 30 ⁇ ⁇ ⁇ Commercial power system 50 ⁇ ⁇ ⁇ Photovoltaic panel 51 ⁇ ⁇ ⁇ Photovoltaic power conditioning system

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

Provided is a power conversion apparatus comprising: a circuit that connects a DC power-source connection unit with an AC power-source connection unit and has an inverter unit arranged therein; a circuit that is branched from a part between the AC power-source connection unit and the inverter unit and is connected to a control power-source unit; a first relay unit that interrupts the inverter unit from the AC power-source connection unit when the inverter unit is in a stopped state; and a second relay unit that is connected to the control power-source unit so as to be able to perform switching between an inverter-side power supply line branched from a part between the inverter unit and the first relay unit and an AC power-source–side power supply line branched from a part between the first relay unit and the AC power–source connection unit. When the inverter unit is in an operating state, the power conversion apparatus connects the inverter-side power supply line and the control power-source unit, and when the inverter unit is in the stopped state, the power conversion apparatus connects the AC power-source-side power supply line and the control power-source unit.

Description

電力変換装置、系統連系システムPower converter, grid interconnection system
 本発明は、電力変換装置、系統連系システムに関する。 The present invention relates to a power conversion device and a grid interconnection system.
 従来から、太陽光パネル等の発電設備を備えた発電システムなどに用いられる発電設備と商用電力系統(以下、単に系統ともいう)とを連系させるためのパワーコンディショナが知られている。また、このようなパワーコンディショナとして、蓄電池用の直流出力部を備え、発電設備や系統からの電力によって蓄電池を充電し、蓄電池に充電された電力を放電して用いるようにしたものが知られている(例えば、特許文献1参照)。 Conventionally, a power conditioner for connecting a power generation facility used for a power generation system equipped with a power generation facility such as a solar panel and a commercial power system (hereinafter, also simply referred to as a system) has been known. Further, as such a power conditioner, a DC output unit for a storage battery is provided, the storage battery is charged by electric power from a power generation facility or a system, and the electric power charged in the storage battery is discharged and used. (See, for example, Patent Document 1).
 そして、このようなパワーコンディショナにおいて、例えば系統が停電するなどして、蓄電池から放電し続け、過放電の状態になってしまった場合には、蓄電池に復帰のための電力のみを残して、パワーコンディショナへの電力供給を停止する処理が行われる。これにより、パワーコンディショナの制御部に電力を供給する制御電源への電力供給が途絶え、パワーコンディショナが停止する。その後、系統からの電力供給が回復した場合には、制御電源へ電力が供給されて、パワーコンディショナが復帰し、蓄電池への充電も開始される。 Then, in such a power conditioner, if the storage battery continues to be discharged due to a power failure, for example, and the storage battery becomes over-discharged, only the power for recovery is left in the storage battery. The process of stopping the power supply to the power conditioner is performed. As a result, the power supply to the control power supply that supplies power to the control unit of the power conditioner is cut off, and the power conditioner is stopped. After that, when the power supply from the grid is restored, power is supplied to the control power supply, the power conditioner is restored, and charging of the storage battery is also started.
特開2003-189477号公報Japanese Unexamined Patent Publication No. 2003-189477
 ところで、上記のように、系統からの電力の供給を受けて復帰を行う場合には、パワーコンディショナに蓄電池(或いは発電設備)から制御電源に電力を供給する電源回路と、系統(その他交流電源)から制御電源に電力を供給する電源回路の二通りの電源回路が必要になる。 By the way, as described above, when the power conditioner is supplied with power from the grid to recover, the power conditioner is supplied with power from the storage battery (or power generation equipment) to the control power supply, and the grid (other AC power supply). ) Requires two types of power supply circuits that supply power to the control power supply.
 このため、回路ごとにノイズフィルタ、絶縁電源(絶縁型コンバータ)、整流器を配置する必要が生じ、装置が大型化、高コスト化してしまうという問題があった。 For this reason, it becomes necessary to arrange a noise filter, an insulated power supply (insulated converter), and a rectifier for each circuit, and there is a problem that the device becomes large and costly.
 本発明は、上記のような実情に鑑みてなされたものであり、電力変換装置において、装置を制御する制御部に対して、直流電源及び交流電源のいずれからも電力の供給を受けることができるとともに、装置構成を簡略化することができる技術を提供することを目的とする。 The present invention has been made in view of the above circumstances, and in a power conversion device, the control unit that controls the device can be supplied with power from either a DC power source or an AC power source. At the same time, it is an object of the present invention to provide a technique capable of simplifying the device configuration.
 前記の目的を達成するために、本発明にかかる電力変換装置は、
 DC電源に接続されるDC電源接続部と、
 AC電源に接続されるAC電源接続部と、
 インバータ部と、
 制御部と、
 前記制御部に電力を供給する制御電源部と、
 前記DC電源接続部と前記AC電源接続部とを接続し、前記インバータ部が配置される第1回路と、
 前記第1回路において、前記インバータ部と前記AC電源接続部との間に配置され、前記インバータ部が停止状態である場合に、前記インバータ部と前記AC電源接続部との接続を開放する、第1リレー部と、
 前記DC電源接続部と前記インバータ部との間から分岐して、前記制御電源部に対して直流電力を送電する第2回路と、
 前記第2回路に配置され、前記制御電源部を下流側とする第1ダイオード部と、
 前記AC電源接続部と前記インバータ部との間から分岐して、前記制御電源部に対して交流電力を送電する第3回路と、
 前記第3回路に配置され、前記インバータ部と前記第1リレー部との間から分岐するインバータ側電力供給ラインと、前記第1リレー部と前記AC電源接続部との間から分岐するAC電源側電力供給ライン、を切り替え可能に前記制御電源部側と接続する、第2リレー部と、
 前記第3回路において、前記第2リレー部と前記制御電源部との間に配置され、前記制御電源部を下流側とする第2ダイオード部と、
 前記第2回路及び前記第3回路において共有され、前記第2回路及び前記第3回路に送電された電力を、所定の電圧に変圧して前記制御電源部に供給するDC/DCコンバータと、を有しており、
 前記制御部は、
 前記インバータ部が稼働状態である場合には、前記第2リレー部を前記インバータ側電力供給ラインと前記第2ダイオード部とが接続されるように制御し、
 前記インバータ部が停止状態である場合には、前記第2リレー部を前記AC電源側電力供給ラインと前記第2ダイオード部とが接続されるように制御する、
 ことを特徴とする。
In order to achieve the above object, the power conversion device according to the present invention is
DC power supply connection connected to DC power supply and
The AC power connection connected to the AC power and the AC power connection
Inverter part and
Control unit and
A control power supply unit that supplies power to the control unit,
A first circuit that connects the DC power supply connection unit and the AC power supply connection unit and arranges the inverter unit, and
In the first circuit, it is arranged between the inverter unit and the AC power supply connection unit, and when the inverter unit is in a stopped state, the connection between the inverter unit and the AC power supply connection unit is opened. 1 relay part and
A second circuit that branches from between the DC power supply connection unit and the inverter unit and transmits DC power to the control power supply unit.
A first diode section arranged in the second circuit and having the control power supply section on the downstream side,
A third circuit that branches from between the AC power connection unit and the inverter unit and transmits AC power to the control power supply unit.
An inverter-side power supply line that is arranged in the third circuit and branches from between the inverter and the first relay, and an AC power supply that branches from between the first relay and the AC power connection. The second relay unit, which connects the power supply line to the control power supply unit side in a switchable manner,
In the third circuit, a second diode section arranged between the second relay section and the control power supply section and having the control power supply section on the downstream side and a second diode section.
A DC / DC converter that is shared by the second circuit and the third circuit and that transforms the electric power transmitted to the second circuit and the third circuit to a predetermined voltage and supplies the power to the control power supply unit. Have and
The control unit
When the inverter unit is in an operating state, the second relay unit is controlled so that the power supply line on the inverter side and the second diode unit are connected to each other.
When the inverter unit is in the stopped state, the second relay unit is controlled so that the AC power supply side power supply line and the second diode unit are connected.
It is characterized by that.
 なお、本明細書において、以下では直流のことをDC、交流のことをACとも記載する。また、「制御部」には、MPU(Micro Processing Unit)などのプロセッサ、該プロセッサを含むIC(Integrated Circuit)、電力変換装置の各部を制御する制御回路、などが含まれる。また、「制御電源部」とは、いわゆる電源ICなどからなり、所定電圧の電力の入力を受けて、制御部に電力を供給する構成をいう。 In the present specification, direct current is also referred to as DC, and alternating current is also referred to as AC. Further, the "control unit" includes a processor such as an MPU (Micro Processing Unit), an IC (Integrated Circuit) including the processor, a control circuit for controlling each unit of the power conversion device, and the like. Further, the "control power supply unit" refers to a configuration including a so-called power supply IC or the like, which receives power input of a predetermined voltage and supplies power to the control unit.
 上記のような電力変換装置によれば、装置の制御電源部に対して直流の電力を送電する回路と、交流の電力を送電する回路を有するとともに、両回路のコンバータを共有化することができるため、装置構成を簡略化し、装置コストを低減することができる。また、インバータが稼働中であっても、第3回路が遮断されることがないため、第2回路において何らかの障害が発生して制御電源部に直流電力の送電ができない場合であっても、第3回路から交流電力を供給することが可能になる。即ち、バックアップ回路として機能させることができる。 According to the power conversion device as described above, it has a circuit for transmitting DC power to the control power supply unit of the device and a circuit for transmitting AC power, and the converter of both circuits can be shared. Therefore, the device configuration can be simplified and the device cost can be reduced. Further, since the third circuit is not interrupted even when the inverter is in operation, even if some trouble occurs in the second circuit and DC power cannot be transmitted to the control power supply unit, the first circuit is used. It becomes possible to supply AC power from three circuits. That is, it can function as a backup circuit.
 また、前記DC電源は蓄電池又は発電装置であり、前記AC電源接続部は商用電力系統と接続される入出力端子であり、前記インバータ部は双方向インバータであってもよい。さらに、これらに対するPCS(Power Conditioning System)を含むものであってもよい。なお、ここでいう発電装置には、太陽光・風力などの自然エネルギーによる発電装置、化石燃料による発電装置の他、いわゆる燃料電池も含まれる。このような構成であると、本発明を好適に実施することができる。 Further, the DC power supply may be a storage battery or a power generation device, the AC power supply connection unit may be an input / output terminal connected to a commercial power system, and the inverter unit may be a bidirectional inverter. Further, it may include a PCS (Power Conditioning System) for these. The power generation device referred to here includes a power generation device using natural energy such as solar power and wind power, a power generation device using fossil fuel, and a so-called fuel cell. With such a configuration, the present invention can be preferably carried out.
 また、前記DC/DCコンバータは、前記制御電源部を前記第1回路、前記第2回路及び前記第3回路から絶縁する、絶縁型コンバータであってもよい。このような構成であると、制御電源部を主回路から絶縁させておくことができ、安全性を向上させることができる。 Further, the DC / DC converter may be an isolated converter that insulates the control power supply unit from the first circuit, the second circuit, and the third circuit. With such a configuration, the control power supply unit can be insulated from the main circuit, and safety can be improved.
 また、前記直流電源接続部は蓄電池と接続される入出力端子であり、前記交流電源接続部は商用電力系統と接続される入出力端子であり、前記インバータ部は双方向インバータであってもよい。 Further, the DC power supply connection unit may be an input / output terminal connected to a storage battery, the AC power supply connection unit may be an input / output terminal connected to a commercial power system, and the inverter unit may be a bidirectional inverter. ..
 また、前記制御部は、前記インバータ部への入力直流電圧が所定の閾値を超えた場合に、前記インバータ部が稼働状態であると判定して、前記第2リレー部の制御を行ってもよい。インバータには通常電圧を計測する手段が備わっているため、装置に追加の構成を付加することなく、第2リレー部切り換えのための判定を行うことができる。また、判定のための閾値の設定も容易である。 Further, when the input DC voltage to the inverter unit exceeds a predetermined threshold value, the control unit may determine that the inverter unit is in an operating state and control the second relay unit. .. Since the inverter is provided with a means for measuring a normal voltage, it is possible to make a determination for switching the second relay unit without adding an additional configuration to the device. In addition, it is easy to set a threshold value for determination.
 また、前記制御部は、前記インバータ部のスイッチング動作開始信号を検出した場合に、前記インバータ部が稼働状態であると判定して、前記第2リレー部の制御を行ってもよい。このような構成でも装置に追加の構成を付加することなく、第2リレー部切り換えのための判定を行うことができる。実際のスイッチング動作を検出するため、インバータが稼働していることを確実に把握することができる。 Further, when the control unit detects the switching operation start signal of the inverter unit, it may determine that the inverter unit is in the operating state and control the second relay unit. Even with such a configuration, it is possible to make a determination for switching the second relay unit without adding an additional configuration to the device. Since the actual switching operation is detected, it is possible to surely grasp that the inverter is operating.
 また、前記制御部は、前記インバータ部からの出力交流電圧が所定の閾値を超えた場合に、前記インバータ部が稼働状態であると判定して、前記第2リレー部の制御を行ってもよい。また、前記制御部は、前記インバータ部からの出力交流電流が所定の閾値を超えた場合に、前記インバータ部が稼働状態であると判定して、前記第2リレー部の制御を行ってもよい。インバータ部から出力されるAC電圧、又は電流が計測できる場合には、インバータ部からAC電力が出力されている、即ちインバータが稼働しているということができる。 Further, when the output AC voltage from the inverter unit exceeds a predetermined threshold value, the control unit may determine that the inverter unit is in an operating state and control the second relay unit. .. Further, the control unit may determine that the inverter unit is in an operating state and control the second relay unit when the output alternating current from the inverter unit exceeds a predetermined threshold value. .. When the AC voltage or current output from the inverter unit can be measured, it can be said that the AC power is output from the inverter unit, that is, the inverter is operating.
 また、前記制御部は、前記第1回路における、前記第3回路の前記インバータ側電力供給ラインとの接点と前記AC電源側電力供給ラインとの接点、の電圧レベルが同一である場合に、前記インバータ部が稼働状態であると判定して、前記第2リレー部の制御を行ってもよい。 Further, when the voltage level of the contact of the third circuit with the inverter side power supply line and the contact with the AC power supply side power supply line in the first circuit is the same, the control unit is said to be the same. It may be determined that the inverter unit is in the operating state, and the second relay unit may be controlled.
 また、前記制御部は、前記直流電源接続部への入力直流電流が所定の閾値を超えた場合に、前記インバータ部が稼働状態であると判定して、前記第2リレー部の制御を行ってもよい。 Further, when the input DC current to the DC power supply connection unit exceeds a predetermined threshold value, the control unit determines that the inverter unit is in an operating state and controls the second relay unit. May be good.
 また、前記制御部は、前記直流電源接続部から前記蓄電池への出力直流電流が所定の閾値を超えた場合に、前記インバータ部が稼働状態であると判定して、前記第2リレー部の制御を行ってもよい。 Further, the control unit determines that the inverter unit is in an operating state when the output DC current from the DC power supply connection unit to the storage battery exceeds a predetermined threshold value, and controls the second relay unit. May be done.
 また、前記蓄電池は、蓄電池制御システムを備えており、前記制御部は、前記蓄電池制御システムから、前記蓄電池の充放電に係る情報を取得し、前記蓄電池が所定の充放電状態である場合に、前記インバータ部が稼働状態であると判定して、前記第2リレー部の制御を行ってもよい。電力変換装置内のステータスからはインバータ部の稼働が判断できない場合であっても、蓄電池から充放電が行われている情報を取得することができれば、そのことによってインバータ部が稼働していることを判定することができる。 Further, the storage battery includes a storage battery control system, and the control unit acquires information related to charging / discharging of the storage battery from the storage battery control system, and when the storage battery is in a predetermined charging / discharging state, the storage battery is in a predetermined charging / discharging state. It may be determined that the inverter unit is in an operating state, and the second relay unit may be controlled. Even if the operation of the inverter unit cannot be determined from the status in the power converter, if the information on charging / discharging is obtained from the storage battery, it means that the inverter unit is operating. It can be determined.
 また、本発明は、上記の電力変換装置を備える系統連系システムとして捉えることもできる。 The present invention can also be regarded as a grid interconnection system including the above power conversion device.
 また、上記構成及び処理の各々は技術的な矛盾が生じない限り互いに組み合わせて本発明を構成することができる。 Further, each of the above configurations and processes can be combined with each other to construct the present invention as long as no technical contradiction occurs.
 本発明によれば、電力変換装置において、装置を制御する制御部に対して、直流電源及び交流電源のいずれからも電力の供給を受けることができるとともに、装置構成を簡略化することができる技術を提供することができる。 According to the present invention, in a power conversion device, the control unit that controls the device can be supplied with power from either a DC power source or an AC power source, and the device configuration can be simplified. Can be provided.
図1は、本発明の適用例に係る電力変換装置9の概略構成を示すブロック図である。FIG. 1 is a block diagram showing a schematic configuration of a power conversion device 9 according to an application example of the present invention. 図2は、実施形態1に係る系統連系蓄電システムの概略構成を示すブロック図である。FIG. 2 is a block diagram showing a schematic configuration of a grid-connected power storage system according to the first embodiment. 図3は、実施形態1に係る電力変換装置で行わるリレー制御のタイミングを示すタイミングチャートである。FIG. 3 is a timing chart showing the timing of relay control performed by the power conversion device according to the first embodiment. 図4は、実施形態1の第1の変形例に係るシステムの概略構成を示すブロック図である。FIG. 4 is a block diagram showing a schematic configuration of the system according to the first modification of the first embodiment. 図5は、実施形態1の第2の変形例に係るシステムの概略構成を示すブロック図である。FIG. 5 is a block diagram showing a schematic configuration of a system according to a second modification of the first embodiment.
 以下、図面を参照して、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 <適用例>
 (適用例の構成)
 本発明は例えば、図1に示すような電力変換装置9に適用することができる。図1は本適用例に係る電力変換装置9の概略構成を示すブロック図である。本適用例に係る電力変換装置9は、例えば、蓄電池、太陽光発電パネル、その他の発電システム、などから入力されるDC電力をAC電力に変換して出力する、いわゆるパワーコンディショナに該当する。
<Application example>
(Configuration of application example)
The present invention can be applied to, for example, the power conversion device 9 as shown in FIG. FIG. 1 is a block diagram showing a schematic configuration of a power conversion device 9 according to this application example. The power conversion device 9 according to this application example corresponds to a so-called power conditioner that converts DC power input from a storage battery, a photovoltaic power generation panel, another power generation system, or the like into AC power and outputs it.
 図1に示すように、電力変換装置9は、DC電源接続部911、AC電源接続部912、インバータ913、第1リレー部914、主回路ノイズフィルタ915、昇圧回路916、第1ダイオード921、第2リレー部931、第2ダイオード932、制御電源ノイズフィルタ933、制御部941、制御電源部942、絶縁電源943を有している。 As shown in FIG. 1, the power conversion device 9 includes a DC power supply connection unit 911, an AC power supply connection unit 912, an inverter 913, a first relay unit 914, a main circuit noise filter 915, a booster circuit 916, a first diode 921, and a first diode. It has two relay units 931, a second diode 932, a control power supply noise filter 933, a control unit 941, a control power supply unit 942, and an isolated power supply 943.
 また、電力変換装置9内には、DC電源接続部911とAC電源接続部912とを接続し、インバータ913が配置される第1回路91と、DC電源接続部911とインバータ913との間から分岐して、制御電源部942と接続される第2回路92と、AC電源接続部912とインバータ913との間から分岐して、制御電源部942と接続される第3回路93と、が形成される。 Further, in the power conversion device 9, the DC power supply connection unit 911 and the AC power supply connection unit 912 are connected, and the first circuit 91 in which the inverter 913 is arranged, and between the DC power supply connection unit 911 and the inverter 913. A second circuit 92 that branches and is connected to the control power supply unit 942, and a third circuit 93 that branches from between the AC power supply connection unit 912 and the inverter 913 and is connected to the control power supply unit 942 are formed. Will be done.
 DC電源接続部911は、外部とDC電力の入出力を行う入出力端子と、入出力されるDC電圧及び電流を計測するセンサと(いずれも図示せず)を、備えている。また、AC電源接続部は、外部とAC電力の入出力を行う入出力端子と、入出力されるAC電圧及び電流を計測するセンサを備えている。 The DC power supply connection unit 911 includes an input / output terminal for inputting / outputting DC power to and from the outside, and a sensor for measuring the input / output DC voltage and current (neither is shown). Further, the AC power supply connection unit includes an input / output terminal for inputting / outputting AC power to / from the outside, and a sensor for measuring the input / output AC voltage and current.
 インバータ913はDC電力とAC電力とを双方向に変換するスイッチング回路を備えており、入力されるDC電力をAC電力に変換して、或いは、入力されるAC電力をDC電力に変換して出力する双方向DC/ACインバータである。インバータ913はDC電源接続部911に外部からDCが入力されている場合には、DC電力をAC電力に変換してAC電源接続部912側に出力する。一方、AC電源接続部912に外部からACが入力されている場合には、AC電力をDC電力に変換してDC電源接続部911側に出力する。また、インバータ913は、DC側、AC側双方において、入出力される電圧、電流を計測するセンサ(図示せず)を備えている。 The inverter 913 is provided with a switching circuit that converts DC power and AC power in both directions, and converts the input DC power into AC power or converts the input AC power into DC power and outputs the power. It is a bidirectional DC / AC inverter. When DC is input to the DC power supply connection unit 911 from the outside, the inverter 913 converts the DC power into AC power and outputs it to the AC power supply connection unit 912 side. On the other hand, when AC is input to the AC power supply connection unit 912 from the outside, the AC power is converted into DC power and output to the DC power supply connection unit 911 side. Further, the inverter 913 includes a sensor (not shown) for measuring input / output voltage and current on both the DC side and the AC side.
 第1リレー部914は、AC電源接続部912とインバータ913との間に配置され、両者間の回路を開閉する。具体的には、後述の制御部941が、インバータ913が稼働状態にある場合にはAC電源接続部912とインバータ913とをリレーオンし、停止している場合には、AC電源接続部912とインバータ913とをリレーオフする。即ち、電力変換が行われていない場合には、AC電源接続部912とインバータ913とは電気的に遮断される。 The first relay unit 914 is arranged between the AC power supply connection unit 912 and the inverter 913, and opens and closes the circuit between the two. Specifically, the control unit 941, which will be described later, relays on the AC power connection unit 912 and the inverter 913 when the inverter 913 is in operation, and relays on the AC power connection unit 912 and the inverter when the inverter 913 is stopped. Relay off with 913. That is, when the power conversion is not performed, the AC power connection unit 912 and the inverter 913 are electrically cut off.
 主回路ノイズフィルタ915は、インバータ913のAC出力側に配置され、インバータ913から出力されるAC電力に生じるノイズを低減する。 The main circuit noise filter 915 is arranged on the AC output side of the inverter 913 to reduce the noise generated in the AC power output from the inverter 913.
 昇圧回路916は、例えばDC/DCコンバータであり、DC電源接続部911から出力されたDCの電圧を所定レベルまで昇圧させる。 The booster circuit 916 is, for example, a DC / DC converter, and boosts the DC voltage output from the DC power supply connection unit 911 to a predetermined level.
 第1ダイオード921は、第2回路92内に配置され、DC電源接続部911側をアノード、制御電源部942側をカソードとして、第2回路92を流れるDC電力を整流する。第2ダイオード932は、第3回路93内に配置され、第2リレー931側をアノード、制御電源部942側をカソードとして、第3回路93を流れるAC電力を整流する。 The first diode 921 is arranged in the second circuit 92, and rectifies the DC power flowing through the second circuit 92 with the DC power supply connection portion 911 side as the anode and the control power supply portion 942 side as the cathode. The second diode 932 is arranged in the third circuit 93, and rectifies the AC power flowing through the third circuit 93 with the second relay 931 side as the anode and the control power supply unit 942 side as the cathode.
 第2リレー部931は、いわゆるC接点リレーであり、第3回路内に配置されて、インバータ913と第1リレー部914との間から分岐するインバータ側電力供給ラインと、第1リレー部914とAC電源接続部912との間から分岐するAC電源側電力供給ラインと、を切り替え可能に制御電源部942と接続する。 The second relay unit 931 is a so-called C-contact relay, which is arranged in the third circuit and has an inverter-side power supply line that branches from between the inverter 913 and the first relay unit 914, and the first relay unit 914. The AC power supply side power supply line branched from the AC power supply connection unit 912 is connected to the control power supply unit 942 so as to be switchable.
 制御電源ノイズフィルタ933は、第3回路93内の第2リレー部931よりも制御電源部942側に配置され、AC電力のノイズを低減する。 The control power supply noise filter 933 is arranged closer to the control power supply unit 942 than the second relay unit 931 in the third circuit 93 to reduce AC power noise.
 制御部941は、例えばMCUなどのプロセッサ、該プロセッサを含むIC、電力変換装置の各部を制御する制御回路など、を含んで構成され、電力変換装置9の各部の制御を司る。制御電源部942はいわゆる電源ICなどからなり、後述する絶縁電源943によって変圧された電力の供給を受けて、制御部941の各構成が機能を果たすために必要な電力を必要に応じて変圧しつつ供給する。 The control unit 941 is configured to include, for example, a processor such as an MCU, an IC including the processor, a control circuit for controlling each part of the power conversion device, and the like, and controls each part of the power conversion device 9. The control power supply unit 942 is composed of a so-called power supply IC or the like, and receives the power supplied by the isolated power supply 943 described later, and transforms the power required for each configuration of the control unit 941 to perform its function as necessary. Supply while supplying.
 絶縁電源943は、例えばフライバック方式などの絶縁型DC/DCコンバータであり、第2回路92及び第3回路93から入力される電力を所定の電圧(例えば25V)に変圧して、第1~第3回路からは絶縁した状態で制御電源部942に出力する。 The insulated power supply 943 is an isolated DC / DC converter such as a flyback system, and transforms the power input from the second circuit 92 and the third circuit 93 to a predetermined voltage (for example, 25V) to transform the first to the first to the power input. It is output to the control power supply unit 942 in an insulated state from the third circuit.
 (制御部の機能)
 電力変換装置9において、制御部941はインバータ913へ入力されるDC電力及びAC電力の電圧を計測することにより、インバータ913が稼働状態か否かを判定する。DC電源接続部911又はAC電源接続部912のいずれかから電力が供給されている場合には、インバータ913が備えるセンサにより入力電圧(及び電流)が計測されるため、これによりインバータ913が稼働していると判定できる。
(Function of control unit)
In the power conversion device 9, the control unit 941 determines whether or not the inverter 913 is in an operating state by measuring the voltages of the DC power and the AC power input to the inverter 913. When power is supplied from either the DC power supply connection unit 911 or the AC power supply connection unit 912, the input voltage (and current) is measured by the sensor provided in the inverter 913, so that the inverter 913 operates. It can be determined that it is.
 一方、DC電源接続部911及びAC電源接続部912のいずれからも電力が供給されていない場合には、インバータ913は停止状態となる。具体的には、インバータ913のセンサで計測される入力電圧が所定の値を下回った場合には、インバータ913は稼働を停止した(或いは、間もなく停止する)と判定できる。 On the other hand, if power is not supplied from either the DC power supply connection unit 911 or the AC power supply connection unit 912, the inverter 913 is stopped. Specifically, when the input voltage measured by the sensor of the inverter 913 falls below a predetermined value, it can be determined that the inverter 913 has stopped (or will soon stop) its operation.
 そして、制御部941は、インバータ913が稼働状態である場合には、第1リレー部914をリレーオンし、第2リレー部931を、インバータ側電力供給ラインに接続するように制御する。一方、インバータ913が停止状態である場合には、第1リレー部914をリレーオフし、第2リレー部931を、AC電源側電力供給ラインに接続するように制御する。 Then, when the inverter 913 is in the operating state, the control unit 941 relays on the first relay unit 914 and controls the second relay unit 931 so as to be connected to the power supply line on the inverter side. On the other hand, when the inverter 913 is in the stopped state, the first relay unit 914 is relayed off, and the second relay unit 931 is controlled to be connected to the AC power supply side power supply line.
 このため、インバータ913が稼働中には、制御電源部942には、第2回路92及びインバータ側電力供給ラインで接続された第3回路93から、電力が供給されることになる。一方、インバータ913が停止状態である場合には、制御電源部942にはAC電源側電力供給ラインで接続された第3回路93のみから、電力が供給される。 Therefore, while the inverter 913 is in operation, power is supplied to the control power supply unit 942 from the second circuit 92 and the third circuit 93 connected by the inverter side power supply line. On the other hand, when the inverter 913 is in the stopped state, power is supplied to the control power supply unit 942 only from the third circuit 93 connected by the AC power supply side power supply line.
 実際には、インバータ913が停止状態である場合には、DC電源接続部911及びAC電源接続部912のいずれからも電力が供給されていない状態になり、制御部941を動作させる電力が供給されないことになる。このため、制御部941は、インバータ913への入力電圧が所定の値を下回った場合には、完全に制御電源部942への電力の供給が途絶える前に、第2リレー部931をAC電源側電力供給ラインに接続するように切り換えるようにしておいてもよい。 Actually, when the inverter 913 is in the stopped state, the power is not supplied from either the DC power supply connection unit 911 or the AC power supply connection unit 912, and the power for operating the control unit 941 is not supplied. It will be. Therefore, when the input voltage to the inverter 913 falls below a predetermined value, the control unit 941 sets the second relay unit 931 on the AC power supply side before the power supply to the control power supply unit 942 is completely cut off. It may be switched to connect to the power supply line.
 上記のような電力変換装置9を、例えば、AC電源を商用電力系統、DC電源を蓄電池とするような電力変換システムに用いると、AC電源からの電力供給が何らかの事情で途絶し、さらに蓄電池が過放電して、電力変換装置9が停止してしまった場合であっても、AC電源からの電力供給が回復した際には、システムを復帰させることができる。 When the above power conversion device 9 is used in a power conversion system in which the AC power supply is a commercial power system and the DC power supply is a storage battery, for example, the power supply from the AC power supply is interrupted for some reason, and the storage battery further becomes Even if the power converter 9 is stopped due to over-discharging, the system can be restored when the power supply from the AC power source is restored.
 また、制御電源部942への電力供給のためのDC側回路(第2回路)と、AC側回路(第3回路)とで、絶縁電源943を共用化することにより、装置の小型化及び製造コストの低減を図ることができる。 Further, by sharing the insulated power supply 943 between the DC side circuit (second circuit) and the AC side circuit (third circuit) for supplying power to the control power supply unit 942, the device can be downsized and manufactured. The cost can be reduced.
 さらに、第1リレー部914がリレーオンの場合であっても、第3回路93がインバータ側電力供給ラインで接続されていることにより、制御電源部942には常時第3回路93から電力が供給されることになる。このため、第2回路92に何らかの障害が生じて第2回路92を介して制御電源部942に電力を供給できない場合であっても、第3回路93から電力を供給することができる。 Further, even when the first relay unit 914 is relayed on, the control power supply unit 942 is always supplied with power from the third circuit 93 because the third circuit 93 is connected by the inverter side power supply line. Will be. Therefore, even if some trouble occurs in the second circuit 92 and the power cannot be supplied to the control power supply unit 942 via the second circuit 92, the power can be supplied from the third circuit 93.
 <実施形態1>
 次に、本発明の実施形態の一例である系統連系蓄電システム1について説明する。ただし、この実施形態に記載されている構成部品の寸法、材質、形状、その相対配置などは、特に記載がない限りは、この発明の範囲をそれらのみに限定する趣旨のものではない。
<Embodiment 1>
Next, the grid interconnection power storage system 1 which is an example of the embodiment of the present invention will be described. However, unless otherwise specified, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention to those.
 (システム構成)
 図2を参照して、本発明の実施形態に係る系統連系蓄電システム1の全体構成について説明する。系統連系蓄電システム1は、電力変換装置10、蓄電池ユニット20を有しており、電力変換装置10は、DC電源接続部111で蓄電池ユニット20と、AC電源接続部112で系統30と接続されている。
(System configuration)
The overall configuration of the grid-connected power storage system 1 according to the embodiment of the present invention will be described with reference to FIG. The grid-connected power storage system 1 has a power conversion device 10 and a storage battery unit 20, and the power conversion device 10 is connected to the storage battery unit 20 by the DC power supply connection unit 111 and the system 30 by the AC power supply connection unit 112. ing.
 電力変換装置10は、DC電源接続部111、AC電源接続部112、インバータ113、第1リレー部(連系リレー部)114、昇圧回路115、第1ダイオード121、第2リレー部(切り換えリレー部)131、第2ダイオード132、制御部141、制御電源部142、絶縁電源143、及び、図示しない主回路ノイズフィルタ、制御電源ノイズフィルタを有している。 The power conversion device 10 includes a DC power supply connection unit 111, an AC power supply connection unit 112, an inverter 113, a first relay unit (interconnection relay unit) 114, a booster circuit 115, a first diode 121, and a second relay unit (switching relay unit). ) 131, a second diode 132, a control unit 141, a control power supply unit 142, an isolated power supply 143, and a main circuit noise filter and a control power supply noise filter (not shown).
 電力変換装置10は、適用例で説明した電力変換装置9と同様の構成であり、各構成要素についても適用例で説明したものと同様であるため、それぞれの構成要素についての詳細な説明は省略する。また、DC電源接続部111とAC電源接続部112とを接続する第1回路と、DC電源接続部111とインバータ113との間から分岐して、制御電源部142と接続される第2回路と、AC電源接続部112とインバータ113との間から分岐して、制御電源部142と接続される第3回路と、が形成される点も同様である。また、第3回路がインバータ側電力供給ラインと、AC電源側電力供給ラインとを備えている点も同様である。 Since the power conversion device 10 has the same configuration as the power conversion device 9 described in the application example and each component is also the same as that described in the application example, detailed description of each component is omitted. To do. Further, the first circuit that connects the DC power supply connection unit 111 and the AC power supply connection unit 112, and the second circuit that branches from between the DC power supply connection unit 111 and the inverter 113 and is connected to the control power supply unit 142. The same applies to the fact that a third circuit, which is branched from between the AC power supply connection unit 112 and the inverter 113 and is connected to the control power supply unit 142, is formed. The same applies to the fact that the third circuit includes an inverter-side power supply line and an AC power supply-side power supply line.
 蓄電池ユニット20は、蓄電池21、DC入出力部22、DCリレー部23、サーキットブレーカ24、制御電源部25、BMS(Battery Management Unit)26を備えている。 The storage battery unit 20 includes a storage battery 21, a DC input / output unit 22, a DC relay unit 23, a circuit breaker 24, a control power supply unit 25, and a BMS (Battery Management Unit) 26.
 蓄電池21は、例えばリチウムイオン電池などの蓄電池であり、BMS26の制御に従って電力の充放電を行う。DC入出力部22は、電力変換装置10と接続されるDC入出力端子及び電圧及び電流を計測するセンサを備えている。DCリレー部23は、BMS26の制御に従って、DC入出力部22との電流の接続と遮断を切り替える。BMS26は蓄電池ユニット20の各構成要素の制御を司る制御部として機能する。 The storage battery 21 is, for example, a storage battery such as a lithium ion battery, and charges and discharges electric power according to the control of the BMS 26. The DC input / output unit 22 includes a DC input / output terminal connected to the power conversion device 10 and a sensor for measuring voltage and current. The DC relay unit 23 switches the connection and disconnection of the current with the DC input / output unit 22 according to the control of the BMS 26. The BMS 26 functions as a control unit that controls each component of the storage battery unit 20.
 (システムの動作)
 系統連系蓄電システム1は、例えば夜間など電力料金が廉価な時間帯において、系統30から電力の供給を受け(買電して)、電力変換装置10で電力を交流から直流に変換したうえで、蓄電池ユニット20に出力し、蓄電池21に電力を充電する。そして、蓄電池21に所定値以上(例えば、SOC10%程度)電力がある場合には、蓄電池21から放電し、電力変換装置10(及び、電力変換装置10に接続される負荷)に電力を供給する。
(System operation)
The grid-connected power storage system 1 receives power from the system 30 (purchases) during a time when the power charge is low, such as at night, and converts the power from alternating current to direct current with the power conversion device 10. , Output to the storage battery unit 20 to charge the storage battery 21 with electric power. When the storage battery 21 has power equal to or higher than a predetermined value (for example, about 10% SOC), it is discharged from the storage battery 21 and power is supplied to the power conversion device 10 (and the load connected to the power conversion device 10). ..
 一方、蓄電池21のSOC(States Of Charge)が10%以下になると、BMS26はDCリレー部23をリレーオフする制御を行い、蓄電池21から電力変換装置10への電力の供給を停止する。なお、蓄電池21から制御電源部25への電源の供給は継続して行われ、万一制御電源部25へ供給する電力もなくなった場合には、サーキットブレーカ24を作動して蓄電池21と回路とを遮断し、回路の保護を行う。この場合には、ユーザーによる手動復帰が必要になる。 On the other hand, when the SOC (States Of Charge) of the storage battery 21 becomes 10% or less, the BMS 26 controls to relay off the DC relay unit 23 and stops the supply of electric power from the storage battery 21 to the power conversion device 10. The power supply from the storage battery 21 to the control power supply unit 25 is continuously performed, and if the power supply to the control power supply unit 25 is exhausted, the circuit breaker 24 is operated to connect the storage battery 21 and the circuit. To protect the circuit. In this case, manual recovery by the user is required.
 蓄電池21から電力変換装置10への電力の供給を停止した場合、系統30から電力の供給を受け得るのであれば、電力変換装置10は系統30からの電力の供給を受けて稼働状態を維持することができる。そして、必要に応じて電力変換を行い、蓄電池21へ電力の供給を行うことができる。この場合には、BMS26はDCリレー部23をリレーオンする制御を行って、回路を接続する。 When the supply of electric power from the storage battery 21 to the electric power converter 10 is stopped, if the electric power can be supplied from the system 30, the electric power converter 10 receives the electric power from the system 30 and maintains the operating state. be able to. Then, electric power can be converted as needed to supply electric power to the storage battery 21. In this case, the BMS 26 controls to relay on the DC relay unit 23 to connect the circuit.
 一方、系統30が停電などの事情により、電力変換装置10への電力の供給が停止した場合には、インバータ113は停止状態となり、電力変換装置10の制御部141への電力の供給が断絶する。 On the other hand, when the power supply to the power conversion device 10 is stopped due to a power failure or the like in the system 30, the inverter 113 is stopped and the power supply to the control unit 141 of the power conversion device 10 is cut off. ..
 この際、制御部141は、適用例で説明した際と同様に、第1リレー部114をリレーオフし、第3回路がAC電源側電力供給ラインで接続されるように第1リレー及び第2リレーを制御する。そして、系統30からの電力の供給が回復した場合には、AC電源側電力供給ラインで接続された第3回路を介して制御電源部142、制御部141に電力を供給する。 At this time, the control unit 141 relays off the first relay unit 114 as described in the application example, and the first relay and the second relay so that the third circuit is connected by the AC power supply side power supply line. To control. Then, when the power supply from the system 30 is restored, the power is supplied to the control power supply unit 142 and the control unit 141 via the third circuit connected by the AC power supply side power supply line.
 電力の供給を受けた制御部141は、例えばCAN(Controller Area Network)などの通信方式によりBMS26と通信を行い、電力供給の回復を伝達する。そして、BMS26は蓄電池21に残っていた復帰用の電力を電力変換装置10に出力し、インバータ113を稼働させる。 The control unit 141 that receives the power supply communicates with the BMS 26 by a communication method such as CAN (Controller Area Network), and transmits the recovery of the power supply. Then, the BMS 26 outputs the recovery power remaining in the storage battery 21 to the power conversion device 10 to operate the inverter 113.
 そして、インバータ113が稼働状態にあることを制御部141が検知すると、制御部141は、第2リレー部131を、インバータ側電力供給ラインで接続するように切り換え、第1リレー部をリレーオンして系統連系運転を行う。これら一連の、インバータ113の稼働・停止状態と、各リレー部の接続状態との関係を図3に示す。 Then, when the control unit 141 detects that the inverter 113 is in the operating state, the control unit 141 switches the second relay unit 131 so as to be connected by the inverter side power supply line, and relays on the first relay unit. Perform grid interconnection operation. FIG. 3 shows the relationship between the operating / stopped state of the inverter 113 and the connection state of each relay unit in this series.
 なお、図3の監視ポイントにおいて、インバータ113の動作を検知する手法には様々なものが考えられる。例えば、インバータ113への入力直流電圧が所定の閾値を超えた場合に、インバータ113が動作ONであると判定してもよい。 At the monitoring point in FIG. 3, various methods for detecting the operation of the inverter 113 can be considered. For example, when the input DC voltage to the inverter 113 exceeds a predetermined threshold value, it may be determined that the inverter 113 is in operation.
 また、インバータ113のスイッチング動作開始信号を検出した場合に、インバータ113が動作ONであると判定してもよい。また、インバータ113からの出力交流電圧が所定の閾値を超えた場合に、インバータ113が動作ONであると判定してもよい。またインバータ113からの出力交流電流が所定の閾値を超えた場合に、インバータ113の動作がONであると判定してもよい。また第2リレー部131の両端の電圧レベルが同一である場合に、インバータ113が動作ONであると判定してもよい。 Further, when the switching operation start signal of the inverter 113 is detected, it may be determined that the operation of the inverter 113 is ON. Further, when the output AC voltage from the inverter 113 exceeds a predetermined threshold value, it may be determined that the inverter 113 is in operation. Further, when the output alternating current from the inverter 113 exceeds a predetermined threshold value, it may be determined that the operation of the inverter 113 is ON. Further, when the voltage levels at both ends of the second relay unit 131 are the same, it may be determined that the inverter 113 is in operation.
 また、DC電源接続部111への入力DC電流が所定の閾値を超えた場合に、インバータ113が動作ONであると判定してもよい。また、DC電源接続部111からDC入出力部22への出力DC電流が所定の閾値を超えた場合に、インバータ113が動作ONである判定してもよい。また、BMS26から、蓄電池21が所定の充放電状態であるとの情報を取得した場合に、インバータ113が動作ONであると判定してもよい。 Further, when the input DC current to the DC power supply connection unit 111 exceeds a predetermined threshold value, it may be determined that the inverter 113 is in operation. Further, when the output DC current from the DC power supply connection unit 111 to the DC input / output unit 22 exceeds a predetermined threshold value, it may be determined that the inverter 113 is in operation. Further, when the information that the storage battery 21 is in a predetermined charge / discharge state is acquired from the BMS 26, it may be determined that the inverter 113 is in operation.
 なお、インバータ113の動作がOFF即ち停止状態であることの検知も、上記と同様に様々な手法で行うことができる。 It should be noted that the detection that the operation of the inverter 113 is OFF, that is, the stopped state can also be performed by various methods as described above.
 上記のような系統連系蓄電システム1によると、系統30からの停電が長時間に亘っても自動復帰が可能な蓄電システムを、電力変換装置10の構成を簡略化しつつ、提供することが可能になる。 According to the grid-connected power storage system 1 as described above, it is possible to provide a power storage system capable of automatically recovering from a power failure from the system 30 for a long time while simplifying the configuration of the power conversion device 10. become.
 <その他>
 上記の実施形態は、本発明を例示的に説明するものに過ぎず、本発明は上記の具体的な形態には限定されない。本発明はその技術的思想の範囲内で種々の変形が可能である。例えば、実施形態1の蓄電池の構成に変えて発電設備を接続するシステム、或いは実施形態1の形態に加えて、他の発電システム、負荷を接続するシステムとすることができる。
<Others>
The above-described embodiment is merely an example of the present invention, and the present invention is not limited to the above-mentioned specific embodiment. The present invention can be modified in various ways within the scope of its technical idea. For example, it may be a system for connecting power generation equipment instead of the configuration of the storage battery of the first embodiment, or a system for connecting another power generation system or a load in addition to the embodiment of the first embodiment.
 図4は実施形態1に係る系統連系蓄電システム1の第1の変形例のシステム構成を示す模式図である。系統連系蓄電システム2は、実施形態1の系統連系蓄電システム1と比べて、電力変換装置100に、自立負荷40と太陽光発電パネル50及び太陽光発電パワーコンディショニングシステム51とが接続されている点において異なっており、その他の点は実施形態1の構成と同様である。実施形態1と同様の構成については、同一の符号を付し、詳細な説明を省略する。 FIG. 4 is a schematic diagram showing a system configuration of a first modification of the grid-connected power storage system 1 according to the first embodiment. In the grid-connected power storage system 2, as compared with the grid-connected power storage system 1 of the first embodiment, the self-sustaining load 40, the photovoltaic power generation panel 50, and the photovoltaic power generation power conditioning system 51 are connected to the power conversion device 100. It differs in that it is the same as the configuration of the first embodiment in other points. The same components as those in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
 系統連系蓄電システム2の電力変換装置100は、インバータ113と第1リレー部114との間から分岐し、外部の自立負荷にAC電力を供給する自立出力端子151と、太陽光発電パワーコンディショニングシステム51からAC電力の供給を受ける自立入力端子152とを備えている。このようなシステム構成とすることで、太陽光発電システムと蓄電システムとを組み合わせて実施することができる。なお、発電システムは太陽光に限らず、風力発電システムなどのその他の発電設備と組み合わせることも可能である。 The power conversion device 100 of the grid-connected power storage system 2 branches from between the inverter 113 and the first relay unit 114, and has an independent output terminal 151 that supplies AC power to an external independent load, and a photovoltaic power conditioning system. It is provided with an independent input terminal 152 that receives AC power from 51. With such a system configuration, the photovoltaic power generation system and the power storage system can be combined and implemented. The power generation system is not limited to sunlight, and can be combined with other power generation equipment such as a wind power generation system.
 なお、上記の系統連系蓄電システム1及び系統連系蓄電システム2は、本発明に係る系統連系システムの一例であり、本発明に係る電力変換装置は必ずしも蓄電池と組み合わせて用いる必要がない。そのような系統連系システムの例を、図5を用いて説明する。 The grid-connected power storage system 1 and the grid-connected power storage system 2 are examples of the grid-connected power storage system according to the present invention, and the power conversion device according to the present invention does not necessarily have to be used in combination with a storage battery. An example of such a grid interconnection system will be described with reference to FIG.
 図5は、実施形態1の他の変形例に係る、系統連系システム3の概略構成を示す図である。図5に示すように、系統連系システム3は、実施形態1の系統連系蓄電システム1と比べて、電力変換装置100に、蓄電池ユニット20に変えて太陽光発電パネル50が接続されている点において異なっており、その他の点は実施形態1の構成と同様である。実施形態1と同様の構成については、同一の符号を付し、詳細な説明を省略する。 FIG. 5 is a diagram showing a schematic configuration of a grid interconnection system 3 according to another modification of the first embodiment. As shown in FIG. 5, in the grid interconnection system 3, the photovoltaic power generation panel 50 is connected to the power conversion device 100 instead of the storage battery unit 20 as compared with the grid interconnection power storage system 1 of the first embodiment. It differs in that it is the same as the configuration of the first embodiment in other points. The same components as those in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
 また、上記の各例では、制御電源部と接続されるDC/DCコンバータは、絶縁型のコンバータであったが、必ずしも当該コンバータが絶縁型である必要はない。 Further, in each of the above examples, the DC / DC converter connected to the control power supply unit is an isolated type converter, but the converter does not necessarily have to be an isolated type.
 <付記>
 本発明の一の態様は、
 DC電源に接続されるDC電源接続部(911)と、
 AC電源に接続されるAC電源接続部(912)と、
 インバータ部(913)と、
 制御部(941)と、
 前記制御部に電力を供給する制御電源部(942)と、
 前記DC電源接続部と前記AC電源接続部とを接続し、前記インバータ部が配置される第1回路(91)と、
 前記第1回路において、前記インバータ部と前記AC電源接続部との間に配置され、前記インバータ部が停止状態である場合に、前記インバータ部と前記AC電源接続部との接続を開放する、第1リレー部(914)と、
 前記DC電源接続部と前記インバータ部との間から分岐して、前記制御電源部に対して直流電力を送電する第2回路(92)と、
 前記第2回路に配置され、前記制御電源部を下流側とする第1ダイオード部(921)と、
 前記AC電源接続部と前記インバータ部との間から分岐して、前記制御電源部に対して交流電力を送電する第3回路(93)と、
 前記第3回路に配置され、前記インバータ部と前記第1リレー部との間から分岐するインバータ側電力供給ラインと、前記第1リレー部と前記AC電源接続部との間から分岐するAC電源側電力供給ライン、を切り替え可能に前記制御電源部側と接続する、第2リレー部(931)と、
 前記第3回路において、前記第2リレー部と前記制御電源部との間に配置され、前記制御電源部を下流側とする第2ダイオード部(932)と、
 前記第2回路及び前記第3回路において共有され、前記第2回路及び前記第3回路に送電された電力を、所定の電圧に変圧して前記制御電源部に供給するDC/DCコンバータ(943)と、を有しており、
 前記制御部は、
 前記インバータ部が稼働状態である場合には、前記第2リレー部を前記インバータ側電力供給ラインと前記第2ダイオード部とが接続されるように制御し、
 前記インバータ部が停止状態である場合には、前記第2リレー部を前記AC電源側電力供給ラインと前記第2ダイオード部とが接続されるように制御する、
 ことを特徴とする電力変換装置(9)である。
<Additional notes>
One aspect of the present invention is
The DC power supply connection (911) connected to the DC power supply and
The AC power connection (912) connected to the AC power and
Inverter section (913) and
Control unit (941) and
A control power supply unit (942) that supplies electric power to the control unit, and
A first circuit (91) that connects the DC power supply connection unit and the AC power supply connection unit and arranges the inverter unit, and
In the first circuit, it is arranged between the inverter unit and the AC power supply connection unit, and when the inverter unit is in a stopped state, the connection between the inverter unit and the AC power supply connection unit is opened. 1 relay part (914) and
A second circuit (92) that branches from between the DC power supply connection unit and the inverter unit and transmits DC power to the control power supply unit.
A first diode section (921) arranged in the second circuit and having the control power supply section on the downstream side, and
A third circuit (93) that branches from between the AC power connection unit and the inverter unit and transmits AC power to the control power supply unit.
An inverter-side power supply line that is arranged in the third circuit and branches from between the inverter and the first relay, and an AC power supply that branches from between the first relay and the AC power connection. The second relay unit (931), which connects the power supply line to the control power supply unit side so as to be switchable,
In the third circuit, a second diode unit (932) arranged between the second relay unit and the control power supply unit and having the control power supply unit on the downstream side and a second diode unit (932).
A DC / DC converter (943) that transforms the electric power shared in the second circuit and the third circuit and transmitted to the second circuit and the third circuit to a predetermined voltage and supplies the power to the control power supply unit. And have
The control unit
When the inverter unit is in an operating state, the second relay unit is controlled so that the power supply line on the inverter side and the second diode unit are connected to each other.
When the inverter unit is in the stopped state, the second relay unit is controlled so that the AC power supply side power supply line and the second diode unit are connected.
The power conversion device (9) is characterized in that.
 1、2・・・系統連系蓄電システム
 3・・・系統連系システム
 9、10、100・・・電力変換装置
 91・・・第1回路
 92・・・第2回路
 93・・・第3回路
 111、911・・・DC電源接続部
 112、912・・・AC電源接続部
 113、913・・・インバータ
 114、914・・・第1リレー部
 115、916・・・昇圧回路
 121、921・・・第1ダイオード
 131、931・・・第2リレー部
 132、932・・・第2ダイオード
 141、941・・・制御部
 142、942・・・制御電源部
 143、943・・・絶縁電源
 20・・・蓄電池ユニット
 21・・・蓄電池
 22・・・DC入出力部
 23・・・DCリレー部
 24・・・サーキットブレーカ
 25・・・制御電源部
 26・・・BMS
 30・・・商用電力系統
 50・・・太陽光発電パネル
 51・・・太陽光発電パワーコンディショニングシステム
1, 2 ... grid interconnection power storage system 3 ... grid interconnection system 9, 10, 100 ... power converter 91 ... 1st circuit 92 ... 2nd circuit 93 ... 3rd Circuits 111, 911 ... DC power connection 112, 912 ... AC power connection 113, 913 ... Inverter 114, 914 ... First relay 115, 916 ... Boost circuit 121, 921 ...・ ・ 1st diode 131, 931 ・ ・ ・ 2nd relay part 132, 932 ・ ・ ・ 2nd diode 141, 941 ・ ・ ・ Control part 142, 942 ・ ・ ・ Control power supply part 143, 943 ・ ・ ・ Insulated power supply 20・ ・ ・ Storage battery unit 21 ・ ・ ・ Storage battery 22 ・ ・ ・ DC input / output unit 23 ・ ・ ・ DC relay unit 24 ・ ・ ・ Circuit breaker 25 ・ ・ ・ Control power supply unit 26 ・ ・ ・ BMS
30 ・ ・ ・ Commercial power system 50 ・ ・ ・ Photovoltaic panel 51 ・ ・ ・ Photovoltaic power conditioning system

Claims (13)

  1.  DC電源に接続されるDC電源接続部と、
     AC電源に接続されるAC電源接続部と、
     インバータ部と、
     制御部と、
     前記制御部に電力を供給する制御電源部と、
     前記DC電源接続部と前記AC電源接続部とを接続し、前記インバータ部が配置される第1回路と、
     前記第1回路において、前記インバータ部と前記AC電源接続部との間に配置され、前記インバータ部が停止状態である場合に、前記インバータ部と前記AC電源接続部との接続を開放する、第1リレー部と、
     前記DC電源接続部と前記インバータ部との間から分岐して、前記制御電源部に対して直流電力を送電する第2回路と、
     前記第2回路に配置され、前記制御電源部を下流側とする第1ダイオード部と、
     前記AC電源接続部と前記インバータ部との間から分岐して、前記制御電源部に対して交流電力を送電する第3回路と、
     前記第3回路に配置され、前記インバータ部と前記第1リレー部との間から分岐するインバータ側電力供給ラインと、前記第1リレー部と前記AC電源接続部との間から分岐するAC電源側電力供給ライン、を切り替え可能に前記制御電源部側と接続する、第2リレー部と、
     前記第3回路において、前記第2リレー部と前記制御電源部との間に配置され、前記制御電源部を下流側とする第2ダイオード部と、
     前記第2回路及び前記第3回路において共有され、前記第2回路及び前記第3回路に送電された電力を、所定の電圧に変圧して前記制御電源部に供給するDC/DCコンバータと、を有しており、
     前記制御部は、
     前記インバータ部が稼働状態である場合には、前記第2リレー部を前記インバータ側電力供給ラインと前記第2ダイオード部とが接続されるように制御し、
     前記インバータ部が停止状態である場合には、前記第2リレー部を前記AC電源側電力供給ラインと前記第2ダイオード部とが接続されるように制御する、
     ことを特徴とする電力変換装置。
    DC power supply connection connected to DC power supply and
    The AC power connection connected to the AC power and the AC power connection
    Inverter part and
    Control unit and
    A control power supply unit that supplies power to the control unit,
    A first circuit that connects the DC power supply connection unit and the AC power supply connection unit and arranges the inverter unit, and
    In the first circuit, it is arranged between the inverter unit and the AC power supply connection unit, and when the inverter unit is in a stopped state, the connection between the inverter unit and the AC power supply connection unit is opened. 1 relay part and
    A second circuit that branches from between the DC power supply connection unit and the inverter unit and transmits DC power to the control power supply unit.
    A first diode section arranged in the second circuit and having the control power supply section on the downstream side,
    A third circuit that branches from between the AC power connection unit and the inverter unit and transmits AC power to the control power supply unit.
    An inverter-side power supply line that is arranged in the third circuit and branches from between the inverter and the first relay, and an AC power supply that branches from between the first relay and the AC power connection. The second relay unit, which connects the power supply line to the control power supply unit side in a switchable manner,
    In the third circuit, a second diode section arranged between the second relay section and the control power supply section and having the control power supply section on the downstream side and a second diode section.
    A DC / DC converter that is shared by the second circuit and the third circuit and that transforms the electric power transmitted to the second circuit and the third circuit to a predetermined voltage and supplies the power to the control power supply unit. Have and
    The control unit
    When the inverter unit is in an operating state, the second relay unit is controlled so that the power supply line on the inverter side and the second diode unit are connected to each other.
    When the inverter unit is in the stopped state, the second relay unit is controlled so that the AC power supply side power supply line and the second diode unit are connected.
    A power conversion device characterized by the fact that.
  2.  前記DC電源は蓄電池であり、前記AC電源接続部は商用電力系統と接続される入出力端子であり、前記インバータ部は双方向インバータである、
     ことを特徴とする、請求項1に記載の電力変換装置。
    The DC power supply is a storage battery, the AC power supply connection unit is an input / output terminal connected to a commercial power system, and the inverter unit is a bidirectional inverter.
    The power conversion device according to claim 1, wherein the power conversion device is characterized by the above.
  3.  前記DC電源は発電装置であり、前記AC電源接続部は商用電力系統と接続される入出力端子であり、前記インバータ部は双方向インバータである、
     ことを特徴とする、請求項1に記載の電力変換装置。
    The DC power supply is a power generation device, the AC power supply connection unit is an input / output terminal connected to a commercial power system, and the inverter unit is a bidirectional inverter.
    The power conversion device according to claim 1, wherein the power conversion device is characterized by the above.
  4.  前記DC/DCコンバータは、前記制御電源部を前記第1回路、前記第2回路及び前記第3回路から絶縁する、絶縁型コンバータである、
     ことを特徴とする、請求項1から3のいずれか一項に記載の電力変換装置。
    The DC / DC converter is an isolated converter that insulates the control power supply unit from the first circuit, the second circuit, and the third circuit.
    The power conversion device according to any one of claims 1 to 3, wherein the power conversion device is characterized by the above.
  5.  前記制御部は、
     前記インバータ部への入力DC電圧が所定の閾値を超えた場合に、前記インバータ部が稼働状態であると判定して、前記第2リレー部の制御を行う、
     ことを特徴とする、請求項1から4のいずれか一項に記載の電力変換装置。
    The control unit
    When the input DC voltage to the inverter unit exceeds a predetermined threshold value, it is determined that the inverter unit is in an operating state, and the second relay unit is controlled.
    The power conversion device according to any one of claims 1 to 4, wherein the power conversion device is characterized by the above.
  6.  前記制御部は、
     前記インバータ部のスイッチング動作開始信号を検出した場合に、前記インバータ部が稼働状態であると判定して、前記第2リレー部の制御を行う、
     ことを特徴とする、請求項1から4のいずれか一項に記載の電力変換装置。
    The control unit
    When the switching operation start signal of the inverter unit is detected, it is determined that the inverter unit is in the operating state, and the second relay unit is controlled.
    The power conversion device according to any one of claims 1 to 4, wherein the power conversion device is characterized by the above.
  7.  前記制御部は、
     前記インバータ部からの出力AC電圧が所定の閾値を超えた場合に、前記インバータ部が稼働状態であると判定して、前記第2リレー部の制御を行う、
     ことを特徴とする、請求項1から4のいずれか一項に記載の電力変換装置。
    The control unit
    When the output AC voltage from the inverter unit exceeds a predetermined threshold value, it is determined that the inverter unit is in an operating state, and the second relay unit is controlled.
    The power conversion device according to any one of claims 1 to 4, wherein the power conversion device is characterized by the above.
  8.  前記制御部は、
     前記インバータ部からの出力AC電流が所定の閾値を超えた場合に、前記インバータ部が稼働状態であると判定して、前記第2リレー部の制御を行う、
     ことを特徴とする、請求項1から4のいずれか一項に記載の電力変換装置。
    The control unit
    When the output AC current from the inverter unit exceeds a predetermined threshold value, it is determined that the inverter unit is in an operating state, and the second relay unit is controlled.
    The power conversion device according to any one of claims 1 to 4, wherein the power conversion device is characterized by the above.
  9.  前記制御部は、
     前記第1回路における、前記第3回路の前記インバータ側電力供給ラインとの接点と前記AC電源側電力供給ラインとの接点、の電圧レベルが同一である場合に、前記インバータ部が稼働状態であると判定して、前記第2リレー部の制御を行う、
     ことを特徴とする、請求項1から4のいずれか一項に記載の電力変換装置。
    The control unit
    The inverter unit is in an operating state when the voltage levels of the contacts of the third circuit with the inverter side power supply line and the contacts of the AC power supply side power supply line in the first circuit are the same. To control the second relay unit.
    The power conversion device according to any one of claims 1 to 4, wherein the power conversion device is characterized by the above.
  10.  前記制御部は、
     前記DC電源接続部への入力DC電流が所定の閾値を超えた場合に、前記インバータ部が稼働状態であると判定して、前記第2リレー部の制御を行う、
     ことを特徴とする、請求項1から4のいずれか一項に記載の電力変換装置。
    The control unit
    When the input DC current to the DC power supply connection unit exceeds a predetermined threshold value, it is determined that the inverter unit is in an operating state, and the second relay unit is controlled.
    The power conversion device according to any one of claims 1 to 4, wherein the power conversion device is characterized by the above.
  11.  前記制御部は、
     前記DC電源接続部から前記蓄電池への出力DC電流が所定の閾値を超えた場合に、前記インバータ部が稼働状態であると判定して、前記第2リレー部の制御を行う、
     ことを特徴とする、請求項2に記載の電力変換装置。
    The control unit
    When the output DC current from the DC power supply connection unit to the storage battery exceeds a predetermined threshold value, it is determined that the inverter unit is in an operating state, and the second relay unit is controlled.
    The power conversion device according to claim 2, wherein the power conversion device is characterized by the above.
  12.  前記蓄電池は、蓄電池制御システムを備えており、
     前記制御部は、
     前記蓄電池制御システムから、前記蓄電池の充放電に係る情報を取得し、前記蓄電池が所定の充放電状態である場合に、前記インバータ部が稼働状態であると判定して、前記第2リレー部の制御を行う、
     ことを特徴とする、請求項2に記載の電力変換装置。
    The storage battery is provided with a storage battery control system.
    The control unit
    Information on the charge / discharge of the storage battery is acquired from the storage battery control system, and when the storage battery is in a predetermined charge / discharge state, it is determined that the inverter unit is in the operating state, and the second relay unit Take control,
    The power conversion device according to claim 2, wherein the power conversion device is characterized by the above.
  13.  請求項1から12のいずれか一項に記載の電力変換装置を備える、系統連系システム。 A grid interconnection system including the power conversion device according to any one of claims 1 to 12.
PCT/JP2020/009436 2019-09-05 2020-03-05 Power conversion apparatus and system interconnection system WO2021044653A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-161728 2019-09-05
JP2019161728A JP7272190B2 (en) 2019-09-05 2019-09-05 Power conversion equipment, grid connection system

Publications (1)

Publication Number Publication Date
WO2021044653A1 true WO2021044653A1 (en) 2021-03-11

Family

ID=74847571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/009436 WO2021044653A1 (en) 2019-09-05 2020-03-05 Power conversion apparatus and system interconnection system

Country Status (2)

Country Link
JP (1) JP7272190B2 (en)
WO (1) WO2021044653A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110910658B (en) 2019-11-14 2021-08-17 北京百度网讯科技有限公司 Traffic signal control method, traffic signal control device, computer equipment and storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003180085A (en) * 2001-12-10 2003-06-27 Toshiba Corp Power conversion device
JP2015006074A (en) * 2013-06-21 2015-01-08 株式会社ノーリツ Power conversion device
JP2015042087A (en) * 2013-08-22 2015-03-02 株式会社日本自動車部品総合研究所 Power supply circuit for power conversion device, and power conversion device having the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11178350A (en) * 1997-12-05 1999-07-02 Sanyo Electric Co Ltd Power supply device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003180085A (en) * 2001-12-10 2003-06-27 Toshiba Corp Power conversion device
JP2015006074A (en) * 2013-06-21 2015-01-08 株式会社ノーリツ Power conversion device
JP2015042087A (en) * 2013-08-22 2015-03-02 株式会社日本自動車部品総合研究所 Power supply circuit for power conversion device, and power conversion device having the same

Also Published As

Publication number Publication date
JP2021040458A (en) 2021-03-11
JP7272190B2 (en) 2023-05-12

Similar Documents

Publication Publication Date Title
JP5517398B2 (en) Power storage system
JP4846597B2 (en) DC / DC converter and distributed power generation system including the same
KR101616233B1 (en) Charging/discharging device
EP2670015B1 (en) Power control device and power control method
TWI419433B (en) Series battery system with automatic bypass function
CN109066964A (en) Flywheel energy storage and the double transformation UPS integrated systems, control method of online high frequency
US9269989B2 (en) Electric power supply system
CN107370168B (en) Electrical energy storage device
US11043813B2 (en) Method for black starting a power supply installation, bidirectional inverter, and power supply installation with a bidirectional inverter
JP2018182925A (en) Power supply system
WO2013094396A1 (en) Charging/discharging device and charging/discharging system using same
WO2017134773A1 (en) Power supply system
US20200290475A1 (en) Power control device
WO2021044653A1 (en) Power conversion apparatus and system interconnection system
JP7185750B2 (en) Charging/discharging device, charging/discharging system, and charging/discharging control method
US11722003B2 (en) Power converter and method for operating a power converter
WO2012124131A1 (en) Power control device and power control method
JP6684394B1 (en) Power conditioner
CN110739765B (en) DC power supply system
JP6572057B2 (en) Power supply system
KR102512062B1 (en) Apparatus for controlling disconnecting switch and uninterruptible power supply including the same
WO2024181067A1 (en) Communication device, communication method, and power storage system
JP5811941B2 (en) Power supply system
JP6758168B2 (en) Power conditioner
JP2017099183A (en) Switching unit, and charge discharge controller including it, and their switching control system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20860853

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20860853

Country of ref document: EP

Kind code of ref document: A1