[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021043279A1 - 自动驾驶车队的路点信息传输方法、装置及系统 - Google Patents

自动驾驶车队的路点信息传输方法、装置及系统 Download PDF

Info

Publication number
WO2021043279A1
WO2021043279A1 PCT/CN2020/113565 CN2020113565W WO2021043279A1 WO 2021043279 A1 WO2021043279 A1 WO 2021043279A1 CN 2020113565 W CN2020113565 W CN 2020113565W WO 2021043279 A1 WO2021043279 A1 WO 2021043279A1
Authority
WO
WIPO (PCT)
Prior art keywords
waypoint information
vehicle
information transmission
waypoint
pilot
Prior art date
Application number
PCT/CN2020/113565
Other languages
English (en)
French (fr)
Inventor
徐勇
吴楠
李文锐
李一鸣
毕青鑫
Original Assignee
北京图森智途科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京图森智途科技有限公司 filed Critical 北京图森智途科技有限公司
Priority to JP2022515132A priority Critical patent/JP7579332B2/ja
Priority to EP20861536.9A priority patent/EP4027668A4/en
Priority to AU2020343829A priority patent/AU2020343829A1/en
Publication of WO2021043279A1 publication Critical patent/WO2021043279A1/zh
Priority to US17/653,860 priority patent/US12033514B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3453Special cost functions, i.e. other than distance or default speed limit of road segments
    • G01C21/3484Personalized, e.g. from learned user behaviour or user-defined profiles
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0287Control of position or course in two dimensions specially adapted to land vehicles involving a plurality of land vehicles, e.g. fleet or convoy travelling
    • G05D1/0291Fleet control
    • G05D1/0295Fleet control by at least one leading vehicle of the fleet
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/22Platooning, i.e. convoy of communicating vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • B60W30/165Automatically following the path of a preceding lead vehicle, e.g. "electronic tow-bar"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3605Destination input or retrieval
    • G01C21/362Destination input or retrieval received from an external device or application, e.g. PDA, mobile phone or calendar application
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0287Control of position or course in two dimensions specially adapted to land vehicles involving a plurality of land vehicles, e.g. fleet or convoy travelling
    • G05D1/0291Fleet control
    • G05D1/0293Convoy travelling
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/60Intended control result
    • G05D1/69Coordinated control of the position or course of two or more vehicles
    • G05D1/695Coordinated control of the position or course of two or more vehicles for maintaining a fixed relative position of the vehicles, e.g. for convoy travelling or formation flight
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/44Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2300/00Indexing codes relating to the type of vehicle
    • B60W2300/14Tractor-trailers, i.e. combinations of a towing vehicle and one or more towed vehicles, e.g. caravans; Road trains
    • B60W2300/145Semi-trailers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/10Historical data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/50External transmission of data to or from the vehicle of positioning data, e.g. GPS [Global Positioning System] data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]

Definitions

  • This application relates to the field of automatic driving technology, and in particular to a method, device and system for transmitting waypoint information of an automatic driving fleet.
  • collaborative autonomous driving fleet refers to multiple vehicles based on the support of autonomous driving technology and V2V (Vehicle-to-Vehicle, vehicle-to-vehicle) Internet of Vehicles technology, trailing with a very small distance
  • V2V Vehicle-to-Vehicle, vehicle-to-vehicle
  • the driving formation state In formations, the distance between vehicles is much lower than the normal safe driving distance, only 20 meters or less. The extremely small distance will cause the pilot vehicle to break through the airflow and be directly caught by the second vehicle at the rear of the vehicle. Accept it without forming a low-pressure vortex area, thereby effectively reducing the total air resistance of the entire fleet during the driving process.
  • the resistance reduced by driving in a cooperative autonomous driving fleet can save nearly 10% of fuel consumption.
  • the main reason why the cooperative autonomous driving fleet can maintain such a short interval is that it benefits from the low-latency communication of V2V communication, which can realize communication within 100ms from end to end. Therefore, based on V2V technology, information can be exchanged between cars, and a group of cars in a formation can follow the pilot car and control itself with its manipulation. For example, if the pilot car is operated on the accelerator, brake or steering, the rear row of vehicles can perform the same control in a short period of time.
  • the follower car generally needs to obtain the waypoint information of the leader car from the leader car to meet the demand of the follower car to follow the leader car.
  • every time the pilot car sends a waypoint it must send the complete waypoint in the past period of time for all following cars to use at the same time.
  • the following car needs to lead the car to a waypoint at a certain time in the past, and the geographical position of the waypoint is before and after the current position of the following car, so as to provide a path basis for the automatic driving decision of the following car.
  • the increase in the number of following vehicles in the fleet the longer the overall physical length of the fleet, the more historical waypoints the pilot vehicle needs to send at one time, resulting in excessive use of communication resources, affecting the overall operating efficiency and driving safety of the fleet.
  • the embodiments of the present application provide a method, device, and system for transmitting waypoint information of an automated driving fleet, which can avoid the problem of excessive occupation of the communication resources of the pilot vehicle.
  • the first aspect of the embodiments of the present application provides a waypoint information transmission method for an automated driving fleet, which is applied to a waypoint information transmission system for an automated driving fleet.
  • the first vehicle-mounted device and the waypoint information transmission device; the method includes:
  • the waypoint information transmission device receives in real time the waypoint information of each cycle sent by the on-board device of the pilot vehicle;
  • the waypoint information transmission device stores the waypoint information of each period to form historical waypoint information
  • the waypoint information transmission device receives the waypoint information transmission control instruction sent by the on-board device of the pilot vehicle, and determines the target waypoint information from the historical waypoint information according to the waypoint information transmission control instruction;
  • the waypoint information transmission device sends the target waypoint information to the first vehicle-mounted device.
  • a waypoint information transmission device which is applied to a waypoint information transmission system of an autonomous driving fleet.
  • the system includes a pilot vehicle vehicle-mounted device and a first vehicle-mounted device of the follower vehicle to be entered.
  • a waypoint information transmission device; the waypoint information transmission device includes:
  • the receiving unit is used to receive, in real time, the waypoint information of each cycle sent by the on-board device of the pilot vehicle;
  • the storage unit is used to store the waypoint information of each period to form historical waypoint information
  • the determining unit is configured to receive the waypoint information transmission control instruction sent by the on-board device of the pilot vehicle, and determine the target waypoint information from the historical waypoint information according to the waypoint information transmission control instruction;
  • the sending unit is configured to send the target waypoint information to the first vehicle-mounted device.
  • a waypoint information transmission system for an autonomous driving fleet includes a pilot vehicle on-board device, a first on-board device of a follower car to be entered into the team, and a waypoint information transmission device;
  • the pilot vehicle vehicle-mounted device is used to send the waypoint information of the current cycle to the waypoint information transmission device in real time;
  • the waypoint information transmission device is used to receive the waypoint information of each cycle in real time; store the waypoint information of each cycle to form historical waypoint information;
  • the pilot vehicle vehicle-mounted device is also used to send a waypoint information transmission control instruction to the waypoint information transmission device;
  • the waypoint information transmission device is further configured to determine target waypoint information from historical waypoint information according to the waypoint information transmission control instruction, and send the target waypoint information to the first vehicle-mounted device.
  • a computer-readable storage medium including a program or instruction.
  • the program or instruction runs on a computer, the waypoint information of the autonomous driving fleet described in the first aspect is realized. Transmission method.
  • the fifth aspect of the embodiments of the present application provides a computer program product containing instructions, which when the computer program product runs on a computer, causes the computer to execute the waypoints of the autonomous driving fleet as described in the first aspect above Information transmission method.
  • a chip system including a processor, the processor is coupled with a memory, the memory stores program instructions, and when the program instructions stored in the memory are executed by the processor. The method for transmitting the waypoint information of the autonomous driving fleet as described in the first aspect above is realized at a time.
  • a circuit system in a seventh aspect of the embodiments of the present application, includes a processing circuit configured to execute the method for transmitting waypoint information of an autonomous driving fleet as described in the first aspect above.
  • An eighth aspect of the embodiments of the present application provides a computer server, including a memory, and one or more processors communicatively connected with the memory;
  • the memory stores instructions executable by the one or more processors, and the instructions are executed by the one or more processors, so that the one or more processors implement the first aspect as described above.
  • the waypoint information transmission method of the autonomous driving fleet is not limited to
  • the embodiments of the present application provide a waypoint information transmission method, device, and system for an autonomous driving fleet, wherein the waypoint information transmission device receives in real time the waypoint information of each cycle sent by the on-board device of the pilot vehicle; Store the waypoint information to form historical waypoint information; receive the waypoint information transmission control instruction sent by the on-board device of the pilot vehicle, and determine the target waypoint information from the historical waypoint information according to the waypoint information transmission control instruction; The target waypoint information is sent to the first vehicle-mounted device. It can be seen that the waypoint information of each cycle of the pilot vehicle in the embodiment of this application is stored and maintained separately by the waypoint information transmission device. When the following vehicle needs to enter the queue, the waypoint information transmission device is responsible for determining the target waypoint information.
  • the on-board device of the pilot car can only send a small amount of waypoint information in each cycle, and there is no need to send a large amount of waypoint information when the follower car needs to enter the team. Therefore, the communication resources of the pilot vehicle are saved, and the problem of excessive occupation of the communication resources of the pilot vehicle can be avoided.
  • FIG. 1 is a schematic diagram 1 of the structure of a waypoint information transmission system for an autonomous driving fleet provided by an embodiment of this application;
  • FIG. 3 is a schematic diagram three of the structure of a waypoint information transmission system for an autonomous driving fleet provided by an embodiment of the application;
  • FIG. 4 is a fourth structural diagram of a waypoint information transmission system for an autonomous driving fleet provided by an embodiment of the application;
  • FIG. 5 is a flowchart of a specific application example of the waypoint information transmission system of the autonomous driving fleet in an embodiment of the application;
  • FIG. 7 is a schematic structural diagram of a waypoint information transmission device provided by an embodiment of the application.
  • V2V Vehicle-to-Vehicle, vehicle-to-vehicle, V2V communication technology is a communication technology that is not limited to fixed base stations, providing direct end-to-end wireless communication for moving vehicles.
  • V2X Vehicle to X
  • Vehicle to X is the key technology of the future intelligent transportation system. It enables communication between vehicles, vehicles and base stations, and base stations and base stations. In this way, a series of traffic information such as real-time road conditions, road information, and pedestrian information can be obtained, thereby improving driving safety, reducing congestion, improving traffic efficiency, and providing in-vehicle entertainment information.
  • RSU Road Side Unit, a drive test unit or called a drive test device, is a device that is installed in a road test and communicates with the on-board unit OBU.
  • the term "vehicle” is broadly interpreted to include any moving object, including, for example, aircraft, boats, spacecraft, cars, trucks, vans, semi-trailers, motorcycles, golf carts, off-road vehicles, etc. Vehicles, warehouse transport vehicles or agricultural vehicles, and transport vehicles that run on tracks, such as trams or trains, and other rail vehicles.
  • the "vehicle” in this application may generally include: power system, sensor system, control system, peripheral equipment, and computer system. In other embodiments, the vehicle may include more, fewer, or different systems.
  • the power system is a system that provides power to the vehicle, including: engine/motor, transmission, wheel/tyre, and energy unit.
  • the control system may include a combination of devices that control the vehicle and its components, such as a steering unit, a throttle valve, and a brake unit.
  • Peripheral devices may be devices that allow the vehicle to interact with external sensors, other vehicles, external computing devices, and/or users, such as wireless communication systems, touch screens, microphones, and/or speakers.
  • the unmanned vehicle is also equipped with a sensor system and an unmanned driving control device.
  • the sensor system may include a plurality of sensors for sensing information of the environment in which the vehicle is located, and one or more actuators for changing the position and/or direction of the sensors.
  • the sensor system may include any combination of sensors such as global positioning system sensors, inertial measurement units, radio detection and ranging (RADAR) units, cameras, laser rangefinders, light detection and ranging (LIDAR) units, and/or acoustic sensors;
  • the sensor system may also include sensors that monitor the vehicle's internal systems (such as O 2 monitors, fuel gauges, engine thermometers, etc.).
  • the unmanned driving control device may include a processor and a memory, at least one machine executable instruction is stored in the memory, and the processor executes at least one machine executable instruction to realize the implementation including a map engine, a positioning module, a perception module, a navigation or path module, and Automatic control module and other functions.
  • the map engine and positioning module are used to provide map information and positioning information.
  • the perception module is used to perceive things in the environment of the vehicle according to the information obtained by the sensor system and the map information provided by the map engine.
  • the navigation or path module is used to plan the driving path for the vehicle according to the processing results of the map engine, positioning module and perception module.
  • the automatic control module converts the decision information input and analysis of the navigation or route module into the control command output of the vehicle control system, and passes the vehicle network (for example, the vehicle realized by the CAN bus, the local interconnection network, the multimedia orientation system transmission, etc.)
  • the internal electronic network system sends control commands to the corresponding components in the vehicle control system to realize automatic control of the vehicle; the automatic control module can also obtain the information of each component in the vehicle through the vehicle network.
  • the pilot car needs to periodically communicate with each follower car in the fleet through V2X communication, and send the current kinematics status of the pilot car, including the position of the pilot car, the speed of the pilot car, the acceleration of the pilot car, and the pilot car.
  • the following car receives the waypoint information of the pilot car and stores it.
  • the storage unit of the following car can store the waypoint information of the pilot car in the past period of time, so that the following car can be controlled to drive based on the waypoint information.
  • the current waypoint information of each follower vehicle needs to be sent by the pilot vehicle through V2X communication.
  • the pilot vehicle in the autonomous driving fleet, the pilot vehicle’s V2X communication channel has a heavy task.
  • the pilot vehicle transmits itself through the V2X communication channel.
  • the pilot vehicle In addition to the waypoint information, it is also necessary to receive real-time feedback from the entire fleet of following cars to understand the status of the entire fleet; in addition, the pilot may also communicate with other fleets; in addition, the pilot may find that the state of the fleet is abnormal , It is also necessary to control the fleet in time (otherwise accidents may occur). Therefore, the V2X channel resources occupied by the pilot vehicle to send its own waypoint information should be as small as possible.
  • an embodiment of the present application provides a waypoint information transmission system for an autonomous driving fleet.
  • the pilot vehicle vehicle-mounted device 211 of the pilot vehicle 21 in the autonomous driving fleet 20 is included. 22 of the first in-vehicle device 221 and the waypoint information transmission device 30.
  • the pilot vehicle 21 in the self-driving vehicle fleet 20 may also be provided with pilot vehicle on-board V2X equipment 212 and pilot vehicle redundant on-board V2X equipment 213; the follower vehicle 22 waiting to enter the team
  • a first vehicle-mounted V2X device 222 may also be provided;
  • the waypoint information transmission system of the self-driving fleet may also include a second vehicle-mounted device 231 and a second vehicle-mounted V2X device 232 of the follower vehicle 23 that are already in the vehicle fleet.
  • And may also include the roadside V2X device 401 at the roadside device 40 of the road on which the autonomous driving fleet 20 is traveling.
  • the pilot vehicle on-board device 211 of the pilot vehicle 21 is connected to the pilot vehicle on-board V2X equipment 212 and the pilot vehicle redundant on-board V2X equipment 213 respectively.
  • the second on-board device 231 is connected to the second on-board V2X device 232, and the first on-board device 221 is connected to the first on-board V2X device.
  • the vehicle-mounted V2X device 222 is connected.
  • pilot vehicle V2X equipment 212, pilot vehicle redundant vehicle V2X equipment 213, roadside V2X equipment 401, second vehicle V2X equipment 232, and first vehicle V2X equipment 222 can communicate with each other, that is, through V2X Technology to communicate.
  • first vehicle-mounted device 221, the second vehicle-mounted device 231, and the pilot vehicle vehicle-mounted device 211 in this application may be a vehicle-mounted computer or a vehicle-mounted server with computing processing capabilities.
  • the drive test device 40 in this application may be a drive test sensing device equipped with lidar, camera, communication module, etc.
  • the specific structure and details of the drive test device 40 please refer to the Chinese Patent Publication No. CN107807633A Application, I won’t go into details here.
  • the waypoint information transmission device 30 can be installed at the pilot vehicle 21 (as shown in FIG. 2).
  • the waypoint information transmission device 30 is separately installed at
  • the waypoint information transmission device 30 is communicatively connected with the pilot vehicle vehicle-mounted device 211, or the waypoint information transmission device 30 may be the pilot vehicle vehicle-mounted device 211 itself.
  • the waypoint information transmission device 30 can also be set at any follower vehicle in the autonomous driving fleet 20 (as shown in FIG. 3), for example, to facilitate communication and interaction with the follower vehicle 22 to be entered near the rear of the fleet.
  • the waypoint information transmission device 30 may be set at the trailing car 23 in the autonomous driving fleet 20, and the waypoint information transmission device 30 is connected to the second vehicle-mounted V2X device 232.
  • the waypoint information transmission device 30 can also be set at the roadside equipment 40 of the road on which the autonomous driving fleet 20 is traveling (as shown in FIG. 4 ), and the waypoint information transmission device 30 is connected to the roadside V2X equipment 401.
  • the pilot vehicle vehicle-mounted device 211 is used to send the waypoint information of the current cycle to the waypoint information transmission device 30 in real time.
  • the waypoint information transmission device 30 is used for receiving the waypoint information of each cycle in real time; storing the waypoint information of each cycle to form historical waypoint information.
  • the pilot vehicle vehicle-mounted device 211 is also used to send waypoint information transmission control instructions to the waypoint information transmission device 30.
  • the waypoint information transmission device 30 is further configured to determine target waypoint information from historical waypoint information according to the waypoint information transmission control instruction, and send the target waypoint information to the first vehicle-mounted device 221.
  • the pilot vehicle vehicle-mounted device 211 sends the waypoint information of the current cycle to the waypoint information transmission device 30 in real time.
  • the number of waypoint information in each cycle may be the same, for example, each cycle (e.g., pilot vehicle)
  • the in-vehicle device 211 transmits waypoint information at a frequency of 20 Hz, and a cycle of 50 ms) transmits waypoint information of 10 waypoints, but it is not limited to this.
  • the waypoint information includes: the position of the pilot vehicle, and one or more of the following information: such as pilot vehicle speed, pilot vehicle acceleration, pilot vehicle heading, pilot vehicle front wheel steering angle, pilot vehicle throttle opening, pilot vehicle The depth of the brake pedal, the braking deceleration of the pilot car and the steering wheel angle of the pilot car.
  • each follower car 23 in the fleet and the follower car 22 waiting to enter the team can control the following movement of the vehicle according to the waypoint information.
  • the follower car in the autonomous driving fleet 20 controls its own driving according to the waypoint information. Technology, I won’t go into details here.
  • the cycle of sending waypoint information by the pilot vehicle on-board device 211 may be short, such as 50 ms, if the pilot vehicle is slow, there may be waypoints sent by the pilot vehicle on-board device 211 twice before and after.
  • the waypoint information transmission device 30 receives the waypoint information of each cycle in real time, and stores the waypoint information of each cycle to form historical waypoint information.
  • the process requires the waypoint information of each cycle Perform deduplication processing and store the waypoint information of each cycle after deduplication processing to form historical waypoint information.
  • the process of deduplication processing can adopt the following two methods:
  • method one For example, method one:
  • the waypoint information transmission device 30 When the waypoint information transmission device 30 receives the waypoint information of the current cycle, it obtains the position of the pilot vehicle corresponding to the waypoint information of the current cycle. The position of the pilot vehicle corresponding to the waypoint information of the current cycle is compared with the position of the pilot vehicle corresponding to the stored waypoint information to form a position comparison result. The waypoint information whose position comparison result is less than or equal to the preset position deviation threshold is determined as repeated waypoint information, and the repeated waypoint information is deleted from the waypoint information of the current cycle. The repeated waypoint information will be deleted for the current cycle after the repeated waypoint information. The remaining waypoint information is stored to form historical waypoint information.
  • the waypoint information transmission device 30 receives the waypoint information of 10 waypoints every cycle (the pilot vehicle vehicle-mounted device 211 transmits waypoint information at a frequency of 20 Hz, and a cycle is 50 ms).
  • the distance of each waypoint is theoretically If it is 1m, the comparison result between the position of the pilot car corresponding to the waypoint information of the current cycle and the position of the pilot car corresponding to the stored waypoint information is less than or equal to the preset position deviation threshold (for example, 50cm), it can be considered
  • the waypoint information of the current cycle is repeated waypoint information.
  • Another example is the second method:
  • the waypoint information transmission device 30 When the waypoint information transmission device 30 receives the waypoint information of the current cycle (here the waypoint information includes the waypoint information number, the waypoint information of the same waypoint information has the same number), obtains the waypoint information corresponding to the current cycle The waypoint information number. The waypoint information number corresponding to the waypoint information of the current cycle is compared with the waypoint information number corresponding to the stored waypoint information to form a number comparison result. The waypoint information with the same number comparison result is determined as repeated waypoint information, the repeated waypoint information is deleted from the waypoint information of the current cycle, and the remaining waypoint information of the current cycle after the repeated waypoint information is deleted is stored to form Historical waypoint information.
  • the waypoint information transmission device 30 receives the waypoint information of 10 waypoints every cycle (the pilot vehicle vehicle-mounted device 211 transmits waypoint information at a frequency of 20 Hz, and a cycle is 50 ms).
  • the distance of each waypoint is theoretically It is 1m, and the number of waypoint information at the same location is the same.
  • the stored waypoint information is 001, 002, 003 waypoint information
  • the current cycle waypoint information is 002, 003, 004 waypoint information, you can Determine the waypoint information of No. 002 and 003 as duplicate waypoint information.
  • the pilot vehicle in-vehicle device 211 may receive the enrollment request sent by the first vehicle-mounted device 221 of the to-be-entered follower vehicle 22, and the pilot vehicle-mounted device 211 determines that the to-be-entered follow-up vehicle 22 can enter the team. After the team, the pilot vehicle vehicle-mounted device can send waypoint information transmission control instructions to the waypoint information transmission device 30, the purpose of which is to control the waypoint information transmission device 30 to determine the target path from the historical waypoint information according to the waypoint information transmission control instruction. Point information, and send the target waypoint information to the first vehicle-mounted device 221 of the follower vehicle that is allowed to enter the team (ie, the follower vehicle 22 to be entered).
  • the waypoint information transmission control instruction includes the current position of the follower car to be entered and the current position of the pilot vehicle; then the waypoint information transmission device 30 transfers the waypoint information from the historical waypoint according to the waypoint information transmission control instruction. Determining the target waypoint information in the information can be achieved in the following ways:
  • the waypoint information transmission device 30 receives the waypoint information transmission control instruction sent by the on-board device 211 of the pilot vehicle, and obtains the queue to be followed from the historical waypoint information according to the current position of the vehicle to be entered in the waypoint information transmission control instruction
  • the historical waypoint information stored by the waypoint information transmission device 30 is that there is one waypoint information every 1m. In the current cycle, if the distance between the current position of the following car to be entered and the current position of the pilot car is obtained If it is 100m, it is necessary to obtain the information of 100 target waypoints corresponding to the 100m from the historical waypoint information.
  • the above is only one way of obtaining the listed target waypoint information, but it is not limited to this.
  • the waypoint information transmission device 30 receives the waypoint information of each period in real time, and the way in which the waypoint information transmission device 30 transmits the target waypoint information to the first vehicle-mounted device 221 can be based on the waypoint information
  • the transmission device 30 adopts different methods depending on the location, for example:
  • Method 1 As shown in Figure 2, the waypoint information transmission device 30 is set at the pilot vehicle 21, then the waypoint information transmission device 30 can communicate with the pilot vehicle on-board device 211 to receive each cycle in real time from the pilot vehicle on-board device 211 Waypoint information. In addition, the waypoint information transmission device 30 can send the target waypoint information to the first vehicle-mounted device 221 through the pilot vehicle's redundant vehicle-mounted V2X device 213 and the first vehicle-mounted V2X device 222.
  • the pilot vehicle's redundant on-board V2X device 213 is used to transmit the target waypoint information
  • the pilot vehicle on-board V2X device 212 is responsible for the more important control command transmission and the feedback information of the following cars of the entire fleet.
  • the initial transmission of communication data such as receiving and communicating with other fleets, thereby avoiding the transmission of target waypoint information occupying the communication resources of the pilot vehicle's V2X equipment 212.
  • the waypoint information transmission device 30 is set at any follower vehicle in the autopilot fleet 20.
  • the waypoint information transmission device 30 is set at the end of the autopilot fleet 20.
  • the waypoint information transmission device 30 can receive the cycles sent by the pilot vehicle on-board device 211 through the pilot vehicle on-board V2X device 212 (of course, the pilot vehicle redundant on-board V2X device 213) through the second vehicle-mounted V2X device 232 in real time Waypoint information.
  • the waypoint information transmission device 30 may send the target waypoint information to the first vehicle-mounted device 221 through the second vehicle-mounted V2X device 232 and the first vehicle-mounted V2X device 222.
  • the waypoint information transmission device 30 can be set at the roadside equipment 40 of the road on which the autonomous driving fleet 20 is driving; then the waypoint information transmission device 30 can receive the pilot vehicle in real time through the roadside V2X equipment 401
  • the vehicle-mounted device 211 uses the vehicle-mounted V2X device 212 of the pilot vehicle to send the waypoint information of each cycle.
  • the waypoint information transmission device 30 may send the target waypoint information to the first vehicle-mounted device 221 through the roadside V2X device 401 and the first vehicle-mounted V2X device 222.
  • the waypoint information transmission device 30 can be flexibly arranged in multiple places, and can be implemented in many ways. In this way, each follower vehicle can obtain the complete waypoint information of the pilot vehicle at a small communication cost, so as to realize the follow-up control of the autonomous driving fleet under the guidance of the complete waypoint information.
  • Step S1 Car No. 1 sends the waypoint information of the current cycle at a frequency of 20 Hz, sending 10 waypoint information each time, and the interval between the positions of the pilot vehicles in two adjacent waypoint information is 1 meter.
  • Steps S2, 2, and 3 cars each time they receive 10 waypoint information, look for whether the 10 waypoint information has been stored in the vehicle.
  • car No. 2 did not receive the waypoint information of the pilot car in the last cycle, so through this update, 2 waypoint information was added, and car No. 3 received the waypoint information of the pilot car in the last cycle, so this Only 1 waypoint information was added in this update. Through the update, cars 2 and 3 all have the complete waypoints of car 1.
  • Step S3, No. 4 car applies to join the fleet.
  • Step S4 Car No. 1 agrees that Car No. 4 joins the fleet, and sends a waypoint information transmission control instruction to Car No. 3.
  • Step S5 Car No. 3 is determined by location judgment to determine that car No. 3 is 40 meters away from car No. 1 and 100 meters away from car No. 4. Therefore, it is judged that it needs waypoint information within 140 meters.
  • Car No. 3 is based on the historical road stored by itself. In the point information, the target waypoint information corresponding to the 140-meter range is obtained, and a total of 140 target waypoint information is sent to the No. 4 car.
  • Step S6 Car No. 4 obtains all target roadpoint information from the current position of the vehicle to the 140 meters of car No. 1, and starts automatic driving in the autonomous driving fleet.
  • Step S7 In the next cycle, car No. 1 continues to send the waypoint information for 10 current cycles.
  • Step S8 Car No. 4 receives the waypoint information of the current cycle, compares it with the 140 waypoint information stored by itself, and finds 1 new waypoint information, then stores it; Cars 2 and 3 also update its own car at the same time Stored historical waypoint information. In this way, cars 2, 3, and 4 have complete pilot car waypoint information.
  • a waypoint information transmission method for an autonomous driving fleet is provided, which is applied to a waypoint information transmission system for an autonomous driving fleet, and the system includes a pilot vehicle on-board The device, the first vehicle-mounted device and the waypoint information transmission device of the following car to be entered into the team; the method includes:
  • Step 501 The waypoint information transmission device receives in real time the waypoint information of each cycle sent by the on-board device of the pilot vehicle.
  • Step 502 The waypoint information transmission device stores the waypoint information of each cycle to form historical waypoint information.
  • Step 503 The waypoint information transmission device receives the waypoint information transmission control instruction sent by the on-board device of the pilot vehicle, and determines the target waypoint information from the historical waypoint information according to the waypoint information transmission control instruction.
  • Step 504 The waypoint information transmission device sends the target waypoint information to the first vehicle-mounted device.
  • the number of waypoint information in each cycle is the same; the waypoint information includes: the position of the pilot vehicle, and one or more of the following information: pilot vehicle speed, pilot vehicle acceleration, pilot vehicle heading, Pilot vehicle front wheel steering angle, pilot vehicle accelerator opening, pilot vehicle brake pedal depth, pilot vehicle brake deceleration and pilot vehicle steering wheel angle.
  • the waypoint information transmission device stores the waypoint information of each period to form historical waypoint information, which can be implemented in the following manner:
  • the waypoint information transmission device performs deduplication processing on the waypoint information of each cycle, and stores the waypoint information of each cycle after the deduplication processing to form historical waypoint information.
  • the waypoint information transmission device deduplicates the waypoint information of each cycle, and stores the waypoint information of each cycle after the deduplication process To form historical waypoint information, which can be achieved in the following ways:
  • the waypoint information transmission device When the waypoint information transmission device receives the waypoint information of the current cycle, it obtains the position of the pilot car corresponding to the waypoint information of the current cycle; the position of the pilot car corresponding to the waypoint information of the current cycle corresponds to the stored waypoint information The position of the pilot vehicle is compared to form a position comparison result; the waypoint information whose position comparison result is less than or equal to the preset position deviation threshold is determined as repeated waypoint information, and the repeated waypoints are deleted from the waypoint information in the current cycle Information, storing the remaining waypoint information of the current cycle after the repeated waypoint information is deleted to form historical waypoint information.
  • the waypoint information includes waypoint information numbers, and the waypoint information numbers of the same waypoint information are the same. Then the waypoint information transmission device performs deduplication processing on the waypoint information of each cycle, and stores the waypoint information of each cycle after the deduplication processing to form historical waypoint information, which can be implemented in the following manner:
  • the waypoint information transmission device When the waypoint information transmission device receives the waypoint information of the current cycle, it obtains the waypoint information number corresponding to the waypoint information of the current cycle; compares the waypoint information number corresponding to the waypoint information of the current cycle with the stored waypoint information The corresponding waypoint information numbers are compared to form a number comparison result; the waypoint information with the same number comparison result is determined as duplicate waypoint information, and the duplicate waypoint information is deleted from the waypoint information in the current cycle, and the duplicate will be deleted The remaining waypoint information of the current cycle after the waypoint information is stored to form historical waypoint information.
  • the waypoint information transmission device is arranged at the pilot vehicle, and the waypoint information transmission device is communicatively connected with the pilot vehicle on-board device;
  • the waypoint information transmission system of the autonomous driving fleet also includes pilot vehicle redundancy The vehicle-mounted V2X equipment and the first vehicle-mounted V2X equipment of the follower car to be entered, the pilot vehicle’s redundant vehicle-mounted V2X equipment communicates with the first vehicle-mounted V2X equipment;
  • the waypoint information transmission device is connected with the pilot vehicle’s redundant vehicle-mounted V2X equipment; the first vehicle The device is connected to the first vehicle-mounted V2X device.
  • the waypoint information transmission device sends the target waypoint information to the first vehicle-mounted device, which can be implemented in the following manner:
  • the waypoint information transmission device sends the target waypoint information to the first vehicle-mounted device through the pilot vehicle's redundant vehicle-mounted V2X equipment and the first vehicle-mounted V2X equipment.
  • the waypoint information transmission device is set at any follower vehicle in the self-driving fleet; the waypoint information transmission system of the self-driving fleet also includes the pilot vehicle's on-board V2X equipment, and the vehicle to be followed
  • the waypoint information transmission device receives the waypoint information of each cycle sent by the on-board device of the pilot car in real time, which can be implemented in the following manner:
  • the waypoint information transmission device uses the second vehicle-mounted V2X device to receive, in real time, the waypoint information of each cycle sent by the pilot vehicle vehicle-mounted device through the pilot vehicle vehicle-mounted V2X device.
  • the waypoint information transmission device sends the target waypoint information to the first vehicle-mounted device, which can be implemented in the following manner:
  • the waypoint information transmission device sends the target waypoint information to the first vehicle-mounted device through the second vehicle-mounted V2X device and the first vehicle-mounted V2X device.
  • the waypoint information transmission device is arranged at the trailing car in the autonomous driving fleet.
  • the waypoint information transmission device is set at the roadside equipment of the road on which the autopilot fleet is driving; the waypoint information transmission system of the autopilot fleet also includes the pilot vehicle's on-board V2X equipment and the waiting team The first vehicle-mounted V2X equipment of the following vehicle and the roadside V2X equipment at the roadside equipment where the waypoint information transmission device is located; the pilot vehicle’s vehicle-mounted V2X equipment, the first vehicle-mounted V2X equipment, and the roadside V2X equipment communicate in pairs; the pilot vehicle The vehicle-mounted device is connected with the pilot vehicle vehicle-mounted V2X device; the first vehicle-mounted device is connected with the first vehicle-mounted V2X device; the waypoint information transmission device is connected with the roadside V2X device.
  • the waypoint information transmission device receives the waypoint information of each cycle sent by the on-board device of the pilot car in real time, which can be implemented in the following manner:
  • the waypoint information transmission device receives, in real time, the waypoint information of each cycle sent by the pilot vehicle's on-board device through the pilot vehicle's on-board V2X equipment through the roadside V2X equipment.
  • the waypoint information transmission device sends the target waypoint information to the first vehicle-mounted device, which can be implemented in the following manner:
  • the waypoint information transmission device sends the target waypoint information to the first vehicle-mounted device through the roadside V2X device and the first vehicle-mounted V2X device.
  • the waypoint information transmission control instruction includes the current position of the following vehicle to be entered and the current position of the pilot vehicle.
  • the waypoint information transmission device receives the waypoint information transmission control instruction sent by the pilot vehicle vehicle-mounted device, and determines the target waypoint information from the historical waypoint information according to the waypoint information transmission control instruction, which can be implemented in the following manner:
  • the waypoint information transmission device receives the waypoint information transmission control instruction sent by the on-board device of the pilot vehicle, and obtains the information of the waypoint information transmission control instruction for the following vehicle to be entered from the historical waypoint information according to the current position of the following vehicle to be entered in the waypoint information transmission control instruction
  • the target waypoint information between the current position and the current position of the pilot car.
  • an embodiment of the present application also provides a waypoint information transmission device, which is applied to a waypoint information transmission system of an automatic driving fleet.
  • the first vehicle-mounted device and the waypoint information transmission device; the waypoint information transmission device includes:
  • the receiving unit 61 is configured to receive, in real time, the waypoint information of each cycle sent by the on-board device of the pilot vehicle.
  • the storage unit 62 is configured to store the waypoint information of each period to form historical waypoint information.
  • the determining unit 63 is configured to receive the waypoint information transmission control instruction sent by the on-board device of the pilot vehicle, and determine the target waypoint information from the historical waypoint information according to the waypoint information transmission control instruction.
  • the sending unit 64 is configured to send the target waypoint information to the first vehicle-mounted device.
  • an embodiment of the present application also provides a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the method for transmitting the waypoint information of the autonomous driving fleet corresponding to FIG. 6 is implemented.
  • a computer program stored on which a computer program is stored, and when the program is executed by a processor, the method for transmitting the waypoint information of the autonomous driving fleet corresponding to FIG. 6 is implemented.
  • the embodiment of the present application also provides a computer program product containing instructions.
  • the computer program product runs on a computer, the computer executes the method for transmitting the waypoint information of the autonomous driving fleet corresponding to FIG. 6 above.
  • the computer program product runs on a computer, the computer executes the method for transmitting the waypoint information of the autonomous driving fleet corresponding to FIG. 6 above.
  • the method for transmitting the waypoint information of the autonomous driving fleet corresponding to FIG. 6 above For a specific implementation manner, refer to the embodiment of the waypoint information transmission system of the autonomous driving fleet corresponding to FIG. 1 to FIG. 5, which will not be repeated here.
  • an embodiment of the present application also provides a circuit system, the circuit system includes a processing circuit configured to execute the waypoint information transmission method of the autonomous driving fleet corresponding to FIG. 6 described above.
  • the circuit system includes a processing circuit configured to execute the waypoint information transmission method of the autonomous driving fleet corresponding to FIG. 6 described above.
  • an embodiment of the present application also provides a computer server, including a memory, and one or more processors communicatively connected with the memory;
  • the memory stores instructions that can be executed by the one or more processors, and the instructions are executed by the one or more processors, so that the one or more processors implement the above corresponding to FIG. 6
  • the waypoint information transmission method of the autonomous driving fleet For a specific implementation manner, refer to the embodiment of the waypoint information transmission system of the autonomous driving fleet corresponding to FIG. 1 to FIG.
  • the embodiments of the present application provide a waypoint information transmission method, device, and system for an autonomous driving fleet, wherein the waypoint information transmission device receives in real time the waypoint information of each cycle sent by the on-board device of the pilot vehicle; Store the waypoint information to form historical waypoint information; receive the waypoint information transmission control instruction sent by the on-board device of the pilot vehicle, and determine the target waypoint information from the historical waypoint information according to the waypoint information transmission control instruction; The target waypoint information is sent to the first vehicle-mounted device. It can be seen that the waypoint information of each cycle of the pilot vehicle in the embodiment of this application is stored and maintained separately by the waypoint information transmission device. When the following vehicle needs to enter the queue, the waypoint information transmission device is responsible for determining the target waypoint information.
  • the on-board device of the pilot car can only send a small amount of waypoint information in each cycle, and there is no need to send a large amount of waypoint information when the follower car needs to enter the team. Therefore, the communication resources of the pilot vehicle are saved, and the problem of excessive occupation of the communication resources of the pilot vehicle can be avoided.
  • this application can be provided as methods, systems, or computer program products. Therefore, this application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Social Psychology (AREA)
  • Traffic Control Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种自动驾驶车队的路点信息传输方法、装置及系统,涉及自动驾驶技术领域。方法包括:路点信息传输装置实时接收领航车车载装置发送的各周期的路点信息(501);将各周期的路点信息进行存储,形成历史路点信息(502);接收领航车车载装置发送的路点信息传输控制指令,从历史路点信息中确定目标路点信息(503);将目标路点信息发送至第一车载装置(504)。领航车各周期的路点信息单独由路点信息传输装置存储和维护,在有待入队跟随车需要入队时,由该路点信息传输装置负责确定目标路点信息并发送给待入队跟随车的第一车载装置,而领航车车载装置无需发送大量的路点信息,从而节省了领航车的通信资源,能够避免领航车的通信资源被过度占的问题。

Description

自动驾驶车队的路点信息传输方法、装置及系统
本申请要求在2019年09月06日提交中国专利局、申请号为201910841326.X、发明名称为“自动驾驶车队的路点信息传输方法、装置及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及自动驾驶技术领域,尤其涉及一种自动驾驶车队的路点信息传输方法、装置及系统。
背景技术
目前,协同自动驾驶车队(Platooning,简称为自动驾驶车队)是指多辆车基于自动驾驶技术和V2V(Vehicle-to-Vehicle,车对车)车联网技术的支持,以极小的车距尾随行驶的编队状态。在编队中,车距远远低于一般意义上的安全行驶车距,仅为20米甚至更小,极小的车距会使领航车破开的气流,在车尾直接被第二辆车接纳,而不会形成低压的涡流区,从而有效降低了整个车队在行驶过程中的空气阻力总值。一般以协同自动驾驶车队状态行驶所减少的阻力,可以节约近10%的油耗。协同自动驾驶车队之所以可以保持这么短的间隔,主要原因是受益于V2V通信的低延时通信,V2V可以实现从端到端的100ms内的通信。因此,基于V2V技术,车与车之间可以进行信息交互,一个编队里的一组车能够跟随领航车,随着它的操控而自行进行操控。比如领航车进行了踩油门、踩刹车或转向等操控,后面的一排车辆都可以在很短时间内进行同样的操控。
当前,自动驾驶车队环境下,跟随车一般需要从领航车处获得领航车的路点信息,以满足跟随车能够跟随领航车的需求。然而,领航车每次发送路点的时候,都要发送过去一段时间内的完整路点,以供全部跟随车同时使用。跟随车需要领航车在过去某时的路点,该路点的地理位置处于该跟随车当前位置的前后,对该跟随车的自动驾驶决策提供路径依据。随着车队内部跟随车数量的增多,车队整体的物理长度也越长,领航车一次需要发送的历史路点数量越多,造成通信资源被占用过多,影响车队整体运行效率和行驶安全。
发明内容
本申请的实施例提供一种自动驾驶车队的路点信息传输方法、装置及系统,能够避免领航车的通信资源被过度占用的问题。
为达到上述目的,本申请的实施例采用如下技术方案:
本申请实施例的第一方面,提供一种自动驾驶车队的路点信息传输方法,应用于一种自动驾驶车队的路点信息传输系统,该系统包括领航车车载装置、待入队跟随车的第一车载装置及路点信息传输装置;所述方法包括:
路点信息传输装置实时接收领航车车载装置发送的各周期的路点信息;
路点信息传输装置将所述各周期的路点信息进行存储,形成历史路点信息;
路点信息传输装置接收领航车车载装置发送的路点信息传输控制指令,根据所述路点信息传输控制指令从历史路点信息中确定目标路点信息;
路点信息传输装置将所述目标路点信息发送至所述第一车载装置。
本申请实施例的第二方面,提供一种路点信息传输装置,应用于一种自动驾驶车队的路点信息传输系统,该系统包括领航车车载装置、待入队跟随车的第一车载装置及路点信息传输装置;所述路点信息传输装置包括:
接收单元,用于实时接收领航车车载装置发送的各周期的路点信息;
存储单元,用于将所述各周期的路点信息进行存储,形成历史路点信息;
确定单元,用于接收领航车车载装置发送的路点信息传输控制指令,根据所述路点信息传输控制指令从历史路点信息中确定目标路点信息;
发送单元,用于将所述目标路点信息发送至所述第一车载装置。
本申请实施例的第三方面,提供一种自动驾驶车队的路点信息传输系统,所述系统包括领航车车载装置、待入队跟随车的第一车载装置及路点信息传输装置;
所述领航车车载装置,用于向路点信息传输装置实时发送当前周期的路点信息;
所述路点信息传输装置,用于实时接收各周期的路点信息;将所述各周期的路点信息进行存储,形成历史路点信息;
所述领航车车载装置,还用于向路点信息传输装置发送路点信息传输控制指令;
所述路点信息传输装置,还用于根据所述路点信息传输控制指令从历史路点信息中确定目标路点信息,并将所述目标路点信息发送至所述第一车载装置。
本申请实施例的第四方面,提供一种计算机可读存储介质,包括程序或指令,当所述程序或指令在计算机上运行时,实现上述第一方面所述的自动驾驶车队的路点信息传输方法。
本申请实施例的第五方面,提供一种包含指令的计算机程序产品,当所述计算机程序产品在计算机上运行时,使得所述计算机执行如上述第一方面所述的自动驾驶车队的路点信息传输方法。
本申请实施例的第六方面,提供一种芯片系统,包括处理器,所述处理器与存储器的耦合,所述存储器存储有程序指令,当所述存储器存储的程序指令被所述处理器执行时实现上述第一方面所述的自动驾驶车队的路点信息传输方法。
本申请实施例的第七方面,提供一种电路系统,所述电路系统包括处理电路,所述处理电路配置为执行如上述第一方面所述的自动驾驶车队的路点信息传输方法。
本申请实施例的第八方面,提供一种计算机服务器,包括存储器,以及与所述存储器通信连接的一个或多个处理器;
所述存储器中存储有可被所述一个或多个处理器执行的指令,所述指令被所述一个或多个处理器执行,以使所述一个或多个处理器实现如上述第一方面所述的自动驾驶车队的路点信息传输方法。
本申请的实施例提供一种自动驾驶车队的路点信息传输方法、装置及系统,其中,路点信息传输装置实时接收领航车车载装置发送的各周期的路点信息;将所述各周期的路点信息进行存储,形成历史路点信息;接收领航车车载装置发送的路点信息传输控制指令,根据所述路点信息传输控制指令从历史路点信息中确定目标路点信息;将所述目标路点信息发送至所述第一车载装置。可见,本申请实施例中领航车各周期的路点信息单独由路点信息传输装置存储和维护,在有待入队跟随车需要入队时,由该路点信息传输装置负责确定目标路点信息并发送给待入队跟随车的第一车载装置,而领航车车载装置仅在每一周期发送少量的路点信息即可,无需在待入队跟随车需要入队时发送大量的路点信息,从而节省了领航车的通信资源,能够避免领航车的通信资源被过度占用的问题。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现 有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种自动驾驶车队的路点信息传输系统的结构示意图一;
图2为本申请实施例提供的一种自动驾驶车队的路点信息传输系统的结构示意图二;
图3为本申请实施例提供的一种自动驾驶车队的路点信息传输系统的结构示意图三;
图4为本申请实施例提供的一种自动驾驶车队的路点信息传输系统的结构示意图四;
图5为本申请实施例中的自动驾驶车队的路点信息传输系统的具体应用实例的流程图;
图6为本申请实施例中的一种自动驾驶车队的路点信息传输方法的流程图;
图7为本申请实施例提供的一种路点信息传输装置的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
为了使本领域的技术人员更好的了解本申请,下面先对本申请实施例中出现的部 分技术术语进行解释如下:
V2V:Vehicle-to-Vehicle,车对车,V2V通信技术是一种不受限于固定式基站的通信技术,为移动中的车辆提供直接的一端到另一端的无线通信。
V2X:Vehicle to X,是未来智能交通运输系统的关键技术。它使得车与车、车与基站、基站与基站之间能够通信。从而获得实时路况、道路信息、行人信息等一系列交通信息,从而提高驾驶安全性、减少拥堵、提高交通效率、提供车载娱乐信息等。
RSU:Road Side Unit,路测单元或称为路测设备,安装在路测,与车载单元OBU进行通讯的设备。
在本申请的一些实施例中,术语“车辆”广泛地解释为包括任何移动物体,包括例如飞行器、船只、航天器、汽车、卡车、厢式货车、半挂车、摩托车、高尔夫球车、越野车辆、仓库运输车辆或农用车以及行驶在轨道上的运输工具,例如电车或火车以及其它有轨车辆。本申请中的“车辆”通常可以包括:动力系统、传感器系统、控制系统、外围设备和计算机系统。在其它实施例中,车辆可以包括更多、更少或者不同的系统。
其中,动力系统是为车辆提供动力运动的系统,包括:引擎/马达、变速器和车轮/轮胎、能源单元。
控制系统可以包括控制车辆及其组件的装置的组合,例如转向单元、节气门、制动单元。
外围设备可以是允许车辆与外部传感器、其它车辆、外部计算设备和/或用户进行交互的设备,例如无线通信系统、触摸屏、麦克风和/或扬声器。
基于上述描述的车辆,无人驾驶车辆中还配置有传感器系统和无人驾驶控制装置。
传感器系统可以包括用于感测车辆所处环境的信息的多个传感器,以及改变传感器的位置和/或方向的一个或多个致动器。传感器系统可以包括全球定位系统传感器、惯性测量单元、无线电检测和测距(RADAR)单元、相机、激光测距仪、光检测和测距(LIDAR)单元和/或声学传感器等传感器的任何组合;传感器系统还可以包括监视车辆内部系统的传感器(例如O 2监视器、燃油表、引擎温度计等)。
无人驾驶控制装置可以包括一个处理器和存储器,存储器中存储有至少一条机器可执行指令,处理器执行至少一条机器可执行指令实现包括地图引擎、定位模块、感知模块、导航或路径模块、以及自动控制模块等的功能。地图引擎和定位模块用于提 供地图信息和定位信息。感知模块用于根据传感器系统获取到的信息和地图引擎提供的地图信息感知车辆所处环境中的事物。导航或路径模块用于根据地图引擎、定位模块和感知模块的处理结果,为车辆规划行驶路径。自动控制模块将导航或路径模块等模块的决策信息输入解析转换成对车辆控制系统的控制命令输出,并通过车载网(例如通过CAN总线、局域互联网络、多媒体定向系统传输等方式实现的车辆内部电子网络系统)将控制命令发送给车辆控制系统中的对应部件,实现对车辆的自动控制;自动控制模块还可以通过车载网来获取车辆中各部件的信息。
当前,在自动驾驶车队行进过程中,领航车需要定时向车队内的每辆跟随车通过V2X通信,发送领航车当前的运动学状态,包括领航车位置、领航车速度、领航车加速度、领航车航向、领航车前轮转向角、领航车油门开度、领航车制动踏板深度、领航车制动减速度、领航车方向盘转角中的一种或多种信息,每一时刻的领航车的上述运行学状态中所有信息构成一个完整的路点信息。跟随车接收领航车的路点信息,并进行存储。跟随车的存储单元,可存储过去一段时间内的领航车的路点信息,从而能够根据这些路点信息来控制跟随车自身行驶。
可见,当前的每辆跟随车的路点信息均需要领航车通过V2X通信来进行发送,然而,自动驾驶车队中,领航车的V2X通信信道的任务繁重,例如领航车除了通过V2X通信信道发送自身的路点信息之外,还要实时接收整个车队的跟随车的反馈信息,以了解整个车队的状态;另外,领航车还可能与其他车队进行通信;另外,领航车在发现车队的状态异常时,还需要及时对车队进行控制(否则可能发生事故)。因此领航车发送自身路点信息所占用的V2X信道资源要尽量少。
为了克服上述问题,本申请实施例提供一种自动驾驶车队的路点信息传输系统,如图1所示,包括自动驾驶车队20中的领航车21的领航车车载装置211,待入队跟随车22的第一车载装置221以及路点信息传输装置30。另外,在该自动驾驶车队的路点信息传输系统中,自动驾驶车队20中的领航车21还可以设置有领航车车载V2X设备212和领航车冗余车载V2X设备213;待入队跟随车22还可以设置有第一车载V2X设备222;另外,在该自动驾驶车队的路点信息传输系统中,还可以包括已经在车队中的跟随车23的第二车载装置231和第二车载V2X设备232,以及还可以包括自动驾驶车队20所行驶的道路的路侧设备40处的路侧V2X设备401。领航车21的领航车车载装置211分别与领航车车载V2X设备212和领航车冗余车载V2X设备 213连接,第二车载装置231与第二车载V2X设备232连接,第一车载装置221与第一车载V2X设备222连接。此外,领航车车载V2X设备212、领航车冗余车载V2X设备213、路侧V2X设备401、第二车载V2X设备232和第一车载V2X设备222两两之间可进行通信连接,即可以通过V2X技术进行通信。
值得说明的是,本申请中的第一车载装置221、第二车载装置231和领航车车载装置211可以是具有计算处理能力的车载计算机或车载服务器。
本申请中的路测设备40(RSU)可以为搭载有激光雷达、摄像头、通信模块等的路测感知设备,对该路测设备40的具体结构和详细内容可以参见公开号为CN107807633A的中国专利申请,此处不再赘述。
另外,分别如图2、图3和图4所示,该路点信息传输装置30可以设置在领航车21处(如图2所示),例如,该路点信息传输装置30为单独设置在领航车21处的装置,则路点信息传输装置30与领航车车载装置211通信连接,或者路点信息传输装置30可以为领航车车载装置211本身。另外,该路点信息传输装置30还可以设置在自动驾驶车队20中的任一跟随车处(如图3所示),例如为了便于与靠近车队尾部的待入队跟随车22进行通信交互,该路点信息传输装置30可以设置在自动驾驶车队20中处于队尾的跟随车23处,则路点信息传输装置30与第二车载V2X设备232连接。另外,该路点信息传输装置30还可以设置在自动驾驶车队20行驶的道路的路侧设备40处(如图4所示),则该路点信息传输装置30与路侧V2X设备401连接。
在本申请的一实施例中,领航车车载装置211,用于向路点信息传输装置30实时发送当前周期的路点信息。
路点信息传输装置30,用于实时接收各周期的路点信息;将各周期的路点信息进行存储,形成历史路点信息。
领航车车载装置211,还用于向路点信息传输装置30发送路点信息传输控制指令。
路点信息传输装置30,还用于根据路点信息传输控制指令从历史路点信息中确定目标路点信息,并将目标路点信息发送至第一车载装置221。
在本申请的一实施例中,领航车车载装置211向路点信息传输装置30实时发送当前周期的路点信息中,各周期的路点信息的数量可以相同,例如每一周期(例如领 航车车载装置211以20Hz频率发送路点信息,则一个周期为50ms)发送10个路点的路点信息,但不仅局限于此。另外,该路点信息包括:领航车位置,以及如下信息的一种或多种:例如领航车速度、领航车加速度、领航车航向、领航车前轮转向角、领航车油门开度、领航车制动踏板深度、领航车制动减速度和领航车方向盘转角。这样,车队中的各跟随车23和待入队跟随车22可以根据路点信息来控制车辆的跟随移动,此处自动驾驶车队20中的跟随车根据路点信息来控制自身的行驶为现有技术,此处不再过多赘述。
在本申请的一实施例中,由于领航车车载装置211发送路点信息的周期可能较短,如50ms,而领航车若速度较慢,可能存在领航车车载装置211前后两次发送的路点信息存在大量重复的情况,因此路点信息传输装置30实时接收各周期的路点信息,并将各周期的路点信息进行存储,形成历史路点信息,其过程需要将各周期的路点信息进行去重复处理,将去重复处理后的各周期的路点信息进行存储,形成历史路点信息。该去重复处理的过程可以采用如下两种方式:
例如方式一:
路点信息传输装置30在接收到当前周期的路点信息时,获得当前周期的路点信息对应的领航车位置。将当前周期的路点信息对应的领航车位置与已经存储的路点信息对应的领航车位置进行比对,形成位置比对结果。将位置比对结果小于或等于预先设置的位置偏差阈值的路点信息确定为重复路点信息,在当前周期的路点信息中删除重复路点信息,将删除重复路点信息后的当前周期的剩余路点信息进行存储,形成历史路点信息。例如,路点信息传输装置30每一周期(领航车车载装置211以20Hz频率发送路点信息,则一个周期为50ms)接收到10个路点的路点信息,每个路点的距离理论上为1m,则当前周期的路点信息对应的领航车位置与已经存储的路点信息对应的领航车位置的位置比对结果若小于或等于预先设置的位置偏差阈值(例如50cm),则可认为当前周期的该路点信息为重复路点信息。
又例如方式二:
路点信息传输装置30在接收到当前周期的路点信息(此处该路点信息包括路点信息编号,相同的路点信息的路点信息编号相同)时,获得当前周期的路点信息对应的路点信息编号。将当前周期的路点信息对应的路点信息编号与已经存储的路点信息对应的路点信息编号进行比对,形成编号比对结果。将编号比对结果相同的路点信息 确定为重复路点信息,在当前周期的路点信息中删除重复路点信息,将删除重复路点信息后的当前周期的剩余路点信息进行存储,形成历史路点信息。例如,路点信息传输装置30每一周期(领航车车载装置211以20Hz频率发送路点信息,则一个周期为50ms)接收到10个路点的路点信息,每个路点的距离理论上为1m,相同位置的路点信息的编号相同,例如已经存储的路点信息为001、002、003号路点信息,当前周期的路点信息为002、003、004号路点信息,则可以确定002和003号路点信息为重复路点信息。
在本申请的一实施例中,该领航车车载装置211可以接收待入队跟随车22的第一车载装置221发送的入队请求,领航车车载装置211在确定待入队跟随车22可以入队后,领航车车载装置则可以向路点信息传输装置30发送路点信息传输控制指令,其目的是控制路点信息传输装置30根据路点信息传输控制指令从历史路点信息中确定目标路点信息,并将目标路点信息发送至被允许入队的跟随车(即待入队跟随车22)的第一车载装置221。
在本申请的一实施例中,该路点信息传输控制指令包括待入队跟随车的当前位置和领航车的当前位置;则路点信息传输装置30根据路点信息传输控制指令从历史路点信息中确定目标路点信息可以通过如下方式实现:
路点信息传输装置30接收领航车车载装置211发送的路点信息传输控制指令,根据路点信息传输控制指令中的待入队跟随车的当前位置,从历史路点信息中获得待入队跟随车的当前位置到领航车的当前位置之间的目标路点信息。例如,路点信息传输装置30所存储的历史路点信息是每隔1m存在一个路点信息,则在当前周期,假如获得待入队跟随车的当前位置到领航车的当前位置之间的距离为100m,则需要从历史路点信息中获得该100m对应的100个目标路点信息。以上仅为列举出的目标路点信息的一种获得方式,但不仅局限于此。
在本申请的一实施例中,路点信息传输装置30实时接收各周期的路点信息,以及路点信息传输装置30将目标路点信息发送至第一车载装置221的方式可以根据路点信息传输装置30的位置不同而采取不同方式,例如:
方式一:如图2所示,路点信息传输装置30设置在领航车21处,则路点信息传输装置30可以通过与领航车车载装置211通信连接,从领航车车载装置211实时接收各周期的路点信息。另外,路点信息传输装置30可以通过领航车冗余车载V2X设 备213和第一车载V2X设备222,将目标路点信息发送至第一车载装置221。此处,该方式一中采用领航车冗余车载V2X设备213来进行目标路点信息的传输,而领航车车载V2X设备212则负责更为重要的控制指令发送、整个车队的跟随车的反馈信息接收、与其他车队进行通信等通信数据的首发,从而避免了目标路点信息的传输占用领航车车载V2X设备212的通信资源。
方式二:如图3所示,路点信息传输装置30设置在自动驾驶车队20中的任一跟随车处,例如此处以路点信息传输装置30设置在自动驾驶车队20中处于队尾的跟随车23处(在图3中仅以自动驾驶车队20包括领航车21和一辆跟随车23为例,但不仅局限于此)。则路点信息传输装置30可以通过第二车载V2X设备232,实时接收领航车车载装置211通过领航车车载V2X设备212(当然此处也可采用领航车冗余车载V2X设备213)发送的各周期的路点信息。另外,路点信息传输装置30可以通过第二车载V2X设备232和第一车载V2X设备222将目标路点信息发送至第一车载装置221。
方式三:如图4所示,路点信息传输装置30可以设置在自动驾驶车队20行驶的道路的路侧设备40处;则路点信息传输装置30可以通过路侧V2X设备401实时接收领航车车载装置211通过领航车车载V2X设备212发送的各周期的路点信息。另外,路点信息传输装置30可以通过路侧V2X设备401和第一车载V2X设备222将目标路点信息发送至第一车载装置221。
可见,经过上述不同的三种方式,路点信息传输装置30可以灵活的布置在多处,可实现方式众多。这样,每辆跟随车可以在很小的通信代价下,获得领航车的完整路点信息,从而在完整路点信息的引导下,实现自动驾驶车队的跟随控制。
下面列举一个本申请实施例中的自动驾驶车队的路点信息传输系统的具体应用实例,自动驾驶车队内有3台车,1号为领航车,2号、3号依次为跟随车,车间距为20米,车队处于自动驾驶状态,4号车是待入队的新跟随车,距离3号车100米。(此处的交互过程仅以领航车、跟随车等为执行主体,省略了车载装置和车载V2X设备等车辆上的细节,本例仅为一个具体应用实例,本领域技术人员还可以在本申请说明书的基础上列举更多的应用实例,此处不再一一列举。)。如图5所示,包括:
步骤S1、1号车以20赫兹频率发送当前周期的路点信息,每次发送10个路点信息,相邻两个路点信息中的领航车位置之间的间隔为1米。
步骤S2、2、3号车每次接收10个路点信息后,查找这10个路点信息是否已经存储在本车内。
例如,2号车上个周期未接收到领航车的路点信息,因此通过本次更新,增加了2个路点信息,而3号车上个周期接收到领航车的路点信息,因此本次更新只增加了1个路点信息。通过更新,2、3号车均具有1号车的完整路点。
步骤S3、4号车申请加入车队。
步骤S4、1号车同意4号车加入车队,并向3号车发送路点信息传输控制指令。
步骤S5、3号车通过位置判断,确定3号车自身距离1号车40米,距离4号车100米,因此判断需要140米范围内的路点信息,3号车从自身存储的历史路点信息中,获得该140米范围对应的目标路点信息,共计140个目标路点信息,发送给4号车。
步骤S6、4号车获得从当前自车位置,直至1号车140米的全部目标路点信息,开始在自动驾驶车队内的自动驾驶。
步骤S7、在下一个周期,1号车继续发送10个当前周期的路点信息。
步骤S8、4号车接收到当前周期的路点信息,与自身存储的140个路点信息进行比对,发现1个新路点信息,则存储起来;2、3号车也同时更新自车存储的历史路点信息。这样,2、3、4号车拥有完整的领航车路点信息。
另外,如图6所示,在本申请的一实施例中,提供一种自动驾驶车队的路点信息传输方法,应用于一种自动驾驶车队的路点信息传输系统,该系统包括领航车车载装置、待入队跟随车的第一车载装置及路点信息传输装置;该方法包括:
步骤501、路点信息传输装置实时接收领航车车载装置发送的各周期的路点信息。
步骤502、路点信息传输装置将各周期的路点信息进行存储,形成历史路点信息。
步骤503、路点信息传输装置接收领航车车载装置发送的路点信息传输控制指令,根据路点信息传输控制指令从历史路点信息中确定目标路点信息。
步骤504、路点信息传输装置将目标路点信息发送至第一车载装置。
在本申请的一实施例中,各周期的路点信息的数量相同;路点信息包括:领航车位置,以及如下信息的一种或多种:领航车速度、领航车加速度、领航车航向、领航车前轮转向角、领航车油门开度、领航车制动踏板深度、领航车制动减速度和领航车方向盘转角。
在本申请的一实施例中,该步骤502路点信息传输装置将所述各周期的路点信息进行存储,形成历史路点信息,可以采用如下方式实现:
路点信息传输装置将各周期的路点信息进行去重复处理,将去重复处理后的各周期的路点信息进行存储,形成历史路点信息。
在本申请的一实施例中,该路点信息包括领航车位置,则路点信息传输装置将各周期的路点信息进行去重复处理,将去重复处理后的各周期的路点信息进行存储,形成历史路点信息,可以采用如下方式实现:
路点信息传输装置在接收到当前周期的路点信息时,获得当前周期的路点信息对应的领航车位置;将当前周期的路点信息对应的领航车位置与已经存储的路点信息对应的领航车位置进行比对,形成位置比对结果;将位置比对结果小于或等于预先设置的位置偏差阈值的路点信息确定为重复路点信息,在当前周期的路点信息中删除重复路点信息,将删除重复路点信息后的当前周期的剩余路点信息进行存储,形成历史路点信息。
在本申请的一实施例中,路点信息包括路点信息编号,相同的路点信息的路点信息编号相同。则路点信息传输装置将各周期的路点信息进行去重复处理,将去重复处理后的各周期的路点信息进行存储,形成历史路点信息,可以采用如下方式实现:
路点信息传输装置在接收到当前周期的路点信息时,获得当前周期的路点信息对应的路点信息编号;将当前周期的路点信息对应的路点信息编号与已经存储的路点信息对应的路点信息编号进行比对,形成编号比对结果;将编号比对结果相同的路点信息确定为重复路点信息,在当前周期的路点信息中删除重复路点信息,将删除重复路点信息后的当前周期的剩余路点信息进行存储,形成历史路点信息。
另外,在本申请的一实施例中,路点信息传输装置设置在领航车处,路点信息传输装置与领航车车载装置通信连接;自动驾驶车队的路点信息传输系统还包括领航车冗余车载V2X设备和待入队跟随车的第一车载V2X设备,领航车冗余车载V2X设备与第一车载V2X设备通信连接;路点信息传输装置与领航车冗余车载V2X设备连接;第一车载装置与第一车载V2X设备连接。
则上述步骤504中,路点信息传输装置将目标路点信息发送至第一车载装置,可以采用如下方式实现:
路点信息传输装置通过领航车冗余车载V2X设备和第一车载V2X设备,将目标 路点信息发送至第一车载装置。
另外,在本申请的一实施例中,路点信息传输装置设置在自动驾驶车队中的任一跟随车处;自动驾驶车队的路点信息传输系统还包括领航车车载V2X设备、待入队跟随车的第一车载V2X设备和路点信息传输装置所处的跟随车的第二车载V2X设备;领航车车载V2X设备、第一车载V2X设备、第二车载V2X设备两两通信连接;领航车车载装置与领航车车载V2X设备连接;第一车载装置与第一车载V2X设备连接;路点信息传输装置与第二车载V2X设备连接。
则上述步骤501中,路点信息传输装置实时接收领航车车载装置发送的各周期的路点信息,可以采用如下方式实现:
路点信息传输装置通过第二车载V2X设备,实时接收领航车车载装置通过领航车车载V2X设备发送的各周期的路点信息。
上述步骤504中,路点信息传输装置将目标路点信息发送至第一车载装置,可以采用如下方式实现:
路点信息传输装置通过第二车载V2X设备和第一车载V2X设备将目标路点信息发送至第一车载装置。
另外,在本申请的一实施例中,路点信息传输装置设置在自动驾驶车队中处于队尾的跟随车处。
另外,在本申请的一实施例中,路点信息传输装置设置在自动驾驶车队行驶的道路的路侧设备处;自动驾驶车队的路点信息传输系统还包括领航车车载V2X设备、待入队跟随车的第一车载V2X设备和路点信息传输装置所处的路侧设备处的路侧V2X设备;领航车车载V2X设备、第一车载V2X设备、路侧V2X设备两两通信连接;领航车车载装置与领航车车载V2X设备连接;第一车载装置与第一车载V2X设备连接;路点信息传输装置与路侧V2X设备连接。
则上述步骤501中,路点信息传输装置实时接收领航车车载装置发送的各周期的路点信息,可以采用如下方式实现:
路点信息传输装置通过路侧V2X设备,实时接收领航车车载装置通过领航车车载V2X设备发送的各周期的路点信息。
上述步骤504中,路点信息传输装置将目标路点信息发送至第一车载装置,可以采用如下方式实现:
路点信息传输装置通过路侧V2X设备和第一车载V2X设备将目标路点信息发送至所述第一车载装置。
另外,在本申请的一实施例中,路点信息传输控制指令包括待入队跟随车的当前位置和领航车的当前位置。则上述步骤503中,路点信息传输装置接收领航车车载装置发送的路点信息传输控制指令,根据路点信息传输控制指令从历史路点信息中确定目标路点信息,可以采用如下方式实现:
路点信息传输装置接收领航车车载装置发送的路点信息传输控制指令,根据路点信息传输控制指令中的待入队跟随车的当前位置,从历史路点信息中获得待入队跟随车的当前位置到领航车的当前位置之间的目标路点信息。
值得说明的是,本申请实施例的具体实现方式可以参见上述图1至图5所对应的自动驾驶车队的路点信息传输系统的实施例,此处不再赘述。
另外,如图7所示,本申请实施例还提供一种路点信息传输装置,应用于一种自动驾驶车队的路点信息传输系统,该系统包括领航车车载装置、待入队跟随车的第一车载装置及路点信息传输装置;该路点信息传输装置包括:
接收单元61,用于实时接收领航车车载装置发送的各周期的路点信息。
存储单元62,用于将所述各周期的路点信息进行存储,形成历史路点信息。
确定单元63,用于接收领航车车载装置发送的路点信息传输控制指令,根据所述路点信息传输控制指令从历史路点信息中确定目标路点信息。
发送单元64,用于将所述目标路点信息发送至所述第一车载装置。
本申请实施例的具体实现方式可以参见上述图1至图5所对应的自动驾驶车队的路点信息传输系统的实施例,此处不再赘述。
另外,本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述图6所对应的自动驾驶车队的路点信息传输方法。其具体实现方式可以参见上述图1至图5所对应的自动驾驶车队的路点信息传输系统的实施例,此处不再赘述。
另外,本申请实施例还提供一种包含指令的计算机程序产品,当计算机程序产品在计算机上运行时,使得计算机执行如上述图6所对应的自动驾驶车队的路点信息传输方法。其具体实现方式可以参见上述图1至图5所对应的自动驾驶车队的路点信息传输系统的实施例,此处不再赘述。
另外,本申请实施例还提供一种芯片系统,包括处理器,所述处理器与存储器的耦合,所述存储器存储有程序指令,当所述存储器存储的程序指令被所述处理器执行时实现上述图6所对应的自动驾驶车队的路点信息传输方法。其具体实现方式可以参见上述图1至图5所对应的自动驾驶车队的路点信息传输系统的实施例,此处不再赘述。
另外,本申请实施例还提供一种电路系统,所述电路系统包括处理电路,所述处理电路配置为执行如上述图6所对应的自动驾驶车队的路点信息传输方法。其具体实现方式可以参见上述图1至图5所对应的自动驾驶车队的路点信息传输系统的实施例,此处不再赘述。
另外,本申请实施例还提供一种计算机服务器,包括存储器,以及与所述存储器通信连接的一个或多个处理器;
所述存储器中存储有可被所述一个或多个处理器执行的指令,所述指令被所述一个或多个处理器执行,以使所述一个或多个处理器实现上述图6所对应的自动驾驶车队的路点信息传输方法。其具体实现方式可以参见上述图1至图5所对应的自动驾驶车队的路点信息传输系统的实施例,此处不再赘述。
本申请的实施例提供一种自动驾驶车队的路点信息传输方法、装置及系统,其中,路点信息传输装置实时接收领航车车载装置发送的各周期的路点信息;将所述各周期的路点信息进行存储,形成历史路点信息;接收领航车车载装置发送的路点信息传输控制指令,根据所述路点信息传输控制指令从历史路点信息中确定目标路点信息;将所述目标路点信息发送至所述第一车载装置。可见,本申请实施例中领航车各周期的路点信息单独由路点信息传输装置存储和维护,在有待入队跟随车需要入队时,由该路点信息传输装置负责确定目标路点信息并发送给待入队跟随车的第一车载装置,而领航车车载装置仅在每一周期发送少量的路点信息即可,无需在待入队跟随车需要入队时发送大量的路点信息,从而节省了领航车的通信资源,能够避免领航车的通信资源被过度占用的问题。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等) 上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
本申请中应用了具体实施例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (26)

  1. 一种自动驾驶车队的路点信息传输方法,其特征在于,应用于一种自动驾驶车队的路点信息传输系统,该系统包括领航车车载装置、待入队跟随车的第一车载装置及路点信息传输装置;所述方法包括:
    路点信息传输装置实时接收领航车车载装置发送的各周期的路点信息;
    路点信息传输装置将所述各周期的路点信息进行存储,形成历史路点信息;
    路点信息传输装置接收领航车车载装置发送的路点信息传输控制指令,根据所述路点信息传输控制指令从历史路点信息中确定目标路点信息;
    路点信息传输装置将所述目标路点信息发送至所述第一车载装置。
  2. 根据权利要求1所述的自动驾驶车队的路点信息传输方法,其特征在于,所述各周期的路点信息的数量相同;所述路点信息包括:领航车位置,以及如下信息的一种或多种:领航车速度、领航车加速度、领航车航向、领航车前轮转向角、领航车油门开度、领航车制动踏板深度、领航车制动减速度和领航车方向盘转角。
  3. 根据权利要求1所述的自动驾驶车队的路点信息传输方法,其特征在于,所述路点信息传输装置将所述各周期的路点信息进行存储,形成历史路点信息,包括:
    路点信息传输装置将所述各周期的路点信息进行去重复处理,将去重复处理后的各周期的路点信息进行存储,形成历史路点信息。
  4. 根据权利要求3所述的自动驾驶车队的路点信息传输方法,其特征在于,所述路点信息包括领航车位置;
    所述路点信息传输装置将所述各周期的路点信息进行去重复处理,将去重复处理后的各周期的路点信息进行存储,形成历史路点信息,包括:
    所述路点信息传输装置在接收到当前周期的路点信息时,获得当前周期的路点信息对应的领航车位置;
    所述路点信息传输装置将当前周期的路点信息对应的领航车位置与已经存储的路点信息对应的领航车位置进行比对,形成位置比对结果;
    所述路点信息传输装置将位置比对结果小于或等于预先设置的位置偏差阈值的路点信息确定为重复路点信息,在当前周期的路点信息中删除重复路点信息,将删除重复路点信息后的当前周期的剩余路点信息进行存储,形成历史路点信息。
  5. 根据权利要求3所述的自动驾驶车队的路点信息传输方法,其特征在于,所述 路点信息包括路点信息编号,相同的路点信息的路点信息编号相同;
    所述路点信息传输装置将所述各周期的路点信息进行去重复处理,将去重复处理后的各周期的路点信息进行存储,形成历史路点信息,包括:
    所述路点信息传输装置在接收到当前周期的路点信息时,获得当前周期的路点信息对应的路点信息编号;
    所述路点信息传输装置将当前周期的路点信息对应的路点信息编号与已经存储的路点信息对应的路点信息编号进行比对,形成编号比对结果;
    所述路点信息传输装置将编号比对结果相同的路点信息确定为重复路点信息,在当前周期的路点信息中删除重复路点信息,将删除重复路点信息后的当前周期的剩余路点信息进行存储,形成历史路点信息。
  6. 根据权利要求1所述的自动驾驶车队的路点信息传输方法,其特征在于,所述路点信息传输装置设置在领航车处,所述路点信息传输装置与所述领航车车载装置通信连接;所述自动驾驶车队的路点信息传输系统还包括领航车冗余车载V2X设备和待入队跟随车的第一车载V2X设备,所述领航车冗余车载V2X设备与所述第一车载V2X设备通信连接;所述路点信息传输装置与所述领航车冗余车载V2X设备连接;所述第一车载装置与所述第一车载V2X设备连接;
    所述路点信息传输装置将所述目标路点信息发送至所述第一车载装置,包括:
    所述路点信息传输装置通过领航车冗余车载V2X设备和第一车载V2X设备,将所述目标路点信息发送至所述第一车载装置。
  7. 根据权利要求1所述的自动驾驶车队的路点信息传输方法,其特征在于,所述路点信息传输装置设置在自动驾驶车队中的任一跟随车处;所述自动驾驶车队的路点信息传输系统还包括领航车车载V2X设备、待入队跟随车的第一车载V2X设备和路点信息传输装置所处的跟随车的第二车载V2X设备;所述领航车车载V2X设备、第一车载V2X设备、第二车载V2X设备两两通信连接;所述领航车车载装置与所述领航车车载V2X设备连接;所述第一车载装置与所述第一车载V2X设备连接;所述路点信息传输装置与所述第二车载V2X设备连接;
    所述路点信息传输装置实时接收领航车车载装置发送的各周期的路点信息,包括:
    所述路点信息传输装置通过第二车载V2X设备,实时接收领航车车载装置通过领航车车载V2X设备发送的各周期的路点信息;
    所述路点信息传输装置将所述目标路点信息发送至所述第一车载装置,包括:
    所述路点信息传输装置通过所述第二车载V2X设备和第一车载V2X设备将所述目标路点信息发送至所述第一车载装置。
  8. 根据权利要求7所述的自动驾驶车队的路点信息传输方法,其特征在于,所述路点信息传输装置设置在自动驾驶车队中处于队尾的跟随车处。
  9. 根据权利要求1所述的自动驾驶车队的路点信息传输方法,其特征在于,所述路点信息传输装置设置在自动驾驶车队行驶的道路的路侧设备处;所述自动驾驶车队的路点信息传输系统还包括领航车车载V2X设备、待入队跟随车的第一车载V2X设备和路点信息传输装置所处的路侧设备处的路侧V2X设备;所述领航车车载V2X设备、第一车载V2X设备、路侧V2X设备两两通信连接;所述领航车车载装置与所述领航车车载V2X设备连接;所述第一车载装置与所述第一车载V2X设备连接;所述路点信息传输装置与所述路侧V2X设备连接;
    所述路点信息传输装置实时接收领航车车载装置发送的各周期的路点信息,包括:
    所述路点信息传输装置通过路侧V2X设备,实时接收领航车车载装置通过领航车车载V2X设备发送的各周期的路点信息;
    所述路点信息传输装置将所述目标路点信息发送至所述第一车载装置,包括:
    所述路点信息传输装置通过所述路侧V2X设备和第一车载V2X设备将所述目标路点信息发送至所述第一车载装置。
  10. 根据权利要求1所述的自动驾驶车队的路点信息传输方法,其特征在于,所述路点信息传输控制指令包括待入队跟随车的当前位置和领航车的当前位置;
    所述路点信息传输装置接收领航车车载装置发送的路点信息传输控制指令,根据所述路点信息传输控制指令从历史路点信息中确定目标路点信息,包括:
    所述路点信息传输装置接收领航车车载装置发送的路点信息传输控制指令,根据所述路点信息传输控制指令中的待入队跟随车的当前位置,从历史路点信息中获得待入队跟随车的当前位置到领航车的当前位置之间的目标路点信息。
  11. 一种路点信息传输装置,其特征在于,应用于一种自动驾驶车队的路点信息传输系统,该系统包括领航车车载装置、待入队跟随车的第一车载装置及路点信息传输装置;所述路点信息传输装置包括:
    接收单元,用于实时接收领航车车载装置发送的各周期的路点信息;
    存储单元,用于将所述各周期的路点信息进行存储,形成历史路点信息;
    确定单元,用于接收领航车车载装置发送的路点信息传输控制指令,根据所述路点信息传输控制指令从历史路点信息中确定目标路点信息;
    发送单元,用于将所述目标路点信息发送至所述第一车载装置。
  12. 一种自动驾驶车队的路点信息传输系统,其特征在于,所述系统包括领航车车载装置、待入队跟随车的第一车载装置及路点信息传输装置;
    所述领航车车载装置,用于向路点信息传输装置实时发送当前周期的路点信息;
    所述路点信息传输装置,用于实时接收各周期的路点信息;将所述各周期的路点信息进行存储,形成历史路点信息;
    所述领航车车载装置,还用于向路点信息传输装置发送路点信息传输控制指令;
    所述路点信息传输装置,还用于根据所述路点信息传输控制指令从历史路点信息中确定目标路点信息,并将所述目标路点信息发送至所述第一车载装置。
  13. 根据权利要求12所述的自动驾驶车队的路点信息传输系统,其特征在于,所述各周期的路点信息的数量相同;所述路点信息包括:领航车位置,以及如下信息的一种或多种:领航车速度、领航车加速度、领航车航向、领航车前轮转向角、领航车油门开度、领航车制动踏板深度、领航车制动减速度和领航车方向盘转角。
  14. 根据权利要求12所述的自动驾驶车队的路点信息传输系统,其特征在于,所述路点信息传输装置,具体用于:
    将所述各周期的路点信息进行去重复处理,将去重复处理后的各周期的路点信息进行存储,形成历史路点信息。
  15. 根据权利要求14所述的自动驾驶车队的路点信息传输系统,其特征在于,所述路点信息包括领航车位置;
    所述路点信息传输装置,具体用于:
    在接收到当前周期的路点信息时,获得当前周期的路点信息对应的领航车位置;
    将当前周期的路点信息对应的领航车位置与已经存储的路点信息对应的领航车位置进行比对,形成位置比对结果;
    将位置比对结果小于或等于预先设置的位置偏差阈值的路点信息确定为重复路点信息,在当前周期的路点信息中删除重复路点信息,将删除重复路点信息后的当前周期的剩余路点信息进行存储,形成历史路点信息。
  16. 根据权利要求14所述的自动驾驶车队的路点信息传输系统,其特征在于,所述路点信息包括路点信息编号,相同的路点信息的路点信息编号相同;
    所述路点信息传输装置,具体用于:
    在接收到当前周期的路点信息时,获得当前周期的路点信息对应的路点信息编号;
    将当前周期的路点信息对应的路点信息编号与已经存储的路点信息对应的路点信息编号进行比对,形成编号比对结果;
    将编号比对结果相同的路点信息确定为重复路点信息,在当前周期的路点信息中删除重复路点信息,将删除重复路点信息后的当前周期的剩余路点信息进行存储,形成历史路点信息。
  17. 根据权利要求12所述的自动驾驶车队的路点信息传输系统,其特征在于,所述路点信息传输装置设置在领航车处,所述路点信息传输装置与所述领航车车载装置通信连接;所述自动驾驶车队的路点信息传输系统还包括领航车冗余车载V2X设备和待入队跟随车的第一车载V2X设备,所述领航车冗余车载V2X设备与所述第一车载V2X设备通信连接;所述路点信息传输装置与所述领航车冗余车载V2X设备连接;所述第一车载装置与所述第一车载V2X设备连接;
    所述路点信息传输装置,具体用于:
    通过领航车冗余车载V2X设备和第一车载V2X设备,将所述目标路点信息发送至所述第一车载装置。
  18. 根据权利要求12所述的自动驾驶车队的路点信息传输系统,其特征在于,所述路点信息传输装置设置在自动驾驶车队中的任一跟随车处;所述自动驾驶车队的路点信息传输系统还包括领航车车载V2X设备、待入队跟随车的第一车载V2X设备和路点信息传输装置所处的跟随车的第二车载V2X设备;所述领航车车载V2X设备、第一车载V2X设备、第二车载V2X设备两两通信连接;所述领航车车载装置与所述领航车车载V2X设备连接;所述第一车载装置与所述第一车载V2X设备连接;所述路点信息传输装置与所述第二车载V2X设备连接;
    所述路点信息传输装置,具体用于:
    通过第二车载V2X设备,实时接收领航车车载装置通过领航车车载V2X设备发送的各周期的路点信息;
    通过所述第二车载V2X设备和第一车载V2X设备将所述目标路点信息发送至 所述第一车载装置。
  19. 根据权利要求18所述的自动驾驶车队的路点信息传输系统,其特征在于,所述路点信息传输装置设置在自动驾驶车队中处于队尾的跟随车处。
  20. 根据权利要求12所述的自动驾驶车队的路点信息传输系统,其特征在于,所述路点信息传输装置设置在自动驾驶车队行驶的道路的路侧设备处;所述自动驾驶车队的路点信息传输系统还包括领航车车载V2X设备、待入队跟随车的第一车载V2X设备和路点信息传输装置所处的路侧设备处的路侧V2X设备;所述领航车车载V2X设备、第一车载V2X设备、路侧V2X设备两两通信连接;所述领航车车载装置与所述领航车车载V2X设备连接;所述第一车载装置与所述第一车载V2X设备连接;所述路点信息传输装置与所述路侧V2X设备连接;
    所述路点信息传输装置,具体用于:
    通过路侧V2X设备实时接收领航车车载装置通过领航车车载V2X设备发送的各周期的路点信息;
    通过所述路侧V2X设备和第一车载V2X设备将所述目标路点信息发送至所述第一车载装置。
  21. 根据权利要求12所述的自动驾驶车队的路点信息传输系统,其特征在于,所述路点信息传输控制指令包括待入队跟随车的当前位置和领航车的当前位置;
    所述路点信息传输装置,具体用于:
    接收领航车车载装置发送的路点信息传输控制指令,根据所述路点信息传输控制指令中的待入队跟随车的当前位置,从历史路点信息中获得待入队跟随车的当前位置到领航车的当前位置之间的目标路点信息。
  22. 一种计算机可读存储介质,其特征在于,包括程序或指令,当所述程序或指令在计算机上运行时,实现权利要求1至10任一项所述的自动驾驶车队的路点信息传输方法。
  23. 一种包含指令的计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得所述计算机执行如权利要求1至10任一项所述的自动驾驶车队的路点信息传输方法。
  24. 一种芯片系统,其特征在于,包括处理器,所述处理器与存储器的耦合,所述存储器存储有程序指令,当所述存储器存储的程序指令被所述处理器执行时实现权利 要求1至10任一项所述的自动驾驶车队的路点信息传输方法。
  25. 一种电路系统,其特征在于,所述电路系统包括处理电路,所述处理电路配置为执行如权利要求1至10任一项所述的自动驾驶车队的路点信息传输方法。
  26. 一种计算机服务器,其特征在于,包括存储器,以及与所述存储器通信连接的一个或多个处理器;
    所述存储器中存储有可被所述一个或多个处理器执行的指令,所述指令被所述一个或多个处理器执行,以使所述一个或多个处理器实现如权利要求1至10任一项所述的自动驾驶车队的路点信息传输方法。
PCT/CN2020/113565 2019-09-06 2020-09-04 自动驾驶车队的路点信息传输方法、装置及系统 WO2021043279A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022515132A JP7579332B2 (ja) 2019-09-06 2020-09-04 自動運転車両隊列のウェイポイント情報伝送方法、装置及びシステム
EP20861536.9A EP4027668A4 (en) 2019-09-06 2020-09-04 METHOD, APPARATUS AND SYSTEM FOR TRANSMITTING WAYPOINT INFORMATION FOR AUTOMATED CONVOY DRIVING
AU2020343829A AU2020343829A1 (en) 2019-09-06 2020-09-04 Waypoint information transmission method, apparatus and system for platooning
US17/653,860 US12033514B2 (en) 2019-09-06 2022-03-07 Waypoint information transmission method, apparatus and system for platooning

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910841326.XA CN112461251B (zh) 2019-09-06 2019-09-06 自动驾驶车队的路点信息传输方法、装置及系统
CN201910841326.X 2019-09-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/653,860 Continuation US12033514B2 (en) 2019-09-06 2022-03-07 Waypoint information transmission method, apparatus and system for platooning

Publications (1)

Publication Number Publication Date
WO2021043279A1 true WO2021043279A1 (zh) 2021-03-11

Family

ID=74807703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/113565 WO2021043279A1 (zh) 2019-09-06 2020-09-04 自动驾驶车队的路点信息传输方法、装置及系统

Country Status (6)

Country Link
US (1) US12033514B2 (zh)
EP (1) EP4027668A4 (zh)
JP (1) JP7579332B2 (zh)
CN (1) CN112461251B (zh)
AU (1) AU2020343829A1 (zh)
WO (1) WO2021043279A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113467449B (zh) * 2021-06-30 2023-05-30 深圳市海柔创新科技有限公司 车队控制方法、装置、电子设备和存储介质
CN115206081A (zh) * 2022-07-07 2022-10-18 智道网联科技(北京)有限公司 自动驾驶车辆的编队控制系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013073362A (ja) * 2011-09-27 2013-04-22 Denso Corp 隊列走行装置
CN104048672A (zh) * 2014-06-30 2014-09-17 科大讯飞股份有限公司 车队跟随导航方法及系统
CN106994969A (zh) * 2017-03-24 2017-08-01 奇瑞汽车股份有限公司 一种车队编队驾驶系统及方法
CN107025787A (zh) * 2017-04-11 2017-08-08 首都经济贸易大学 一种物流车队控制方法和系统
US20170293296A1 (en) * 2016-04-12 2017-10-12 Here Global B.V. Method, apparatus and computer program product for grouping vehicles into a platoon
US20170309187A1 (en) * 2016-04-22 2017-10-26 Hsin-Nan Lin Vehicle platoon system and method thereof
CN107807633A (zh) 2017-09-27 2018-03-16 北京图森未来科技有限公司 一种路侧设备、车载设备以及自动驾驶感知方法及系统
CN108009169A (zh) * 2016-11-02 2018-05-08 中国移动通信有限公司研究院 一种数据处理方法、装置及设备
CN108769953A (zh) * 2018-07-11 2018-11-06 株式会社电装 基于dsrc的无人运输车队的通信装置及通信方法
CN110062349A (zh) * 2018-01-18 2019-07-26 华为技术有限公司 选择通信方式的方法、装置及车辆

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6640164B1 (en) * 2001-08-28 2003-10-28 Itt Manufacturing Enterprises, Inc. Methods and systems for remote control of self-propelled vehicles
JP4905075B2 (ja) 2006-11-14 2012-03-28 株式会社デンソー 車車間通信に用いられる通信装置、及び、そのプログラム
US8311730B2 (en) * 2006-11-29 2012-11-13 Neff Ryan A Vehicle position determination system
US9520064B2 (en) 2008-07-10 2016-12-13 Mitsubishi Electric Corporation Train-of-vehicle travel support device, control system and processor unit
CN104424809B (zh) * 2013-08-19 2017-04-12 深圳市赛格导航科技股份有限公司 一种车队导游系统和方法
CN107135105B (zh) * 2017-05-08 2019-11-26 合肥工业大学 无人-有人机编队信息交互拓扑容错优化方法及装置
CN107195176A (zh) * 2017-07-07 2017-09-22 北京汽车集团有限公司 用于车队的控制方法和装置
US11747827B2 (en) 2018-02-14 2023-09-05 Here Global B.V. Vehicle platoon system control for intersections
CN108616810A (zh) * 2018-05-10 2018-10-02 上海交通大学 一种车队自主跟车系统、便携式装置及方法
CN108848462B (zh) * 2018-06-19 2020-11-13 连云港杰瑞电子有限公司 适用于信号控制交叉口的实时车辆轨迹预测方法
CN109242251B (zh) * 2018-08-03 2020-03-06 百度在线网络技术(北京)有限公司 行车行为安全性检测方法、装置、设备及存储介质

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013073362A (ja) * 2011-09-27 2013-04-22 Denso Corp 隊列走行装置
CN104048672A (zh) * 2014-06-30 2014-09-17 科大讯飞股份有限公司 车队跟随导航方法及系统
US20170293296A1 (en) * 2016-04-12 2017-10-12 Here Global B.V. Method, apparatus and computer program product for grouping vehicles into a platoon
US20170309187A1 (en) * 2016-04-22 2017-10-26 Hsin-Nan Lin Vehicle platoon system and method thereof
CN108009169A (zh) * 2016-11-02 2018-05-08 中国移动通信有限公司研究院 一种数据处理方法、装置及设备
CN106994969A (zh) * 2017-03-24 2017-08-01 奇瑞汽车股份有限公司 一种车队编队驾驶系统及方法
CN107025787A (zh) * 2017-04-11 2017-08-08 首都经济贸易大学 一种物流车队控制方法和系统
CN107807633A (zh) 2017-09-27 2018-03-16 北京图森未来科技有限公司 一种路侧设备、车载设备以及自动驾驶感知方法及系统
CN110062349A (zh) * 2018-01-18 2019-07-26 华为技术有限公司 选择通信方式的方法、装置及车辆
CN108769953A (zh) * 2018-07-11 2018-11-06 株式会社电装 基于dsrc的无人运输车队的通信装置及通信方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4027668A4

Also Published As

Publication number Publication date
CN112461251B (zh) 2023-05-23
JP7579332B2 (ja) 2024-11-07
EP4027668A4 (en) 2023-08-16
EP4027668A1 (en) 2022-07-13
US12033514B2 (en) 2024-07-09
CN112461251A (zh) 2021-03-09
US20220189311A1 (en) 2022-06-16
JP2022547928A (ja) 2022-11-16
AU2020343829A1 (en) 2022-04-14

Similar Documents

Publication Publication Date Title
US20240094741A1 (en) Control of automated following in vehicle convoys
CN106708057B (zh) 一种智能车辆编队行驶方法
US11427196B2 (en) Systems and methods for managing tractor-trailers
US11120688B2 (en) Orientation-adjust actions for autonomous vehicle operational management
CN106873589B (zh) 一种智能车辆自主跟随方法
EP4067821A1 (en) Path planning method for vehicle and path planning apparatus for vehicle
CN112277942A (zh) 一种自动驾驶车辆的队列控制方法、车载装置及系统
JP7303307B2 (ja) 自動運転車両隊列の隊列編入方法、装置及びシステム
WO2022016351A1 (zh) 一种行驶决策选择方法以及装置
CN113031576B (zh) 自动驾驶车队中的车辆控制方法、车载装置及车辆
CN112429016B (zh) 一种自动驾驶控制方法及装置
JP7052692B2 (ja) 隊列走行システム
US20200283014A1 (en) Continual Planning and Metareasoning for Controlling an Autonomous Vehicle
US12033514B2 (en) Waypoint information transmission method, apparatus and system for platooning
CN113071490A (zh) 一种高速公路卡车编队系统
WO2022151839A1 (zh) 一种车辆转弯路线规划方法及装置
CN109656242A (zh) 一种自动驾驶行车路径规划系统
CN112519777A (zh) 自动驾驶车队的控制方法、车载装置、车辆及系统
CN111688686A (zh) 一种自动驾驶车队的跟车控制方法、装置、系统及车辆
CN112394716B (zh) 自动驾驶车辆队列的控制方法、装置、系统及车辆
CN113525405B (zh) 自动驾驶车辆的辅助控制方法、车载装置及系统
CN117058867A (zh) 一种会车方法及相关装置
CN112534302B (zh) 一种雷达以及增益控制方法
CN112519776A (zh) 自动驾驶车队的控制方法、车载装置及自动驾驶车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20861536

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022515132

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020861536

Country of ref document: EP

Effective date: 20220406

ENP Entry into the national phase

Ref document number: 2020343829

Country of ref document: AU

Date of ref document: 20200904

Kind code of ref document: A