WO2021043017A1 - 一种降油浆和多产低碳烯烃的助剂及其制备方法与应用 - Google Patents
一种降油浆和多产低碳烯烃的助剂及其制备方法与应用 Download PDFInfo
- Publication number
- WO2021043017A1 WO2021043017A1 PCT/CN2020/110822 CN2020110822W WO2021043017A1 WO 2021043017 A1 WO2021043017 A1 WO 2021043017A1 CN 2020110822 W CN2020110822 W CN 2020110822W WO 2021043017 A1 WO2021043017 A1 WO 2021043017A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- molecular sieve
- slurry
- additive
- oil
- carbon olefins
- Prior art date
Links
- 239000002002 slurry Substances 0.000 title claims abstract description 134
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 47
- 239000012752 auxiliary agent Substances 0.000 title claims abstract description 36
- 238000002360 preparation method Methods 0.000 title description 5
- 239000002808 molecular sieve Substances 0.000 claims abstract description 123
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 claims abstract description 123
- 239000003921 oil Substances 0.000 claims abstract description 52
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 51
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 51
- 239000011574 phosphorus Substances 0.000 claims abstract description 51
- 238000004523 catalytic cracking Methods 0.000 claims abstract description 45
- 239000011230 binding agent Substances 0.000 claims abstract description 23
- 239000011159 matrix material Substances 0.000 claims abstract description 14
- 239000004927 clay Substances 0.000 claims abstract description 10
- 239000002994 raw material Substances 0.000 claims abstract description 9
- 239000000654 additive Substances 0.000 claims description 68
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 67
- 230000000996 additive effect Effects 0.000 claims description 46
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 34
- 239000000377 silicon dioxide Substances 0.000 claims description 32
- 229910052681 coesite Inorganic materials 0.000 claims description 30
- 229910052906 cristobalite Inorganic materials 0.000 claims description 30
- 235000012239 silicon dioxide Nutrition 0.000 claims description 30
- 229910052682 stishovite Inorganic materials 0.000 claims description 30
- 229910052905 tridymite Inorganic materials 0.000 claims description 30
- 229910052593 corundum Inorganic materials 0.000 claims description 27
- 238000000034 method Methods 0.000 claims description 27
- 229910001845 yogo sapphire Inorganic materials 0.000 claims description 27
- 239000005995 Aluminium silicate Substances 0.000 claims description 26
- 235000012211 aluminium silicate Nutrition 0.000 claims description 26
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical group O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 claims description 26
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 14
- 150000002910 rare earth metals Chemical class 0.000 claims description 13
- 239000003054 catalyst Substances 0.000 claims description 11
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 claims description 6
- 238000000465 moulding Methods 0.000 claims description 5
- 239000007921 spray Substances 0.000 claims description 5
- 239000004113 Sepiolite Substances 0.000 claims description 3
- 229960000892 attapulgite Drugs 0.000 claims description 3
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 claims description 3
- 229910052901 montmorillonite Inorganic materials 0.000 claims description 3
- 229910052625 palygorskite Inorganic materials 0.000 claims description 3
- 229910052624 sepiolite Inorganic materials 0.000 claims description 3
- 235000019355 sepiolite Nutrition 0.000 claims description 3
- 238000004939 coking Methods 0.000 claims description 2
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 abstract description 9
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 abstract description 9
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 abstract description 6
- 238000003756 stirring Methods 0.000 description 57
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 45
- 239000008367 deionised water Substances 0.000 description 30
- 229910021641 deionized water Inorganic materials 0.000 description 30
- 238000005336 cracking Methods 0.000 description 26
- 230000008569 process Effects 0.000 description 23
- VXAUWWUXCIMFIM-UHFFFAOYSA-M aluminum;oxygen(2-);hydroxide Chemical compound [OH-].[O-2].[Al+3] VXAUWWUXCIMFIM-UHFFFAOYSA-M 0.000 description 21
- 238000006243 chemical reaction Methods 0.000 description 18
- 238000010009 beating Methods 0.000 description 16
- 229910052751 metal Inorganic materials 0.000 description 15
- 239000007789 gas Substances 0.000 description 14
- 239000002184 metal Substances 0.000 description 14
- 238000002161 passivation Methods 0.000 description 14
- 239000007787 solid Substances 0.000 description 14
- 229910052782 aluminium Inorganic materials 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 13
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 12
- 238000001879 gelation Methods 0.000 description 12
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 12
- 239000013538 functional additive Substances 0.000 description 11
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 9
- LFVGISIMTYGQHF-UHFFFAOYSA-N ammonium dihydrogen phosphate Chemical compound [NH4+].OP(O)([O-])=O LFVGISIMTYGQHF-UHFFFAOYSA-N 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 229910001404 rare earth metal oxide Inorganic materials 0.000 description 8
- 229910001648 diaspore Inorganic materials 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 239000000571 coke Substances 0.000 description 5
- 235000011007 phosphoric acid Nutrition 0.000 description 5
- URRHWTYOQNLUKY-UHFFFAOYSA-N [AlH3].[P] Chemical compound [AlH3].[P] URRHWTYOQNLUKY-UHFFFAOYSA-N 0.000 description 4
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- -1 ethylene, propylene, butene Chemical class 0.000 description 4
- 239000000295 fuel oil Substances 0.000 description 4
- 239000007769 metal material Substances 0.000 description 4
- 230000002378 acidificating effect Effects 0.000 description 3
- 150000001336 alkenes Chemical class 0.000 description 3
- 238000001354 calcination Methods 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000000265 homogenisation Methods 0.000 description 3
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000005909 Kieselgur Substances 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000011268 mixed slurry Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000005504 petroleum refining Methods 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 230000002062 proliferating effect Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 239000011959 amorphous silica alumina Substances 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 230000010100 anticoagulation Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000001723 curing Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000013335 mesoporous material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000004876 x-ray fluorescence Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G11/00—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
- C10G11/02—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
- C10G11/04—Oxides
- C10G11/05—Crystalline alumino-silicates, e.g. molecular sieves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/08—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
- B01J29/085—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
- B01J29/088—Y-type faujasite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/02—Boron or aluminium; Oxides or hydroxides thereof
- B01J21/04—Alumina
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/16—Clays or other mineral silicates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/08—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
- B01J29/084—Y-type faujasite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/08—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
- B01J29/085—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/40—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
- B01J29/7007—Zeolite Beta
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/80—Mixtures of different zeolites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/19—Catalysts containing parts with different compositions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
- B01J35/613—10-100 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
- B01J35/615—100-500 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/0009—Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
- B01J37/0018—Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/0009—Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
- B01J37/0027—Powdering
- B01J37/0045—Drying a slurry, e.g. spray drying
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0201—Impregnation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/04—Mixing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/28—Phosphorising
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/10—After treatment, characterised by the effect to be obtained
- B01J2229/18—After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/10—After treatment, characterised by the effect to be obtained
- B01J2229/18—After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
- B01J2229/186—After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
Definitions
- the invention relates to the field of petroleum refining, in particular to an auxiliary agent for reducing oil slurry and producing more low-carbon olefins, and a preparation method and application thereof.
- Catalytic cracking is an important process of petroleum refining, and it is an important means for refineries to improve their economic benefits.
- heavy oil is converted into gasoline, diesel, ethylene, propylene, butene, oil slurry, dry gas, coke and other products under the action of a catalyst.
- gasoline, diesel, ethylene, propylene, butene and other products have higher economic value, while dry gas, oil slurry and coke have lower economic value.
- WO97/12011 discloses an oil slurry auxiliary agent, which is mainly composed of alumina, amorphous silica-alumina and molecular sieve, and the auxiliary agent can significantly improve the cracking ability of the oil slurry.
- CN107376986A discloses an oil slurry catalytic cracking auxiliary agent, which is composed of molecular sieve, matrix, active metal material, inactive metal material and active auxiliary agent, and the auxiliary agent through the synergistic benefit of active metal material and non-active metal material, Optimize the number of acid centers and acid strength, promote the cracking ability of oil slurry, and have excellent resistance to impurity pollution and hydrothermal stability.
- CN101745373B discloses a catalytic cracking aid, which contains stepped pore alumina and is used in a catalytic cracking process to improve the cracking capacity of heavy oil and the yield of light oil, and the coke selectivity is good.
- CN102974331B discloses a catalytic cracking aid, which is used to increase the cracking ability of heavy oil and the yield of light oil by adding mesoporous silica-alumina material.
- CN104588051B discloses a catalytic cracking auxiliary agent, which uses active mesoporous materials, phosphor-aluminum auxiliary agent, etc. as raw materials, and the obtained auxiliary agent has stronger heavy oil cracking ability, higher light oil yield and better Coke selectivity.
- US 7101473B2 discloses a highly active catalyst, which is obtained by in-situ crystallization and has a high molecular sieve content, which can effectively reduce the oil slurry yield.
- the aforementioned slurry additives mainly increase the acidity of the matrix by increasing the content of mesopores and macropores in the additives, or increase the molecular sieve content in the additives, thereby increasing the cracking activity of the additives and reducing the yield of the slurry.
- Low-carbon olefins mainly include ethylene, propylene and butene, which are used as organic chemical raw materials, and the world's demand for low-carbon olefins is increasing year by year.
- the fluidized catalytic cracking process is an important way to increase the production of low-carbon olefins by adding low-carbon olefin additives to the cracking unit.
- CN101450321 discloses a catalytic cracking auxiliary agent for increasing the production of propylene. The auxiliary agent is added with an anti-coagulation polymerization inhibitor, and a silicon binder is introduced in two steps.
- CN103007988A discloses a cracking auxiliary agent for increasing the concentration of low-carbon olefins.
- the auxiliary agent is a phosphor-aluminum binder, and the type-selective molecular sieve additionally contains phosphorus and one or more transition metals.
- the additive can increase the concentration of propylene in the liquefied gas and reduce the concentration of coke and dry gas.
- CN103785457A discloses a cracking aid for increasing the concentration of low-carbon olefins. The aid is selected from ⁇ molecular sieves containing phosphorus and transition metals.
- the aid can increase the concentration of propylene and isobutylene in liquefied gas and increase the content of dry gas in cracked products. Ethylene concentration.
- CN102851058 A discloses an additive for increasing the octane number of cracked gasoline.
- the additive is ZSM-5 molecular sieve with a silicon-to-aluminum ratio of 30 to 150, and the molecular sieve is modified with metal elements.
- CN107971000A discloses a catalytic cracking auxiliary agent of phosphorus-containing Beta molecular sieve.
- the auxiliary agent uses phosphorus-containing Beta molecular sieve as raw material.
- the molecular sieve has an Al distribution parameter of 0.4 to 0.8, a micropore specific surface area of 420 to 520 m2/g, and a mesopore volume accounts for The total volume is 30 ⁇ 70wt%.
- the current low-carbon olefin additives on the market mainly convert long-chain hydrocarbons into low-carbon olefins such as propylene through selective molecular sieves.
- the cracking activity of this kind of low-carbon olefin promoter usually decreases. When it is added to the catalytic cracking system, it will dilute the active components of the catalyst, which will result in a decrease in the overall catalyst's cracking activity and a decrease in the oil slurry yield.
- the current slurry-reducing additives and high-yield low-carbon olefin additives have the effects of reducing the yield of slurry and the yield of more low-carbon olefins, respectively, but the slurry-reducing additives do not have the effect of producing low-carbon olefins and are more productive.
- the low-carbon olefin additives also have no effect on reducing the yield of oil slurry. There are few reports on the catalytic cracking aids that have both more low-carbon olefin production and less oil slurry production.
- the specific surface area of prolific olefin additives is usually less than 180 m2/g, and the specific surface area of the slurry additives is at least greater than 190 m2/g.
- the prolific olefin additives and cracking slurry additives of the present invention have open pores, and the specific surface area is greater than 190 m2/g, which is highly productive Olefin and oil reduction slurry performance.
- One of the objectives of the present invention is to provide an additive for reducing oil slurry and producing more low-carbon olefins.
- the additive is used in the catalytic cracking process to increase the yield of cracked liquefied gas, increase the concentration of propylene in the liquefied gas, and increase the catalytic
- the octane number of cracked gasoline reduces the yield of oil slurry in cracked products.
- the technical solution provided by the present invention is: an additive for reducing oil slurry and producing more low-carbon olefins
- the relative dry basis content of the raw material is: 40 ⁇ 55 wt% phosphorus-containing MFI molecular sieve, 0 ⁇ 10 wt% macroporous molecular sieve, 3-20 wt% inorganic binder, 8-22 wt% inorganic matrix and 15-40 wt% clay; preferably, the relative dry basis content of the raw material is: 45-50 wt% phosphorus-containing MFI molecular sieve, 0 ⁇ 5 wt% macroporous molecular sieve, 10 ⁇ 15 wt% inorganic binder: 8 ⁇ 12 wt% inorganic matrix, 20 ⁇ 30 wt% clay.
- the specific surface area of the auxiliary agent is greater than 190 m2/g, and the content of P2O5 in the auxiliary agent is less than 2wt%.
- the molar ratio of SiO2/Al2O3 of the phosphorus-containing MFI molecular sieve is 10-50, and the content of P2O5 in the molecular sieve is 1 to 5wt%; preferably, the molar ratio of SiO2/Al2O3 of the phosphorus-containing MFI molecular sieve is 20-40, and the molar ratio of P2O5 in the molecular sieve is 20-40.
- the content is 2 ⁇ 4wt%.
- the phosphorus element in the phosphorus-containing MFI molecular sieve can be introduced into the molecular sieve during the MFI synthesis process, or can be impregnated on the MFI molecular sieve through phosphoric acid or phosphate.
- the macroporous molecular sieve is Y-type molecular sieve and/or Beta-type molecular sieve.
- the Y-type molecular sieve is a rare-earth modified Y-type molecular sieve, a phosphorus-modified Y-type molecular sieve, a rare-earth and phosphorus-modified Y-type molecular sieve, an ultra-stable Y molecular sieve, and/or a rare-earth-modified ultra-stable Y molecular sieve.
- the inorganic binder is alumina binder, silica binder and/or silicon-aluminum binder.
- the inorganic matrix is calcined alumina and/or amorphous silicon aluminum, and the total specific surface area of the inorganic matrix is >200 m2/g.
- the clay is kaolin, montmorillonite, attapulgite, diatomaceous earth and/or sepiolite.
- the second object of the present invention is to provide a method for preparing the above-mentioned oil-reducing slurry and the auxiliary agent for producing low-carbon olefins, which includes the following steps: using phosphorus-containing MFI molecular sieve, macroporous molecular sieve, inorganic binder, inorganic matrix, and clay as raw materials Spray molding, calcining and curing at 450°C ⁇ 750°C for 0.1 ⁇ 10h, it is ready.
- auxiliary agent of the present invention can be prepared by a general method, and the preparation method of the auxiliary agent is not particularly limited.
- a general preparation method of additives can be used, such as: adding molecular sieve, matrix, binder, clay and other substances as main components into deionized water, beating to form a slurry with a solid content of 20-50wt%, and spray molding.
- the calcination and solidification temperature is preferably 500 to 600°C, and the calcination time is 1 to 3 hours.
- the spray molding step includes: mixing and beating the phosphorus-containing MFI molecular sieve, macroporous molecular sieve, inorganic binder, inorganic matrix, clay, and water in one or more steps to obtain a slurry, and then spray molding.
- the third object of the present invention is to provide the above-mentioned oil-reducing slurry and the auxiliary agent for producing low-carbon olefins for use in atmospheric residue, vacuum residue, atmospheric wax oil, vacuum wax oil, straight-run wax oil and/or Catalytic cracking of coking wax oil.
- the use conditions of the catalytic cracking aid in the present invention are conventional catalytic cracking reaction conditions.
- the catalytic cracking reaction temperature is 450-650°C, and the catalyst-oil ratio is 4-15; preferably, the reaction temperature is 490-600. °C, the agent-oil ratio is 4-15.
- the auxiliary agent accounts for 1-30 wt% of the total catalyst mass of the catalytic cracking system, preferably 5-15 wt%.
- the auxiliary agent provided by the invention is used in the catalytic cracking process, can increase the yield of cracked liquefied gas, increase the concentration of propylene in the liquefied gas, increase the octane number of the catalytic cracked gasoline, and reduce the yield of oil slurry in the cracked product.
- the invention also discloses the preparation method and application of the above-mentioned auxiliary agent.
- H-ZSM-5 (molar ratio of SiO2/Al2O3 is 27) is impregnated and flash dried by ammonia dihydrogen phosphate, and then calcined at 500°C for 2 hours to obtain phosphorus-containing ZSM-5 molecular sieve.
- the content of P2O5 in the resulting molecular sieve is 2.7 wt%.
- the solid content of the obtained slurry is 41wt%; after the slurry is homogenized, it is spray-formed, and then calcined at 550°C for 2 hours to obtain the dual-functional additive LOBC-5 for producing low-carbon olefins and oil-reducing slurry.
- the wear index of the additive LOBC-5 is 1.2wt%/h, the specific surface area is 213 m2/g, and the P2O5 content is 1.08wt%. After passivation treatment with metal and water vapor, 15wt% of the additive is added, and the cracking performance in the catalytic cracking process is shown in Table 3.
- the specific surface area of the sample is measured by the BET low-temperature nitrogen adsorption method
- the element composition of the sample is measured by an X-ray fluorescence spectrometer
- the wear index of the sample is measured by an abrasion index analyzer.
- the wear index of the comparative additive C-1 is 1.2 wt%/h, the specific surface area is 178 m2/g, and the P2O5 content is 0 wt%. After passivation treatment with metal and water vapor, 15wt% of the additive is added, and the cracking performance in the catalytic cracking process is shown in Table 3.
- the wear index of the comparative additive C-2 is 6.2wt%/h, the specific surface area is 81 m2/g, and the P2O5 content is 17.11 wt%. After passivation treatment with metal and water vapor, 15wt% of the additive is added, and the cracking performance in the catalytic cracking process is shown in Table 3.
- the wear index of the comparative additive C-3 is 1.1 wt%/h, the specific surface area is 284 m2/g, and the P2O5 content is 0 wt%. After passivation treatment with metal and water vapor, 15wt% of the additive is added, and the cracking performance in the catalytic cracking process is shown in Table 3.
- the H-ZSM-5 molecular sieve (molar ratio of SiO2/Al2O3 is 27) is impregnated and flash dried by ammonia dihydrogen phosphate, and then calcined at 550°C for 2 hours to obtain phosphorus-containing ZSM-5 molecular sieve.
- the content of P2O5 in the resulting molecular sieve is 3.2 wt%.
- the solid content of the obtained slurry is 41wt%; after the slurry is homogenized, it is sprayed and formed, and then calcined at 550°C for 2 hours to obtain the dual-functional additive LOBC-1 for producing low-carbon olefins and reducing oil slurry.
- the wear index of the additive LOBC-1 is 1.2wt%/h, the specific surface area is 196 m2/g, and the P2O5 content is 1.47 wt%. After passivation treatment with metal and water vapor, 15wt% of the additive is added, and the cracking performance in the catalytic cracking process is shown in Table 3.
- H-ZSM-5 (molar ratio of SiO2/Al2O3 is 27) is impregnated and flash dried by ammonia dihydrogen phosphate, and then calcined at 500°C for 2 hours to obtain phosphorus-containing ZSM-5 molecular sieve.
- the content of P2O5 in the resulting molecular sieve is 2.8 wt%.
- the solid content of the obtained slurry is 41wt%; after the slurry is homogenized, it is spray-formed, and then calcined at 500°C for 3 hours to obtain the dual-functional additive LOBC-2 for producing low-carbon olefins and reducing oil slurry.
- the wear index of the additive LOBC-2 is 0.5wt%/h, the specific surface area is 205m2/g, and the P2O5 content is 1.54 wt%. After passivation treatment with metal and water vapor, 15wt% of the additive is added, and the cracking performance in the catalytic cracking process is shown in Table 3.
- H-ZSM-5 (molar ratio of SiO2/Al2O3 is 29) is impregnated and flash dried by ammonia dihydrogen phosphate, and then calcined at 500°C for 2 hours to obtain phosphorus-containing ZSM-5 molecular sieve.
- the content of P2O5 in the resulting molecular sieve is 2wt. %.
- the wear index of the additive LOBC-3 is 2.1 wt%/h, the specific surface area is 226 m2/g, and the P2O5 content is 0.89 wt%. After passivation treatment with metal and water vapor, 15wt% of the additive is added, and the cracking performance in the catalytic cracking process is shown in Table 3.
- H-ZSM-5 (molar ratio of SiO2/Al2O3 is 10) is impregnated and flash dried by ammonia dihydrogen phosphate, and then calcined at 500°C for 2 hours to obtain phosphorus-containing ZSM-5 molecular sieve.
- the content of P2O5 in the resulting molecular sieve is 5 wt%.
- the slurry is spray-formed, and then calcined at 550°C for 2 hours to obtain the dual-functional additive LOBC-4 for producing low-carbon olefins and reducing oil slurry.
- the wear index of the additive LOBC-4 is 0.9 wt%/h, the specific surface area is 208 m2/g, and the P2O5 content is 2 wt%. After passivation treatment with metal and water vapor, 15wt% of the additive is added, and the cracking performance in the catalytic cracking process is shown in Table 3.
- H-ZSM-5 (molar ratio of SiO2/Al2O3 is 50) is impregnated and flash dried by ammonia dihydrogen phosphate, and then calcined at 500°C for 2 hours to obtain phosphorus-containing ZSM-5 molecular sieve.
- the content of P2O5 in the resulting molecular sieve is 1wt. %.
- the wear index of the additive LOBC-6 is 0.9wt%/h, the specific surface area is 221 m2/g, and the P2O5 content is 0.5 wt%. After passivation treatment with metal and water vapor, 15wt% of the additive is added, and the cracking performance in the catalytic cracking process is shown in Table 3.
- H-ZSM-5 (molar ratio of SiO2/Al2O3 is 27) is impregnated and flash dried by ammonia dihydrogen phosphate, and then calcined at 500°C for 2 hours to obtain phosphorus-containing ZSM-5 molecular sieve.
- the content of P2O5 in the resulting molecular sieve is 3.2 wt%.
- the solid content of the obtained slurry is 41wt%; after the slurry is homogenized, it is sprayed and shaped, and then calcined at 550°C for 2 hours to obtain the dual-functional additive LOBC-7 for producing low-carbon olefins and reducing oil slurry.
- the wear index of the additive LOBC-7 is 0.8 wt%/h, the specific surface area is 217 m2/g, and the P2O5 content is 1.28 wt%. After passivation treatment with metal and water vapor, 15wt% of the additive is added, and the cracking performance in the catalytic cracking process is shown in Table 3.
- H-ZSM-5 (molar ratio of SiO2/Al2O3 is 27) is impregnated and flash dried by ammonia dihydrogen phosphate, and then calcined at 500°C for 2 hours to obtain phosphorus-containing ZSM-5 molecular sieve.
- the content of P2O5 in the resulting molecular sieve is 3.2 wt%.
- the slurry is spray-formed, and then calcined at 550°C for 2 hours to obtain the dual-functional additive LOBC-8 for producing low-carbon olefins and reducing oil slurry.
- the wear index of the additive LOBC-8 is 1.3wt%/h, the specific surface area is 204 m2/g, and the P2O5 content is 1.28wt%. After passivation treatment with metal and water vapor, 15wt% of the additive is added, and the cracking performance in the catalytic cracking process is shown in Table 3.
- H-ZSM-5 (molar ratio of SiO2/Al2O3: 27) was impregnated and flash dried with phosphoric acid, and then calcined at 500°C for 2h to obtain phosphorus-containing ZSM-5 molecular sieve.
- the content of P2O5 in the resulting molecular sieve was 3.2 wt%.
- the solid content of the obtained slurry was 41wt%; after the slurry was homogenized, it was spray-formed, and then calcined at 550°C for 2 hours to obtain the dual-functional additive LOBC-9 for producing low-carbon olefins and oil-reducing slurry.
- the wear index of the additive LOBC-9 is 0.7 wt%/h, the specific surface area is 218 m2/g, and the P2O5 content is 1.28 wt%. After passivation treatment with metal and water vapor, 15wt% of the additive is added, and the cracking performance in the catalytic cracking process is shown in Table 3.
- H-ZSM-5 (molar ratio of SiO2/Al2O3: 27) was impregnated and flash dried with phosphoric acid, and then calcined at 500°C for 2h to obtain phosphorus-containing ZSM-5 molecular sieve.
- the content of P2O5 in the resulting molecular sieve was 5 wt%.
- the solid content of the obtained slurry is 41wt%; after the slurry is homogenized, it is spray-formed, and then calcined at 550°C for 2 hours to obtain the dual-functional additive LOBC-10 for producing low-carbon olefins and oil-reducing slurry.
- the wear index of the additive LOBC-10 is 0.6 wt%/h, the specific surface area is 217 m2/g, and the P2O5 content is 2 wt%. After passivation treatment with metal and water vapor, 15wt% of the additive is added, and the cracking performance in the catalytic cracking process is shown in Table 3.
- H-ZSM-5 (the molar ratio of SiO2/Al2O3 is 27) is impregnated and flash dried by using rare earth salt and dihydrogen ammonium phosphate successively, and calcined at 500°C for 2 hours to obtain phosphorus-containing and rare-earth-containing ZSM-5 molecular sieve.
- the content of P2O5 is 3.2 wt%, and the content of RE2O3 is 1.8 wt%.
- the solid content of the obtained slurry is 41wt%; after the slurry is homogenized, it is spray-formed, and then calcined at 550°C for 2 hours to obtain the dual-functional additive LOBC-11 for producing low-carbon olefins and reducing oil slurry.
- the wear index of the additive LOBC-11 is 0.6 wt%/h, the specific surface area is 212 m2/g, and the P2O5 content is 1.28 wt%. After passivation treatment with metal and water vapor, 15wt% of the additive is added, and the cracking performance in the catalytic cracking process is shown in Table 3.
- the catalytic cracking reactions in the above examples and comparative examples were evaluated on a micro fluidized bed reactor (ACE) and supporting gas chromatography, and the research octane number (RON) was analyzed by Agilent's gas chromatograph 7980A.
- the main catalyst industrial RFCC balance agent, the auxiliary agent in the comparative example and the example are impregnated with 4000ppm respectively After V and 2000 ppm Ni, after aging at 810°C and 100wt% steam for 10h, the catalytic cracking performance was evaluated with 15wt% auxiliary agent +85wt% RFCC balance agent.
- ACE micro fluidized bed reactor
- RON research octane number
- the main properties of the RFCC balancer are shown in Table 1, and the properties of the tested feedstock oil are shown in Table 2.
- the catalytic cracking performance of 85wt% RFCC balancer + 15wt% of the auxiliary agents of the examples and comparative examples is shown in Table 3.
- Table 3 shows the catalytic cracking performance of the examples and comparative samples
- the catalytic cracking performance was carried out with 15wt% adjuvant +85wt% RFCC balance agent Evaluation.
- the catalytic cracking reaction temperature is 540°C
- the oil feed rate is 1.2 g/min
- the oil feed time is 1.5 min
- the agent-to-oil ratio is 5.
- the auxiliary agent provided by the invention is used in the catalytic cracking process, can increase the yield of cracked liquefied gas, increase the concentration of propylene in the liquefied gas, increase the octane number of the catalytic cracked gasoline, reduce the yield of oil slurry in the cracked product, and have a good industry Practicality.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Dispersion Chemistry (AREA)
- Catalysts (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
Description
Claims (10)
- 一种降油浆和多产低碳烯烃的助剂,其特征在于,所述原料的干基相对含量为:40~55 wt%含磷MFI分子筛、0~10 wt%大孔分子筛、3~20 wt%无机粘结剂、8~22 wt%无机基质和15~40 wt%粘土。
- 根据权利要求1所述降油浆和多产低碳烯烃的助剂,其特征在于,所述含磷MFI分子筛的SiO2/Al2O3摩尔比为10~50,分子筛中P2O5的含量为1~5wt%。
- 根据权利要求1所述降油浆和多产低碳烯烃的助剂,其特征在于,所述大孔分子筛为Y型分子筛和/或Beta型分子筛。
- 根据权利要求3所述降油浆和多产低碳烯烃的助剂,其特征在于,所述Y型分子筛为稀土改性的Y型分子筛、磷改性的Y型分子筛、稀土和磷改性的Y型分子筛、超稳Y分子筛和/或稀土改性的超稳Y分子筛。
- 根据权利要求1所述降油浆和多产低碳烯烃的助剂,其特征在于,所述无机粘结剂为氧化铝粘结剂、氧化硅粘结剂和/或硅铝粘结剂。
- 根据权利要求1所述降油浆和多产低碳烯烃的助剂,其特征在于,所述无机基质为经过焙烧后的氧化铝和/或无定形硅铝,无机基质的总比表面积>200m2/g。
- 根据权利要求1所述降油浆和多产低碳烯烃的助剂,其特征在于,所述粘土为高岭土、蒙拓土、凹凸棒石、硅藻土和/或海泡石。
- 一种如权利要求1所述降油浆和多产低碳烯烃的助剂的制备方法,其特征在于,包括以下步骤:以含磷MFI分子筛、大孔分子筛、无机粘结剂、无机基质、粘土为原料喷雾成型,在450℃~750℃下焙烧固化0.1~10h,即得。
- 一种如权利要求1所述降油浆和多产低碳烯烃的助剂用于常压渣油、减压渣油、常压蜡油、减压蜡油、直馏蜡油和/或焦化蜡油的催化裂化中的应用。
- 根据权利要求9所述降油浆和多产低碳烯烃的助剂的应用,其特征在于,所述助剂占催化裂化体系总催化剂质量的1~30wt%。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/056,427 US20220219151A1 (en) | 2019-09-03 | 2020-08-24 | A bifunctional Additive for More Low-Carbon Olefins and Less Slurry and Its Preparation Method and Application Thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910828114.8A CN110479361A (zh) | 2019-09-03 | 2019-09-03 | 一种降油浆和多产低碳烯烃的助剂及其制备方法与应用 |
CN201910828114.8 | 2020-09-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021043017A1 true WO2021043017A1 (zh) | 2021-03-11 |
Family
ID=68556244
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/110822 WO2021043017A1 (zh) | 2019-09-03 | 2020-08-24 | 一种降油浆和多产低碳烯烃的助剂及其制备方法与应用 |
Country Status (3)
Country | Link |
---|---|
US (2) | US20220219151A1 (zh) |
CN (1) | CN110479361A (zh) |
WO (1) | WO2021043017A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110479361A (zh) * | 2019-09-03 | 2019-11-22 | 四川润和催化新材料股份有限公司 | 一种降油浆和多产低碳烯烃的助剂及其制备方法与应用 |
CN112403509B (zh) * | 2020-11-17 | 2021-06-22 | 润和催化剂股份有限公司 | 一种具有增产丙烯效果的脱硝助剂及其制备方法 |
CN113398982B (zh) * | 2021-06-04 | 2023-01-03 | 青岛惠城环保科技集团股份有限公司 | 一种废塑料催化裂解制低碳烯烃的催化剂及其制备方法 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4927526A (en) * | 1984-07-05 | 1990-05-22 | Mobil Oil Corporation | Octane improvement of gasoline in catalytic cracking without decreasing total liquid yield |
CN1388221A (zh) * | 2001-05-30 | 2003-01-01 | 中国石油化工股份有限公司 | 一种降低汽油烯烃含量的催化裂化助剂 |
CN1721506A (zh) * | 2004-07-14 | 2006-01-18 | 中国石油化工股份有限公司 | 一种烃油转化方法 |
CN101147876A (zh) * | 2006-09-20 | 2008-03-26 | 中国石油化工股份有限公司 | 一种提高液化气丙烯浓度的催化裂化助剂 |
CN101837301A (zh) * | 2009-03-18 | 2010-09-22 | 中国石油天然气股份有限公司 | 一种催化裂化增产丙烯催化剂及制备方法 |
CN102886275A (zh) * | 2011-07-18 | 2013-01-23 | 卓润生 | 一种原位晶化制备含双分子筛裂化催化剂的方法 |
CN107185586A (zh) * | 2017-06-29 | 2017-09-22 | 李瑛� | 多产丙烯和异戊烯的催化裂化助剂及其制备方法和应用 |
CN109092353A (zh) * | 2018-08-31 | 2018-12-28 | 四川润和催化新材料股份有限公司 | 一种增产丙烯助剂及其制备方法 |
CN110437872A (zh) * | 2019-09-03 | 2019-11-12 | 四川润和催化新材料股份有限公司 | 一种利用生物油催化裂化改善油品质量和提高低碳烯烃收率的方法 |
CN110479361A (zh) * | 2019-09-03 | 2019-11-22 | 四川润和催化新材料股份有限公司 | 一种降油浆和多产低碳烯烃的助剂及其制备方法与应用 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101134172B (zh) * | 2006-08-31 | 2010-10-27 | 中国石油化工股份有限公司 | 一种烃类转化催化剂 |
CN1915821A (zh) * | 2006-09-06 | 2007-02-21 | 北京盛大京泰化学研究所 | 一种磷改性的zsm-5分子筛的制备方法 |
CN102031147B (zh) * | 2009-09-28 | 2014-12-31 | 中国石油化工股份有限公司 | 多产柴油和丙烯的催化转化方法 |
CN102019200B (zh) * | 2010-04-13 | 2013-01-16 | 卓润生 | 一种高活性的催化热裂解催化剂及其制备方法 |
CN103007988B (zh) * | 2011-09-22 | 2014-08-20 | 中国石油化工股份有限公司 | 一种提高低碳烯烃浓度的裂化助剂 |
-
2019
- 2019-09-03 CN CN201910828114.8A patent/CN110479361A/zh active Pending
-
2020
- 2020-08-24 US US17/056,427 patent/US20220219151A1/en active Pending
- 2020-08-24 WO PCT/CN2020/110822 patent/WO2021043017A1/zh active Application Filing
-
2024
- 2024-06-20 US US18/748,341 patent/US20240342692A1/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4927526A (en) * | 1984-07-05 | 1990-05-22 | Mobil Oil Corporation | Octane improvement of gasoline in catalytic cracking without decreasing total liquid yield |
CN1388221A (zh) * | 2001-05-30 | 2003-01-01 | 中国石油化工股份有限公司 | 一种降低汽油烯烃含量的催化裂化助剂 |
CN1721506A (zh) * | 2004-07-14 | 2006-01-18 | 中国石油化工股份有限公司 | 一种烃油转化方法 |
CN101147876A (zh) * | 2006-09-20 | 2008-03-26 | 中国石油化工股份有限公司 | 一种提高液化气丙烯浓度的催化裂化助剂 |
CN101837301A (zh) * | 2009-03-18 | 2010-09-22 | 中国石油天然气股份有限公司 | 一种催化裂化增产丙烯催化剂及制备方法 |
CN102886275A (zh) * | 2011-07-18 | 2013-01-23 | 卓润生 | 一种原位晶化制备含双分子筛裂化催化剂的方法 |
CN107185586A (zh) * | 2017-06-29 | 2017-09-22 | 李瑛� | 多产丙烯和异戊烯的催化裂化助剂及其制备方法和应用 |
CN109092353A (zh) * | 2018-08-31 | 2018-12-28 | 四川润和催化新材料股份有限公司 | 一种增产丙烯助剂及其制备方法 |
CN110437872A (zh) * | 2019-09-03 | 2019-11-12 | 四川润和催化新材料股份有限公司 | 一种利用生物油催化裂化改善油品质量和提高低碳烯烃收率的方法 |
CN110479361A (zh) * | 2019-09-03 | 2019-11-22 | 四川润和催化新材料股份有限公司 | 一种降油浆和多产低碳烯烃的助剂及其制备方法与应用 |
Also Published As
Publication number | Publication date |
---|---|
CN110479361A (zh) | 2019-11-22 |
US20220219151A1 (en) | 2022-07-14 |
US20240342692A1 (en) | 2024-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11964262B2 (en) | Phosphorus-containing rare-earth-containing MFI structure molecular sieve rich in mesopore, preparation method, and catalyst containing same and application thereof | |
JP7482120B2 (ja) | メソポアを豊富に含むmfi構造分子篩とその作製方法、および、該分子篩を含む触媒とその利用 | |
EP3868471A1 (en) | Phosphorus-containing rare-earth-containing mfi structure molecular sieve rich in mesopore, preparation method, and catalyst containing same and application thereof | |
CN102049290B (zh) | 一种重油催化裂化高辛烷值汽油助剂及其制备方法 | |
WO2021043017A1 (zh) | 一种降油浆和多产低碳烯烃的助剂及其制备方法与应用 | |
CN112138711B (zh) | 一种催化裂解助剂及其制备方法及烃油催化裂解的方法 | |
JP2015063686A (ja) | ゼオライトの複合的な系を有する添加剤及び調製方法 | |
CN112138712B (zh) | 一种催化裂解催化剂及其制备方法及烃油催化裂解的方法 | |
CN109675616B (zh) | 一种多产丁烯的催化转化催化剂以及制备方法和多产丁烯的催化转化方法 | |
EP4137457A1 (en) | Phosphorus-modified mfi-structured molecular sieve, catalytic cracking auxiliary agent and catalytic cracking catalyst containing phosphorus-modified mfi-structured molecular sieve, and preparation method therefor | |
TW202200266A (zh) | 一種催化裂解助劑及其製備方法和應用 | |
CN112138713B (zh) | 一种催化裂解助剂及其制备方法和应用 | |
CN110479362B (zh) | 一种多产柴油和多产低碳烯烃的催化剂及其制备方法与应用 | |
CN111760588A (zh) | 一种增产丙烯催化裂化助剂 | |
RU2807083C1 (ru) | Модифицированное фосфором молекулярное сито со структурой mfi, вспомогательное средство для каталитического крекинга и катализатор каталитического крекинга, содержащие модифицированные фосфором молекулярные сита со структурой mfi, а также процессы для их приготовления | |
CN114425431B (zh) | 一种含磷改性mfi结构分子筛的催化裂解催化剂 | |
US11975980B2 (en) | MFI structure molecular sieve rich in mesopore, preparation method therefor, and catalyst containing same and application thereof | |
RU2800606C2 (ru) | Молекулярное сито, имеющее структуру mfi и высокое содержание мезопор, способ его получения, содержащий его катализатор и его применение | |
RU2800708C2 (ru) | Содержащее фосфор и редкоземельные элементы молекулярное сито, имеющее структуру mfi и высокое содержание мезопор, способ его получения, содержащий его катализатор и его применение | |
CN115055203B (zh) | 一种重油催化裂化催化剂 | |
WO2021208884A1 (zh) | 含磷的/磷改性的zsm-5分子筛、含其的裂解助剂和裂解催化剂及其制备方法和应用 | |
JP3476658B2 (ja) | 炭化水素の流動接触分解触媒組成物 | |
JP3093089B2 (ja) | 高品質ガソリンおよびc3およびc4オレフィン製造用の炭化水素転化触媒 | |
CN107583666A (zh) | 一种提高汽油辛烷值桶的催化裂化助剂及其制备方法 | |
CN107583670B (zh) | 一种提高汽油辛烷值桶的催化裂化助剂及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20860931 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20860931 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 522431824 Country of ref document: SA |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20860931 Country of ref document: EP Kind code of ref document: A1 |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 15/05/2023) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20860931 Country of ref document: EP Kind code of ref document: A1 |