[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020235383A1 - Resin composition, hard coating film and polyorganosilsesquioxane - Google Patents

Resin composition, hard coating film and polyorganosilsesquioxane Download PDF

Info

Publication number
WO2020235383A1
WO2020235383A1 PCT/JP2020/018872 JP2020018872W WO2020235383A1 WO 2020235383 A1 WO2020235383 A1 WO 2020235383A1 JP 2020018872 W JP2020018872 W JP 2020018872W WO 2020235383 A1 WO2020235383 A1 WO 2020235383A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
structural unit
polyorganosylsesquioxane
hydrogen bond
crosslinkable
Prior art date
Application number
PCT/JP2020/018872
Other languages
French (fr)
Japanese (ja)
Inventor
裕三 永田
暢之 芥川
北村 哲
顕夫 田村
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2021520715A priority Critical patent/JP7142158B2/en
Priority to CN202080036599.8A priority patent/CN113840854B/en
Priority to KR1020217034154A priority patent/KR20210144791A/en
Publication of WO2020235383A1 publication Critical patent/WO2020235383A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/08Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/26Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes

Definitions

  • the present invention relates to a resin composition, a hard coat film having a hard coat layer obtained by curing the resin composition, and polyorganosylsesquioxane.
  • CTR cathode ray tubes
  • PDP plasma display
  • ELD electroluminescence display
  • VFD vacuum fluorescent display
  • FED field emission display
  • LCD liquid crystal display
  • Patent Document 1 describes an active energy ray-curable composition containing a silsesquioxane compound in which at least one of the organic groups directly bonded to a silicon atom is an organic group having a urea bond and one (meth) acryloyloxy group. Is described.
  • Patent Document 2 describes an organosilane having a UV curable group, a thermosetting silane group, and a cross-linking group having at least two carbon atoms that bond the UV curable group and the thermosetting silane group. Liquid coating agent mixtures containing hydrolyzed and condensed compounds are described.
  • An object of the present invention is a resin composition that gives a hard coat film having excellent pencil hardness and repeated bending resistance, a hard coat film having a hard coat layer containing a cured product of the above resin composition, and polyorganosylsesquioxane. To provide.
  • the hydrogen bond value of the polyorganosylsesquioxane is 3.0 or more, and the side chain length is 14 ⁇ 10-10 to 19 ⁇ 10-10 m.
  • the hydrogen bond value is represented by the following formula (1), and the side chain length represents the length from the Si atom to the end of the side chain, a resin composition.
  • Hydrogen bond value number of hydrogen atoms that can form hydrogen bonds in one structural unit / molecular weight of one structural unit x 1000 ... (1)
  • a resin composition containing a polyorganosylsesquioxane having a group containing a hydrogen atom capable of forming a hydrogen bond has a hydrogen bond value of 3.0 or more and a crosslinkable base value of 4.5 to 6.0.
  • the hydrogen bond value is represented by the following formula (1)
  • the crosslinkable base value is represented by the following formula (5).
  • Hydrogen bond value number of hydrogen atoms that can form hydrogen bonds in one structural unit / molecular weight of one structural unit x 1000 ... (1)
  • Crosslinkable radix number of crosslinkable groups in 1 structural unit / molecular weight of 1 structural unit x 1000 ... (5)
  • the polyorganosylsesquioxane has a hydrogen bond value of 3.0 or more, a side chain length of 14 ⁇ 10-10 to 19 ⁇ 10-10 m, and a crosslinkable base value of 4.5 to 6.0.
  • ⁇ 6> The resin composition according to ⁇ 5>, wherein the group containing a hydrogen atom capable of forming a hydrogen bond of the structural unit (S1) is at least one group selected from an amide group, a urethane group, and a urea group.
  • the structural unit (S1) further has a crosslinkable group, and the crosslinkable group is a (meth) acryloyloxy group or a (meth) acrylamide group.
  • ⁇ 8> The resin composition according to any one of ⁇ 5> to ⁇ 7>, wherein the crosslinkable group contained in the structural unit (S2) is a (meth) acrylamide group.
  • the hydrogen bond value is 3.0 or more
  • the side chain length is 14 ⁇ 10 -10 to 19 ⁇ 10 -10 m
  • the side chain length is 14 ⁇ 10 -10 to 19 ⁇ 10 -10 m.
  • the hydrogen bond value is represented by the following formula (1), and the side chain length is a polyorganosylsesquioxane in which the side chain length represents the length from the Si atom to the end of the side chain.
  • Hydrogen bond value number of hydrogen atoms that can form hydrogen bonds in one structural unit / molecular weight of one structural unit x 1000 ... (1)
  • a polyorganosylsesquioxane having a group containing a hydrogen atom capable of forming a hydrogen bond is 3.0 or more, the crosslinkable base value is 4.5 to 6.0, and The hydrogen bond value is represented by the following formula (1), and the crosslinkable base value is a polyorganosylsesquioxane represented by the following formula (5).
  • Hydrogen bond value number of hydrogen atoms that can form hydrogen bonds in one structural unit / molecular weight of one structural unit x 1000 ... (1)
  • Crosslinkable radix number of crosslinkable groups in 1 structural unit / molecular weight of 1 structural unit x 1000 ... (5)
  • a resin composition that gives a hard coat film having excellent pencil hardness and repeated bending resistance, a hard coat film having a hard coat layer containing a cured product of the above resin composition, and polyorganosylsesquioxane. Can be provided.
  • the present invention is a resin composition containing a polyorganosylsesquioxane having a group containing a hydrogen atom capable of forming a hydrogen bond.
  • the polyorganosilsesquioxane hydrogen valency Sun is 3.0 or more, a side chain length 14 ⁇ 10 -10 ⁇ 19 ⁇ 10 -10 m (14 ⁇ 19 ⁇ ),
  • the hydrogen bond value is represented by the following formula (1), and the side chain length represents the length from the Si atom to the end of the side chain, and relates to a resin composition.
  • Hydrogen bond value number of hydrogen atoms that can form hydrogen bonds in one structural unit / molecular weight of one structural unit x 1000 ... (1)
  • the present invention is a resin composition containing a polyorganosylsesquioxane having a group containing a hydrogen atom capable of forming a hydrogen bond.
  • the polyorganosylsesquioxane has a hydrogen bond value of 3.0 or more and a crosslinkable base value of 4.5 to 6.0.
  • the hydrogen bond value is represented by the following formula (1)
  • the crosslinkable base value is also related to the resin composition represented by the following formula (5).
  • Hydrogen bond value number of hydrogen atoms that can form hydrogen bonds in one structural unit / molecular weight of one structural unit x 1000 ...
  • Crosslinkable radix number of crosslinkable groups in one structural unit / molecular weight of one structural unit x 1000 ... (5)
  • Polyorganosylsesquioxane (a1) having a group containing a hydrogen atom capable of forming a hydrogen bond A polyorganosylsesquioxane (a1) having a group containing a hydrogen atom capable of forming a hydrogen bond (also referred to as “polyorganosylsesquioxane (a1)”) will be described.
  • Polyorganosylsesquioxane (a1) has a group containing a hydrogen atom capable of forming a hydrogen bond.
  • a hydrogen atom capable of forming a hydrogen bond is a hydrogen atom covalently bonded to an atom having a high electronegativity, and can form a hydrogen bond with nitrogen, oxygen, etc. located in the vicinity.
  • the group containing a hydrogen atom capable of forming a hydrogen bond possessed by the polyorganosylsesquioxane (a1) a generally known group containing a hydrogen atom capable of forming a hydrogen bond can be used, and an amide group, It is preferably at least one group selected from a urethane group, a urea group, and a hydroxyl group, and more preferably at least one group selected from an amide group, a urethane group, and a urea group.
  • the hydrogen bond value represents the density of hydrogen atoms capable of forming a hydrogen bond in the polyorganosylsesquioxane (a1), and is calculated from the following formula (1).
  • Hydrogen bond value number of hydrogen atoms that can form hydrogen bonds in one structural unit / molecular weight of one structural unit x 1000 ... (1)
  • the hydrogen atom capable of forming a hydrogen bond is an amide group
  • the number of hydrogen atoms contained in the amide group capable of forming a hydrogen bond is 1, 1 for a urethane group, 2 for a urea group, and a hydroxyl group. In the case of, it is counted as 1.
  • the structural unit is a repeating unit possessed by the polyorganosylsesquioxane (a1).
  • the polyorganosylsesquioxane (a1) is a polymer obtained by polymerizing only one kind of monomer.
  • the polyorganosylsesquioxane (a1) has one structural unit, and in the case of a copolymer of two types of monomers, the constituent unit is two.
  • the hydrogen bond value of the polyorganosylsesquioxane (a1) is the hydrogen bond value in one structural unit calculated by the above formula (1). It becomes.
  • the hydrogen bond fraction in each structural unit calculated by the above formula (1) is added to each structural unit in the polyorganosylsesquioxane (a1).
  • the sum of the values obtained by multiplying the composition ratio (mol%) of the above and dividing by 100 (average value of mole fraction) is taken as the hydrogen bond value of polyorganosylsesquioxane (a1).
  • the hydrogen bond value of the polyorganosylsesquioxane (a1) is as follows. It is calculated from the following formula (2A).
  • Hydrogen bond value H 1 (hydrogen bond value of structural unit 1) x W 1 (composition ratio of structural unit 1 (mol%)) / 100 + H 2 (hydrogen bond value of structural unit 2) x W 2 (hydrogen bond value of structural unit 2) Composition ratio (mol%)) / 100 ... (2A)
  • polyorganosylsesquioxane (a1) is a constituent unit 1, a constituent unit 2, ... ..
  • structural unit X represents an integer of 3 or more
  • the hydrogen bond value of the polyorganosylsesquioxane (a1) is calculated from the following formula (2B).
  • Hydrogen bond value H 1 (hydrogen bond value of structural unit 1) x W 1 (composition ratio of structural unit 1 (mol%)) / 100 + H 2 (hydrogen bond value of structural unit 2) x W 2 (hydrogen bond value of structural unit 2) Composition ratio (mol%)) / 100+ ... H X (hydrogen bond value of constituent unit X) x W X (composition ratio of constituent unit X (mol%)) / 100 ... (2B)
  • the polyorganosylsesquioxane (a1) has a hydrogen atom capable of forming a hydrogen bond so that the hydrogen bond value is 3.0 or more.
  • the polyorganosylsesquioxane (a1) it is possible to increase the density of hydrogen bonds formed by the polyorganosylsesquioxane (a1), and it is presumed that the pencil hardness of the hard coat film can be increased.
  • hydrogen bonds can be reversibly split and recombined, and even if the hydrogen bonds are split when the hard coat film is bent and deformed, they can be rebonded after the deformation is resolved. It is presumed that a hard coat film that is resistant to bending deformation can be obtained without lowering it.
  • the hydrogen bond value is 3.0 or more, preferably 4.0 or more, and more preferably 5.0 or more.
  • the upper limit of the hydrogen bond value is not particularly limited, but is preferably 20 or less from the viewpoint of the productivity of polyorganosylsesquioxane, more preferably 15 or less, and 10 or less. Is even more preferable.
  • the polyorganosylsesquioxane (a1) has a side chain having a side chain length of 14 ⁇ 10-10 to 19 ⁇ 10-10 m.
  • the side chain is a chain bonded to a Si atom in polyorganosylsesquioxane (a1) and means a chain other than the structural portion composed of a siloxane bond (Si—O—Si).
  • the side chain length represents the length from the Si atom to the end of the side chain, and is determined by using "Winmostar” manufactured by X-Ability. In calculating the value of the side chain length, first, the chemical structure from the Si atom to the end of the side chain is input, then the most stable conformation is obtained by MOPAC (AM1), and then "molecular weight area, volume”. From the item “Vander Walls” Execute “Molecular Surface” and obtain the numerical value of "Maximum Length Molecule”.
  • polyorganosilsesquioxane (a1) has one type of side chain, that is, has one type of structural unit
  • the side chain length calculated in one structural unit is the side of polyorganosilsesquioxane (a1). The chain length.
  • the side chain length calculated for each structural unit is used in the polyorganosylsesquioxane (a1).
  • the sum of the values obtained by multiplying the composition ratio (mol%) of each constituent unit and dividing by 100 (mean value of mole fraction) is taken as the side chain length of polyorganosylsesquioxane (a1).
  • the side chain length of the polyorganosylsesquioxane (a1) is as follows. It is calculated from the following formula (3A).
  • polyorganosylsesquioxane (a1) is a constituent unit 1, a constituent unit 2, ... ..
  • structural unit X X represents an integer of 3 or more
  • the side chain length of the polyorganosylsesquioxane (a1) is calculated from the following formula (3B).
  • the longer the side chain the more flexible the structure of the polyorganosylsesquioxane (a1) is, and the better the resistance to repeated bending of the hard coat film.
  • the shorter the side chain the harder the structure of polyorganosylsesquioxane (a1), and the better the pencil hardness of the hard coat film.
  • the side chain length is preferably 15 ⁇ 10 -10 to 18 ⁇ 10 -10 m, more preferably 16 ⁇ 10 -10 to 17 ⁇ 10 -10 m.
  • the number of elements contained in the side chain is preferably 8 to 11, more preferably 9 or 10.
  • the number of elements possessed by the side chain represents the number of elements constituting the main chain in the side chain, and the elements branched from the main chain are excluded.
  • the number of elements in the i-propyl group is 2, and the number of elements in the 3-acryloyloxypropyl group is 7.
  • polyorganosilsesquioxane (a1) has one type of side chain, that is, has one type of structural unit
  • the number of elements in the side chain in one structural unit is the number of elements of polyorganosilsesquioxane (a1).
  • the number of elements in the side chain is preferably 8 to 11, more preferably 9 or 10.
  • the polyorganosylsesquioxane (a1) has a plurality of types of side chains, that is, has a plurality of types of structural units
  • the number of elements contained in the side chains in each structural unit is added to the polyorganosylsesquioxane (a1).
  • the sum of the values obtained by multiplying the composition ratio (mol%) of each structural unit in a1) and dividing by 100 (mean mole fraction) is taken as the number of elements in the side chain of polyorganosylsesquioxane (a1).
  • the number of elements in the side chain of the polyorganosylsesquioxane (a1) is , Calculated from the following formula (4A).
  • Number of elements in the side chain of polyorganosylsesquioxane (a1) N 1 (number of elements in structural unit 1) x W 1 (composition ratio of structural unit 1 (mol%)) / 100 + N 2 (composition unit 2) Number of elements) x W 2 (composition ratio of constituent unit 2 (mol%)) / 100 ... (4A)
  • polyorganosylsesquioxane (a1) is a constituent unit 1, a constituent unit 2, ... ..
  • structural unit X X represents an integer of 3 or more
  • the number of elements contained in the side chain of the polyorganosylsesquioxane (a1) is calculated from the following formula (4B).
  • Number of elements in the side chain of polyorganosylsesquioxane (a1) N 1 (number of elements in structural unit 1) x W 1 (composition ratio of structural unit 1 (mol%)) / 100 + N 2 (composition unit 2) (composition ratio of the structural unit 2 (mol%) number of elements) ⁇ W 2) / 100+ ... N X (number of elements of the structural unit X) ⁇ W X (the composition of the structural unit X ratio (mol%)) / 100 ... ⁇ (4B)
  • the polyorganosylsesquioxane (a1) has a crosslinkable group.
  • the crosslinkable group is not particularly limited as long as it can form a covalent bond by reacting, and examples thereof include a radical polymerizable crosslinkable group and a cationically polymerizable crosslinkable group.
  • radically polymerizable crosslinkable group a generally known radically polymerizable crosslinkable group can be used.
  • the radically polymerizable crosslinkable group include a polymerizable unsaturated group, and specific examples thereof include a vinyl group, an allyl group, a (meth) acryloyloxy group, a (meth) acrylamide group, and the like, and (meth) acryloyl.
  • An oxy group or a (meth) acrylamide group is preferable.
  • each group mentioned above may have a substituent.
  • the above-mentioned (meth) acrylamide group exemplified as a crosslinkable group has an amide group inherent in it, and also corresponds to a group containing a hydrogen atom capable of forming a hydrogen bond.
  • a generally known cationically polymerizable crosslinkable group can be used, and specifically, an alicyclic ether group, a cyclic acetal group, a cyclic lactone group, a cyclic thioether group, and a spirororso. Examples thereof include an ester group and a vinyloxy group.
  • an alicyclic ether group and a vinyloxy group are preferable, and an epoxy group and an oxetanyl group are particularly preferable.
  • the epoxy group may be an alicyclic epoxy group (a group having a condensed ring structure of an epoxy group and an alicyclic group).
  • each group mentioned above may have a substituent.
  • the crosslinkable group of polyorganosylsesquioxane (a1) is preferably a radically polymerizable crosslinkable group, and is at least one group selected from a (meth) acryloyloxy group and a (meth) acrylamide group. Is more preferable.
  • the crosslinkable group value represents the crosslinkable group density of polyorganosylsesquioxane (a1) and is calculated from the following formula (5).
  • Crosslinkable radix number of crosslinkable groups in 1 structural unit / molecular weight of 1 structural unit x 1000 ... (5)
  • polyorganosylsesquioxane (a1) has one kind of constituent unit
  • the crosslinkable base value calculated in one constituent unit is used as the crosslinkable base value of polyorganosylsesquioxane (a1).
  • the crosslinkable base value in each structural unit calculated by the above formula (5) is added to the polyorganosilsesquioxane (a1).
  • the sum of the values obtained by multiplying the composition ratio (mol%) of each constituent unit and dividing by 100 (mean value of mole fraction) is taken as the crosslinkable base value of polyorganosylsesquioxane (a1).
  • the crosslinkable base value of the polyorganosylsesquioxane (a1) is as follows. It is calculated from the following formula (6A).
  • Crosslinkable base value C 1 (crosslinkable base value of structural unit 1) x W 1 (composition ratio of structural unit 1 (mol%)) / 100 + C 2 (crosslinkable base value of structural unit 2) x W 2 (composition) Composition ratio of unit 2 (mol%)) / 100 ... (6A)
  • polyorganosylsesquioxane (a1) is a constituent unit 1, a constituent unit 2, ... ..
  • X represents an integer of 3 or more
  • the crosslinkable base value of polyorganosylsesquioxane (a1) is calculated from the following formula (6B).
  • Crosslinkable base value C 1 (crosslinkable base value of structural unit 1) x W 1 (composition ratio of structural unit 1 (mol%)) / 100 + C 2 (crosslinkable base value of structural unit 2) x W 2 (composition) Unit 2 composition ratio (mol%)) / 100+ ... Cx (side chain length of structural unit X) x WW X (composition ratio of structural unit X (mol%)) / 100 ... (6B)
  • the larger the crosslinkable base value the harder the structure of polyorganosylsesquioxane (a1), and the better the pencil hardness of the hard coat film can be.
  • the crosslinkable base value is preferably 4.8 to 5.8, and more preferably 5.0 to 5.5.
  • Polyorganosylsesquioxane (a1) has a hydrogen bond value of 3.0 or more, a side chain length of 14 ⁇ 10-10 to 19 ⁇ 10-10 m, and a crosslinkable base value of 4. It is more preferably 5 to 6.0.
  • the polyorganosylsesquioxane (a1) may be a polymer obtained by polymerizing only one kind of monomer, or may be a copolymer of two or more kinds of monomers. From the viewpoint of the productivity of polyorganosylsesquioxane having a desired hydrogen bond value, side chain length, and crosslinkable base value, a copolymer of two or more kinds of monomers is preferable, and a hydrogen bond is formed. More preferably, it is a copolymer of a monomer having a group containing a possible hydrogen atom and a monomer having a crosslinkable group.
  • the polyorganosylsesquioxane (a1) has a structural unit (S1) having a group containing a hydrogen atom capable of forming a hydrogen bond and a structural unit (S2) having a crosslinkable group different from the structural unit (S1). ) And is preferably contained.
  • the structural unit (S1) has a group containing a hydrogen atom capable of forming a hydrogen bond.
  • the group containing a hydrogen atom capable of forming a hydrogen bond of the structural unit (S1) is preferably at least one selected from an amide group, a urethane group, a urea group, and a hydroxyl group, preferably an amide group, a urethane group, and the like. And at least one selected from the urea group is more preferable.
  • At least one hydrogen atom capable of forming a hydrogen bond may be contained in the structural unit (S1), and it is preferable that one or two hydrogen atoms are contained.
  • the structural unit (S1) preferably further has a crosslinkable group.
  • a crosslinkable group a radically polymerizable crosslinkable group is preferable, a vinyl group, an allyl group, a (meth) acryloyloxy group, or a (meth) acrylamide group is more preferable, and a (meth) acryloyloxy group or ( A meta) acrylamide group is more preferable, and an acryloyloxy group or an acrylamide group is particularly preferable.
  • the structural unit (S1) is preferably a structural unit represented by the following general formula (S1-1).
  • L 11 represents a substituted or unsubstituted alkylene group.
  • L 12 represents a substituted or unsubstituted alkylene group.
  • Q 11 represents a crosslinkable group.
  • the structural unit represented by the general formula (S1-1) has at least one group containing a hydrogen atom capable of forming a hydrogen bond.
  • SiO 1.5 in the general formula (S1-1) represents a structural portion composed of a siloxane bond (Si—O—Si) in the polyorganosylsesquioxane.
  • Polyorganosilsesquioxane is a network-type polymer or polyhedral cluster having a siloxane structural unit (silsesquioxane unit) derived from a hydrolyzable trifunctional silane compound, and has a random structure, a ladder structure, or a ladder structure due to siloxane bonds. It can form a cage structure or the like.
  • the structural portion represented by "SiO 1.5 " may have any of the above structures, but preferably contains a large amount of rudder structure.
  • the deformation recovery of the hard coat film can be kept good.
  • the formation of the rudder structure is qualitatively determined by the presence or absence of absorption derived from Si-O-Si expansion and contraction, which is characteristic of the rudder structure appearing near 1020-1050 cm -1 when FT-IR (Fourier Transform Infrared Spectroscopy) is measured. You can check.
  • L 11 represents an alkylene group, preferably an alkylene group having 1 to 10 carbon atoms, for example, a methylene group, a methylmethylene group, a dimethylmethylene group, an ethylene group, an i-propylene group, n.
  • alkylene group preferably an alkylene group having 1 to 10 carbon atoms, for example, a methylene group, a methylmethylene group, a dimethylmethylene group, an ethylene group, an i-propylene group, n.
  • examples thereof include a propylene group, an n-butylene group, an n-pentylene group, an n-hexylene group and an n-decylene group.
  • Examples of the substituent when the alkylene group represented by L 11 has a substituent include a hydroxyl group, a carboxyl group, an alkoxy group, an aryl group, a heteroaryl group, a halogen atom, a nitro group, a cyano group and a silyl group.
  • L 11 is preferably an unsubstituted linear alkylene group having 2 to 4 carbon atoms, more preferably an ethylene group or an n-propylene group, and even more preferably an n-propylene group.
  • L 12 represents an alkylene group, preferably an alkylene group having 1 to 10 carbon atoms, for example, a methylene group, a methylmethylene group, a dimethylmethylene group, an ethylene group, an i-propylene group, n.
  • alkylene group preferably an alkylene group having 1 to 10 carbon atoms, for example, a methylene group, a methylmethylene group, a dimethylmethylene group, an ethylene group, an i-propylene group, n.
  • examples thereof include a propylene group, an n-butylene group, an n-pentylene group, an n-hexylene group and an n-decylene group.
  • Examples of the substituent when the alkylene group represented by L 12 has a substituent include a hydroxyl group, a carboxyl group, an alkoxy group, an aryl group, a heteroaryl group, a halogen atom, a nitro group, a cyano group and a silyl group.
  • L 12 is preferably a linear alkylene group having 1 to 3 carbon atoms, more preferably a methylene group, an ethylene group, an n-propylene group, or a 2-hydroxy-n-propylene group, and further preferably a methylene group or an ethylene group. preferable.
  • Q 11 represents a crosslinkable group.
  • a radically polymerizable crosslinkable group is preferable, a vinyl group, an allyl group, a (meth) acryloyloxy group, or a (meth) acrylamide group is more preferable, and a (meth) acryloyloxy group or ( A meta) acrylamide group is more preferable, and an acryloyloxy group or an acrylamide group is particularly preferable.
  • the structural unit represented by the general formula (S1-1) has at least one group containing a hydrogen atom capable of forming a hydrogen bond.
  • the group containing a hydrogen atom capable of forming a hydrogen bond include an amide group, a urethane group, a urea group, and a hydroxyl group. It is preferable that one or two hydrogen atoms capable of forming a hydrogen bond are contained in the structural unit represented by the general formula (S1-1).
  • the hydrogen atom capable of forming a hydrogen bond is preferably contained as an amide group, a urethane group, or a urea group in R 11 in the general formula (S1-1).
  • the structural unit represented by the general formula (S1-1) is preferably the structural unit represented by the following general formula (S1-2).
  • L 11 represents a substituted or unsubstituted alkylene group.
  • r 11 represents a single bond, -NH-, or -O- L 12 represents a substituted or unsubstituted alkylene group.
  • q 11 represents -NH- or -O- q 12 represents a hydrogen atom or a methyl group.
  • SiO 1.5 in the general formula (S1-2) represents a structural portion composed of a siloxane bond (Si—O—Si) in the polyorganosylsesquioxane.
  • L 11 represents a substituted or unsubstituted alkylene group.
  • L 11 has the general formula (S1-1) in the same meaning as L 11 of, and preferred examples are also the same.
  • L 12 represents a substituted or unsubstituted alkylene group.
  • L 12 has the same meaning as the general formula (S1-1) L 12 of, and preferred examples are also the same.
  • q 12 represents a hydrogen atom or a methyl group, and is preferably a hydrogen atom.
  • the structural unit (S2) has a crosslinkable group.
  • a radically polymerizable crosslinkable group is preferable, a vinyl group, an allyl group, a (meth) acryloyloxy group, or a (meth) acrylamide group is more preferable, and a (meth) acryloyloxy group or ( It is more preferably a (meth) acrylamide group, particularly preferably a (meth) acrylamide group, and most preferably an acrylamide group.
  • the structural unit (S2) is preferably a structural unit represented by the following general formula (S2-1).
  • L 21 represents a substituted or unsubstituted alkylene group.
  • Q 21 represents a crosslinkable group.
  • SiO 1.5 in the general formula (S2-1) represents a structural portion composed of a siloxane bond (Si—O—Si) in the polyorganosylsesquioxane.
  • L 21 represents an alkylene group, preferably an alkylene group having 1 to 10 carbon atoms, for example, a methylene group, a methylmethylene group, a dimethylmethylene group, an ethylene group, an i-propylene group, n.
  • alkylene group preferably an alkylene group having 1 to 10 carbon atoms, for example, a methylene group, a methylmethylene group, a dimethylmethylene group, an ethylene group, an i-propylene group, n.
  • examples thereof include a propylene group, an n-butylene group, an n-pentylene group, an n-hexylene group and an n-decylene group.
  • Examples of the substituent when the alkylene group represented by L 11 has a substituent include a hydroxyl group, a carboxyl group, an alkoxy group, an aryl group, a heteroaryl group, a halogen atom, a nitro group, a cyano group and a silyl group.
  • L 11 is preferably an unsubstituted linear alkylene group having 2 to 4 carbon atoms, more preferably an ethylene group or an n-propylene group, and even more preferably an n-propylene group.
  • Q 21 represents a crosslinkable group.
  • a radically polymerizable crosslinkable group is preferable, a vinyl group, an allyl group, a (meth) acryloyloxy group, or a (meth) acrylamide group is more preferable, and a (meth) acryloyloxy group or ( It is more preferably a meta) acrylamide group.
  • the structural unit represented by the general formula (S2-1) is preferably the structural unit represented by the following general formula (S2-2).
  • L 21 represents a substituted or unsubstituted alkylene group.
  • q 21 represents -NH- or -O- q 22 represents a hydrogen atom or a methyl group.
  • SiO 1.5 in the general formula (S2-2) represents a structural portion composed of a siloxane bond (Si—O—Si) in the polyorganosylsesquioxane.
  • L 21 represents a substituted or unsubstituted alkylene group.
  • L 21 has the general formula (S2-1) in the same meaning as L 21 of, and preferred examples are also the same.
  • q 21 represents -NH- or -O-, and is preferably -NH-.
  • q 22 represents a hydrogen atom or a methyl group, and is preferably a hydrogen atom.
  • the polyorganosylsesquioxane (a1) preferably contains a structural unit represented by the general formula (S1-1) and a structural unit represented by the general formula (S2-1). It is more preferable to contain the structural unit represented by the general formula (S1-2) and the structural unit represented by the general formula (S2-2).
  • the molar ratio of the constituent units (S1) is more than 1 mol% and 90 mol% or less with respect to all the constituent units. It is more preferably 15 mol% or more and 75 mol% or less, and further preferably 35 mol% or more and 65 mol% or less.
  • the molar ratio of the constituent units (S2) is 15 mol% or more and 85 mol% or less with respect to all the constituent units. It is more preferably 30 mol% or more and 80 mol% or less, and further preferably 35 mol% or more and 65 mol% or less.
  • the polyorganosylsesquioxane (a1) may have a constituent unit (S3) other than the constituent units (S1) and (S2) as long as it does not affect the effect of the present invention.
  • the molar ratio of the constituent unit (S3) is preferably 10 mol% or less, more preferably 5 mol% or less, based on all the constituent units. It is more preferable that the structural unit (S3) is not included.
  • the polyorganosylsesquioxane (a1) When the polyorganosylsesquioxane (a1) is a polymer obtained by polymerizing only one kind of monomer, the polyorganosylsesquioxane (a1) preferably has a structural unit (S1). It is more preferable to have the structural unit represented by the general formula (S1-1), and it is further preferable to have the structural unit represented by the general formula (S1-2).
  • SiO 1.5 represents a silsesquioxane unit.
  • the weight average molecular weight (Mw) of polyorganosylsesquioxane (a1) in terms of standard polystyrene by gel permeation chromatography (GPC) is preferably 5000 to 1,000,000, more preferably 10,000 to 10,000. It is 1,000,000, more preferably 10,000 to 100,000.
  • the molecular weight dispersion (Mw / Mn) of polyorganosylsesquioxane (a1) in terms of standard polystyrene by GPC is, for example, 1.0 to 4.0, preferably 1.1 to 3.7, and more. It is preferably 1.2 to 3.0, and more preferably 1.3 to 2.5. Mw represents the weight average molecular weight and Mn represents the number average molecular weight.
  • the weight average molecular weight and molecular weight dispersion of polyorganosylsesquioxane (a1) are measured by the following devices and conditions. Measuring device: Product name "LC-20AD” (manufactured by Shimadzu Corporation) Columns: Shodex KF-801 x 2, KF-802, and KF-803 (manufactured by Showa Denko KK) Measurement temperature: 40 ° C Eluent: N-methylpyrrolidone (NMP), sample concentration 0.1-0.2% by mass Flow rate: 1 mL / min Detector: UV-VIS detector (trade name "SPD-20A", manufactured by Shimadzu Corporation) Molecular weight: Standard polystyrene conversion
  • the method for producing polyorganosylsesquioxane (a1) is not particularly limited, and it can be produced using a known production method. For example, it can be produced by a method of hydrolyzing and condensing a hydrolyzable silane compound. ..
  • the hydrolyzable silane compound include a hydrolyzable trifunctional silane compound having a group containing a hydrogen atom capable of forming a hydrogen bond (preferably a compound represented by the following general formula (Sd1-1)) and a crosslinkable group.
  • a hydrolyzable trifunctional silane compound preferably a compound represented by the following general formula (Sd2-1)
  • the compound represented by the following general formula (Sd1-1) corresponds to the structural unit represented by the above general formula (S1-1)
  • the compound represented by the following general formula (Sd2-1) corresponds to the above general formula (Sd2-1). It corresponds to the structural unit represented by the formula (S2-1).
  • X 1 to X 3 independently represent an alkoxy group or a halogen atom
  • L 11 represents a substituted or unsubstituted alkylene group
  • L 12 represents a substituted or unsubstituted alkylene group
  • Q 11 represents a crosslinkable group.
  • the structural unit represented by the general formula (S1-1) has at least one group containing a hydrogen atom capable of forming a hydrogen bond.
  • X 4 ⁇ X 6 each independently represent an alkoxy group or a halogen atom
  • L 21 represents a substituted or unsubstituted alkylene group
  • Q 21 represents a crosslinkable group.
  • L 11 in the general formula (Sd1-1), R 11, L 12, and Q 11 is, L 11 in the general formula (S1-1), R 11, L 12, and Q 11 and have the same meanings, The preferred range is similar.
  • L 21, and Q 21 in formula (Sd2-1) is, L 21 in the general formula (S2-1), and Q 21 and have the same meanings and preferred ranges are also the same.
  • the alkoxy group include an alkoxy group having 1 to 4 carbon atoms such as a methoxy group, an ethoxy group, a propoxy group, an isopropyloxy group, a butoxy group, and an isobutyloxy group.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom and the like.
  • X 1 to X 6 an alkoxy group is preferable, and a methoxy group and an ethoxy group are more preferable. Note that X 1 to X 6 may be the same or different.
  • the amount and composition of the hydrolyzable silane compound used can be appropriately adjusted according to the desired structure of the polyorganosylsesquioxane (a1).
  • hydrolysis and condensation reactions of the hydrolyzable silane compound can be carried out simultaneously or sequentially.
  • the order in which the reactions are carried out is not particularly limited.
  • the hydrolysis and condensation reaction of the hydrolyzable silane compound can be carried out in the presence or absence of a solvent, and is preferably carried out in the presence of a solvent.
  • a solvent include aromatic hydrocarbons such as benzene, toluene, xylene and ethylbenzene; ethers such as diethyl ether, dimethoxyethane, tetrahydrofuran and dioxane; ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone; methyl acetate and ethyl acetate.
  • Esters such as isopropyl acetate and butyl acetate; amides such as N, N-dimethylformamide and N, N-dimethylacetamide; nitriles such as acetonitrile, propionitrile and benzonitrile; alcohols such as methanol, ethanol, isopropyl alcohol and butanol. And so on.
  • the solvent ketones or ethers are preferable.
  • one type may be used alone, or two or more types may be used in combination.
  • the amount of the solvent used is not particularly limited, and is usually adjusted appropriately in the range of 0 to 2000 parts by mass with respect to 100 parts by mass of the total amount of the hydrolyzable silane compound, depending on the desired reaction time and the like. Can be done.
  • the hydrolysis and condensation reaction of the hydrolyzable silane compound is preferably carried out in the presence of a catalyst and water.
  • the catalyst may be an acid catalyst or an alkali catalyst.
  • the acid catalyst is not particularly limited, and for example, mineral acids such as hydrochloric acid, sulfuric acid, nitrate, phosphoric acid and boric acid; phosphoric acid esters; carboxylic acids such as acetic acid, formic acid and trifluoroacetic acid; methanesulfonic acid and trifluo. Examples thereof include sulfonic acids such as lomethane sulfonic acid and p-toluene sulfonic acid; solid acids such as active white clay; and Lewis acids such as iron chloride.
  • the alkali catalyst is not particularly limited, and for example, hydroxides of alkali metals such as lithium hydroxide, sodium hydroxide, potassium hydroxide and cesium hydroxide; magnesium hydroxide, calcium hydroxide, barium hydroxide and the like.
  • Alkali earth metal hydroxides alkali metal carbonates such as lithium carbonate, sodium carbonate, potassium carbonate, cesium carbonate; alkali earth metal carbonates such as magnesium carbonate; lithium hydrogen carbonate, sodium hydrogen carbonate, hydrogen carbonate Alkali metal hydrogen carbonates such as potassium and cesium hydrogen carbonate; alkali metal organic acid salts such as lithium acetate, sodium acetate, potassium acetate and cesium acetate (eg acetate); alkaline earth metal organic salts such as magnesium acetate Acetates (eg, acetates); alkali metal alkoxides such as lithium methoxyd, sodium methoxyd, sodium ethoxydo, sodium isopropoxide, potassium ethoxydo, potassium t-butoxide; alkali metal phenoxides such as sodium phenoxide; Amines such as triethylamine, N-methylpiperidin, 1,8-diazabicyclo [5.4.0] undec-7-ene, 1,5-diazabic
  • the amount of the catalyst used is not particularly limited, and can be appropriately adjusted within the range of 0.002 to 0.200 mol with respect to 1 mol of the total amount of the hydrolyzable silane compound.
  • the amount of water used in the above-mentioned hydrolysis and condensation reaction is not particularly limited, and is usually adjusted appropriately within the range of 0.5 to 40 mol with respect to 1 mol of the total amount of the hydrolyzable silane compound. it can.
  • the method of adding the above water is not particularly limited, and the total amount of water used (total amount used) may be added all at once or sequentially. When added sequentially, it may be added continuously or intermittently.
  • the reaction temperature of the hydrolysis and condensation reactions is not particularly limited, and is, for example, 40 to 100 ° C, preferably 45 to 80 ° C.
  • the reaction time of the hydrolysis and condensation reactions is not particularly limited, and is, for example, 0.1 to 15 hours, preferably 1.5 to 10 hours.
  • the hydrolysis and condensation reactions can be carried out under normal pressure, under pressure or under reduced pressure.
  • the atmosphere for performing the hydrolysis and condensation reactions may be, for example, an inert gas atmosphere such as a nitrogen atmosphere or an argon atmosphere, or an oxygen presence such as under air, but the inert gas may be used. The atmosphere is preferable.
  • Polyorganosylsesquioxane (a1) can be obtained by the hydrolysis and condensation reaction of the hydrolyzable silane compound.
  • the catalyst may be neutralized after the completion of the hydrolysis and condensation reactions.
  • the polyorganosylsesquioxane (a1) is separated by, for example, water washing, acid washing, alkaline washing, filtration, concentration, distillation, extraction, crystallization, recrystallization, column chromatography and the like, and a combination thereof. It may be separated and purified by a separation means or the like.
  • polyorganosylsesquioxane (a1) Only one type of polyorganosylsesquioxane (a1) may be used, or two or more types having different structures may be used in combination.
  • the hydrogen bond value, side chain length, and crosslinkable base value are calculated by each numerical value (hydrogen bond value, side chain length, crosslinkable base value).
  • the compounding ratio mass ratio
  • the content of polyorganosylsesquioxane (a1) in the resin composition is preferably 50% by mass or more, more preferably 70% by mass or more, based on the total solid content of the resin composition. It is more preferably 80% by mass or more.
  • the upper limit of the content of polyorganosylsesquioxane (a1) in the resin composition is preferably 99.9% by mass or less, preferably 98% by mass or less, based on the total solid content of the resin composition. Is more preferable, and 97% by mass or less is further preferable.
  • the total solid content is all components other than the solvent.
  • the resin composition in the present invention preferably contains a polymerization initiator. If the crosslinkable group of the polyorganosylsesquioxane (a1) used in the resin composition is a radically polymerizable crosslinkable group, it is preferable to contain a radical polymerization initiator, and the crosslinkable group is a cationically polymerizable crosslinkable group. If it is a group, it is preferable to include a cationic polymerization initiator.
  • the polymerization initiator is preferably a radical polymerization initiator.
  • the radical polymerization initiator may be either a radical photopolymerization initiator or a radical thermal polymerization initiator, but a radical photopolymerization initiator is more preferable. Only one type of polymerization initiator may be used, or two or more types having different structures may be used in combination.
  • the radical photopolymerization initiator may be any one capable of generating radicals as an active species by light irradiation, and known radical photopolymerization initiators can be used without any limitation. Specific examples include, for example, diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, benzyldimethylketal, 4- (2-hydroxyethoxy) phenyl- (2-hydroxy-2-propyl).
  • Ketone 1-hydroxycyclohexylphenylketone, 2-methyl-2-morpholino (4-thiomethylphenyl) propan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) butanone, 2 -Hydroxy-2-methyl-1- [4- (1-methylvinyl) phenyl] propanone oligomer, 2-hirodoxy-1- ⁇ 4- [4- (2-hydroxy-2-methyl-propionyl) -benzyl] Acetphenones such as phenyl ⁇ -2-methyl-propane-1-one; 1,2-octanedione, 1- [4- (phenylthio)-, 2- (O-benzoyloxime)], etanone, 1- [9 -Oxime esters such as -ethyl-6- (2-methylbenzoyl) -9H-carbazole-3-yl]-, 1- (0-acetyloxime); benzo
  • auxiliary agent for the radical photopolymerization initiator triethanolamine, triisopropanolamine, 4,4'-dimethylaminobenzophenone (Michler ketone), 4,4'-diethylaminobenzophenone, 2-dimethylaminoethyl benzoic acid, 4- Ethyl dimethylaminobenzoate, ethyl 4-dimethylaminobenzoic acid (n-butoxy), isoamyl 4-dimethylaminobenzoate, 2-ethylhexyl 4-dimethylaminobenzoate, 2,4-diethylthioxanthone, 2,4- Diisopropylthioxanson or the like may be used in combination.
  • the above radical photopolymerization initiator and auxiliary agent can be synthesized by a known method and are also available as commercial products.
  • the content of the polymerization initiator in the resin composition is not particularly limited, but is preferably 0.1 to 200 parts by mass with respect to 100 parts by mass of polyorganosylsesquioxane (a1), for example. ⁇ 50 parts by mass is more preferable.
  • the resin composition in the present invention may contain a solvent.
  • a solvent an organic solvent is preferable, and one kind or two or more kinds of organic solvents can be mixed and used at an arbitrary ratio.
  • the organic solvent include alcohols such as methanol, ethanol, propanol, n-butanol, and i-butanol; ketones such as acetone, methylisobutylketone, methylethylketone, and cyclohexanone; cellosolves such as ethylcellosolve; toluene.
  • Aromatic substances such as xylene; glycol ethers such as propylene glycol monomethyl ether; acetate esters such as methyl acetate, ethyl acetate and butyl acetate; diacetone alcohol and the like.
  • the content of the solvent in the resin composition in the present invention can be appropriately adjusted within a range in which the coating suitability of the resin composition can be ensured. For example, it can be 50 to 500 parts by mass, preferably 80 to 200 parts by mass with respect to 100 parts by mass of the total solid content of the resin composition.
  • the resin composition usually takes the form of a liquid.
  • the concentration of the solid content of the resin composition is usually about 10 to 90% by mass, preferably about 20 to 80% by mass, and particularly preferably about 40 to 70% by mass.
  • the resin composition in the present invention may contain components other than the above, and contains, for example, inorganic fine particles, a dispersant, a leveling agent, an antifouling agent, an antistatic agent, an ultraviolet absorber, an antioxidant and the like. May be.
  • the resin composition used in the present invention can be prepared by simultaneously or sequentially mixing the various components described above in any order.
  • the preparation method is not particularly limited, and a known stirrer or the like can be used for the preparation.
  • the present invention also relates to a hard coat film having a base material and a hard coat layer containing a cured product of the above resin composition.
  • the hard coat film of the present invention preferably has the hard coat layer on the base material.
  • the substrate used for the hard coat film of the present invention preferably has a transmittance in the visible light region of 70% or more, more preferably 80% or more, and further preferably 90% or more.
  • the substrate preferably contains a polymer.
  • a polymer having excellent optical transparency, mechanical strength, thermal stability and the like is preferable.
  • polystyrene polymer examples include a polycarbonate polymer, a polyester polymer such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), and a styrene polymer such as polystyrene and an acrylonitrile-styrene copolymer (AS resin).
  • polyolefins such as polyethylene and polypropylene, norbornene resins, polyolefin polymers such as ethylene / propylene copolymers, (meth) acrylic polymers such as polymethylmethacrylate, vinyl chloride polymers, nylon, and amides such as aromatic polyamides.
  • amide-based polymers such as aromatic polyamides and imide-based polymers have a large number of breaks and bends measured by a MIT tester in accordance with JIS (Japanese Industrial Standards) P8115 (2001) and have a relatively high hardness. It can be preferably used.
  • the aromatic polyamide as described in Example 1 of Japanese Patent No. 56994454, the polyimides described in JP-A-2015-508345, JP-A-2016-521216, and WO2017 / 014287 as a base material.
  • aromatic polyamide aromatic polyamide (aramid-based polymer) is preferable.
  • the base material preferably contains at least one polymer selected from imide-based polymers and aramid-based polymers.
  • the base material can be formed as a cured layer of an ultraviolet curable type or thermosetting type resin such as acrylic type, urethane type, acrylic urethane type, epoxy type and silicone type.
  • the base material may contain a material that further softens the above polymer.
  • the softening material refers to a compound that improves the number of fractures and bends, and as the softening material, a rubber elastic body, a brittleness improver, a plasticizer, a slide ring polymer, or the like can be used.
  • the softening material the softening material described in paragraph numbers [0051] to [0114] in JP-A-2016-167043 can be preferably used.
  • the softening material may be mixed alone with the polymer, may be mixed in combination of a plurality as appropriate, or may be used alone or in combination of a plurality of softening materials without being mixed with the polymer. It may be used as a base material.
  • the amount of these softening materials to be mixed is not particularly limited, and a polymer having a sufficient number of breaks and bends may be used alone as a base material for the film, or the softening materials may be mixed, or all of them. May be used as a softening material (100%) to have a sufficient number of breaks and bends.
  • additives for example, ultraviolet absorbers, matting agents, antioxidants, peeling accelerators, retardation (optical anisotropy) adjusting agents, etc.
  • They may be solid or oily. That is, the melting point or boiling point is not particularly limited.
  • the additive may be added at any time in the step of producing the base material, or the step of adding the additive and preparing may be added to the material preparation step.
  • the amount of each material added is not particularly limited as long as the function is exhibited.
  • the additives described in paragraph numbers [0117] to [0122] in JP-A-2016-167043 can be preferably used.
  • One type of the above additives may be used alone, or two or more types may be used in combination.
  • UV absorber examples of the ultraviolet absorber include a benzotriazole compound, a triazine compound, and a benzoxazine compound.
  • the benzotriazole compound is a compound having a benzotriazole ring, and specific examples thereof include various benzotriazole-based ultraviolet absorbers described in paragraph 0033 of JP2013-1111835.
  • the triazine compound is a compound having a triazine ring, and specific examples thereof include various triazine-based ultraviolet absorbers described in paragraph 0033 of JP2013-1111835.
  • As the benzoxazine compound for example, those described in paragraph 0031 of JP-A-2014-209162 can be used.
  • the content of the ultraviolet absorber in the base material is, for example, about 0.1 to 10 parts by mass with respect to 100 parts by mass of the polymer contained in the base material, but is not particularly limited. Further, regarding the ultraviolet absorber, reference is also made to paragraph 0032 of JP2013-1111835.
  • an ultraviolet absorber having high heat resistance and low volatilization is preferable. Examples of such an ultraviolet absorber include UVSORB101 (manufactured by Fujifilm Fine Chemicals Co., Ltd.), TINUVIN 360, TINUVIN 460, TINUVIN 1577 (manufactured by BASF), LA-F70, LA-31, LA-46 (manufactured by ADEKA) and the like. Can be mentioned.
  • the base material has a small difference in refractive index between the flexible material and various additives used for the base material and the polymer.
  • a base material containing an imide-based polymer As the base material, a base material containing an imide-based polymer can be preferably used.
  • the imide-based polymer means a polymer containing at least one repeating structural unit represented by the formula (PI), the formula (a), the formula (a') and the formula (b).
  • the repeating structural unit represented by the formula (PI) is the main structural unit of the imide-based polymer from the viewpoint of film strength and transparency.
  • the repeating structural unit represented by the formula (PI) is preferably 40 mol% or more, more preferably 50 mol% or more, still more preferably 70 mol% or more, based on all the repeating structural units of the imide-based polymer. It is particularly preferably 90 mol% or more, and most preferably 98 mol% or more.
  • G in the formula (PI) represents a tetravalent organic group, and A represents a divalent organic group.
  • G 2 in the formula (a) represents a trivalent organic group, and A 2 represents a divalent organic group.
  • G 3 in the formula (a') represents a tetravalent organic group, and A 3 represents a divalent organic group.
  • G 4 and A 4 in the formula (b) represents each a divalent organic group.
  • the organic group of the tetravalent organic group represented by G includes an acyclic aliphatic group, a cyclic aliphatic group and an aromatic group. Examples are groups selected from the group consisting of.
  • the organic group of G is preferably a tetravalent cyclic aliphatic group or a tetravalent aromatic group from the viewpoint of transparency and flexibility of the base material containing the imide polymer.
  • the aromatic group includes a monocyclic aromatic group, a fused polycyclic aromatic group, and a non-condensed polycyclic aromatic group having two or more aromatic rings in which they are directly or linked to each other by a bonding group. And so on.
  • the organic group of G is a cyclic aliphatic group, a cyclic aliphatic group having a fluorine-based substituent, a monocyclic aromatic group having a fluorine-based substituent, and the like. It is preferably a condensed polycyclic aromatic group having a fluorine-based substituent or a non-condensed polycyclic aromatic group having a fluorine-based substituent.
  • the fluorine-based substituent means a group containing a fluorine atom.
  • the fluorine-based substituent is preferably a fluoro group (fluorine atom, ⁇ F) and a perfluoroalkyl group, and more preferably a fluoro group and a trifluoromethyl group.
  • the organic group of G is, for example, a saturated or unsaturated cycloalkyl group, a saturated or unsaturated heterocycloalkyl group, an aryl group, a heteroaryl group, an arylalkyl group, an alkylaryl group, a heteroalkylaryl. It is selected from groups that have a group and any two of these (which may be the same) and which are linked to each other directly or by a binding group.
  • Examples of the bonding group include -O-, an alkylene group having 1 to 10 carbon atoms, -SO 2- , -CO- or -CO-NR- (R is a methyl group, an ethyl group, a propyl group and the like having 1 to 1 carbon atoms. (Representing an alkyl group of 3 or a hydrogen atom).
  • the tetravalent organic group represented by G usually has 2 to 32 carbon atoms, preferably 4 to 15 carbon atoms, more preferably 5 to 10 carbon atoms, and even more preferably 6 to 8 carbon atoms.
  • the organic group of G is a cyclic aliphatic group or an aromatic group, at least one of the carbon atoms constituting these groups may be replaced with a heteroatom.
  • Heteroatoms include O, N or S.
  • G examples include groups represented by the following equations (20), (21), (22), (23), (24), (25) or (26). Be done. * In the formula indicates a bond.
  • Z in formula (26) is a single bond, -O-, -CH 2- , -C (CH 3 ) 2- , -Ar-O-Ar-, -Ar-CH 2 -Ar-, -Ar- Represents C (CH 3 ) 2- Ar- or -Ar-SO 2- Ar-.
  • Ar represents an aryl group having 6 to 20 carbon atoms, and may be, for example, a phenylene group. At least one of the hydrogen atoms of these groups may be substituted with a fluorine-based substituent.
  • the organic group of the divalent organic group represented by A includes an acyclic aliphatic group, a cyclic aliphatic group and an aromatic group. Examples include groups selected from the group consisting of.
  • the divalent organic group represented by A is preferably selected from a divalent cyclic aliphatic group and a divalent aromatic group.
  • Aromatic groups include monocyclic aromatic groups, fused polycyclic aromatic groups, and non-condensed polycyclic aromatics having two or more aromatic rings, which are directly or interconnected by a bonding group. The group is mentioned. From the viewpoint of transparency of the base material and suppression of coloring, it is preferable that a fluorine-based substituent is introduced into the organic group of A.
  • the organic group of A is, for example, a saturated or unsaturated cycloalkyl group, a saturated or unsaturated heterocycloalkyl group, an aryl group, a heteroaryl group, an arylalkyl group, an alkylaryl group, a heteroalkylaryl. It is selected from groups that have a group and any two of these (which may be the same) and to which they are linked directly or by a binding group.
  • the heteroatom include O, N or S
  • examples of the bonding group are -O-, an alkylene group having 1 to 10 carbon atoms, -SO 2- , -CO- or -CO-NR- (R is methyl).
  • An alkyl group having 1 to 3 carbon atoms such as a group, an ethyl group, and a propyl group, or a hydrogen atom) can be mentioned.
  • the number of carbon atoms of the divalent organic group represented by A is usually 2 to 40, preferably 5 to 32, more preferably 12 to 28, and further preferably 24 to 27.
  • A examples include groups represented by the following formulas (30), formulas (31), formulas (32), formulas (33) or formulas (34).
  • * In the formula indicates a bond.
  • Z 1 to Z 3 are independently single-bonded, -O-, -CH 2- , -C (CH 3 ) 2- , -SO 2- , -CO- or -CO-NR- (R is Represents an alkyl group having 1 to 3 carbon atoms such as a methyl group, an ethyl group, and a propyl group, or a hydrogen atom).
  • Z 1 and Z 2 and Z 2 and Z 3 are preferably in the meta or para position with respect to each ring, respectively.
  • the single bond between Z 1 and the terminal, the single bond between Z 2 and the terminal, and the single bond between Z 3 and the terminal are in the meta position or the para position, respectively.
  • Z 1 and Z 3 are -O- and Z 2 is -CH 2- , -C (CH 3 ) 2- or -SO 2- .
  • One or more of the hydrogen atoms of these groups may be substituted with fluorine-based substituents.
  • At least one hydrogen atom among the hydrogen atoms constituting at least one of A and G is selected from the group consisting of a fluorine-based substituent, a hydroxyl group, a sulfone group, an alkyl group having 1 to 10 carbon atoms, and the like. It may be substituted with a functional group. Further, when the organic group of A and the organic group of G are cyclic aliphatic groups or aromatic groups, respectively, it is preferable that at least one of A and G has a fluorine-based substituent, and both A and G have a fluorine-based substituent. It is more preferable to have a fluorine-based substituent.
  • G 2 in the formula (a) is a trivalent organic group.
  • This organic group can be selected from the same groups as the organic group of G in the formula (PI) except that it is a trivalent group.
  • G 2 a group in which any one of the four bonds of the groups represented by the formulas (20) to (26) given as a specific example of G is replaced with a hydrogen atom is mentioned. Can be done.
  • a 2 in formula (a) can be selected from the same groups as A in formula (PI).
  • G 3 in formula (a') can be selected from the same groups as G in formula (PI).
  • a 3 in formula (a') can be selected from the same groups as A in formula (PI).
  • G 4 in formula (b) is a divalent organic group.
  • This organic group can be selected from the same groups as the organic group of G in the formula (PI) except that it is a divalent group.
  • An example of G 4 is a group in which any two of the four bonds of the groups represented by the formulas (20) to (26) given as specific examples of G are replaced with hydrogen atoms. Can be done.
  • a 4 in the formula (b) may be selected from the same groups as A in the formula (PI).
  • the imide-based polymer contained in the base material containing the imide-based polymer includes diamines and a tetracarboxylic acid compound (including a tetracarboxylic acid compound analog such as an acid chloride compound and a tetracarboxylic acid dianhydride) or a tricarboxylic acid compound (a tricarboxylic acid compound) It may be a condensed polymer obtained by polycondensing with at least one of (including an acid chloride compound and a tricarboxylic acid compound analog such as tricarboxylic acid anhydride). Further, a dicarboxylic acid compound (including an analog such as an acid chloride compound) may be polycondensed.
  • the repeating structural unit represented by the formula (PI) or the formula (a') is usually derived from diamines and tetracarboxylic acid compounds.
  • the repeating structural unit represented by the formula (a) is usually derived from diamines and tricarboxylic acid compounds.
  • the repeating structural unit represented by the formula (b) is usually derived from diamines and dicarboxylic acid compounds.
  • the tetracarboxylic acid compound examples include an aromatic tetracarboxylic acid compound, an alicyclic tetracarboxylic acid compound, and an acyclic aliphatic tetracarboxylic acid compound. These may be used in combination of two or more.
  • the tetracarboxylic acid compound is preferably a tetracarboxylic dianhydride.
  • the tetracarboxylic dianhydride include aromatic tetracarboxylic dianhydride, alicyclic tetracarboxylic dianhydride, and acyclic aliphatic tetracarboxylic dianhydride.
  • the tetracarboxylic acid compound may be an alicyclic tetracarboxylic acid compound, an aromatic tetracarboxylic acid compound, or the like from the viewpoint of solubility of the imide-based polymer in a solvent and transparency and flexibility when a base material is formed. preferable.
  • the tetracarboxylic acid compound is an alicyclic tetracarboxylic acid compound having a fluorine-based substituent and an aromatic tetracarboxylic acid compound having a fluorine-based substituent. It is preferably selected from, and more preferably an alicyclic tetracarboxylic acid compound having a fluorine-based substituent.
  • the tricarboxylic acid compound examples include aromatic tricarboxylic acids, alicyclic tricarboxylic acids, acyclic aliphatic tricarboxylic acids, acid chloride compounds related thereto, acid anhydrides and the like.
  • the tricarboxylic acid compound is preferably selected from aromatic tricarboxylic acids, alicyclic tricarboxylic acids, acyclic aliphatic tricarboxylic acids and related acid chloride compounds thereof. Two or more kinds of tricarboxylic acid compounds may be used in combination.
  • the tricarboxylic acid compound is an alicyclic tricarboxylic acid compound or an aromatic tricarboxylic acid compound from the viewpoint of the solubility of the imide-based polymer in a solvent and the transparency and flexibility when a substrate containing the imide-based polymer is formed. Is preferable. From the viewpoint of transparency and suppression of coloring of the base material containing the imide-based polymer, the tricarboxylic acid compound shall be an alicyclic tricarboxylic acid compound having a fluorine-based substituent or an aromatic tricarboxylic acid compound having a fluorine-based substituent. Is more preferable.
  • dicarboxylic acid compound examples include aromatic dicarboxylic acids, alicyclic dicarboxylic acids, acyclic aliphatic dicarboxylic acids, acid chloride compounds related thereto, acid anhydrides and the like.
  • the dicarboxylic acid compound is preferably selected from aromatic dicarboxylic acids, alicyclic dicarboxylic acids, acyclic aliphatic dicarboxylic acids and related acid chloride compounds thereof. Two or more kinds of dicarboxylic acid compounds may be used in combination.
  • the dicarboxylic acid compound is an alicyclic dicarboxylic acid compound or an aromatic dicarboxylic acid compound from the viewpoint of the solubility of the imide-based polymer in a solvent and the transparency and flexibility when a substrate containing the imide-based polymer is formed. Is preferable. From the viewpoint of transparency and suppression of coloring of the base material containing the imide-based polymer, the dicarboxylic acid compound shall be an alicyclic dicarboxylic acid compound having a fluorine-based substituent or an aromatic dicarboxylic acid compound having a fluorine-based substituent. Is even more preferable.
  • diamines examples include aromatic diamines, alicyclic diamines and aliphatic diamines, and two or more of these may be used in combination. From the viewpoint of the solubility of the imide polymer in the solvent and the transparency and flexibility when the base material containing the imide polymer is formed, the diamines are selected from alicyclic diamines and aromatic diamines having a fluorine-based substituent. It is preferable to be selected.
  • an imide polymer When such an imide polymer is used, it has particularly excellent flexibility, high light transmittance (for example, 85% or more, preferably 88% or more with respect to light at 550 nm), and low yellowness (YI value). It is easy to obtain a substrate having 5, 5 or less, preferably 3 or less), and a low haze (1.5% or less, preferably 1.0% or less).
  • the imide-based polymer may be a copolymer containing a plurality of different types of the above-mentioned repeating structural units.
  • the weight average molecular weight of the polyimide polymer is usually 10,000 to 500,000.
  • the weight average molecular weight of the imide polymer is preferably 50,000 to 500,000, more preferably 70,000 to 400,000.
  • the weight average molecular weight is a standard polystyrene-equivalent molecular weight measured by gel permeation chromatography (GPC).
  • the weight average molecular weight of the imide-based polymer is large, high flexibility tends to be easily obtained, but if the weight average molecular weight of the imide-based polymer is too large, the viscosity of the varnish tends to be high and the processability tends to be lowered.
  • the imide-based polymer may contain a halogen atom such as a fluorine atom that can be introduced by the above-mentioned fluorine-based substituent or the like.
  • a halogen atom such as a fluorine atom that can be introduced by the above-mentioned fluorine-based substituent or the like.
  • the halogen atom is preferably a fluorine atom.
  • the content of halogen atoms in the polyimide-based polymer is preferably 1 to 40% by mass, more preferably 1 to 30% by mass, based on the mass of the polyimide-based polymer.
  • the base material containing the imide-based polymer may contain one kind or two or more kinds of ultraviolet absorbers.
  • the ultraviolet absorber can be appropriately selected from those usually used as an ultraviolet absorber in the field of resin materials.
  • the ultraviolet absorber may contain a compound that absorbs light having a wavelength of 400 nm or less.
  • Examples of the ultraviolet absorber that can be appropriately combined with the imide polymer include at least one compound selected from the group consisting of benzophenone compounds, salicylate compounds, benzotriazole compounds and triazine compounds.
  • the "system compound” refers to a derivative of a compound to which the "system compound” is attached.
  • the "benzophenone-based compound” refers to a compound having a benzophenone as a maternal skeleton and a substituent attached to the benzophenone.
  • the content of the ultraviolet absorber is usually 1% by mass or more, preferably 2% by mass or more, more preferably 3% by mass or more, and usually 10% by mass or less, based on the total mass of the base material. Yes, preferably 8% by mass or less, and more preferably 6% by mass or less. By including the ultraviolet absorber in these amounts, the weather resistance of the base material can be enhanced.
  • the base material containing the imide-based polymer may further contain an inorganic material such as inorganic particles.
  • the inorganic material is preferably a silicon material containing a silicon atom.
  • the tensile elastic modulus of the base material containing the imide-based polymer can be easily set to 4.0 GPa or more.
  • the method of controlling the tensile elastic modulus of the base material containing the imide polymer is not limited to the blending of the inorganic material.
  • Examples of the silicon material containing a silicon atom include silica particles, a quaternary alkoxysilane such as tetraethyl orthosilicate (TEOS), and a silicon compound such as a silsesquioxane derivative.
  • TEOS tetraethyl orthosilicate
  • silicon compound such as a silsesquioxane derivative.
  • silica particles are preferable from the viewpoint of transparency and flexibility of the base material containing the imide polymer.
  • the average primary particle size of silica particles is usually 100 nm or less. When the average primary particle diameter of the silica particles is 100 nm or less, the transparency tends to be improved.
  • the average primary particle size of the silica particles in the substrate containing the imide polymer can be determined by observation with a transmission electron microscope (TEM).
  • the primary particle diameter of the silica particles can be a directional diameter measured by a transmission electron microscope (TEM).
  • the average primary particle size can be obtained by measuring 10 points of the primary particle size by TEM observation and as an average value thereof.
  • the particle distribution of the silica particles before forming the base material containing the imide-based polymer can be obtained by a commercially available laser diffraction type particle size distribution meter.
  • the blending ratio of the imide-based polymer and the inorganic material is preferably 1: 9 to 10: 0 in terms of mass ratio, with the total of both being 10 and 3: 7 to 10 : 0 is more preferable, 3: 7 to 8: 2 is more preferable, and 3: 7 to 7: 3 is even more preferable.
  • the ratio of the inorganic material to the total mass of the imide-based polymer and the inorganic material is usually 20% by mass or more, preferably 30% by mass or more, usually 90% by mass or less, and preferably 70% by mass or less.
  • the blending ratio of the imide-based polymer and the inorganic material is within the above range, the transparency and mechanical strength of the base material containing the imide-based polymer tend to be improved. Further, the tensile elastic modulus of the base material containing the imide-based polymer can be easily set to 4.0 GPa or more.
  • the base material containing the imide polymer may further contain components other than the imide polymer and the inorganic material as long as the transparency and flexibility are not significantly impaired.
  • components other than the imide polymer and the inorganic material include colorants such as antioxidants, mold release agents, stabilizers and bluing agents, flame retardants, lubricants, thickeners and leveling agents.
  • the ratio of the components other than the imide polymer and the inorganic material is preferably more than 0% and 20% by mass or less, and more preferably more than 0% and 10% by mass or less with respect to the mass of the base material. ..
  • Si / N which is the ratio of the number of atoms of the silicon atom to the nitrogen atom on at least one surface, is 8 or more.
  • the atomic number ratio Si / N is determined by evaluating the composition of the base material containing an imide-based polymer by X-ray Photoelectron Spectroscopy (XPS), and the abundance of silicon atoms and nitrogen atoms obtained thereby. It is a value calculated from the abundance of.
  • the Si / N on at least one surface of the substrate containing the imide-based polymer is 8 or more, sufficient adhesion to the hard coat layer can be obtained.
  • the Si / N is more preferably 9 or more, further preferably 10 or more, preferably 50 or less, and more preferably 40 or less.
  • the base material is preferably in the form of a film.
  • the thickness of the base material is more preferably 100 ⁇ m or less, further preferably 80 ⁇ m or less, and most preferably 50 ⁇ m or less.
  • the thickness of the base material is preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more, and most preferably 15 ⁇ m or more.
  • the substrate may be formed by thermally melting a thermoplastic polymer to form a film, or may be formed from a solution in which the polymer is uniformly dissolved by a solution film forming (solvent casting method).
  • a solution film forming solvent casting method
  • the above-mentioned softening material and various additives can be added at the time of heat melting.
  • the base material is prepared by the solution film forming method
  • the above-mentioned softening material and various additives can be added to the polymer solution (hereinafter, also referred to as dope) in each preparation step.
  • the timing of addition may be any in the dope preparation step, but the step of adding and preparing the additive may be added to the final preparation step of the dope preparation step.
  • the coating film may be heated for drying and / or baking of the coating film.
  • the heating temperature of the coating film is usually 50 to 350 ° C.
  • the coating film may be heated under an inert atmosphere or under reduced pressure.
  • the solvent can be evaporated and removed by heating the coating film.
  • the base material may be formed by a method including a step of drying the coating film at 50 to 150 ° C. and a step of baking the dried coating film at 180 to 350 ° C.
  • Surface treatment may be applied to at least one surface of the base material.
  • the hard coat film of the present invention has a hard coat layer containing a cured product of the above resin composition.
  • the hard coat layer is preferably formed on at least one surface of the substrate.
  • the hard coat layer of the hard coat film of the present invention contains a cured product of a resin composition containing polyorganosylsesquioxane (a1), and preferably polyorganosylsesquioxane (a1) and polymerization initiation. It contains a cured product of a resin composition containing an agent.
  • the cured product of the resin composition preferably contains at least a cured product formed by bonding the crosslinkable groups of polyorganosylsesquioxane (a1) by a polymerization reaction.
  • the content of the cured product of the resin composition in the hard coat layer of the hard coat film of the present invention is preferably 50% by mass or more, more preferably 60% by mass or more, and 70% by mass or more. It is more preferable to have.
  • the film thickness of the hard coat layer is not particularly limited, but is preferably 0.5 to 30 ⁇ m, more preferably 1 to 25 ⁇ m, and even more preferably 2 to 20 ⁇ m.
  • the film thickness of the hard coat layer is calculated by observing the cross section of the hard coat film with an optical microscope.
  • the cross-section sample can be prepared by a microtome method using a cross-section cutting device Ultra Microtome, a cross-section processing method using a focused ion beam (FIB) device, or the like.
  • the hard coat film of the present invention preferably further has a scratch resistant layer.
  • the hard coat film of the present invention has a scratch resistant layer, it is preferable to have at least one scratch resistant layer on the surface opposite to the base material of the hard coat layer.
  • the scratch-resistant layer of the hard coat film of the present invention preferably contains a cured product of a composition for forming a scratch-resistant layer containing a radically polymerizable compound (c1).
  • the radically polymerizable compound (c1) (also referred to as “compound (c1)”) will be described.
  • Compound (c1) is a compound having a radically polymerizable group.
  • the radically polymerizable group in the compound (c1) is not particularly limited, and a generally known radically polymerizable group can be used.
  • Examples of the radically polymerizable group include a polymerizable unsaturated group, and specific examples thereof include a (meth) acryloyl group, a vinyl group, and an allyl group, and a (meth) acryloyl group is preferable.
  • each group mentioned above may have a substituent.
  • the compound (c1) is preferably a compound having two or more (meth) acryloyl groups in one molecule, and more preferably a compound having three or more (meth) acryloyl groups in one molecule. ..
  • the molecular weight of the compound (c1) is not particularly limited, and it may be a monomer, an oligomer, or a polymer. Specific examples of the above compound (c1) are shown below, but the present invention is not limited thereto.
  • Examples of the compound having two (meth) acryloyl groups in one molecule include neopentyl glycol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, dipropylene glycol di (meth) acrylate, and tripropylene.
  • Glycoldi (meth) acrylate tetraethylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate of hydroxypivalate, polyethylene glycol di (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl ( Preferable examples thereof include meta) acrylate and dicyclopentanyldi (meth) acrylate.
  • Examples of the compound having three or more (meth) acryloyl groups in one molecule include esters of a polyhydric alcohol and (meth) acrylic acid.
  • pentaerythritol tri (meth) acrylate pentaerythritol tetra (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolethanetri (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, dipenta.
  • pentaerythritol triacrylate pentaerythritol tetraacrylate
  • dipentaerythritol Pentaacrylate, dipentaerythritol hexaacrylate, or a mixture thereof is preferable.
  • the content of the compound (c1) in the scratch-resistant layer forming composition is preferably 80% by mass or more, more preferably 85% by mass or more, based on the total solid content in the scratch-resistant layer forming composition. It is preferable, and 90% by mass or more is more preferable.
  • the scratch-resistant layer-forming composition in the present invention preferably contains a radical polymerization initiator. Only one type of radical polymerization initiator may be used, or two or more types having different structures may be used in combination. Further, the radical polymerization initiator may be a photopolymerization initiator or a thermal polymerization initiator.
  • the content of the radical polymerization initiator in the scratch-resistant layer forming composition is not particularly limited, but is preferably 0.1 to 200 parts by mass with respect to 100 parts by mass of the compound (c1), for example. ⁇ 50 parts by mass is more preferable.
  • the scratch-resistant layer-forming composition in the present invention may contain a solvent.
  • the solvent is the same as the solvent that may be contained in the above-mentioned resin composition.
  • the content of the solvent in the scratch-resistant layer-forming composition in the present invention can be appropriately adjusted within a range in which the coating suitability of the scratch-resistant layer-forming composition can be ensured. For example, it can be 50 to 500 parts by mass, preferably 80 to 200 parts by mass with respect to 100 parts by mass of the total solid content of the scratch-resistant layer forming composition.
  • the scratch-resistant layer-forming composition usually takes the form of a liquid.
  • the concentration of the solid content of the scratch-resistant layer forming composition is usually about 10 to 90% by mass, preferably about 20 to 80% by mass, and particularly preferably about 40 to 70% by mass.
  • the scratch-resistant layer forming composition may contain components other than the above, and may contain, for example, inorganic particles, a leveling agent, an antifouling agent, an antistatic agent, a slip agent, a solvent and the like. In particular, it is preferable to contain the following fluorine-containing compound as a slip agent.
  • the fluorine-containing compound may be a monomer, an oligomer, or a polymer.
  • the fluorine-containing compound preferably has a substituent that contributes to bond formation or compatibility with the compound (c1) in the scratch-resistant layer.
  • the substituents may be the same or different, and it is preferable that there are a plurality of the substituents.
  • the substituent is preferably a polymerizable group, and may be a polymerizable reactive group exhibiting any one of radical polymerizable, cationically polymerizable, anionic polymerizable, contractile polymerizable and addition polymerizable, as an example of a preferable substituent.
  • Examples include acryloyl group, methacryloyl group, vinyl group, allyl group, cinnamoyl group, epoxy group, oxetanyl group, hydroxyl group, polyoxyalkylene group, carboxyl group and amino group. Among them, a radically polymerizable group is preferable, and an acryloyl group and a methacryloyl group are particularly preferable.
  • the fluorine-containing compound may be a polymer or an oligomer with a compound containing no fluorine atom.
  • the fluorine-containing compound is preferably a fluorine-based compound represented by the following general formula (F).
  • RA represents a polymerizable unsaturated group.
  • the polymerizable unsaturated group is preferably a group having an unsaturated bond (that is, a radically polymerizable group) capable of causing a radical polymerization reaction by irradiating with an active energy ray such as an ultraviolet ray or an electron beam, and (meth).
  • an active energy ray such as an ultraviolet ray or an electron beam
  • examples include acryloyl group, (meth) acryloyloxy group, vinyl group, allyl group, etc., (meth) acryloyl group, (meth) acryloyloxy group, and a group in which any hydrogen atom in these groups is substituted with a fluorine atom. Is preferably used.
  • R f represents a (per) fluoroalkyl group or a (per) fluoropolyether group.
  • the (per) fluoroalkyl group represents at least one of a fluoroalkyl group and a perfluoroalkyl group
  • the (per) fluoropolyether group is at least one of a fluoropolyether group and a perfluoropolyether group. Represents a species. From the viewpoint of scratch resistance, it is preferable that the fluorine content in R f is high.
  • the (par) fluoroalkyl group is preferably a group having 1 to 20 carbon atoms, and more preferably a group having 1 to 10 carbon atoms.
  • the (par) fluoroalkyl group has a linear structure (for example, -CF 2 CF 3 , -CH 2 (CF 2 ) 4 H, -CH 2 (CF 2 ) 8 CF 3 , -CH 2 CH 2 (CF 2 ) 4 Even if it is H), it has a branched structure (for example, -CH (CF 3 ) 2 , -CH 2 CF (CF 3 ) 2 , -CH (CH 3 ) CF 2 CF 3 , -CH (CH 3 ) (CF 2 ).
  • alicyclic structure preferably a 5- or 6-membered ring, for example perfluoro hexyl group, and a perfluorocyclopentyl group to cycloalkyl and alkyl groups substituted with these groups
  • alicyclic structure preferably a 5- or 6-membered ring, for example perfluoro hexyl group, and a perfluorocyclopentyl group to cycloalkyl and alkyl groups substituted with these groups
  • the (per) fluoropolyether group refers to a case where the (per) fluoroalkyl group has an ether bond, and may be a monovalent group or a divalent or higher valent group.
  • the fluoropolyether group include -CH 2 OCH 2 CF 2 CF 3 , -CH 2 CH 2 OCH 2 C 4 F 8 H, -CH 2 CH 2 OCH 2 CH 2 C 8 F 17 , and -CH 2 CH 2.
  • Examples thereof include OCF 2 CF 2 OCF 2 CF 2 H, a fluorocycloalkyl group having 4 or more carbon atoms and 4 to 20 carbon atoms.
  • perfluoropolyether group examples include- (CF 2 O) pf- (CF 2 CF 2 O) qf -,-[CF (CF 3 ) CF 2 O] pf- [CF (CF 3 )].
  • qf ⁇ , ⁇ (CF 2 CF 2 CF 2 O) pf ⁇ , ⁇ (CF 2 CF 2 O) pf ⁇ and the like can be mentioned.
  • the pf and qf independently represent an integer of 0 to 20. However, pf + qf is an integer of 1 or more.
  • the total of pf and qf is preferably 1 to 83, more preferably 1 to 43, and even more preferably 5 to 23.
  • the fluorine-containing compound particularly preferably has a perfluoropolyether group represented by ⁇ (CF 2 O) pf ⁇ (CF 2 CF 2 O) qf ⁇ .
  • the fluorine-containing compound has a perfluoropolyether group and a plurality of polymerizable unsaturated groups in one molecule.
  • W represents a linking group.
  • W include an alkylene group, an arylene group and a heteroalkylene group, and a linking group in which these groups are combined. These linking groups may further have an oxy group, a carbonyl group, a carbonyloxy group, a carbonylimino group, a sulfonamide group, etc., and a functional group in which these groups are combined.
  • the W is preferably an ethylene group, more preferably an ethylene group bonded to a carbonylimino group.
  • the fluorine atom content of the fluorine-containing compound is not particularly limited, but is preferably 20% by mass or more, more preferably 30 to 70% by mass, and even more preferably 40 to 70% by mass.
  • preferable fluorine-containing compounds include R-2020, M-2020, R-3833, M-3833 and Optool DAC (trade name) manufactured by Daikin Chemical Corporation, and Megafuck F-171 manufactured by DIC Corporation. , F-172, F-179A, RS-78, RS-90, Defenser MCF-300 and MCF-323 (hereinafter referred to as trade names), but are not limited thereto.
  • the product of nf and mf (nf ⁇ mf) is preferably 2 or more, and more preferably 4 or more.
  • the weight average molecular weight (Mw) of a fluorine-containing compound having a polymerizable unsaturated group can be measured by using molecular exclusion chromatography, for example, gel permeation chromatography (GPC).
  • Mw of the fluorine-containing compound used in the present invention is preferably 400 or more and less than 50,000, more preferably 400 or more and less than 30,000, and further preferably 400 or more and less than 25,000.
  • the content of the fluorine-containing compound is preferably 0.01 to 5% by mass, more preferably 0.1 to 5% by mass, and 0.5 to 5 with respect to the total solid content in the composition for forming a scratch-resistant layer.
  • the mass% is more preferable, and 0.5 to 2% by mass is particularly preferable.
  • the scratch-resistant layer-forming composition used in the present invention can be prepared by simultaneously or sequentially mixing the various components described above in any order.
  • the preparation method is not particularly limited, and a known stirrer or the like can be used for the preparation.
  • the scratch-resistant layer of the hard coat film of the present invention preferably contains a cured product of the composition for forming a scratch-resistant layer containing the compound (c1), and more preferably contains the compound (c1) and a radical polymerization initiator. It contains a cured product of a scratch-resistant layer-forming composition.
  • the cured product of the scratch-resistant layer forming composition preferably contains at least a cured product obtained by polymerizing the radically polymerizable group of the compound (c1).
  • the content of the cured product of the scratch-resistant layer-forming composition in the scratch-resistant layer of the hard coat film of the present invention is preferably 60% by mass or more, preferably 70% by mass or more, based on the total mass of the scratch-resistant layer. More preferably, 80% by mass or more is further preferable.
  • the film thickness of the scratch-resistant layer is preferably less than 3.0 ⁇ m, more preferably 0.1 to 2.0 ⁇ m, and preferably 0.1 to 1.0 ⁇ m from the viewpoint of repeated bending resistance. More preferred.
  • the hard coat film of the present invention has excellent pencil hardness.
  • the hard coat film of the present invention preferably has a pencil hardness of 3H or more, and more preferably 4H or more.
  • Pencil hardness can be evaluated according to JIS (JIS is Japanese Industrial Standards (Japanese Industrial Standards)) K5400.
  • the hard coat film of the present invention has excellent repeated bending resistance. It is preferable that the hard coat film of the present invention does not crack when the 180 ° bending test is repeated 100,000 times with a radius of curvature of 2 mm with the base material inside.
  • the repeated bending resistance is specifically measured as follows. A sample film having a width of 15 mm and a length of 150 mm is cut out from the hard coat film and allowed to stand at a temperature of 25 ° C. and a relative humidity of 65% for 1 hour or more. Then, using a 180 ° folding resistance tester (IMC-0755 type manufactured by Imoto Seisakusho Co., Ltd.), the bending resistance is repeatedly tested with the base material inside.
  • IMC-0755 type manufactured by Imoto Seisakusho Co., Ltd.
  • the above-mentioned tester bends the sample film along the curved surface of a rod (cylinder) having a diameter of 4 mm at a bending angle of 180 ° at the central portion in the longitudinal direction, and then returns it to its original position (spreads the sample film) once. This test is repeated. It is visually evaluated whether or not cracks occur when the above 180 ° bending test is repeated.
  • a hard coat film having a pencil hardness of 3H or more and having the above base material inside and having a radius of curvature of 2 mm and a 180 ° bending test repeated 100,000 times is preferable.
  • the method for producing the hard coat film of the present invention is preferably a production method including the following steps (I) and (II).
  • the production method further includes the following steps (III) and (IV).
  • Step of forming a coat layer A step of applying a scratch-resistant layer-forming composition containing a radically polymerizable compound (c1) onto the hard coat layer to form a scratch-resistant layer coating film (IV). Scratch layer A process of forming a scratch resistant layer by curing the coating film
  • Step (I)- Step (I) is a step of applying a resin composition containing polyorganosylsesquioxane (a1) on a base material to provide a hard coat layer coating film.
  • the base material, polyorganosylsesquioxane (a1), and resin composition are as described above.
  • the method for applying the resin composition is not particularly limited, and a known method can be used.
  • a dip coating method, an air knife coating method, a curtain coating method, a roller coating method, a wire bar coating method, a gravure coating method, a die coating method and the like can be mentioned.
  • Step (II)- Step (II) is a step of forming a hard coat layer by curing the hard coat layer coating film.
  • Curing the hard coat layer coating means polymerizing at least a part of the crosslinkable groups of polyorganosylsesquioxane (a1) contained in the hard coat layer coating.
  • the hardening of the hard coat layer coating film is preferably performed by irradiation with ionizing radiation or heating.
  • the type of ionizing radiation is not particularly limited, and examples thereof include X-rays, electron beams, ultraviolet rays, visible light, and infrared rays, but ultraviolet rays are preferably used.
  • the hard coat layer coating film is ultraviolet curable, it is preferable to irradiate an ultraviolet lamp with an irradiation amount of 10 mJ / cm 2 to 2000 mJ / cm 2 to cure the curable compound, and the hard coat film is hard.
  • a scratch-resistant layer is provided on the coat layer, it is preferable to semi-cure the curable compound. More preferably 50mJ / cm 2 ⁇ 1800mJ / cm 2, further preferably 100mJ / cm 2 ⁇ 1500mJ / cm 2.
  • the ultraviolet lamp type a metal halide lamp, a high-pressure mercury lamp, or the like is preferably used.
  • the temperature is not particularly limited, but is preferably 80 ° C. or higher and 200 ° C. or lower, more preferably 100 ° C. or higher and 180 ° C. or lower, and further preferably 120 ° C. or higher and 160 ° C. or lower. preferable.
  • the oxygen concentration at the time of curing is preferably 0 to 1.0% by volume, more preferably 0 to 0.1% by volume, and most preferably 0 to 0.05% by volume.
  • the step (III) is a step of applying a scratch-resistant layer forming composition containing a radically polymerizable compound (c1) onto the hard coat layer to form a scratch-resistant layer coating film.
  • the radically polymerizable compound (c1) and the scratch-resistant layer forming composition are as described above.
  • the method for applying the scratch-resistant layer forming composition is not particularly limited, and a known method can be used. For example, a dip coating method, an air knife coating method, a curtain coating method, a roller coating method, a wire bar coating method, a gravure coating method, a die coating method and the like can be mentioned.
  • Step (IV) is a step of forming the scratch-resistant layer by curing the scratch-resistant layer coating film.
  • the scratch-resistant layer coating film is preferably cured by irradiation with ionizing radiation or heating.
  • the irradiation and heating of ionizing radiation are the same as those described in step (II).
  • Curing the scratch-resistant layer coating means polymerizing at least a part of the radical-polymerizable groups of the radical-polymerizable compound (c1) contained in the scratch-resistant layer coating.
  • the hard coat film when the hard coat film has a scratch resistant layer on the hard coat layer, it is preferable to semi-cure the hard coat layer coating film in the above step (II). That is, in the step (II), the hard coat layer coating film is semi-cured, and then in the step (III), the scratch resistant layer forming composition is applied onto the semi-cured hard coat layer to apply the scratch resistant layer coating film. Then, in step (IV), it is preferable to cure the scratch-resistant layer coating film and completely cure the hard coat layer.
  • semi-curing the hard coat layer coating film means polymerizing only a part of the crosslinkable groups of polyorganosylsesquioxane (a1) contained in the hard coat layer coating film. Semi-curing of the hard coat layer coating film can be performed by adjusting the irradiation amount of ionizing radiation and the temperature and time of heating.
  • Drying treatment as needed between steps (I) and step (II), between steps (II) and step (III), between steps (III) and step (IV), or after step (IV) May be done.
  • the drying process is performed by blowing warm air, arranging in a heating furnace, transporting in a heating furnace, heating with a roller from a surface (base material surface) not provided with a hard coat layer and a scratch resistant layer, and the like. be able to.
  • the heating temperature may be set to a temperature at which the solvent can be dried and removed, and is not particularly limited.
  • the heating temperature means the temperature of warm air or the ambient temperature in the heating furnace.
  • the hard coat film of the present invention is excellent in pencil hardness and repeated bending resistance. Further, the hard coat film of the present invention can be used as a surface protective film of an image display device, and can be used, for example, as a surface protective film of a foldable device (foldable display).
  • a foldable device is a device that employs a flexible display whose display screen can be deformed, and the device body (display) can be folded by utilizing the deformability of the display screen. Examples of the foldable device include an organic electroluminescence device and the like.
  • the present invention is a polyorganosylsesquioxane having a group containing a hydrogen atom capable of forming a hydrogen bond.
  • the hydrogen bond value is 3.0 or more
  • the side chain length is 14 ⁇ 10 -10 to 19 ⁇ 10 -10 m
  • the side chain length is 14 ⁇ 10 -10 to 19 ⁇ 10 -10 m.
  • the hydrogen bond value is represented by the following formula (1), and the side chain length is a polyorganosylsesquioxane in which the side chain length represents the length from the Si atom to the end of the side chain. Also involved.
  • Hydrogen bond value number of hydrogen atoms that can form hydrogen bonds in one structural unit / molecular weight of one structural unit x 1000 ... (1)
  • the present invention is a polyorganosylsesquioxane having a group containing a hydrogen atom capable of forming a hydrogen bond.
  • the hydrogen bond value is 3.0 or more
  • the crosslinkable base value is 4.5 to 6.0
  • the hydrogen bond value is represented by the following formula (1)
  • the crosslinkable base value is also related to polyorganosylsesquioxane represented by the following formula (5).
  • Hydrogen bond value number of hydrogen atoms that can form hydrogen bonds in one structural unit / molecular weight of one structural unit x 1000 ... (1)
  • Crosslinkable radix number of crosslinkable groups in 1 structural unit / molecular weight of 1 structural unit x 1000 ... (5)
  • the polyorganosylsesquioxane having a group containing a hydrogen atom capable of forming a hydrogen bond is the same as the polyorganosylsesquioxane (a1) having a group containing a hydrogen atom capable of forming a hydrogen bond in the above resin composition.
  • the hydrogen bond value, side chain length, and crosslinkable base value are the same as the hydrogen bond value, side chain length, and crosslinkable base value described in the above resin composition, respectively, and the preferable ranges are also the same.
  • the hydrogen bond value is 3.0 or more
  • the side chain length is 14 ⁇ 10-10 to 19 ⁇ 10-10 m
  • the crosslinkable base value is 4.5 to 6. It is preferably 0.
  • ⁇ Preparation of base material> (Manufacturing of polyimide powder) After adding 832 g of N, N-dimethylacetamide (DMAc) under a nitrogen stream to a 1 L reactor equipped with a stirrer, nitrogen injection device, dropping funnel, temperature controller and cooler, the temperature of the reactor was changed to 25. It was set to ° C. To this, 64.046 g (0.2 mol) of bistrifluoromethylbenzidine (TFDB) was added and dissolved.
  • DMAc N, N-dimethylacetamide
  • TFDB bistrifluoromethylbenzidine
  • reaction solution was cooled, neutralized with 12 mL of a 1N (mol / L) hydrochloric acid aqueous solution, 600 g of 1-methoxy-2-propanol was added, and then concentrated under the conditions of 30 mmHg and 50 ° C., and the solid content concentration was 30% by mass.
  • Polyorganosyl sesquioxane (SQ1-1) which is a clear liquid product, was obtained as a 2-methoxy-1-propanol solution of.
  • the content of each structural unit is the same as in the synthesis of the polyorganosylsesquioxane (SQ1-1) except that the amount of each monomer used is changed.
  • Polyorganosilsesquioxane (SQ1-2) with a modified molar ratio was synthesized.
  • reaction solution was cooled, neutralized with 12 mL of a 1N hydrochloric acid aqueous solution, 600 g of 1-methoxy-2-propanol was added, and then concentrated under the conditions of 30 mmHg and 50 ° C., 2-methoxy- with a solid content concentration of 30% by mass.
  • reaction solution was cooled, neutralized with 12 mL of a 1N hydrochloric acid aqueous solution, 600 g of 1-methoxy-2-propanol was added, and then concentrated under the conditions of 30 mmHg and 50 ° C., 2-methoxy- with a solid content concentration of 30% by mass.
  • reaction solution was cooled, neutralized with 12 mL of a 1N hydrochloric acid aqueous solution, 600 g of 1-methoxy-2-propanol was added, and then concentrated under the conditions of 30 mmHg and 50 ° C., 2-methoxy- with a solid content concentration of 30% by mass.
  • the obtained concentrate was mixed with 300 g of tetrahydrofuran, 300 mmol (21.6 g) of acrylic acid, and 300 mmol (30.4 g) of triethylamine, and reacted at 50 ° C. for 6 hours. Then, 600 g of ethyl acetate and 600 g of water were added, and after liquid separation, the organic phase was concentrated. A mixture of 7.39 g of triethylamine and 434 g of acetone is added to the obtained concentrate, and 73.9 g of pure water is further added dropwise over 30 minutes using a dropping funnel, and then heated to 50 ° C. for polycondensation. The reaction was carried out for 10 hours.
  • reaction solution is cooled, neutralized with 12 mL of a 1N hydrochloric acid aqueous solution, 600 g of 1-methoxy-2-propanol is added, and the mixture is concentrated under the conditions of 30 mmHg and 50 ° C. to 2-methoxy with a solid content concentration of 30% by mass.
  • reaction solution was cooled, neutralized with 12 mL of a 1N hydrochloric acid aqueous solution, 600 g of 1-methoxy-2-propanol was added, and then concentrated under the conditions of 30 mmHg and 50 ° C., 2-methoxy- with a solid content concentration of 30% by mass.
  • reaction solution was cooled, neutralized with 12 mL of a 1N hydrochloric acid aqueous solution, 600 g of 1-methoxy-2-propanol was added, and then concentrated under the conditions of 30 mmHg and 50 ° C., 2-methoxy- with a solid content concentration of 30% by mass.
  • reaction solution was cooled, neutralized with 12 mL of a 1N hydrochloric acid aqueous solution, 600 g of 1-methoxy-2-propanol was added, and then concentrated under the conditions of 30 mmHg and 50 ° C., 2-methoxy- with a solid content concentration of 30% by mass.
  • reaction solution was cooled, neutralized with 12 mL of a 1N hydrochloric acid aqueous solution, 600 g of 1-methoxy-2-propanol was added, and then concentrated under the conditions of 30 mmHg and 50 ° C., 2-methoxy- with a solid content concentration of 30% by mass.
  • reaction solution was cooled, neutralized with 12 mL of a 1N hydrochloric acid aqueous solution, 600 g of 1-methoxy-2-propanol was added, and then concentrated under the conditions of 30 mmHg and 50 ° C., 2-methoxy- with a solid content concentration of 30% by mass.
  • each polymer used as polyorganosylsesquioxane (a1) is shown below.
  • SiO 1.5 represents a silsesquioxane unit.
  • the structural units of each polymer correspond to the structural units (A) and the structural units (B) in order from the structural units listed on the left side, and the composition ratio of each structural unit is indicated by a molar ratio.
  • Table 1 shows the hydrogen bond value, side chain length, number of side chain elements, and crosslinkable base value of each polymer calculated by the above method.
  • Example 1 ⁇ Preparation of resin composition> (Resin composition HC-1) Irgacure 127 (Irg.127) (radical polymerization initiator) and MIBK (methyl isobutyl ketone) were added to the 2-methoxy-1-propanol solution containing the polyorganosylsesquioxane (SQ1-1). The content of each component was adjusted as follows, and the mixture was charged into a mixing tank and stirred. The obtained composition was filtered through a polypropylene filter having a pore size of 0.45 ⁇ m to obtain a resin composition HC-1.
  • Irgacure 127 radical polymerization initiator
  • MIBK methyl isobutyl ketone
  • Irgacure 127 (Irg.127) is a radical polymerization initiator manufactured by BASF.
  • the above resin composition HC-1 was applied to a polyimide base material S-1 having a thickness of 30 ⁇ m using a wire bar # 18 so that the film thickness after curing was 18 ⁇ m, and a hard coat layer was applied onto the base material.
  • a coating film was provided.
  • the illuminance is 18 mW / cm 2 and the irradiation amount is 160 mJ / cm using an air-cooled mercury lamp under the conditions of 25 ° C. and an oxygen concentration of 100 ppm (parts per million).
  • the ultraviolet rays of 2 were irradiated.
  • the hard coat layer coating film was cured to obtain a laminate (hard coat film) of Example 1 having a hard coat layer on the base material.
  • Examples 2 to 11, Comparative Examples 1 to 5 The same as in Example 1 except that the polyorganosylsesquioxane (SQ1-1) used was changed to (SQ1-2) to (SQ8-1) and (SQ-1x) to (SQ-5x). , Examples 2 to 11 and Comparative Examples 1 to 5, respectively, were produced.
  • the pencil hardness was evaluated according to JIS (JIS is Japanese Industrial Standards (Japanese Industrial Standards)) K5400. After adjusting the humidity of the hard coat films of each example and comparative example at a temperature of 25 ° C. and a relative humidity of 60% for 2 hours, the tests of H to 9H specified in JIS S 6006 were performed on five different surfaces of the hard coat layer. It was scratched with a pencil with a load of 4.9 N. After that, among the hardnesses of the pencils in which scratches were visually observed at 0 to 2 points, the pencil hardness having the highest hardness was used as the evaluation result. As for the pencil hardness, the higher the numerical value written before "H", the higher the hardness is preferable.
  • A is defined as A
  • B is defined as B when cracks occur 100,000 times or more and less than 300,000 times.
  • C The presence or absence of cracks was visually evaluated.
  • the hard coat films of Examples 1 to 11 were excellent in pencil hardness and repeated bending resistance.
  • a resin composition that gives a hard coat film having excellent pencil hardness and repeated bending resistance, a hard coat film having a hard coat layer containing a cured product of the above resin composition, and polyorganosylsesquioxane. Can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Silicon Polymers (AREA)
  • Paints Or Removers (AREA)
  • Laminated Bodies (AREA)

Abstract

The present invention provides: a resin composition which contains a polyorganosilsesquioxane that has a group containing a hydrogen atom that is capable of forming a hydrogen bond, wherein the polyorganosilsesquioxane has a hydrogen bond value of 3.0 or more and a side chain length of from 14 × 10-10 m to 19 × 10-10 m; the resin composition wherein the polyorganosilsesquioxane has a hydrogen bond value of 3.0 or more and a crosslinkable group value of from 4.5 to 6.0; a hard coating film which comprises a hard coating layer that is obtained by curing the above-described resin composition; and a polyorganosilsesquioxane.

Description

樹脂組成物、ハードコートフィルム、及びポリオルガノシルセスキオキサンResin composition, hard coat film, and polyorganosylsesquioxane
 本発明は、樹脂組成物、樹脂組成物を硬化して得られるハードコート層を有するハードコートフィルム、及びポリオルガノシルセスキオキサンに関する。 The present invention relates to a resin composition, a hard coat film having a hard coat layer obtained by curing the resin composition, and polyorganosylsesquioxane.
 陰極管(CRT)を利用した表示装置、プラズマディスプレイ(PDP)、エレクトロルミネッセンスディスプレイ(ELD)、蛍光表示ディスプレイ(VFD)、フィールドエミッションディスプレイ(FED)、及び液晶ディスプレイ(LCD)のような画像表示装置では、表示面への傷付きを防止するために、基材上にハードコート層を有するハードコートフィルムを設けることが好適である。 Display devices using cathode ray tubes (CRT), plasma display (PDP), electroluminescence display (ELD), vacuum fluorescent display (VFD), field emission display (FED), and image display devices such as liquid crystal display (LCD). Therefore, in order to prevent the display surface from being scratched, it is preferable to provide a hard coat film having a hard coat layer on the base material.
 ハードコート層を形成する樹脂組成物として、ポリオルガノシスセスキオキサンを含む樹脂組成物が知られている。
 例えば特許文献1には、ケイ素原子に直接結合した有機基の少なくとも1つがウレア結合及び1つの(メタ)アクリロイルオキシ基を有する有機基であるシルセスキオキサン化合物を含む活性エネルギー線硬化性組成物が記載されている。また、特許文献2には、UV硬化性基、熱硬化性シラン基、ならびに、UV硬化性基と熱硬化性シラン基とを結合する少なくとも2個の炭素原子を持つ架橋基を有するオルガノシランを加水分解し、縮合した化合物を含む液体コート剤混合物が記載されている。
As a resin composition for forming a hard coat layer, a resin composition containing polyorganosis sesquioxane is known.
For example, Patent Document 1 describes an active energy ray-curable composition containing a silsesquioxane compound in which at least one of the organic groups directly bonded to a silicon atom is an organic group having a urea bond and one (meth) acryloyloxy group. Is described. Further, Patent Document 2 describes an organosilane having a UV curable group, a thermosetting silane group, and a cross-linking group having at least two carbon atoms that bond the UV curable group and the thermosetting silane group. Liquid coating agent mixtures containing hydrolyzed and condensed compounds are described.
国際公開第2010/067685号明細書International Publication No. 2010/067685 日本国特表2011-518666号公報Japan Special Table 2011-518666
 近年、たとえばスマートフォンなどにおいて、極薄型のフレキシブルなディスプレイに対するニーズが高まってきており、これに伴って、硬度と繰り返し折り曲げ耐性(繰り返し折り曲げてもクラックが発生しない性質)を両立することができる光学フィルムが強く求められている。
 本発明者らが検討したところ、特許文献1や2に記載の樹脂組成物を用いたハードコートフィルムは、鉛筆硬度と繰り返し折り曲げ耐性が両立できないことが分かった。
 本発明の課題は、鉛筆硬度及び繰り返し折り曲げ耐性に優れたハードコートフィルムを与える樹脂組成物、上記樹脂組成物の硬化物を含むハードコート層を有するハードコートフィルム、及びポリオルガノシルセスキオキサンを提供することにある。
In recent years, for example, in smartphones and the like, there has been an increasing need for an ultra-thin and flexible display, and along with this, an optical film capable of achieving both hardness and repeated bending resistance (property that cracks do not occur even when repeatedly bent). Is strongly sought after.
As a result of studies by the present inventors, it was found that the hard coat film using the resin composition described in Patent Documents 1 and 2 cannot have both pencil hardness and repeated bending resistance.
An object of the present invention is a resin composition that gives a hard coat film having excellent pencil hardness and repeated bending resistance, a hard coat film having a hard coat layer containing a cured product of the above resin composition, and polyorganosylsesquioxane. To provide.
 本発明者らは鋭意検討し、下記手段により上記課題が解消できることを見出した。 The present inventors have diligently studied and found that the above problems can be solved by the following means.
<1>
 水素結合を形成し得る水素原子を含む基を有するポリオルガノシルセスキオキサンを含有する樹脂組成物であって、
 上記ポリオルガノシルセスキオキサンの水素結合価が3.0以上であり、側鎖長が14×10-10~19×10-10mであり、
 上記水素結合価は、下記の式(1)で表され、上記側鎖長は、Si原子から側鎖の末端までの長さを表す、樹脂組成物。
<1>
A resin composition containing a polyorganosylsesquioxane having a group containing a hydrogen atom capable of forming a hydrogen bond.
The hydrogen bond value of the polyorganosylsesquioxane is 3.0 or more, and the side chain length is 14 × 10-10 to 19 × 10-10 m.
The hydrogen bond value is represented by the following formula (1), and the side chain length represents the length from the Si atom to the end of the side chain, a resin composition.
  水素結合価=1構成単位中の水素結合を形成し得る水素原子の数/1構成単位の分子量×1000 ・・・(1) Hydrogen bond value = number of hydrogen atoms that can form hydrogen bonds in one structural unit / molecular weight of one structural unit x 1000 ... (1)
<2>
 水素結合を形成し得る水素原子を含む基を有するポリオルガノシルセスキオキサンを含有する樹脂組成物であって、
 上記ポリオルガノシルセスキオキサンの水素結合価が3.0以上であり、架橋性基価が4.5~6.0であり、
 上記水素結合価は、下記の式(1)で表され、上記架橋性基価は、下記の式(5)で表される樹脂組成物。
<2>
A resin composition containing a polyorganosylsesquioxane having a group containing a hydrogen atom capable of forming a hydrogen bond.
The polyorganosylsesquioxane has a hydrogen bond value of 3.0 or more and a crosslinkable base value of 4.5 to 6.0.
The hydrogen bond value is represented by the following formula (1), and the crosslinkable base value is represented by the following formula (5).
  水素結合価=1構成単位中の水素結合を形成し得る水素原子の数/1構成単位の分子量×1000 ・・・(1) Hydrogen bond value = number of hydrogen atoms that can form hydrogen bonds in one structural unit / molecular weight of one structural unit x 1000 ... (1)
  架橋性基価=1構成単位中の架橋性基数/1構成単位の分子量×1000 ・・・(5) Crosslinkable radix = number of crosslinkable groups in 1 structural unit / molecular weight of 1 structural unit x 1000 ... (5)
<3>
 上記ポリオルガノシルセスキオキサンの水素結合価が3.0以上であり、側鎖長が14×10-10~19×10-10mであり、架橋性基価が4.5~6.0である<1>又は<2>に記載の樹脂組成物。
<4>
 上記水素結合を形成し得る水素原子を含む基が、アミド基、ウレタン基、ウレア基、及びヒドロキシル基から選ばれる少なくとも1つの基である<1>~<3>のいずれか1項に記載の樹脂組成物。
<5>
 上記ポリオルガノシルセスキオキサンが、水素結合を形成し得る水素原子を含む基を有する構成単位(S1)と、上記構成単位(S1)とは別の、架橋性基を有する構成単位(S2)とを含有する<1>~<4>のいずれか1項に記載の樹脂組成物。
<3>
The polyorganosylsesquioxane has a hydrogen bond value of 3.0 or more, a side chain length of 14 × 10-10 to 19 × 10-10 m, and a crosslinkable base value of 4.5 to 6.0. The resin composition according to <1> or <2>.
<4>
The item according to any one of <1> to <3>, wherein the group containing a hydrogen atom capable of forming a hydrogen bond is at least one group selected from an amide group, a urethane group, a urea group, and a hydroxyl group. Resin composition.
<5>
A structural unit (S1) in which the polyorganosylsesquioxane has a group containing a hydrogen atom capable of forming a hydrogen bond, and a structural unit (S2) having a crosslinkable group different from the structural unit (S1). The resin composition according to any one of <1> to <4>, which contains and.
<6>
 上記構成単位(S1)が有する水素結合を形成し得る水素原子を含む基が、アミド基、ウレタン基、及びウレア基から選ばれる少なくとも1つの基である<5>に記載の樹脂組成物。
<7>
 上記構成単位(S1)が、さらに架橋性基を有し、上記架橋性基が(メタ)アクリロイルオキシ基、又は(メタ)アクリルアミド基である<5>又は<6>に記載の樹脂組成物。
<8>
 上記構成単位(S2)が有する架橋性基が、(メタ)アクリルアミド基である<5>~<7>のいずれか1項に記載の樹脂組成物。
<6>
The resin composition according to <5>, wherein the group containing a hydrogen atom capable of forming a hydrogen bond of the structural unit (S1) is at least one group selected from an amide group, a urethane group, and a urea group.
<7>
The resin composition according to <5> or <6>, wherein the structural unit (S1) further has a crosslinkable group, and the crosslinkable group is a (meth) acryloyloxy group or a (meth) acrylamide group.
<8>
The resin composition according to any one of <5> to <7>, wherein the crosslinkable group contained in the structural unit (S2) is a (meth) acrylamide group.
<9>
 上記ポリオルガノシルセスキオキサンの重量平均分子量が10000~1000000である請求項1~8のいずれか1項に記載の樹脂組成物。
<10>
 基材と、<1>~<9>のいずれか1項に記載の樹脂組成物の硬化物を含むハードコート層とを有するハードコートフィルム。
<11>
 鉛筆硬度3H以上であり、かつ上記基材を内側にして、曲率半径2mmで180°折り曲げ試験を10万回繰り返し行った場合にクラックが発生しない<10>に記載のハードコートフィルム。
<9>
The resin composition according to any one of claims 1 to 8, wherein the polyorganosylsesquioxane has a weight average molecular weight of 10,000 to 1,000,000.
<10>
A hard coat film having a base material and a hard coat layer containing a cured product of the resin composition according to any one of <1> to <9>.
<11>
The hard coat film according to <10>, which has a pencil hardness of 3H or more and does not generate cracks when a 180 ° bending test is repeated 100,000 times with a radius of curvature of 2 mm with the base material inside.
<12>
 水素結合を形成し得る水素原子を含む基を有するポリオルガノシルセスキオキサンであって、
 水素結合価が3.0以上であり、側鎖長が14×10-10~19×10-10mであり、
 上記水素結合価は、下記の式(1)にて表され、上記側鎖長は、上記側鎖長は、Si原子から側鎖の末端までの長さを表す、ポリオルガノシルセスキオキサン。
<12>
A polyorganosylsesquioxane having a group containing a hydrogen atom capable of forming a hydrogen bond.
The hydrogen bond value is 3.0 or more, the side chain length is 14 × 10 -10 to 19 × 10 -10 m, and the side chain length is 14 × 10 -10 to 19 × 10 -10 m.
The hydrogen bond value is represented by the following formula (1), and the side chain length is a polyorganosylsesquioxane in which the side chain length represents the length from the Si atom to the end of the side chain.
  水素結合価=1構成単位中の水素結合を形成し得る水素原子の数/1構成単位の分子量×1000 ・・・(1) Hydrogen bond value = number of hydrogen atoms that can form hydrogen bonds in one structural unit / molecular weight of one structural unit x 1000 ... (1)
<13>
 水素結合を形成し得る水素原子を含む基を有するポリオルガノシルセスキオキサンであって、
 水素結合価が3.0以上であり、架橋性基価が4.5~6.0であり、
 上記水素結合価は下記の式(1)で表され、上記架橋性基価は、下記の式(5)で表されるポリオルガノシルセスキオキサン。
<13>
A polyorganosylsesquioxane having a group containing a hydrogen atom capable of forming a hydrogen bond.
The hydrogen bond value is 3.0 or more, the crosslinkable base value is 4.5 to 6.0, and
The hydrogen bond value is represented by the following formula (1), and the crosslinkable base value is a polyorganosylsesquioxane represented by the following formula (5).
  水素結合価=1構成単位中の水素結合を形成し得る水素原子の数/1構成単位の分子量×1000 ・・・(1) Hydrogen bond value = number of hydrogen atoms that can form hydrogen bonds in one structural unit / molecular weight of one structural unit x 1000 ... (1)
  架橋性基価=1構成単位中の架橋性基数/1構成単位の分子量×1000 ・・・(5) Crosslinkable radix = number of crosslinkable groups in 1 structural unit / molecular weight of 1 structural unit x 1000 ... (5)
<14>
 水素結合価が3.0以上あり、側鎖長が14×10-10~19×10-10mであり、架橋性基価が4.5~6.0である<12>又は<13>に記載のポリオルガノシルセスキオキサン。
<14>
<12> or <13> having a hydrogen bond value of 3.0 or more, a side chain length of 14 × 10-10 to 19 × 10-10 m, and a crosslinkable base value of 4.5 to 6.0. Polyorganosylsesquioxane as described in.
 本発明によれば、鉛筆硬度及び繰り返し折り曲げ耐性に優れたハードコートフィルムを与える樹脂組成物、上記樹脂組成物の硬化物を含むハードコート層を有するハードコートフィルム、及びポリオルガノシルセスキオキサンを提供することができる。 According to the present invention, a resin composition that gives a hard coat film having excellent pencil hardness and repeated bending resistance, a hard coat film having a hard coat layer containing a cured product of the above resin composition, and polyorganosylsesquioxane. Can be provided.
 以下、本発明を実施するための形態について詳細に説明するが、本発明はこれらに限定されるものではない。なお、本明細書において、数値が物性値、特性値等を表す場合に、「(数値1)~(数値2)」という記載は「(数値1)以上(数値2)以下」の意味を表す。また、本明細書において、「(メタ)アクリレート」との記載は、「アクリレート及びメタクリレートの少なくともいずれか」の意味を表す。「(メタ)アクリル酸」、「(メタ)アクリロイル」、「(メタ)アクリルアミド」、「(メタ)アクリロイルオキシ」等も同様である。 Hereinafter, embodiments for carrying out the present invention will be described in detail, but the present invention is not limited thereto. In this specification, when the numerical values represent physical property values, characteristic values, etc., the description of "(numerical value 1) to (numerical value 2)" means "(numerical value 1) or more (numerical value 2) or less". .. Further, in the present specification, the description of "(meth) acrylate" means "at least one of acrylate and methacrylate". The same applies to "(meth) acrylic acid", "(meth) acryloyl", "(meth) acrylamide", "(meth) acryloyloxy" and the like.
〔樹脂組成物〕
 本発明は、水素結合を形成し得る水素原子を含む基を有するポリオルガノシルセスキオキサンを含有する樹脂組成物であって、
 上記ポリオルガノシルセスキオキサンの水素結合価が3.0以上であり、側鎖長が14×10-10~19×10-10m(14~19Å)であり、
 上記水素結合価は、下記の式(1)で表され、上記側鎖長は、Si原子から側鎖の末端までの長さを表す、樹脂組成物に関する。
  水素結合価=1構成単位中の水素結合を形成し得る水素原子の数/1構成単位の分子量×1000 ・・・(1)
[Resin composition]
The present invention is a resin composition containing a polyorganosylsesquioxane having a group containing a hydrogen atom capable of forming a hydrogen bond.
The polyorganosilsesquioxane hydrogen valency Sun is 3.0 or more, a side chain length 14 × 10 -10 ~ 19 × 10 -10 m (14 ~ 19Å),
The hydrogen bond value is represented by the following formula (1), and the side chain length represents the length from the Si atom to the end of the side chain, and relates to a resin composition.
Hydrogen bond value = number of hydrogen atoms that can form hydrogen bonds in one structural unit / molecular weight of one structural unit x 1000 ... (1)
 また、本発明は、水素結合を形成し得る水素原子を含む基を有するポリオルガノシルセスキオキサンを含有する樹脂組成物であって、
 上記ポリオルガノシルセスキオキサンの水素結合価が3.0以上であり、架橋性基価が4.5~6.0であり、
 上記水素結合価は、下記の式(1)で表され、上記架橋性基価は、下記の式(5)で表される樹脂組成物にも関する。
  水素結合価=1構成単位中の水素結合を形成し得る水素原子の数/1構成単位の分子量×1000 ・・・(1)
  架橋性基価=1構成単位中の架橋性基数/1構成単位の分子量×1000 ・・・(5)
Further, the present invention is a resin composition containing a polyorganosylsesquioxane having a group containing a hydrogen atom capable of forming a hydrogen bond.
The polyorganosylsesquioxane has a hydrogen bond value of 3.0 or more and a crosslinkable base value of 4.5 to 6.0.
The hydrogen bond value is represented by the following formula (1), and the crosslinkable base value is also related to the resin composition represented by the following formula (5).
Hydrogen bond value = number of hydrogen atoms that can form hydrogen bonds in one structural unit / molecular weight of one structural unit x 1000 ... (1)
Crosslinkable radix = number of crosslinkable groups in one structural unit / molecular weight of one structural unit x 1000 ... (5)
<水素結合を形成し得る水素原子を含む基を有するポリオルガノシルセスキオキサン(a1)>
 水素結合を形成し得る水素原子を含む基を有するポリオルガノシルセスキオキサン(a1)(「ポリオルガノシルセスキオキサン(a1)」ともいう。)について説明する。
<Polyorganosylsesquioxane (a1) having a group containing a hydrogen atom capable of forming a hydrogen bond>
A polyorganosylsesquioxane (a1) having a group containing a hydrogen atom capable of forming a hydrogen bond (also referred to as “polyorganosylsesquioxane (a1)”) will be described.
(水素結合を形成し得る水素原子を含む基)
 ポリオルガノシルセスキオキサン(a1)は、水素結合を形成し得る水素原子を含む基を有する。水素結合を形成し得る水素原子とは、電気陰性度が大きな原子に共有結合で結びついた水素原子であり、近傍に位置した窒素、酸素等と水素結合を形成し得るものである。
 ポリオルガノシルセスキオキサン(a1)が有する水素結合を形成し得る水素原子を含む基としては、一般に知られている水素結合を形成し得る水素原子を含む基を用いることができ、アミド基、ウレタン基、ウレア基、及びヒドロキシル基から選ばれる少なくとも1つの基であることが好ましく、アミド基、ウレタン基、及びウレア基から選ばれる少なくとも1つの基であることがより好ましい。
 本発明において、アミド基とは、-NH-C(=O)-で表される2価の連結基を表し、ウレタン基とは、-NH-C(=O)-O-で表される2価の連結基を表し、ウレア基とは、-NH-C(=O)-NH-で表される2価の連結基を表すものとする。
(Group containing hydrogen atom that can form hydrogen bond)
Polyorganosylsesquioxane (a1) has a group containing a hydrogen atom capable of forming a hydrogen bond. A hydrogen atom capable of forming a hydrogen bond is a hydrogen atom covalently bonded to an atom having a high electronegativity, and can form a hydrogen bond with nitrogen, oxygen, etc. located in the vicinity.
As the group containing a hydrogen atom capable of forming a hydrogen bond possessed by the polyorganosylsesquioxane (a1), a generally known group containing a hydrogen atom capable of forming a hydrogen bond can be used, and an amide group, It is preferably at least one group selected from a urethane group, a urea group, and a hydroxyl group, and more preferably at least one group selected from an amide group, a urethane group, and a urea group.
In the present invention, the amide group represents a divalent linking group represented by -NH-C (= O)-, and the urethane group is represented by -NH-C (= O) -O-. It represents a divalent linking group, and the urea group represents a divalent linking group represented by -NH-C (= O) -NH-.
(水素結合価)
 本発明において水素結合価とは、ポリオルガノシルセスキオキサン(a1)中の水素結合を形成し得る水素原子の密度を表し、下記式(1)から算出される。
(Hydrogen bond value)
In the present invention, the hydrogen bond value represents the density of hydrogen atoms capable of forming a hydrogen bond in the polyorganosylsesquioxane (a1), and is calculated from the following formula (1).
  水素結合価=1構成単位中の水素結合を形成し得る水素原子の数/1構成単位の分子量×1000 ・・・(1) Hydrogen bond value = number of hydrogen atoms that can form hydrogen bonds in one structural unit / molecular weight of one structural unit x 1000 ... (1)
 なお、水素結合を形成し得る水素原子がアミド基の場合、アミド基に含まれる水素結合を形成し得る水素原子の数は1、ウレタン基の場合は1、ウレア基の場合は2、ヒドロキシル基の場合は1と数える。
 構成単位とは、ポリオルガノシルセスキオキサン(a1)が有する繰り返し単位のことであり、例えば、ポリオルガノシルセスキオキサン(a1)が1種のモノマーのみから重合されてなる重合体である場合は、ポリオルガノシルセスキオキサン(a1)が有する構成単位は1種であり、2種のモノマーの共重合体である場合は、構成単位は2種となる。
When the hydrogen atom capable of forming a hydrogen bond is an amide group, the number of hydrogen atoms contained in the amide group capable of forming a hydrogen bond is 1, 1 for a urethane group, 2 for a urea group, and a hydroxyl group. In the case of, it is counted as 1.
The structural unit is a repeating unit possessed by the polyorganosylsesquioxane (a1). For example, when the polyorganosylsesquioxane (a1) is a polymer obtained by polymerizing only one kind of monomer. The polyorganosylsesquioxane (a1) has one structural unit, and in the case of a copolymer of two types of monomers, the constituent unit is two.
 ポリオルガノシルセスキオキサン(a1)が1種の構成単位を有する場合は、ポリオルガノシルセスキオキサン(a1)の水素結合価は、上記式(1)により算出した1構成単位における水素結合価となる。 When the polyorganosylsesquioxane (a1) has one structural unit, the hydrogen bond value of the polyorganosylsesquioxane (a1) is the hydrogen bond value in one structural unit calculated by the above formula (1). It becomes.
 ポリオルガノシルセスキオキサン(a1)が複数種の構成単位を有する場合は、上記式(1)により算出した各構成単位における水素結合価に、ポリオルガノシルセスキオキサン(a1)における各構成単位の組成比率(モル%)を乗じて100で割った値の総和(モル分率平均値)をポリオルガノシルセスキオキサン(a1)の水素結合価とする。 When the polyorganosylsesquioxane (a1) has a plurality of structural units, the hydrogen bond fraction in each structural unit calculated by the above formula (1) is added to each structural unit in the polyorganosylsesquioxane (a1). The sum of the values obtained by multiplying the composition ratio (mol%) of the above and dividing by 100 (average value of mole fraction) is taken as the hydrogen bond value of polyorganosylsesquioxane (a1).
 具体的には、ポリオルガノシルセスキオキサン(a1)が2種の構成単位(構成単位1及び構成単位2)を有する場合、ポリオルガノシルセスキオキサン(a1)の水素結合価は、以下の下記式(2A)から算出される。 Specifically, when the polyorganosylsesquioxane (a1) has two types of structural units (constituent unit 1 and structural unit 2), the hydrogen bond value of the polyorganosylsesquioxane (a1) is as follows. It is calculated from the following formula (2A).
  水素結合価=H(構成単位1の水素結合価)×W(構成単位1の組成比率(モル%))/100+H(構成単位2の水素結合価)×W(構成単位2の組成比率(モル%))/100・・・(2A) Hydrogen bond value = H 1 (hydrogen bond value of structural unit 1) x W 1 (composition ratio of structural unit 1 (mol%)) / 100 + H 2 (hydrogen bond value of structural unit 2) x W 2 (hydrogen bond value of structural unit 2) Composition ratio (mol%)) / 100 ... (2A)
 また、ポリオルガノシルセスキオキサン(a1)が構成単位1、構成単位2、...構成単位X(Xは3以上の整数を表す)を有する場合、ポリオルガノシルセスキオキサン(a1)の水素結合価は、以下の下記式(2B)から算出される。 In addition, polyorganosylsesquioxane (a1) is a constituent unit 1, a constituent unit 2, ... .. When having the structural unit X (X represents an integer of 3 or more), the hydrogen bond value of the polyorganosylsesquioxane (a1) is calculated from the following formula (2B).
  水素結合価=H(構成単位1の水素結合価)×W(構成単位1の組成比率(モル%))/100+H(構成単位2の水素結合価)×W(構成単位2の組成比率(モル%))/100+ … H(構成単位Xの水素結合価)×W(構成単位Xの組成比率(モル%))/100・・・(2B) Hydrogen bond value = H 1 (hydrogen bond value of structural unit 1) x W 1 (composition ratio of structural unit 1 (mol%)) / 100 + H 2 (hydrogen bond value of structural unit 2) x W 2 (hydrogen bond value of structural unit 2) Composition ratio (mol%)) / 100+ ... H X (hydrogen bond value of constituent unit X) x W X (composition ratio of constituent unit X (mol%)) / 100 ... (2B)
 本発明において、ポリオルガノシルセスキオキサン(a1)は、水素結合価が3.0以上となるように水素結合を形成し得る水素原子を有する。これにより、ポリオルガノシルセスキオキサン(a1)が形成する水素結合の密度を高くすることが可能となるため、ハードコートフィルムの鉛筆硬度を高くすることができると推察される。また、水素結合は可逆的に分裂、再結合が可能であり、ハードコートフィルムに折り曲げ変形を加えた際に水素結合が分裂したとしても、変形解消後に再結合が可能であるため、鉛筆硬度を低下させることなく、折り曲げ変形に強いハードコートフィルムとすることができるものと推察される。 In the present invention, the polyorganosylsesquioxane (a1) has a hydrogen atom capable of forming a hydrogen bond so that the hydrogen bond value is 3.0 or more. As a result, it is possible to increase the density of hydrogen bonds formed by the polyorganosylsesquioxane (a1), and it is presumed that the pencil hardness of the hard coat film can be increased. In addition, hydrogen bonds can be reversibly split and recombined, and even if the hydrogen bonds are split when the hard coat film is bent and deformed, they can be rebonded after the deformation is resolved. It is presumed that a hard coat film that is resistant to bending deformation can be obtained without lowering it.
 水素結合価は、3.0以上であり、4.0以上であることが好ましく、5.0以上であることがさらに好ましい。また、水素結合価の上限は特に制限されるものではないが、20以下であることがポリオルガノシルセスキオキサンの製造性の観点から好ましく、15以下であることがより好ましく、10以下であることがさらに好ましい。 The hydrogen bond value is 3.0 or more, preferably 4.0 or more, and more preferably 5.0 or more. The upper limit of the hydrogen bond value is not particularly limited, but is preferably 20 or less from the viewpoint of the productivity of polyorganosylsesquioxane, more preferably 15 or less, and 10 or less. Is even more preferable.
(側鎖長)
 本発明の一態様において、ポリオルガノシルセスキオキサン(a1)は、側鎖長が14×10-10~19×10-10mである側鎖を有する。
 側鎖とは、ポリオルガノシルセスキオキサン(a1)において、Si原子に結合する鎖であって、シロキサン結合(Si-O-Si)により構成される構造部分以外の鎖を意味する。
(Side chain length)
In one aspect of the invention, the polyorganosylsesquioxane (a1) has a side chain having a side chain length of 14 × 10-10 to 19 × 10-10 m.
The side chain is a chain bonded to a Si atom in polyorganosylsesquioxane (a1) and means a chain other than the structural portion composed of a siloxane bond (Si—O—Si).
 側鎖長は、Si原子から側鎖の末端までの長さを表し、X-Ability社製の「Winmostar」を用いて求められる。側鎖長の値の計算にあたっては、まず、Si原子から側鎖の末端までの化学構造を入力し、次に、MOPAC(AM1)により最安定立体配座を求め、その後、「分子量面積、体積」の項目から「Van der Walls
 Molecular Surface」を実行し、「Maximum Length Molecule」の数値を求める。
The side chain length represents the length from the Si atom to the end of the side chain, and is determined by using "Winmostar" manufactured by X-Ability. In calculating the value of the side chain length, first, the chemical structure from the Si atom to the end of the side chain is input, then the most stable conformation is obtained by MOPAC (AM1), and then "molecular weight area, volume". From the item "Vander Walls"
Execute "Molecular Surface" and obtain the numerical value of "Maximum Length Molecule".
 ポリオルガノシルセスキオキサン(a1)が1種の側鎖を有する、すなわち1種の構成単位を有する場合は、1構成単位において算出した側鎖長をポリオルガノシルセスキオキサン(a1)の側鎖長とする。 When polyorganosilsesquioxane (a1) has one type of side chain, that is, has one type of structural unit, the side chain length calculated in one structural unit is the side of polyorganosilsesquioxane (a1). The chain length.
 ポリオルガノシルセスキオキサン(a1)が複数種の側鎖を有する、すなわち複数種の構成単位を有する場合は、各構成単位において算出した側鎖長に、ポリオルガノシルセスキオキサン(a1)における各構成単位の組成比率(モル%)を乗じて100で割った値の総和(モル分率平均値)をポリオルガノシルセスキオキサン(a1)の側鎖長とする。 When the polyorganosylsesquioxane (a1) has a plurality of types of side chains, that is, has a plurality of types of structural units, the side chain length calculated for each structural unit is used in the polyorganosylsesquioxane (a1). The sum of the values obtained by multiplying the composition ratio (mol%) of each constituent unit and dividing by 100 (mean value of mole fraction) is taken as the side chain length of polyorganosylsesquioxane (a1).
 具体的には、ポリオルガノシルセスキオキサン(a1)が2種の構成単位(構成単位1及び構成単位2)を有する場合、ポリオルガノシルセスキオキサン(a1)の側鎖長は、以下の下記式(3A)から算出される。 Specifically, when the polyorganosylsesquioxane (a1) has two types of structural units (constituent unit 1 and structural unit 2), the side chain length of the polyorganosylsesquioxane (a1) is as follows. It is calculated from the following formula (3A).
  側鎖長=L(構成単位1の側鎖長)×W(構成単位1の組成比率(モル%))/100+L(構成単位2の側鎖長)×W(構成単位2の組成比率(モル%))/100・・・(3A) Side chain length = L 1 (side chain length of structural unit 1) x W 1 (composition ratio of structural unit 1 (mol%)) / 100 + L 2 (side chain length of structural unit 2) x W 2 (side chain length of structural unit 2) Composition ratio (mol%)) / 100 ... (3A)
 また、ポリオルガノシルセスキオキサン(a1)が構成単位1、構成単位2、...構成単位X(Xは3以上の整数を表す)を有する場合、ポリオルガノシルセスキオキサン(a1)の側鎖長は、以下の下記式(3B)から算出される。 In addition, polyorganosylsesquioxane (a1) is a constituent unit 1, a constituent unit 2, ... .. When the structural unit X (X represents an integer of 3 or more) is provided, the side chain length of the polyorganosylsesquioxane (a1) is calculated from the following formula (3B).
  側鎖長=L(構成単位1の側鎖長)×W(構成単位1の組成比率(モル%))/100+L(構成単位2の側鎖長)×W(構成単位2の組成比率(モル%))/100+ … L(構成単位Xの側鎖長)×W(構成単位Xの組成比率(モル%))/100・・・(3B) Side chain length = L 1 (side chain length of structural unit 1) x W 1 (composition ratio of structural unit 1 (mol%)) / 100 + L 2 (side chain length of structural unit 2) x W 2 (composition unit 2) composition ratio (mol%)) / 100+ ... L X ( side chain length of structural units X) × W X (the composition of the structural unit X ratio (molar%)) / 100 ··· (3B )
 側鎖は、長くするほどポリオルガノシルセスキオキサン(a1)の構造に柔軟性が付与され、ハードコートフィルムの繰り返し折り曲げ耐性が良好となる。一方、側鎖が短いほどポリオルガノシルセスキオキサン(a1)の構造は硬く、ハードコートフィルムの鉛筆硬度を良化することができる。
 本発明においては、ポリオルガノシルセスキオキサン(a1)の側鎖長を14×10-10~19×10-10mとすることで、繰り返し折り曲げ耐性と鉛筆硬度を両立することができる。
 側鎖長は、15×10-10~18×10-10mであることが好ましく、16×10-10~17×10-10mであることがより好ましい。
The longer the side chain, the more flexible the structure of the polyorganosylsesquioxane (a1) is, and the better the resistance to repeated bending of the hard coat film. On the other hand, the shorter the side chain, the harder the structure of polyorganosylsesquioxane (a1), and the better the pencil hardness of the hard coat film.
In the present invention, by setting the side chain length of the polyorganosylsesquioxane (a1) to 14 × 10 -10 to 19 × 10 -10 m, it is possible to achieve both resistance to repeated bending and pencil hardness.
The side chain length is preferably 15 × 10 -10 to 18 × 10 -10 m, more preferably 16 × 10 -10 to 17 × 10 -10 m.
 側鎖が有する元素数としては、8から11が好ましく、9又は10がより好ましい。
 側鎖が有する元素数とは、側鎖における主鎖を構成する元素数を表し、主鎖から分岐した元素は除くものとする。例えば、i-プロピル基における元素数は2、3-アクリロイルオキシプロピル基における元素数は7と数える。
 ポリオルガノシルセスキオキサン(a1)が1種の側鎖を有する、すなわち1種の構成単位を有する場合は、1構成単位における側鎖が有する元素数をポリオルガノシルセスキオキサン(a1)の側鎖が有する元素数とする。
The number of elements contained in the side chain is preferably 8 to 11, more preferably 9 or 10.
The number of elements possessed by the side chain represents the number of elements constituting the main chain in the side chain, and the elements branched from the main chain are excluded. For example, the number of elements in the i-propyl group is 2, and the number of elements in the 3-acryloyloxypropyl group is 7.
When polyorganosilsesquioxane (a1) has one type of side chain, that is, has one type of structural unit, the number of elements in the side chain in one structural unit is the number of elements of polyorganosilsesquioxane (a1). The number of elements in the side chain.
 また、ポリオルガノシルセスキオキサン(a1)が複数種の側鎖を有する、すなわち複数種の構成単位を有する場合は、各構成単位における側鎖が有する元素数に、ポリオルガノシルセスキオキサン(a1)における各構成単位の組成比率(モル%)を乗じて100で割った値の総和(モル分率平均値)をポリオルガノシルセスキオキサン(a1)の側鎖が有する元素数とする。 Further, when the polyorganosylsesquioxane (a1) has a plurality of types of side chains, that is, has a plurality of types of structural units, the number of elements contained in the side chains in each structural unit is added to the polyorganosylsesquioxane (a1). The sum of the values obtained by multiplying the composition ratio (mol%) of each structural unit in a1) and dividing by 100 (mean mole fraction) is taken as the number of elements in the side chain of polyorganosylsesquioxane (a1).
 具体的には、ポリオルガノシルセスキオキサン(a1)が2種の構成単位(構成単位1及び構成単位2)を有する場合、ポリオルガノシルセスキオキサン(a1)の側鎖が有する元素数は、以下の下記式(4A)から算出される。 Specifically, when the polyorganosylsesquioxane (a1) has two types of structural units (constituent unit 1 and structural unit 2), the number of elements in the side chain of the polyorganosylsesquioxane (a1) is , Calculated from the following formula (4A).
  ポリオルガノシルセスキオキサン(a1)の側鎖が有する元素数=N(構成単位1の元素数)×W(構成単位1の組成比率(モル%))/100+N(構成単位2の元素数)×W(構成単位2の組成比率(モル%))/100・・・(4A) Number of elements in the side chain of polyorganosylsesquioxane (a1) = N 1 (number of elements in structural unit 1) x W 1 (composition ratio of structural unit 1 (mol%)) / 100 + N 2 (composition unit 2) Number of elements) x W 2 (composition ratio of constituent unit 2 (mol%)) / 100 ... (4A)
 また、ポリオルガノシルセスキオキサン(a1)が構成単位1、構成単位2、...構成単位X(Xは3以上の整数を表す)を有する場合、ポリオルガノシルセスキオキサン(a1)の側鎖が有する元素数は、以下の下記式(4B)から算出される。 In addition, polyorganosylsesquioxane (a1) is a constituent unit 1, a constituent unit 2, ... .. When the structural unit X (X represents an integer of 3 or more) is provided, the number of elements contained in the side chain of the polyorganosylsesquioxane (a1) is calculated from the following formula (4B).
  ポリオルガノシルセスキオキサン(a1)の側鎖が有する元素数=N(構成単位1の元素数)×W(構成単位1の組成比率(モル%))/100+N(構成単位2の元素数)×W(構成単位2の組成比率(モル%))/100+ … N(構成単位Xの元素数)×W(構成単位Xの組成比率(モル%))/100・・・(4B) Number of elements in the side chain of polyorganosylsesquioxane (a1) = N 1 (number of elements in structural unit 1) x W 1 (composition ratio of structural unit 1 (mol%)) / 100 + N 2 (composition unit 2) (composition ratio of the structural unit 2 (mol%) number of elements) × W 2) / 100+ ... N X (number of elements of the structural unit X) × W X (the composition of the structural unit X ratio (mol%)) / 100 ...・ (4B)
(架橋性基価)
 本発明の一態様において、ポリオルガノシルセスキオキサン(a1)は架橋性基を有する。
 架橋性基としては、反応することにより共有結合を形成できるものであれば特に限定はされないが、ラジカル重合性架橋性基やカチオン重合性架橋性基が挙げられる。
(Crosslinkable base value)
In one aspect of the invention, the polyorganosylsesquioxane (a1) has a crosslinkable group.
The crosslinkable group is not particularly limited as long as it can form a covalent bond by reacting, and examples thereof include a radical polymerizable crosslinkable group and a cationically polymerizable crosslinkable group.
 ラジカル重合性架橋性基は、一般に知られているラジカル重合性架橋性基を用いることができる。ラジカル重合性架橋性基としては、重合性不飽和基が挙げられ、具体的には、ビニル基、アリル基、(メタ)アクリロイルオキシ基、(メタ)アクリルアミド基などが挙げられ、(メタ)アクリロイルオキシ基、又は(メタ)アクリルアミド基が好ましい。なお、上記した各基は置換基を有していてもよい。 As the radically polymerizable crosslinkable group, a generally known radically polymerizable crosslinkable group can be used. Examples of the radically polymerizable crosslinkable group include a polymerizable unsaturated group, and specific examples thereof include a vinyl group, an allyl group, a (meth) acryloyloxy group, a (meth) acrylamide group, and the like, and (meth) acryloyl. An oxy group or a (meth) acrylamide group is preferable. In addition, each group mentioned above may have a substituent.
 なお、架橋性基として例示した上記(メタ)アクリルアミド基は、アミド基を内在するものであり、水素結合を形成し得る水素原子を含む基にも相当する。 The above-mentioned (meth) acrylamide group exemplified as a crosslinkable group has an amide group inherent in it, and also corresponds to a group containing a hydrogen atom capable of forming a hydrogen bond.
 カチオン重合性架橋性基は、一般に知られているカチオン重合性架橋性基を用いることができ、具体的には、脂環式エーテル基、環状アセタール基、環状ラクトン基、環状チオエーテル基、スピロオルソエステル基、ビニルオキシ基などを挙げることができる。カチオン重合性基としては、脂環式エーテル基、ビニルオキシ基が好ましく、エポキシ基、オキセタニル基が特に好ましい。エポキシ基としては、脂環式エポキシ基(エポキシ基と脂環基の縮環構造を有する基)であってもよい。なお、上記した各基は置換基を有していてもよい。 As the cationically polymerizable crosslinkable group, a generally known cationically polymerizable crosslinkable group can be used, and specifically, an alicyclic ether group, a cyclic acetal group, a cyclic lactone group, a cyclic thioether group, and a spirororso. Examples thereof include an ester group and a vinyloxy group. As the cationically polymerizable group, an alicyclic ether group and a vinyloxy group are preferable, and an epoxy group and an oxetanyl group are particularly preferable. The epoxy group may be an alicyclic epoxy group (a group having a condensed ring structure of an epoxy group and an alicyclic group). In addition, each group mentioned above may have a substituent.
 ポリオルガノシルセスキオキサン(a1)が有する架橋性基は、ラジカル重合性架橋性基であることが好ましく、(メタ)アクリロイルオキシ基、及び(メタ)アクリルアミド基から選ばれる少なくとも1つの基であることがより好ましい。 The crosslinkable group of polyorganosylsesquioxane (a1) is preferably a radically polymerizable crosslinkable group, and is at least one group selected from a (meth) acryloyloxy group and a (meth) acrylamide group. Is more preferable.
 本発明において架橋性基価とは、ポリオルガノシルセスキオキサン(a1)の架橋性基密度を表し、下記式(5)から算出される。 In the present invention, the crosslinkable group value represents the crosslinkable group density of polyorganosylsesquioxane (a1) and is calculated from the following formula (5).
  架橋性基価=1構成単位中の架橋性基数/1構成単位の分子量×1000 ・・・(5) Crosslinkable radix = number of crosslinkable groups in 1 structural unit / molecular weight of 1 structural unit x 1000 ... (5)
 ポリオルガノシルセスキオキサン(a1)が1種の構成単位を有する場合は、1構成単位において算出した架橋性基価をポリオルガノシルセスキオキサン(a1)の架橋性基価とする。 When polyorganosylsesquioxane (a1) has one kind of constituent unit, the crosslinkable base value calculated in one constituent unit is used as the crosslinkable base value of polyorganosylsesquioxane (a1).
 また、ポリオルガノシルセスキオキサン(a1)が複数種の構成単位を有する場合は、上記式(5)により算出した各構成単位における架橋性基価に、ポリオルガノシルセスキオキサン(a1)における各構成単位の組成比率(モル%)を乗じて100で割った値の総和(モル分率平均値)をポリオルガノシルセスキオキサン(a1)の架橋性基価とする。 When the polyorganosilsesquioxane (a1) has a plurality of types of structural units, the crosslinkable base value in each structural unit calculated by the above formula (5) is added to the polyorganosilsesquioxane (a1). The sum of the values obtained by multiplying the composition ratio (mol%) of each constituent unit and dividing by 100 (mean value of mole fraction) is taken as the crosslinkable base value of polyorganosylsesquioxane (a1).
 具体的には、ポリオルガノシルセスキオキサン(a1)が2種の構成単位(構成単位1及び構成単位2)を有する場合、ポリオルガノシルセスキオキサン(a1)の架橋性基価は、以下の下記式(6A)から算出される。 Specifically, when the polyorganosylsesquioxane (a1) has two structural units (constituent unit 1 and structural unit 2), the crosslinkable base value of the polyorganosylsesquioxane (a1) is as follows. It is calculated from the following formula (6A).
  架橋性基価=C(構成単位1の架橋性基価)×W(構成単位1の組成比率(モル%))/100+C(構成単位2の架橋性基価)×W(構成単位2の組成比率(モル%))/100・・・(6A) Crosslinkable base value = C 1 (crosslinkable base value of structural unit 1) x W 1 (composition ratio of structural unit 1 (mol%)) / 100 + C 2 (crosslinkable base value of structural unit 2) x W 2 (composition) Composition ratio of unit 2 (mol%)) / 100 ... (6A)
 また、ポリオルガノシルセスキオキサン(a1)が構成単位1、構成単位2、...構成単位X(Xは3以上の整数を表す)を有する場合、ポリオルガノシルセスキオキサン(a1)の架橋性基価は、以下の下記式(6B)から算出される。 In addition, polyorganosylsesquioxane (a1) is a constituent unit 1, a constituent unit 2, ... .. When having a structural unit X (X represents an integer of 3 or more), the crosslinkable base value of polyorganosylsesquioxane (a1) is calculated from the following formula (6B).
  架橋性基価=C(構成単位1の架橋性基価)×W(構成単位1の組成比率(モル%))/100+C(構成単位2の架橋性基価)×W(構成単位2の組成比率(モル%))/100+ … Cx(構成単位Xの側鎖長)×W(構成単位Xの組成比率(モル%))/100・・・(6B) Crosslinkable base value = C 1 (crosslinkable base value of structural unit 1) x W 1 (composition ratio of structural unit 1 (mol%)) / 100 + C 2 (crosslinkable base value of structural unit 2) x W 2 (composition) Unit 2 composition ratio (mol%)) / 100+ ... Cx (side chain length of structural unit X) x WW X (composition ratio of structural unit X (mol%)) / 100 ... (6B)
 架橋性基価は、小さくするほどポリオルガノシルセスキオキサン(a1)の構造に柔軟性が付与され、ハードコートフィルムの繰り返し折り曲げ耐性が良好となる。一方、架橋性基価が大きいほどポリオルガノシルセスキオキサン(a1)の構造は硬く、ハードコートフィルムの鉛筆硬度を良化することができる。
 本発明においては、ポリオルガノシルセスキオキサン(a1)の架橋性基価を4.5~6.0とすることで、繰り返し折り曲げ耐性と鉛筆硬度を両立することができる。
 架橋性基価は、4.8~5.8であることが好ましく、5.0~5.5であることがより好ましい。
The smaller the crosslinkability base value, the more flexible the structure of the polyorganosylsesquioxane (a1) is, and the better the resistance to repeated bending of the hard coat film. On the other hand, the larger the crosslinkable base value, the harder the structure of polyorganosylsesquioxane (a1), and the better the pencil hardness of the hard coat film can be.
In the present invention, by setting the crosslinkable base value of polyorganosylsesquioxane (a1) to 4.5 to 6.0, it is possible to achieve both resistance to repeated bending and pencil hardness.
The crosslinkable base value is preferably 4.8 to 5.8, and more preferably 5.0 to 5.5.
 ポリオルガノシルセスキオキサン(a1)は、水素結合価が3.0以上であり、側鎖長が14×10-10~19×10-10mであり、且つ、架橋性基価が4.5~6.0であることが、より好ましい。 Polyorganosylsesquioxane (a1) has a hydrogen bond value of 3.0 or more, a side chain length of 14 × 10-10 to 19 × 10-10 m, and a crosslinkable base value of 4. It is more preferably 5 to 6.0.
 ポリオルガノシルセスキオキサン(a1)は、1種のモノマーのみから重合されてなる重合体であってもよく、2種以上のモノマーの共重合体であってもよい。所望の水素結合価、側鎖長、及び架橋性基価を有するポリオルガノシルセスキオキサンの製造性の観点からは、2種以上のモノマーの共重合体であることが好ましく、水素結合を形成し得る水素原子を含む基を有するモノマーと、架橋性基を有するモノマーの共重合体であることがより好ましい。 The polyorganosylsesquioxane (a1) may be a polymer obtained by polymerizing only one kind of monomer, or may be a copolymer of two or more kinds of monomers. From the viewpoint of the productivity of polyorganosylsesquioxane having a desired hydrogen bond value, side chain length, and crosslinkable base value, a copolymer of two or more kinds of monomers is preferable, and a hydrogen bond is formed. More preferably, it is a copolymer of a monomer having a group containing a possible hydrogen atom and a monomer having a crosslinkable group.
 ポリオルガノシルセスキオキサン(a1)は、水素結合を形成し得る水素原子を含む基を有する構成単位(S1)と、構成単位(S1)とは別の、架橋性基を有する構成単位(S2)とを含有することが好ましい。 The polyorganosylsesquioxane (a1) has a structural unit (S1) having a group containing a hydrogen atom capable of forming a hydrogen bond and a structural unit (S2) having a crosslinkable group different from the structural unit (S1). ) And is preferably contained.
-水素結合を形成し得る水素原子を含む基を有する構成単位(S1)-
 構成単位(S1)は水素結合を形成し得る水素原子を含む基を有する。構成単位(S1)が有する水素結合を形成し得る水素原子を含む基は、アミド基、ウレタン基、ウレア基、及びヒドロキシル基から選ばれる少なくとも1種であることが好ましく、アミド基、ウレタン基、及びウレア基から選ばれる少なくとも1種であることがより好ましい。
 水素結合を形成し得る水素原子は、構成単位(S1)中、少なくとも1つ含まれていればよく、1つ又は2つ含まれることが好ましい。
-A structural unit having a group containing a hydrogen atom capable of forming a hydrogen bond (S1)-
The structural unit (S1) has a group containing a hydrogen atom capable of forming a hydrogen bond. The group containing a hydrogen atom capable of forming a hydrogen bond of the structural unit (S1) is preferably at least one selected from an amide group, a urethane group, a urea group, and a hydroxyl group, preferably an amide group, a urethane group, and the like. And at least one selected from the urea group is more preferable.
At least one hydrogen atom capable of forming a hydrogen bond may be contained in the structural unit (S1), and it is preferable that one or two hydrogen atoms are contained.
 構成単位(S1)は、さらに架橋性基を有することが好ましい。架橋性基としては、ラジカル重合性架橋性基が好ましく、ビニル基、アリル基、(メタ)アクリロイルオキシ基、又は(メタ)アクリルアミド基であることがより好ましく、(メタ)アクリロイルオキシ基、又は(メタ)アクリルアミド基であることがさらに好ましく、アクリロイルオキシ基、又はアクリルアミド基であることが特に好ましい。 The structural unit (S1) preferably further has a crosslinkable group. As the crosslinkable group, a radically polymerizable crosslinkable group is preferable, a vinyl group, an allyl group, a (meth) acryloyloxy group, or a (meth) acrylamide group is more preferable, and a (meth) acryloyloxy group or ( A meta) acrylamide group is more preferable, and an acryloyloxy group or an acrylamide group is particularly preferable.
 構成単位(S1)は、下記一般式(S1-1)で表される構成単位であることが好ましい。 The structural unit (S1) is preferably a structural unit represented by the following general formula (S1-1).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 一般式(S1-1)中、
 L11は置換又は無置換のアルキレン基を表し、
 R11は単結合、-NH-、-O-、-C(=O)-、又はこれらを組み合わせて得られる2価の連結基を表し、
 L12は置換又は無置換のアルキレン基を表し、
 Q11は架橋性基を表す。
 但し、一般式(S1-1)で表される構成単位は、水素結合を形成し得る水素原子を含む基を少なくとも1つ有する。
In the general formula (S1-1),
L 11 represents a substituted or unsubstituted alkylene group.
R 11 represents a single bond, -NH-, -O-, -C (= O)-, or a divalent linking group obtained by combining these.
L 12 represents a substituted or unsubstituted alkylene group.
Q 11 represents a crosslinkable group.
However, the structural unit represented by the general formula (S1-1) has at least one group containing a hydrogen atom capable of forming a hydrogen bond.
 一般式(S1-1)中の「SiO1.5」は、ポリオルガノシルセスキオキサン中、シロキサン結合(Si-O-Si)により構成される構造部分を表す。
 ポリオルガノシルセスキオキサンとは、加水分解性三官能シラン化合物に由来するシロキサン構成単位(シルセスキオキサン単位)を有するネットワーク型ポリマー又は多面体クラスターであり、シロキサン結合によって、ランダム構造、ラダー構造、ケージ構造などを形成し得る。本発明において、「SiO1.5」が表す構造部分は、上記のいずれの構造であってもよいが、ラダー構造を多く含有していることが好ましい。ラダー構造を形成していることにより、ハードコートフィルムの変形回復性を良好に保つことができる。ラダー構造の形成は、FT-IR(Fourier Transform Infrared Spectroscopy)を測定した際、1020-1050cm-1付近に現れるラダー構造に特徴的なSi-O-Si伸縮に由来する吸収の有無によって定性的に確認することができる。
“SiO 1.5 ” in the general formula (S1-1) represents a structural portion composed of a siloxane bond (Si—O—Si) in the polyorganosylsesquioxane.
Polyorganosilsesquioxane is a network-type polymer or polyhedral cluster having a siloxane structural unit (silsesquioxane unit) derived from a hydrolyzable trifunctional silane compound, and has a random structure, a ladder structure, or a ladder structure due to siloxane bonds. It can form a cage structure or the like. In the present invention, the structural portion represented by "SiO 1.5 " may have any of the above structures, but preferably contains a large amount of rudder structure. By forming the rudder structure, the deformation recovery of the hard coat film can be kept good. The formation of the rudder structure is qualitatively determined by the presence or absence of absorption derived from Si-O-Si expansion and contraction, which is characteristic of the rudder structure appearing near 1020-1050 cm -1 when FT-IR (Fourier Transform Infrared Spectroscopy) is measured. You can check.
 一般式(S1-1)中、L11はアルキレン基を表し、炭素数1~10のアルキレン基が好ましく、例えば、メチレン基、メチルメチレン基、ジメチルメチレン基、エチレン基、i-プロピレン基、n-プロピレン基、n-ブチレン基、n-ペンチレン基、n-ヘキシレン基、n-デシレン基等が挙げられる。
 L11が表すアルキレン基が置換基を有する場合の置換基としては、ヒドロキシル基、カルボキシル基、アルコキシ基、アリール基、ヘテロアリール基、ハロゲン原子、ニトロ基、シアノ基、シリル基等が挙げられる。
 L11は、無置換の炭素数2~4の直鎖状のアルキレン基が好ましく、エチレン基、又はn-プロピレン基がより好ましく、さらに好ましくはn-プロピレン基である。
In the general formula (S1-1), L 11 represents an alkylene group, preferably an alkylene group having 1 to 10 carbon atoms, for example, a methylene group, a methylmethylene group, a dimethylmethylene group, an ethylene group, an i-propylene group, n. Examples thereof include a propylene group, an n-butylene group, an n-pentylene group, an n-hexylene group and an n-decylene group.
Examples of the substituent when the alkylene group represented by L 11 has a substituent include a hydroxyl group, a carboxyl group, an alkoxy group, an aryl group, a heteroaryl group, a halogen atom, a nitro group, a cyano group and a silyl group.
L 11 is preferably an unsubstituted linear alkylene group having 2 to 4 carbon atoms, more preferably an ethylene group or an n-propylene group, and even more preferably an n-propylene group.
 一般式(S1-1)中、R11は単結合、-NH-、-O-、-C(=O)-、又はこれらを組み合わせて得られる2価の連結基を表す。
 -NH-、-O-、-C(=O)-を組み合わせて得られる2価の連結基としては、*-NH-C(=O)-**、*-C(=O)-NH-**、*-NH-C(=O)-O-**、*-O-C(=O)-NH-**、-NH-C(=O)-NH-、*-C(=O)-O-**、*-O-C(=O)-**、等が挙げられる。*は一般式(S1-1)におけるL11との結合手を表し、**は一般式(S1-1)におけるL12との結合手を表す。
In the general formula (S1-1), R 11 represents a single bond, -NH-, -O-, -C (= O)-, or a divalent linking group obtained by combining these.
As a divalent linking group obtained by combining -NH-, -O-, and -C (= O)-, * -NH-C (= O)-**, * -C (= O) -NH -**, * -NH-C (= O) -O-**, * -OC (= O) -NH-**, -NH-C (= O) -NH-, * -C ( = O) -O-**, * -OC (= O) -**, and the like. * Represents the bond with L 11 in the general formula (S1-1), and ** represents the bond with L 12 in the general formula (S1-1).
 R11は、-NH-C(=O)-NH-、*-NH-C(=O)-O-**、*-NH-C(=O)-**、又は-O-であることが好ましく、-NH-C(=O)-NH-、*-NH-C(=O)-O-**、又は*-NH-C(=O)-**であることがより好ましい。 R 11 is -NH-C (= O) -NH-, * -NH-C (= O) -O-**, * -NH-C (= O) -**, or -O-. It is preferably -NH-C (= O) -NH-, * -NH-C (= O) -O-**, or * -NH-C (= O)-**. ..
 一般式(S1-1)中、L12はアルキレン基を表し、炭素数1~10のアルキレン基が好ましく、例えば、メチレン基、メチルメチレン基、ジメチルメチレン基、エチレン基、i-プロピレン基、n-プロピレン基、n-ブチレン基、n-ペンチレン基、n-ヘキシレン基、n-デシレン基等が挙げられる。
 L12が表すアルキレン基が置換基を有する場合の置換基としては、ヒドロキシル基、カルボキシル基、アルコキシ基、アリール基、ヘテロアリール基、ハロゲン原子、ニトロ基、シアノ基、シリル基等が挙げられる。
 L12は、炭素数1~3の直鎖状のアルキレン基が好ましく、メチレン基、エチレン基、n-プロピレン基、又は2-ヒドロキシ-n-プロピレン基がより好ましく、メチレン基又はエチレン基がさらに好ましい。
In the general formula (S1-1), L 12 represents an alkylene group, preferably an alkylene group having 1 to 10 carbon atoms, for example, a methylene group, a methylmethylene group, a dimethylmethylene group, an ethylene group, an i-propylene group, n. Examples thereof include a propylene group, an n-butylene group, an n-pentylene group, an n-hexylene group and an n-decylene group.
Examples of the substituent when the alkylene group represented by L 12 has a substituent include a hydroxyl group, a carboxyl group, an alkoxy group, an aryl group, a heteroaryl group, a halogen atom, a nitro group, a cyano group and a silyl group.
L 12 is preferably a linear alkylene group having 1 to 3 carbon atoms, more preferably a methylene group, an ethylene group, an n-propylene group, or a 2-hydroxy-n-propylene group, and further preferably a methylene group or an ethylene group. preferable.
 一般式(S1-1)中、Q11は架橋性基を表す。架橋性基としては、ラジカル重合性架橋性基が好ましく、ビニル基、アリル基、(メタ)アクリロイルオキシ基、又は(メタ)アクリルアミド基であることがより好ましく、(メタ)アクリロイルオキシ基、又は(メタ)アクリルアミド基であることがさらに好ましく、アクリロイルオキシ基、又はアクリルアミド基であることが特に好ましい。 In the general formula (S1-1), Q 11 represents a crosslinkable group. As the crosslinkable group, a radically polymerizable crosslinkable group is preferable, a vinyl group, an allyl group, a (meth) acryloyloxy group, or a (meth) acrylamide group is more preferable, and a (meth) acryloyloxy group or ( A meta) acrylamide group is more preferable, and an acryloyloxy group or an acrylamide group is particularly preferable.
 一般式(S1-1)で表される構成単位は、水素結合を形成し得る水素原子を含む基を少なくとも1つ有する。
 水素結合を形成し得る水素原子を含む基としては、アミド基、ウレタン基、ウレア基、又はヒドロキシル基が挙げられる。
 水素結合を形成し得る水素原子は、一般式(S1-1)で表される構成単位中、1つ又は2つ含まれることが好ましい。
 水素結合を形成し得る水素原子は、一般式(S1-1)中のR11において、アミド基、ウレタン基、又はウレア基として含まれることが好ましい。
The structural unit represented by the general formula (S1-1) has at least one group containing a hydrogen atom capable of forming a hydrogen bond.
Examples of the group containing a hydrogen atom capable of forming a hydrogen bond include an amide group, a urethane group, a urea group, and a hydroxyl group.
It is preferable that one or two hydrogen atoms capable of forming a hydrogen bond are contained in the structural unit represented by the general formula (S1-1).
The hydrogen atom capable of forming a hydrogen bond is preferably contained as an amide group, a urethane group, or a urea group in R 11 in the general formula (S1-1).
 一般式(S1-1)で表される構成単位は、下記一般式(S1-2)で表される構成単位であることが好ましい。 The structural unit represented by the general formula (S1-1) is preferably the structural unit represented by the following general formula (S1-2).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 一般式(S1-2)中、
 L11は置換又は無置換のアルキレン基を表し、
 r11は単結合、-NH-、又は-O-を表し、
 L12は置換又は無置換のアルキレン基を表し、
 q11は-NH-、又は-O-を表し、
 q12は水素原子又はメチル基を表す。
In the general formula (S1-2),
L 11 represents a substituted or unsubstituted alkylene group.
r 11 represents a single bond, -NH-, or -O-
L 12 represents a substituted or unsubstituted alkylene group.
q 11 represents -NH- or -O-
q 12 represents a hydrogen atom or a methyl group.
 一般式(S1-2)中の「SiO1.5」は、ポリオルガノシルセスキオキサン中、シロキサン結合(Si-O-Si)により構成される構造部分を表す。 “SiO 1.5 ” in the general formula (S1-2) represents a structural portion composed of a siloxane bond (Si—O—Si) in the polyorganosylsesquioxane.
 一般式(S1-2)中、L11は置換又は無置換のアルキレン基を表す。L11は一般式(S1-1)中のL11と同義であり、好ましい例も同様である。
 一般式(S1-2)中、L12は置換又は無置換のアルキレン基を表す。L12は一般式(S1-1)中のL12と同義であり、好ましい例も同様である。
 q12は水素原子又はメチル基を表し、水素原子であることが好ましい。
In the general formula (S1-2), L 11 represents a substituted or unsubstituted alkylene group. L 11 has the general formula (S1-1) in the same meaning as L 11 of, and preferred examples are also the same.
In the general formula (S1-2), L 12 represents a substituted or unsubstituted alkylene group. L 12 has the same meaning as the general formula (S1-1) L 12 of, and preferred examples are also the same.
q 12 represents a hydrogen atom or a methyl group, and is preferably a hydrogen atom.
-架橋性基を有する構成単位(S2)-
 構成単位(S2)は架橋性基を有する。架橋性基としては、ラジカル重合性架橋性基が好ましく、ビニル基、アリル基、(メタ)アクリロイルオキシ基、又は(メタ)アクリルアミド基であることがより好ましく、(メタ)アクリロイルオキシ基、又は(メタ)アクリルアミド基であることがさらに好ましく、(メタ)アクリルアミド基であることが特に好ましく、アクリルアミド基であることが最も好ましい。
-Constituent unit having a crosslinkable group (S2)-
The structural unit (S2) has a crosslinkable group. As the crosslinkable group, a radically polymerizable crosslinkable group is preferable, a vinyl group, an allyl group, a (meth) acryloyloxy group, or a (meth) acrylamide group is more preferable, and a (meth) acryloyloxy group or ( It is more preferably a (meth) acrylamide group, particularly preferably a (meth) acrylamide group, and most preferably an acrylamide group.
 構成単位(S2)は、下記一般式(S2-1)で表される構成単位であることが好ましい。 The structural unit (S2) is preferably a structural unit represented by the following general formula (S2-1).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 一般式(S1-2)中、
 L21は置換又は無置換のアルキレン基を表し、
 Q21は架橋性基を表す。
In the general formula (S1-2),
L 21 represents a substituted or unsubstituted alkylene group.
Q 21 represents a crosslinkable group.
 一般式(S2-1)中の「SiO1.5」は、ポリオルガノシルセスキオキサン中、シロキサン結合(Si-O-Si)により構成される構造部分を表す。 “SiO 1.5 ” in the general formula (S2-1) represents a structural portion composed of a siloxane bond (Si—O—Si) in the polyorganosylsesquioxane.
 一般式(S2-1)中、L21はアルキレン基を表し、炭素数1~10のアルキレン基が好ましく、例えば、メチレン基、メチルメチレン基、ジメチルメチレン基、エチレン基、i-プロピレン基、n-プロピレン基、n-ブチレン基、n-ペンチレン基、n-ヘキシレン基、n-デシレン基等が挙げられる。
 L11が表すアルキレン基が置換基を有する場合の置換基としては、ヒドロキシル基、カルボキシル基、アルコキシ基、アリール基、ヘテロアリール基、ハロゲン原子、ニトロ基、シアノ基、シリル基等が挙げられる。
 L11は、無置換の炭素数2~4の直鎖状のアルキレン基が好ましく、エチレン基、又はn-プロピレン基がより好ましく、さらに好ましくはn-プロピレン基である。
In the general formula (S2-1), L 21 represents an alkylene group, preferably an alkylene group having 1 to 10 carbon atoms, for example, a methylene group, a methylmethylene group, a dimethylmethylene group, an ethylene group, an i-propylene group, n. Examples thereof include a propylene group, an n-butylene group, an n-pentylene group, an n-hexylene group and an n-decylene group.
Examples of the substituent when the alkylene group represented by L 11 has a substituent include a hydroxyl group, a carboxyl group, an alkoxy group, an aryl group, a heteroaryl group, a halogen atom, a nitro group, a cyano group and a silyl group.
L 11 is preferably an unsubstituted linear alkylene group having 2 to 4 carbon atoms, more preferably an ethylene group or an n-propylene group, and even more preferably an n-propylene group.
 一般式(S2-1)中、Q21は架橋性基を表す。架橋性基としては、ラジカル重合性架橋性基が好ましく、ビニル基、アリル基、(メタ)アクリロイルオキシ基、又は(メタ)アクリルアミド基であることがより好ましく、(メタ)アクリロイルオキシ基、又は(メタ)アクリルアミド基であることがさらに好ましい。 In the general formula (S2-1), Q 21 represents a crosslinkable group. As the crosslinkable group, a radically polymerizable crosslinkable group is preferable, a vinyl group, an allyl group, a (meth) acryloyloxy group, or a (meth) acrylamide group is more preferable, and a (meth) acryloyloxy group or ( It is more preferably a meta) acrylamide group.
 一般式(S2-1)で表される構成単位は、下記一般式(S2-2)で表される構成単位であることが好ましい。 The structural unit represented by the general formula (S2-1) is preferably the structural unit represented by the following general formula (S2-2).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 一般式(S2-2)中、
 L21は置換又は無置換のアルキレン基を表し、
 q21は-NH-、又は-O-を表し、
 q22は水素原子又はメチル基を表す。
In the general formula (S2-2),
L 21 represents a substituted or unsubstituted alkylene group.
q 21 represents -NH- or -O-
q 22 represents a hydrogen atom or a methyl group.
 一般式(S2-2)中の「SiO1.5」は、ポリオルガノシルセスキオキサン中、シロキサン結合(Si-O-Si)により構成される構造部分を表す。 “SiO 1.5 ” in the general formula (S2-2) represents a structural portion composed of a siloxane bond (Si—O—Si) in the polyorganosylsesquioxane.
 一般式(S2-2)中、L21は置換又は無置換のアルキレン基を表す。L21は一般式(S2-1)中のL21と同義であり、好ましい例も同様である。
 q21は-NH-、又は-O-を表し、-NH-であることが好ましい。
 q22は水素原子又はメチル基を表し、水素原子であることが好ましい。
In the general formula (S2-2), L 21 represents a substituted or unsubstituted alkylene group. L 21 has the general formula (S2-1) in the same meaning as L 21 of, and preferred examples are also the same.
q 21 represents -NH- or -O-, and is preferably -NH-.
q 22 represents a hydrogen atom or a methyl group, and is preferably a hydrogen atom.
 ポリオルガノシルセスキオキサン(a1)は、上記一般式(S1-1)で表される構成単位と、上記一般式(S2-1)で表される構成単位とを含有することが好ましく、上記一般式(S1-2)で表される構成単位と、上記一般式(S2-2)で表される構成単位とを含有することがより好ましい。 The polyorganosylsesquioxane (a1) preferably contains a structural unit represented by the general formula (S1-1) and a structural unit represented by the general formula (S2-1). It is more preferable to contain the structural unit represented by the general formula (S1-2) and the structural unit represented by the general formula (S2-2).
 ポリオルガノシルセスキオキサン(a1)が構成単位(S1)及び(S2)を有する場合において、構成単位(S1)の含有モル比率は、全構成単位に対して、1モル%超90モル%以下であることが好ましく、15モル%以上75モル%以下であることがより好ましく、35モル%以上65モル%以下であることがさらに好ましい。 When the polyorganosylsesquioxane (a1) has the constituent units (S1) and (S2), the molar ratio of the constituent units (S1) is more than 1 mol% and 90 mol% or less with respect to all the constituent units. It is more preferably 15 mol% or more and 75 mol% or less, and further preferably 35 mol% or more and 65 mol% or less.
 ポリオルガノシルセスキオキサン(a1)が構成単位(S1)及び(S2)を有する場合において、構成単位(S2)の含有モル比率は、全構成単位に対して、15モル%以上85モル%以下であることが好ましく、30モル%以上80モル%以下であることがより好ましく、35モル%以上65モル%以下であることが更に好ましい。 When the polyorganosylsesquioxane (a1) has the constituent units (S1) and (S2), the molar ratio of the constituent units (S2) is 15 mol% or more and 85 mol% or less with respect to all the constituent units. It is more preferably 30 mol% or more and 80 mol% or less, and further preferably 35 mol% or more and 65 mol% or less.
 ポリオルガノシルセスキオキサン(a1)は、本発明の効果に影響を及ぼさない範囲において、構成単位(S1)、(S2)以外の構成単位(S3)を有していてもよい。ポリオルガノシルセスキオキサン(a1)において、構成単位(S3)の含有モル比率は、全構成単位に対して、10モル%以下であることが好ましく、5モル%以下であることがより好ましく、構成単位(S3)を含まないことがさらに好ましい。 The polyorganosylsesquioxane (a1) may have a constituent unit (S3) other than the constituent units (S1) and (S2) as long as it does not affect the effect of the present invention. In the polyorganosylsesquioxane (a1), the molar ratio of the constituent unit (S3) is preferably 10 mol% or less, more preferably 5 mol% or less, based on all the constituent units. It is more preferable that the structural unit (S3) is not included.
 なお、ポリオルガノシルセスキオキサン(a1)が1種のモノマーのみから重合されてなる重合体である場合は、ポリオルガノシルセスキオキサン(a1)は構成単位(S1)を有することが好ましく、上記一般式(S1-1)で表される構成単位を有することがより好ましく、上記一般式(S1-2)で表される構成単位を有することがさらに好ましい。 When the polyorganosylsesquioxane (a1) is a polymer obtained by polymerizing only one kind of monomer, the polyorganosylsesquioxane (a1) preferably has a structural unit (S1). It is more preferable to have the structural unit represented by the general formula (S1-1), and it is further preferable to have the structural unit represented by the general formula (S1-2).
 ポリオルガノシルセスキオキサン(a1)の具体例を以下に示すが、本発明はこれらに限定されない。下記構造式において、「SiO1.5」は、シルセスキオキサン単位を表す。 Specific examples of polyorganosylsesquioxane (a1) are shown below, but the present invention is not limited thereto. In the following structural formula, "SiO 1.5 " represents a silsesquioxane unit.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 鉛筆硬度向上の観点から、ポリオルガノシルセスキオキサン(a1)のゲル浸透クロマトグラフィー(GPC)による標準ポリスチレン換算の重量平均分子量(Mw)は、好ましくは5000~1000000であり、より好ましくは10000~1000000であり、更に好ましくは10000~100000である。 From the viewpoint of improving pencil hardness, the weight average molecular weight (Mw) of polyorganosylsesquioxane (a1) in terms of standard polystyrene by gel permeation chromatography (GPC) is preferably 5000 to 1,000,000, more preferably 10,000 to 10,000. It is 1,000,000, more preferably 10,000 to 100,000.
 ポリオルガノシルセスキオキサン(a1)のGPCによる標準ポリスチレン換算の分子量分散度(Mw/Mn)は、例えば1.0~4.0であり、好ましくは1.1~3.7であり、より好ましくは1.2~3.0であり、さらに好ましくは1.3~2.5である。Mwは重量平均分子量を表し、Mnは数平均分子量を表す。 The molecular weight dispersion (Mw / Mn) of polyorganosylsesquioxane (a1) in terms of standard polystyrene by GPC is, for example, 1.0 to 4.0, preferably 1.1 to 3.7, and more. It is preferably 1.2 to 3.0, and more preferably 1.3 to 2.5. Mw represents the weight average molecular weight and Mn represents the number average molecular weight.
 ポリオルガノシルセスキオキサン(a1)の重量平均分子量、分子量分散度は、下記の装置及び条件により測定する。
 測定装置:商品名「LC-20AD」((株)島津製作所製)
 カラム:Shodex KF-801×2本、KF-802、及びKF-803(昭和電工(株)製)
 測定温度:40℃
 溶離液:N-メチルピロリドン(NMP)、試料濃度0.1~0.2質量%
 流量:1mL/分
 検出器:UV-VIS検出器(商品名「SPD-20A」、(株)島津製作所製)
 分子量:標準ポリスチレン換算
The weight average molecular weight and molecular weight dispersion of polyorganosylsesquioxane (a1) are measured by the following devices and conditions.
Measuring device: Product name "LC-20AD" (manufactured by Shimadzu Corporation)
Columns: Shodex KF-801 x 2, KF-802, and KF-803 (manufactured by Showa Denko KK)
Measurement temperature: 40 ° C
Eluent: N-methylpyrrolidone (NMP), sample concentration 0.1-0.2% by mass
Flow rate: 1 mL / min Detector: UV-VIS detector (trade name "SPD-20A", manufactured by Shimadzu Corporation)
Molecular weight: Standard polystyrene conversion
<ポリオルガノシルセスキオキサン(a1)の製造方法>
 ポリオルガノシルセスキオキサン(a1)の製造方法は、特に限定されず、公知の製造方法を用いて製造することができるが、例えば、加水分解性シラン化合物を加水分解及び縮合させる方法により製造できる。上記加水分解性シラン化合物としては、水素結合を形成し得る水素原子を含む基を有する加水分解性三官能シラン化合物(好ましくは下記一般式(Sd1-1)で表される化合物)、架橋性基を有する加水分解性三官能シラン化合物(好ましくは下記一般式(Sd2-1)で表される化合物)を使用することが好ましい。
 下記一般式(Sd1-1)で表される化合物は、上記一般式(S1-1)で表される構成単位に対応し、下記一般式(Sd2-1)で表される化合物は、上記一般式(S2-1)で表される構成単位に対応する。
<Manufacturing method of polyorganosylsesquioxane (a1)>
The method for producing polyorganosylsesquioxane (a1) is not particularly limited, and it can be produced using a known production method. For example, it can be produced by a method of hydrolyzing and condensing a hydrolyzable silane compound. .. Examples of the hydrolyzable silane compound include a hydrolyzable trifunctional silane compound having a group containing a hydrogen atom capable of forming a hydrogen bond (preferably a compound represented by the following general formula (Sd1-1)) and a crosslinkable group. It is preferable to use a hydrolyzable trifunctional silane compound (preferably a compound represented by the following general formula (Sd2-1)).
The compound represented by the following general formula (Sd1-1) corresponds to the structural unit represented by the above general formula (S1-1), and the compound represented by the following general formula (Sd2-1) corresponds to the above general formula (Sd2-1). It corresponds to the structural unit represented by the formula (S2-1).
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 一般式(Sd1-1)中、X~Xは各々独立にアルコキシ基又はハロゲン原子を表し、L11は置換又は無置換のアルキレン基を表し、R11は単結合、-NH-、-O-、-C(=O)-、又はこれらを組み合わせて得られる2価の連結基を表し、L12は置換又は無置換のアルキレン基を表し、Q11は架橋性基を表す。但し、一般式(S1-1)で表される構成単位は水素結合を形成し得る水素原子を含む基を少なくとも1つ有する。
 一般式(Sd2-1)中、X~Xは各々独立にアルコキシ基又はハロゲン原子を表し、L21は置換又は無置換のアルキレン基を表し、Q21は架橋性基を表す。
In the general formula (Sd1-1), X 1 to X 3 independently represent an alkoxy group or a halogen atom, L 11 represents a substituted or unsubstituted alkylene group, and R 11 represents a single bond, -NH-,-. O-, -C (= O)-, or a divalent linking group obtained by combining these, L 12 represents a substituted or unsubstituted alkylene group, and Q 11 represents a crosslinkable group. However, the structural unit represented by the general formula (S1-1) has at least one group containing a hydrogen atom capable of forming a hydrogen bond.
In the general formula (Sd2-1), X 4 ~ X 6 each independently represent an alkoxy group or a halogen atom, L 21 represents a substituted or unsubstituted alkylene group, Q 21 represents a crosslinkable group.
 一般式(Sd1-1)中のL11、R11、L12、及びQ11は、一般式(S1-1)中のL11、R11、L12、及びQ11とそれぞれ同義であり、好ましい範囲も同様である。
 一般式(Sd2-1)中のL21、及びQ21は、一般式(S2-1)中のL21、及びQ21とそれぞれ同義であり、好ましい範囲も同様である。
L 11 in the general formula (Sd1-1), R 11, L 12, and Q 11 is, L 11 in the general formula (S1-1), R 11, L 12, and Q 11 and have the same meanings, The preferred range is similar.
L 21, and Q 21 in formula (Sd2-1) is, L 21 in the general formula (S2-1), and Q 21 and have the same meanings and preferred ranges are also the same.
 一般式(Sd1-1)、(Sd2-1)中、X~Xは各々独立にアルコキシ基又はハロゲン原子を示す。
 上記アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロピルオキシ基、ブトキシ基、イソブチルオキシ基等の炭素数1~4のアルコキシ基等が挙げられる。
 上記ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 X~Xとしては、アルコキシ基が好ましく、メトキシ基、エトキシ基がより好ましい。なお、X~Xは、それぞれ同一であっても、異なっていてもよい。
Formula (Sd1-1), (Sd2-1) in, an alkoxy group or a halogen atom each independently X 1 ~ X 6.
Examples of the alkoxy group include an alkoxy group having 1 to 4 carbon atoms such as a methoxy group, an ethoxy group, a propoxy group, an isopropyloxy group, a butoxy group, and an isobutyloxy group.
Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom and the like.
As X 1 to X 6 , an alkoxy group is preferable, and a methoxy group and an ethoxy group are more preferable. Note that X 1 to X 6 may be the same or different.
 上記加水分解性シラン化合物の使用量及び組成は、所望するポリオルガノシルセスキオキサン(a1)の構造に応じて適宜調整できる。 The amount and composition of the hydrolyzable silane compound used can be appropriately adjusted according to the desired structure of the polyorganosylsesquioxane (a1).
 また、上記加水分解性シラン化合物の加水分解及び縮合反応は、同時に行うことも、逐次行うこともできる。上記反応を逐次行う場合、反応を行う順序は特に限定されない。 Further, the hydrolysis and condensation reactions of the hydrolyzable silane compound can be carried out simultaneously or sequentially. When the above reactions are carried out sequentially, the order in which the reactions are carried out is not particularly limited.
 上記加水分解性シラン化合物の加水分解及び縮合反応は、溶媒の存在下で行うことも、非存在下で行うこともでき、溶媒の存在下で行うことが好ましい。
 上記溶媒としては、例えば、ベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素;ジエチルエーテル、ジメトキシエタン、テトラヒドロフラン、ジオキサン等のエーテル;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン;酢酸メチル、酢酸エチル、酢酸イソプロピル、酢酸ブチル等のエステル;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド;アセトニトリル、プロピオニトリル、ベンゾニトリル等のニトリル;メタノール、エタノール、イソプロピルアルコール、ブタノール等のアルコール等が挙げられる。
 上記溶媒としては、ケトン又はエーテルが好ましい。なお、溶媒は1種を単独で使用することも、2種以上を組み合わせて使用することもできる。
The hydrolysis and condensation reaction of the hydrolyzable silane compound can be carried out in the presence or absence of a solvent, and is preferably carried out in the presence of a solvent.
Examples of the solvent include aromatic hydrocarbons such as benzene, toluene, xylene and ethylbenzene; ethers such as diethyl ether, dimethoxyethane, tetrahydrofuran and dioxane; ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone; methyl acetate and ethyl acetate. , Esters such as isopropyl acetate and butyl acetate; amides such as N, N-dimethylformamide and N, N-dimethylacetamide; nitriles such as acetonitrile, propionitrile and benzonitrile; alcohols such as methanol, ethanol, isopropyl alcohol and butanol. And so on.
As the solvent, ketones or ethers are preferable. As the solvent, one type may be used alone, or two or more types may be used in combination.
 溶媒の使用量は、特に限定されず、通常、加水分解性シラン化合物の全量100質量部に対して、0~2000質量部の範囲内で、所望の反応時間等に応じて、適宜調整することができる。 The amount of the solvent used is not particularly limited, and is usually adjusted appropriately in the range of 0 to 2000 parts by mass with respect to 100 parts by mass of the total amount of the hydrolyzable silane compound, depending on the desired reaction time and the like. Can be done.
 上記加水分解性シラン化合物の加水分解及び縮合反応は、触媒及び水の存在下で進行させることが好ましい。上記触媒は、酸触媒であってもアルカリ触媒であってもよい。
 上記酸触媒としては、特に限定されず、例えば、塩酸、硫酸、硝酸、リン酸、ホウ酸等の鉱酸;リン酸エステル;酢酸、蟻酸、トリフルオロ酢酸等のカルボン酸;メタンスルホン酸、トリフルオロメタンスルホン酸、p-トルエンスルホン酸等のスルホン酸;活性白土等の固体酸;塩化鉄等のルイス酸等が挙げられる。
 上記アルカリ触媒としては、特に限定されず、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化セシウム等のアルカリ金属の水酸化物;水酸化マグネシウム、水酸化カルシウム、水酸化バリウム等のアルカリ土類金属の水酸化物;炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム等のアルカリ金属の炭酸塩;炭酸マグネシウム等のアルカリ土類金属の炭酸塩;炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素セシウム等のアルカリ金属の炭酸水素塩;酢酸リチウム、酢酸ナトリウム、酢酸カリウム、酢酸セシウム等のアルカリ金属の有機酸塩(例えば、酢酸塩);酢酸マグネシウム等のアルカリ土類金属の有機酸塩(例えば、酢酸塩);リチウムメトキシド、ナトリウムメトキシド、ナトリウムエトキシド、ナトリウムイソプロポキシド、カリウムエトキシド、カリウムt-ブトキシド等のアルカリ金属のアルコキシド;ナトリウムフェノキシド等のアルカリ金属のフェノキシド;トリエチルアミン、N-メチルピペリジン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、1,5-ジアザビシクロ[4.3.0]ノナ-5-エン等のアミン類(第3級アミン等);ピリジン、2,2'-ビピリジル、1,10-フェナントロリン等の含窒素芳香族複素環化合物等が挙げられる。
 なお、触媒は1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。また、触媒は、水又は溶媒等に溶解又は分散させた状態で使用することもできる。
The hydrolysis and condensation reaction of the hydrolyzable silane compound is preferably carried out in the presence of a catalyst and water. The catalyst may be an acid catalyst or an alkali catalyst.
The acid catalyst is not particularly limited, and for example, mineral acids such as hydrochloric acid, sulfuric acid, nitrate, phosphoric acid and boric acid; phosphoric acid esters; carboxylic acids such as acetic acid, formic acid and trifluoroacetic acid; methanesulfonic acid and trifluo. Examples thereof include sulfonic acids such as lomethane sulfonic acid and p-toluene sulfonic acid; solid acids such as active white clay; and Lewis acids such as iron chloride.
The alkali catalyst is not particularly limited, and for example, hydroxides of alkali metals such as lithium hydroxide, sodium hydroxide, potassium hydroxide and cesium hydroxide; magnesium hydroxide, calcium hydroxide, barium hydroxide and the like. Alkali earth metal hydroxides; alkali metal carbonates such as lithium carbonate, sodium carbonate, potassium carbonate, cesium carbonate; alkali earth metal carbonates such as magnesium carbonate; lithium hydrogen carbonate, sodium hydrogen carbonate, hydrogen carbonate Alkali metal hydrogen carbonates such as potassium and cesium hydrogen carbonate; alkali metal organic acid salts such as lithium acetate, sodium acetate, potassium acetate and cesium acetate (eg acetate); alkaline earth metal organic salts such as magnesium acetate Acetates (eg, acetates); alkali metal alkoxides such as lithium methoxyd, sodium methoxyd, sodium ethoxydo, sodium isopropoxide, potassium ethoxydo, potassium t-butoxide; alkali metal phenoxides such as sodium phenoxide; Amines such as triethylamine, N-methylpiperidin, 1,8-diazabicyclo [5.4.0] undec-7-ene, 1,5-diazabicyclo [4.3.0] nona-5-ene (tertiary) Amine and the like); Examples thereof include nitrogen-containing aromatic heterocyclic compounds such as pyridine, 2,2'-bipyridyl and 1,10-phenanthroline.
One type of catalyst may be used alone, or two or more types may be used in combination. The catalyst can also be used in a state of being dissolved or dispersed in water, a solvent or the like.
 上記触媒の使用量は、特に限定されず、通常、加水分解性シラン化合物の全量1モルに対して、0.002~0.200モルの範囲内で、適宜調整することができる。 The amount of the catalyst used is not particularly limited, and can be appropriately adjusted within the range of 0.002 to 0.200 mol with respect to 1 mol of the total amount of the hydrolyzable silane compound.
 上記加水分解及び縮合反応に際しての水の使用量は、特に限定されず、通常、加水分解性シラン化合物の全量1モルに対して、0.5~40モルの範囲内で、適宜調整することができる。 The amount of water used in the above-mentioned hydrolysis and condensation reaction is not particularly limited, and is usually adjusted appropriately within the range of 0.5 to 40 mol with respect to 1 mol of the total amount of the hydrolyzable silane compound. it can.
 上記水の添加方法は、特に限定されず、使用する水の全量(全使用量)を一括で添加しても、逐次的に添加してもよい。逐次的に添加する際には、連続的に添加しても、間欠的に添加してもよい。 The method of adding the above water is not particularly limited, and the total amount of water used (total amount used) may be added all at once or sequentially. When added sequentially, it may be added continuously or intermittently.
 上記加水分解及び縮合反応の反応温度は、特に限定されず、例えば40~100℃であり、好ましくは45~80℃である。また、上記加水分解及び縮合反応の反応時間は、特に限定されず、例えば0.1~15時間であり、好ましくは1.5~10時間である。また、上記加水分解及び縮合反応は、常圧下で行うこともできるし、加圧下又は減圧下で行うこともできる。なお、上記加水分解及び縮合反応を行う際の雰囲気は、例えば、窒素雰囲気、アルゴン雰囲気等の不活性ガス雰囲気下、空気下等の酸素存在下等のいずれであってもよいが、不活性ガス雰囲気下が好ましい。 The reaction temperature of the hydrolysis and condensation reactions is not particularly limited, and is, for example, 40 to 100 ° C, preferably 45 to 80 ° C. The reaction time of the hydrolysis and condensation reactions is not particularly limited, and is, for example, 0.1 to 15 hours, preferably 1.5 to 10 hours. Further, the hydrolysis and condensation reactions can be carried out under normal pressure, under pressure or under reduced pressure. The atmosphere for performing the hydrolysis and condensation reactions may be, for example, an inert gas atmosphere such as a nitrogen atmosphere or an argon atmosphere, or an oxygen presence such as under air, but the inert gas may be used. The atmosphere is preferable.
 上記加水分解性シラン化合物の加水分解及び縮合反応により、ポリオルガノシルセスキオキサン(a1)を得ることができる。上記加水分解及び縮合反応の終了後には、触媒を中和してもよい。また、ポリオルガノシルセスキオキサン(a1)を、例えば、水洗、酸洗浄、アルカリ洗浄、濾過、濃縮、蒸留、抽出、晶析、再結晶、カラムクロマトグラフィー等の分離手段や、これらを組み合わせた分離手段等により分離精製してもよい。 Polyorganosylsesquioxane (a1) can be obtained by the hydrolysis and condensation reaction of the hydrolyzable silane compound. The catalyst may be neutralized after the completion of the hydrolysis and condensation reactions. Further, the polyorganosylsesquioxane (a1) is separated by, for example, water washing, acid washing, alkaline washing, filtration, concentration, distillation, extraction, crystallization, recrystallization, column chromatography and the like, and a combination thereof. It may be separated and purified by a separation means or the like.
 ポリオルガノシルセスキオキサン(a1)は一種のみ用いてもよく、構造の異なる二種以上を併用してもよい。
 2種以上のポリオルガノシルセスキオキサン(a1)を混合する場合の水素結合価、側鎖長、架橋性基価の算出方法は、各数値(水素結合価、側鎖長、架橋性基価)に配合比率(質量比率)を乗じた値の総和(質量平均値)を混合物における数値とする。
Only one type of polyorganosylsesquioxane (a1) may be used, or two or more types having different structures may be used in combination.
When two or more kinds of polyorganosylsesquioxane (a1) are mixed, the hydrogen bond value, side chain length, and crosslinkable base value are calculated by each numerical value (hydrogen bond value, side chain length, crosslinkable base value). ) Multiplied by the compounding ratio (mass ratio) to obtain the total value (mass average value) of the mixture.
 樹脂組成物におけるポリオルガノシルセスキオキサン(a1)の含有率は、樹脂組成物の全固形分に対して、50質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることが更に好ましい。樹脂組成物におけるポリオルガノシルセスキオキサン(a1)の含有率の上限は、樹脂組成物の全固形分に対して、99.9質量%以下であることが好ましく、98質量%以下であることがより好ましく、97質量%以下であることが更に好ましい。
 なお、全固形分とは溶剤以外の全成分のことである。
The content of polyorganosylsesquioxane (a1) in the resin composition is preferably 50% by mass or more, more preferably 70% by mass or more, based on the total solid content of the resin composition. It is more preferably 80% by mass or more. The upper limit of the content of polyorganosylsesquioxane (a1) in the resin composition is preferably 99.9% by mass or less, preferably 98% by mass or less, based on the total solid content of the resin composition. Is more preferable, and 97% by mass or less is further preferable.
The total solid content is all components other than the solvent.
<重合開始剤>
 本発明における樹脂組成物は、重合開始剤を含むことが好ましい。
 樹脂組成物中に用いるポリオルガノシルセスキオキサン(a1)が有する架橋性基がラジカル重合性架橋性基であれば、ラジカル重合開始剤を含むことが好ましく、架橋性基がカチオン重合性架橋性基であれば、カチオン重合開始剤を含むことが好ましい。
 重合開始剤は、ラジカル重合開始剤であることが好ましい。ラジカル重合開始剤は、ラジカル光重合開始剤でも、ラジカル熱重合開始剤でも良いが、ラジカル光重合開始剤であることがより好ましい。
 重合開始剤は一種のみ用いてもよく、構造の異なる二種以上を併用してもよい。
<Polymerization initiator>
The resin composition in the present invention preferably contains a polymerization initiator.
If the crosslinkable group of the polyorganosylsesquioxane (a1) used in the resin composition is a radically polymerizable crosslinkable group, it is preferable to contain a radical polymerization initiator, and the crosslinkable group is a cationically polymerizable crosslinkable group. If it is a group, it is preferable to include a cationic polymerization initiator.
The polymerization initiator is preferably a radical polymerization initiator. The radical polymerization initiator may be either a radical photopolymerization initiator or a radical thermal polymerization initiator, but a radical photopolymerization initiator is more preferable.
Only one type of polymerization initiator may be used, or two or more types having different structures may be used in combination.
 ラジカル光重合開始剤としては、光照射により活性種としてラジカルを発生することができるものであればよく、公知のラジカル光重合開始剤を、何ら制限なく用いることができる。具体例としては、例えば、ジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、ベンジルジメチルケタール、4-(2-ヒドロキシエトキシ)フェニル-(2-ヒドロキシ-2-プロピル)ケトン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-2-モルホリノ(4-チオメチルフェニル)プロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)ブタノン、2-ヒドロキシ-2-メチル-1-[4-(1-メチルビニル)フェニル]プロパノンオリゴマー、2-ヒロドキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル}-2-メチル-プロパン-1-オン等のアセトフェノン類;1,2-オクタンジオン、1-[4-(フェニルチオ)-,2-(O-ベンゾイルオキシム)]、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(0-アセチルオキシム)等のオキシムエステル類;ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル等のベンゾイン類;ベンゾフェノン、o-ベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、4-ベンゾイル-4′-メチル-ジフェニルサルファイド、3,3′,4,4′-テトラ(t-ブチルパーオキシカルボニル)ベンゾフェノン、2,4,6-トリメチルベンゾフェノン、4-ベンゾイル-N,N-ジメチル-N-[2-(1-オキソ-2-プロペニルオキシ)エチル]ベンゼンメタナミニウムブロミド、(4-ベンゾイルベンジル)トリメチルアンモニウムクロリド等のベンゾフェノン類;2-イソプロピルチオキサントン、4-イソプロピルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジクロロチオキサントン、1-クロロ-4-プロポキシチオキサントン、2-(3-ジメチルアミノ-2-ヒドロキシ)-3,4-ジメチル-9H-チオキサントン-9-オンメソクロリド等のチオキサントン類;2,4,6-トリメチルベンゾイル-ジフェニルフォスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチル-ペンチルフォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド等のアシルフォスフォンオキサイド類;等が挙げられる。また、ラジカル光重合開始剤の助剤として、トリエタノールアミン、トリイソプロパノールアミン、4,4′-ジメチルアミノベンゾフェノン(ミヒラーケトン)、4,4′-ジエチルアミノベンゾフェノン、2-ジメチルアミノエチル安息香酸、4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸(n-ブトキシ)エチル、4-ジメチルアミノ安息香酸イソアミル、4-ジメチルアミノ安息香酸2-エチルヘキシル、2,4-ジエチルチオキサンソン、2,4-ジイソプロピルチオキサンソン等を併用してもよい。
 以上のラジカル光重合開始剤および助剤は、公知の方法で合成可能であり、市販品として入手も可能である。
The radical photopolymerization initiator may be any one capable of generating radicals as an active species by light irradiation, and known radical photopolymerization initiators can be used without any limitation. Specific examples include, for example, diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, benzyldimethylketal, 4- (2-hydroxyethoxy) phenyl- (2-hydroxy-2-propyl). ) Ketone, 1-hydroxycyclohexylphenylketone, 2-methyl-2-morpholino (4-thiomethylphenyl) propan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) butanone, 2 -Hydroxy-2-methyl-1- [4- (1-methylvinyl) phenyl] propanone oligomer, 2-hirodoxy-1- {4- [4- (2-hydroxy-2-methyl-propionyl) -benzyl] Acetphenones such as phenyl} -2-methyl-propane-1-one; 1,2-octanedione, 1- [4- (phenylthio)-, 2- (O-benzoyloxime)], etanone, 1- [9 -Oxime esters such as -ethyl-6- (2-methylbenzoyl) -9H-carbazole-3-yl]-, 1- (0-acetyloxime); benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, Benzoyls such as benzoin isobutyl ether; benzophenone, methyl o-benzoyl benzoate, 4-phenylbenzophenone, 4-benzoyl-4'-methyl-diphenylsulfide, 3,3', 4,4'-tetra (t-butylper) Oximecarbonyl) benzophenone, 2,4,6-trimethylbenzophenone, 4-benzoyl-N, N-dimethyl-N- [2- (1-oxo-2-propenyloxy) ethyl] benzenemethanamineium bromide, (4-) Benzoylbenzyl) Benzophenones such as trimethylammonium chloride; 2-isopropylthioxanthone, 4-isopropylthioxanthone, 2,4-diethylthioxanthone, 2,4-dichlorothioxanthone, 1-chloro-4-propoxythioxanthone, 2- (3-dimethyl) Amino-2-hydroxy) -3,4-dimethyl-9H-thioxanthone-9-onemethochloride and other thioxanthones; 2,4,6-trimethylbenzoyl-diphenylphosphine oxide, bis (2,6-dimethoxybenzoyl) Acids such as -2,4,4-trimethyl-pentylphosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide Luphosphon oxides; etc. In addition, as an auxiliary agent for the radical photopolymerization initiator, triethanolamine, triisopropanolamine, 4,4'-dimethylaminobenzophenone (Michler ketone), 4,4'-diethylaminobenzophenone, 2-dimethylaminoethyl benzoic acid, 4- Ethyl dimethylaminobenzoate, ethyl 4-dimethylaminobenzoic acid (n-butoxy), isoamyl 4-dimethylaminobenzoate, 2-ethylhexyl 4-dimethylaminobenzoate, 2,4-diethylthioxanthone, 2,4- Diisopropylthioxanson or the like may be used in combination.
The above radical photopolymerization initiator and auxiliary agent can be synthesized by a known method and are also available as commercial products.
 樹脂組成物中の重合開始剤の含有率は、特に限定されるものではないが、例えばポリオルガノシルセスキオキサン(a1)100質量部に対して、0.1~200質量部が好ましく、1~50質量部がより好ましい。 The content of the polymerization initiator in the resin composition is not particularly limited, but is preferably 0.1 to 200 parts by mass with respect to 100 parts by mass of polyorganosylsesquioxane (a1), for example. ~ 50 parts by mass is more preferable.
<溶媒>
 本発明における樹脂組成物は、溶媒を含んでいてもよい。
 溶媒としては、有機溶媒が好ましく、有機溶媒の一種または二種以上を任意の割合で混合して用いることができる。有機溶媒の具体例としては、例えば、メタノール、エタノール、プロパノール、n-ブタノール、i-ブタノール等のアルコール類;アセトン、メチルイソブチルケトン、メチルエチルケトン、シクロヘキサノン等のケトン類;エチルセロソルブ等のセロソルブ類;トルエン、キシレン等の芳香族類;プロピレングリコールモノメチルエーテル等のグリコールエーテル類;酢酸メチル、酢酸エチル、酢酸ブチル等の酢酸エステル類;ジアセトンアルコール等が挙げられる。
 本発明における樹脂組成物における溶媒の含有率は、樹脂組成物の塗布適性を確保できる範囲で適宜調整することができる。例えば、樹脂組成物の全固形分100質量部に対して、50~500質量部とすることができ、好ましくは80~200質量部とすることができる。
 樹脂組成物は、通常、液の形態をとる。
 樹脂組成物の固形分の濃度は、通常、10~90質量%程度であり、好ましくは20~80質量%、特に好ましくは40~70質量%程度である。
<Solvent>
The resin composition in the present invention may contain a solvent.
As the solvent, an organic solvent is preferable, and one kind or two or more kinds of organic solvents can be mixed and used at an arbitrary ratio. Specific examples of the organic solvent include alcohols such as methanol, ethanol, propanol, n-butanol, and i-butanol; ketones such as acetone, methylisobutylketone, methylethylketone, and cyclohexanone; cellosolves such as ethylcellosolve; toluene. , Aromatic substances such as xylene; glycol ethers such as propylene glycol monomethyl ether; acetate esters such as methyl acetate, ethyl acetate and butyl acetate; diacetone alcohol and the like.
The content of the solvent in the resin composition in the present invention can be appropriately adjusted within a range in which the coating suitability of the resin composition can be ensured. For example, it can be 50 to 500 parts by mass, preferably 80 to 200 parts by mass with respect to 100 parts by mass of the total solid content of the resin composition.
The resin composition usually takes the form of a liquid.
The concentration of the solid content of the resin composition is usually about 10 to 90% by mass, preferably about 20 to 80% by mass, and particularly preferably about 40 to 70% by mass.
<その他の添加剤>
 本発明における樹脂組成物は、上記以外の成分を含有していてもよく、たとえば、無機微粒子、分散剤、レベリング剤、防汚剤、帯電防止剤、紫外線吸収剤、酸化防止剤等を含有していてもよい。
<Other additives>
The resin composition in the present invention may contain components other than the above, and contains, for example, inorganic fine particles, a dispersant, a leveling agent, an antifouling agent, an antistatic agent, an ultraviolet absorber, an antioxidant and the like. May be.
 本発明に用いる樹脂組成物は、以上説明した各種成分を同時に、または任意の順序で順次混合することにより調製することができる。調製方法は特に限定されるものではなく、調製には公知の攪拌機等を用いることができる。 The resin composition used in the present invention can be prepared by simultaneously or sequentially mixing the various components described above in any order. The preparation method is not particularly limited, and a known stirrer or the like can be used for the preparation.
〔ハードコートフィルム〕
 本発明は、基材と、上記樹脂組成物の硬化物を含むハードコート層とを有するハードコートフィルムにも関する。
 本発明のハードコートフィルムは、基材上に上記ハードコート層を有することが好ましい。
[Hard coat film]
The present invention also relates to a hard coat film having a base material and a hard coat layer containing a cured product of the above resin composition.
The hard coat film of the present invention preferably has the hard coat layer on the base material.
<基材>
 本発明のハードコートフィルムに用いる基材は、可視光領域の透過率が70%以上であることが好ましく、80%以上であることがより好ましく、90%以上であることが更に好ましい。
<Base material>
The substrate used for the hard coat film of the present invention preferably has a transmittance in the visible light region of 70% or more, more preferably 80% or more, and further preferably 90% or more.
(ポリマー)
 基材はポリマーを含むことが好ましい。
 ポリマーとしては、光学的な透明性、機械的強度、熱安定性などに優れるポリマーが好ましい。
(polymer)
The substrate preferably contains a polymer.
As the polymer, a polymer having excellent optical transparency, mechanical strength, thermal stability and the like is preferable.
 ポリマーとしては、例えば、ポリカーボネート系ポリマー、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル系ポリマー、ポリスチレン、アクリロニトリル・スチレン共重合体(AS樹脂)等のスチレン系ポリマーなどが挙げられる。また、ポリエチレン、ポリプロピレン等のポリオレフィン、ノルボルネン系樹脂、エチレン・プロピレン共重合体などのポリオレフィン系ポリマー、ポリメチルメタクリレート等の(メタ)アクリル系ポリマー、塩化ビニル系ポリマー、ナイロン、芳香族ポリアミド等のアミド系ポリマー、イミド系ポリマー、スルホン系ポリマー、ポリエーテルスルホン系ポリマー、ポリエーテルエーテルケトン系ポリマー、ポリフェニレンスルフィド系ポリマー、塩化ビニリデン系ポリマー、ビニルアルコール系ポリマー、ビニルブチラール系ポリマー、アリレート系ポリマー、ポリオキシメチレン系ポリマー、エポキシ系ポリマー、トリアセチルセルロースに代表されるセルロース系ポリマー、又は上記ポリマー同士の共重合体、上記ポリマー同士を混合したポリマーも挙げられる。 Examples of the polymer include a polycarbonate polymer, a polyester polymer such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), and a styrene polymer such as polystyrene and an acrylonitrile-styrene copolymer (AS resin). In addition, polyolefins such as polyethylene and polypropylene, norbornene resins, polyolefin polymers such as ethylene / propylene copolymers, (meth) acrylic polymers such as polymethylmethacrylate, vinyl chloride polymers, nylon, and amides such as aromatic polyamides. Polymers, imide polymers, sulfone polymers, polyether sulfone polymers, polyether ether ketone polymers, polyphenylene sulfide polymers, vinylidene chloride polymers, vinyl alcohol polymers, vinyl butyral polymers, allylate polymers, polyoxy Examples thereof include methylene-based polymers, epoxy-based polymers, cellulose-based polymers typified by triacetyl cellulose, copolymers of the above polymers, and polymers in which the above polymers are mixed.
 特に、芳香族ポリアミド等のアミド系ポリマー及びイミド系ポリマーは、JIS(日本工業規格) P8115(2001)に従いMIT試験機によって測定した破断折り曲げ回数が大きく、硬度も比較的高いことから、基材として好ましく用いることができる。例えば、特許第5699454号公報の実施例1にあるような芳香族ポリアミド、特表2015-508345号公報、特表2016-521216号公報、及びWO2017/014287号公報に記載のポリイミドを基材として好ましく用いることができる。
 アミド系ポリマーとしては、芳香族ポリアミド(アラミド系ポリマー)が好ましい。
 基材は、イミド系ポリマー及びアラミド系ポリマーから選ばれる少なくとも1種のポリマーを含有することが好ましい。
In particular, amide-based polymers such as aromatic polyamides and imide-based polymers have a large number of breaks and bends measured by a MIT tester in accordance with JIS (Japanese Industrial Standards) P8115 (2001) and have a relatively high hardness. It can be preferably used. For example, it is preferable to use the aromatic polyamide as described in Example 1 of Japanese Patent No. 56994454, the polyimides described in JP-A-2015-508345, JP-A-2016-521216, and WO2017 / 014287 as a base material. Can be used.
As the amide-based polymer, aromatic polyamide (aramid-based polymer) is preferable.
The base material preferably contains at least one polymer selected from imide-based polymers and aramid-based polymers.
 また、基材は、アクリル系、ウレタン系、アクリルウレタン系、エポキシ系、シリコーン系等の紫外線硬化型、熱硬化型の樹脂の硬化層として形成することもできる。 Further, the base material can be formed as a cured layer of an ultraviolet curable type or thermosetting type resin such as acrylic type, urethane type, acrylic urethane type, epoxy type and silicone type.
(柔軟化素材)
 基材は、上記のポリマーを更に柔軟化する素材を含有しても良い。柔軟化素材とは、破断折り曲げ回数を向上させる化合物を指し、柔軟化素材としては、ゴム質弾性体、脆性改良剤、可塑剤、スライドリングポリマー等を用いることが出来る。
 柔軟化素材として具体的には、特開2016-167043号公報における段落番号[0051]~[0114]に記載の柔軟化素材を好適に用いることができる。
(Flexible material)
The base material may contain a material that further softens the above polymer. The softening material refers to a compound that improves the number of fractures and bends, and as the softening material, a rubber elastic body, a brittleness improver, a plasticizer, a slide ring polymer, or the like can be used.
Specifically, as the softening material, the softening material described in paragraph numbers [0051] to [0114] in JP-A-2016-167043 can be preferably used.
 柔軟化素材は、ポリマーに単独で混合しても良いし、複数を適宜併用して混合しても良いし、また、ポリマーと混合せずに、柔軟化素材のみを単独又は複数併用で用いて基材としても良い。 The softening material may be mixed alone with the polymer, may be mixed in combination of a plurality as appropriate, or may be used alone or in combination of a plurality of softening materials without being mixed with the polymer. It may be used as a base material.
 これらの柔軟化素材を混合する量は、とくに制限はなく、単独で十分な破断折り曲げ回数を持つポリマーを単独でフィルムの基材としても良いし、柔軟化素材を混合しても良いし、すべてを柔軟化素材(100%)として十分な破断折り曲げ回数を持たせても良い。 The amount of these softening materials to be mixed is not particularly limited, and a polymer having a sufficient number of breaks and bends may be used alone as a base material for the film, or the softening materials may be mixed, or all of them. May be used as a softening material (100%) to have a sufficient number of breaks and bends.
(その他の添加剤)
 基材には、用途に応じた種々の添加剤(例えば、紫外線吸収剤、マット剤、酸化防止剤、剥離促進剤、レターデーション(光学異方性)調節剤、など)を添加できる。それらは固体でもよく油状物でもよい。すなわち、その融点又は沸点において特に限定されるものではない。また添加剤を添加する時期は基材を作製する工程において何れの時点で添加しても良く、素材調製工程に添加剤を添加し調製する工程を加えて行ってもよい。更にまた、各素材の添加量は機能が発現する限りにおいて特に限定されない。
 その他の添加剤としては、特開2016-167043号公報における段落番号[0117]~[0122]に記載の添加剤を好適に用いることができる。
(Other additives)
Various additives (for example, ultraviolet absorbers, matting agents, antioxidants, peeling accelerators, retardation (optical anisotropy) adjusting agents, etc.) can be added to the base material depending on the application. They may be solid or oily. That is, the melting point or boiling point is not particularly limited. Further, the additive may be added at any time in the step of producing the base material, or the step of adding the additive and preparing may be added to the material preparation step. Furthermore, the amount of each material added is not particularly limited as long as the function is exhibited.
As other additives, the additives described in paragraph numbers [0117] to [0122] in JP-A-2016-167043 can be preferably used.
 以上の添加剤は、1種類を単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。 One type of the above additives may be used alone, or two or more types may be used in combination.
(紫外線吸収剤)
 紫外線吸収剤としては、例えば、ベンゾトリアゾール化合物、トリアジン化合物、ベンゾオキサジン化合物を挙げることができる。ここでベンゾトリアゾール化合物とは、ベンゾトリアゾール環を有する化合物であり、具体例としては、例えば特開2013-111835号公報段落0033に記載されている各種ベンゾトリアゾール系紫外線吸収剤を挙げることができる。トリアジン化合物とは、トリアジン環を有する化合物であり、具体例としては、例えば特開2013-111835号公報段落0033に記載されている各種トリアジン系紫外線吸収剤を挙げることができる。ベンゾオキサジン化合物としては、例えば特開2014-209162号公報段落0031に記載されているものを用いることができる。基材中の紫外線吸収剤の含有量は、例えば基材に含まれるポリマー100質量部に対して0.1~10質量部程度であるが、特に限定されるものではない。また、紫外線吸収剤については、特開2013-111835号公報段落0032も参照できる。なお、本発明においては、耐熱性が高く揮散性の低い紫外線吸収剤が好ましい。かかる紫外線吸収剤としては、例えば、UVSORB101(富士フイルムファインケミカルズ株式会社製)、TINUVIN 360、TINUVIN 460、TINUVIN 1577(BASF社製)、LA-F70、LA-31、LA-46(ADEKA社製)などが挙げられる。
(UV absorber)
Examples of the ultraviolet absorber include a benzotriazole compound, a triazine compound, and a benzoxazine compound. Here, the benzotriazole compound is a compound having a benzotriazole ring, and specific examples thereof include various benzotriazole-based ultraviolet absorbers described in paragraph 0033 of JP2013-1111835. The triazine compound is a compound having a triazine ring, and specific examples thereof include various triazine-based ultraviolet absorbers described in paragraph 0033 of JP2013-1111835. As the benzoxazine compound, for example, those described in paragraph 0031 of JP-A-2014-209162 can be used. The content of the ultraviolet absorber in the base material is, for example, about 0.1 to 10 parts by mass with respect to 100 parts by mass of the polymer contained in the base material, but is not particularly limited. Further, regarding the ultraviolet absorber, reference is also made to paragraph 0032 of JP2013-1111835. In the present invention, an ultraviolet absorber having high heat resistance and low volatilization is preferable. Examples of such an ultraviolet absorber include UVSORB101 (manufactured by Fujifilm Fine Chemicals Co., Ltd.), TINUVIN 360, TINUVIN 460, TINUVIN 1577 (manufactured by BASF), LA-F70, LA-31, LA-46 (manufactured by ADEKA) and the like. Can be mentioned.
 基材は、透明性の観点から、基材に用いる柔軟性素材及び各種添加剤と、ポリマーとの屈折率の差が小さいことが好ましい。 From the viewpoint of transparency, it is preferable that the base material has a small difference in refractive index between the flexible material and various additives used for the base material and the polymer.
(イミド系ポリマーを含む基材)
 基材として、イミド系ポリマーを含む基材を好ましく用いることができる。本明細書において、イミド系ポリマーとは、式(PI)、式(a)、式(a’)及び式(b)で表される繰り返し構造単位を少なくとも1種以上含む重合体を意味する。なかでも、式(PI)で表される繰り返し構造単位が、イミド系ポリマーの主な構造単位であると、フィルムの強度及び透明性の観点で好ましい。式(PI)で表される繰り返し構造単位は、イミド系ポリマーの全繰り返し構造単位に対し、好ましくは40モル%以上であり、より好ましくは50モル%以上であり、さらに好ましくは70モル%以上であり、特に好ましくは90モル%以上であり、最も好ましくは98モル%以上である。
(Base material containing imide polymer)
As the base material, a base material containing an imide-based polymer can be preferably used. As used herein, the imide-based polymer means a polymer containing at least one repeating structural unit represented by the formula (PI), the formula (a), the formula (a') and the formula (b). Among them, it is preferable that the repeating structural unit represented by the formula (PI) is the main structural unit of the imide-based polymer from the viewpoint of film strength and transparency. The repeating structural unit represented by the formula (PI) is preferably 40 mol% or more, more preferably 50 mol% or more, still more preferably 70 mol% or more, based on all the repeating structural units of the imide-based polymer. It is particularly preferably 90 mol% or more, and most preferably 98 mol% or more.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 式(PI)中のGは4価の有機基を表し、Aは2価の有機基を表す。式(a)中のGは3価の有機基を表し、Aは2価の有機基を表す。式(a’)中のGは4価の有機基を表し、Aは2価の有機基を表す。式(b)中のG及びAは、それぞれ2価の有機基を表す。 G in the formula (PI) represents a tetravalent organic group, and A represents a divalent organic group. G 2 in the formula (a) represents a trivalent organic group, and A 2 represents a divalent organic group. G 3 in the formula (a') represents a tetravalent organic group, and A 3 represents a divalent organic group. G 4 and A 4 in the formula (b) represents each a divalent organic group.
 式(PI)中、Gで表される4価の有機基の有機基(以下、Gの有機基ということがある)としては、非環式脂肪族基、環式脂肪族基及び芳香族基からなる群から選ばれる基が挙げられる。Gの有機基は、イミド系ポリマーを含む基材の透明性及び屈曲性の観点から、4価の環式脂肪族基又は4価の芳香族基であることが好ましい。芳香族基としては、単環式芳香族基、縮合多環式芳香族基及び2以上の芳香族環を有しそれらが直接または結合基により相互に連結された非縮合多環式芳香族基等が挙げられる。基材の透明性及び着色の抑制の観点から、Gの有機基は、環式脂肪族基、フッ素系置換基を有する環式脂肪族基、フッ素系置換基を有する単環式芳香族基、フッ素系置換基を有する縮合多環式芳香族基又はフッ素系置換基を有する非縮合多環式芳香族基であることが好ましい。本明細書においてフッ素系置換基とは、フッ素原子を含む基を意味する。フッ素系置換基は、好ましくはフルオロ基(フッ素原子,-F)及びパーフルオロアルキル基であり、さらに好ましくはフルオロ基及びトリフルオロメチル基である。 In the formula (PI), the organic group of the tetravalent organic group represented by G (hereinafter, may be referred to as the organic group of G) includes an acyclic aliphatic group, a cyclic aliphatic group and an aromatic group. Examples are groups selected from the group consisting of. The organic group of G is preferably a tetravalent cyclic aliphatic group or a tetravalent aromatic group from the viewpoint of transparency and flexibility of the base material containing the imide polymer. The aromatic group includes a monocyclic aromatic group, a fused polycyclic aromatic group, and a non-condensed polycyclic aromatic group having two or more aromatic rings in which they are directly or linked to each other by a bonding group. And so on. From the viewpoint of transparency of the base material and suppression of coloring, the organic group of G is a cyclic aliphatic group, a cyclic aliphatic group having a fluorine-based substituent, a monocyclic aromatic group having a fluorine-based substituent, and the like. It is preferably a condensed polycyclic aromatic group having a fluorine-based substituent or a non-condensed polycyclic aromatic group having a fluorine-based substituent. In the present specification, the fluorine-based substituent means a group containing a fluorine atom. The fluorine-based substituent is preferably a fluoro group (fluorine atom, −F) and a perfluoroalkyl group, and more preferably a fluoro group and a trifluoromethyl group.
 より具体的には、Gの有機基は、例えば、飽和又は不飽和シクロアルキル基、飽和又は不飽和へテロシクロアルキル基、アリール基、ヘテロアリール基、アリールアルキル基、アルキルアリール基、ヘテロアルキルアリール基、及び、これらのうちの任意の2つの基(同一でもよい)を有しこれらが直接又は結合基により相互に連結された基から選ばれる。結合基としては、-O-、炭素数1~10のアルキレン基、-SO-、-CO-又は-CO-NR-(Rは、メチル基、エチル基、プロピル基等の炭素数1~3のアルキル基又は水素原子を表す)が挙げられる。 More specifically, the organic group of G is, for example, a saturated or unsaturated cycloalkyl group, a saturated or unsaturated heterocycloalkyl group, an aryl group, a heteroaryl group, an arylalkyl group, an alkylaryl group, a heteroalkylaryl. It is selected from groups that have a group and any two of these (which may be the same) and which are linked to each other directly or by a binding group. Examples of the bonding group include -O-, an alkylene group having 1 to 10 carbon atoms, -SO 2- , -CO- or -CO-NR- (R is a methyl group, an ethyl group, a propyl group and the like having 1 to 1 carbon atoms. (Representing an alkyl group of 3 or a hydrogen atom).
 Gで表される4価の有機基の炭素数は通常2~32であり、好ましくは4~15であり、より好ましくは5~10であり、さらに好ましくは6~8である。Gの有機基が環式脂肪族基又は芳香族基である場合、これらの基を構成する炭素原子のうちの少なくとも1つがヘテロ原子で置き換えられていてもよい。ヘテロ原子としては、O、N又はSが挙げられる。 The tetravalent organic group represented by G usually has 2 to 32 carbon atoms, preferably 4 to 15 carbon atoms, more preferably 5 to 10 carbon atoms, and even more preferably 6 to 8 carbon atoms. When the organic group of G is a cyclic aliphatic group or an aromatic group, at least one of the carbon atoms constituting these groups may be replaced with a heteroatom. Heteroatoms include O, N or S.
 Gの具体例としては、以下の式(20)、式(21)、式(22)、式(23)、式(24)、式(25)又は式(26)で表される基が挙げられる。式中の*は結合手を示す。式(26)中のZは、単結合、-O-、-CH-、-C(CH-、-Ar-O-Ar-、-Ar-CH-Ar-、-Ar-C(CH-Ar-又は-Ar-SO-Ar-を表す。Arは炭素数6~20のアリール基を表し、例えば、フェニレン基であってもよい。これらの基の水素原子のうち少なくとも1つが、フッ素系置換基で置換されていてもよい。 Specific examples of G include groups represented by the following equations (20), (21), (22), (23), (24), (25) or (26). Be done. * In the formula indicates a bond. Z in formula (26) is a single bond, -O-, -CH 2- , -C (CH 3 ) 2- , -Ar-O-Ar-, -Ar-CH 2 -Ar-, -Ar- Represents C (CH 3 ) 2- Ar- or -Ar-SO 2- Ar-. Ar represents an aryl group having 6 to 20 carbon atoms, and may be, for example, a phenylene group. At least one of the hydrogen atoms of these groups may be substituted with a fluorine-based substituent.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 式(PI)中、Aで表される2価の有機基の有機基(以下、Aの有機基ということがある)としては、非環式脂肪族基、環式脂肪族基及び芳香族基からなる群から選択される基が挙げられる。Aで表される2価の有機基は、2価の環式脂肪族基及び2価の芳香族基から選ばれることが好ましい。芳香族基としては、単環式芳香族基、縮合多環式芳香族基、及び2以上の芳香族環を有しそれらが直接または結合基により相互に連結された非縮合多環式芳香族基が挙げられる。基材の透明性、及び着色の抑制の観点から、Aの有機基には、フッ素系置換基が導入されていることが好ましい。 In the formula (PI), the organic group of the divalent organic group represented by A (hereinafter, may be referred to as the organic group of A) includes an acyclic aliphatic group, a cyclic aliphatic group and an aromatic group. Examples include groups selected from the group consisting of. The divalent organic group represented by A is preferably selected from a divalent cyclic aliphatic group and a divalent aromatic group. Aromatic groups include monocyclic aromatic groups, fused polycyclic aromatic groups, and non-condensed polycyclic aromatics having two or more aromatic rings, which are directly or interconnected by a bonding group. The group is mentioned. From the viewpoint of transparency of the base material and suppression of coloring, it is preferable that a fluorine-based substituent is introduced into the organic group of A.
 より具体的には、Aの有機基は、例えば、飽和又は不飽和シクロアルキル基、飽和又は不飽和へテロシクロアルキル基、アリール基、ヘテロアリール基、アリールアルキル基、アルキルアリール基、ヘテロアルキルアリール基、及びこれらの内の任意の2つの基(同一でもよい)を有しそれらが直接又は結合基により相互に連結された基から選ばれる。ヘテロ原子としては、O、N又はSが挙げられ、結合基としては、-O-、炭素数1~10のアルキレン基、-SO-、-CO-又は-CO-NR-(Rはメチル基、エチル基、プロピル基等の炭素数1~3のアルキル基又は水素原子を含む)が挙げられる。 More specifically, the organic group of A is, for example, a saturated or unsaturated cycloalkyl group, a saturated or unsaturated heterocycloalkyl group, an aryl group, a heteroaryl group, an arylalkyl group, an alkylaryl group, a heteroalkylaryl. It is selected from groups that have a group and any two of these (which may be the same) and to which they are linked directly or by a binding group. Examples of the heteroatom include O, N or S, and examples of the bonding group are -O-, an alkylene group having 1 to 10 carbon atoms, -SO 2- , -CO- or -CO-NR- (R is methyl). An alkyl group having 1 to 3 carbon atoms such as a group, an ethyl group, and a propyl group, or a hydrogen atom) can be mentioned.
 Aで表される2価の有機基の炭素数は、通常2~40であり、好ましくは5~32であり、より好ましくは12~28であり、さらに好ましくは24~27である。 The number of carbon atoms of the divalent organic group represented by A is usually 2 to 40, preferably 5 to 32, more preferably 12 to 28, and further preferably 24 to 27.
 Aの具体例としては、以下の式(30)、式(31)、式(32)、式(33)又は式(34)で表される基が挙げられる。式中の*は結合手を示す。Z~Zは、それぞれ独立して、単結合、-O-、-CH-、-C(CH-、-SO-、-CO-又は―CO―NR-(Rはメチル基、エチル基、プロピル基等の炭素数1~3のアルキル基又は水素原子を表す)を表す。下記の基において、ZとZ、及び、ZとZは、それぞれ、各環に対してメタ位又はパラ位にあることが好ましい。また、Zと末端の単結合、Zと末端の単結合、及び、Zと末端の単結合とは、それぞれメタ位又はパラ位にあることが好ましい。Aの1つの例において、Z及びZが-O-であり、かつ、Zが-CH-、-C(CH-又は-SO-である。これらの基の水素原子の1つ又は2つ以上が、フッ素系置換基で置換されていてもよい。 Specific examples of A include groups represented by the following formulas (30), formulas (31), formulas (32), formulas (33) or formulas (34). * In the formula indicates a bond. Z 1 to Z 3 are independently single-bonded, -O-, -CH 2- , -C (CH 3 ) 2- , -SO 2- , -CO- or -CO-NR- (R is Represents an alkyl group having 1 to 3 carbon atoms such as a methyl group, an ethyl group, and a propyl group, or a hydrogen atom). In the following groups, Z 1 and Z 2 and Z 2 and Z 3 are preferably in the meta or para position with respect to each ring, respectively. Further, it is preferable that the single bond between Z 1 and the terminal, the single bond between Z 2 and the terminal, and the single bond between Z 3 and the terminal are in the meta position or the para position, respectively. In one example of A, Z 1 and Z 3 are -O- and Z 2 is -CH 2- , -C (CH 3 ) 2- or -SO 2- . One or more of the hydrogen atoms of these groups may be substituted with fluorine-based substituents.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 A及びGの少なくとも一方を構成する水素原子のうちの少なくとも1つの水素原子が、フッ素系置換基、水酸基、スルホン基及び炭素数1~10のアルキル基等からなる群から選ばれる少なくとも1種の官能基で置換されていてもよい。また、Aの有機基及びGの有機基がそれぞれ環式脂肪族基又は芳香族基である場合に、A及びGの少なくとも一方がフッ素系置換基を有することが好ましく、A及びGの両方がフッ素系置換基を有することがより好ましい。 At least one hydrogen atom among the hydrogen atoms constituting at least one of A and G is selected from the group consisting of a fluorine-based substituent, a hydroxyl group, a sulfone group, an alkyl group having 1 to 10 carbon atoms, and the like. It may be substituted with a functional group. Further, when the organic group of A and the organic group of G are cyclic aliphatic groups or aromatic groups, respectively, it is preferable that at least one of A and G has a fluorine-based substituent, and both A and G have a fluorine-based substituent. It is more preferable to have a fluorine-based substituent.
 式(a)中のGは、3価の有機基である。この有機基は、3価の基である点以外は、式(PI)中のGの有機基と同様の基から選択することができる。Gの例としては、Gの具体例として挙げられた式(20)~式(26)で表される基の4つの結合手のうち、いずれか1つが水素原子に置き換わった基を挙げることができる。式(a)中のAは式(PI)中のAと同様の基から選択することができる。 G 2 in the formula (a) is a trivalent organic group. This organic group can be selected from the same groups as the organic group of G in the formula (PI) except that it is a trivalent group. As an example of G 2 , a group in which any one of the four bonds of the groups represented by the formulas (20) to (26) given as a specific example of G is replaced with a hydrogen atom is mentioned. Can be done. A 2 in formula (a) can be selected from the same groups as A in formula (PI).
 式(a’)中のGは、式(PI)中のGと同様の基から選択することができる。式(a’)中のAは、式(PI)中のAと同様の基から選択することができる。 G 3 in formula (a') can be selected from the same groups as G in formula (PI). A 3 in formula (a') can be selected from the same groups as A in formula (PI).
 式(b)中のGは、2価の有機基である。この有機基は、2価の基である点以外は、式(PI)中のGの有機基と同様の基から選択することができる。Gの例としては、Gの具体例として挙げられた式(20)~式(26)で表される基の4つの結合手のうち、いずれか2つが水素原子に置き換わった基を挙げることができる。式(b)中のAは、式(PI)中のAと同様の基から選択することができる。 G 4 in formula (b) is a divalent organic group. This organic group can be selected from the same groups as the organic group of G in the formula (PI) except that it is a divalent group. An example of G 4 is a group in which any two of the four bonds of the groups represented by the formulas (20) to (26) given as specific examples of G are replaced with hydrogen atoms. Can be done. A 4 in the formula (b) may be selected from the same groups as A in the formula (PI).
 イミド系ポリマーを含む基材に含まれるイミド系ポリマーは、ジアミン類と、テトラカルボン酸化合物(酸クロライド化合物およびテトラカルボン酸二無水物などのテトラカルボン酸化合物類縁体を含む)又はトリカルボン酸化合物(酸クロライド化合物及びトリカルボン酸無水物などのトリカルボン酸化合物類縁体を含む)の少なくとも1種類とを重縮合することによって得られる縮合型高分子であってもよい。さらにジカルボン酸化合物(酸クロライド化合物などの類縁体を含む)を重縮合させてもよい。式(PI)又は式(a’)で表される繰り返し構造単位は、通常、ジアミン類及びテトラカルボン酸化合物から誘導される。式(a)で表される繰り返し構造単位は、通常、ジアミン類及びトリカルボン酸化合物から誘導される。式(b)で表される繰り返し構造単位は、通常、ジアミン類及びジカルボン酸化合物から誘導される。 The imide-based polymer contained in the base material containing the imide-based polymer includes diamines and a tetracarboxylic acid compound (including a tetracarboxylic acid compound analog such as an acid chloride compound and a tetracarboxylic acid dianhydride) or a tricarboxylic acid compound (a tricarboxylic acid compound) It may be a condensed polymer obtained by polycondensing with at least one of (including an acid chloride compound and a tricarboxylic acid compound analog such as tricarboxylic acid anhydride). Further, a dicarboxylic acid compound (including an analog such as an acid chloride compound) may be polycondensed. The repeating structural unit represented by the formula (PI) or the formula (a') is usually derived from diamines and tetracarboxylic acid compounds. The repeating structural unit represented by the formula (a) is usually derived from diamines and tricarboxylic acid compounds. The repeating structural unit represented by the formula (b) is usually derived from diamines and dicarboxylic acid compounds.
 テトラカルボン酸化合物としては、芳香族テトラカルボン酸化合物、脂環式テトラカルボン酸化合物及び非環式脂肪族テトラカルボン酸化合物等が挙げられる。これらは、2種以上を併用してもよい。テトラカルボン酸化合物は、好ましくはテトラカルボン酸二無水物である。テトラカルボン酸二無水物としては、芳香族テトラカルボン酸二無水物、脂環式テトラカルボン酸二無水物、非環式脂肪族テトラカルボン酸二無水物が挙げられる。 Examples of the tetracarboxylic acid compound include an aromatic tetracarboxylic acid compound, an alicyclic tetracarboxylic acid compound, and an acyclic aliphatic tetracarboxylic acid compound. These may be used in combination of two or more. The tetracarboxylic acid compound is preferably a tetracarboxylic dianhydride. Examples of the tetracarboxylic dianhydride include aromatic tetracarboxylic dianhydride, alicyclic tetracarboxylic dianhydride, and acyclic aliphatic tetracarboxylic dianhydride.
 イミド系ポリマーの溶媒に対する溶解性、並びに基材を形成した場合の透明性及び屈曲性の観点から、テトラカルボン酸化合物は、脂環式テトラカルボン化合物又は芳香族テトラカルボン酸化合物等であることが好ましい。イミド系ポリマーを含む基材の透明性及び着色の抑制の観点から、テトラカルボン酸化合物は、フッ素系置換基を有する脂環式テトラカルボン酸化合物及びフッ素系置換基を有する芳香族テトラカルボン酸化合物から選ばれることが好ましく、フッ素系置換基を有する脂環式テトラカルボン酸化合物であることがさらに好ましい。 The tetracarboxylic acid compound may be an alicyclic tetracarboxylic acid compound, an aromatic tetracarboxylic acid compound, or the like from the viewpoint of solubility of the imide-based polymer in a solvent and transparency and flexibility when a base material is formed. preferable. From the viewpoint of transparency and suppression of coloring of the substrate containing the imide-based polymer, the tetracarboxylic acid compound is an alicyclic tetracarboxylic acid compound having a fluorine-based substituent and an aromatic tetracarboxylic acid compound having a fluorine-based substituent. It is preferably selected from, and more preferably an alicyclic tetracarboxylic acid compound having a fluorine-based substituent.
 トリカルボン酸化合物としては、芳香族トリカルボン酸、脂環式トリカルボン酸、非環式脂肪族トリカルボン酸及びそれらの類縁の酸クロライド化合物、酸無水物等が挙げられる。トリカルボン酸化合物は、好ましくは芳香族トリカルボン酸、脂環式トリカルボン酸、非環式脂肪族トリカルボン酸及びそれらの類縁の酸クロライド化合物から選ばれる。トリカルボン酸化合物は、2種以上を併用してもよい。 Examples of the tricarboxylic acid compound include aromatic tricarboxylic acids, alicyclic tricarboxylic acids, acyclic aliphatic tricarboxylic acids, acid chloride compounds related thereto, acid anhydrides and the like. The tricarboxylic acid compound is preferably selected from aromatic tricarboxylic acids, alicyclic tricarboxylic acids, acyclic aliphatic tricarboxylic acids and related acid chloride compounds thereof. Two or more kinds of tricarboxylic acid compounds may be used in combination.
 イミド系ポリマーの溶媒に対する溶解性、並びにイミド系ポリマーを含む基材を形成した場合の透明性及び屈曲性の観点から、トリカルボン酸化合物は、脂環式トリカルボン酸化合物又は芳香族トリカルボン酸化合物であることが好ましい。イミド系ポリマーを含む基材の透明性及び着色の抑制の観点から、トリカルボン酸化合物は、フッ素系置換基を有する脂環式トリカルボン酸化合物又はフッ素系置換基を有する芳香族トリカルボン酸化合物であることがより好ましい。 The tricarboxylic acid compound is an alicyclic tricarboxylic acid compound or an aromatic tricarboxylic acid compound from the viewpoint of the solubility of the imide-based polymer in a solvent and the transparency and flexibility when a substrate containing the imide-based polymer is formed. Is preferable. From the viewpoint of transparency and suppression of coloring of the base material containing the imide-based polymer, the tricarboxylic acid compound shall be an alicyclic tricarboxylic acid compound having a fluorine-based substituent or an aromatic tricarboxylic acid compound having a fluorine-based substituent. Is more preferable.
 ジカルボン酸化合物としては、芳香族ジカルボン酸、脂環式ジカルボン酸、非環式脂肪族ジカルボン酸及びそれらの類縁の酸クロライド化合物、酸無水物等が挙げられる。ジカルボン酸化合物は、好ましくは芳香族ジカルボン酸、脂環式ジカルボン酸、非環式脂肪族ジカルボン酸及びそれらの類縁の酸クロライド化合物から選ばれる。ジカルボン酸化合物は、2種以上併用してもよい。 Examples of the dicarboxylic acid compound include aromatic dicarboxylic acids, alicyclic dicarboxylic acids, acyclic aliphatic dicarboxylic acids, acid chloride compounds related thereto, acid anhydrides and the like. The dicarboxylic acid compound is preferably selected from aromatic dicarboxylic acids, alicyclic dicarboxylic acids, acyclic aliphatic dicarboxylic acids and related acid chloride compounds thereof. Two or more kinds of dicarboxylic acid compounds may be used in combination.
 イミド系ポリマーの溶媒に対する溶解性、並びにイミド系ポリマーを含む基材を形成した場合の透明性及び屈曲性の観点から、ジカルボン酸化合物は、脂環式ジカルボン酸化合物又は芳香族ジカルボン酸化合物であることが好ましい。イミド系ポリマーを含む基材の透明性及び着色の抑制の観点から、ジカルボン酸化合物は、フッ素系置換基を有する脂環式ジカルボン酸化合物又はフッ素系置換基を有する芳香族ジカルボン酸化合物であることがさらに好ましい。 The dicarboxylic acid compound is an alicyclic dicarboxylic acid compound or an aromatic dicarboxylic acid compound from the viewpoint of the solubility of the imide-based polymer in a solvent and the transparency and flexibility when a substrate containing the imide-based polymer is formed. Is preferable. From the viewpoint of transparency and suppression of coloring of the base material containing the imide-based polymer, the dicarboxylic acid compound shall be an alicyclic dicarboxylic acid compound having a fluorine-based substituent or an aromatic dicarboxylic acid compound having a fluorine-based substituent. Is even more preferable.
 ジアミン類としては、芳香族ジアミン、脂環式ジアミン及び脂肪族ジアミンが挙げられ、これらは2種以上併用してもよい。イミド系ポリマーの溶媒に対する溶解性、並びにイミド系ポリマーを含む基材を形成した場合の透明性及び屈曲性の観点から、ジアミン類は、脂環式ジアミン及びフッ素系置換基を有する芳香族ジアミンから選ばれることが好ましい。 Examples of diamines include aromatic diamines, alicyclic diamines and aliphatic diamines, and two or more of these may be used in combination. From the viewpoint of the solubility of the imide polymer in the solvent and the transparency and flexibility when the base material containing the imide polymer is formed, the diamines are selected from alicyclic diamines and aromatic diamines having a fluorine-based substituent. It is preferable to be selected.
 このようなイミド系ポリマーを使用すれば、特に優れた屈曲性を有し、高い光透過率(例えば、550nmの光に対して85%以上、好ましくは88%以上)、低い黄色度(YI値、5以下、好ましくは3以下)、及び低いヘイズ(1.5%以下、好ましくは1.0%以下)を有する基材が得られ易い。 When such an imide polymer is used, it has particularly excellent flexibility, high light transmittance (for example, 85% or more, preferably 88% or more with respect to light at 550 nm), and low yellowness (YI value). It is easy to obtain a substrate having 5, 5 or less, preferably 3 or less), and a low haze (1.5% or less, preferably 1.0% or less).
 イミド系ポリマーは、異なる複数の種類の上記の繰り返し構造単位を含む共重合体でもよい。ポリイミド系高分子の重量平均分子量は、通常10,000~500,000である。イミド系ポリマーの重量平均分子量は、好ましくは、50,000~500,000であり、さらに好ましくは70,000~400,000である。重量平均分子量は、ゲル浸透クロマトグラフィー(Gel Permeation Chromatography;GPC)で測定した標準ポリスチレン換算分子量である。イミド系ポリマーの重量平均分子量が大きいと高い屈曲性を得られやすい傾向があるが、イミド系ポリマーの重量平均分子量が大きすぎると、ワニスの粘度が高くなり、加工性が低下する傾向がある。 The imide-based polymer may be a copolymer containing a plurality of different types of the above-mentioned repeating structural units. The weight average molecular weight of the polyimide polymer is usually 10,000 to 500,000. The weight average molecular weight of the imide polymer is preferably 50,000 to 500,000, more preferably 70,000 to 400,000. The weight average molecular weight is a standard polystyrene-equivalent molecular weight measured by gel permeation chromatography (GPC). If the weight average molecular weight of the imide-based polymer is large, high flexibility tends to be easily obtained, but if the weight average molecular weight of the imide-based polymer is too large, the viscosity of the varnish tends to be high and the processability tends to be lowered.
 イミド系ポリマーは、上述のフッ素系置換基等によって導入できるフッ素原子等のハロゲン原子を含んでいてもよい。ポリイミド系高分子がハロゲン原子を含むことにより、イミド系ポリマーを含む基材の弾性率を向上させ且つ黄色度を低減させることができる。これにより、ハードコートフィルムに発生するキズ及びシワ等が抑制され、且つ、イミド系ポリマーを含む基材の透明性を向上させることができる。ハロゲン原子として好ましくは、フッ素原子である。ポリイミド系高分子におけるハロゲン原子の含有量は、ポリイミド系高分子の質量を基準として、1~40質量%であることが好ましく、1~30質量%であることがより好ましい。 The imide-based polymer may contain a halogen atom such as a fluorine atom that can be introduced by the above-mentioned fluorine-based substituent or the like. When the polyimide polymer contains a halogen atom, the elastic modulus of the base material containing the imide polymer can be improved and the yellowness can be reduced. As a result, scratches and wrinkles generated on the hard coat film can be suppressed, and the transparency of the base material containing the imide polymer can be improved. The halogen atom is preferably a fluorine atom. The content of halogen atoms in the polyimide-based polymer is preferably 1 to 40% by mass, more preferably 1 to 30% by mass, based on the mass of the polyimide-based polymer.
 イミド系ポリマーを含む基材は、1種又は2種以上の紫外線吸収剤を含有していてもよい。紫外線吸収剤は、樹脂材料の分野で紫外線吸収剤として通常用いられているものから、適宜選択することができる。紫外線吸収剤は、400nm以下の波長の光を吸収する化合物を含んでいてもよい。イミド系ポリマーと適切に組み合わせることのできる紫外線吸収剤は、例えば、ベンゾフェノン系化合物、サリシレート系化合物、ベンゾトリアゾール系化合物及びトリアジン系化合物からなる群より選ばれる少なくとも1種の化合物が挙げられる。
 本明細書において、「系化合物」とは、「系化合物」が付される化合物の誘導体を指す。例えば、「ベンゾフェノン系化合物」とは、母体骨格としてのベンゾフェノンと、ベンゾフェノンに結合している置換基とを有する化合物を指す。
The base material containing the imide-based polymer may contain one kind or two or more kinds of ultraviolet absorbers. The ultraviolet absorber can be appropriately selected from those usually used as an ultraviolet absorber in the field of resin materials. The ultraviolet absorber may contain a compound that absorbs light having a wavelength of 400 nm or less. Examples of the ultraviolet absorber that can be appropriately combined with the imide polymer include at least one compound selected from the group consisting of benzophenone compounds, salicylate compounds, benzotriazole compounds and triazine compounds.
In the present specification, the "system compound" refers to a derivative of a compound to which the "system compound" is attached. For example, the "benzophenone-based compound" refers to a compound having a benzophenone as a maternal skeleton and a substituent attached to the benzophenone.
 紫外線吸収剤の含有量は、基材の全体質量に対して、通常1質量%以上であり、好ましくは2質量%以上であり、より好ましくは3質量%以上であり、通常10質量%以下であり、好ましくは8質量%以下であり、より好ましくは6質量%以下である。紫外線吸収剤がこれらの量で含まれることで、基材の耐候性を高めることができる。 The content of the ultraviolet absorber is usually 1% by mass or more, preferably 2% by mass or more, more preferably 3% by mass or more, and usually 10% by mass or less, based on the total mass of the base material. Yes, preferably 8% by mass or less, and more preferably 6% by mass or less. By including the ultraviolet absorber in these amounts, the weather resistance of the base material can be enhanced.
 イミド系ポリマーを含む基材は、無機粒子等の無機材料を更に含有していてもよい。無機材料は、ケイ素原子を含むケイ素材料が好ましい。イミド系ポリマーを含む基材がケイ素材料等の無機材料を含有することで、イミド系ポリマーを含む基材の引張弾性率を容易に4.0GPa以上とすることができる。ただし、イミド系ポリマーを含む基材の引張弾性率を制御する方法は、無機材料の配合に限られない。 The base material containing the imide-based polymer may further contain an inorganic material such as inorganic particles. The inorganic material is preferably a silicon material containing a silicon atom. When the base material containing the imide-based polymer contains an inorganic material such as a silicon material, the tensile elastic modulus of the base material containing the imide-based polymer can be easily set to 4.0 GPa or more. However, the method of controlling the tensile elastic modulus of the base material containing the imide polymer is not limited to the blending of the inorganic material.
 ケイ素原子を含むケイ素材料としては、シリカ粒子、オルトケイ酸テトラエチル(TEOS)等の4級アルコキシシラン、シルセスキオキサン誘導体等のケイ素化合物が挙げられる。これらのケイ素材料の中でも、イミド系ポリマーを含む基材の透明性及び屈曲性の観点から、シリカ粒子が好ましい。 Examples of the silicon material containing a silicon atom include silica particles, a quaternary alkoxysilane such as tetraethyl orthosilicate (TEOS), and a silicon compound such as a silsesquioxane derivative. Among these silicon materials, silica particles are preferable from the viewpoint of transparency and flexibility of the base material containing the imide polymer.
 シリカ粒子の平均一次粒子径は、通常、100nm以下である。シリカ粒子の平均一次粒子径が100nm以下であると透明性が向上する傾向がある。 The average primary particle size of silica particles is usually 100 nm or less. When the average primary particle diameter of the silica particles is 100 nm or less, the transparency tends to be improved.
 イミド系ポリマーを含む基材中のシリカ粒子の平均一次粒子径は、透過型電子顕微鏡(TEM)による観察で求めることができる。シリカ粒子の一次粒子径は、透過型電子顕微鏡(TEM)による定方向径とすることができる。平均一次粒子径は、TEM観察により一次粒子径を10点測定し、それらの平均値として求めることができる。イミド系ポリマーを含む基材を形成する前のシリカ粒子の粒子分布は、市販のレーザー回折式粒度分布計により求めることができる。 The average primary particle size of the silica particles in the substrate containing the imide polymer can be determined by observation with a transmission electron microscope (TEM). The primary particle diameter of the silica particles can be a directional diameter measured by a transmission electron microscope (TEM). The average primary particle size can be obtained by measuring 10 points of the primary particle size by TEM observation and as an average value thereof. The particle distribution of the silica particles before forming the base material containing the imide-based polymer can be obtained by a commercially available laser diffraction type particle size distribution meter.
 イミド系ポリマーを含む基材において、イミド系ポリマーと無機材料との配合比は、両者の合計を10として、質量比で、1:9~10:0であることが好ましく、3:7~10:0であることがより好ましく、3:7~8:2であることがさらに好ましく、3:7~7:3であることがよりさらに好ましい。イミド系ポリマー及び無機材料の合計質量に対する無機材料の割合は、通常20質量%以上であり、好ましくは30質量%以上であり、通常90質量%以下であり、好ましくは70質量%以下である。イミド系ポリマーと無機材料(ケイ素材料)との配合比が上記の範囲内であると、イミド系ポリマーを含む基材の透明性及び機械的強度が向上する傾向がある。また、イミド系ポリマーを含む基材の引張弾性率を容易に4.0GPa以上とすることができる。 In the base material containing the imide-based polymer, the blending ratio of the imide-based polymer and the inorganic material is preferably 1: 9 to 10: 0 in terms of mass ratio, with the total of both being 10 and 3: 7 to 10 : 0 is more preferable, 3: 7 to 8: 2 is more preferable, and 3: 7 to 7: 3 is even more preferable. The ratio of the inorganic material to the total mass of the imide-based polymer and the inorganic material is usually 20% by mass or more, preferably 30% by mass or more, usually 90% by mass or less, and preferably 70% by mass or less. When the blending ratio of the imide-based polymer and the inorganic material (silicon material) is within the above range, the transparency and mechanical strength of the base material containing the imide-based polymer tend to be improved. Further, the tensile elastic modulus of the base material containing the imide-based polymer can be easily set to 4.0 GPa or more.
 イミド系ポリマーを含む基材は、透明性及び屈曲性を著しく損なわない範囲で、イミド系ポリマー及び無機材料以外の成分を更に含有していてもよい。イミド系ポリマー及び無機材料以外の成分としては、例えば、酸化防止剤、離型剤、安定剤、ブルーイング剤等の着色剤、難燃剤、滑剤、増粘剤及びレベリング剤が挙げられる。イミド系ポリマー及び無機材料以外の成分の割合は、基材の質量に対して、0%を超えて20質量%以下であることが好ましく、さらに好ましくは0%を超えて10質量%以下である。 The base material containing the imide polymer may further contain components other than the imide polymer and the inorganic material as long as the transparency and flexibility are not significantly impaired. Examples of components other than the imide polymer and the inorganic material include colorants such as antioxidants, mold release agents, stabilizers and bluing agents, flame retardants, lubricants, thickeners and leveling agents. The ratio of the components other than the imide polymer and the inorganic material is preferably more than 0% and 20% by mass or less, and more preferably more than 0% and 10% by mass or less with respect to the mass of the base material. ..
 イミド系ポリマーを含む基材がイミド系ポリマー及びケイ素材料を含有するとき、少なくとも一方の面における、窒素原子に対するケイ素原子の原子数比であるSi/Nが8以上であることが好ましい。この原子数比Si/Nは、X線光電子分光(X-ray Photoelectron Spectroscopy、XPS)によって、イミド系ポリマーを含む基材の組成を評価し、これによって得られたケイ素原子の存在量と窒素原子の存在量から算出される値である。 When the base material containing the imide-based polymer contains the imide-based polymer and the silicon material, it is preferable that Si / N, which is the ratio of the number of atoms of the silicon atom to the nitrogen atom on at least one surface, is 8 or more. The atomic number ratio Si / N is determined by evaluating the composition of the base material containing an imide-based polymer by X-ray Photoelectron Spectroscopy (XPS), and the abundance of silicon atoms and nitrogen atoms obtained thereby. It is a value calculated from the abundance of.
 イミド系ポリマーを含む基材の少なくとも一方の面におけるSi/Nが8以上であることにより、ハードコート層との充分な密着性が得られる。密着性の観点から、Si/Nは、9以上であることがより好ましく、10以上であることがさらに好ましく、50以下であることが好ましく、40以下であることがより好ましい。 When the Si / N on at least one surface of the substrate containing the imide-based polymer is 8 or more, sufficient adhesion to the hard coat layer can be obtained. From the viewpoint of adhesion, the Si / N is more preferably 9 or more, further preferably 10 or more, preferably 50 or less, and more preferably 40 or less.
(基材の厚み)
 基材はフィルム状であることが好ましい。
 基材の厚みは、100μm以下であることがより好ましく、80μm以下であることが更に好ましく、50μm以下が最も好ましい。基材の厚みが薄くなれば、折り曲げ時の表面と裏面の曲率差が小さくなり、クラック等が発生し難くなり、複数回の折れ曲げでも、基材の破断が生じなくなる。一方、基材の取り扱いの容易さの観点から基材の厚みは3μm以上であることが好ましく、5μm以上であることがより好ましく、15μm以上が最も好ましい。
(Thickness of base material)
The base material is preferably in the form of a film.
The thickness of the base material is more preferably 100 μm or less, further preferably 80 μm or less, and most preferably 50 μm or less. When the thickness of the base material is reduced, the difference in curvature between the front surface and the back surface at the time of bending becomes small, cracks and the like are less likely to occur, and the base material is not broken even when bent a plurality of times. On the other hand, from the viewpoint of ease of handling of the base material, the thickness of the base material is preferably 3 μm or more, more preferably 5 μm or more, and most preferably 15 μm or more.
(基材の作製方法)
 基材は、熱可塑性のポリマーを熱溶融して製膜しても良いし、ポリマーを均一に溶解した溶液から溶液製膜(ソルベントキャスト法)によって製膜しても良い。熱溶融製膜の場合は、上述の柔軟化素材及び種々の添加剤を、熱溶融時に加えることができる。一方、基材を溶液製膜法で作製する場合は、ポリマー溶液(以下、ドープともいう)には、各調製工程において上述の柔軟化素材及び種々の添加剤を加えることができる。またその添加する時期はドープ作製工程において何れでも添加しても良いが、ドープ調製工程の最後の調製工程に添加剤を添加し調製する工程を加えて行ってもよい。
(Method of producing base material)
The substrate may be formed by thermally melting a thermoplastic polymer to form a film, or may be formed from a solution in which the polymer is uniformly dissolved by a solution film forming (solvent casting method). In the case of heat melting film formation, the above-mentioned softening material and various additives can be added at the time of heat melting. On the other hand, when the base material is prepared by the solution film forming method, the above-mentioned softening material and various additives can be added to the polymer solution (hereinafter, also referred to as dope) in each preparation step. Further, the timing of addition may be any in the dope preparation step, but the step of adding and preparing the additive may be added to the final preparation step of the dope preparation step.
 塗膜の乾燥、及び/又はベーキングのために、塗膜を加熱してもよい。塗膜の加熱温度は、通常50~350℃である。塗膜の加熱は、不活性雰囲気下又は減圧下で行ってもよい。塗膜を加熱することにより溶媒を蒸発させ、除去することができる。基材は、塗膜を50~150℃で乾燥する工程と、乾燥後の塗膜を180~350℃でベーキングする工程とを含む方法により、形成されてもよい。 The coating film may be heated for drying and / or baking of the coating film. The heating temperature of the coating film is usually 50 to 350 ° C. The coating film may be heated under an inert atmosphere or under reduced pressure. The solvent can be evaporated and removed by heating the coating film. The base material may be formed by a method including a step of drying the coating film at 50 to 150 ° C. and a step of baking the dried coating film at 180 to 350 ° C.
 基材の少なくとも一方の面には、表面処理を施してもよい。 Surface treatment may be applied to at least one surface of the base material.
<ハードコート層>
 本発明のハードコートフィルムは上記樹脂組成物の硬化物を含むハードコート層を有する。
 ハードコート層は、基材の少なくとも一方の面上に形成されていることが好ましい。
 本発明のハードコートフィルムが後述の耐擦傷層を有する場合は、少なくとも1層のハードコート層を、基材と耐擦傷層との間に有することが好ましい。
<Hard coat layer>
The hard coat film of the present invention has a hard coat layer containing a cured product of the above resin composition.
The hard coat layer is preferably formed on at least one surface of the substrate.
When the hard coat film of the present invention has a scratch resistant layer described later, it is preferable to have at least one hard coat layer between the base material and the scratch resistant layer.
(樹脂組成物の硬化物)
 本発明のハードコートフィルムのハードコート層は、ポリオルガノシルセスキオキサン(a1)を含む樹脂組成物の硬化物を含むものであり、好ましくは、ポリオルガノシルセスキオキサン(a1)及び重合開始剤を含む樹脂組成物の硬化物を含むものである。
 樹脂組成物の硬化物は、少なくとも、ポリオルガノシルセスキオキサン(a1)の架橋性基が重合反応により結合してなる硬化物を含むことが好ましい。
 本発明のハードコートフィルムのハードコート層における、上記樹脂組成物の硬化物の含有率は、50質量%以上であることが好ましく、60質量%以上であることがより好ましく、70質量%以上であることが更に好ましい。
(Cured product of resin composition)
The hard coat layer of the hard coat film of the present invention contains a cured product of a resin composition containing polyorganosylsesquioxane (a1), and preferably polyorganosylsesquioxane (a1) and polymerization initiation. It contains a cured product of a resin composition containing an agent.
The cured product of the resin composition preferably contains at least a cured product formed by bonding the crosslinkable groups of polyorganosylsesquioxane (a1) by a polymerization reaction.
The content of the cured product of the resin composition in the hard coat layer of the hard coat film of the present invention is preferably 50% by mass or more, more preferably 60% by mass or more, and 70% by mass or more. It is more preferable to have.
(ハードコート層の膜厚)
 ハードコート層の膜厚は特に限定されないが、0.5~30μmであることが好ましく、1~25μmであることがより好ましく、2~20μmであることが更に好ましい。
 ハードコート層の膜厚は、ハードコートフィルムの断面を光学顕微鏡で観察して算出する。断面試料は、断面切削装置ウルトラミクロトームを用いたミクロトーム法や、集束イオンビーム(FIB)装置を用いた断面加工法などにより作成できる。
(Thickness of hard coat layer)
The film thickness of the hard coat layer is not particularly limited, but is preferably 0.5 to 30 μm, more preferably 1 to 25 μm, and even more preferably 2 to 20 μm.
The film thickness of the hard coat layer is calculated by observing the cross section of the hard coat film with an optical microscope. The cross-section sample can be prepared by a microtome method using a cross-section cutting device Ultra Microtome, a cross-section processing method using a focused ion beam (FIB) device, or the like.
<耐擦傷層>
 本発明のハードコートフィルムはさらに耐擦傷層を有することが好ましい。
 本発明のハードコートフィルムが耐擦傷層を有する場合、少なくとも1層の耐擦傷層を、ハードコート層の基材と反対側の表面上に有することが好ましい。
 本発明のハードコートフィルムの耐擦傷層は、ラジカル重合性化合物(c1)を含む耐擦傷層形成用組成物の硬化物を含むことが好ましい。
<Scratch resistant layer>
The hard coat film of the present invention preferably further has a scratch resistant layer.
When the hard coat film of the present invention has a scratch resistant layer, it is preferable to have at least one scratch resistant layer on the surface opposite to the base material of the hard coat layer.
The scratch-resistant layer of the hard coat film of the present invention preferably contains a cured product of a composition for forming a scratch-resistant layer containing a radically polymerizable compound (c1).
(ラジカル重合性化合物(c1))
 ラジカル重合性化合物(c1)(「化合物(c1)」ともいう。)について説明する。
 化合物(c1)は、ラジカル重合性基を有する化合物である。
 化合物(c1)におけるラジカル重合性基としては、特に限定されず、一般に知られているラジカル重合性基を用いることができる。ラジカル重合性基としては、重合性不飽和基が挙げられ、具体的には、(メタ)アクリロイル基、ビニル基、アリル基などが挙げられ、(メタ)アクリロイル基が好ましい。なお、上記した各基は置換基を有していてもよい。
 化合物(c1)は、1分子中に2個以上の(メタ)アクリロイル基を有する化合物であることが好ましく、1分子中に3個以上の(メタ)アクリロイル基を有する化合物であることがより好ましい。
 化合物(c1)の分子量は特に限定されず、モノマーでもよいし、オリゴマーでもよいし、ポリマーでもよい。
 上記化合物(c1)の具体例を以下に示すが、本発明はこれらに限定されない。
 1分子中に2個の(メタ)アクリロイル基を有する化合物としては、ネオペンチルグリコールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート等が好適に例示される。
 1分子中に3個以上の(メタ)アクリロイル基を有する化合物としては、多価アルコールと(メタ)アクリル酸とのエステルが挙げられる。具体的には、ペンタエリスリトールトリ(メタ)アクリレート,ペンタエリスリトールテトラ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート,ペンタエリスリトールヘキサ(メタ)アクリレートなどが挙げられるが、高架橋という点ではペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、もしくはジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、又はこれらの混合物が好ましい。
(Radical polymerizable compound (c1))
The radically polymerizable compound (c1) (also referred to as “compound (c1)”) will be described.
Compound (c1) is a compound having a radically polymerizable group.
The radically polymerizable group in the compound (c1) is not particularly limited, and a generally known radically polymerizable group can be used. Examples of the radically polymerizable group include a polymerizable unsaturated group, and specific examples thereof include a (meth) acryloyl group, a vinyl group, and an allyl group, and a (meth) acryloyl group is preferable. In addition, each group mentioned above may have a substituent.
The compound (c1) is preferably a compound having two or more (meth) acryloyl groups in one molecule, and more preferably a compound having three or more (meth) acryloyl groups in one molecule. ..
The molecular weight of the compound (c1) is not particularly limited, and it may be a monomer, an oligomer, or a polymer.
Specific examples of the above compound (c1) are shown below, but the present invention is not limited thereto.
Examples of the compound having two (meth) acryloyl groups in one molecule include neopentyl glycol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, dipropylene glycol di (meth) acrylate, and tripropylene. Glycoldi (meth) acrylate, tetraethylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate of hydroxypivalate, polyethylene glycol di (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl ( Preferable examples thereof include meta) acrylate and dicyclopentanyldi (meth) acrylate.
Examples of the compound having three or more (meth) acryloyl groups in one molecule include esters of a polyhydric alcohol and (meth) acrylic acid. Specifically, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolethanetri (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, dipenta. Elythritol tetra (meth) acrylate, dipentaerythritol pentaacrylate, dipentaerythritol hexaacrylate, pentaerythritol hexa (meth) acrylate, etc. can be mentioned, but in terms of high cross-linking, pentaerythritol triacrylate, pentaerythritol tetraacrylate, or dipentaerythritol Pentaacrylate, dipentaerythritol hexaacrylate, or a mixture thereof is preferable.
 化合物(c1)は一種のみ用いてもよく、構造の異なる二種以上を併用してもよい。 Only one type of compound (c1) may be used, or two or more types having different structures may be used in combination.
 耐擦傷層形成用組成物中の化合物(c1)の含有率は、耐擦傷層形成用組成物中の全固形分に対して、80質量%以上であることが好ましく、85質量%以上がより好ましく、90質量%以上が更に好ましい。 The content of the compound (c1) in the scratch-resistant layer forming composition is preferably 80% by mass or more, more preferably 85% by mass or more, based on the total solid content in the scratch-resistant layer forming composition. It is preferable, and 90% by mass or more is more preferable.
(ラジカル重合開始剤)
 本発明における耐擦傷層形成用組成物は、ラジカル重合開始剤を含むことが好ましい。
 ラジカル重合開始剤は一種のみ用いてもよく、構造の異なる二種以上を併用してもよい。また、ラジカル重合開始剤は光重合開始剤でも良く、熱重合開始剤でも良い。
 耐擦傷層形成用組成物中のラジカル重合開始剤の含有率は、特に限定されるものではないが、例えば化合物(c1)100質量部に対して、0.1~200質量部が好ましく、1~50質量部がより好ましい。
(Radical polymerization initiator)
The scratch-resistant layer-forming composition in the present invention preferably contains a radical polymerization initiator.
Only one type of radical polymerization initiator may be used, or two or more types having different structures may be used in combination. Further, the radical polymerization initiator may be a photopolymerization initiator or a thermal polymerization initiator.
The content of the radical polymerization initiator in the scratch-resistant layer forming composition is not particularly limited, but is preferably 0.1 to 200 parts by mass with respect to 100 parts by mass of the compound (c1), for example. ~ 50 parts by mass is more preferable.
(溶媒)
 本発明における耐擦傷層形成用組成物は、溶媒を含んでいてもよい。
 溶媒としては、前述の樹脂組成物が含んでいてもよい溶媒と同様である。
 本発明における耐擦傷層形成用組成物における溶媒の含有率は、耐擦傷層形成用組成物の塗布適性を確保できる範囲で適宜調整することができる。例えば、耐擦傷層形成用組成物の全固形分100質量部に対して、50~500質量部とすることができ、好ましくは80~200質量部とすることができる。
 耐擦傷層形成用組成物は、通常、液の形態をとる。
 耐擦傷層形成用組成物の固形分の濃度は、通常、10~90質量%程度であり、好ましくは20~80質量%、特に好ましくは40~70質量%程度である。
(solvent)
The scratch-resistant layer-forming composition in the present invention may contain a solvent.
The solvent is the same as the solvent that may be contained in the above-mentioned resin composition.
The content of the solvent in the scratch-resistant layer-forming composition in the present invention can be appropriately adjusted within a range in which the coating suitability of the scratch-resistant layer-forming composition can be ensured. For example, it can be 50 to 500 parts by mass, preferably 80 to 200 parts by mass with respect to 100 parts by mass of the total solid content of the scratch-resistant layer forming composition.
The scratch-resistant layer-forming composition usually takes the form of a liquid.
The concentration of the solid content of the scratch-resistant layer forming composition is usually about 10 to 90% by mass, preferably about 20 to 80% by mass, and particularly preferably about 40 to 70% by mass.
(その他添加剤)
 耐擦傷層形成用組成物は、上記以外の成分を含有していてもよく、たとえば、無機粒子、レベリング剤、防汚剤、帯電防止剤、滑り剤、溶媒等を含有していてもよい。
 特に、滑り剤として下記の含フッ素化合物を含有することが好ましい。
(Other additives)
The scratch-resistant layer forming composition may contain components other than the above, and may contain, for example, inorganic particles, a leveling agent, an antifouling agent, an antistatic agent, a slip agent, a solvent and the like.
In particular, it is preferable to contain the following fluorine-containing compound as a slip agent.
[含フッ素化合物]
 含フッ素化合物は、モノマー、オリゴマー、ポリマーいずれでもよい。含フッ素化合物は、耐擦傷層中で化合物(c1)との結合形成あるいは相溶性に寄与する置換基を有していることが好ましい。この置換基は同一であっても異なっていてもよく、複数個あることが好ましい。
 この置換基は重合性基が好ましく、ラジカル重合性、カチオン重合性、アニオン重合性、縮重合性及び付加重合性のうちいずれかを示す重合性反応基であればよく、好ましい置換基の例としては、アクリロイル基、メタクリロイル基、ビニル基、アリル基、シンナモイル基、エポキシ基、オキセタニル基、水酸基、ポリオキシアルキレン基、カルボキシル基、アミノ基が挙げられる。その中でもラジカル重合性基が好ましく、中でもアクリロイル基、メタクリロイル基が特に好ましい。
 含フッ素化合物はフッ素原子を含まない化合物とのポリマーであってもオリゴマーであってもよい。
[Fluorine-containing compound]
The fluorine-containing compound may be a monomer, an oligomer, or a polymer. The fluorine-containing compound preferably has a substituent that contributes to bond formation or compatibility with the compound (c1) in the scratch-resistant layer. The substituents may be the same or different, and it is preferable that there are a plurality of the substituents.
The substituent is preferably a polymerizable group, and may be a polymerizable reactive group exhibiting any one of radical polymerizable, cationically polymerizable, anionic polymerizable, contractile polymerizable and addition polymerizable, as an example of a preferable substituent. Examples include acryloyl group, methacryloyl group, vinyl group, allyl group, cinnamoyl group, epoxy group, oxetanyl group, hydroxyl group, polyoxyalkylene group, carboxyl group and amino group. Among them, a radically polymerizable group is preferable, and an acryloyl group and a methacryloyl group are particularly preferable.
The fluorine-containing compound may be a polymer or an oligomer with a compound containing no fluorine atom.
 上記含フッ素化合物は、下記一般式(F)で表されるフッ素系化合物が好ましい。
 一般式(F): (R)-[(W)-(Rnfmf
 (式中、Rは(パー)フルオロアルキル基又は(パー)フルオロポリエーテル基、Wは単結合又は連結基、Rは重合性不飽和基を表す。nfは1~3の整数を表す。mfは1~3の整数を表す。)
The fluorine-containing compound is preferably a fluorine-based compound represented by the following general formula (F).
General formula (F): (R f )-[(W)-( RA ) nf ] mf
(In the formula, R f represents a (per) fluoroalkyl group or (per) fluoropolyether group, W represents a single bond or a linking group, RA represents a polymerizable unsaturated group, and nf represents an integer of 1 to 3. .Mf represents an integer of 1 to 3.)
 一般式(F)において、Rは重合性不飽和基を表す。重合性不飽和基は、紫外線や電子線などの活性エネルギー線を照射することによりラジカル重合反応を起こしうる不飽和結合を有する基(すなわち、ラジカル重合性基)であることが好ましく、(メタ)アクリロイル基、(メタ)アクリロイルオキシ基、ビニル基、アリル基などが挙げられ、(メタ)アクリロイル基、(メタ)アクリロイルオキシ基、及びこれらの基における任意の水素原子がフッ素原子に置換された基が好ましく用いられる。 In the general formula (F), RA represents a polymerizable unsaturated group. The polymerizable unsaturated group is preferably a group having an unsaturated bond (that is, a radically polymerizable group) capable of causing a radical polymerization reaction by irradiating with an active energy ray such as an ultraviolet ray or an electron beam, and (meth). Examples include acryloyl group, (meth) acryloyloxy group, vinyl group, allyl group, etc., (meth) acryloyl group, (meth) acryloyloxy group, and a group in which any hydrogen atom in these groups is substituted with a fluorine atom. Is preferably used.
 一般式(F)において、Rは(パー)フルオロアルキル基又は(パー)フルオロポリエーテル基を表す。
 ここで、(パー)フルオロアルキル基は、フルオロアルキル基及びパーフルオロアルキル基のうち少なくとも1種を表し、(パー)フルオロポリエーテル基は、フルオロポリエーテル基及びパーフルオロポリエーテル基のうち少なくとも1種を表す。耐擦傷性の観点では、R中のフッ素含有率は高いほうが好ましい。
In the general formula (F), R f represents a (per) fluoroalkyl group or a (per) fluoropolyether group.
Here, the (per) fluoroalkyl group represents at least one of a fluoroalkyl group and a perfluoroalkyl group, and the (per) fluoropolyether group is at least one of a fluoropolyether group and a perfluoropolyether group. Represents a species. From the viewpoint of scratch resistance, it is preferable that the fluorine content in R f is high.
 (パー)フルオロアルキル基は、炭素数1~20の基が好ましく、より好ましくは炭素数1~10の基である。
 (パー)フルオロアルキル基は、直鎖構造(例えば-CFCF、-CH(CFH、-CH(CFCF、-CHCH(CFH)であっても、分岐構造(例えば-CH(CF、-CHCF(CF、-CH(CH)CFCF、-CH(CH)(CFCFH)であっても、脂環式構造(好ましくは5員環又は6員環で、例えばパーフルオロシクロへキシル基及びパーフルオロシクロペンチル基並びにこれらの基で置換されたアルキル基)であってもよい。
The (par) fluoroalkyl group is preferably a group having 1 to 20 carbon atoms, and more preferably a group having 1 to 10 carbon atoms.
The (par) fluoroalkyl group has a linear structure (for example, -CF 2 CF 3 , -CH 2 (CF 2 ) 4 H, -CH 2 (CF 2 ) 8 CF 3 , -CH 2 CH 2 (CF 2 ) 4 Even if it is H), it has a branched structure (for example, -CH (CF 3 ) 2 , -CH 2 CF (CF 3 ) 2 , -CH (CH 3 ) CF 2 CF 3 , -CH (CH 3 ) (CF 2 ). 5 even CF 2 H), alicyclic structure (preferably a 5- or 6-membered ring, for example perfluoro hexyl group, and a perfluorocyclopentyl group to cycloalkyl and alkyl groups substituted with these groups) There may be.
 (パー)フルオロポリエーテル基は、(パー)フルオロアルキル基がエーテル結合を有している場合を指し、1価でも2価以上の基であってもよい。フルオロポリエーテル基としては、例えば-CHOCHCFCF、-CHCHOCHH、-CHCHOCHCH17、-CHCHOCFCFOCFCFH、フッ素原子を4個以上有する炭素数4~20のフルオロシクロアルキル基等が挙げられる。また、パーフルオロポリエーテル基としては、例えば、-(CFO)pf-(CFCFO)qf-、-[CF(CF)CFO]pf―[CF(CF)]qf-、-(CFCFCFO)pf-、-(CFCFO)pf-などが挙げられる。
 上記pf及びqfはそれぞれ独立に0~20の整数を表す。ただしpf+qfは1以上の整数である。
 pf及びqfの総計は1~83が好ましく、1~43がより好ましく、5~23がさらに好ましい。
 上記含フッ素化合物は、耐擦傷性に優れるという観点から-(CFO)pf-(CFCFO)qf-で表されるパーフルオロポリエーテル基を有することが特に好ましい。
The (per) fluoropolyether group refers to a case where the (per) fluoroalkyl group has an ether bond, and may be a monovalent group or a divalent or higher valent group. Examples of the fluoropolyether group include -CH 2 OCH 2 CF 2 CF 3 , -CH 2 CH 2 OCH 2 C 4 F 8 H, -CH 2 CH 2 OCH 2 CH 2 C 8 F 17 , and -CH 2 CH 2. Examples thereof include OCF 2 CF 2 OCF 2 CF 2 H, a fluorocycloalkyl group having 4 or more carbon atoms and 4 to 20 carbon atoms. Examples of the perfluoropolyether group include- (CF 2 O) pf- (CF 2 CF 2 O) qf -,-[CF (CF 3 ) CF 2 O] pf- [CF (CF 3 )]. qf −, − (CF 2 CF 2 CF 2 O) pf −, − (CF 2 CF 2 O) pf − and the like can be mentioned.
The pf and qf independently represent an integer of 0 to 20. However, pf + qf is an integer of 1 or more.
The total of pf and qf is preferably 1 to 83, more preferably 1 to 43, and even more preferably 5 to 23.
From the viewpoint of excellent scratch resistance, the fluorine-containing compound particularly preferably has a perfluoropolyether group represented by − (CF 2 O) pf − (CF 2 CF 2 O) qf −.
 本発明においては、含フッ素化合物は、パーフルオロポリエーテル基を有し、かつ重合性不飽和基を一分子中に複数有することが好ましい。 In the present invention, it is preferable that the fluorine-containing compound has a perfluoropolyether group and a plurality of polymerizable unsaturated groups in one molecule.
 一般式(F)において、Wは連結基を表す。Wとしては、例えばアルキレン基、アリーレン基及びヘテロアルキレン基、並びにこれらの基が組み合わさった連結基が挙げられる。これらの連結基は、更に、オキシ基、カルボニル基、カルボニルオキシ基、カルボニルイミノ基及びスルホンアミド基等、並びにこれらの基が組み合わさった官能基を有してもよい。
 Wとして、好ましくは、エチレン基、より好ましくは、カルボニルイミノ基と結合したエチレン基である。
In the general formula (F), W represents a linking group. Examples of W include an alkylene group, an arylene group and a heteroalkylene group, and a linking group in which these groups are combined. These linking groups may further have an oxy group, a carbonyl group, a carbonyloxy group, a carbonylimino group, a sulfonamide group, etc., and a functional group in which these groups are combined.
The W is preferably an ethylene group, more preferably an ethylene group bonded to a carbonylimino group.
 含フッ素化合物のフッ素原子含有量には特に制限は無いが、20質量%以上が好ましく、30~70質量%がより好ましく、40~70質量%がさらに好ましい。 The fluorine atom content of the fluorine-containing compound is not particularly limited, but is preferably 20% by mass or more, more preferably 30 to 70% by mass, and even more preferably 40 to 70% by mass.
 好ましい含フッ素化合物の例としては、ダイキン化学工業(株)製のR-2020、M-2020、R-3833、M-3833及びオプツールDAC(以上商品名)、DIC社製のメガファックF-171、F-172、F-179A、RS-78、RS-90、ディフェンサMCF-300及びMCF-323(以上商品名)が挙げられるがこれらに限定されるものではない。 Examples of preferable fluorine-containing compounds include R-2020, M-2020, R-3833, M-3833 and Optool DAC (trade name) manufactured by Daikin Chemical Corporation, and Megafuck F-171 manufactured by DIC Corporation. , F-172, F-179A, RS-78, RS-90, Defenser MCF-300 and MCF-323 (hereinafter referred to as trade names), but are not limited thereto.
 耐擦傷性の観点から、一般式(F)において、nfとmfの積(nf×mf)は2以上が好ましく、4以上がより好ましい。 From the viewpoint of scratch resistance, in the general formula (F), the product of nf and mf (nf × mf) is preferably 2 or more, and more preferably 4 or more.
 重合性不飽和基を有する含フッ素化合物の重量平均分子量(Mw)は、分子排斥クロマトグラフィー、例えばゲル浸透クロマトグラフィー(GPC)を用いて測定できる。
 本発明で用いられる含フッ素化合物のMwは400以上50000未満が好ましく、400以上30000未満がより好ましく、400以上25000未満が更に好ましい。
The weight average molecular weight (Mw) of a fluorine-containing compound having a polymerizable unsaturated group can be measured by using molecular exclusion chromatography, for example, gel permeation chromatography (GPC).
The Mw of the fluorine-containing compound used in the present invention is preferably 400 or more and less than 50,000, more preferably 400 or more and less than 30,000, and further preferably 400 or more and less than 25,000.
 含フッ素化合物の含有率は、耐擦傷層形成用組成物中の全固形分に対して、0.01~5質量%が好ましく、0.1~5質量%がより好ましく、0.5~5質量%が更に好ましく、0.5~2質量%が特に好ましい。 The content of the fluorine-containing compound is preferably 0.01 to 5% by mass, more preferably 0.1 to 5% by mass, and 0.5 to 5 with respect to the total solid content in the composition for forming a scratch-resistant layer. The mass% is more preferable, and 0.5 to 2% by mass is particularly preferable.
 本発明に用いる耐擦傷層形成用組成物は、以上説明した各種成分を同時に、または任意の順序で順次混合することにより調製することができる。調製方法は特に限定されるものではなく、調製には公知の攪拌機等を用いることができる。 The scratch-resistant layer-forming composition used in the present invention can be prepared by simultaneously or sequentially mixing the various components described above in any order. The preparation method is not particularly limited, and a known stirrer or the like can be used for the preparation.
(耐擦傷層形成用組成物の硬化物)
 本発明のハードコートフィルムの耐擦傷層は、化合物(c1)を含む耐擦傷層形成用組成物の硬化物を含むものであることが好ましく、より好ましくは、化合物(c1)及びラジカル重合開始剤を含む耐擦傷層形成用組成物の硬化物を含むものである。
 耐擦傷層形成用組成物の硬化物は、少なくとも、化合物(c1)のラジカル重合性基が重合反応してなる硬化物を含むことが好ましい。
 本発明のハードコートフィルムの耐擦傷層における耐擦傷層形成用組成物の硬化物の含有率は、耐擦傷層の全質量に対して60質量%以上であることが好ましく、70質量%以上がより好ましく、80質量%以上が更に好ましい。
(Cured product of scratch resistant layer forming composition)
The scratch-resistant layer of the hard coat film of the present invention preferably contains a cured product of the composition for forming a scratch-resistant layer containing the compound (c1), and more preferably contains the compound (c1) and a radical polymerization initiator. It contains a cured product of a scratch-resistant layer-forming composition.
The cured product of the scratch-resistant layer forming composition preferably contains at least a cured product obtained by polymerizing the radically polymerizable group of the compound (c1).
The content of the cured product of the scratch-resistant layer-forming composition in the scratch-resistant layer of the hard coat film of the present invention is preferably 60% by mass or more, preferably 70% by mass or more, based on the total mass of the scratch-resistant layer. More preferably, 80% by mass or more is further preferable.
(耐擦傷層の膜厚)
 耐擦傷層の膜厚は、繰り返し折り曲げ耐性の観点から、3.0μm未満であることが好ましく、0.1~2.0μmであることがより好ましく、0.1~1.0μmであることが更に好ましい。
(Thickness of scratch resistant layer)
The film thickness of the scratch-resistant layer is preferably less than 3.0 μm, more preferably 0.1 to 2.0 μm, and preferably 0.1 to 1.0 μm from the viewpoint of repeated bending resistance. More preferred.
<鉛筆硬度>
 本発明のハードコートフィルムは、優れた鉛筆硬度を有する。
 本発明のハードコートフィルムは、鉛筆硬度が3H以上であることが好ましく、4H以上であることがより好ましい。
 鉛筆硬度は、 JIS(JISは、Japanese Industrial Standards(日本工業規格)である) K5400に従い評価することが出来る。
<Pencil hardness>
The hard coat film of the present invention has excellent pencil hardness.
The hard coat film of the present invention preferably has a pencil hardness of 3H or more, and more preferably 4H or more.
Pencil hardness can be evaluated according to JIS (JIS is Japanese Industrial Standards (Japanese Industrial Standards)) K5400.
<繰り返し折り曲げ耐性>
 本発明のハードコートフィルムは、優れた繰り返し折り曲げ耐性を有する。
 本発明のハードコートフィルムは、基材を内側にして、曲率半径2mmで180°折り曲げ試験を10万回繰り返し行った場合にクラックが発生しないことが好ましい。
 繰り返し折り曲げ耐性は具体的には以下のように測定する。
 ハードコートフィルムから幅15mm、長さ150mmの試料フィルムを切り出し、温度25℃、相対湿度65%の状態に1時間以上静置させる。その後、180°耐折度試験機((株)井元製作所製、IMC-0755型)を用いて、基材を内側にして繰り返し折り曲げ耐性の試験を行う。上記試験機は、試料フィルムを直径4mmの棒(円柱)の曲面に沿わせて曲げ角度180°で長手方向の中央部分で折り曲げた後、元に戻す(試料フィルムを広げる)という動作を1回の試験とし、この試験を繰り返し行うものである。上記180°折り曲げ試験を繰り返し行った場合にクラックが発生するか否かを目視で評価する。
<Repeat bending resistance>
The hard coat film of the present invention has excellent repeated bending resistance.
It is preferable that the hard coat film of the present invention does not crack when the 180 ° bending test is repeated 100,000 times with a radius of curvature of 2 mm with the base material inside.
The repeated bending resistance is specifically measured as follows.
A sample film having a width of 15 mm and a length of 150 mm is cut out from the hard coat film and allowed to stand at a temperature of 25 ° C. and a relative humidity of 65% for 1 hour or more. Then, using a 180 ° folding resistance tester (IMC-0755 type manufactured by Imoto Seisakusho Co., Ltd.), the bending resistance is repeatedly tested with the base material inside. The above-mentioned tester bends the sample film along the curved surface of a rod (cylinder) having a diameter of 4 mm at a bending angle of 180 ° at the central portion in the longitudinal direction, and then returns it to its original position (spreads the sample film) once. This test is repeated. It is visually evaluated whether or not cracks occur when the above 180 ° bending test is repeated.
 基材と、ハードコート層とをこの順に有するハードコートフィルムであって、上記ハードコート層が、前述のポリオルガノシルセスキオキサン(a1)を含む樹脂組成物の硬化物を含むハードコートフィルムとすることで、上記繰り返し折り曲げ耐性及び鉛筆硬度に優れたハードコートフィルムとすることができる。 A hard coat film having a base material and a hard coat layer in this order, wherein the hard coat layer contains a cured product of a resin composition containing the above-mentioned polyorganosylsesquioxane (a1). By doing so, it is possible to obtain a hard coat film having excellent resistance to repeated bending and pencil hardness.
 ハードコートフィルムとしては、鉛筆硬度3H以上であり、かつ上記基材を内側にして、曲率半径2mmで180°折り曲げ試験を10万回繰り返し行った場合にクラックが発生しないハードコートフィルムが好ましい。 As the hard coat film, a hard coat film having a pencil hardness of 3H or more and having the above base material inside and having a radius of curvature of 2 mm and a 180 ° bending test repeated 100,000 times is preferable.
<ハードコートフィルムの製造方法>
 本発明のハードコートフィルムの製造方法について説明する。
 本発明のハードコートフィルムの製造方法は、下記工程(I)、(II)を含む製造方法であることが好ましい。また、ハードコートフィルムが耐擦傷層を有する場合は、さらに下記工程(III)、(IV)を含む製造方法であることが好ましい。
 (I)基材上に、ポリオルガノシルセスキオキサン(a1)を含む樹脂組成物を塗布してハードコート層塗膜を形成する工程
 (II)上記ハードコート層塗膜を硬化することによりハードコート層を形成する工程
 (III)上記ハードコート層上に、ラジカル重合性化合物(c1)を含む耐擦傷層形成用組成物を塗布して耐擦傷層塗膜を形成する工程
 (IV)上記耐擦傷層塗膜を硬化することにより耐擦傷層を形成する工程
<Manufacturing method of hard coat film>
The method for producing the hard coat film of the present invention will be described.
The method for producing the hard coat film of the present invention is preferably a production method including the following steps (I) and (II). When the hard coat film has a scratch resistant layer, it is preferable that the production method further includes the following steps (III) and (IV).
(I) Step of applying a resin composition containing polyorganosylsesquioxane (a1) on a base material to form a hard coat layer coating film (II) Hard by curing the above hard coat layer coating film. Step of forming a coat layer (III) A step of applying a scratch-resistant layer-forming composition containing a radically polymerizable compound (c1) onto the hard coat layer to form a scratch-resistant layer coating film (IV). Scratch layer A process of forming a scratch resistant layer by curing the coating film
-工程(I)-
 工程(I)は、基材上にポリオルガノシルセスキオキサン(a1)含む樹脂組成物を塗布してハードコート層塗膜を設ける工程である。
 基材、ポリオルガノシルセスキオキサン(a1)、及び樹脂組成物については前述したとおりである。
-Step (I)-
Step (I) is a step of applying a resin composition containing polyorganosylsesquioxane (a1) on a base material to provide a hard coat layer coating film.
The base material, polyorganosylsesquioxane (a1), and resin composition are as described above.
 樹脂組成物の塗布方法としては、特に限定されず公知の方法を用いることができる。例えば、ディップコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法、ダイコート法等が挙げられる。 The method for applying the resin composition is not particularly limited, and a known method can be used. For example, a dip coating method, an air knife coating method, a curtain coating method, a roller coating method, a wire bar coating method, a gravure coating method, a die coating method and the like can be mentioned.
-工程(II)-
 工程(II)は、上記ハードコート層塗膜を硬化することによりハードコート層を形成する工程である。なお、ハードコート層塗膜を硬化するとは、ハードコート層塗膜に含まれるポリオルガノシルセスキオキサン(a1)の架橋性基の少なくとも一部を重合反応させることをいう。
-Step (II)-
Step (II) is a step of forming a hard coat layer by curing the hard coat layer coating film. Curing the hard coat layer coating means polymerizing at least a part of the crosslinkable groups of polyorganosylsesquioxane (a1) contained in the hard coat layer coating.
 ハードコート層塗膜の硬化は、電離放射線の照射又は加熱に行われることが好ましい。 The hardening of the hard coat layer coating film is preferably performed by irradiation with ionizing radiation or heating.
 電離放射線の種類については、特に制限はなく、X線、電子線、紫外線、可視光、赤外線などが挙げられるが、紫外線が好ましく用いられる。例えばハードコート層塗膜が紫外線硬化性であれば、紫外線ランプにより10mJ/cm~2000mJ/cmの照射量の紫外線を照射して硬化性化合物を硬化することが好ましく、ハードコートフィルムがハードコート層上に耐擦傷層を有する場合においては、硬化性化合物を半硬化するのが好ましい。50mJ/cm~1800mJ/cmであることがより好ましく、100mJ/cm~1500mJ/cmであることが更に好ましい。紫外線ランプ種としては、メタルハライドランプや高圧水銀ランプ等が好適に用いられる。 The type of ionizing radiation is not particularly limited, and examples thereof include X-rays, electron beams, ultraviolet rays, visible light, and infrared rays, but ultraviolet rays are preferably used. For example, if the hard coat layer coating film is ultraviolet curable, it is preferable to irradiate an ultraviolet lamp with an irradiation amount of 10 mJ / cm 2 to 2000 mJ / cm 2 to cure the curable compound, and the hard coat film is hard. When a scratch-resistant layer is provided on the coat layer, it is preferable to semi-cure the curable compound. More preferably 50mJ / cm 2 ~ 1800mJ / cm 2, further preferably 100mJ / cm 2 ~ 1500mJ / cm 2. As the ultraviolet lamp type, a metal halide lamp, a high-pressure mercury lamp, or the like is preferably used.
 熱により硬化する場合、温度に特に制限はないが、80℃以上200℃以下であることが好ましく、100℃以上180℃以下であることがより好ましく、120℃以上160℃以下であることがさらに好ましい。 When curing by heat, the temperature is not particularly limited, but is preferably 80 ° C. or higher and 200 ° C. or lower, more preferably 100 ° C. or higher and 180 ° C. or lower, and further preferably 120 ° C. or higher and 160 ° C. or lower. preferable.
 硬化時の酸素濃度は0~1.0体積%であることが好ましく、0~0.1体積%であることが更に好ましく、0~0.05体積%であることが最も好ましい。 The oxygen concentration at the time of curing is preferably 0 to 1.0% by volume, more preferably 0 to 0.1% by volume, and most preferably 0 to 0.05% by volume.
-工程(III)-
 工程(III)は、上記ハードコート層上に、ラジカル重合性化合物(c1)を含む耐擦傷層形成用組成物を塗布して耐擦傷層塗膜を形成する工程である。
 ラジカル重合性化合物(c1)、及び耐擦傷層形成用組成物については前述したとおりである。
-Step (III)-
The step (III) is a step of applying a scratch-resistant layer forming composition containing a radically polymerizable compound (c1) onto the hard coat layer to form a scratch-resistant layer coating film.
The radically polymerizable compound (c1) and the scratch-resistant layer forming composition are as described above.
 耐擦傷層形成用組成物の塗布方法としては、特に限定されず公知の方法を用いることができる。例えば、ディップコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法、ダイコート法等が挙げられる。 The method for applying the scratch-resistant layer forming composition is not particularly limited, and a known method can be used. For example, a dip coating method, an air knife coating method, a curtain coating method, a roller coating method, a wire bar coating method, a gravure coating method, a die coating method and the like can be mentioned.
-工程(IV)-
 工程(IV)は、上記耐擦傷層塗膜を硬化することにより耐擦傷層を形成する工程である。
-Process (IV)-
Step (IV) is a step of forming the scratch-resistant layer by curing the scratch-resistant layer coating film.
 耐擦傷層塗膜の硬化は、電離放射線の照射又は加熱に行われることが好ましい。電離放射線の照射及び加熱については、工程(II)において記載したものと同様である。なお、耐擦傷層塗膜を硬化するとは、耐擦傷層塗膜に含まれるラジカル重合性化合物(c1)のラジカル重合性基の少なくとも一部を重合反応させることをいう。 The scratch-resistant layer coating film is preferably cured by irradiation with ionizing radiation or heating. The irradiation and heating of ionizing radiation are the same as those described in step (II). Curing the scratch-resistant layer coating means polymerizing at least a part of the radical-polymerizable groups of the radical-polymerizable compound (c1) contained in the scratch-resistant layer coating.
 本発明では、ハードコートフィルムがハードコート層上に耐擦傷層を有する場合においては、上記工程(II)において、ハードコート層塗膜を半硬化させることが好ましい。すなわち、工程(II)においてハードコート層塗膜を半硬化させ、次いで、工程(III)では、半硬化されたハードコート層上に耐擦傷層形成用組成物を塗布して耐擦傷層塗膜を形成し、次いで、工程(IV)では、耐擦傷層塗膜を硬化するとともに、ハードコート層の完全硬化を行うことが好ましい。ここで、ハードコート層塗膜を半硬化させるとは、ハードコート層塗膜に含まれるポリオルガノシルセスキオキサン(a1)の架橋性基のうち一部のみを重合反応させることをいう。ハードコート層塗膜の半硬化は、電離放射線の照射量や、加熱の温度及び時間を調節することにより行うことができる。 In the present invention, when the hard coat film has a scratch resistant layer on the hard coat layer, it is preferable to semi-cure the hard coat layer coating film in the above step (II). That is, in the step (II), the hard coat layer coating film is semi-cured, and then in the step (III), the scratch resistant layer forming composition is applied onto the semi-cured hard coat layer to apply the scratch resistant layer coating film. Then, in step (IV), it is preferable to cure the scratch-resistant layer coating film and completely cure the hard coat layer. Here, semi-curing the hard coat layer coating film means polymerizing only a part of the crosslinkable groups of polyorganosylsesquioxane (a1) contained in the hard coat layer coating film. Semi-curing of the hard coat layer coating film can be performed by adjusting the irradiation amount of ionizing radiation and the temperature and time of heating.
 工程(I)と工程(II)の間、工程(II)と工程(III)の間、工程(III)と工程(IV)の間、又は工程(IV)の後に、必要に応じて乾燥処理を行ってもよい。乾燥処理は、温風の吹き付け、加熱炉内への配置、加熱炉内での搬送、ハードコート層及び耐擦傷層が設けられていない面(基材面)からのローラーでの加熱等により行うことができる。加熱温度は、溶媒を乾燥除去できる温度に設定すればよく、特に限定されるものではない。ここで加熱温度とは、温風の温度または加熱炉内の雰囲気温度をいうものとする。 Drying treatment as needed between steps (I) and step (II), between steps (II) and step (III), between steps (III) and step (IV), or after step (IV) May be done. The drying process is performed by blowing warm air, arranging in a heating furnace, transporting in a heating furnace, heating with a roller from a surface (base material surface) not provided with a hard coat layer and a scratch resistant layer, and the like. be able to. The heating temperature may be set to a temperature at which the solvent can be dried and removed, and is not particularly limited. Here, the heating temperature means the temperature of warm air or the ambient temperature in the heating furnace.
 本発明のハードコートフィルムは、鉛筆硬度及び繰り返し折り曲げ耐性に優れるものである。また、本発明のハードコートフィルムは、画像表示装置の表面保護フィルムとして用いることができ、例えば、フォルダブルデバイス(フォルダブルディスプレイ)の表面保護フィルムとして用いることができる。フォルダブルデバイスとは、表示画面が変形可能であるフレキシブルディスプレイを採用したデバイスのことであり、表示画面の変形性を利用してデバイス本体(ディスプレイ)を折りたたむことが可能である。
 フォルダブルデバイスとしては、例えば、有機エレクトロルミネッセンスデバイスなどが挙げられる。
The hard coat film of the present invention is excellent in pencil hardness and repeated bending resistance. Further, the hard coat film of the present invention can be used as a surface protective film of an image display device, and can be used, for example, as a surface protective film of a foldable device (foldable display). A foldable device is a device that employs a flexible display whose display screen can be deformed, and the device body (display) can be folded by utilizing the deformability of the display screen.
Examples of the foldable device include an organic electroluminescence device and the like.
 本発明は、水素結合を形成し得る水素原子を含む基を有するポリオルガノシルセスキオキサンであって、
 水素結合価が3.0以上であり、側鎖長が14×10-10~19×10-10mであり、
 上記水素結合価は、下記の式(1)にて表され、上記側鎖長は、上記側鎖長は、Si原子から側鎖の末端までの長さを表す、ポリオルガノシルセスキオキサンにも関する。
The present invention is a polyorganosylsesquioxane having a group containing a hydrogen atom capable of forming a hydrogen bond.
The hydrogen bond value is 3.0 or more, the side chain length is 14 × 10 -10 to 19 × 10 -10 m, and the side chain length is 14 × 10 -10 to 19 × 10 -10 m.
The hydrogen bond value is represented by the following formula (1), and the side chain length is a polyorganosylsesquioxane in which the side chain length represents the length from the Si atom to the end of the side chain. Also involved.
  水素結合価=1構成単位中の水素結合を形成し得る水素原子の数/1構成単位の分子量×1000 ・・・(1) Hydrogen bond value = number of hydrogen atoms that can form hydrogen bonds in one structural unit / molecular weight of one structural unit x 1000 ... (1)
 また、本発明は、水素結合を形成し得る水素原子を含む基を有するポリオルガノシルセスキオキサンであって、
 水素結合価が3.0以上であり、架橋性基価が4.5~6.0であり、
 上記水素結合価は下記の式(1)で表され、上記架橋性基価は、下記の式(5)で表されるポリオルガノシルセスキオキサンにも関する。
Further, the present invention is a polyorganosylsesquioxane having a group containing a hydrogen atom capable of forming a hydrogen bond.
The hydrogen bond value is 3.0 or more, the crosslinkable base value is 4.5 to 6.0, and
The hydrogen bond value is represented by the following formula (1), and the crosslinkable base value is also related to polyorganosylsesquioxane represented by the following formula (5).
  水素結合価=1構成単位中の水素結合を形成し得る水素原子の数/1構成単位の分子量×1000 ・・・(1) Hydrogen bond value = number of hydrogen atoms that can form hydrogen bonds in one structural unit / molecular weight of one structural unit x 1000 ... (1)
  架橋性基価=1構成単位中の架橋性基数/1構成単位の分子量×1000 ・・・(5) Crosslinkable radix = number of crosslinkable groups in 1 structural unit / molecular weight of 1 structural unit x 1000 ... (5)
 水素結合を形成し得る水素原子を含む基を有するポリオルガノシルセスキオキサンは、上記樹脂組成物における水素結合を形成し得る水素原子を含む基を有するポリオルガノシルセスキオキサン(a1)と同様であり、好ましい範囲も同様である。
 水素結合価、側鎖長、及び架橋性基価は、それぞれ上記樹脂組成物において記載した水素結合価、側鎖長、及び架橋性基価と同様であり、好ましい範囲も同様である。
 上記ポリオルガノシルセスキオキサンにおいて、水素結合価は3.0以上であり、側鎖長が14×10-10~19×10-10mであり、架橋性基価が4.5~6.0であることが好ましい。
The polyorganosylsesquioxane having a group containing a hydrogen atom capable of forming a hydrogen bond is the same as the polyorganosylsesquioxane (a1) having a group containing a hydrogen atom capable of forming a hydrogen bond in the above resin composition. The same applies to the preferable range.
The hydrogen bond value, side chain length, and crosslinkable base value are the same as the hydrogen bond value, side chain length, and crosslinkable base value described in the above resin composition, respectively, and the preferable ranges are also the same.
In the above polyorganosylsesquioxane, the hydrogen bond value is 3.0 or more, the side chain length is 14 × 10-10 to 19 × 10-10 m, and the crosslinkable base value is 4.5 to 6. It is preferably 0.
 以下、実施例により本発明を更に具体的に説明するが、本発明の範囲はこれによって限定して解釈されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the scope of the present invention is not construed as being limited thereto.
<基材の作製>
(ポリイミド粉末の製造)
 攪拌器、窒素注入装置、滴下漏斗、温度調節器及び冷却器を取り付けた1Lの反応器に、窒素気流下、N,N-ジメチルアセトアミド(DMAc)832gを加えた後、反応器の温度を25℃にした。ここに、ビストリフルオロメチルベンジジン(TFDB)64.046g(0.2mol)を加えて溶解した。得られた溶液を25℃に維持しながら、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン二無水物(6FDA)31.09g(0.07mol)とビフェニルテトラカルボン酸二無水物(BPDA)8.83g(0.03mol)を投入し、一定時間撹拌して反応させた。その後、塩化テレフタロイル(TPC)20.302g(0.1mol)を添加して、固形分濃度13質量%のポリアミック酸溶液を得た。次いで、このポリアミック酸溶液にピリジン25.6g、無水酢酸33.1gを投入して30分撹拌し、さらに70℃で1時間撹拌した後、常温に冷却した。ここにメタノール20Lを加え、沈澱した固形分を濾過して粉砕した。その後、100℃下、真空で6時間乾燥させて、111gのポリイミド粉末を得た。
<Preparation of base material>
(Manufacturing of polyimide powder)
After adding 832 g of N, N-dimethylacetamide (DMAc) under a nitrogen stream to a 1 L reactor equipped with a stirrer, nitrogen injection device, dropping funnel, temperature controller and cooler, the temperature of the reactor was changed to 25. It was set to ° C. To this, 64.046 g (0.2 mol) of bistrifluoromethylbenzidine (TFDB) was added and dissolved. While maintaining the obtained solution at 25 ° C., 31.09 g (0.07 mol) of 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA) and biphenyltetracarboxylic dianhydride were added. 8.83 g (0.03 mol) of a substance (BPDA) was added, and the mixture was stirred for a certain period of time to react. Then, 20.302 g (0.1 mol) of terephthaloyl chloride (TPC) was added to obtain a polyamic acid solution having a solid content concentration of 13% by mass. Next, 25.6 g of pyridine and 33.1 g of acetic anhydride were added to this polyamic acid solution and stirred for 30 minutes, further stirred at 70 ° C. for 1 hour, and then cooled to room temperature. 20 L of methanol was added thereto, and the precipitated solid content was filtered and pulverized. Then, it was dried in a vacuum at 100 degreeC for 6 hours to obtain 111 g of polyimide powder.
(基材S-1の作製)
 100gの上記ポリイミド粉末を670gのN,N-ジメチルアセトアミド(DMAc)に溶かして13質量%の溶液を得た。得られた溶液をステンレス板に流延し、130℃の熱風で30分乾燥させた。その後フィルムをステンレス板から剥離して、フレームにピンで固定し、フィルムが固定されたフレームを真空オーブンに入れ、100℃から300℃まで加熱温度を徐々に上げながら2時間加熱し、その後、徐々に冷却した。冷却後のフィルムをフレームから分離した後、最終熱処理工程として、さらに300℃で30分間熱処理して、ポリイミドフィルムからなる、厚み30μmの基材S-1を得た。
(Preparation of base material S-1)
100 g of the polyimide powder was dissolved in 670 g of N, N-dimethylacetamide (DMAc) to obtain a 13 mass% solution. The obtained solution was poured on a stainless steel plate and dried with hot air at 130 ° C. for 30 minutes. After that, the film is peeled off from the stainless steel plate, fixed to the frame with a pin, the frame to which the film is fixed is placed in a vacuum oven, heated for 2 hours while gradually increasing the heating temperature from 100 ° C to 300 ° C, and then gradually. Cooled to. After separating the cooled film from the frame, as a final heat treatment step, the film was further heat-treated at 300 ° C. for 30 minutes to obtain a substrate S-1 having a thickness of 30 μm and made of a polyimide film.
<ポリオルガノシルセスキオキサン(SQ1-1)の合成>
 3-アミノプロピルトリメトキシシラン300ミリモル(53.8g)、メチルイソブチルケトン166gを混合し、この溶液を5℃以下に冷却した。冷却した溶液に、2-アクリロイルオキシエチルイソシアネート300ミリモル(42.3g)を滴下し、反応後室温まで上昇させた。
 その後、アクリル酸3-(トリメトキシシリル)プロピル300ミリモル(70.3g)、トリエチルアミン7.39g、及びアセトン434gを混合したものを上記溶液に加え、さらに純水73.9gを、滴下ロートを使用して30分かけて滴下した後50℃に加熱し、重縮合反応を10時間行った。
 その後、反応溶液を冷却し、1N(mol/L)塩酸水溶液12mLで中和後、1-メトキシ-2-プロパノール600gを添加後、30mmHg、50℃の条件で濃縮し、固形分濃度30質量%の2-メトキシ-1-プロパノール溶液として透明液状の生成物であるポリオルガノシルセスキオキサン(SQ1-1)を得た。
<Synthesis of polyorganosylsesquioxane (SQ1-1)>
300 mmol (53.8 g) of 3-aminopropyltrimethoxysilane and 166 g of methyl isobutyl ketone were mixed, and the solution was cooled to 5 ° C. or lower. To the cooled solution, 300 mmol (42.3 g) of 2-acryloyloxyethyl isocyanate was added dropwise, and the temperature was raised to room temperature after the reaction.
Then, a mixture of 300 mmol (70.3 g) of 3- (trimethoxysilyl) propyl acrylate, 7.39 g of triethylamine, and 434 g of acetone was added to the above solution, and 73.9 g of pure water was further added using a dropping funnel. Then, the mixture was added dropwise over 30 minutes and then heated to 50 ° C., and a polycondensation reaction was carried out for 10 hours.
Then, the reaction solution was cooled, neutralized with 12 mL of a 1N (mol / L) hydrochloric acid aqueous solution, 600 g of 1-methoxy-2-propanol was added, and then concentrated under the conditions of 30 mmHg and 50 ° C., and the solid content concentration was 30% by mass. Polyorganosyl sesquioxane (SQ1-1), which is a clear liquid product, was obtained as a 2-methoxy-1-propanol solution of.
 上記で得られたポリマー5mgを重クロロホルム0.5mLに溶解させ、BRUKER AVANCE III HD 400MHz(株式会社日立ハイテクサイエンス製)で測定を行った。結果を以下に示す。
 H NMR(400MHz,CDCl,ppm):δ6.3-6.5(d,アクリル部CH=CHCO),δ6.0-6.2(m,アクリル部CH=CHCO),δ5.8-5.9(m,アクリル部CH=CHCO),δ4.0-4.3(m,アクリル部の隣CH=CHCOCH、ウレア部のNH),δ2.8-3.6(m,ウレア部の隣CH),δ1.4-1.8(m,シリル部の隣CH),δ0.4-0.8(m,メチレン部CHCHCHSi).
5 mg of the polymer obtained above was dissolved in 0.5 mL of deuterated chloroform and measured at BRUKER AVANCE III HD 400 MHz (manufactured by Hitachi High-Tech Science Corporation). The results are shown below.
1 1 H NMR (400 MHz, CDCl 3 , ppm): δ6.3-6.5 (d, acrylic part CH 2 = CHCO 2 ), δ6.0-6.2 (m, acrylic part CH 2 = CHCO 2 ), δ5.8-5.9 (m, acrylic part CH 2 = CHCO 2 ), δ4.0-4.3 (m, CH 2 next to acrylic part = CHCO 2 CH 2 , NH of urea part), δ2.8 -3.6 (m, CH 2 next to urea part), δ1.4-1.8 (m, CH 2 next to silyl part), δ0.4-0.8 (m, methylene part CH 2 CH 2 CH 2 Si).
 上記ポリオルガノシルセスキオキサン(SQ1-1)の合成において、各モノマーの使用量を変更した以外は上記ポリオルガノシルセスキオキサン(SQ1-1)の合成と同様にして、各構成単位の含有モル比率を変更したポリオルガノシルセスキオキサン(SQ1-2)を合成した。 In the synthesis of the polyorganosylsesquioxane (SQ1-1), the content of each structural unit is the same as in the synthesis of the polyorganosylsesquioxane (SQ1-1) except that the amount of each monomer used is changed. Polyorganosilsesquioxane (SQ1-2) with a modified molar ratio was synthesized.
 上記ポリオルガノシルセスキオキサン(SQ1-1)の合成において、アクリル酸3-(トリメトキシシリル)プロピルをアクリルアミド3-(トリメトキシシリル)プロピルに変更し、さらに各モノマーの使用量を変更した以外は上記ポリオルガノシルセスキオキサン(SQ1-1)の合成と同様にして、ポリオルガノシルセスキオキサン(SQ2-1)、及び(SQ2-3)をそれぞれ合成した。 In the synthesis of polyorganosylsesquioxane (SQ1-1), 3- (trimethoxysilyl) propyl acrylate was changed to acrylamide3- (trimethoxysilyl) propyl, and the amount of each monomer used was changed. Synthesized polyorganosylsesquioxane (SQ2-1) and (SQ2-3) in the same manner as in the synthesis of polyorganosylsesquioxane (SQ1-1).
 上記ポリオルガノシルセスキオキサン(SQ2-1)の合成において、重縮合反応の時間を2時間に変更した以外は上記ポリオルガノシルセスキオキサン(SQ2-1)の合成と同様にして、ポリオルガノシルセスキオキサン(SQ2-2)を合成した。 In the synthesis of the polyorganosylsesquioxane (SQ2-1), the polyorgano was similar to the synthesis of the polyorganosylsesquioxane (SQ2-1) except that the polycondensation reaction time was changed to 2 hours. Silsesquioxane (SQ2-2) was synthesized.
(SQ3-1)
 アクリル酸2-ヒドロキシエチル300ミリモル(34.8g)、メチルイソブチルケトン100g、イソシアナトプロピルトリメトキシシラン300ミリモル(61.5g)、ネオスタンU-600 50mgを混合し、60℃で5時間反応させた。
 その後、アクリルアミド3-(トリメトキシシリル)プロピル300ミリモル(70.0g)、トリエチルアミン7.39g、及びアセトン434gを混合したものを上記溶液に加え、さらに純水73.9gを、滴下ロートを使用して30分かけて滴下した後50℃に加熱し、重縮合反応を10時間行った。
 その後、反応溶液を冷却し、1N塩酸水溶液12mLで中和後、1-メトキシ-2-プロパノール600gを添加後、30mmHg、50℃の条件で濃縮し、固形分濃度30質量%の2-メトキシ-1-プロパノール溶液として透明液状の生成物であるポリオルガノシルセスキオキサン(SQ3-1)を得た。
(SQ3-1)
300 mmol (34.8 g) of 2-hydroxyethyl acrylate, 100 g of methyl isobutyl ketone, 300 mmol (61.5 g) of isocyanatopropyltrimethoxysilane, and 50 mg of Neostan U-600 were mixed and reacted at 60 ° C. for 5 hours. ..
Then, a mixture of 300 mmol (70.0 g) of acrylamide3- (trimethoxysilyl) propyl, 7.39 g of triethylamine, and 434 g of acetone was added to the above solution, and 73.9 g of pure water was further added using a dropping funnel. After dropping over 30 minutes, the mixture was heated to 50 ° C. and a polycondensation reaction was carried out for 10 hours.
Then, the reaction solution was cooled, neutralized with 12 mL of a 1N hydrochloric acid aqueous solution, 600 g of 1-methoxy-2-propanol was added, and then concentrated under the conditions of 30 mmHg and 50 ° C., 2-methoxy- with a solid content concentration of 30% by mass. A transparent liquid product, polyorganosylsesquioxane (SQ3-1), was obtained as a 1-propanol solution.
(SQ4-1)
 上記ポリオルガノシルセスキオキサン(SQ3-1)の合成において、アクリルアミド3-(トリメトキシシリル)プロピルをアクリル酸3-(トリメトキシシリル)プロピルに変更した以外は上記ポリオルガノシルセスキオキサン(SQ3-1)の合成と同様にして、ポリオルガノシルセスキオキサン(SQ4-1)を合成した。
(SQ4-1)
In the synthesis of the polyorganosylsesquioxane (SQ3-1), the polyorganosylsesquioxane (SQ3) was changed from acrylamide3- (trimethoxysilyl) propyl to 3- (trimethoxysilyl) propyl acrylate. Polyorganosylsesquioxane (SQ4-1) was synthesized in the same manner as in the synthesis of -1).
(SQ5-1)
 アクリルアミド2-ヒドロキシエチル300ミリモル(34.5g)、メチルイソブチルケトン100g、イソシアナトプロピルトリメトキシシラン300ミリモル(61.5g)、ネオスタンU-600 50mgを混合し、60℃で5時間反応させた。
 その後、アクリルアミド3-(トリメトキシシリル)プロピル300ミリモル(70.0g)、トリエチルアミン7.39g、及びアセトン434gを混合したものを上記溶液に加え、さらに純水73.9gを、滴下ロートを使用して30分かけて滴下した後50℃に加熱し、重縮合反応を10時間行った。
 その後、反応溶液を冷却し、1N塩酸水溶液12mLで中和後、1-メトキシ-2-プロパノール600gを添加後、30mmHg、50℃の条件で濃縮し、固形分濃度30質量%の2-メトキシ-1-プロパノール溶液として透明液状の生成物であるポリオルガノシルセスキオキサン(SQ5-1)を得た。
(SQ5-1)
Acrylamide 2-hydroxyethyl 300 mmol (34.5 g), methyl isobutyl ketone 100 g, isocyanate 300 mmol (61.5 g), and Neostan U-600 50 mg were mixed and reacted at 60 ° C. for 5 hours.
Then, a mixture of 300 mmol (70.0 g) of acrylamide3- (trimethoxysilyl) propyl, 7.39 g of triethylamine, and 434 g of acetone was added to the above solution, and 73.9 g of pure water was further added using a dropping funnel. After dropping over 30 minutes, the mixture was heated to 50 ° C. and a polycondensation reaction was carried out for 10 hours.
Then, the reaction solution was cooled, neutralized with 12 mL of a 1N hydrochloric acid aqueous solution, 600 g of 1-methoxy-2-propanol was added, and then concentrated under the conditions of 30 mmHg and 50 ° C., 2-methoxy- with a solid content concentration of 30% by mass. A clear liquid product, polyorganosylsesquioxane (SQ5-1), was obtained as a 1-propanol solution.
(SQ6-1)
 3-グリシジルプロピルトリメトキシシラン300ミリモル(70.8g)とアクリルアミド3-(トリメトキシシリル)プロピル300ミリモル(70.0g)、トリエチルアミン7.39g、及びアセトン434gを混合したものを上記溶液に加え、さらに純水73.9gを、滴下ロートを使用して30分かけて滴下した後50℃に加熱し、重縮合反応を10時間行った。
 その後、アクリル酸0.3ミリモル(21.6g)とp-トルエンスルホン酸50gを添加し、60℃で、10時間反応させた。
 その後、反応溶液を冷却し、1N塩酸水溶液12mLで中和後、1-メトキシ-2-プロパノール600gを添加後、30mmHg、50℃の条件で濃縮し、固形分濃度30質量%の2-メトキシ-1-プロパノール溶液として透明液状の生成物であるポリオルガノシルセスキオキサン(SQ6-1)を得た。
(SQ6-1)
A mixture of 300 mmol (70.8 g) of 3-glycidylpropyltrimethoxysilane, 300 mmol (70.0 g) of acrylamide3- (trimethoxysilyl) propyl, 7.39 g of triethylamine, and 434 g of acetone was added to the above solution. Further, 73.9 g of pure water was added dropwise over 30 minutes using a dropping funnel, and then heated to 50 ° C., and a polycondensation reaction was carried out for 10 hours.
Then, 0.3 mmol (21.6 g) of acrylic acid and 50 g of p-toluenesulfonic acid were added, and the mixture was reacted at 60 ° C. for 10 hours.
Then, the reaction solution was cooled, neutralized with 12 mL of a 1N hydrochloric acid aqueous solution, 600 g of 1-methoxy-2-propanol was added, and then concentrated under the conditions of 30 mmHg and 50 ° C., 2-methoxy- with a solid content concentration of 30% by mass. A clear liquid product, polyorganosylsesquioxane (SQ6-1), was obtained as a 1-propanol solution.
(SQ7-1)
 3-アミノプロピルトリメトキシシラン300ミリモル(53.8g)、テトラヒドロフラン300g、トリエチルアミン300ミリモル(30.4g)を混合し、この溶液を5℃以下に冷却した。冷却した溶液に、クロロ酢酸クロリド300ミリモル(33.6g)を滴下し、反応後室温まで上昇させた。
 得られた溶液に酢酸エチル300g、水300gを添加し、分液後、有機相を濃縮させた。
 得られた濃縮物に、テトラヒドロフラン300g、アクリル酸300ミリモル(21.6g)、トリエチルアミン300ミリモル(30.4g)を混合し、50℃で6時間反応させた。その後、酢酸エチル600g、水600gを添加し、分液後、有機相を濃縮させた。
 得られた濃縮物に、トリエチルアミン7.39g、及びアセトン434gを混合したものを加え、さらに純水73.9gを滴下ロートを使用して30分かけて滴下した後50℃に加熱し、重縮合反応を10時間行った。その後、反応溶液を冷却し、1N塩酸水溶液12mLで中和後、1-メトキシ-2-プロパノール600gを添加し、30mmHg、50℃の条件で濃縮して、固形分濃度30質量%の2-メトキシ-1-プロパノール溶液として透明液状の生成物であるポリオルガノシルセスキオキサン(SQ7-1)を得た。
(SQ7-1)
300 mmol (53.8 g) of 3-aminopropyltrimethoxysilane, 300 g of tetrahydrofuran, and 300 mmol (30.4 g) of triethylamine were mixed, and the solution was cooled to 5 ° C. or lower. 300 mmol (33.6 g) of chloroacetic acid chloride was added dropwise to the cooled solution, and the temperature was raised to room temperature after the reaction.
300 g of ethyl acetate and 300 g of water were added to the obtained solution, and the organic phase was concentrated after separation.
The obtained concentrate was mixed with 300 g of tetrahydrofuran, 300 mmol (21.6 g) of acrylic acid, and 300 mmol (30.4 g) of triethylamine, and reacted at 50 ° C. for 6 hours. Then, 600 g of ethyl acetate and 600 g of water were added, and after liquid separation, the organic phase was concentrated.
A mixture of 7.39 g of triethylamine and 434 g of acetone is added to the obtained concentrate, and 73.9 g of pure water is further added dropwise over 30 minutes using a dropping funnel, and then heated to 50 ° C. for polycondensation. The reaction was carried out for 10 hours. Then, the reaction solution is cooled, neutralized with 12 mL of a 1N hydrochloric acid aqueous solution, 600 g of 1-methoxy-2-propanol is added, and the mixture is concentrated under the conditions of 30 mmHg and 50 ° C. to 2-methoxy with a solid content concentration of 30% by mass. A transparent liquid product, polyorganosylsesquioxane (SQ7-1), was obtained as a -1-propanol solution.
(SQ8-1)
 (SQ7-1)の重縮合反応前の濃縮物にアクリルアミド3-(トリメトキシシリル)プロピル300ミリモル(70.0g)を加え、その後、(SQ7-1)と同様の重縮合反応により、固形分濃度30質量%の2-メトキシ-1-プロパノール溶液として透明液状の生成物であるポリオルガノシルセスキオキサン(SQ8-1)を得た。
(SQ8-1)
300 mmol (70.0 g) of acrylamide3- (trimethoxysilyl) propyl was added to the concentrate of (SQ7-1) before the polycondensation reaction, and then the solid content was subjected to the same polycondensation reaction as (SQ7-1). A clear liquid product, polyorganosylsesquioxane (SQ8-1), was obtained as a 2-methoxy-1-propanol solution having a concentration of 30% by mass.
(SQ-1x)
 アクリル酸2-ヒドロキシエチル600ミリモル(69.6g)、メチルイソブチルケトン200g、イソシアナトプロピルトリメトキシシラン600ミリモル(123.0g)、ネオスタンU-600 50mgを混合し、60℃で5時間反応させた。
 その後、トリエチルアミン7.39g、及びアセトン434gを混合したものを上記溶液に加え、さらに純水73.9gを、滴下ロートを使用して30分かけて滴下した後50℃に加熱し、重縮合反応を10時間行った。
 その後、反応溶液を冷却し、1N塩酸水溶液12mLで中和後、1-メトキシ-2-プロパノール600gを添加後、30mmHg、50℃の条件で濃縮し、固形分濃度30質量%の2-メトキシ-1-プロパノール溶液として透明液状の生成物であるポリオルガノシルセスキオキサン(SQ-1x)を得た。
(SQ-1x)
600 mmol (69.6 g) of 2-hydroxyethyl acrylate, 200 g of methyl isobutyl ketone, 600 mmol (123.0 g) of isocyanatopropyltrimethoxysilane, and 50 mg of Neostan U-600 were mixed and reacted at 60 ° C. for 5 hours. ..
Then, a mixture of 7.39 g of triethylamine and 434 g of acetone was added to the above solution, and 73.9 g of pure water was further added dropwise over 30 minutes using a dropping funnel, and then heated to 50 ° C. for a polycondensation reaction. Was carried out for 10 hours.
Then, the reaction solution was cooled, neutralized with 12 mL of a 1N hydrochloric acid aqueous solution, 600 g of 1-methoxy-2-propanol was added, and then concentrated under the conditions of 30 mmHg and 50 ° C., 2-methoxy- with a solid content concentration of 30% by mass. A clear liquid product, polyorganosylsesquioxane (SQ-1x), was obtained as a 1-propanol solution.
(SQ-2x)
 3-アミノプロピルトリメトキシシラン600ミリモル(107.6g)、メチルイソブチルケトン332gを混合し、この溶液を5℃以下に冷却した。冷却した溶液に、2-アクリロイルオキシエチルイソシアネート600ミリモル(84.6g)を滴下し、反応後室温まで上昇させた。
 その後、トリエチルアミン7.39g、及びアセトン434gを混合したものを上記溶液に加え、さらに純水73.9gを、滴下ロートを使用して30分かけて滴下した後50℃に加熱し、重縮合反応を10時間行った。
 その後、反応溶液を冷却し、1N塩酸水溶液12mLで中和後、1-メトキシ-2-プロパノール600gを添加後、30mmHg、50℃の条件で濃縮し、固形分濃度30質量%の2-メトキシ-1-プロパノール溶液として透明液状の生成物であるポリオルガノシルセスキオキサン(SQ-2x)を得た。
(SQ-2x)
600 mmol (107.6 g) of 3-aminopropyltrimethoxysilane and 332 g of methyl isobutyl ketone were mixed, and the solution was cooled to 5 ° C. or lower. 600 mmol (84.6 g) of 2-acryloyloxyethyl isocyanate was added dropwise to the cooled solution, and the temperature was raised to room temperature after the reaction.
Then, a mixture of 7.39 g of triethylamine and 434 g of acetone was added to the above solution, and 73.9 g of pure water was further added dropwise over 30 minutes using a dropping funnel, and then heated to 50 ° C. for a polycondensation reaction. Was carried out for 10 hours.
Then, the reaction solution was cooled, neutralized with 12 mL of a 1N hydrochloric acid aqueous solution, 600 g of 1-methoxy-2-propanol was added, and then concentrated under the conditions of 30 mmHg and 50 ° C., 2-methoxy- with a solid content concentration of 30% by mass. A clear liquid product, polyorganosylsesquioxane (SQ-2x), was obtained as a 1-propanol solution.
(SQ-3x)
 アクリルアミド3-(トリメトキシシリル)プロピル600ミリモル(140.0g)、トリエチルアミン7.39g、及びアセトン434gを混合したものを上記溶液に加え、さらに純水73.9gを、滴下ロートを使用して30分かけて滴下した後50℃に加熱し、重縮合反応を10時間行った。
 その後、反応溶液を冷却し、1N塩酸水溶液12mLで中和後、1-メトキシ-2-プロパノール600gを添加後、30mmHg、50℃の条件で濃縮し、固形分濃度30質量%の2-メトキシ-1-プロパノール溶液として透明液状の生成物であるポリオルガノシルセスキオキサン(SQ-3x)を得た。
(SQ-3x)
A mixture of 600 mmol (140.0 g) of acrylamide 3- (trimethoxysilyl) propyl, 7.39 g of triethylamine, and 434 g of acetone is added to the above solution, and 73.9 g of pure water is further added to 30 using a dropping funnel. After dropping over a minute, the mixture was heated to 50 ° C. and a polycondensation reaction was carried out for 10 hours.
Then, the reaction solution was cooled, neutralized with 12 mL of a 1N hydrochloric acid aqueous solution, 600 g of 1-methoxy-2-propanol was added, and then concentrated under the conditions of 30 mmHg and 50 ° C., 2-methoxy- with a solid content concentration of 30% by mass. A clear liquid product, polyorganosylsesquioxane (SQ-3x), was obtained as a 1-propanol solution.
(SQ-4x)
 2モル/Lメチルアミンのメタノール溶液120ミリモル(60mL)、メチルイソブチルケトン166gを混合し、この溶液を5℃以下に冷却した。冷却した溶液に、2-アクリロイルオキシエチルイソシアネート120ミリモル(16.9g)を滴下し、反応後室温まで上昇させた。
 その後、アクリル酸3-(トリメトキシシリル)プロピル480ミリモル(112.5g)、トリエチルアミン7.39g、及びアセトン434gを混合したものを上記溶液に加え、さらに純水73.9gを、滴下ロートを使用して30分かけて滴下した後50℃に加熱し、重縮合反応を10時間行った。
 その後、反応溶液を冷却し、1N塩酸水溶液12mLで中和後、1-メトキシ-2-プロパノール600gを添加後、30mmHg、50℃の条件で濃縮し、固形分濃度30質量%の2-メトキシ-1-プロパノール溶液として透明液状の生成物であるポリオルガノシルセスキオキサン(SQ-4x)を得た。
(SQ-4x)
120 mmol (60 mL) of a methanol solution of 2 mol / L methylamine and 166 g of methyl isobutyl ketone were mixed, and the solution was cooled to 5 ° C. or lower. To the cooled solution, 120 mmol (16.9 g) of 2-acryloyloxyethyl isocyanate was added dropwise, and the temperature was raised to room temperature after the reaction.
Then, a mixture of 480 mmol (112.5 g) of 3- (trimethoxysilyl) propyl acrylate, 7.39 g of triethylamine, and 434 g of acetone was added to the above solution, and 73.9 g of pure water was further added using a dropping funnel. Then, the mixture was added dropwise over 30 minutes and then heated to 50 ° C., and a polycondensation reaction was carried out for 10 hours.
Then, the reaction solution was cooled, neutralized with 12 mL of a 1N hydrochloric acid aqueous solution, 600 g of 1-methoxy-2-propanol was added, and then concentrated under the conditions of 30 mmHg and 50 ° C., 2-methoxy- with a solid content concentration of 30% by mass. A clear liquid product, polyorganosylsesquioxane (SQ-4x), was obtained as a 1-propanol solution.
(SQ-5x)
 3-グリシジルプロピルトリメトキシシラン600ミリモル(141.6g)、トリエチルアミン7.39g、及びアセトン434gを混合したものを上記溶液に加え、さらに純水73.9gを、滴下ロートを使用して30分かけて滴下した後50℃に加熱し、重縮合反応を10時間行った。
 その後、反応溶液を冷却し、1N塩酸水溶液12mLで中和後、1-メトキシ-2-プロパノール600gを添加後、30mmHg、50℃の条件で濃縮し、固形分濃度30質量%の2-メトキシ-1-プロパノール溶液として透明液状の生成物であるポリオルガノシルセスキオキサン(SQ-5x)を得た。
(SQ-5x)
A mixture of 600 mmol (141.6 g) of 3-glycidylpropyltrimethoxysilane, 7.39 g of triethylamine, and 434 g of acetone was added to the above solution, and 73.9 g of pure water was added over 30 minutes using a dropping funnel. After dropping the mixture, the mixture was heated to 50 ° C. and a polycondensation reaction was carried out for 10 hours.
Then, the reaction solution was cooled, neutralized with 12 mL of a 1N hydrochloric acid aqueous solution, 600 g of 1-methoxy-2-propanol was added, and then concentrated under the conditions of 30 mmHg and 50 ° C., 2-methoxy- with a solid content concentration of 30% by mass. A clear liquid product, polyorganosylsesquioxane (SQ-5x), was obtained as a 1-propanol solution.
 ポリオルガノシルセスキオキサン(a1)として使用した各ポリマーの構造を以下に示す。下記構造式において、「SiO1.5」は、シルセスキオキサン単位を表す。各ポリマーの構成単位において、左側に記載した構成単位から順に、構成単位(A)、構成単位(B)に該当し、各構成単位の組成比率はモル比率にて示す。
 上述の方法にて算出した各ポリマーの水素結合価、側鎖長、側鎖元素数、及び架橋性基価については、表1に示す。
The structure of each polymer used as polyorganosylsesquioxane (a1) is shown below. In the following structural formula, "SiO 1.5 " represents a silsesquioxane unit. The structural units of each polymer correspond to the structural units (A) and the structural units (B) in order from the structural units listed on the left side, and the composition ratio of each structural unit is indicated by a molar ratio.
Table 1 shows the hydrogen bond value, side chain length, number of side chain elements, and crosslinkable base value of each polymer calculated by the above method.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
[実施例1]
<樹脂組成物の調製>
(樹脂組成物HC-1)
 上記ポリオルガノシルセスキオキサン(SQ1-1)を含有する2-メトキシ-1-プロパノール溶液に、イルガキュア127(Irg.127)(ラジカル重合開始剤)、及びMIBK(メチルイソブチルケトン)を添加し、各含有成分の含有量を以下のように調整し、ミキシングタンクに投入、攪拌した。得られた組成物を孔径0.45μmのポリプロピレン製フィルターで濾過し、樹脂組成物HC-1とした。
[Example 1]
<Preparation of resin composition>
(Resin composition HC-1)
Irgacure 127 (Irg.127) (radical polymerization initiator) and MIBK (methyl isobutyl ketone) were added to the 2-methoxy-1-propanol solution containing the polyorganosylsesquioxane (SQ1-1). The content of each component was adjusted as follows, and the mixture was charged into a mixing tank and stirred. The obtained composition was filtered through a polypropylene filter having a pore size of 0.45 μm to obtain a resin composition HC-1.
 ポリオルガノシルセスキオキサン(SQ1-1)の2-メトキシ-1-プロパノール溶液(固形分濃度30質量%)      90.4質量部
 イルガキュア127(Irg.127)       5.0質量部
 MIBK                     4.6質量部
2-Methyl-1-propanol solution of polyorganosylsesquioxane (SQ1-1) (solid content concentration 30% by mass) 90.4 parts by mass Irgacure 127 (Irg.127) 5.0 parts by mass MIBK 4.6 parts by mass Department
 なお、イルガキュア127(Irg.127)はBASF製のラジカル重合開始剤である。 Irgacure 127 (Irg.127) is a radical polymerization initiator manufactured by BASF.
(ハードコートフィルムの製造)
 厚さ30μmのポリイミド基材S-1上に上記樹脂組成物HC-1をワイヤーバー#18を用いて、硬化後の膜厚が18μmとなるようにバー塗布し、基材上にハードコート層塗膜を設けた。
 次いで、ハードコート層塗膜を120℃で1分間乾燥した後、25℃、酸素濃度100ppm(parts per million)の条件にて空冷水銀ランプを用いて、照度18mW/cm、照射量160mJ/cmの紫外線を照射した。このようにしてハードコート層塗膜を硬化して、基材上に、ハードコート層を有する実施例1の積層体(ハードコートフィルム)を得た。
(Manufacturing of hard coat film)
The above resin composition HC-1 was applied to a polyimide base material S-1 having a thickness of 30 μm using a wire bar # 18 so that the film thickness after curing was 18 μm, and a hard coat layer was applied onto the base material. A coating film was provided.
Next, after drying the hard coat layer coating film at 120 ° C. for 1 minute, the illuminance is 18 mW / cm 2 and the irradiation amount is 160 mJ / cm using an air-cooled mercury lamp under the conditions of 25 ° C. and an oxygen concentration of 100 ppm (parts per million). The ultraviolet rays of 2 were irradiated. In this way, the hard coat layer coating film was cured to obtain a laminate (hard coat film) of Example 1 having a hard coat layer on the base material.
[実施例2~11、比較例1~5]
 用いるポリオルガノシルセスキオキサン(SQ1-1)を、(SQ1-2)~(SQ8-1)、(SQ-1x)~(SQ-5x)に変更した以外は、実施例1と同様にして、実施例2~11、比較例1~5のハードコートフィルムをそれぞれ製造した。
[Examples 2 to 11, Comparative Examples 1 to 5]
The same as in Example 1 except that the polyorganosylsesquioxane (SQ1-1) used was changed to (SQ1-2) to (SQ8-1) and (SQ-1x) to (SQ-5x). , Examples 2 to 11 and Comparative Examples 1 to 5, respectively, were produced.
[ハードコートフィルムの評価]
 製造した各実施例及び比較例のハードコートフィルムを、以下の方法によって評価した。評価結果を表1に示す。
[Evaluation of hard coat film]
The produced hard coat films of Examples and Comparative Examples were evaluated by the following methods. The evaluation results are shown in Table 1.
(鉛筆硬度)
 JIS(JISは、Japanese Industrial Standards(日本工業規格)である) K5400に従い鉛筆硬度評価を行った。各実施例および比較例のハードコートフィルムを、温度25℃、相対湿度60%で2時間調湿した後、ハードコート層の表面の異なる5箇所について、JIS S 6006に規定するH~9Hの試験用鉛筆を用いて4.9Nの荷重にて引っ掻いた。その後、目視で傷が認められる箇所が0~2箇所であった鉛筆の硬度のうち、最も硬度の高い鉛筆硬度を評価結果とした。鉛筆硬度は、「H」の前に記載される数値が高いほど、硬度が高く好ましい。
(Pencil hardness)
The pencil hardness was evaluated according to JIS (JIS is Japanese Industrial Standards (Japanese Industrial Standards)) K5400. After adjusting the humidity of the hard coat films of each example and comparative example at a temperature of 25 ° C. and a relative humidity of 60% for 2 hours, the tests of H to 9H specified in JIS S 6006 were performed on five different surfaces of the hard coat layer. It was scratched with a pencil with a load of 4.9 N. After that, among the hardnesses of the pencils in which scratches were visually observed at 0 to 2 points, the pencil hardness having the highest hardness was used as the evaluation result. As for the pencil hardness, the higher the numerical value written before "H", the higher the hardness is preferable.
(繰り返し折り曲げ耐性)
 製造した各実施例及び比較例のハードコートフィルムから幅15mm、長さ150mmの試料フィルムを切り出し、温度25℃、相対湿度65%の状態に1時間以上静置させた。その後、180°耐折度試験機((株)井元製作所製、IMC-0755型)を用いて、基材を内側にして繰り返し折り曲げ耐性の試験を行った。使用した試験機は、試料フィルムを直径4mmの棒(円柱)の曲面に沿わせて曲げ角度180°で長手方向の中央部分で折り曲げた後、元に戻す(試料フィルムを広げる)という動作を1回の試験とし、この試験を繰り返し行うものである。
 上記180°折り曲げ試験を30万回以上繰り返し行った場合にクラックが発生しないものをAとし、10万回以上、30万回未満までにクラックが発生したものをBとし、10万回未満までにクラックが発生したものをCとして評価した。
 なお、クラックの発生の有無は目視で評価した。
(Repeat bending resistance)
A sample film having a width of 15 mm and a length of 150 mm was cut out from the produced hard coat films of Examples and Comparative Examples, and allowed to stand at a temperature of 25 ° C. and a relative humidity of 65% for 1 hour or more. Then, a 180 ° folding resistance tester (IMC-0755 type, manufactured by Imoto Seisakusho Co., Ltd.) was used to repeatedly test the bending resistance with the base material inside. The testing machine used had the operation of bending the sample film along the curved surface of a rod (cylinder) with a diameter of 4 mm at a bending angle of 180 ° at the central part in the longitudinal direction, and then returning it to its original position (spreading the sample film). This test is repeated once.
When the above 180 ° bending test is repeated 300,000 times or more, A is defined as A, and B is defined as B when cracks occur 100,000 times or more and less than 300,000 times. Those with cracks were evaluated as C.
The presence or absence of cracks was visually evaluated.
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
 表1に示したとおり、実施例1~11のハードコートフィルムは、鉛筆硬度及び繰り返し折り曲げ耐性に優れていた。  As shown in Table 1, the hard coat films of Examples 1 to 11 were excellent in pencil hardness and repeated bending resistance.
 本発明によれば、鉛筆硬度及び繰り返し折り曲げ耐性に優れたハードコートフィルムを与える樹脂組成物、上記樹脂組成物の硬化物を含むハードコート層を有するハードコートフィルム、及びポリオルガノシルセスキオキサンを提供することができる。 According to the present invention, a resin composition that gives a hard coat film having excellent pencil hardness and repeated bending resistance, a hard coat film having a hard coat layer containing a cured product of the above resin composition, and polyorganosylsesquioxane. Can be provided.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2019年5月17日出願の日本特許出願(特願2019-93792)に基づくものであり、その内容はここに参照として取り込まれる。
 
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application filed on May 17, 2019 (Japanese Patent Application No. 2019-93792), the contents of which are incorporated herein by reference.

Claims (14)

  1.  水素結合を形成し得る水素原子を含む基を有するポリオルガノシルセスキオキサンを含有する樹脂組成物であって、
     前記ポリオルガノシルセスキオキサンの水素結合価が3.0以上であり、側鎖長が14×10-10~19×10-10mであり、
     前記水素結合価は、下記の式(1)で表され、前記側鎖長は、Si原子から側鎖の末端までの長さを表す、樹脂組成物。
      水素結合価=1構成単位中の水素結合を形成し得る水素原子の数/1構成単位の分子量×1000 ・・・(1)
    A resin composition containing a polyorganosylsesquioxane having a group containing a hydrogen atom capable of forming a hydrogen bond.
    The polyorganosylsesquioxane has a hydrogen bond value of 3.0 or more, a side chain length of 14 × 10-10 to 19 × 10-10 m, and a side chain length of 14 × 10-10 to 19 × 10-10 m.
    The hydrogen bond value is represented by the following formula (1), and the side chain length represents the length from the Si atom to the end of the side chain, a resin composition.
    Hydrogen bond value = number of hydrogen atoms that can form hydrogen bonds in one structural unit / molecular weight of one structural unit x 1000 ... (1)
  2.  水素結合を形成し得る水素原子を含む基を有するポリオルガノシルセスキオキサンを含有する樹脂組成物であって、
     前記ポリオルガノシルセスキオキサンの水素結合価が3.0以上であり、架橋性基価が4.5~6.0であり、
     前記水素結合価は、下記の式(1)で表され、前記架橋性基価は、下記の式(5)で表される樹脂組成物。
      水素結合価=1構成単位中の水素結合を形成し得る水素原子の数/1構成単位の分子量×1000 ・・・(1)
      架橋性基価=1構成単位中の架橋性基数/1構成単位の分子量×1000 ・・・(5)
    A resin composition containing a polyorganosylsesquioxane having a group containing a hydrogen atom capable of forming a hydrogen bond.
    The polyorganosylsesquioxane has a hydrogen bond value of 3.0 or more and a crosslinkable base value of 4.5 to 6.0.
    The hydrogen bond value is represented by the following formula (1), and the crosslinkable base value is represented by the following formula (5).
    Hydrogen bond value = number of hydrogen atoms that can form hydrogen bonds in one structural unit / molecular weight of one structural unit x 1000 ... (1)
    Crosslinkable radix = number of crosslinkable groups in one structural unit / molecular weight of one structural unit x 1000 ... (5)
  3.  前記ポリオルガノシルセスキオキサンの水素結合価が3.0以上であり、側鎖長が14×10-10~19×10-10mであり、架橋性基価が4.5~6.0である請求項1又は2に記載の樹脂組成物。 The polyorganosylsesquioxane has a hydrogen bond value of 3.0 or more, a side chain length of 14 × 10-10 to 19 × 10-10 m, and a crosslinkable base value of 4.5 to 6.0. The resin composition according to claim 1 or 2.
  4.  前記水素結合を形成し得る水素原子を含む基が、アミド基、ウレタン基、ウレア基、及びヒドロキシル基から選ばれる少なくとも1つの基である請求項1~3のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 3, wherein the group containing a hydrogen atom capable of forming a hydrogen bond is at least one group selected from an amide group, a urethane group, a urea group, and a hydroxyl group. Stuff.
  5.  前記ポリオルガノシルセスキオキサンが、水素結合を形成し得る水素原子を含む基を有する構成単位(S1)と、前記構成単位(S1)とは別の、架橋性基を有する構成単位(S2)とを含有する請求項1~4のいずれか1項に記載の樹脂組成物。 A structural unit (S1) in which the polyorganosylsesquioxane has a group containing a hydrogen atom capable of forming a hydrogen bond, and a structural unit (S2) having a crosslinkable group different from the structural unit (S1). The resin composition according to any one of claims 1 to 4, which contains and.
  6.  前記構成単位(S1)が有する水素結合を形成し得る水素原子を含む基が、アミド基、ウレタン基、及びウレア基から選ばれる少なくとも1つの基である請求項5に記載の樹脂組成物。 The resin composition according to claim 5, wherein the group containing a hydrogen atom capable of forming a hydrogen bond of the structural unit (S1) is at least one group selected from an amide group, a urethane group, and a urea group.
  7.  前記構成単位(S1)が、さらに架橋性基を有し、前記架橋性基が(メタ)アクリロイルオキシ基、又は(メタ)アクリルアミド基である請求項5又は6に記載の樹脂組成物。 The resin composition according to claim 5 or 6, wherein the structural unit (S1) further has a crosslinkable group, and the crosslinkable group is a (meth) acryloyloxy group or a (meth) acrylamide group.
  8.  前記構成単位(S2)が有する架橋性基が、(メタ)アクリルアミド基である請求項5~7のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 5 to 7, wherein the crosslinkable group of the structural unit (S2) is a (meth) acrylamide group.
  9.  前記ポリオルガノシルセスキオキサンの重量平均分子量が10000~1000000である請求項1~8のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 8, wherein the polyorganosylsesquioxane has a weight average molecular weight of 10,000 to 1,000,000.
  10.  基材と、請求項1~9のいずれか1項に記載の樹脂組成物の硬化物を含むハードコート層とを有するハードコートフィルム。 A hard coat film having a base material and a hard coat layer containing a cured product of the resin composition according to any one of claims 1 to 9.
  11.  鉛筆硬度3H以上であり、かつ前記基材を内側にして、曲率半径2mmで180°折り曲げ試験を10万回繰り返し行った場合にクラックが発生しない請求項10に記載のハードコートフィルム。 The hard coat film according to claim 10, wherein the hard coat film has a pencil hardness of 3H or more, and cracks do not occur when the 180 ° bending test is repeated 100,000 times with a radius of curvature of 2 mm with the base material inside.
  12.  水素結合を形成し得る水素原子を含む基を有するポリオルガノシルセスキオキサンであって、
     水素結合価が3.0以上であり、側鎖長が14×10-10~19×10-10mであり、
     前記水素結合価は、下記の式(1)にて表され、前記側鎖長は、前記側鎖長は、Si原子から側鎖の末端までの長さを表す、ポリオルガノシルセスキオキサン。
      水素結合価=1構成単位中の水素結合を形成し得る水素原子の数/1構成単位の分子量×1000 ・・・(1)
    A polyorganosylsesquioxane having a group containing a hydrogen atom capable of forming a hydrogen bond.
    The hydrogen bond value is 3.0 or more, the side chain length is 14 × 10 -10 to 19 × 10 -10 m, and the side chain length is 14 × 10 -10 to 19 × 10 -10 m.
    The hydrogen bond value is represented by the following formula (1), and the side chain length is a polyorganosylsesquioxane, wherein the side chain length represents the length from a Si atom to the end of the side chain.
    Hydrogen bond value = number of hydrogen atoms that can form hydrogen bonds in one structural unit / molecular weight of one structural unit x 1000 ... (1)
  13.  水素結合を形成し得る水素原子を含む基を有するポリオルガノシルセスキオキサンであって、
     水素結合価が3.0以上であり、架橋性基価が4.5~6.0であり、
     前記水素結合価は下記の式(1)で表され、前記架橋性基価は、下記の式(5)で表されるポリオルガノシルセスキオキサン。
      水素結合価=1構成単位中の水素結合を形成し得る水素原子の数/1構成単位の分子量×1000 ・・・(1)
      架橋性基価=1構成単位中の架橋性基数/1構成単位の分子量×1000 ・・・(5)
    A polyorganosylsesquioxane having a group containing a hydrogen atom capable of forming a hydrogen bond.
    The hydrogen bond value is 3.0 or more, the crosslinkable base value is 4.5 to 6.0, and
    The hydrogen bond value is represented by the following formula (1), and the crosslinkable base value is a polyorganosylsesquioxane represented by the following formula (5).
    Hydrogen bond value = number of hydrogen atoms that can form hydrogen bonds in one structural unit / molecular weight of one structural unit x 1000 ... (1)
    Crosslinkable radix = number of crosslinkable groups in one structural unit / molecular weight of one structural unit x 1000 ... (5)
  14.  水素結合価が3.0以上あり、側鎖長が14×10-10~19×10-10mであり、架橋性基価が4.5~6.0である請求項12又は13に記載のポリオルガノシルセスキオキサン。
     
    The 12th or 13th claim, wherein the hydrogen bond value is 3.0 or more, the side chain length is 14 × 10 -10 to 19 × 10 -10 m, and the crosslinkable base value is 4.5 to 6.0. Polyorganosylsesquioxane.
PCT/JP2020/018872 2019-05-17 2020-05-11 Resin composition, hard coating film and polyorganosilsesquioxane WO2020235383A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021520715A JP7142158B2 (en) 2019-05-17 2020-05-11 Resin composition, hard coat film, and polyorganosilsesquioxane
CN202080036599.8A CN113840854B (en) 2019-05-17 2020-05-11 Resin composition, hard-coated film and polysilsesquioxane
KR1020217034154A KR20210144791A (en) 2019-05-17 2020-05-11 Resin composition, hard coat film, and polyorganosilsesquioxane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-093792 2019-05-17
JP2019093792 2019-05-17

Publications (1)

Publication Number Publication Date
WO2020235383A1 true WO2020235383A1 (en) 2020-11-26

Family

ID=73458450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/018872 WO2020235383A1 (en) 2019-05-17 2020-05-11 Resin composition, hard coating film and polyorganosilsesquioxane

Country Status (4)

Country Link
JP (1) JP7142158B2 (en)
KR (1) KR20210144791A (en)
CN (1) CN113840854B (en)
WO (1) WO2020235383A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021193478A1 (en) * 2020-03-25 2021-09-30 富士フイルム株式会社 Composition for hard coating layer formation, hard coating film, article with hard coating film, image display device, and method for manufacturing hard coating film

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005104025A (en) * 2003-09-30 2005-04-21 Fuji Photo Film Co Ltd Laminated film with gas barrier properties and image display element using this laminated film
JP2015212353A (en) * 2013-12-13 2015-11-26 株式会社ダイセル Polyorganosilsesquioxane, hard coat film, adhesive sheet and laminate
JP2017008134A (en) * 2015-06-17 2017-01-12 東京応化工業株式会社 Curable composition, method for producing cured product, and hard coat material
JP2018189800A (en) * 2017-05-02 2018-11-29 株式会社ダイセル Hard coat film for curved surface display, transparent substrate with hard coat film, and display device
JP2018192634A (en) * 2017-05-12 2018-12-06 株式会社ダイセル Hard coat film suppressed in curling and method for producing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090269504A1 (en) 2008-04-24 2009-10-29 Momentive Performance Materials Inc. Flexible hardcoats and substrates coated therewith
WO2010067685A1 (en) 2008-12-10 2010-06-17 関西ペイント株式会社 Silsesquioxane compound having polymerizable functional group
KR101545111B1 (en) * 2012-05-25 2015-08-17 주식회사 다이셀 Curable resin composition and cured product thereof, encapsulating agent, and optical semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005104025A (en) * 2003-09-30 2005-04-21 Fuji Photo Film Co Ltd Laminated film with gas barrier properties and image display element using this laminated film
JP2015212353A (en) * 2013-12-13 2015-11-26 株式会社ダイセル Polyorganosilsesquioxane, hard coat film, adhesive sheet and laminate
JP2017008134A (en) * 2015-06-17 2017-01-12 東京応化工業株式会社 Curable composition, method for producing cured product, and hard coat material
JP2018189800A (en) * 2017-05-02 2018-11-29 株式会社ダイセル Hard coat film for curved surface display, transparent substrate with hard coat film, and display device
JP2018192634A (en) * 2017-05-12 2018-12-06 株式会社ダイセル Hard coat film suppressed in curling and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021193478A1 (en) * 2020-03-25 2021-09-30 富士フイルム株式会社 Composition for hard coating layer formation, hard coating film, article with hard coating film, image display device, and method for manufacturing hard coating film

Also Published As

Publication number Publication date
JPWO2020235383A1 (en) 2020-11-26
JP7142158B2 (en) 2022-09-26
CN113840854B (en) 2024-05-14
CN113840854A (en) 2021-12-24
KR20210144791A (en) 2021-11-30

Similar Documents

Publication Publication Date Title
JP7064650B2 (en) Laminates, articles with laminates, and image display devices
JP6979517B2 (en) Hardcourt film, articles with hardcourt film, and image display devices
CN112390974B (en) Polyimide-based composite film and display device thereof
JP6967662B2 (en) A hard coat film, an article having a hard coat film, an image display device, and a method for manufacturing the hard coat film.
JP7263356B2 (en) HARD COAT FILM, ARTICLE INCLUDED WITH HARD COAT FILM, AND IMAGE DISPLAY DEVICE
JP6999808B2 (en) Compositions, hardcourt films, articles with hardcourt films, and image display devices.
JPWO2019235108A1 (en) Modifiers, compositions, hard coat films, articles with hard coat films, and image display devices
JP7142158B2 (en) Resin composition, hard coat film, and polyorganosilsesquioxane
JP7280963B2 (en) Composition for forming hard coat layer, hard coat film, method for producing hard coat film, and article containing hard coat film
JP7377261B2 (en) Hard coat film, article equipped with hard coat film, and image display device
WO2021206066A1 (en) Antiglare film and method of producing antiglare film
JP7358624B2 (en) Composition for forming hard coat layer, hard coat film, method for producing hard coat film, and article provided with hard coat film
JP2022011501A (en) Polyimide precursor resin, manufacturing method of polyimide film, manufacturing method of laminate, polyimide film, laminate, member for display, member for touch panel, liquid crystal display unit and organic electroluminescent display unit
WO2022209922A1 (en) Curable composition, hardcoat film, and product, image display device, and flexible display including hardcoat film
CN116917125A (en) Laminate and method for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20809538

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217034154

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021520715

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20809538

Country of ref document: EP

Kind code of ref document: A1