[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020234529A1 - Inclinomètre absolu 720° pouvant fonctionner en milli-gravité - Google Patents

Inclinomètre absolu 720° pouvant fonctionner en milli-gravité Download PDF

Info

Publication number
WO2020234529A1
WO2020234529A1 PCT/FR2020/050803 FR2020050803W WO2020234529A1 WO 2020234529 A1 WO2020234529 A1 WO 2020234529A1 FR 2020050803 W FR2020050803 W FR 2020050803W WO 2020234529 A1 WO2020234529 A1 WO 2020234529A1
Authority
WO
WIPO (PCT)
Prior art keywords
ball
sphere
image
attitude
housing
Prior art date
Application number
PCT/FR2020/050803
Other languages
English (en)
Inventor
Emile REMETEAN
Original Assignee
Centre National d'Études Spatiales
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National d'Études Spatiales filed Critical Centre National d'Études Spatiales
Priority to EP20737236.8A priority Critical patent/EP3969845A1/fr
Publication of WO2020234529A1 publication Critical patent/WO2020234529A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels
    • G01C9/10Measuring inclination, e.g. by clinometers, by levels by using rolling bodies, e.g. spheres, cylinders, mercury droplets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/10Artificial satellites; Systems of such satellites; Interplanetary vehicles
    • B64G1/105Space science
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/10Artificial satellites; Systems of such satellites; Interplanetary vehicles
    • B64G1/105Space science
    • B64G1/1064Space science specifically adapted for interplanetary, solar or interstellar exploration
    • B64G1/1071Planetary landers intended for the exploration of the surface of planets, moons or comets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/66Arrangements or adaptations of apparatus or instruments, not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/24Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for cosmonautical navigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels
    • G01C9/02Details
    • G01C9/06Electric or photoelectric indication or reading means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels
    • G01C9/02Details
    • G01C9/06Electric or photoelectric indication or reading means
    • G01C2009/068Electric or photoelectric indication or reading means resistive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels
    • G01C9/10Measuring inclination, e.g. by clinometers, by levels by using rolling bodies, e.g. spheres, cylinders, mercury droplets
    • G01C2009/107Measuring inclination, e.g. by clinometers, by levels by using rolling bodies, e.g. spheres, cylinders, mercury droplets spheres

Definitions

  • TITLE 720 ° absolute inclinometer capable of operating in milli-gravity
  • the present invention relates to the field of space exploration, and relates to an opto-mechanical sensor suitable for use in a low-gravity space environment, such as that present on the surface of an asteroid or a small moon of the solar system.
  • the present invention relates to a device for recognizing the attitude of an object, to an object comprising such a device, to a space probe comprising such a device, to a landing gear comprising such a device and to a method of attitude recognition of an object, implemented by such a device.
  • a device for recognizing the attitude of an object to an object comprising such a device, to a space probe comprising such a device, to a landing gear comprising such a device and to a method of attitude recognition of an object, implemented by such a device.
  • the use of automatic exploration probes makes it possible to carry out missions which are not currently possible for manned missions.
  • Space exploration probes tend more and more often to carry one or more small daughter probes released by a mother probe to the surface of the celestial object to be explored, when it arrives in the vicinity of the latter.
  • the daughter probes are automatic space vehicles, also equipped with scientific instruments, which will therefore land on the surface of the celestial bodies to be explored, unlike the mother probes which will explore the greatest distance. possible surface of the celestial body.
  • This approach makes it possible to supplement the global scientific data measured remotely by the mother probe with local scientific data, measured in situ at the surface by the daughter probe.
  • the daughter probes intended to land on the surface of celestial bodies are qualified by the generic term “landers” or by the more specific terms in English “lander”, “hopper” or “rover” depending on the mobility capacities. of these.
  • the probes designated by the term, in English, “lander”, which can be translated as “lander” in French, are not provided with displacement capacities. They carry out scientific measurements at the place of their landing.
  • the probes designated by the term, in English, "hopper”, which can be translated as “jumper” in French, are equipped with a device allowing them jump so that you can visit sites other than the initial landing site.
  • the probes designated by the term, in English, "rover”, which can be translated as “astromobile” in French, are generally equipped with wheels in order to be able to roll on the surface of the object to be explored in order to reach target sites defined by the ground teams according to their potential scientific interest and the risks involved in reaching them.
  • the lander is dropped at an altitude varying between several tens of meters and several kilometers above the surface of the celestial body to be explored.
  • the lander falls towards the surface of the body to be explored, by gravity.
  • the duration of the trip to the surface is between a few seconds and several hours.
  • the lander Due to its impact speed and the low gravity on the surface of small bodies in the solar system, after coming into contact with the body, the lander typically bounces several times on the surface, before stabilizing in one location. unknown with an unknown attitude. The distance traveled during rebounds can be significant.
  • gyroscopes have several drawbacks.
  • the cost of a spatialized gyroscope that is to say which can be used in a space environment (hostile environment with strong thermal contrasts, where vacuum generally reigns as well as a gravity lower than gravity terrestrial and where the level of cosmic radiation is significantly higher than that observed on the surface of the Earth) is particularly high.
  • a gyroscope uses the initial conditions of the probe (attitude of the probe relative to the landing site) to deduce therefrom an angular orientation of the lander.
  • the deduction of the angular orientation of the probe with respect to the ground is made by integrating over time the values of angles measured between the first attitude, just before the release by the mother probe, and the final attitude when the lander is on the ground, that is, after having bounced several times before stabilizing. Or a restart of the on-board computer following an unexpected change of state in the electronics due to an ionizing event (“SEU” for “Single Event Upset”) or a crash of the gyroscope electronics following an event “SEU” during the descent phase or during landing gear rebounds could result in a loss of information.
  • SEU ionizing event
  • SEU Single Event Upset
  • the shocks and collisions of the undercarriage with the geological elements that may be present at the surface during the rebounds constitute non-linearities which are liable to distort the measurements.
  • the relatively high electrical consumption of gyroscopes can be very penalizing for missions which are often very constrained from an energy point of view.
  • the solution using photodiodes consists in analyzing the signal at the output of photodiodes placed at several locations of the lander in order to deduce therefrom the attitude of the latter.
  • the regolith which generally makes up the surface of the body to be explored can cover the diodes during bounces, which can also distort the measurements.
  • the present invention aims to overcome the above drawbacks, and to do this proposes a device for recognizing the attitude of an object, remarkable in that it comprises: a sphere comprising a wall capable of at least partially allowing a luminous flux to pass;
  • an image acquisition device arranged in said attitude recognition device to acquire a two-dimensional image of the ball and of the sphere;
  • a device for emitting a luminous flux arranged in said attitude recognition device to emit a luminous flux in the direction of said sphere; an image processing device, connected to the image acquisition device, driven by an image processing algorithm and designed to drive the device for emitting a light flux, to recover said image acquired by said device acquisition of images and to determine from said image a gravity vector having as its origin the center of the sphere and its end the center of the ball.
  • the present invention makes it possible to constitute a solution which is precise, robust and completely independent from the solutions of the prior art and which is more economical than a solution resulting from the prior art offering similar performance.
  • the measurement of the gravity vector is obtained over 4 Pi steradians, i.e. over 720 °, which allows the attitude recognition device according to the invention to be fully operational regardless of the attitude of the landing gear inside which the attitude recognition device of the invention is intended to be mounted.
  • the device therefore performs an absolute measurement, independent of any initial state, robust to any transient failure due to radiation during the landing gear descent phase towards the surface and independent of any stress brought on by more or less violent shocks during rebounds. and able to operate even in very low gravity if the ball is allowed time to stabilize in the sphere.
  • This measurement can, moreover, be repeated at any time during the mission to the surface when the lander is stationary and the need to know the attitude of the lander arises.
  • This measurement at any time can therefore be done without having to integrate the movements of the landing gear during its movements (“hopper” and “rover” cases) and therefore without consuming electrical energy during said movements. movements, the device being able to be kept de-energized outside the measurement phases.
  • the image processing device embedded in the attitude recognition device being able to control the device for emitting a light flux and the image acquisition device, and being able to process the images acquired in order to deduce the direction therefrom and the direction of the gravity vector, makes it possible to identify the attitude of the landing gear in total autonomy, without requiring any human intervention and without requiring the transmission of data to an external computer. This is particularly advantageous for space missions in the case where no communication is possible with another device and for simplifying the flight software of the lander and reducing its development cost.
  • the image processing device may also be called a “control and processing device”.
  • the image processing device integrates the image processing algorithm.
  • the attitude recognition device of an object is configured for use in a spatial environment.
  • the attitude recognition device of an object is configured for use in space.
  • the term “configured for use in a space environment” is understood to mean, specifically designed for use in a space environment and having undergone qualification tests making it possible to validate the behavior and proper functioning of the attitude recognition device in the space environment. .
  • the attitude recognition device of an object is configured to be used in a space environment when it has been demonstrated that it is compatible in particular for use in environments with high levels of radiation, very low pressure. (space vacuum), numerous and significant thermal variations (for example between -50 ° and + 70 ° C), mechanical vibrations and significant shocks (due in particular to the launching and landing phases).
  • the device for recognizing the attitude of an object comprises a housing inside which are mounted:
  • the device for emitting a luminous flux arranged in the first zone of the housing, o the sphere, inside which the ball is mounted, arranged in a second zone of the housing.
  • the device for emitting a light flux being arranged in the same area of the housing as the image acquisition device, it is possible to illuminate the sphere without dazzling the image acquisition device.
  • the image processing device is mounted inside the housing or is directly integrated into the image acquisition device.
  • the image processing device is on-board and completely autonomous with respect to other devices.
  • the device for emitting a light flux comprises a first set of light-emitting diodes.
  • the robustness, mass and energy efficiency of light-emitting diodes are suitable for use in space.
  • the first set of light emitting diodes is mounted between the image acquisition device and the sphere.
  • the first set of light emitting diodes is contained in at least one plane normal to an image acquisition direction.
  • the image acquisition direction is parallel to a straight line passing through the axis of the image acquisition device and the center of the sphere.
  • the direction of image acquisition corresponds to a longitudinal plane of the housing.
  • the at least one plane in which the first set of light-emitting diodes is contained is arranged between the image acquisition device and the sphere.
  • the attitude recognition device comprises a diaphragm, which extends from an outer face of the wall of the sphere, said diaphragm containing a plane of the sphere substantially orthogonal to a longitudinal axis of the housing, said diaphragm defining , on the one hand, a first compartment of the housing, inside which are mounted the image acquisition device and the first set of light-emitting diodes and, on the other hand, a second compartment, the emission device a luminous flux further comprising a second set of light-emitting diodes, mounted in the second compartment of said housing. It is understood that the diaphragm extends from an outer face of the wall of the sphere, without necessarily touching it.
  • the role of the diaphragm is to prevent the second set of light emitting diodes from directly illuminating and dazzling the image acquisition device. It is understood that the first compartment comprises the first zone of the housing. It is understood that the second zone of the housing comprises the second compartment. It is understood that the first compartment comprises a first portion of the sphere. It is understood that the second compartment comprises a second portion of the sphere.
  • the first portion of the sphere is smaller than the second portion of the sphere.
  • the sphere and the ball can be illuminated in different ways.
  • the sphere and the ball can be illuminated by the first set of light-emitting diodes and / or by the second set of light-emitting diodes.
  • the illuminated surface of the ball can have different aspects depending on the lighting. This makes it possible to more accurately calculate the position of the ball in the sphere.
  • the second set of light emitting diodes is similar to the first set of light emitting diodes and is disposed in at least one plane normal to the image acquisition direction.
  • the first and second sets of light emitting diodes can be driven independently of each other by the image processing device.
  • the second set of light emitting diodes are mounted on or near the diaphragm. This enables the diaphragm to provide good concealment of the light flux produced by the second set of light-emitting diodes.
  • the ball has a different color from that of the internal walls of the housing. This makes it easier to distinguish the ball in the image acquired by the image acquisition device.
  • the ball is white in color and the internal walls of the housing are black in color. This combination of colors makes it possible to bring out the ball in the image acquired by the image acquisition device.
  • the image acquisition device, the device for emitting a light flux and the image processing device are designed to be used in a spatial environment.
  • This disclosure also relates to an object comprising an attitude recognition device according to any one of the aforementioned characteristics.
  • the present disclosure also relates to a space probe comprising an attitude recognition device according to any one of the aforementioned characteristics.
  • the invention also relates to a lander, consisting of a space vehicle designed to land and / or to land and move on the surface of a celestial body to be explored, remarkable in that it comprises a recognition device attitude according to any one of the aforementioned characteristics.
  • the invention further relates to a method for recognizing the attitude of an object implemented by an attitude recognition device according to any one of the aforementioned characteristics, remarkable in that it comprises the following steps aimed at:
  • o calculate two sets of three-dimensional coordinates (XBI, YBI, ZBI) and (XB 2 , YB 2 , ZB 2 ) in the direct orthonormal coordinate system (O, X, Y, Z), which may correspond to the position of the ball in the sphere for the position (X b , Y b ) of the center of the ball in the image; o determine, from the appearance of an illuminated surface of the ball, which of the two sets of three-dimensional coordinates (XBI, YBI, ZBI) and (XB2, YB2, ZB2) corresponds to the position of the ball in the sphere .
  • the step consisting in determining, from the aspect of an illuminated surface of the ball, which of the two sets of three-dimensional coordinates (XBI, YBI, ZBI) and (XB2, YB2, ZB2) corresponds to the position of the ball in the sphere consists of the following steps:
  • the step aiming to determine which of the two sets of coordinates (XBI, YBI, ZBI) OR (XB2, YB2, ZB2) is that which corresponds to the position of the ball in the sphere comprises a step of acquiring an image of the sphere and of the ball by the image acquisition device, in which at least the second set of light-emitting diodes is turned on.
  • the step aimed at determining which of the two sets of coordinates (XBI, YBI, ZBI) OR (XB2, Y B 2, Z B 2) can include two acquisitions of images of the sphere and the ball under two different lighting conditions.
  • the first image acquisition is made with only the first set of light-emitting diodes on and the second acquisition is made with at least the second set of light-emitting diodes on.
  • FIG. 1 illustrates the landing gear according to the invention.
  • FIG. 2 illustrates a first embodiment of the attitude recognition device of the invention.
  • FIG. 3 represents the landing gear in a first attitude.
  • FIG. 4 shows the landing gear attitude recognition device according to the attitude given in FIG. 3.
  • FIG. 5 represents the image acquired when the landing gear is in the attitude of FIG. 3.
  • FIG. 6 shows the landing gear in a second attitude.
  • FIG. 7 shows the landing gear attitude recognition device according to the attitude given in FIG. 6.
  • FIG. 8 represents the image acquired when the landing gear is in the attitude of FIG. 6.
  • FIG. 9 shows the landing gear in a third attitude.
  • FIG. 10 shows the landing gear attitude recognition device according to the attitude given in FIG. 9.
  • FIG. 11 represents the image acquired when the landing gear is in the attitude of FIG. 9.
  • FIG. 12 represents a model of the attitude recognition device.
  • FIG. 13 shows in transverse view the model of FIG. 12 with two possible positions of the ball for a given position in the image.
  • FIG. 14 is a view similar to that of FIG. 13, the ball being positioned in the sphere at a location distinct from that of FIG. 12.
  • FIG. 15 illustrates a second embodiment of the attitude recognition device of the invention.
  • FIG. 16 gives an example of use of the attitude recognition device according to the second embodiment.
  • FIG. 17 gives another example of use of the attitude recognition device according to the second embodiment.
  • the terms “upstream” and “downstream” should be understood in relation to the attitude recognition device, the upstream being located on the left with reference to FIG. 2 and the downstream being located. on the right with reference to FIG. 2.
  • the lander (“lander” or “rover” or “hopper” in English) is a space exploration daughter probe released from a space exploration mother probe (not shown) in order to land on a celestial body to explore.
  • the mother probe is most often placed in orbit around the celestial body to be explored and serves in particular as a communication relay between the lander and the Earth.
  • FIG. 1 illustrating a landing gear 1 according to the invention in contact with a ground 3 of a celestial body to be explored.
  • the lander 1 is a daughter probe, for example a space vehicle designed to move by rolling on the ground 3 of the celestial body to be explored.
  • a landing gear is designated by the term, in English, "rover".
  • the lander 1 also designates the probes designated by the term, in English, "landers”, which are not provided with displacement capabilities, as well as the probes designated by the term, in English, "hoppers”, which are equipped with a device allowing them to perform jumps in order to be able to visit sites other than the initial landing site.
  • the lander is often designed to have a certain degree of autonomy in carrying out its activities and in making decisions.
  • the movement of the undercarriage 1 on the ground 3 is ensured by means of a set of wheels 5 and an on-board navigation algorithm allows it to move independently and in complete safety towards the sea. target designated by teams on Earth.
  • the undercarriage 1 comprises an attitude recognition device 7 of the undercarriage 1, the purpose of which is to enable the control system of the undercarriage
  • the attitude recognition device 7 is preferably mounted inside a casing 9 of the undercarriage 1.
  • FIG. 2 illustrating the attitude recognition device 7.
  • the attitude recognition device 7 comprises a sphere 11, hollow.
  • the sphere 11 is a sphere 11, hollow.
  • the wall 13 capable of at least partially allowing a luminous flux to pass inside its internal volume 15.
  • the wall 13 is therefore not opaque and is preferably transparent.
  • the wall 13 of the sphere has preferably received an anti-reflection treatment.
  • the sphere has a radius of between 2 and 6 cm, preferably around 4 cm.
  • the sphere is fixed relative to the attitude recognition device 7.
  • the sphere 11 comprises in its internal volume a ball 17, movable inside the sphere 11.
  • the movement of the ball 17 in the sphere 11 results from the acceleration undergone by the recognition device 7 when the landing gear 1 is subjected to a force, in particular its weight under the effect of gravity.
  • the ball 17 is relatively light, for example 10 grams.
  • the ball 17 is preferably made of a non-electrostatic material so that the electrostatic forces do not hinder its movements inside the sphere 11.
  • the attitude recognition device 7 also comprises an image acquisition device 19, fixed relative to the attitude recognition device 7.
  • the image acquisition device 19 is spatialized.
  • the term “spatialized” is understood to mean the characteristic according to which the device is designed to be used in a spatial environment. To this end, when it is spatialized, the image acquisition device 19 is preferably specifically designed for use in a space environment and undergoes qualification tests making it possible to validate its resistance to the space environment.
  • the image acquisition device 19 is thus qualified as “spatialized” when it has been demonstrated that it is compatible in particular for use in an environment exhibiting high levels of radiation, very low pressure (space vacuum), numerous and significant thermal variations (for example between -50 ° and + 70 ° C), mechanical vibrations and significant shocks.
  • the image acquisition device 19 can be obtained by a digital spatialized camera, or by an analog spatialized camera associated with an image digitizer (“frame grabber” in English) also spatialized.
  • the camera is associated with a spatialized (optical) lens, the characteristics of which (focal length, aperture, optical focus, etc.) are suited to the need for acquiring clear images of the entire sphere and the ball.
  • the image acquisition device 19 is arranged in the attitude recognition device 7 to acquire a two-dimensional image 29 of the ball 17 and of the sphere 11, as will be seen in the remainder of the description illustrating the lander 1 on the ground 3 of the body to explore in different attitudes.
  • the distance between the image acquisition device 19 and the sphere 11 is preferably of the order of a few centimeters, so as to obtain a clear image of the ball 17, while optimizing the compactness of the device. attitude recognition.
  • the image acquisition device 19 may be in the form of a parallelepiped of 2 cm x 2 cm x 4 cm.
  • a phase of calibration of the image acquisition device 19 is carried out prior to its operational use.
  • the calibration makes it possible to define the intrinsic and extrinsic parameters of the image acquisition device 19 with a view to correcting the geometric distortions and of alignment of the images produced.
  • This phase can possibly be omitted if the quality of the design and the realization of the image acquisition device allows it (very low geometric distortion, excellent tolerances and opto-mechanical alignments, etc.).
  • the attitude recognition device 7 further comprises a device for emitting a light flux 21.
  • the device for emitting a luminous flux 21 is arranged in the attitude recognition device 7 so as to emit a luminous flux in the direction of the sphere 11.
  • the luminous power of the device for emitting a luminous flux 21 is calculated and chosen so that it allows the image acquisition device 19 to acquire images of the sphere 11 and of the ball 17 which can be used by an image processing device described in the following section. description.
  • An image is said to be “usable” when the brightness of the image of the sphere 11 and of the ball 17 is such that the sphere 11 and the ball 17 are visible in the image that the image acquisition device 19 acquires. and that the image is neither underexposed nor overexposed.
  • examples of embodiments of the device for emitting a light flux 21 are given, without limitation, as well as examples of the arrangement of the device for emitting a light flux 21 in the device. attitude recognition 7.
  • the image acquisition device 19 is connected to an image processing device 23, which may also be called a “control and processing device”.
  • the image processing device 23 is driven by an image processing algorithm and is designed to drive the device for emitting a light flux 21, to drive the image acquisition device 19, to recover a image acquired by the image acquisition device 19, to rectify said image and to determine from the rectified image the gravity vector G having as its origin the center Os of the sphere 11 and as its end the center O B of the ball 17.
  • the assembly formed by the image acquisition device 19, the sphere 11, inside which the ball 17 is mounted, the device for emitting a luminous flux 21 and the image processing device can be mounted inside a housing 25 of the attitude recognition device 7.
  • the image acquisition device 19 and the device for emitting a luminous flux 21 are mounted in the housing 25 upstream with respect to the sphere 11.
  • the image acquisition device 19 and the device for emitting a luminous flux 21 are mounted in a first zone of the housing and the sphere 11 is mounted in a second zone of the housing.
  • the image processing device 23 can be mounted indifferently in one or the other of the aforementioned areas of the housing 25.
  • the device for emitting a light flux 21 preferably comprises a first set of light-emitting diodes 27, called “upstream”, because of their locations in the housing 25.
  • the first set of upstream light-emitting diodes 27 is however preferably mounted between the image acquisition device 19 and the sphere 11.
  • the upstream light-emitting diodes 27 can for example be distributed in the housing so as to form a circle contained in a plane (XY) with reference to the direct trihedron (X, Y, Z) shown in Figure 2.
  • Other light sources can also be considered instead of light emitting diodes (for example incandescent bulbs, fluorescent sources ...) but their robustness, mass and energy efficiency are generally less well suited to a space mission.
  • the housing 25 adopts for example a parallelepipedal shape.
  • the ball 17 preferably has a different color from that of the internal walls of the housing 25.
  • the ball 17 has a relatively light color, such as white, preferably matt.
  • the internal walls of the housing 25 preferably have a dark color such as black, preferably matt, in order to make the images acquired of the sphere 11 and of the ball 17 more usable.
  • the ball and the walls can be painted if necessary. to obtain the required colors.
  • the image processing device 23 is preferably mounted inside the housing 25 which makes it possible to make the attitude recognition device 7 autonomous.
  • the image processing device 23 can be integrated into the image acquisition device 19.
  • the image processing device 23 can be physically deported from the attitude recognition device 7 in which case, it is, for example, integrated into the onboard computer of the undercarriage 1.
  • the image processing device 23 is made up of either a microcontroller, a microprocessor, a network of programmable gates in situ designated by the acronym “FPGA” for “Field-Programmable Gâte Array” or d '' an integrated circuit specific to an application designated by the acronym “ASIC” for “Application-Specific Integrated Circuit” as well as the associated electronic components and, where applicable, the software necessary for its proper functioning, for controlling the device. 'emission of a luminous flux 21, for controlling the image acquisition device 19 and for communications with the computer onboard the landing gear 1.
  • FPGA Field-Programmable Gâte Array
  • ASIC Application-Specific Integrated Circuit
  • the image processing device 23 is spatialized, in the same way as the image acquisition device 19 and the transmission device a luminous flux 21.
  • the undercarriage 1 in its “rover” version has stabilized on the ground 3 upright, that is to say that the wheels 5 of the landing gear 1 rest on the ground 3 which is flat here (the gravity vector is perpendicular to the ground and directed towards the ground).
  • the ball 17 ends up stabilizing in contact with the internal face of the wall 13 of the sphere 11, under the effect of gravity, as shown in the figure. 4 which shows the attitude recognition device 7 in a simplified manner, the device for emitting a light flux 21 and the image processing device 23 not being shown.
  • FIG. 5 illustrates the image 29 acquired by the image acquisition device 19 when the landing gear 1 is in the attitude shown in FIG. 3.
  • the ball 17 is located at the bottom of the image. 29, which reflects the fact that the undercarriage 1 has its back facing upwards, that the ball is on the Y axis, which reflects the fact that the undercarriage is not inclined to its right or its left and finally that the ball is in contact with the circle representing the image of the sphere 11, which reflects the fact that the landing gear 1 is not inclined forward or backward either. From the image we can deduce that the undercarriage 1 is therefore correctly placed on its wheels and that it is flat.
  • FIGS. 6 to 8 give another example of the attitude of the landing gear 1, still in its “rover” version.
  • the attitude of the undercarriage 1 with respect to the ground is such that the undercarriage 1 has landed on its back, that is to say that it rests on its upper face 30, the wheels 5 not being at the bottom. contact with the ground.
  • the upper face 30 of the undercarriage 1 is not perpendicular to the gravity vector, either because that the ground is locally sloping or because the undercarriage is not placed flat on the ground, for example because of the presence of stones.
  • FIG. 7 illustrates (in a simplified view, only the sphere 11, the ball 17 and the image acquisition device 19 being represented) the attitude recognition device 7 when the landing gear 1 is in the attitude shown in figure 6.
  • FIG. 8 illustrates the image 29 acquired by the image acquisition device 19 when the landing gear 1 is in the attitude shown in FIG. 6. It is noted that the ball 17 is located at the top of the image. 29, which reflects the fact that the landing gear 1 is placed on its back, that the ball is on the Y axis, which means that the landing gear is not tilted to its right or to its left, and finally that the ball is not in contact with the circle representing the sphere 11, which reflects the fact that the landing gear 1 is moreover inclined forward or backward.
  • FIGS. 9 to 11 give another example of the attitude of the landing gear 1, still in its “rover” version.
  • the attitude of the landing gear 1 with respect to the ground is such that the landing gear 1 has landed on its left side, that is to say that it is resting on its left side face.
  • FIG. 10 illustrates (in a simplified view, only the sphere 11, the ball 17 and the image acquisition device 19 being represented) the attitude recognition device 7 when the landing gear 1 is in the attitude shown in figure 9.
  • FIG. 11 illustrates the image 29 acquired by the image acquisition device 19 when the landing gear 1 is in the attitude shown in FIG. 9.
  • the ball 17 is located to the left of the image 29, which reflects the fact that the undercarriage 1 is tilted to its left, that the ball is on the X axis, which reflects the fact that the undercarriage is not also tilted forward or l 'rear, and finally that the ball is in contact with the circle representing the sphere 11, which reflects the fact that the left side of the landing gear is perpendicular to the gravity vector.
  • the identification of the direction of the gravity vector can be obtained over 4 Pi steradians, that is to say over 720 °, which therefore allows the attitude recognition device 7 of the invention to determine the direction of the gravity vector regardless of the attitude of the landing gear 1 with respect to the ground 3.
  • FIGS. 12 and 13 in order to explain the steps of the method for recognizing the attitude of the landing gear 1 implemented by the attitude recognition device 7 according to the invention.
  • FIG. 12 illustrates a modeling of the attitude recognition system 7.
  • the latter can be modeled by a projection center OL and an image plane 31 located at the focal length f downstream from the projection center OL and upstream from the sphere 11.
  • the ray of light 33 connecting the center of projection OL to the center of the sphere Os is the main axis of the system. It crosses the image plane 31 at the main point Oi.
  • the ray of light 35 connecting the center of projection OL to the center OB of the ball 17 intersects the image plane 31 at a point PB.
  • the point PB is therefore the point of the image corresponding to the center of the ball 17.
  • All of the steps below aim to determine the direction of the gravity (or acceleration) vector from the image of the ball 17 acquired by the image acquisition device 19.
  • the first step of the landing gear attitude recognition method 1 aims to define a three-dimensional direct orthonormal frame (O, X, Y, Z) having for origin O the center O s of the sphere 11 and having the directing vector of the Z axis that points to the center of projection OL.
  • the coordinates (XL, YL, ZL) of the center of projection OL are (0, 0, ZL), ZL being the distance between OL, the center of projection, and Os , the center of the sphere 11.
  • the image plane 31 is parallel to the plane (O, X, Y) and its Z coordinate is equal to (ZL-Î), f being the focal distance of the image acquisition device 19
  • the coordinates of the center OB of the ball 17 are (XB, YB, ZB) and vary according to the position of the ball in the sphere.
  • an image 29 (shown in FIGS. 5, 8 and 11) is acquired, thanks to the image acquisition device 19, on which the sphere 11 and the ball 17 are visible.
  • the image acquisition device 19 then communicates to the image processing device 23 the acquired two-dimensional image.
  • the image processing device 23 performs the rectification of the acquired image. This step aims to use the results of the calibration of the image acquisition device 19 to correct the geometric distortions of the image.
  • the ball 17 is identified in the image 29 acquired and rectified.
  • the algorithm of image processing of the image processing device 23 can advantageously be designed to search for the brightest group of connected pixels in the image, corresponding to the ball 17.
  • the image processing algorithm of the image processing device 23 identifies the image coordinates (u b , Vb), in pixels and fractions of pixels, of the center of the ball .
  • the image processing algorithm of the image processing device 23 can advantageously be designed to calculate the coordinates of the barycenter of the pixels identified as belonging to the ball 17 in the fourth step.
  • a sixth step of the method of the invention there is associated with the image 29 acquired a two-dimensional direct orthonormal frame (Oi, X, Y) from the three-dimensional direct orthonormal frame (O, X, Y, Z).
  • the frame of reference (Oi, X, Y) is defined so as to form a direct orthonormal frame seen by the image acquisition device 19 whose center Oi of the frame (Oi, X, Y) corresponds to the center O of the frame ( O, X, Y, Z), therefore at the center O s of the sphere 11.
  • the points OL, Oi and O are therefore all three located on the main axis defined by the ray of light 33.
  • a seventh step of the method of the invention one identifies, in the acquired and rectified image 29, the coordinates (X b , Y b ) of the center OB of the ball 17 in the two-dimensional direct orthonormal frame (Oi, X, Y) from the image coordinates (ub, Vb), the physical dimension of the pixels of the camera and the image coordinates (u 0 , v 0 ) of the point Oi.
  • FIG. 13 illustrates, on a longitudinal section of the model of the attitude recognition device 7, the fact that for a given position of the ball 17 in the image 29, in general two positions of the ball 17 in sphere 11 are possible. It is noted, however, that there is a set of positions of the ball 17 in the image 29 for which only one position of the ball 17 in the sphere 11 is possible.
  • the coordinates (XBI, YBI, ZBI) and (XB2, YB2, ZB2) of the two possible positions of the ball are calculated in the three-dimensional frame (O, X, Y, Z). corresponding to the coordinates (X b , Y b ) of the center OB of the ball 17 in the two-dimensional direct orthonormal coordinate system (Oi, X, Y).
  • R (Rs - R B ), difference between the radius of sphere 11 and the radius of ball 17.
  • the method of the invention comprises a ninth and a tenth step according to which it is determined which of the two sets of three-dimensional coordinates (XBI, YBI, ZBI) and (XB2, YB2, ZB2) is that which corresponds to the real position of the ball 17 in sphere 11.
  • the processing algorithm calculates the value of the apparent surface of the ball 17 in the image 29 acquired.
  • the processing algorithm compares the value of the apparent surface of the ball 17 with a value or a set of calibration values previously obtained during a calibration phase of the attitude recognition device 7.
  • the two possible three-dimensional positions of the ball 17 being on the light ray 35 passing through the projection center OL and the point PB, intersection between the light ray 35 and the image plane 31, we obtain an OBI position for which the ball 17 is closer to the center of projection OL and a position OB2 for which the ball 17 is further from OL. Due to the perspective projection, when the ball 17 is closer to the center of projection OL, the apparent area of the ball 17 in the image 29 is greater than the apparent area of the ball 17 in the image 29 than the apparent area of the ball 17 in the image 29. one obtains when the ball 17 is further from the center of projection OL.
  • the step according to which the value of the apparent surface of the ball 17 is compared with a value or with a set of calibration values obtained previously during the calibration phase of the attitude recognition device 7 allows to determine whether the ball 17 is in the position closer or further from the center of projection OL and thus to determine which of the two sets of three-dimensional coordinates calculated in the eighth step is the correct one (tenth step of the method according to the invention).
  • the algorithm deduces the gravity vector G (or acceleration), the origin of which is given by the center Os of the sphere 11 and the end is given by the coordinates (XB, YB, ZB) of the center OB of the ball 17 in the direct orthonormal frame (O, X, Y, Z), determined at the end of the tenth step of the process or at the end of the eighth step of the process in the particular case where only a three-dimensional position of the ball 17 in the sphere 11 corresponds to the two-dimensional position of the ball 17 in the image 29.
  • FIG. 14 illustrates the fact that for certain attitudes of the attitude recognition device 7 the two positions of the ball 17 in the sphere 11 corresponding to the position of the ball 17 in the image 29 can be very close to each other, thus potentially making it difficult to choose between the two sets of three-dimensional coordinates possible by analyzing the apparent surface of the ball in the image. For most missions, we can advantageously treat this case by calculating the barycenter of the two positions. However, for the missions for which it is desired to improve the precision of the measurements when a situation such as that illustrated in FIG. 14 occurs, the attitude recognition device 7 can be obtained according to a second embodiment illustrated in FIG. 15 to which reference is now made, showing the attitude recognition device 7 in longitudinal section.
  • the attitude recognition device 7 further comprises a diaphragm 39, fixed relative to the attitude recognition device 7 and the device for emitting a light flux 21 further comprises a second assembly of light-emitting diodes 47.
  • the diaphragm 39 extends from an interior face of the housing 25, along a plane (XY) substantially orthogonal to a longitudinal axis 41 of the housing, corresponding to the direction of image acquisition.
  • the diaphragm may or may not be in contact with the outer surface of the sphere.
  • the diaphragm 39 thus first defines a compartment, said upstream 43 of the housing 25 and a second compartment, said downstream 45 of the housing 25.
  • the diaphragm is preferably mounted at a distance ZD from the center Os of the sphere such that:
  • ZL being the distance between Os , the center of the sphere 11, and OL, the center of projection of the image acquisition device 19 and
  • R (Rs - RB), difference between the radius of sphere 11 and the radius of ball 17.
  • the device for emitting a luminous flux 21 comprises a second set of light-emitting diodes, called a set of downstream light-emitting diodes 47, is mounted in the second downstream compartment 45 of the housing 25.
  • the set of Downstream light-emitting diodes 47 is mounted close to diaphragm 39 or on diaphragm 39.
  • the second set of downstream light-emitting diodes 47 is arranged in the attitude recognition device 7 for emitting a luminous flux in the direction of the sphere 11.
  • the method implemented by the device of attitude recognition 7 obtained according to the second embodiment of the invention provides for an additional step comprising the extinction of the first set of upstream light-emitting diodes 27 and the ignition of the second set of downstream light-emitting diodes 47, mounted in the second downstream compartment of the housing 25, then a step of acquiring an image of the sphere 11 and of the ball 17, the lighting this time being provided at least by the second set of downstream light-emitting diodes 47, here only by the second set of downstream light-emitting diodes 47.
  • the ball 17 when the ball 17 is upstream of the diaphragm 39, the ball 17 will appear illuminated from the front in the image acquired in upstream lighting and illuminated from behind in the image acquired in lighting. downstream.
  • the ball 17 when the ball 17 is downstream of the diaphragm 39, the ball 17 will appear to be illuminated from the front in the image acquired in upstream lighting and also illuminated from the front in the image. image acquired in downstream lighting.
  • the method according to the invention determines whether the ball 17 is located upstream or downstream of the. diaphragm 39 and deduces which is the correct set of three-dimensional coordinates of the ball 17 in the direct orthonormal coordinate system (O, X, Y, Z).
  • the method of the invention deduces the gravity vector, the origin of which is the center Os of the sphere 11 and the end is given by the coordinates (XB, YB, ZB) of the center of ball 17 in the direct orthonormal coordinate system (O, X, Y, Z).
  • the ignition of the first and second sets of upstream 27 and downstream light-emitting diodes 47 at the right time and the sequence of steps is controlled by the image processing device 23.
  • attitude recognition device of this object comprising the attitude recognition device of the invention, of this landing gear and of this method.
  • attitude recognition described above only as examples illustrative, but it embraces on the contrary all the variants involving the technical equivalents of the means described as well as their combinations if they come within the scope of the invention.
  • the present invention can be used on board any space vehicle needing to determine its attitude relative to an acceleration vector provided that this vector does not vary rapidly over time, in order to allow time for the ball to stabilize. .
  • the present invention can function perfectly also on Earth, in terrestrial gravity, in any application requiring an absolute attitude measurement over 720 °, provided that the attitude does not vary too quickly over time in order to allow time the ball to stabilize.
  • the various constituent elements of the invention obviously do not need to be spatialized.
  • the attitude recognition device can be intended to be integrated into an object designed to operate in a terrestrial environment.
  • Such an object can be provided with movement capacities, such as an aircraft, or devoid of its own movement capacities but for which one wants for example to know the evolution of the attitude during its handling or its transport, such as for example a box or a container.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

Le présent exposé concerne un dispositif de reconnaissance d'attitude (7) d'un objet, caractérisé en ce qu'il comporte : une sphère (11) comportant une paroi (13) apte à laisser passer au moins partiellement un flux lumineux; une bille (17), montée mobile à l'intérieur de ladite sphère (11); un dispositif d'acquisition d'images (19), agencé dans ledit dispositif de reconnaissance d'attitude (7) pour acquérir une image bidimensionnelle de la bille (17) et de la sphère (11); un dispositif d'émission d'un flux lumineux (21), agencé dans ledit dispositif de reconnaissance d'attitude (7) pour émettre un flux lumineux en direction de ladite sphère (11); un dispositif de traitement d'images (23), connecté au dispositif d'acquisition d'images (19), piloté par un algorithme de traitement d'images et conçu pour piloter le dispositif d'émission d'un flux lumineux (21), pour récupérer ladite image acquise par ledit dispositif d'acquisition d'images (19) et pour déterminer à partir de ladite image (29) un vecteur gravité (G ) ayant pour origine le centre (Os) de la sphère (11) et pour extrémité le centre (OB) de la bille (17).

Description

DESCRIPTION
TITRE : Inclinomètre absolu 720° pouvant fonctionner en milli-gravité
La présente invention s'inscrit dans le domaine de l'exploration spatiale, et concerne un capteur opto-mécanique apte à être utilisé dans un environnement spatial à faible gravité, tel que celui présent à la surface d'un astéroïde ou d'une petite lune du système solaire.
Plus précisément, la présente invention a trait à un dispositif de reconnaissance d'attitude d'un objet, à un objet comportant un tel dispositif, à une sonde spatiale comportant un tel dispositif, à un atterrisseur comportant un tel dispositif et à un procédé de reconnaissance d'attitude d'un objet, mis en œuvre par un tel dispositif. Dans le domaine de l'exploration spatiale, l'utilisation de sondes d'exploration automatiques permet de réaliser des missions qui ne sont à ce jour pas envisageables pour des missions habitées.
Ces missions d'exploration automatiques sont menées par des sondes spatiales équipées d'instruments scientifiques qui sont lancées depuis la Terre à l'aide de fusées et envoyées vers les corps célestes à explorer pour les étudier de plus près.
Les sondes spatiales d'exploration tendent de plus en plus souvent à embarquer une ou plusieurs petites sondes filles larguées par une sonde mère vers la surface de l'objet céleste à explorer, lorsqu'elle arrive à proximité de ce dernier.
Dans ce contexte, les sondes filles sont des véhicules spatiaux automatiques, équipés eux aussi d'instruments scientifiques, qui vont donc se poser à la surface des corps célestes à explorer, contrairement aux sondes mères qui, elles, vont explorer à distance la plus grande surface possible du corps céleste. Cette approche permet de compléter les données scientifiques globales mesurées à distance par la sonde mère par des données scientifiques locales, mesurées in situ à la surface par la sonde fille.
On qualifie les sondes filles destinées à atterrir à la surface des corps célestes par le terme générique d'« atterrisseurs » ou bien par les termes en langue anglaise plus spécifiques « lander », « hopper » ou « rover » en fonction des capacités de mobilité de celles-ci.
Ainsi, les sondes désignées par le terme, en langue anglaise, « lander », pouvant être traduit par « atterrisseur » en langue française, ne sont pas pourvues de capacités de déplacement. Elles effectuent les mesures scientifiques à l'endroit de leur atterrissage. Les sondes désignées par le terme, en langue anglaise, « hopper », pouvant être traduit par « sauteur » en langue française, sont équipées d'un dispositif leur permettant d'effectuer des sauts afin de pouvoir visiter d'autres sites que le site d'atterrissage initial.
Les sondes désignées par le terme, en langue anglaise, « rover » , pouvant être traduit par « astromobile » en langue française, sont généralement équipées de roues afin de pouvoir rouler à la surface de l'objet à explorer en vue d'atteindre des sites cibles définis par les équipes au sol en fonction de leur intérêt scientifique potentiel et des risques encourus pour les atteindre.
En fonction du profil de la mission, l'atterrisseur est largué à une altitude variant entre plusieurs dizaines de mètres et plusieurs kilomètres au-dessus de la surface du corps céleste à explorer. L'atterrisseur tombe vers la surface du corps à explorer, par gravité. En fonction de l'altitude de largage, de la vitesse initiale et de l'intensité de la gravité, la durée du trajet vers la surface est comprise entre quelques secondes et plusieurs heures.
Du fait de sa vitesse d'impact et de la faible gravité à la surface des petits corps du système solaire, après être entré en contact avec le corps, l'atterrisseur rebondit généralement plusieurs fois à la surface, avant de se stabiliser à un endroit inconnu avec une attitude inconnue. La distance parcourue pendant les rebonds peut être importante.
Pour les atterrisseurs ayant des capacités de mobilité (sondes désignées, en langue anglaise, par « hoppers » et « rovers »), il convient de déterminer de façon précise l'attitude d'immobilisation à la surface du corps afin de prendre les bonnes décisions leur permettant de se redresser et de déployer des générateurs solaires le cas échéant. Cette étape de détermination de l'orientation de l'atterrisseur en contact avec le sol du corps à explorer est critique, car une information erronée sur l'attitude de l'atterrisseur peut avoir pour conséquences sa détérioration voire la perte de la mission (par exemple tentative de déploiement des générateurs solaires alors que l'atterrisseur est orienté « la tête en bas » et donc que les générateurs solaires se trouvent sous l'atterrisseur, en contact avec la surface du corps céleste). La détermination de l'attitude doit pouvoir se faire de manière autonome car la communication avec la Terre n'est pas possible si par exemple l'attitude de l'atterrisseur oriente son ou ses antenne(s) de manière défavorable pour assurer une communication.
On connaît de l'art antérieur plusieurs dispositifs permettant d'identifier l'orientation d'un objet, comme les accéléromètres, les gyroscopes ou encore un ensemble de photodiodes.
La plupart des accéléromètres « sur étagère » sont conçus pour être utilisés en gravité terrestre (par exemple les accéléromètres intégrés dans les terminaux mobiles de communication désignés par le terme, en langue anglaise, « smartphone »). Leur utilisation à la surface de petits corps du système solaire où la gravité peut être des milliers de fois plus faible que sur Terre est problématique car le signal de sortie serait noyé dans le bruit de mesure.
L'utilisation de gyroscopes présente plusieurs inconvénients. Tout d'abord, le coût d'un gyroscope spatialisé, c'est-à-dire qui peut être utilisé en environnement spatial (environnement hostile présentant de forts contrastes thermiques, où règne généralement le vide ainsi qu'une gravité inférieure à la gravité terrestre et où le niveau de radiations cosmiques est significativement supérieur à celui relevé à la surface de la Terre) est particulièrement élevé. Ensuite, un gyroscope utilise les conditions initiales de la sonde (attitude de la sonde par rapport au site d'atterrissage) pour en déduire une orientation angulaire de l'atterrisseur. La déduction de l'orientation angulaire de la sonde par rapport au sol se fait en intégrant dans le temps les valeurs d'angles mesurés entre la première attitude, juste avant le largage par la sonde mère, et l'attitude finale lorsque l'atterrisseur se trouve sur le sol, c'est-à-dire après avoir rebondi plusieurs fois avant de se stabiliser. Or un redémarrage du calculateur bord suite à un changement d'état inopiné dans l'électronique dû à un événement ionisant (« SEU » pour « Single Event Upset » en langue anglaise) ou un plantage de l'électronique du gyroscope suite à un évènement « SEU » pendant la phase de descente ou pendant les rebonds de l'atterrisseur pourrait entraîner une perte d'informations. De même, les chocs et les collisions de l'atterrisseur avec les éléments géologiques pouvant être présents à la surface lors des rebonds constituent des non-linéarités qui sont susceptibles de venir fausser les mesures. Finalement, la consommation électrique relativement importante des gyroscopes peut être très pénalisante pour des missions qui sont souvent très contraintes d'un point de vue énergétique.
Enfin, la solution utilisant des photodiodes consiste à analyser le signal en sortie de photodiodes placées à plusieurs endroits de l'atterrisseur pour en déduire l'attitude de celui-ci. Cependant, en fonction du relief du site où s'est immobilisé l'atterrisseur, des ombrages ou la proximité de structures géologiques sont susceptibles de venir induire en erreur l'algorithme de décision. Par ailleurs, le régolithe qui compose généralement la surface du corps à explorer peut recouvrir les diodes lors des rebonds, pouvant également fausser les mesures.
La présente invention vise à s'affranchir des inconvénients ci-dessus, et propose pour ce faire un dispositif de reconnaissance d'attitude d'un objet, remarquable en ce qu'il comporte : une sphère comportant une paroi apte à laisser passer au moins partiellement un flux lumineux ;
une bille, montée mobile à l'intérieur de ladite sphère ;
un dispositif d'acquisition d'images, agencé dans ledit dispositif de reconnaissance d'attitude pour acquérir une image bidimensionnelle de la bille et de la sphère ;
un dispositif d'émission d'un flux lumineux, agencé dans ledit dispositif de reconnaissance d'attitude pour émettre un flux lumineux en direction de ladite sphère ; un dispositif de traitement d'images, connecté au dispositif d'acquisition d'images, piloté par un algorithme de traitement d'images et conçu pour piloter le dispositif d'émission d'un flux lumineux, pour récupérer ladite image acquise par ledit dispositif d'acquisition d'images et pour déterminer à partir de ladite image un vecteur gravité ayant pour origine le centre de la sphère et pour extrémité le centre de la bille. Ainsi, grâce à la présente invention, en permettant d'identifier la direction et le sens du vecteur gravité au point de chute de l'atterrisseur, le dispositif de reconnaissance d'attitude peut déduire l'attitude de l'atterrisseur de manière autonome et sans aucune aide extérieure, et l'atterrisseur peut agir en conséquence.
La présente invention permet de constituer une solution, précise, robuste et totalement autonome par rapport aux solutions de l'art antérieur et plus économique qu'une solution issue de l'art antérieur offrant des performances similaires.
Aussi, en prévoyant de positionner la bille à l'intérieur d'une sphère, la mesure du vecteur gravité est obtenue sur 4 Pi stéradians, soit sur 720°, ce qui permet au dispositif de reconnaissance d'attitude selon l'invention d'être pleinement opérationnel quelle que soit l'attitude de l'atterrisseur à l'intérieur duquel est destiné à être monté le dispositif de reconnaissance d'attitude de l'invention.
Le dispositif effectue donc une mesure absolue, indépendante de tout état initial, robuste à toute défaillance transitoire due aux radiations pendant la phase de descente de l'atterrisseur vers la surface et indépendante de tout stress apporté par les chocs plus ou moins violents lors des rebonds et pouvant fonctionner même en très faible gravité si on laisse le temps à la bille de se stabiliser dans la sphère.
Cette mesure peut, par ailleurs, être renouvelée à tout moment de la mission à la surface lorsque l'atterrisseur est immobile et que le besoin de connaître l'attitude de l'atterrisseur se présente. Cette mesure à tout moment peut donc se faire sans avoir à intégrer les mouvements de l'atterrisseur lors de ses déplacements (cas « hopper » et « rover ») et donc sans consommer de l'énergie électrique pendant lesdits déplacements, le dispositif pouvant être maintenu hors tension en dehors des phases de mesure.
Le dispositif de traitement d'images embarqué dans le dispositif de reconnaissance d'attitude, pouvant contrôler le dispositif d'émission d'un flux lumineux et le dispositif d'acquisition d'images, et pouvant traiter les images acquises pour en déduire la direction et le sens du vecteur gravité, permet d'identifier l'attitude de l'atterrisseur en totale autonomie, sans nécessiter une quelconque intervention humaine et sans nécessiter de transmettre de données à un calculateur externe. Cela est particulièrement avantageux pour des missions spatiales dans le cas où aucune communication n'est possible avec un autre appareil et pour simplifier le logiciel de vol de l'atterrisseur et diminuer son coût de développement.
Le dispositif de traitement d'images peut également être appelé « dispositif de pilotage et de traitement ». le dispositif de traitement d'images intègre l'algorithme de traitement d'images.
Selon un aspect, le dispositif de reconnaissance d'attitude d'un objet est configuré pour être utilisé dans un environnement spatial.
Autrement dit, le dispositif de reconnaissance d'attitude d'un objet est configuré pour être utilisé dans l'espace.
On entend par « configuré pour être utilisé dans un environnement spatial », spécifiquement conçu pour une utilisation en milieu spatial et ayant subi des tests de qualification permettant de valider la tenue et le bon fonctionnement du dispositif de reconnaissance d'attitude à l'environnement spatial.
Le dispositif de reconnaissance d'attitude d'un objet est configuré pour être utilisé dans un environnement spatial lorsqu'il a été démontré qu'il est compatible notamment d'une utilisation dans des milieux présentant de forts niveaux de radiations, une très faible pression (vide spatial), des variations thermiques nombreuses et importantes (par exemple entre -50° et +70°C), des vibrations mécaniques et des chocs importants (dus notamment aux phases de lancement et d'atterrissage).
Des caractéristiques optionnelles du dispositif de reconnaissance d'attitude sont décrites ci-après.
Selon un aspect, le dispositif de reconnaissance d'attitude d'un objet comporte un boîtier à l'intérieur duquel sont montés :
o le dispositif d'acquisition d'images disposé dans une première zone du boîtier,
o le dispositif d'émission d'un flux lumineux, disposé dans la première zone du boîtier, o la sphère, à l'intérieur de laquelle est montée la bille, disposée dans une deuxième zone du boîtier.
Le dispositif d'émission d'un flux lumineux étant disposé dans la même zone du boîtier que le dispositif d'acquisition d'images, il est possible d'éclairer la sphère sans éblouir le dispositif d'acquisition d'images.
Selon un aspect, le dispositif de traitement d'images est monté à l'intérieur du boîtier ou est directement intégré au dispositif d'acquisition d'images.
Ainsi, le dispositif de traitement d'images est embarqué et totalement autonome vis-à- vis d'autres appareils.
Selon un aspect, le dispositif d'émission d'un flux lumineux comporte un premier ensemble de diodes électroluminescentes.
La robustesse, la masse et le rendement énergétique des diodes électroluminescentes sont adaptés à une utilisation dans l'espace.
Selon un aspect, le premier ensemble de diodes électroluminescentes est monté entre le dispositif d'acquisition d'images et la sphère.
Par exemple, le premier ensemble de diodes électroluminescentes est contenu dans au moins un plan normal à une direction d'acquisition d'image.
On comprend que la direction d'acquisition d'image est parallèle à une droite passant par l'axe du dispositif d'acquisition d'images et le centre de la sphère.
La direction d'acquisition d'image correspond à un plan longitudinal du boîtier.
On comprend que l'au moins un plan dans lequel est contenu le premier ensemble de diodes électroluminescentes est disposé entre le dispositif d'acquisition d'images et la sphère.
Selon un aspect, le dispositif de reconnaissance d'attitude comporte un diaphragme, qui s'étend depuis une face extérieure de la paroi de la sphère, ledit diaphragme contenant un plan de la sphère sensiblement orthogonal à un axe longitudinal du boîtier, ledit diaphragme définissant, d'une part, un premier compartiment du boîtier, à l'intérieur duquel sont montés le dispositif d'acquisition d'images et le premier ensemble de diodes électroluminescentes et, d'autre part, un deuxième compartiment, le dispositif d'émission d'un flux lumineux comportant en outre un deuxième ensemble de diodes électroluminescentes, monté dans le deuxième compartiment dudit boîtier. On comprend que le diaphragme s'étend depuis une face extérieure de la paroi de la sphère, sans nécessairement la toucher.
Le rôle du diaphragme est d'empêcher le deuxième ensemble de diodes électroluminescentes d'éclairer directement et d'éblouir le dispositif d'acquisition d'images. On comprend que le premier compartiment comprend la première zone du boîtier. On comprend que la deuxième zone du boîtier comprend le deuxième compartiment. On comprend que le premier compartiment comprend une première portion de la sphère. On comprend que le deuxième compartiment comprend une deuxième portion de la sphère.
Par exemple, la première portion de la sphère est plus petite que la deuxième portion de la sphère.
Grâce à ces dispositions, la sphère et la bille peuvent être éclairées de différentes manières. En effet, la sphère et la bille peuvent être éclairées par le premier ensemble de diodes électroluminescentes et/ou par le deuxième ensemble de diodes électroluminescentes. Ainsi, la surface éclairée de la bille peut avoir des aspects différents en fonction de l'éclairage. Cela permet de calculer de manière plus précise la position de la bille dans la sphère.
Selon un aspect, le deuxième ensemble de diodes électroluminescentes est similaire au premier ensemble de diodes électroluminescentes et est disposé dans au moins un plan normal à la direction d'acquisition d'image.
Selon un aspect, les premier et deuxième ensembles de diodes électroluminescentes peuvent être pilotés de manière indépendante l'un de l'autre par le dispositif de traitement d'images.
Selon un aspect, le deuxième ensemble de diodes électroluminescentes est monté sur le diaphragme ou à proximité du diaphragme. Ceci permet d'assurer au diaphragme une bonne occultation du flux lumineux produit par le deuxième ensemble de diodes électroluminescentes.
Selon un aspect, la bille aune couleur différente de celle des parois internes du boîtier. Ceci permet de mieux pouvoir la distinguer la bille dans l'image acquise par le dispositif d'acquisition d'images.
Selon un aspect, la bille est de couleur blanche et les parois internes du boîtier sont de couleur noire. Cette combinaison de couleurs permet de faire ressortir la bille dans l'image acquise par le dispositif d'acquisition d'images.
Selon un aspect, le dispositif d'acquisition d'images, le dispositif d'émission d'un flux lumineux et le dispositif de traitement d'images sont conçus pour être utilisés en environnement spatial.
Le présent exposé concerne également un objet comportant un dispositif de reconnaissance d'attitude selon l'une quelconque des caractéristiques susmentionnées. Le présent exposé concerne aussi une sonde spatiale comportant un dispositif de reconnaissance d'attitude selon l'une quelconque des caractéristiques susmentionnées.
L'invention a également trait à un atterrisseur, consistant en un véhicule spatial conçu pour se poser et/ou pour se poser et se déplacer à la surface d'un corps céleste à explorer, remarquable en ce qu'il comporte un dispositif de reconnaissance d'attitude selon l'une quelconque des caractéristiques susmentionnées.
L'invention concerne en outre un procédé de reconnaissance d'attitude d'un objet mis en œuvre par un dispositif de reconnaissance d'attitude selon l'une quelconque des caractéristiques susmentionnées, remarquable en ce qu'il comporte les étapes suivantes visant à :
définir un repère orthonormé direct tridimensionnel (O, X, Y, Z) ayant pour origine le centre de la sphère ;
allumer le dispositif d'émission d'un flux lumineux ;
acquérir une image sur laquelle la sphère et la bille sont visibles ;
rectifier ladite image acquise de façon à corriger les distorsions géométriques ;
identifier la bille dans ladite image acquise et rectifiée ;
définir, à partir du repère orthonormé direct tridimensionnel (O, X, Y, Z), sur l'image, un repère orthonormé direct bidimensionnel (Oi, X, Y) ayant pour origine l'image du centre de la sphère ;
identifier dans ladite image acquise et rectifiée les coordonnées (Xb, Yb) du centre de la bille dans ledit repère orthonormé direct bidimensionnel (Oi, X, Y) ;
calculer, à partir des coordonnées bidimensionnelles (Xb, Yb), le jeu de coordonnées (XB, YB, ZB) qui correspond à la position de la bille dans la sphère ;
dans le cas où l'étape consistant à calculer le jeu de coordonnées (XB, YB, ZB) qui correspond à la position de la bille dans la sphère permet d'identifier deux jeux de coordonnées possibles pouvant correspondre à la position de la bille dans la sphère,
o calculer deux jeux de coordonnées tridimensionnelles (XBI, YBI, ZBI) et (XB2, Y B2, ZB2) dans le repère orthonormé direct (O, X, Y, Z), pouvant correspondre à la position de la bille dans la sphère pour la position (Xb, Yb) du centre de la bille dans l'image ; o déterminer, à partir de l'aspect d'une surface éclairée de la bille, lequel des deux jeux de coordonnées tridimensionnelles (XBI, YBI, ZBI) et (XB2, YB2, ZB2) correspond à la position de la bille dans la sphère.
enfin, déduire le vecteur gravité, dont son origine est le centre de la sphère et son extrémité est donnée par les coordonnées (XB, YB, ZB) du centre (OB) de la bille dans le repère orthonormé direct (O, X, Y, Z).
Selon un aspect, l'étape consistant à déterminer, à partir de l'aspect d'une surface éclairée de la bille, lequel des deux jeux de coordonnées tridimensionnelles (XBI, YBI, ZBI) et (XB2, YB2, ZB2) correspond à la position de la bille dans la sphère comprend les étapes suivantes :
déterminer la position et/ou l'étendue de la surface apparente, ou éclairée, de la bille dans l'image acquise ;
comparer ladite position et/ou étendue de la surface apparente de la bille à des positions et/ou étendues de calibration préalablement obtenues lors d'une phase de calibration du dispositif de reconnaissance d'attitude. Selon une caractéristique optionnelle du procédé selon l'invention, l'étape visant à déterminer lequel des deux jeux de coordonnées (XBI, YBI, ZBI) OU (XB2, YB2, ZB2) est celui qui correspond à la position de la bille dans la sphère comporte une étape d'acquisition d'image de la sphère et de la bille par le dispositif d'acquisition d'images, dans laquelle au moins le deuxième ensemble de diodes électroluminescentes est allumé.
Autrement dit, lorsque deux ensembles de diodes électroluminescentes sont présents, l'étape visant à déterminer lequel des deux jeux de coordonnées (XBI, YBI, ZBI) OU (XB2, Y B2, ZB2) peut comporter deux acquisitions d'images de la sphère et de la bille selon deux conditions d'éclairage différentes. Ainsi par exemple la première acquisition d'image est faite avec uniquement le premier ensemble de diodes électroluminescentes allumé et la seconde acquisition est faite avec au moins le deuxième ensemble de diodes électroluminescentes allumé.
D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description détaillée qui suit pour la compréhension de laquelle on se reportera aux dessins annexés dans lesquels :
[Fig. 1] illustre l'atterrisseur selon l'invention.
[Fig. 2] illustre un premier mode de réalisation du dispositif de reconnaissance d'attitude de l'invention.
[Fig. 3] représente l'atterrisseur selon une première attitude. [Fig. 4] montre le dispositif de reconnaissance d'attitude de l'atterrisseur selon l'attitude donnée à la figure 3.
[Fig. 5] représente l'image acquise lorsque l'atterrisseur se trouve dans l'attitude de la figure 3.
[Fig. 6] représente l'atterrisseur selon une deuxième attitude.
[Fig. 7] montre le dispositif de reconnaissance d'attitude de l'atterrisseur selon l'attitude donnée à la figure 6.
[Fig. 8] représente l'image acquise lorsque l'atterrisseur se trouve dans l'attitude de la figure 6.
[Fig. 9] représente l'atterrisseur selon une troisième attitude.
[Fig. 10] montre le dispositif de reconnaissance d'attitude de l'atterrisseur selon l'attitude donnée à la figure 9.
[Fig. 11] représente l'image acquise lorsque l'atterrisseur se trouve dans l'attitude de la figure 9.
[Fig. 12] représente une modélisation du dispositif de reconnaissance d'attitude.
[Fig. 13] représente en vue transversale le modèle de la figure 12 avec deux positions possibles de la bille pour une position donnée dans l'image.
[Fig. 14] est une vue similaire à celle de la figure 13, la bille étant positionnée dans la sphère à un emplacement distinct de celui de la figure 12.
[Fig. 15] illustre un deuxième mode de réalisation du dispositif de reconnaissance d'attitude de l'invention.
[Fig. 16] donne un exemple d'utilisation du dispositif de reconnaissance d'attitude selon le deuxième mode de réalisation.
[Fig. 17] donne un autre exemple d'utilisation du dispositif de reconnaissance d'attitude selon le deuxième mode de réalisation.
Sur l'ensemble des figures, des références identiques ou analogues représentent des organes ou ensembles d'organes identiques ou analogues.
Dans la description et dans les revendications, les termes « amont » et « aval » doivent s'entendre par rapport au dispositif de reconnaissance d'attitude, l'amont étant situé à gauche en référence à la figure 2 et l'aval étant situé à droite en référence à la figure 2. L'atterrisseur (« lander » ou « rover » ou « hopper » en langue anglaise), est une sonde fille d'exploration spatiale larguée depuis une sonde mère d'exploration spatiale (non représentée) en vue de se poser sur un corps céleste à explorer. La sonde mère se place le plus souvent en orbite autour du corps céleste à explorer et sert notamment de relais de communication entre l'atterrisseur et la Terre. On se réfère à la figure 1 illustrant un atterrisseur 1 selon l'invention au contact d'un sol 3 d'un corps céleste à explorer.
Dans l'ensemble des figures, l'atterrisseur 1 est une sonde fille, par exemple un véhicule spatial conçu pour se déplacer en roulant sur le sol 3 du corps céleste à explorer. Un tel atterrisseur est désigné par le terme, en langue anglaise, « rover ».
L'atterrisseur 1 désigne par ailleurs les sondes désignées par le terme, en langue anglaise, « landers », qui ne sont pas pourvues de capacités de déplacement, ainsi que les sondes désignées par le terme, en langue anglaise, « hoppers », qui sont équipées d'un dispositif leur permettant d'effectuer des sauts afin de pouvoir visiter d'autres sites que le site d'atterrissage initial.
Compte tenu de la distance élevée entre la Terre et les corps célestes susceptibles d'être explorés, la durée d'aller-retour des transmissions radio rend peu pratique le pilotage direct en mode télécommandé des opérations de l'atterrisseur depuis la Terre. Par conséquent, l'atterrisseur est souvent conçu pour avoir un certain degré d'autonomie dans l'exécution de ses activités et dans la prise de décisions. Dans le cas « rover », le déplacement de l'atterrisseur 1 sur le sol 3 est assuré grâce à un ensemble de roues 5 et un algorithme de navigation embarqué à bord lui permet de se déplacer de manière autonome et ce en toute sécurité vers la cible désignée par les équipes sur Terre.
Selon l'invention, l'atterrisseur 1 comporte un dispositif de reconnaissance d'attitude 7 de l'atterrisseur 1 qui a pour but de permettre au système de pilotage de l'atterrisseur
I de déterminer par lui-même son attitude relativement au sol 3 après qu'il se soit stabilisé à la surface du corps céleste à explorer ou à tout moment de la mission lorsque le système de pilotage veut connaître l'attitude de l'atterrisseur, par exemple pour quantifier la raideur d'une pente et donc sa franchissabilité (cas « rover »).
Pour des raisons de protection mécanique et de contrôle thermique, le dispositif de reconnaissance d'attitude 7 est de manière préférée monté à l'intérieur d'un carter 9 de l'atterrisseur 1.
On se réfère à la figure 2 illustrant le dispositif de reconnaissance d'attitude 7.
Le dispositif de reconnaissance d'attitude 7 comporte une sphère 11, creuse. La sphère
II comporte une paroi 13 apte à laisser passer au moins partiellement un flux lumineux à l'intérieur de son volume interne 15. A cet effet, la paroi 13 n'est donc pas opaque et est de préférence transparente. La paroi 13 de la sphère a préférentiellement reçu un traitement anti-reflets. A titre d'exemple, la sphère présente un rayon compris entre 2 et 6 cm, préférentiellement environ 4 cm.
Ici, la sphère est fixe relativement au dispositif de reconnaissance d'attitude 7. La sphère 11 comporte dans son volume interne une bille 17, mobile à l'intérieur de la sphère 11. Le mouvement de la bille 17 dans la sphère 11 résulte de l'accélération subie par le dispositif de reconnaissance 7 lorsque l'atterrisseur 1 est soumis à une force, notamment son poids sous l'effet de la pesanteur. Afin d'éviter qu'elle endommage la sphère 11 à cause des vibrations et des chocs auxquels l'atterrisseur 1 est soumis lors des phases de lancement, de croisière et d'atterrissage, la bille 17 est relativement légère, par exemple 10 grammes.
La bille 17 est préférentiellement réalisée dans un matériau non-électrostatique afin que les forces électrostatiques n'entravent pas ses mouvements à l'intérieur de la sphère 11.
Le dispositif de reconnaissance d'attitude 7 comporte par ailleurs un dispositif d'acquisition d'images 19, fixe par rapport au dispositif de reconnaissance d'attitude 7. Dans le cadre de l'utilisation du dispositif de reconnaissance d'attitude 7 pour une mission spatiale, le dispositif d'acquisition d'images 19 est spatialisé. On entend par « spatialisé » la caractéristique selon laquelle le dispositif est conçu pour être utilisé en environnement spatial. A cet effet, lorsqu'il est spatialisé, le dispositif d'acquisition d'images 19 est préférentiellement spécifiquement conçu pour une utilisation en milieu spatial et subit des tests de qualification permettant de valider sa tenue à l'environnement spatial. Le dispositif d'acquisition d'images 19 est ainsi qualifié de « spatialisé » lorsqu'il a été démontré qu'il est compatible notamment d'une utilisation en milieu présentant de forts niveaux de radiations, une très faible pression (vide spatial), des variations thermiques nombreuses et importantes (par exemple entre -50° et +70°C), des vibrations mécaniques et des chocs importants.
Lorsqu'il est spatialisé, le dispositif d'acquisition d'images 19 peut être obtenu par une caméra spatialisée numérique, ou par une caméra spatialisée analogique associée à un digitaliseur d'images (« frame grabber » en langue anglaise) également spatialisé. La caméra est associée à un objectif (optique) spatialisé dont les caractéristiques (focale, ouverture, tirage optique...) sont adaptées au besoin d'acquisition d'images nettes de l'intégralité de la sphère et de la bille.
Le dispositif d'acquisition d'images 19 est agencé dans le dispositif de reconnaissance d'attitude 7 pour acquérir une image bidimensionnelle 29 de la bille 17 et de la sphère 11, comme on va le voir dans la suite de la description illustrant l'atterrisseur 1 sur le sol 3 du corps à explorer dans différentes attitudes. A cet effet, la distance entre le dispositif d'acquisition d'images 19 et la sphère 11 est préférentiellement de l'ordre de quelques centimètres, de façon à obtenir une image nette de la bille 17, tout en optimisant la compacité du dispositif de reconnaissance d'attitude. A titre indicatif, le dispositif d'acquisition d'images 19 peut se présenter sous la forme d'un parallélépipède de 2 cm x 2 cm x 4 cm.
Afin d'améliorer la précision des mesures, une phase de calibration du dispositif d'acquisition d'images 19 suivant l'état de l'art est effectuée au préalable de son utilisation opérationnelle. La calibration permet de définir les paramètres intrinsèques et extrinsèques du dispositif d'acquisition d'images 19 en vue de rectifier les distorsions géométriques et d'alignement des images produites. Cette phase peut éventuellement être omise si la qualité du design et la réalisation du dispositif d'acquisition d'images le permet (très faible distorsion géométrique, excellents tolérancements et alignements opto-mécaniques...).
Afin de pouvoir faire des acquisitions d'images dans des conditions d'éclairage constantes et maîtrisées, le dispositif de reconnaissance d'attitude 7 comporte en outre un dispositif d'émission d'un flux lumineux 21.
Le dispositif d'émission d'un flux lumineux 21 est agencé dans le dispositif de reconnaissance d'attitude 7 de façon à émettre un flux lumineux en direction de la sphère 11. La puissance lumineuse du dispositif d'émission d'un flux lumineux 21 est calculée et choisie de sorte qu'elle permette au dispositif d'acquisition d'images 19 d'acquérir des images de la sphère 11 et de la bille 17 qui soient exploitables par un dispositif de traitement d'images décrit dans la suite de la description. Une image est dite « exploitable » lorsque la luminosité de l'image de la sphère 11 et de la bille 17 est telle que la sphère 11 et la bille 17 sont visibles dans l'image que le dispositif d'acquisition d'images 19 acquiert et que l'image n'est ni sous-exposée ni surexposée. Dans la suite de la description, on donne à titre non limitatif des exemples de réalisation du dispositif d'émission d'un flux lumineux 21 ainsi que des exemples de l'agencement du dispositif d'émission d'un flux lumineux 21 dans le dispositif de reconnaissance d'attitude 7.
Selon l'invention, le dispositif d'acquisition d'images 19 est relié à un dispositif de traitement d'images 23, pouvant également être appelé « dispositif de pilotage et de traitement ».
Le dispositif de traitement d'images 23 est piloté par un algorithme de traitement d'images et est conçu pour piloter le dispositif d'émission d'un flux lumineux 21, pour piloter le dispositif d'acquisition d'images 19, pour récupérer une image acquise par le dispositif d'acquisition d'images 19, pour rectifier ladite image et pour déterminer à partir de l'image rectifiée le vecteur gravité G ayant pour origine le centre Os de la sphère 11 et pour extrémité le centre OB de la bille 17. L'ensemble formé par le dispositif d'acquisition d'images 19, la sphère 11, à l'intérieur de laquelle est montée la bille 17, le dispositif d'émission d'un flux lumineux 21 et le dispositif de traitement d'images peut être monté à l'intérieur d'un boîtier 25 du dispositif de reconnaissance d'attitude 7.
Dans ce cas le dispositif d'acquisitions d'images 19 et le dispositif d'émission d'un flux lumineux 21 sont montés dans le boîtier 25 en amont par rapport à la sphère 11. Autrement dit le dispositif d'acquisitions d'images 19 et le dispositif d'émission d'un flux lumineux 21 sont montés dans une première zone du boîtier et la sphère 11 est montée dans une deuxième zone du boîtier.
Le dispositif de traitement d'images 23 peut être monté indifféremment dans l'une ou l'autre des zones susmentionnées du boîtier 25.
Le dispositif d'émission d'un flux lumineux 21 comporte préférentiellement un premier ensemble de diodes électroluminescentes 27, dites « amont », en raison de leurs localisations dans le boîtier 25. Le premier ensemble de diodes électroluminescentes amont 27 est toutefois de préférence monté entre le dispositif d'acquisition d'images 19 et la sphère 11. Les diodes électroluminescentes amont 27 peuvent par exemple être réparties dans le boîtier de façon à former un cercle contenu dans un plan (XY) en référence au trièdre direct (X, Y, Z) représenté à la figure 2. D'autres sources lumineuses peuvent également être envisagées à la place des diodes électroluminescentes (par exemple ampoules à incandescence, sources fluorescentes...) mais leur robustesse, masse et rendement énergétique sont généralement moins bien adaptées à une mission spatiale.
Le boîtier 25 adopte par exemple une forme parallélépipédique. La bille 17 a de préférence une couleur différente de celle des parois internes du boîtier 25. De manière préférée, la bille 17 a une couleur relativement claire, telle que du blanc, de préférence mat. Les parois internes du boîtier 25 ont de préférence une couleur sombre telle que le noir, de préférence mat, ceci afin de rendre davantage exploitables les images acquises de la sphère 11 et de la bille 17. La bille et les parois peuvent si nécessaire être peintes pour obtenir les couleurs requises.
Le dispositif de traitement d'images 23 est préférentiellement monté à l'intérieur du boîtier 25 ce qui permet de rendre le dispositif de reconnaissance d'attitude 7 autonome. En variante, le dispositif de traitement d'images 23 peut être intégré au dispositif d'acquisition d'images 19. En variante, le dispositif de traitement d'images 23 peut être physiquement déporté du dispositif de reconnaissance d'attitude 7 auquel cas, il est par exemple intégré dans le calculateur bord de l'atterrisseur 1. Le dispositif de traitement d'images 23 est constitué au choix d'un microcontrôleur, d'un microprocesseur, d'un réseau de portes programmables in situ désigné par l'acronyme anglais « FPGA » pour « Field-Programmable Gâte Array » ou d'un circuit intégré propre à une application désigné par l'acronyme anglais « ASIC » pour « Application-Specific Integrated Circuit » ainsi que des composants électroniques associés et, le cas échéant, du logiciel nécessaires à son bon fonctionnement, au pilotage du dispositif d'émission d'un flux lumineux 21, au pilotage du dispositif d'acquisition d'images 19 et aux communications avec le calculateur bord de l'atterrisseur 1.
Dans le cadre de l'utilisation du dispositif de reconnaissance d'attitude 7 pour une mission spatiale, le dispositif de traitement d'images 23 est spatialisé, au même titre que le dispositif d'acquisition d'images 19 et le dispositif d'émission d'un flux lumineux 21.
Dans l'exemple donné aux figures 3 à 5, l'atterrisseur 1 (dans sa version « rover ») s'est stabilisé sur le sol 3 à l'endroit, c'est-à-dire que les roues 5 de l'atterrisseur 1 reposent sur le sol 3 qui, lui, est ici plat (le vecteur gravité est perpendiculaire au sol et dirigé vers le sol).
Lorsque l'atterrisseur 1 s'est stabilisé sur le corps à explorer, la bille 17 finit par se stabiliser au contact de la face interne de la paroi 13 de la sphère 11, sous l'effet de la gravité, comme visible à la figure 4 qui représente le dispositif de reconnaissance d'attitude 7 de manière simplifiée, le dispositif d'émission d'un flux lumineux 21 et le dispositif de traitement d'images 23 n'étant pas représentés.
La figure 5 illustre l'image 29 acquise par le dispositif d'acquisition d'images 19 lorsque l'atterrisseur 1 se trouve selon l'attitude représentée à la figure 3. On note que la bille 17 se trouve en bas de l'image 29, ce qui traduit le fait que l'atterrisseur 1 a son dos orienté vers le haut, que la bille se trouve sur l'axe Y, ce qui traduit le fait que l'atterrisseur n'est pas incliné vers sa droite ou sa gauche et enfin que la bille est en contact avec le cercle représentant l'image de la sphère 11, ce qui traduit le fait que l'atterrisseur 1 n'est pas non plus incliné vers l'avant ou l'arrière. De l'image on peut déduire que l'atterrisseur 1 est donc correctement posé sur ses roues et qu'il est bien à plat.
On se réfère maintenant aux figures 6 à 8 qui donnent un autre exemple d'attitude de l'atterrisseur 1, toujours dans sa version « rover ». L'attitude de l'atterrisseur 1 par rapport au sol est telle que l'atterrisseur 1 a atterri sur le dos, c'est-à-dire qu'il repose sur sa face supérieure 30, les roues 5 n'étant pas au contact du sol. Par ailleurs la face supérieure 30 de l'atterrisseur 1 n'est pas perpendiculaire au vecteur gravité, soit parce que le sol est localement en pente soit parce que l'atterrisseur n'est pas posé à plat sur le sol par exemple à cause de la présence de cailloux.
La figure 7 illustre (en vue simplifiée, seuls la sphère 11, la bille 17 et le dispositif d'acquisition d'images 19 étant représentés) le dispositif de reconnaissance d'attitude 7 lorsque l'atterrisseur 1 se trouve selon l'attitude représentée à la figure 6.
La figure 8 illustre l'image 29 acquise par le dispositif d'acquisition d'images 19 lorsque l'atterrisseur 1 se trouve selon l'attitude représentée à la figure 6. On note que la bille 17 se trouve en haut de l'image 29, ce qui traduit le fait que l'atterrisseur 1 est posé sur son dos, que la bille se trouve sur l'axe Y, ce qui traduit le fait que l'atterrisseur n'est pas incliné vers sa droite ou sa gauche, et enfin que la bille n'est pas en contact avec le cercle représentant la sphère 11 ce qui traduit le fait que l'atterrisseur 1 est par ailleurs incliné vers l'avant ou l'arrière.
On se réfère à présent aux figures 9 à 11 donnant un autre exemple d'attitude de l'atterrisseur 1, toujours dans sa version « rover ».
L'attitude de l'atterrisseur 1 par rapport au sol est telle que l'atterrisseur 1 a atterri sur son flanc gauche, c'est-à-dire qu'il repose sur sa face latérale gauche.
La figure 10 illustre (en vue simplifiée, seuls la sphère 11, la bille 17 et le dispositif d'acquisition d'images 19 étant représentés) le dispositif de reconnaissance d'attitude 7 lorsque l'atterrisseur 1 se trouve selon l'attitude représentée à la figure 9.
La figure 11 illustre l'image 29 acquise par le dispositif d'acquisition d'images 19 lorsque l'atterrisseur 1 se trouve selon l'attitude représentée à la figure 9. On note que la bille 17 se trouve à gauche de l'image 29, ce qui traduit le fait que l'atterrisseur 1 est incliné vers sa gauche, que la bille se trouve sur l'axe X, ce qui traduit le fait que l'atterrisseur n'est pas également incliné vers l'avant ou l'arrière, et enfin que la bille est en contact avec le cercle représentant la sphère 11, ce qui traduit le fait que le flanc gauche de l'atterrisseur est perpendiculaire au vecteur gravité.
Comme on le comprend des figures 3 à 11, l'identification de la direction du vecteur gravité peut être obtenue sur 4 Pi stéradians, c'est-à-dire sur 720°, ce qui permet donc au dispositif de reconnaissance d'attitude 7 de l'invention de déterminer la direction du vecteur gravité quelle que soit l'attitude de l'atterrisseur 1 par rapport au sol 3.
On se réfère aux figures 12 et 13 afin d'expliquer les étapes du procédé de reconnaissance d'attitude de l'atterrisseur 1 mis en œuvre par le dispositif de reconnaissance d'attitude 7 selon l'invention.
La figure 12 illustre une modélisation du système de reconnaissance d'attitude 7. Après calibration du dispositif d'acquisition d'images 19, celui-ci peut être modélisé par un centre de projection OL et un plan image 31 situé à la distance focale f en aval du centre de projection OL et en amont de la sphère 11.
Le rayon de lumière 33 reliant le centre de projection OL au centre de la sphère Os est l'axe principal du système. Il traverse le plan image 31 au point principal Oi.
Le rayon de lumière 35 reliant le centre de projection OL au centre OB de la bille 17 coupe le plan image 31 en un point PB. Le point PB est donc le point de l'image correspondant au centre de la bille 17.
On précise que le lieu géométrique décrit par l'ensemble des positions possibles du centre de la bille 17 lorsque celle-ci est en contact avec la sphère 11 est une sphère « virtuelle » 37 de centre Os identique à celui de la sphère 11 et de rayon R = (Rs - RB), avec Rs rayon de la sphère 11 et RB rayon de la bille 17.
L'ensemble des étapes ci-après visent à déterminer la direction du vecteur gravité (ou accélération) à partir de l'image de la bille 17 acquise par le dispositif d'acquisition d'images 19.
La première étape du procédé de reconnaissance d'attitude de l'atterrisseur 1 vise à définir un repère orthonormé direct tridimensionnel (O, X, Y, Z) ayant pour origine O le centre Os de la sphère 11 et ayant le vecteur directeur de l'axe Z qui pointe vers le centre de projection OL.
Dans ce repère (O, X, Y, Z) : les coordonnées (XL, YL, ZL) du centre de projection OL sont (0, 0, ZL), ZL étant la distance entre OL, le centre de projection, et Os, le centre de la sphère 11. Le plan image 31 est parallèle au plan (O, X, Y) et sa coordonnée Z est égale à (ZL-Î), f étant la distance focale du dispositif d'acquisition d'images 19. Les coordonnées du centre OB de la bille 17 sont (XB, YB, ZB) et varient en fonction de la position de la bille dans la sphère.
Selon une deuxième étape du procédé de l'invention, on acquiert, grâce au dispositif d'acquisition d'images 19, une image 29 (représentée aux figures 5, 8 et 11) sur laquelle la sphère 11 et la bille 17 sont visibles. Le dispositif d'acquisition d'images 19 communique ensuite au dispositif de traitement d'images 23 l'image bidimensionnelle acquise.
Selon une troisième étape du procédé de l'invention, le dispositif de traitement d'images 23 effectue la rectification de l'image acquise. Cette étape vise à utiliser les résultats de la calibration du dispositif d'acquisition d'images 19 pour corriger les distorsions géométriques de l'image.
Selon une quatrième étape du procédé de l'invention, on identifie la bille 17 dans l'image 29 acquise et rectifiée. Pour ce faire, dans le cas où la bille 17 est de couleur blanche et les parois internes du boîtier 25 sont de couleur noire, l'algorithme de traitement d'images du dispositif de traitement d'images 23 peut avantageusement être conçu pour rechercher le groupe de pixels connexes le plus lumineux de l'image, correspondant à la bille 17.
Selon une cinquième étape du procédé de l'invention, l'algorithme de traitement d'images du dispositif de traitement d'images 23 identifie les coordonnées images (ub, Vb), en pixels et fractions de pixels, du centre de la bille.
Pour ce faire, l'algorithme de traitement d'images du dispositif de traitement d'images 23 peut avantageusement être conçu pour calculer les coordonnées du barycentre des pixels identifiés comme appartenant à la bille 17 à la quatrième étape.
Selon une sixième étape du procédé de l'invention, on associe à l'image 29 acquise un repère orthonormé direct bidimensionnel (Oi, X, Y) à partir du repère orthonormé direct tridimensionnel (O, X, Y, Z). Le repère (Oi, X, Y) est défini de façon à former un repère orthonormé direct vu par le dispositif d'acquisition d'images 19 dont le centre Oi du repère (Oi, X, Y) correspond au centre O du repère (O, X, Y, Z), donc au centre Os de la sphère 11. Les points OL, Oi et O sont donc tous les trois situés sur l'axe principal défini par le rayon de lumière 33.
Selon une septième étape du procédé de l'invention, on identifie, dans l'image 29 acquise et rectifiée, les coordonnées (Xb, Yb) du centre OB de la bille 17 dans le repère orthonormé direct bidimensionnel (Oi, X, Y) à partir des coordonnées images (ub, Vb), de la dimension physique des pixels de la caméra et des coordonnées images (u0, v0) du point Oi.
On se réfère à la figure 13 qui illustre, sur une coupe longitudinale du modèle du dispositif de reconnaissance d'attitude 7, le fait que pour une position donnée de la bille 17 dans l'image 29, en général deux positions de la bille 17 dans la sphère 11 sont possibles. On note qu'il existe cependant un ensemble de positions de la bille 17 dans l'image 29 pour lesquelles seule une position de la bille 17 dans la sphère 11 est possible.
Selon une huitième étape du procédé de l'invention, on calcule dans le repère tridimensionnel (O, X, Y, Z) les coordonnées (XBI, YBI, ZBI) et (XB2, YB2, ZB2) des deux positions possibles de la bille correspondant aux coordonnées (Xb, Yb) du centre OB de la bille 17 dans le repère orthonormé direct bidimensionnel (Oi, X, Y).
Le calcul des coordonnées (XBI, YBI, ZBI) est par exemple obtenu en appliquant les formules suivantes :
[Math 1] [Math 2]
Figure imgf000021_0001
[Math 3]
Figure imgf000021_0002
Le calcul des coordonnées (XB2, YB2, ZB2) est par exemple obtenu en appliquant les formules suivantes :
[Math 4]
Figure imgf000021_0003
[Math 5]
Figure imgf000021_0004
[Math 6]
Figure imgf000021_0005
f étant la focale du système d'acquisition d'images 19,
ZL la distance entre Os, le centre de la sphère 11, et le centre de projection OL du système d'acquisitions d'images 19 et
R = (Rs - RB), différence entre le rayon de la sphère 11 et le rayon de la bille 17.
Le procédé de l'invention comporte une neuvième et une dixième étape selon lesquelles on détermine lequel des deux jeux de coordonnées tridimensionnelles (XBI, YBI, ZBI) et (XB2, YB2, ZB2) est celui qui correspond à la position réelle de la bille 17 dans la sphère 11.
Pour ce faire, selon la neuvième étape du procédé de l'invention, l'algorithme de traitement calcule la valeur de la surface apparente de la bille 17 dans l'image 29 acquise. Selon la dixième étape du procédé de l'invention, l'algorithme de traitement compare la valeur de la surface apparente de la bille 17 à une valeur ou un ensemble de valeurs de calibration préalablement obtenu(e) lors d'une phase d'étalonnage du dispositif de reconnaissance d'attitude 7.
Les deux positions tridimensionnelles possibles de la bille 17 se trouvant sur le rayon de lumière 35 passant par le centre de projection OL et le point PB, intersection entre le rayon de lumière 35 et le plan image 31, on obtient une position OBI pour laquelle la bille 17 est plus proche du centre de projection O L et une position OB2 pour laquelle la bille 17 est plus éloignée de OL. DU fait de la projection perspective, lorsque la bille 17 est plus rapprochée du centre de projection OL, la surface apparente de la bille 17 dans l'image 29 est supérieure à la surface apparente de la bille 17 dans l'image 29 que l'on obtient lorsque la bille 17 est plus éloignée du centre de projection OL.
Ainsi, l'étape selon laquelle on compare la valeur de la surface apparente de la bille 17 à une valeur ou à un ensemble de valeurs de calibration préalablement obtenu(e) lors de la phase de calibration du dispositif de reconnaissance d'attitude 7 permet de déterminer si la bille 17 est dans la position plus proche ou plus éloignée du centre de projection OL et ainsi de déterminer lequel des deux jeux de coordonnées tridimensionnelles calculés à la huitième étape est le bon (dixième étape du procédé selon l'invention).
Dans le cas particulier mentionné précédemment où seule une position de la bille correspond aux coordonnées (Xb, Yb) du centre OB de la bille 17 dans le repère orthonormé direct bidimensionnel (Oi, X, Y), on a XBI = XB2, YBI = YB2 et ZBI = ZB2 et les étapes 9 et 10 peuvent être omises.
Selon une onzième étape du procédé de l'invention, l'algorithme déduit le vecteur gravité G (ou accélération), dont l'origine est donnée par le centre Os de la sphère 11 et l'extrémité est donnée par les coordonnées (XB, YB, ZB) du centre OB de la bille 17 dans le repère orthonormé direct (O, X, Y, Z), déterminées à l'issue de la dixième étape du procédé ou à l'issue de la huitième étape du procédé dans le cas particulier où seule une position tridimensionnelle de la bille 17 dans la sphère 11 correspond à la position bidimensionnelle de la bille 17 dans l'image 29.
On se réfère à présent à la figure 14 qui illustre le fait que pour certaines attitudes du dispositif de reconnaissance d'attitude 7 les deux positions de la bille 17 dans la sphère 11 correspondant à la position de la bille 17 dans l'image 29 peuvent être très proches les unes des autres, rendant ainsi potentiellement difficile le choix entre les deux jeux de coordonnées tridimensionnelles possibles par analyse de la surface apparente de la bille dans l'image. Pour la plupart des missions, on peut avantageusement traiter ce cas en calculant le barycentre des deux positions. Cependant, pour les missions pour lesquelles on souhaite améliorer la précision des mesures lorsqu'une situation telle que celle illustrée dans la figure 14 se présente, le dispositif de reconnaissance d'attitude 7 peut être obtenu selon un deuxième mode de réalisation illustré à la figure 15 à laquelle on se réfère à présent, montrant le dispositif de reconnaissance d'attitude 7 en coupe longitudinale.
Dans ce deuxième mode réalisation, le dispositif de reconnaissance d'attitude 7 comporte en outre un diaphragme 39, fixe par rapport au dispositif de reconnaissance d'attitude 7 et le dispositif d'émission d'un flux lumineux 21 comporte en outre un deuxième ensemble de diodes électroluminescentes 47.
Le diaphragme 39 s'étend depuis une face intérieure du boîtier 25, selon un plan (XY) sensiblement orthogonal un axe longitudinal 41 du boîtier, correspondant à la direction d'acquisition d'image. Le diaphragme peut être en contact avec la surface extérieure de la sphère ou non. Le diaphragme 39 définit ainsi premier un compartiment, dit amont 43 du boîtier 25 et un deuxième compartiment, dit aval 45 du boîtier 25.
Le diaphragme est monté préférentiellement à une distance ZD du centre Os de la sphère telle que :
[Math 7]
Figure imgf000023_0001
ZL étant la distance entre Os, le centre de la sphère 11, et OL, le centre de projection du dispositif d'acquisitions d'images 19 et
R = (Rs - RB), différence entre le rayon de la sphère 11 et le rayon de la bille 17.
A l'intérieur du compartiment amont 43 du boîtier 25 sont montés le dispositif d'acquisition d'images 19 et l'ensemble de diodes électroluminescentes 27, dit ensemble de diodes électroluminescentes amont, du dispositif d'émission d'un flux lumineux 21.
Selon ce deuxième mode de réalisation, le dispositif d'émission d'un flux lumineux 21 comporte un deuxième ensemble de diodes électroluminescentes, dit ensemble de diodes électroluminescentes aval 47, est monté dans le deuxième compartiment aval 45 du boîtier 25. L'ensemble de diodes électroluminescentes aval 47 est monté proche du diaphragme 39 ou sur le diaphragme 39.
Comme pour le premier ensemble de diodes électroluminescentes amont 27, le deuxième ensemble de diodes électroluminescentes aval 47 est agencé dans le dispositif de reconnaissance d'attitude 7 pour émettre un flux lumineux en direction de la sphère 11.
Afin de déterminer lequel des deux jeux de coordonnées tridimensionnelles (XBI, YBI, ZBI) OU (XB2, YB2, ZB2) est celui qui correspond à la position réelle de la bille 17 dans la sphère 11, le procédé mis en œuvre par le dispositif de reconnaissance d'attitude 7 obtenu selon le deuxième mode de réalisation de l'invention prévoit une étape supplémentaire comportant l'extinction du premier ensemble des diodes électroluminescentes amont 27 et l'allumage du deuxième ensemble de diodes électroluminescentes aval 47, montées dans le deuxième compartiment aval du boîtier 25, puis une étape d'acquisition d'image de la sphère 11 et de la bille 17, l'éclairage étant cette fois-ci assuré au moins par le deuxième ensemble de diodes électroluminescentes aval 47, ici uniquement par le deuxième ensemble de diodes électroluminescentes aval 47.
Ainsi, comme représenté à la figure 16, lorsque la bille 17 est en amont du diaphragme 39, la bille 17 apparaîtra éclairée par l'avant dans l'image acquise en éclairage amont et éclairée par l'arrière dans l'image acquise en éclairage aval.
De la même manière, comme représenté à la figure 17, lorsque la bille 17 est en aval du diaphragme 39, la bille 17 semblera éclairée par l'avant dans l'image acquise en éclairage amont et également éclairée par l'avant dans l'image acquise en éclairage aval.
Par conséquent, selon l'apparence de la bille 17 dans l'image en fonction de l'éclairage par l'amont ou par l'aval, le procédé selon l'invention détermine si la bille 17 se situe en amont ou en aval du diaphragme 39 et en déduit lequel est le bon jeu de coordonnées tridimensionnelles de la bille 17 dans le repère orthonormé direct (O, X, Y, Z).
Lorsque les coordonnées de la bille 17 sont déterminées, le procédé de l'invention déduit le vecteur gravité, dont l'origine est le centre Os de la sphère 11 et l'extrémité est donnée par les coordonnées (XB, YB, ZB) du centre de la bille 17 dans le repère orthonormé direct (O, X, Y, Z).
L'allumage des premier et deuxième ensembles de diodes électroluminescentes amont 27 et aval 47 au bon moment et l'enchaînement des étapes est piloté par le dispositif de traitement d'images 23 .
Comme il va de soi, la présente invention ne se limite pas aux seules formes de réalisation de ce dispositif de reconnaissance d'attitude, de cet objet comportant le dispositif de reconnaissance d'attitude de l'invention, de cet atterrisseur et de ce procédé de reconnaissance d'attitude, décrites ci-dessus uniquement à titre d'exemples illustratifs, mais elle embrasse au contraire toutes les variantes faisant intervenir les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention.
Ainsi, la présente invention peut être utilisée à bord de tout véhicule spatial ayant besoin de déterminer son attitude par rapport à un vecteur accélération sous réserve que ce vecteur ne varie pas rapidement dans le temps, afin de laisser le temps à la bille de se stabiliser.
De même, la présente invention peut parfaitement fonctionner également sur Terre, en gravité terrestre, dans toute application nécessitant une mesure d'attitude absolue sur 720°, sous réserve que l'attitude ne varie pas trop rapidement dans le temps afin de laisser le temps à la bille de se stabiliser. Dans ce cas, les différents éléments constitutifs de l'invention ne nécessitent évidemment pas d'être spatialisés. Ainsi, le dispositif de reconnaissance d'attitude peut être destiné à être intégré à un objet conçu pour fonctionner en milieu terrestre. Un tel objet peut être pourvu de capacités de déplacement, comme un aéronef, ou dépourvu de capacités de déplacement propres mais dont on veut par exemple connaître l'évolution de l'attitude lors de sa manutention ou de son transport, comme par exemple une caisse ou un container.

Claims

REVENDICATIONS
[Revendication 1] Dispositif de reconnaissance d'attitude (7) d'un objet, caractérisé en ce qu'il comporte :
- une sphère (11) comportant une paroi (13) apte à laisser passer au moins partiellement un flux lumineux ;
- une bille (17), montée mobile à l'intérieur de ladite sphère (11) ;
- un dispositif d'acquisition d'images (19), agencé dans ledit dispositif de reconnaissance d'attitude (7) pour acquérir une image (29) bidimensionnelle de la bille (17) et de la sphère (11) ;
- un dispositif d'émission d'un flux lumineux (21), agencé dans ledit dispositif de reconnaissance d'attitude (7) pour émettre un flux lumineux en direction de ladite sphère (11) ;
- un dispositif de traitement d'images (23), connecté au dispositif d'acquisition d'images (19), piloté par un algorithme de traitement d'images et conçu pour piloter le dispositif d'émission d'un flux lumineux (21), pour récupérer ladite image (29) acquise par ledit dispositif d'acquisition d'images (19) et pour déterminer à partir de ladite image (29) un vecteur gravité ( G ) ayant pour origine le centre (Os) de la sphère (11) et pour extrémité le centre (OB) de la bille (17).
[Revendication 2] Dispositif de reconnaissance d'attitude (7) d'un objet selon la revendication 1, caractérisé en ce qu'il comporte un boîtier (25) à l'intérieur duquel sont montés :
- le dispositif d'acquisition d'images (19) disposé dans une première zone du boîtier (25),
- le dispositif d'émission d'un flux lumineux (21), disposé dans la première zone du boîtier (25),
- la sphère (11), à l'intérieur de laquelle est montée la bille (17), disposée dans une deuxième zone du boîtier (25).
[Revendication 3] Dispositif de reconnaissance d'attitude (7) d'un objet selon la revendication 2, caractérisé en ce que le dispositif de traitement d'images (23) est monté à l'intérieur du boîtier (25) ou est directement intégré au dispositif d'acquisition d'images (19).
[Revendication 4] Dispositif de reconnaissance d'attitude (7) d'un objet selon l'une des revendications 2 ou 3, caractérisé en ce que le dispositif d'émission d'un flux lumineux (21) comporte un premier ensemble de diodes électroluminescentes (27).
[Revendication 5] Dispositif de reconnaissance d'attitude (7) d'un objet selon la revendication 4, caractérisé en ce qu'il comporte un diaphragme (39), qui s'étend depuis une face extérieure de la paroi (13) de la sphère (11), ledit diaphragme (39) contenant un plan (XY) de la sphère (11) sensiblement orthogonal à un axe longitudinal (41) du boîtier (25), ledit diaphragme (39) définissant, d'une part, un premier compartiment (43) du boîtier, à l'intérieur duquel sont montés le dispositif d'acquisition d'images (19) et le premier ensemble de diodes électroluminescentes (27) et, d'autre part, un deuxième compartiment (45), ledit dispositif de reconnaissance d'attitude (7) étant en outre caractérisé en ce que le dispositif d'émission d'un flux lumineux (21) comporte un deuxième ensemble de diodes électroluminescentes (47), monté dans le deuxième compartiment (45) dudit boîtier (25).
[Revendication 6] Dispositif de reconnaissance d'attitude (7) d'un objet selon la revendication 5, caractérisé en ce que le deuxième ensemble de diodes électroluminescentes (47) est monté sur le diaphragme (39) ou à proximité du diaphragme (39).
[Revendication 7] Dispositif de reconnaissance d'attitude (7) d'un objet selon l'une quelconque des revendications 2 à 6, caractérisé en ce que la bille (17) a une couleur différente de celle des parois internes du boîtier (25).
[Revendication 8] Dispositif de reconnaissance d'attitude (7) d'un objet selon la revendication 7, caractérisé en ce que la bille (17) est de couleur blanche et en ce que les parois internes du boîtier (25) sont de couleur noire.
[Revendication 9] Dispositif de reconnaissance d'attitude (7) d'un objet selon l'une quelconque des revendications 1 à 8, caractérisé en ce que le dispositif d'acquisition d'images (19), le dispositif d'émission d'un flux lumineux (21) et le dispositif de traitement d'images (23) sont conçus pour être utilisés en environnement spatial.
[Revendication 10] Objet comportant un dispositif de reconnaissance d'attitude (7) selon l'une quelconque des revendications 1 à 9.
[Revendication 11] Sonde spatiale comportant un dispositif de reconnaissance d'attitude (7) selon l'une quelconque des revendications 1 à 9.
[Revendication 12] Atterrisseur (1), consistant en un véhicule spatial conçu pour se poser et/ou pour se poser et se déplacer à la surface d'un corps céleste à explorer, caractérisé en ce qu'il comporte un dispositif de reconnaissance d'attitude (7) selon l'une quelconque des revendications 1 à 9.
[Revendication 13] Procédé de reconnaissance d'attitude d'un objet mis en œuvre par un dispositif de reconnaissance d'attitude (7) selon l'une quelconque des revendications 1 à 9, caractérisé en ce qu'il comporte les étapes suivantes consistant à : - définir un repère orthonormé direct tridimensionnel (O, X, Y, Z) ayant pour origine le centre (Os) de la sphère (11) ;
- acquérir une image (29) sur laquelle la sphère (11) et la bille (17) sont visibles ;
- identifier la bille (17) dans ladite image (29) ;
- définir à partir du repère orthonormé direct tridimensionnel (O, X, Y, Z), un repère orthonormé direct bidimensionnel (Oi, X, Y) sur l'image ayant pour origine (Oi) l'image du centre (Os) de la sphère (11) ;
- identifier dans ladite image (29) les coordonnées (Xb, Yb) du centre (OB) de la bille (17) dans ledit repère orthonormé direct bidimensionnel (Oi, X, Y) ;
- calculer, à partir des coordonnées bidimensionnelles (Xb, Yb), le jeu de coordonnées (XB, YB, ZB) qui correspond à la position de la bille (17) dans la sphère (11) ;
- déduire le vecteur gravité (G ), dont l'origine est le centre (Os) de la sphère (11) et l'extrémité est donnée par les coordonnées (XB, YB, ZB) du centre (OB) de la bille (17) dans le repère orthonormé direct (O, X, Y, Z).
[Revendication 14] Procédé de reconnaissance d'attitude d'un objet selon la revendication 13, dans le cas où l'étape consistant à calculer le jeu de coordonnées (XB, YB, ZB) qui correspond à la position de la bille (17) dans la sphère (11) permet d'identifier deux jeux de coordonnées possibles pouvant correspondre à la position de la bille dans la sphère,
calculer deux jeux de coordonnées tridimensionnelles (XBI, YBI, ZBI) et (XB2, Y B2, ZB2) dans le repère orthonormé direct (O, X, Y, Z), pouvant correspondre à la position de la bille (17) dans la sphère (11) pour la position (Xb, Yb) du centre de la bille (17) dans l'image (29) ;
déterminer, à partir de l'aspect d'une surface éclairée de la bille (17), lequel des deux jeux de coordonnées tridimensionnelles (XBI, YBI, ZBI) et (XB2, Y B2, ZB2) correspond à la position de la bille (17) dans la sphère (11).
[Revendication 15] Procédé de reconnaissance d'attitude d'un objet selon la revendication 14, mis en œuvre par un dispositif de reconnaissance d'attitude (7) selon l'une des revendications 5 ou 6, caractérisé en ce que l'étape visant à déterminer lequel des deux jeux de coordonnées (XBI, YBI, ZBI) OU (XB2, YB2, ZB2) est celui qui correspond à la position de la bille (17) dans la sphère (11) comporte une étape d'acquisition d'image de la sphère (11) et de la bille (17) par le dispositif d'acquisition d'images (19) dans laquelle au moins le deuxième ensemble de diodes électroluminescentes (47) est allumé.
PCT/FR2020/050803 2019-05-17 2020-05-14 Inclinomètre absolu 720° pouvant fonctionner en milli-gravité WO2020234529A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20737236.8A EP3969845A1 (fr) 2019-05-17 2020-05-14 Inclinomètre absolu 720° pouvant fonctionner en milli-gravité

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1905203A FR3096128A1 (fr) 2019-05-17 2019-05-17 Inclinomètre absolu 720° pouvant fonctionner en milli-gravité
FRFR1905203 2019-05-17

Publications (1)

Publication Number Publication Date
WO2020234529A1 true WO2020234529A1 (fr) 2020-11-26

Family

ID=67810876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2020/050803 WO2020234529A1 (fr) 2019-05-17 2020-05-14 Inclinomètre absolu 720° pouvant fonctionner en milli-gravité

Country Status (3)

Country Link
EP (1) EP3969845A1 (fr)
FR (2) FR3096128A1 (fr)
WO (1) WO2020234529A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118293880A (zh) * 2024-06-05 2024-07-05 青岛雷悦重工股份有限公司 一种集装箱贴标用水平度检测装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3100350A (en) * 1960-07-18 1963-08-13 Clifford K Brown Magnetic direction and inclination indicating device
JPS5786011A (en) * 1980-11-17 1982-05-28 Agency Of Ind Science & Technol Method and apparatus for detecting all direction
DE102016110144A1 (de) * 2016-06-01 2017-11-16 Deutsches Zentrum für Luft- und Raumfahrt e.V. Vorrichtung und Verfahren zur Lagebestimmung eines Landers
CN108469251A (zh) * 2018-01-22 2018-08-31 北京邮电大学 一种基于图像识别的球形倾角传感器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3100350A (en) * 1960-07-18 1963-08-13 Clifford K Brown Magnetic direction and inclination indicating device
JPS5786011A (en) * 1980-11-17 1982-05-28 Agency Of Ind Science & Technol Method and apparatus for detecting all direction
DE102016110144A1 (de) * 2016-06-01 2017-11-16 Deutsches Zentrum für Luft- und Raumfahrt e.V. Vorrichtung und Verfahren zur Lagebestimmung eines Landers
CN108469251A (zh) * 2018-01-22 2018-08-31 北京邮电大学 一种基于图像识别的球形倾角传感器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118293880A (zh) * 2024-06-05 2024-07-05 青岛雷悦重工股份有限公司 一种集装箱贴标用水平度检测装置

Also Published As

Publication number Publication date
FR3096128A1 (fr) 2020-11-20
FR3096127A1 (fr) 2020-11-20
EP3969845A1 (fr) 2022-03-23
FR3096127B1 (fr) 2023-01-20

Similar Documents

Publication Publication Date Title
EP1407214B1 (fr) Dispositif, et procede associe, apte a determiner la direction d'une cible
EP3488540B1 (fr) Systeme combine d'imagerie et de communication par signaux laser
EP2495531B1 (fr) Procédé de mesure de la stabilité d'une ligne de visée et senseur stellaire correspondant
US20170370725A1 (en) Daytime and nighttime stellar sensor with active polarizer
EP3969845A1 (fr) Inclinomètre absolu 720° pouvant fonctionner en milli-gravité
EP3117260A1 (fr) Procede de detection optique de mobiles spatiaux, systemes de telescopes pour la detection de mobiles spatiaux
EP3476734B1 (fr) Drone de recherche et de marquage d'une cible
WO1998031985A1 (fr) Dispositif apte a determiner la direction d'une cible dans un repere predefini
WO2005066024A1 (fr) Systeme optronique modulaire embarquable sur un porteur
WO2014147042A2 (fr) Procédé et dispositif de détermination d'une interdistance entre un drone et un objet, procédé de pilotage de vol d'un drone
FR3067817A1 (fr) Systeme d'observation embarque comprenant un lidar pour l'obtention d'images tridimentionnelles haute resolution
EP3571468B1 (fr) Procédé d'observation de la surface terrestre et dispositif pour sa mise en oeuvre
EP1740457B1 (fr) Satellite, procede et flotte de satellites d'observation d'un corps celeste
FR2867283A1 (fr) Procede d'occultation stellaire, dispositif et ensemble de mise en oeuvre du procede
EP0608945B1 (fr) Viseur d'étoile à matrice de DTC, procédé de détection, et application au recalage d'un engin spatial
FR2726643A1 (fr) Dispositif d'observation d'une zone de terrain
FR2675114A1 (fr) Dispositif a engin volant pour le survol d'une zone, notamment en vue de sa surveillance.
EP2388646B1 (fr) Procédé de prise d'image
Hockman et al. Gravity poppers: Hopping probes for the interior mapping of small solar system bodies
FR2981149A1 (fr) Aeronef comprenant un senseur optique diurne et nocturne, et procede de mesure d'attitude associe
WO2020193881A1 (fr) Système de neutralisation d'une cible utilisant un drone et un missile
EP4183066B1 (fr) Procédé d'émission de données par un engin spatial comportant un module d'émission laser
FR3049066A1 (fr) Systeme de surveillance et de detection d’un evenement a la surface terrestre par une constellation de satellites
FR3132142A1 (fr) Sextant electronique astral diurne et nocturne a plateforme inertielle
EP4337914A1 (fr) Procédé d'acquisition d'images d'une zone terrestre par un engin spatial comportant un module d'émission laser

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20737236

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2020737236

Country of ref document: EP