WO2020233050A1 - 一种双足机器人不平整路面动态跑步步态实现方法 - Google Patents
一种双足机器人不平整路面动态跑步步态实现方法 Download PDFInfo
- Publication number
- WO2020233050A1 WO2020233050A1 PCT/CN2019/120770 CN2019120770W WO2020233050A1 WO 2020233050 A1 WO2020233050 A1 WO 2020233050A1 CN 2019120770 W CN2019120770 W CN 2019120770W WO 2020233050 A1 WO2020233050 A1 WO 2020233050A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- robot
- leg
- phase
- mass
- center
- Prior art date
Links
- 230000005021 gait Effects 0.000 title claims abstract description 40
- 238000000034 method Methods 0.000 title claims abstract description 39
- 210000002414 leg Anatomy 0.000 claims description 137
- 210000002683 foot Anatomy 0.000 claims description 21
- 210000004394 hip joint Anatomy 0.000 claims description 8
- 230000005484 gravity Effects 0.000 claims description 6
- 230000008569 process Effects 0.000 claims description 6
- 239000012141 concentrate Substances 0.000 claims description 5
- 230000000737 periodic effect Effects 0.000 claims description 4
- 230000001133 acceleration Effects 0.000 claims description 3
- 238000013459 approach Methods 0.000 claims description 3
- 230000008602 contraction Effects 0.000 claims description 3
- 230000000087 stabilizing effect Effects 0.000 claims 1
- 210000001624 hip Anatomy 0.000 description 23
- 210000000629 knee joint Anatomy 0.000 description 8
- 238000013461 design Methods 0.000 description 7
- 238000011217 control strategy Methods 0.000 description 6
- 238000011161 development Methods 0.000 description 5
- 210000000544 articulatio talocruralis Anatomy 0.000 description 4
- 244000309466 calf Species 0.000 description 4
- 210000000689 upper leg Anatomy 0.000 description 4
- 241001465754 Metazoa Species 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 210000001503 joint Anatomy 0.000 description 3
- 230000006872 improvement Effects 0.000 description 2
- 230000009191 jumping Effects 0.000 description 2
- 210000003141 lower extremity Anatomy 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 244000025254 Cannabis sativa Species 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 210000003127 knee Anatomy 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 244000144977 poultry Species 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1602—Programme controls characterised by the control system, structure, architecture
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D57/00—Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
- B62D57/02—Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
- B62D57/032—Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted supporting base and legs; with alternately or sequentially lifted feet or skid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1628—Programme controls characterised by the control loop
- B25J9/1633—Programme controls characterised by the control loop compliant, force, torque control, e.g. combined with position control
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
- G05D1/0223—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving speed control of the vehicle
Definitions
- the invention relates to a robot control method, in particular to a method for realizing dynamic running of a biped robot on uneven roads.
- robots can be divided into wheel-tracked robots, leg-footed robots and torso-type robots according to the driving mode.
- legged robots are better able to adapt to complex roads than wheeled robots, and have unique advantages on rugged roads. It can be seen from the fact that humans and other mammals can adapt to most of the natural landscape through their legs. , Legged robots are more suitable for complex environments, with good flexibility and maneuverability. Humans use visual information to select appropriate footholds to cross different obstacles and adapt to different roads.
- Legged robots can also adapt to most land environments through methods such as gait planning and balance control.
- the leg-footed pose is also the way of movement adopted by most animals in nature.
- the bipedal robot adopts a shape similar to that of humans, which makes it difficult to match the wheel-tracked robot in terms of affinity, and can better adapt to and integrate into humans. Living and working environment. On the other hand, in the future, it is an inevitable trend to use humanoid robots to replace humans in high-risk environments or repetitive manual labor.
- the dynamic running gait of biped robots is one of the important challenges and research hotspots in the field of leg-foot robots.
- the biped robot adopts the running gait to achieve a faster movement speed. Because the robot has a forward speed due to the inertia during the air phase, the forward speed of the robot is no longer affected by the robot.
- the length of the connecting rod has a greater improvement in speed than the walking gait. The robot switches from walking to running, which further releases the performance of robot joint motors and greatly improves the flexibility of robot movement.
- the robot's running gait puts forward higher requirements on the dynamic balance of the robot, requiring the robot to quickly adjust the control strategy during the mutual switching between the air phase and the support phase, and apply precise control to make the robot maintain the desired motion Speed and steady state.
- ASIMO is the most representative biped robot in Asia. The robot was launched by Hyundai in Japan in 2000. After more than ten years of improvement, ASIMO robots now have the ability to avoid sight and hearing, as well as avoid obstacles. And the ability to go up and down the ladder. ASIMO is about 130cm tall, weighs about 48kg, and has a total of 30 degrees of freedom. The latest generation of ASIMO robots can run forward at a speed of 9km/h. The duration of the air phase of both legs is about 50ms. At the same time, ASIMO can also achieve single foot Jump continuously, jump continuously with both feet, change direction while jumping.
- biped robots like ASIMO use the ZMP (Zero Moment Point) stability criterion, and the large-foot design is used in the mechanical structure.
- the control strategy and mechanical structure design adopted make ASIMO adapt to complex roads. Due to limitations, the ZMP stability criterion cannot be applied to under-actuated robots, and the ZMP stability criterion is too strict for bipedal walking, running and jumping. At present, it can only adapt to the environment of smooth indoor roads, and cannot form a stable running gait on uneven outdoor roads.
- the ATRIAS robot jointly launched by Oregon State University, the University of Michigan and Carnegie Mellon University has outdoor walking and running capabilities, with a maximum speed of 9km/h, and can achieve a stable running gait at a speed of 5km/h.
- ATRIAS can run fast on the grass or uneven roads, and can adapt to the ground with a certain slope.
- ATRIAS’s legs use a four-bar linkage structure and use motor-driven joints to concentrate most of the robot’s weight above the hips. The design mimics the fastest biped-running poultry and birds in nature. High running speed.
- Each leg of ATRIAS has three degrees of freedom, including hip joint pitch joint, hip joint deflection joint and knee joint. Because the robot lacks the hip joint yaw joint, ATRIAS cannot realize autonomous control of the direction.
- the control algorithm may not be suitable for most biped robots, especially motor-driven biped robots.
- Atlas is a biped robot developed by Boston Dynamics. Atlas robots have vision and grasping capabilities, can carry, climb and other functions, and can also realize snow walking. From the latest test video released by Boston Dynamics, it can be seen that the Atlas robot can already run quickly, surmount large obstacles, and even achieve flexible movements such as backflips, "triple jumps" and floor exercises. Atlas also has extremely high stability in terms of balance. It can walk on rugged roads and continue to maintain balance after the body is vigorously pushed by external forces. It is currently recognized as the most powerful biped robot in the world. Atlas uses a hydraulic device to drive the joint torque. Compared with the motor, the hydraulic device can output more power and is not sensitive to the weight of the robot.
- the present invention proposes a method for implementing dynamic running of a biped robot on indoor and outdoor roads.
- the robot running aerial phase is generated through the trajectory planning and state switching of the supporting leg and the swinging leg to realize the running motion of the robot and improve The movement speed of the robot improves the dynamic balance performance of the robot running.
- the invention has a certain versatility on common biped robots or humanoid robot platforms, and also has good adaptability to uneven outdoor terrain.
- a biped robot running dynamically, by setting the phase state machine of the robot running to realize the motion planning and control under each state machine, and performing the balance control and movement of the robot in each state Trajectory planning.
- the SLIP model is used to control the posture balance and landing buffer; when the robot is stable on the ground, the LIP model is used to control the robot's center of mass to the set height.
- the method is specifically as follows: during the advancement of the robot, the torso of the robot is simplified to a center of mass that concentrates all masses, and the legs of the robot are simplified to a massless, inertia, and retractable link connecting the torso and the feet.
- the center of mass is constrained in the constrained plane motion, and the state machine of the biped robot is designed to make the biped robot switch continuously and stably between the states in the state machine, and realize the balance control of the robot in each state of the robot.
- the state machine of a biped robot means that the robot's stable forward process is divided into four states according to whether the left and right legs are in the supporting phase.
- the left leg supporting phase the left leg emptying phase
- the right leg supporting phase the right leg emptying phase.
- the stable and periodic switching of the state machine forms the running gait of the biped robot, and the corresponding controller is set in each state to realize the balance control of the robot and the motion control of the swinging leg.
- the balance control of the biped robot includes body posture balance control, mass center height balance control and robot forward speed control.
- the center of mass balance control is to control the center of mass of the robot to move in a constrained plane parallel to the ground, and control the height of the center of mass of the robot by controlling the ground force.
- the setting force formula is as follows:
- h set is the height of the set centroid
- h is the height of the actual centroid
- v h is the velocity in the vertical direction of the centroid
- K pf and K df are the coefficients to be determined, adjusted according to the actual robot
- M is the weight of the centroid of the robot
- G is the acceleration of gravity.
- PD control is introduced to keep the posture angle of the robot body torso near the stable range.
- the specific body posture balance control formula is as follows:
- ⁇ h is the balance moment of the body torso
- q d is the desired body posture angle
- q is the body posture angle
- Is the desired angular velocity of the body posture
- Is the angular velocity of the body posture
- K p and K d are the corresponding feedback coefficient matrices to be determined, which are related to the actual biped robot platform
- ⁇ f is the feedforward torque generated by the center of mass gravity acting on the hip joint of the supporting leg
- the robot's forward speed is controlled by controlling the speed of the center of mass of the robot to approach the desired speed or maintain a stable at the desired speed through the foot point of the biped robot.
- the specific foothold coordinate formula is as follows:
- L f is the coordinates of the footing point
- v is the speed of the robot
- v d is the desired speed
- K 0v , K pv , and K dv are all coefficient matrices to be determined, which are related to the single-leg support phase time and the height of the center of mass of the robot.
- the motion trajectory planning of the supporting leg and the swinging leg refers to planning the contraction of the supporting leg and the extension of the swinging leg by using the set phase information.
- the state machine starts to switch, enters the corresponding two-leg empty phase, set the phase information to zero, and the support leg in the previous state is exchanged with the swing leg.
- the foot robot control program controls the movement of the supporting leg and the swinging leg to realize the aerial phase of the biped robot.
- the formula for the swing trajectory of the legs during the aerial phase is as follows:
- x sw , z sw are the coordinates of the end point of the swinging leg; z su is the ordinate of the end point of the supporting leg; x s , z s are the initial coordinates of the end point of the swinging leg; x f , z f are the end points of the swinging leg ⁇ h is the set leg lift height; p is the set phase information, which is positively related to the execution time of the current gait, ⁇ p is the set air phase phase duration; T is the stride period; f swx ( x s , x f , p, T), f swz ( ⁇ h, z f , p, T) are the planning curves of the swing leg; z sus , z suf are the starting and set ordinates of the end point of the supporting leg.
- the beneficial effect of the present invention is that the present invention proposes a method for realizing a dynamic running gait of a biped robot on uneven roads.
- the SLIP model is used to control posture balance and ground cushioning;
- the LIP model is used to control the center of mass of the robot to a set height, so as to realize the dynamic balance control and trajectory motion planning of the biped robot, and then realize the running gait of the biped robot.
- most biped robots use the LIP model and ZMP stability criterion to realize the walking gait of the biped robot.
- the design of the large foot used has a great limitation on the motion ability of the biped robot, and this method Avoiding the limitations of using the ZMP stability criterion, successfully achieving a stable running gait of the biped robot, and using small feet to achieve dynamic balance and stability, making the biped robot have stable running and walking on uneven roads Ability.
- this method uses the SLIP model for control at the moment of landing. It also has the grounding cushioning effect of ATRIAS, which reduces the damage to the mechanical mechanism of the robot body by the impact force of the ground.
- the center of mass is controlled to the set height, instead of pushing the center of mass to a certain height like the SLIP model to generate the air phase.
- the air phase of this method is generated by the rapid switching state of the current support leg, so the knee of the robot is lowered
- the output torque requirements of the joints This method is also applicable to robots whose joint performance is constrained by motor capabilities.
- the use of the SLIP model requires more accurate state estimation. When the supporting legs begin to stretch and take off, the center of mass of the robot will rise upward from the ground. Speed requires accurate estimation of the take-off speed and the posture of the center of mass of the biped robot. The accuracy and algorithm requirements of the sensor are high, which increases the development cost of the biped robot.
- control strategy using this method greatly reduces the requirements for the mechanical structure design and joint performance of the biped robot, and can better meet the requirements of most performance-constrained robots for running Gait development and experiments have better flexibility and versatility, which will further shorten the development cycle and reduce development costs.
- Figure 1 is the overall model diagram of the biped robot, in which (a) is the front view, (b) is the side view;
- Figure 2 is a state machine switching diagram of a biped robot
- FIG. 3 is a schematic diagram of the HIP model
- Figure 4 is the single-leg support phase of the right leg of the biped robot
- Figure 5 is the air phase of the right leg of the biped robot.
- Figure 6 is the single-leg support phase of the left leg of the biped robot
- Right hip pitch joint 10 right leg knee joint 11, right leg ankle joint 12, left hip yaw joint 13, left hip swing joint 14, left hip pitch joint 15, left leg knee joint 16, left leg ankle joint 17.
- the method for realizing the dynamic running gait of the biped robot on uneven roads is constructed as a hybrid inverted pendulum HIP combining a linear inverted pendulum and an elastic load inverted pendulum for controlling dynamic running on uneven roads of a biped robot (Hybrid Inverted Pendulum) model to further explain this method.
- the HIP model refers to simplifying the torso of the robot to a center of mass that concentrates all masses, and the legs of the robot to a massless, inertial, retractable link connecting the torso and feet, constraining the center of mass to move in the constrained plane.
- the HIP adopted shows the characteristics of the SLIP model, and the center of mass is compressed to buffer the impact force of the ground; when the robot is stable on the ground, the HIP shows The characteristics of the LIP model control the center of mass of the robot to a set height.
- the state machine of a biped robot means that the robot's stable forward process is divided into four states according to whether the left and right legs are in the supporting phase. They are the left leg supporting phase, the left leg emptying phase, the right leg supporting phase, and the right leg emptying phase.
- the stable and periodic switching of the state machine forms the running gait of the biped robot, and the corresponding controller is set in each state to realize the balance control of the robot and the motion control of the swinging leg.
- the method for implementing the running gait of the biped robot of the present invention includes adopting the HIP model to realize the balance control of the biped robot and using the supporting leg and swinging leg motion trajectory planning to realize the running gait of the biped robot.
- the structure of the biped robot is shown in Figure 1. It is mainly composed of torso 1 and lower limbs.
- the lower limbs include right thigh link 2, right calf link 3, right foot 4, left thigh link 5, left calf link 6, left Foot 7, right hip yaw joint 8, right hip swing joint 9, right hip pitch joint 10, right leg knee joint 11, right ankle joint 12, left hip yaw joint 13, left hip swing joint 14, left Hip pitch joint 15, left leg knee joint 16, left leg ankle joint 17.
- the torso 1 is equipped with an inertial measurement unit to measure the posture information of the body; the left foot 7 and the right foot 4 are equipped with force sensors to measure the contact force between the sole of the foot and the ground. The control method is described in detail below.
- the HIP model is shown in Figure 3.
- the torso 1 of the robot is simplified to a center of mass 24 that concentrates all masses, and the leg of the robot is simplified to a massless, inertia and retractable link 23 connecting the torso and the feet, constraining the center of mass Move in the constrained plane.
- the state machine of a biped robot refers to dividing the robot's stable forward process into four states according to whether the left and right legs are in the supporting phase. They are the left leg supporting phase 19, the left leg emptying phase 20, the right leg supporting phase 21, and the right leg emptying.
- the biped robot starts to jump into the loop of the state machine from the initial standing state 18, and set the corresponding controller in the corresponding state to achieve the balance of the body torso and the motion planning of the swinging leg.
- the machine jump direction is unique, and the stable and periodic state machine switching forms the stable forward process of the biped robot.
- the balance control of a biped robot includes body posture balance control, mass center height balance control and robot forward speed control. This method avoids the limitations of using the ZMP stability criterion, and successfully achieves a stable running gait of the biped robot.
- the use of small feet can achieve dynamic balance and stability, so that the biped robot can achieve stable running on uneven roads. And the ability to walk.
- Body posture balance control that is, to control the posture angle of the robot's torso to be kept near the stable range.
- the classic body posture balance control strategy is adopted, and the PD control is used to achieve the balance of the body torso 1.
- the specific attitude balance control formula is as follows:
- ⁇ h is the balance moment of the body torso
- q d is the desired body posture angle
- q is the body posture angle
- Is the desired angular velocity of the body posture
- Is the angular velocity of the body posture
- K p and K d are the corresponding feedback coefficient matrices to be determined, which are related to the actual biped robot platform
- ⁇ f is the feedforward torque generated by the centroid gravity acting on the hip joint of the supporting leg, using the hip joint of the supporting leg
- ⁇ h is generated to achieve the balance of the torso of the robot body.
- Centroid height balance control i.e. the control of the body center of mass of the robot movement within the constraints of a plane parallel to the ground, based on LIP model theory, balance of the body centroid height by controlling the ground force, shown in Figure 3, by F z
- F z The control of to achieve the balance control of the center of mass, F z is set as:
- h set is the height of the center of mass
- h is the height of the actual center of mass
- v h is the velocity in the vertical direction of the center of mass
- K pf and K df are coefficients to be determined
- M is the weight of the center of mass of the robot
- g is the acceleration of gravity.
- Robot forward speed control The speed of the center of mass of the biped robot is controlled to approach the desired speed or remain stable at the desired speed through the foot point of the biped robot.
- the speed of the robot is controlled by the foot point coordinates in the forward direction of the robot, which is the step length in the forward direction of the robot.
- the specific foothold coordinate formula is as follows:
- L f is the coordinates of the footing point
- v is the speed of the robot
- v d is the desired speed
- K 0v , K pv , and K dv are all coefficient matrices to be determined, which are related to the single-leg support phase time and the height of the center of mass.
- the supporting leg and swinging leg trajectory planning refers to planning the support contraction and swinging leg extension using the phase information and the information of the plantar force sensor to realize the vacant phase of the legs of the biped robot. Take the right-leg single-leg support phase switching to the left-leg single-leg support phase as an example. As shown in Figure 4, when the biped robot is at the end of the single-leg support phase, this moment is defined as the beginning of a gait cycle.
- the fixed phase information is zero, the support leg and the swing leg are interchanged, the right leg becomes the swing leg, and the left leg becomes the support leg.
- the biped robot control program controls the movement of the support leg and the swing leg to achieve the biped robot aerial phase.
- the swing trajectory formula is as follows:
- x sw , z sw are the coordinates of the end point of the swinging leg; z su is the ordinate of the end point of the supporting leg; x s , z s are the initial coordinates of the end point of the swinging leg; x f , z f are the end points of the swinging leg ⁇ h is the set leg lift height; p is the set phase information, which is positively related to the execution time of the current gait, ⁇ p is the set air phase phase duration; T is the stride period; f swx ( x s , x f , p, T), f swz ( ⁇ h, z f , p, T) are the planning curves of the swing leg; z sus , z suf are the starting and set ordinates of the end point of the supporting leg.
- the robot controls the supporting leg to move downward at the beginning of a gait cycle, and controls the swing leg to lift up.
- the end of the supporting leg produces a downward speed and the end of the swing leg produces an upward speed.
- the aerial phase of this method is generated by the rapid switching state of the current support legs, thus reducing the output torque requirements of the robot knee joints. This method is also applicable to robots whose joint performance is restricted by motor capabilities.
- the control program will control the swing leg to make the swing leg follow the setting
- the swing trajectory 25 moves, and the swing trajectory is determined by f swx (x s ,x f ,p,T), f swz ( ⁇ h,z f ,p,T), using the above method to support the leg of the biped robot based on the HIP model Implement corresponding control strategies.
- This cycle reciprocates to form a stable running gait of the biped robot.
- the use of the HIP model control strategy greatly reduces the requirements for the mechanical structure design and joint performance of the biped robot.
- the control algorithm can be applied to most biped robots, especially motor drives.
- the biped robot has better flexibility and versatility.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Automation & Control Theory (AREA)
- Robotics (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Aviation & Aerospace Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Manipulator (AREA)
Abstract
一种双足机器人在室内外路面的动态跑步步态实现方法,该方法通过设定整个跑步周期的状态机,在各状态中进行机器人的平衡控制与运动轨迹规划;其中,当机器人由飞行相转变为着地相的瞬间,采用SLIP模型控制姿态平衡与着地缓冲;当机器人着地稳定后,采用LIP模型将机器人质心控制到设定高度。同时通过支撑腿与摆动腿的轨迹规划与状态切换生成机器人跑步空中相,实现机器人的跑步运动,提升机器人的运动速度,完善机器人跑步的动态平衡性能。该方法在常见的双足机器人上具有一定的通用性,对于室外不平整地形也具有很好的适应能力。
Description
本发明涉及一种机器人控制方法,特别是一种双足机器人不平整路面动态跑步实现方法。
纵观人类科技文明发展史发现,人类一直孜孜不倦地探索和研究可以模仿人类自身和动物的各类机器人,并梦想着通过机器人实现对人类和动物运动能力甚至是智力方面的模仿。目前,机器人按照驱动方式可以分为轮履式机器人、腿足式机器人和躯干式机器人。其中,腿足式机器人相较于轮履式机器人能更好地适应复杂路面,在崎岖路面有着得天独厚的优势,从人类和其他哺乳动物通过双腿可以适应自然界大部分的地貌环境就可以看出,腿足式机器人更适合于复杂的环境,具有很好的灵活性和机动性。人类通过视觉信息选取合适的落脚点以跨过不同的障碍物和适应不同的路面,腿足式机器人同样可以通过步态规划以及平衡控制等方法适应大部分陆地环境。腿足式也是自然界大部分动物所采取的运动方式,双足机器人采用和人类相似的外形使得它相较于轮履式机器人在亲和力方面有着难以匹敌的优势,可以较好的适应和融入人类的生活和工作环境。另一方面,在未来利用仿人机器人取代人类在高危险环境下的工作或者重复性较高的体力劳动的是必然趋势。
双足机器人动态跑步步态是腿足机器人领域的重要挑战和研究热点之一。双足机器人采用跑步步态相比较于行走步态可以实现更为快速的运动速度,由于机器人在空中相的时间内还会因为惯性具有向前的速度,所以机器人的前进速度就不再受到机器人连杆长度的限制,比采用行走步态在速度上有了较大的提升。机器人由行走切换为跑步,进一步释放机器人关节电机的性能,大大提高机器人运动的灵活性。相对应的,机器人采用跑步步态对于机器人的动态平衡提出更高的要求,需要机器人在由空中相与支撑相的相互切换中迅速调整控制策略,施加精确的控制作用以使机器人维持期望的运动速度和稳定状态。
综合来看,世界范围内可以实现跑步步态的机器人依然屈指可数,以ASIMO,ATLAS,ATRIAS三种型号的机器人最具代表性。ASIMO是在亚洲范围内最具代表性的双足机器人,该机器人是由日本Honda公司2000年开始推出的,经过十多年的改进,现在ASIMO机器人除了拥有视觉和听觉的能力,还具有避障以及上下阶梯的能力。ASIMO高约130cm,重约48kg,全身共有30个自由度,最新一代的ASIMO机器人可以以9km/h的速度向前奔跑,双腿腾空相持续时间大约为50ms,同时ASIMO还能够做到单脚连续跳跃,双脚连续跳跃,边跳跃边变换方向。但是类似ASIMO这样的双足机器人采用的是ZMP(Zero Moment Point)稳 定性判据,机械结构上采用的是大脚掌的设计,所采用的控制策略与机械结构设计使ASIMO对于复杂路面的适应能力有限,ZMP稳定性判据无法适用于脚掌欠驱动机器人,ZMP稳定性判据对于双足步行以及跑跳来说过于严苛。目前只能适应室内平整路面的环境,无法在室外不平整路面形成稳定的跑步步态。
俄勒冈州立大学,密歇根大学与卡内基梅隆大学联合推出的ATRIAS机器人具有室外行走与跑步能力,最高速度达到9km/h,可以实现5km/h速度下的稳定跑步步态。ATRIAS可以在草地上或者不平整路面上快速奔跑,能适应具有一定坡度的地面。ATRIAS的腿部使用四连杆结构,采用电机驱动关节,将机器人绝大部分重量集中在髋部以上,该设计模仿了自然界中双足奔跑速度最快的家禽和鸟类,以此期望获得更高的奔跑速度。ATRIAS的每条腿有三个自由度,包括髋关节俯仰关节,髋关节偏转关节以及膝关节,由于机器人缺少髋关节偏航关节,ATRIAS无法实现对方向的自主控制。从ATRIAS团队发表的论文成果可以看出,ATRIAS的整体机构设计与其采用的控制弹性负载倒立摆模型(Spring Linear Inverted Pendulum,SLIP)具有较好的吻合度,也即大部分质量都集中在髋部,而腿部质量设计得很轻。这些结构特点使得ATRIAS起跳时的力量是通过髋和膝关节的合力产生的,从而具备了较大的腿部相较于躯干的推重比,且轻量化的腿部在快速摆动对姿态平衡的扰动也较小。SLIP模型与线性倒立摆模型(Linear Inverted Pendulum,LIP)类似,区别在于LIP模型的质心高度是恒定值,而SLIP模型中支撑腿在机器人的一个步态周期中存在着地压缩与起跳伸展的过程,质心具有一定的波动性,且对于支撑腿膝关节的力矩输出要求较高,控制算法不一定能适用于大部分双足机器人,尤其是电机驱动型的双足机器人。
Atlas是美国波士顿动力公司一直在研制开发的双足机器人。Atlas机器人具有视觉和抓取能力,可以实现搬运,爬起等功能,还能实现雪地行走。从波士顿动力公司最新发布的测试视频可以看出,Atlas机器人已经可以快速奔跑,跨越体积较大的障碍,甚至还能够实现后空翻、“三连跳”以及自由体操等灵活运动。Atlas在平衡方面也具有极高的稳定性,既能够在崎岖路面行走也能够在外力剧烈推动身体后继续保持平衡,是目前世界上公认性能最为强大的双足机器人。Atlas采用液压装置驱动关节力矩,液压装置相较于电机可以输出更大的功率,对于机器人重量不敏感,但是液压依然存在不稳定,控制复杂等缺点,所以大多数研究人员还是更倾向于采用电机驱动双足机器人。同时波士顿动力公司至今尚未公布Atlas的控制算法,其他双足机器人平台无法直接借鉴和学习Atlas在跑步步态方面的经验。
发明内容
本发明针对现有技术的不足,提出了双足机器人在室内外路面的动态跑步实现方法,同时通过支撑腿与摆动腿的轨迹规划与状态切换生成机器人跑步空中相,实现机器人的跑步运 动,提升机器人的运动速度,完善机器人跑步的动态平衡性能。本发明在常见的双足机器人或仿人机器人平台上具有一定的通用性,对于室外不平整地形也具有很好的适应能力。
本发明的目的通过以下技术方案实现:一种双足机器人动态跑步,通过设定机器人跑步的相位状态机以实现各个状态机下的运动规划和控制,在各状态中进行机器人的平衡控制与运动轨迹规划。当机器人由飞行相转变为着地相的瞬间,采用SLIP模型控制姿态平衡与着地缓冲;当机器人着地稳定后,采用LIP模型将机器人质心控制到设定高度。通过机器人着地控制和支撑相控制,相应的姿态控制、高度控制和速度控制方法,以及支撑腿与摆动腿的运动轨迹规划,从而实现双足机器人的跑步步态。
进一步的,该方法具体为:在机器人前进过程中将机器人的躯干简化为一个集中所有质量的质心,机器人的腿简化为一个连接躯干和脚的无质量、无惯量、可伸缩的连杆,将质心约束在约束平面运动,设计双足机器人的状态机,使双足机器人在状态机中各状态间持续稳定的切换,在机器人各状态中实现机器人的平衡控制。其中双足机器人的状态机是指机器人稳定前进过程按照左右腿是否处于支撑相划分为四种状态,分别是左腿支撑相,左腿腾空空中相,右腿支撑相,右腿腾空空中相,状态机的稳定周期性切换形成了双足机器人的跑步步态,在各状态设置相应的控制器以实现机器人的平衡控制以及摆动腿的运动控制。其中双足机器人的平衡控制包括身体姿态平衡控制,质心高度平衡控制和机器人前进速度控制。
质心高度平衡控制,即控制机器人的身体质心在平行于地面的约束平面内运动,通过对地面作用力的控制以实现机器人质心高度的控制。设定作用力公式如下:
F
z=K
pf(h
set-h)+K
df(-v
h)+Mg
其中h
set为设定的质心高度;h为实际质心高度;v
h为质心竖直方向上的速度;K
pf与K
df为待确定的系数,根据实际的机器人调节;M为机器人质心的重量;g为重力加速度。
进一步地,对于机器人身体姿态平衡控制,引入PD控制使机器人身体躯干的姿态角度保持在稳定范围附近,具体身体姿态平衡控制公式如下:
其中τ
h为身体躯干的平衡力矩;q
d为期望身体姿态角;q为身体姿态角度;
为期望身体姿态角速度;
为身体姿态角速度;K
p与K
d分别为相应待确定的反馈系数矩阵,与实际双足机器人平台相关;τ
f为质心重力作用于支撑腿髋关节产生的前馈力矩;
进一步地,机器人前进速度控制,通过双足机器人的落脚点控制机器人质心速度趋近期望速度或是维持稳定在期望速度。具体落脚点坐标公式如下:
L
f=K
0v+K
pvv+K
dv(v-v
d)
其中L
f为落脚点的坐标;v为机器人的速度;v
d为期望速度;K
0v,K
pv,K
dv均为待确定的系数矩阵,与单腿支撑相时间以及机器人的质心高度有关。
进一步的,所述支撑腿与摆动腿的运动轨迹规划是指利用设定相位信息规划支撑腿收缩以及摆动腿伸展。当双足机器人处于单腿支撑相即将结束的时刻,此时状态机开始切换,进入相对应的双腿腾空相,设定相位信息置零,上一状态的支撑腿与摆动腿互换,双足机器人控制程序控制支撑腿与摆动腿的运动以实现双足机器人空中相,在腾空相的过程中的双腿的摆动轨迹公式如下:
其中,x
sw,z
sw为摆动腿末端点的坐标;z
su为支撑腿末端点的纵坐标;x
s,z
s为摆动腿末端点的初始坐标;x
f,z
f为摆动腿末端点的设定坐标;Δh为设定的抬腿高度;p为设定的相位信息,与当前步态的执行时间成正相关,Δp为设定空中相相位时长;T为跨步周期;f
swx(x
s,x
f,p,T),f
swz(Δh,z
f,p,T)为摆动腿的规划曲线;z
sus,z
suf为支撑腿末端点的起始和设定的纵坐标。在摆动腿抬起而支撑腿尚未落地的过程中出现双腿均腾空的状态从而实现双足机器人的跑步步态。
本发明的有益效果是,本发明提出了双足机器人不平整路面动态跑步步态实现方法,该方法中当机器人由飞行相转变为着地相的瞬间,采用SLIP模型控制姿态平衡与着地缓冲;当机器人着地稳定后,采用LIP模型将机器人质心控制到设定高度,从而实现双足机器人的动态平衡控制与轨迹运动规划,进而实现双足机器人的跑步步态。目前绝大多数双足机器人都是采用LIP模型与ZMP稳定性判据以实现双足机器人的行走步态,采用的大脚掌的设计对于双足机器人的运动能力产生很大的限制,而本方法避免了采用ZMP稳定性判据的局限性,成功实现双足机器人稳定的跑步步态,采用小脚掌即可实现动态的平衡稳定性,使得双足机器人具备了实现不平整路面的稳定跑步和行走的能力。与采用SLIP模型的ATRIAS机器人相比, 本方法在着地瞬间采用了SLIP模型进行控制,同样具有ATRIAS的着地缓冲作用,降低了着地冲击力对机器人本体机械机构的损伤,且在着地稳定后将机器人质心控制到设定高度,而不像SLIP模型一样需要将质心推到一定的高度从而产生空中飞行相,本方法的空中相是通过当前支撑腿的快速切换状态而产生的,因此降低了机器人膝盖关节的输出力矩要求,这种方法对于关节性能受到电机能力约束的机器人同样具有适用性;最后,采用SLIP模型需要更加准确的状态估计,当支撑腿开始伸展起跳时,机器人质心产生离地向上的速度,需要对于双足机器人起跳速度以及质心姿态做出精确的估计,对于传感器的精度和算法要求较高,增加双足机器人的开发成本。相比较而言,采用本方法的控制策略相较于LIP模型或SLIP模型,极大地降低了双足机器人机械结构设计和关节性能的要求,可以更好地满足大部分性能受限的机器人进行跑步步态开发与实验,具有更好的灵活性和通用性,将进一步缩短开发周期和降低开发成本。
图1是双足机器人的整体模型图,其中(a)为主视图,(b)为侧视图;
图2是双足机器人状态机切换图;
图3是HIP模型示意图;
图4是双足机器人右腿单腿支撑相;
图5是双足机器人右腿腾空空中相;
图6是双足机器人左腿单腿支撑相;
图中,躯干1、右大腿连杆2、右小腿连杆3、右脚掌4、左大腿连杆5、左小腿连杆6、左脚掌7、右髋偏航关节8、右髋侧摆关节9、右髋俯仰关节10、右腿膝关节11、右腿踝关节12、左髋偏航关节13、左髋侧摆关节14、左髋俯仰关节15、左腿膝关节16、左腿踝关节17、初始站立状态18、左腿单腿支撑相19左腿腾空空中相20、右腿单腿支撑相21、右腿腾空空中相22、等效连杆23、等效质心24、摆动腿运动轨迹25。
以下结合附图进一步说明本发明。
本发明提出的双足机器人不平整路面动态跑步步态实现方法,将该方法构建成一个用于控制双足机器人不平整路面动态跑步的线性倒立摆和弹性负载倒立摆相结合的混合倒立摆HIP(Hybrid Inverted Pendulum)模型,以便对本方法作进一步说明。HIP模型是指将机器人的躯干简化为一个集中所有质量的质心,机器人的腿简化为一个连接躯干和脚的无质量、无惯量、可伸缩的连杆,将质心约束在约束平面运动。当机器人由飞行相转变为着地相的瞬间,机器人与地面之间存在较大冲击力,采用的HIP表现出SLIP模型的特性,质心压缩以缓冲 着地的冲击力;当机器人着地稳定后HIP表现出LIP模型的特性,将机器人质心控制到设定高度。其中双足机器人的状态机是指机器人稳定前进过程按照左右腿是否处于支撑相划分为四种状态,分别是左腿支撑相,左腿腾空空中相,右腿支撑相,右腿腾空空中相,状态机的稳定周期性切换形成了双足机器人的跑步步态,在各状态设置相应的控制器以实现机器人的平衡控制以及摆动腿的运动控制。
如图1-6所示,本发明双足机器人跑步步态的实现方法,包括采用HIP模型实现双足机器人的平衡控制以及利用支撑腿与摆动腿运动轨迹规划实现双足机器人的跑步步态。双足机器人的结构如图1所示,主要由躯干1和下肢组成,下肢包括右大腿连杆2、右小腿连杆3、右脚掌4、左大腿连杆5、左小腿连杆6、左脚掌7、右髋偏航关节8、右髋侧摆关节9、右髋俯仰关节10、右腿膝关节11、右腿踝关节12、左髋偏航关节13、左髋侧摆关节14、左髋俯仰关节15、左腿膝关节16、左腿踝关节17。其中躯干1中装有惯性测量单元,测量身体的姿态信息;左脚掌7与右脚掌4中装有力传感器,测量足底与地面的接触力的大小。下文对该控制方法作出详细说明。
HIP模型如图3所示,将机器人的躯干1简化为一个集中所有质量的质心24,机器人的腿简化为一个连接躯干和脚的无质量、无惯量和可伸缩的连杆23,将质心约束在约束平面运动。双足机器人的状态机是指将机器人稳定前进过程按照左右腿是否处于支撑相划分为四种状态,分别是左腿支撑相19,左腿腾空空中相20,右腿支撑相21,右腿腾空空中相22,如图2所示,双足机器人由初始站立状态18开始跳入状态机的循环中,在相应的状态设置相应的控制器以实现身体躯干的平衡以及摆动腿的运动规划,状态机跳转方向唯一,稳定且周期性的状态机切换形成双足机器人的稳定前进过程。双足机器人的平衡控制包括身体的姿态平衡控制,质心高度平衡控制与机器人前进速度控制。本方法避免了采用ZMP稳定性判据的局限性,成功实现双足机器人稳定的跑步步态,采用小脚掌即可实现动态的平衡稳定性,使得双足机器人具备了实现不平整路面的稳定跑步和行走的能力。
身体的姿态平衡控制,即控制机器人身体躯干的姿态角度保持在稳定范围附近,在双足的单腿支撑相的过程中,采用经典身体姿态平衡控制策略,利用PD控制实现身体躯干1的平衡,具体姿态平衡控制公式如下:
其中τ
h为身体躯干的平衡力矩;q
d为期望身体姿态角;q为身体姿态角度;
为期望身体姿态角速度;
为身体姿态角速度;K
p与K
d分别为相应待确定的反馈系数矩阵,与实际双足机器 人平台相关;τ
f为质心重力作用于支撑腿髋关节产生的前馈力矩,利用支撑腿髋关节产生τ
h以实现机器人身体躯干的平衡。
质心高度平衡控制,即控制机器人的身体质心在平行于地面的约束平面内运动,基于LIP模型理论,通过对地面作用力的控制实现身体质心高度的平衡,如图3所示,通过对F
z的控制实现质心高度平衡控制,F
z设定为:
F
z=K
pf(h
set-h)+K
df(-v
h)+Mg
其中h
set为设定的质心高度;h为实际质心高度;v
h为质心竖直方向上的速度;K
pf与K
df为待确定的系数;M为机器人质心的重量;g为重力加速度。通过该式使机器人质心始终稳定在设定高度。
机器人前进速度控制,通过双足机器人的落脚点控制机器人质心速度趋近期望速度或是维持稳定在期望速度,通过机器人前进方向的落脚点坐标即机器人前进方向的步长实现对机器人速度的控制,具体落脚点坐标公式如下:
L
f=K
0v+K
pvv+K
dv(v-v
d)
其中L
f为落脚点的坐标;v为机器人的速度;v
d为期望速度;K
0v,K
pv,K
dv均为待确定的系数矩阵,与单腿支撑相时间以及质心高度有关。将落脚点坐标设定为一个步态周期中摆动腿摆动的终点坐标,以此实现通过落脚点对于质心速度的控制。
所述支撑腿与摆动腿轨迹规划是指利用相位信息与足底力传感器的信息规划支撑收缩以及摆动腿伸展,实现双足机器人的双腿腾空相。以右腿单腿支撑相切换为左腿单腿支撑相为例,如图4所示,当双足机器人处于单腿支撑相即将结束的时刻,将此刻定义为一个步态周期的开始,设定相位信息为零,支撑腿与摆动腿互换,右腿成为摆动腿,左腿成为支撑腿,双足机器人控制程序控制支撑腿与摆动腿的运动以实现双足机器人空中相,机器人双腿的摆动轨迹公式如下:
其中,x
sw,z
sw为摆动腿末端点的坐标;z
su为支撑腿末端点的纵坐标;x
s,z
s为摆动腿末端点的初始坐标;x
f,z
f为摆动腿末端点的设定坐标;Δh为设定的抬腿高度;p为设定的相位信息,与当前步态的执行时间成正相关,Δp为设定空中相相位时长;T为跨步周期;f
swx(x
s,x
f,p,T),f
swz(Δh,z
f,p,T)为摆动腿的规划曲线;z
sus,z
suf为支撑腿末端点的起始和设定的纵坐标。根据上述机器人双腿的摆动轨迹,机器人在一个步态周期的开始阶段控制支撑腿向下运动,控制摆动腿向上抬起,当摆动腿向上收缩的速度大于质心速度竖直向下的分量时,支撑腿末端产生向下的速度而摆动腿末端会产生向上的速度,当机器人摆动腿收缩的速度较快时,摆动腿已经抬起,而支撑腿尚未落地,机器人处于双脚腾空的状态,如图5所示。本方法的空中相是通过当前支撑腿的快速切换状态而产生的,因此降低了机器人膝盖关节的输出力矩要求,这种方法对于关节性能受到电机能力约束的机器人同样具有适用性当机器人处于双腿腾空相时,忽略空气阻力的影响,机器人的质心会保持现有的运动状态,机器人在前进方向上会继续保持前进的速度。当支撑腿触地或者设定相位信息p>Δp时,机器人进行状态机切换,由双腿腾空相进入单腿支撑相,如图6所示,同时控制程序会控制摆动腿使摆动腿按照设定的摆动轨迹25运动,摆动轨迹由f
swx(x
s,x
f,p,T),f
swz(Δh,z
f,p,T)决定,利用上述方法基于HIP模型对双足机器人支撑腿实施相应的控制策略。如此循环往复,从而形成双足机器人稳定的跑步步态。总的来说,采用HIP模型控制策略相较于LIP模型或SLIP模型,极大地降低了双足机器人机械结构设计和关节性能的要求,控制算法可以适用于大部分双足机器人,尤其是电机驱动型的双足机器人,具有更好的灵活性和通用性。
Claims (5)
- 一种双足机器人不平整路面动态跑步步态实现方法,通过设定整个跑步周期的状态机,在各状态中进行机器人的平衡控制与运动轨迹规划;其特征在于,该方法通过支撑腿与摆动腿的运动轨迹规划与状态切换生成机器人跑步飞行相,当机器人由飞行相转变为着地相的瞬间,采用SLIP模型控制姿态平衡与着地缓冲;当机器人着地稳定后,采用LIP模型将机器人质心控制到设定高度。
- 根据权利要求1所述双足机器人不平整路面动态跑步步态实现方法,其特征在于,该方法具体为:将机器人的躯干简化为一个集中所有质量的质心,机器人的腿简化为一个连接躯干和脚的无质量、无惯量、可伸缩的连杆,将质心约束在约束平面运动,并将机器人稳定前进过程的相位状态机按照左右腿是否处于支撑相划分为四种状态,分别是左腿支撑相,左腿腾空空中相,右腿支撑相,右腿腾空空中相,状态的稳定周期性切换形成了双足机器人的跑步步态,在各状态中进行机器人的平衡控制以及支撑腿与摆动腿的运动轨迹规划。其中双足机器人的平衡控制包括身体姿态平衡控制,质心高度平衡控制和机器人前进速度控制。所述质心高度平衡控制,通过对地面作用力的控制以实现机器人质心高度的控制。设定作用力公式如下:F z=K pf(h set-h)+K df(-v h)+Mg其中h set为设定的质心高度;h为实际质心高度;v h为质心竖直方向上的速度;K pf与K df为待确定的系数;M为机器人质心的重量;g为重力加速度。
- 根据权利要求2所述双足机器人不平整路面动态跑步步态实现方法,其特征在于,所述机器人前进速度控制,通过双足机器人的落脚点控制机器人质心速度趋近期望速度或是维持稳定在期望速度。具体落脚点坐标公式如下:L f=K 0v+K pvv+K dv(v-v d)其中L f为落脚点的坐标;v为机器人的速度;v d为期望速度;K 0v,K pv,K dv均为待确定的系数矩阵,与单腿支撑相时间以及机器人的质心高度有关。
- 根据权利要求2-5任一项所述双足机器人不平整路面动态跑步步态实现方法,其特征在于,所述支撑腿与摆动腿的运动轨迹规划利用设定相位信息规划支撑腿收缩以及摆动腿伸展。当双足机器人处于单腿支撑相即将结束的时刻,此时状态开始切换,进入相对应的双腿腾空相,设定相位信息置为零,支撑腿与摆动腿互换,双足机器人控制程序控制支撑腿与摆动腿的运动以实现双足机器人飞行相,在飞行相的过程中的双腿的摆动轨迹公式如下:其中,x sw,z sw为摆动腿末端点的坐标;z su为支撑腿末端点的纵坐标;x s,z s为摆动腿末端点的初始坐标;x f,z f为摆动腿末端点的设定坐标;Δh为设定的抬腿高度;p为设定的相位信息,与当前步态的执行时间成正相关,Δp为设定飞行相相位时长;T为跨步周期;f swx(x s,x f,p,T),f swz(Δh,z f,p,T)为摆动腿的规划曲线;z sus,z suf为支撑腿末端点的起始和设定的纵坐标。在摆动腿抬起而支撑腿尚未落地的过程中出现双腿均腾空的状态从而实现双足机器人的跑步步态。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2019/120770 WO2020233050A1 (zh) | 2019-11-26 | 2019-11-26 | 一种双足机器人不平整路面动态跑步步态实现方法 |
US17/234,831 US11858138B2 (en) | 2019-11-26 | 2021-04-20 | Method for realizing dynamic running gait of biped robot on rough terrain road |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2019/120770 WO2020233050A1 (zh) | 2019-11-26 | 2019-11-26 | 一种双足机器人不平整路面动态跑步步态实现方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/234,831 Continuation US11858138B2 (en) | 2019-11-26 | 2021-04-20 | Method for realizing dynamic running gait of biped robot on rough terrain road |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020233050A1 true WO2020233050A1 (zh) | 2020-11-26 |
Family
ID=73458982
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/120770 WO2020233050A1 (zh) | 2019-11-26 | 2019-11-26 | 一种双足机器人不平整路面动态跑步步态实现方法 |
Country Status (2)
Country | Link |
---|---|
US (1) | US11858138B2 (zh) |
WO (1) | WO2020233050A1 (zh) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113246123A (zh) * | 2021-04-30 | 2021-08-13 | 深圳市优必选科技股份有限公司 | 机器人控制方法、装置、计算机可读存储介质及机器人 |
CN113830197A (zh) * | 2021-11-23 | 2021-12-24 | 之江实验室 | 一种应用于双足机器人动态行走的平衡控制方法 |
CN114235373A (zh) * | 2021-12-21 | 2022-03-25 | 北京理工大学重庆创新中心 | 一种轮腿机器人单轮腿工况测试装置及方法 |
CN114454981A (zh) * | 2021-12-14 | 2022-05-10 | 深圳市优必选科技股份有限公司 | 双足机器人的弹跳运动控制方法、装置及双足机器人 |
CN114578836A (zh) * | 2022-02-11 | 2022-06-03 | 中国北方车辆研究所 | 一种双轮足机器人跳跃控制方法 |
WO2022199080A1 (zh) * | 2021-03-22 | 2022-09-29 | 深圳市优必选科技股份有限公司 | 机器人迈步控制方法、装置、机器人控制设备及存储介质 |
CN115167389A (zh) * | 2022-06-07 | 2022-10-11 | 中国北方车辆研究所 | 行为驱动的四足机器人中枢层细粒度演进优化模型 |
WO2022227429A1 (zh) * | 2021-04-30 | 2022-11-03 | 深圳市优必选科技股份有限公司 | 一种步态轨迹规划方法、装置、可读存储介质及机器人 |
CN115465382A (zh) * | 2022-10-10 | 2022-12-13 | 吉林大学 | 一种具有仿生髋关节和踝关节的被动双足机器人 |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210370733A1 (en) * | 2019-12-23 | 2021-12-02 | California Institute Of Technology | Synchronized Multi-Modal Robot |
CN111290389B (zh) * | 2020-02-25 | 2021-05-14 | 北京理工大学 | 一种双足机器人落脚位置控制系统与方法 |
CN111736615B (zh) * | 2020-08-04 | 2020-12-15 | 深圳市优必选科技股份有限公司 | 一种步态规划方法、装置、计算机可读存储介质及机器人 |
CN113467484B (zh) * | 2021-09-02 | 2021-12-31 | 深圳市优必选科技股份有限公司 | 双足机器人步态控制方法、装置和计算机设备 |
CN113934208B (zh) * | 2021-09-14 | 2023-08-04 | 中国北方车辆研究所 | 一种被动轮式四足机器人轮滑步态控制方法 |
CN114161401B (zh) * | 2021-11-17 | 2023-12-15 | 深圳市优必选科技股份有限公司 | 质心高度规划方法、装置、计算机可读存储介质及机器人 |
CN114253260B (zh) * | 2021-12-08 | 2023-08-18 | 深圳市优必选科技股份有限公司 | 机器人步态规划方法及装置、运动规划设备和存储介质 |
CN114161402B (zh) * | 2021-12-17 | 2023-11-10 | 深圳市优必选科技股份有限公司 | 机器人稳定控制方法、模型构建方法、装置和机器人 |
CN114248855B (zh) * | 2021-12-20 | 2022-10-21 | 北京理工大学 | 双足机器人空间域步态规划与控制的方法 |
CN114442649B (zh) * | 2021-12-22 | 2024-04-19 | 之江实验室 | 一种双足机器人混杂动力学建模和运动规划方法 |
CN114371713A (zh) * | 2022-01-12 | 2022-04-19 | 深圳鹏行智能研究有限公司 | 足式机器人的路径规划方法、电子设备及存储介质 |
CN114721414B (zh) * | 2022-04-08 | 2024-08-02 | 合肥工业大学 | 一种四足机器人基于trot步态的平衡控制算法 |
CN117425864A (zh) * | 2022-04-29 | 2024-01-19 | 北京小米机器人技术有限公司 | 足式机器人控制方法、装置、介质及足式机器人 |
CN114932555B (zh) * | 2022-06-14 | 2024-01-05 | 如你所视(北京)科技有限公司 | 机械臂协同作业系统及机械臂控制方法 |
CN115284280A (zh) * | 2022-06-30 | 2022-11-04 | 杭州云深处科技有限公司 | 一种四足机器人的侧翻方法 |
CN115128960B (zh) * | 2022-08-30 | 2022-12-16 | 齐鲁工业大学 | 一种基于深度强化学习双足机器人运动控制方法及系统 |
CN115857328B (zh) * | 2022-11-07 | 2023-10-17 | 哈尔滨理工大学 | 一种基于力矩平衡点与运动稳定性协同优化的六足机器人容错步态落足点规划方法 |
CN118131800A (zh) * | 2022-11-23 | 2024-06-04 | 北京小米机器人技术有限公司 | 运动控制方法、装置、机器人及可读储存介质 |
CN117207203B (zh) * | 2023-11-08 | 2024-02-23 | 北京小米机器人技术有限公司 | 机器人控制方法、装置、机器人及存储介质 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102736628A (zh) * | 2012-06-12 | 2012-10-17 | 华中科技大学 | 一种具有环境适应性的足式机器人稳定性控制方法及系统 |
CN107065867A (zh) * | 2017-03-28 | 2017-08-18 | 浙江大学 | 一种面向未知崎岖地形的四足机器人运动规划方法 |
CN110181541A (zh) * | 2019-05-15 | 2019-08-30 | 浙江大学 | 一种双足跑跳机器人转向控制方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20130034082A (ko) * | 2011-09-28 | 2013-04-05 | 삼성전자주식회사 | 로봇 및 그 제어 방법 |
-
2019
- 2019-11-26 WO PCT/CN2019/120770 patent/WO2020233050A1/zh active Application Filing
-
2021
- 2021-04-20 US US17/234,831 patent/US11858138B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102736628A (zh) * | 2012-06-12 | 2012-10-17 | 华中科技大学 | 一种具有环境适应性的足式机器人稳定性控制方法及系统 |
CN107065867A (zh) * | 2017-03-28 | 2017-08-18 | 浙江大学 | 一种面向未知崎岖地形的四足机器人运动规划方法 |
CN110181541A (zh) * | 2019-05-15 | 2019-08-30 | 浙江大学 | 一种双足跑跳机器人转向控制方法 |
Non-Patent Citations (2)
Title |
---|
HEREID, AYONGA ET AL.: "Dynamic Multi-Domain Bipedal Walking with ATRIAS through SLIP based Human-Inspired Control", HSCC'14: PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON HYBRID SYSTEMS: COMPUTATION AND CONTROL, 30 April 2014 (2014-04-30), XP055754901 * |
ZHU, QIUGUO ET AL.: "Stable Walking Control and Strategy of Under-Actuated Biped Robot", JOURNAL OF HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY (NATURE SCIENCE EDITION), vol. 45, no. 10, 31 October 2017 (2017-10-31), ISSN: 1671-4512, DOI: 20200814181658A * |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022199080A1 (zh) * | 2021-03-22 | 2022-09-29 | 深圳市优必选科技股份有限公司 | 机器人迈步控制方法、装置、机器人控制设备及存储介质 |
WO2022227429A1 (zh) * | 2021-04-30 | 2022-11-03 | 深圳市优必选科技股份有限公司 | 一种步态轨迹规划方法、装置、可读存储介质及机器人 |
CN113246123B (zh) * | 2021-04-30 | 2022-10-18 | 深圳市优必选科技股份有限公司 | 机器人控制方法、装置、计算机可读存储介质及机器人 |
CN113246123A (zh) * | 2021-04-30 | 2021-08-13 | 深圳市优必选科技股份有限公司 | 机器人控制方法、装置、计算机可读存储介质及机器人 |
CN113830197B (zh) * | 2021-11-23 | 2022-04-05 | 之江实验室 | 一种应用于双足机器人动态行走的平衡控制方法 |
CN113830197A (zh) * | 2021-11-23 | 2021-12-24 | 之江实验室 | 一种应用于双足机器人动态行走的平衡控制方法 |
CN114454981A (zh) * | 2021-12-14 | 2022-05-10 | 深圳市优必选科技股份有限公司 | 双足机器人的弹跳运动控制方法、装置及双足机器人 |
CN114454981B (zh) * | 2021-12-14 | 2022-11-29 | 深圳市优必选科技股份有限公司 | 双足机器人的弹跳运动控制方法、装置及双足机器人 |
CN114235373A (zh) * | 2021-12-21 | 2022-03-25 | 北京理工大学重庆创新中心 | 一种轮腿机器人单轮腿工况测试装置及方法 |
CN114235373B (zh) * | 2021-12-21 | 2024-04-02 | 北京理工大学重庆创新中心 | 一种轮腿机器人单轮腿工况测试装置及方法 |
CN114578836A (zh) * | 2022-02-11 | 2022-06-03 | 中国北方车辆研究所 | 一种双轮足机器人跳跃控制方法 |
CN115167389A (zh) * | 2022-06-07 | 2022-10-11 | 中国北方车辆研究所 | 行为驱动的四足机器人中枢层细粒度演进优化模型 |
CN115465382A (zh) * | 2022-10-10 | 2022-12-13 | 吉林大学 | 一种具有仿生髋关节和踝关节的被动双足机器人 |
Also Published As
Publication number | Publication date |
---|---|
US11858138B2 (en) | 2024-01-02 |
US20210237265A1 (en) | 2021-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020233050A1 (zh) | 一种双足机器人不平整路面动态跑步步态实现方法 | |
Liu et al. | A bio-inspired hopping kangaroo robot with an active tail | |
Hodgins et al. | Adjusting step length for rough terrain locomotion | |
KR100959472B1 (ko) | 로봇 장치 및 로봇 장치의 제어 방법 | |
US7072740B2 (en) | Legged mobile robot | |
JP3824608B2 (ja) | 脚式移動ロボット及びその動作制御方法 | |
KR100977348B1 (ko) | 다리식 이동 로봇의 동작 제어 장치 및 동작 제어 방법 및 로봇 장치 | |
Anderson et al. | Powered bipeds based on passive dynamic principles | |
JP2001150370A (ja) | 脚式移動ロボット及び脚式移動ロボットの動作制御方法 | |
CN108897220B (zh) | 一种自适应稳定平衡控制方法和系统以及双足仿人机器人 | |
CN106828654A (zh) | 一种四足仿生机器人 | |
WO2022156476A1 (zh) | 一种仿人机器人连续动态稳定跳跃控制方法 | |
CN111746824B (zh) | 一种缓冲/行走一体化六足着陆器及其步态控制方法 | |
WO2004033160A1 (ja) | ロボット装置の動作制御装置及び動作制御方法 | |
JP3528171B2 (ja) | 移動ロボット装置及び移動ロボット装置の転倒制御方法 | |
Seo et al. | Towards natural bipedal walking: Virtual gravity compensation and capture point control | |
Li et al. | Stable jump control for the wheel-legged robot based on TMS-DIP model | |
JP4660870B2 (ja) | 脚式移動ロボット及びその制御方法 | |
JP3674779B2 (ja) | 脚式移動ロボットのための動作制御装置及び動作制御方法、並びにロボット装置 | |
Ma et al. | Trotting gait control of quadruped robot based on Trajectory Planning | |
JP4770990B2 (ja) | 脚式移動ロボット及びその制御方法 | |
Mineshita et al. | Jumping motion generation for humanoid robot using arm swing effectively and changing in foot contact status | |
Kawaharazuka et al. | Twimp: Two-wheel inverted musculoskeletal pendulum as a learning control platform in the real world with environmental physical contact | |
Komatsu et al. | Dynamic walking and running of a bipedal robot using hybrid central pattern generator method | |
CN113721647B (zh) | 一种双足机器人动态上台阶控制方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19929859 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19929859 Country of ref document: EP Kind code of ref document: A1 |