[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020232411A1 - System and method for using a blockchain to manage medical transactions between entities in a healthcare ecosystem - Google Patents

System and method for using a blockchain to manage medical transactions between entities in a healthcare ecosystem Download PDF

Info

Publication number
WO2020232411A1
WO2020232411A1 PCT/US2020/033284 US2020033284W WO2020232411A1 WO 2020232411 A1 WO2020232411 A1 WO 2020232411A1 US 2020033284 W US2020033284 W US 2020033284W WO 2020232411 A1 WO2020232411 A1 WO 2020232411A1
Authority
WO
WIPO (PCT)
Prior art keywords
medical
user
entity
transaction
hyperledger
Prior art date
Application number
PCT/US2020/033284
Other languages
French (fr)
Inventor
Nathan Gnanasambandam
Mark Henry ANDERSON
Original Assignee
Healthpointe Solutions, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US16/593,491 external-priority patent/US11263405B2/en
Application filed by Healthpointe Solutions, Inc. filed Critical Healthpointe Solutions, Inc.
Priority to US17/611,476 priority Critical patent/US20220245637A1/en
Publication of WO2020232411A1 publication Critical patent/WO2020232411A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q20/00Payment architectures, schemes or protocols
    • G06Q20/22Payment schemes or models
    • G06Q20/223Payment schemes or models based on the use of peer-to-peer networks
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H10/00ICT specially adapted for the handling or processing of patient-related medical or healthcare data
    • G16H10/20ICT specially adapted for the handling or processing of patient-related medical or healthcare data for electronic clinical trials or questionnaires
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H10/00ICT specially adapted for the handling or processing of patient-related medical or healthcare data
    • G16H10/60ICT specially adapted for the handling or processing of patient-related medical or healthcare data for patient-specific data, e.g. for electronic patient records
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/20ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the management or administration of healthcare resources or facilities, e.g. managing hospital staff or surgery rooms
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H70/00ICT specially adapted for the handling or processing of medical references
    • G16H70/60ICT specially adapted for the handling or processing of medical references relating to pathologies
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems

Definitions

  • Population health management entails aggregating patient data across multiple health information technology resources, analyzing the data with reference to a single patient, and generating actionable items through which care providers can improve both clinical and financial outcomes.
  • coordinating health services to perform the actionable items among multiple entities in a healthcare ecosystem can be a daunting, inefficient, and/or cumbersome task.
  • a system and method for using a blockchain to manage medical transactions between entities in a healthcare ecosystem are disclosed herein.
  • the medical transactions may be performed using the hyperledger to provide a population health management service.
  • the steps of any of the following methods may be implemented as computer instructions stored on tangible, non-transitory media that are executable by one or more processors. Further, the methods may be implemented by a computing device and/or a system including one or more processors.
  • a method for maintaining a hyperledger for healthcare transactions at one or more nodes includes receiving, a from a client device, a request to perform a transaction using the hyperledger wherein the transaction pertains to registering a medical personnel entity associated with the client device as a node of the one or more nodes, and the request includes an authorizing credential pertaining to the medical personnel entity.
  • the method also includes determining, based on one or more rules, whether to allow the transaction to be performed in view of the request.
  • the method also includes registering the node for the medical personnel entity by creating the node for the medical personnel entity, updating the hyperledger by adding a block to the hyperledger, where the block stores the transaction including the authorizing the credential pertaining to the medical personnel entity, and storing the hyperledger at the node for the medical personnel entity.
  • a method for performing a medical transaction using a hyperledger includes receiving, from a computing device associated with a medical personnel entity, a request to perform the medical transaction between the medical personnel entity and a patient entity, where the medical personnel entity is associated with a medical personnel node and the patient entity is associated with a patient node, and a respective copy of the hyperledger is maintained at both the medical personnel node and the patient node.
  • the method also includes identifying a transaction in the hyperledger that stores an authorizing credential of the medical personnel entity, determining whether to allow the medical transaction to be performed based on at least the authorizing credential of the medical personnel entity, and responsive to determining to allow the medical transaction to be performed, updating the respective copy of the hyperledger with the medical transaction at the medical personnel node and the patient node.
  • a method for performing a medical transaction using a hyperledger includes identifying a medical facility computing device that is within a threshold distance of a geolocation of a patient computing device, where the medical facility computing device is associated with a medical facility entity and the patient computing device is associated with a patient entity. The method also includes transmitting, from the patient computing device, a request to perform a medical transaction to the medical facility computing device, where the request includes an authenticating credential associated with the patient entity, and a determination is made whether to allow performance of the medical transaction based on one or more rules that specify allowing the medical transaction to be added to a hyperledger when at least the authenticating credential in the hyperledger is verified. The method also includes receiving a notification from the medical facility computing device that indicates the medical transaction has been performed.
  • a method may include recommending items in conversational streams by receiving conversation stream segments, defining a user action outcome objective based on the conversation stream segments and a user profile that may be stored on a hyperledger, selecting an action likely to advance the user action outcome objective, and presenting a conversation stream segment to motivate an action likely to advance the user action outcome objective.
  • a computer-implemented method for providing therapeutic medical action recommendations in response to a medical information natural language conversation stream includes receiving segments of a medical information natural language conversation stream at an artificial intelligence-based health information conversation agent from a medical information conversation user interface. Based on the medical information content of a user medical information profile (e.g., stored in a hyperledger) associated with the medical information natural language conversation stream, the method further defines a desired clinical management outcome objective relevant to health management criteria and related health management data attributes of the user medical information profile. The method further involves identifying a set of potential therapeutic interventions correlated to advancement of the clinical management outcome objective.
  • a user medical information profile e.g., stored in a hyperledger
  • the method further involves selecting from among the set of potential therapeutic interventions correlated to advancement of the clinical management outcome objective a medical intervention likely to advance the clinical management outcome objective.
  • the method further involves presenting in the medical information natural language conversation stream a therapeutic advice conversation stream segment designed to stimulate execution of the medical intervention likely to advance the clinical management outcome objective.
  • the method further involves presenting to the user in the medical information natural language conversation stream a therapeutic advice conversation stream segment explaining a correlation between the medical intervention likely to advance the clinical management outcome objective and achievement of the clinical management outcome objective.
  • a computer program product in a non-transitory computer- readable medium for providing therapeutic medical action recommendations in response to a medical information natural language conversation stream contains instructions that cause a computer to receive segments of a medical information natural language conversation stream at an artificial intelligence-based health information conversation agent from a medical information conversation user interface.
  • the product contains further instructions that cause the computer to define a clinical management outcome objective relevant to health management criteria and related health management data attributes of the profile in response to the medical information content of a user medical information profile (e.g., stored in a hyperledger) associated with the medical information natural language conversation stream.
  • the product contains further instructions that cause the computer to select a medical intervention likely to advance the clinical management outcome objective.
  • the product contains further instructions that cause the computer to present to the user in the medical information natural language conversation stream a therapeutic advice conversation stream segment designed to stimulate execution of the action likely to advance the clinical management outcome objective.
  • a system for providing therapeutic medical action recommendations in response to a medical information natural language conversation stream includes a knowledge cloud configured for receiving segments of a medical information natural language conversation stream at an artificial intelligence-based health information from a medical information conversation user interface of a cognitive agent.
  • the system further includes a critical thinking engine.
  • the critical thinking engine is configured to define a clinical management outcome objective relevant to health management criteria and related health management data attributes of the profile in response to medical information content of a user medical information profile (e.g., stored in a hyperledger) associated with the medical information natural language conversation stream in the knowledge cloud.
  • the critical thinking engine is further configured to select a medical intervention likely to advance the clinical management outcome objective.
  • the cognitive agent is configure for presenting to the user in the medical information natural language conversation stream a therapeutic advice conversation stream segment designed to stimulate execution of the action likely to advance the clinical management outcome objective.
  • a computer-implemented method for providing action recommendations in response to a user-generated natural language conversation stream includes receiving segments of a user-generated natural language conversation stream at an artificial intelligence-based conversation agent from a user interface.
  • the method further includes defining a user action outcome objective relevant to attributes of the profile in response to content of a user profile (e.g., stored in a hyperledger) associated with the user-generated natural language conversation stream.
  • the method further includes selecting an action likely to advance the user action outcome objective.
  • the method further includes presenting to the user in the user-generated natural language conversation stream a conversation stream segment designed to motivate performance of the action likely to advance the user action outcome objective.
  • FIG. 1 illustrates, in block diagram form, a system architecture 100 that can be configured to provide a population health management service, in accordance with various embodiments.
  • FIG. 2 shows additional details of a knowledge cloud, in accordance with various embodiments.
  • FIG. 3 shows an example subject matter ontology, in accordance with various embodiments.
  • FIG. 4 shows aspects of a conversation, in accordance with various embodiments.
  • FIG. 5 shows a cognitive map or“knowledge graph”, in accordance with various embodiments.
  • FIG. 6 shows a method, in accordance with various embodiments.
  • FIGS. 7A, 7B, and 7C show methods, in accordance with various embodiments.
  • FIGS. 8A, 8B, 8C, and 8D show aspects of a user interface, in accordance with various embodiments.
  • FIGS. 9A and 9B shows aspects of a conversational stream, in accordance with various embodiments.
  • FIG. 10 shows aspects of a conversational stream, in accordance with various embodiments.
  • FIG. 11 shows aspects of an action calendar, in accordance with various embodiments.
  • FIG. 12 shows aspects of a feed, in accordance with various embodiments.
  • FIG. 13 shows aspects of a hyper-local community, in accordance with various embodiments.
  • FIG. 14 illustrates a detailed view of a computing device that can represent the computing devices of FIG.1 used to implement the various platforms and techniques described herein, according to some embodiments.
  • FIG. 15 shows a method, in accordance with various embodiments.
  • FIG. 16 shows a method, in accordance with various embodiments.
  • FIG. 17 shows a method, in accordance with various embodiments.
  • FIG. 18 shows a therapeutic paradigm logical framework, in accordance with various embodiments
  • FIG. 19 shows a method, in accordance with various embodiments.
  • FIG. 20 shows a paradigm logical framework, in accordance with various embodiments.
  • FIG. 21 shows a method, in accordance with various embodiments.
  • FIG. 22 shows a method, in accordance with various embodiments.
  • FIG. 23 shows a distributed network of nodes each maintaining a copy of a hyperledger to manage medical transactions, in accordance with various embodiments.
  • FIG. 24 shows an example hyperledger, in accordance with various embodiments.
  • FIG. 25 shows the use of analytics based rules for providing updates to the hyperledger, in accordance with various embodiments.
  • FIG. 26 shows a method, in accordance with various embodiments.
  • FIG. 27 shows a method, in accordance with various embodiments.
  • FIG. 28 shows an example use of an authenticating credential associated with a patient entity to perform a medical transaction, in accordance with various embodiments.
  • FIG. 29 shows a method, in accordance with various embodiments.
  • FIG. 30 shows a method, in accordance with various embodiments. NOTATION AND NOMENCLATURE
  • the entities may involve patients (consumers), medical personnel (e.g., physicians, nurses, pharmacists, dentists, optometrists, orthodontists, etc.), insurance providers, clinics, hospitals, pharmacies, professional associations, government agencies, and so forth.
  • patients patients
  • medical personnel e.g., physicians, nurses, pharmacists, dentists, optometrists, orthodontists, etc.
  • insurance providers clinics, hospitals, pharmacies, professional associations, government agencies, and so forth.
  • Example medical transactions may include a physician writing a prescription for a patient, a physician requesting a pharmacy fill or refill a prescription for a patient, a physician updating a medical chart for a patient after a consultation, a patient requesting a pharmacy to fill or refill a prescription, a pharmacy filling a prescription for a patient, a pharmacy or clinic requesting an insurance provider pay for a consultation or for a prescription, a patient requesting an insurance provider pay for a consultation or for a prescription, and so forth.
  • a medical personnel may provide an authorizing credential that indicates the medical personnel is allowed to practice and perform the medical transaction.
  • the authorizing credential may be a license or certificate that has been approved by a professional association or government agency and awarded to the medical personnel.
  • a physician and a pharmacists are required to obtain licenses to practice and perform medical transactions.
  • a patient may provide a form of identification (e.g., driver’s license) and information pertaining to their insurance provider to a medical facility (e.g., clinic, hospital, pharmacy etc.) to engage in a medical transaction with a medical personnel at that medical facility.
  • a medical facility e.g., clinic, hospital, pharmacy etc.
  • a physician may write a prescription for a patient after diagnosing a medical condition of the patient.
  • the prescription may be a physical document that is sent to the pharmacy or brought by the patient to the pharmacy. Records at the various medical facilities may be generated / updated when the user fills or refills the prescription.
  • a pharmacist may attempt to verify the prescription by contacting the physician who wrote the prescription or a representative of the physician. The pharmacist may not reach the physician. Even when the physician is reached, the process may take an undesirable amount of time from start to finish to verify that the physician wrote the prescription. In other instances, the pharmacist may attempt to contact an insurance provider of the patient to verify that the insurance provider is going to pay for any medicine or devices prescribed in the prescription. Again, the insurance provider may not be reached and/or the verification process may take longer than desired.
  • the verifications may occur in real-time, near real time, or on an ongoing basis to allow the medical transactions to be performed. Some examples may include verifying that medical personnel have up-to-date authorizing credential to practice the medical transactions, verifying that the medical facility (e.g., clinic, hospital, pharmacy, etc.) has an up-to-date authorizing credential to allow performance of the medical transaction at the medical facility, verifying the identity of the patient, verifying information (e.g., how many refills are allowed, how many refills have been used, etc.) pertaining to a prescription of the patient, and so forth.
  • verifying that medical personnel have up-to-date authorizing credential to practice the medical transactions verifying that the medical facility (e.g., clinic, hospital, pharmacy, etc.) has an up-to-date authorizing credential to allow performance of the medical transaction at the medical facility, verifying the identity of the patient, verifying information (e.g., how many refills are allowed, how many refills have been used, etc.) pertaining to a prescription of
  • the authorizing credentials of the medical personnel and/or information pertaining to a patient are stored in disparate data stores or may not be recorded in any data store.
  • the verification process and the medical transactions in general can be inefficient.
  • a verifiable trace of proof that the medical transactions have been performed and/or are determined to be allowed by being associated with an authorized medical personnel and patient is desired.
  • aspects of the disclosure generally relate to a cognitive intelligence platform using blockchain in a healthcare ecosystem to maintain information about entities and medical transactions in the healthcare ecosystem and to using analytics based rules that specify when to provide updates to the blockchain.
  • a blockchain may refer to an immutable ledger for recording transactions.
  • the cognitive intelligence platform integrates and consolidates data / information from various sources and entities and provides a population health management service.
  • at least some of the data / information from the various sources and entities may be stored in a blockchain.
  • the blockchain may be maintained by a distributed network of nodes.
  • a consensus protocol may be used by the nodes to determine whether to allow transactions to be performed and groups the transactions into blocks that are added to the blockchain.
  • a permissionless blockchain any entity may participate without an identity.
  • a permissioned blockchain each entity that participates in the blockchain is identified and known.
  • An example of a permissioned blockchain is a hyperledger.
  • the permissions cause the participating nodes to view only the appropriate transactions in the hyperledger.
  • Programmable logic may be implemented as rules that are executed by the hyperledger.
  • the rules may be analytics-based and may specify scenarios when updates to the hyperledger are to be made by the various entities of the healthcare ecosystem. Using the analytics-based rules may make each node an active participant by updating the hyperledger at specified times.
  • the hyperledger may provide a verifiable trace of proof that the information is associated with entities involved in a medical transaction to facilitate more efficient medical transactions, among other things.
  • the hyperledger may provide a secure chain of record that is used to enhance the efficiency and/or security of the medical transaction process in the healthcare ecosystem.
  • Each entity in the healthcare ecosystem may register as a node in a distributed, decentralized network. Registering a node for an entity may involve a transaction that is added to the hyperledger. Each node may maintain a respective copy of the hyperledger as a shared single source of truth. During registration, each entity may provide certain information pertaining to the entity to be maintained by the hyperledger at the nodes. For example, a physician may register as a node and may provide information (e.g., National Provider Identifier (NPI), license number, date licensed, date license last updated, etc.) pertaining to their authorizing credential, specialty of medical practice, location of practice, and any other information relevant to practicing in the healthcare ecosystem.
  • NPI National Provider Identifier
  • a pharmacist may register as a node and may provide information (e.g., license number, date licensed, date license last updated, etc.) pertaining to their authorizing credential, location of practice, and any other information relevant to practicing in the healthcare ecosystem.
  • a patient may register as a node and may provide personal information (e.g., driver’s license number, social security number, name, insurance provider number, type of insurance, address, medical records, allergies, etc.) that enables verifying their identity and establishing a user profile, among other things.
  • the hyperledger may be used to verify information pertaining to the entities engaged in the medical transaction and to determine whether to allow the medical transaction to be performed.
  • the system may already know, based on the information pertaining to the entities stored in the hyperledger, that the patient is verified and the medical personnel (e.g., physician, pharmacist, etc.) involved in the medical transaction (e.g., writing a prescription, filling the prescription, dispensing medicine) is verified.
  • a consensus protocol may be used by the nodes to validate the medical transactions, thereby enhancing security of performing the medical transactions.
  • One or more rules may dictate when medical transactions are allowed and/or when to provide updates to the hyperledger.
  • one rule may indicate that the authorizing credential of the physician is required to be valid at the time the prescription was written or when the prescription is filled prior to allowing the medical transaction.
  • the other nodes may approve the medical transaction based on whether the one or more rules are satisfied.
  • the medical transactions may be recorded on the hyperledger stored at each node to maintain a ledger of the medical transactions in the healthcare ecosystem.
  • Information maintained by the hyperledger may be protected such that just authorized nodes in any given medical transaction are allowed to use the information.
  • the information stored at a patient node typically is not allowed to be referenced by other patient nodes, unless certain circumstances apply (e.g., the patient nodes are related (parents and children)).
  • benefits of the disclosed techniques may enable a patient that initially purchased medicine using a prescription at a first pharmacy to purchase the medicine using the prescription at a second pharmacy without any action by the pharmacist at the second pharmacy.
  • the patient may request the prescription be refilled by the second pharmacy and the authenticating credentials of the patient may be verified by the hyperledger.
  • the hyperledger may identify the prescription stored in a transaction in the hyperledger for the patient, determine whether the physician that wrote the prescription has a valid authorizing credential to write the prescription, whether the pharmacist at the second pharmacy has a valid authorizing credential to fill a prescription, whether the second pharmacy has a valid authorizing credential to dispense medication, and whether there are any refills left on the prescription, among other things.
  • the medical transaction may be approved and the second pharmacy may refill the prescription by just using the information stored in the hyperledger. Accordingly, the medical transaction process for approving filling prescriptions, for example, may be enhanced by removing third-parties.
  • the cognitive intelligence platform has the ability to extract concepts, relationships, and draw conclusions from a given text posed in natural language (e.g., a passage, a sentence, a phrase, and a question) by performing conversational analysis which includes analyzing conversational context. For example, the cognitive intelligence platform has the ability to identify the relevance of a posed question to another question.
  • natural language e.g., a passage, a sentence, a phrase, and a question
  • the benefits provided by the cognitive intelligence platform include freeing up physicians from focusing on day to day population health management.
  • a physician can focus on her core competency—which includes disease/risk diagnosis and prognosis and patient care.
  • the cognitive intelligence platform provides the functionality of a health coach and includes a physician’s directions in accordance with the medical community’s recommended care protocols and also builds a systemic knowledge base for health management.
  • the cognitive intelligence platform may leverage the information stored in the hyperledger to recommend certain actions be taken by a patient.
  • the recommended actions may include setting up a consultation with a physician having a valid authorizing credential at a location near the patient (e.g., based on geolocations of devices of the entities).
  • the cognitive intelligence platform may implement an intuitive conversational cognitive agent that engages in a question and answering system that is human-like in tone and response.
  • the described cognitive intelligence platform endeavors to compassionately solve goals, questions and challenges.
  • the cognitive intelligence platform may use a hyperledger to manage medical transactions between entities in a healthcare ecosystem more efficiently and/or securely.
  • the described methods and systems are described as occurring in the healthcare space, though other areas are also contemplated.
  • FIG. 1 shows a system architecture 100 that can be configured to provide a population health management service, in accordance with various embodiments.
  • FIG. 1 illustrates a high-level overview of an overall architecture that includes a cognitive intelligence platform 102 communicably coupled to a user device 104.
  • the cognitive intelligence platform 102 includes several computing devices, where each computing device, respectively, includes at least one processor, at least one memory, and at least one storage (e.g., a hard drive, a solid-state storage device, a mass storage device, and a remote storage device).
  • the individual computing devices can represent any form of a computing device such as a desktop computing device, a rack-mounted computing device, and a server device.
  • the foregoing example computing devices are not meant to be limiting. On the contrary, individual computing devices implementing the cognitive intelligence platform 102 can represent any form of computing device without departing from the scope of this disclosure.
  • the several computing devices work in conjunction to implement components of the cognitive intelligence platform 102 including: a knowledge cloud 106; a critical thinking engine 108; a natural language database 122; a cognitive agent 1 10; and a node 1 16.
  • the cognitive intelligence platform 102 is not limited to implementing only these components, or in the manner described in FIG. 1. That is, other system architectures can be implemented, with different or additional components, without departing from the scope of this disclosure.
  • the example system architecture 100 illustrates one way to implement the methods and techniques described herein.
  • the node 1 16 represents a single computing device in a distributed blockchain network of nodes 1 16 (also referred to as a distributed hyperledger fabric herein) of the cognitive intelligence platform 102.
  • a permissioned type of blockchain referred to as a hyperledger 1 18, may be implemented and a respective copy of the hyperledger 1 18 may be stored on a respective node 1 16.
  • the nodes 1 16 may represent any suitable entity in a healthcare ecosystem.
  • some of the entities may include a service provider 1 12 (e.g., medical personnel entity, such as a physician, dentist, pharmacist, optometrist, orthodontic, nurse, etc.), a facility 1 14 (e.g., medical facility entity), a patient entity, and so forth.
  • Each entity may be associated with a respective computing device that they use to register as a node on the blockchain network and request transactions to be performed using the hyperledger 1 18.
  • the entities register by providing certain information to the hyperledger.
  • the entity may be registered as a node 1 16 on the blockchain network and provided authenticating credentials that are used to identify the entities when they perform transactions.
  • the rules may be executable software modules that are installed in the hyperledger 1 18 itself.
  • the hyperledger 1 18 may invoke the rules, which perform functions depending on the type of transaction being requested.
  • the nodes 1 16 may employ a consensus protocol whereby the nodes 1 16 communicate with each other to determine whether to allow the transaction to be performed to modify the hyperledger 1 18.
  • the entities use computing devices to send requests to perform transactions (e.g., medical transactions) using the hyperledger 1 18 to the cognitive intelligence platform 102.
  • transactions e.g., medical transactions
  • the transaction may be completed (e.g., writing a prescription, filling the prescription, etc.) and a record of the transaction may be added to the hyperledger 1 18.
  • the transactions may not be altered or removed, thereby providing an immutable quality to the hyperledger 1 18.
  • cryptography may be used to secure the hyperledger 1 18 and the messages between the nodes 1 16 of the blockchain network and/or the computing devices requesting the transactions.
  • just the authorized entities are allowed to perform the transactions on the hyperledger 1 18, and in some instances, just the appropriate entities are allowed to view details of particular transactions in the hyperledger 1 18.
  • a request to register as a node 1 16 may be a type of transaction that is recorded in the hyperledger 1 18.
  • the entities may send the requests to register as a node 1 16 using the hyperchain 1 18, and the requests include certain information pertaining to the entities.
  • a medical personnel entity may provide an authorizing credential, such as a medical license number. If the rules and/or the consensus protocol is satisfied, the entity may be associated with a node 1 16.
  • the hyperledger 1 18 may be updated by adding a block storing the transaction including the information pertaining to the entity that is associated with the node 1 16. The updated hyperledger 1 18 may be stored at the node for the entity.
  • the copies of the other hyperledgers 1 18 at the other nodes 1 16 in the blockchain network may be updated with the new transaction.
  • the computing device associated with that entity may be provided with authenticating credentials for that entity. The computing device may use the authenticating credentials to make subsequent requests to the hyperledger 1 18.
  • a medical transaction such as a physician writing a prescription for a patient, a physician updating health records of a patient, a physician requesting a pharmacy fills a prescription, a physician approving additional refills on a prescription, a patient requesting a pharmacy fill or refill a prescription, a pharmacist filling or refilling a prescription for a patient, a pharmacy dispensing medicine specified in a prescription for a user, and so forth, may be a type of transaction that is recorded in the hyperledger 1 18.
  • the hyperledger 1 18 may be used as a verifiable trace of proof to determine that the source of certain medical transactions (e.g., a prescription was written by a physician with a valid medical license) were performed by proper entities having valid authorizing credentials prior to allowing subsequent medical transactions (e.g., filling the prescription for the authenticated patient).
  • certain medical transactions e.g., a prescription was written by a physician with a valid medical license
  • the knowledge cloud 106 represents a set of instructions executing within the cognitive intelligence platform 102 that implement a database configured to receive inputs from several sources and entities.
  • some of the sources and entities include a service provider 1 12, a facility 1 14, and a microsurvey 1 16— each described further below.
  • the critical thinking engine 108 represents a set of instructions executing within the cognitive intelligence platform 102 that execute tasks using artificial intelligence, such as recognizing and interpreting natural language (e.g., performing conversational analysis), and making decisions in a linear manner (e.g., in a manner similar to how the human left brain processes information). Specifically, an ability of the cognitive intelligence platform 102 to understand natural language is powered by the critical thinking engine 108.
  • the critical thinking engine 108 includes a natural language database 122.
  • the natural language database 1 12 includes data curated over at least thirty years by linguists and computer data scientists, including data related to speech patterns, speech equivalents, and algorithms directed to parsing sentence structure.
  • the critical thinking engine 108 is configured to deduce causal relationships given a particular set of data, where the critical thinking engine 108 is capable of taking the individual data in the particular set, arranging the individual data in a logical order, deducing a causal relationship between each of the data, and drawing a conclusion.
  • the ability to deduce a causal relationship and draw a conclusion (referred to herein as a“causal” analysis) is in direct contrast to other implementations of artificial intelligence that mimic the human left brain processes.
  • the other implementations can take the individual data and analyze the data to deduce properties of the data or statistics associated with the data (referred to herein as an“analytical” analysis).
  • an“analytical” analysis an“analytical” analysis
  • these other implementations are unable to perform a causal analysis— that is, deduce a causal relationship and draw a conclusion from the particular set of data.
  • the critical thinking engine 108 is capable of performing both types of analysis: causal and analytical.
  • the cognitive agent 110 represents a set of instructions executing within the cognitive intelligence platform 102 that implement a client-facing component of the cognitive intelligence platform 102.
  • the cognitive agent 110 is an interface between the cognitive intelligence platform 102 and the user device 104.
  • the cognitive agent 110 includes a conversation orchestrator 124 that determines pieces of communication that are presented to the user device 104 (and the user).
  • the cognitive agent 110 interacts with the cognitive agent 110.
  • the several references herein, to the cognitive agent 110 performing a method can implicate actions performed by the critical thinking engine 108, which accesses data in the knowledge cloud 106, the natural language database 122, and/or the hyperledger 118.
  • the several computing devices executing within the cognitive intelligence platform are communicably coupled by way of a network/bus interface.
  • the various components e.g., the knowledge cloud 106, the critical thinking engine 108, the cognitive agent 110, and the node 116
  • the knowledge cloud 106 is implemented using a first computing device
  • the critical thinking engine 108 is implemented using a second computing device
  • the cognitive agent 110 is implemented using a third computing device
  • the node 116 is a fourth computing device, where each of the computing devices are coupled by way of the inter-host communication protocol 118.
  • the user device 104 represents any form of a computing device, or network of computing devices, e.g., a personal computing device, a smart phone, a tablet, a wearable computing device, a notebook computer, a media player device, and a desktop computing device.
  • the user device 104 includes a processor, at least one memory, and at least one storage.
  • a user uses the user device 104 to input a given text posed in natural language (e.g., typed on a physical keyboard, spoken into a microphone, typed on a touch screen, or combinations thereof) and interacts with the cognitive intelligence platform 102, by way of the cognitive agent 1 10.
  • a given text posed in natural language e.g., typed on a physical keyboard, spoken into a microphone, typed on a touch screen, or combinations thereof.
  • a user may also use a software application installed on the user device 104 to request medical transactions to be performed using authenticating credentials provided to the user device 104 during registration of the user as a node 1 16 on the blockchain network.
  • a software application installed on the user device 104 to request medical transactions to be performed using authenticating credentials provided to the user device 104 during registration of the user as a node 1 16 on the blockchain network.
  • Such an implementation makes the blockchain node 1 16 an active participant in the hyperledger 1 18.
  • the medical transactions may include filling a prescription written for the user, refilling a prescription written for the user, scheduling a consultation with a medical personnel entity, and so forth.
  • the requests may be sent to the cognitive intelligence platform 102 (e.g., by way of the cognitive agent 1 10) to determine, based on the one or more rules and/or the consensus protocol, whether to allow the medical transaction to be performed and to update the hyperledger 1 18 with a record of the medical transaction once performed.
  • the software application may be logged into the cognitive intelligence platform 102 via the cognitive agent 1 10 using the authenticating credential for the user, and the software application may query the hyperledger 1 18 and determine that the user has not filled or refilled their prescription.
  • the software application may present a prompt to the user on the user device 104 instructing the user to fill or refill their prescription.
  • the architecture 100 includes a network 120 that communicatively couples various devices, including the cognitive intelligence platform 102 and the user device 104.
  • the network 120 can include local area network (LAN) and wide area networks (WAN).
  • the network 102 can include wired technologies (e.g., Ethernet ®) and wireless technologies (e.g., Wi-Fi®, code division multiple access (CDMA), global system for mobile (GSM), universal mobile telephone service (UMTS), Bluetooth®, and ZigBee®.
  • the user device 104 can use a wired connection or a wireless technology (e.g., Wi-Fi®) to transmit and receive data over the network 120.
  • a wireless technology e.g., Wi-Fi®
  • the knowledge cloud 106 is configured to receive data from various sources and entities and integrate the data in a database.
  • An example source that provides data to the knowledge could 106 is the service provider 1 12, an entity that provides a type of service to a user.
  • the service provider 1 12 can be a health service provider (e.g., a doctor’s office, a physical therapist’s office, a nurse’s office, or a clinical social worker’s office), and a financial service provider (e.g., an accountant’s office).
  • the cognitive intelligence platform 102 provides services in the health industry (e.g., a healthcare ecosystem), thus the examples discussed herein are associated with the health industry. Flowever, any service industry can benefit from the disclosure herein, and thus the examples associated with the health industry are not meant to be limiting.
  • the service provider 1 12 collects and generates data associated with the patient or the user, including health records that include doctor’s notes and prescriptions, billing records, and insurance records.
  • the service provider 1 12 using a computing device (e.g., a desktop computer or a tablet), provides the data associated with the user to the cognitive intelligence platform 102, and more specifically the knowledge cloud 106. This data associated with the user may be stored in the hyperledger 1 18, in some embodiments.
  • the service provider 1 12 may use a computing device associated with the service provider 1 12 to make requests for medical transactions to be performed using authenticating credentials provided to the computing device during registration of the service provider 1 12 as a node 1 16 on the blockchain network.
  • Such an implementation makes the blockchain node 1 16 an active participant in the hyperledger 1 18.
  • the medical transactions may include writing a prescription for the patient entity, requesting a pharmacy fill a prescription for the patient entity, authorizing additional refills for a prescription for a patient entity, updating a medical file for the patient entity based using the data associated with the user, and so forth.
  • the requests may be sent to the cognitive intelligence platform 102 (e.g., by way of the cognitive agent 1 10) to determine, based on the one or more rules and/or the consensus protocol, whether to allow the medical transaction to be performed and to update the hyperledger 1 18 with a record of the medical transaction once performed.
  • the rule may specify that the service provider 1 12 is required to have a valid authorizing credential to perform the medical transaction.
  • the rule may execute and check a transaction in the hyperledger 1 18 storing the authorizing credential of the service provider 1 12 to determine whether the authorizing credential is valid.
  • a request may be transmitted to a professional association or government agency that issued the authorizing credential to the service provider 1 12 to determine if the authorizing credential is still valid.
  • the facility 1 14 represents a location owned, operated, or associated with any entity including the service provider 1 12.
  • an entity represents an individual or a collective with a distinct and independent existence.
  • An entity can be legally recognized (e.g., a sole proprietorship, a partnership, a corporation) or less formally recognized in a community.
  • the entity can include a company that owns or operates a gym (facility).
  • facility 1 14 includes, but is not limited to, a hospital, a trauma center, a clinic, a dentist’s office, a pharmacy, a store (including brick and mortar stores and online retailers), an out patient care center, a specialized care center, a birthing center, a gym, a cafeteria, and a psychiatric care center.
  • the facility 1 14 represents a large number of types of locations, for purposes of this discussion and to orient the reader by way of example, the facility 1 14 represents the doctor’s office or a gym.
  • the facility 1 14 generates additional data associated with the user such as appointment times, an attendance record (e.g., how often the user goes to the gym), a medical record, a billing record, a purchase record, an order history, and an insurance record.
  • the facility 1 14, using a computing device e.g., a desktop computer or a tablet
  • This data associated with the user may be stored in the hyperledger 1 18, in some embodiments.
  • the facility 1 14 may use a computing device associated with the facility to make requests for medical transactions to be performed using authenticating credentials provided to the computing device during registration of the facility 1 14 as a node 1 16 on the blockchain network.
  • the medical transactions may include providing an authorizing credential that authorize the facility 1 14 to perform a medical transaction (e.g., dispense a controlled substance or medicine), requesting the data generated by the facility 1 14 to be stored for the user, requesting to dispense medication or fill a prescription and so forth.
  • a medical transaction e.g., dispense a controlled substance or medicine
  • the requests may be sent to the cognitive intelligence platform 102 (e.g., by way of the cognitive agent 1 10) to determine, based on the one or more rules and/or the consensus protocol, whether to allow the medical transaction to be performed and to update the hyperledger 1 18 with a record of the medical transaction once performed.
  • the rule may specify that the facility 1 14 is required to have a valid authorizing credential to perform the medical transaction.
  • the rule may execute and check a transaction in the hyperledger 1 18 storing the authorizing credential of the facility 1 14 to determine whether the authorizing credential is valid.
  • a request may be transmitted to a professional association or government agency that issued the authorizing credential to the facility 1 14 to determine if the authorizing credential is still valid.
  • microsurvey 1 16 represents a tool created by the cognitive intelligence platform 102 that enables the knowledge cloud 106 to collect additional data associated with the user.
  • the microsurvey 1 16 is originally provided by the cognitive intelligence platform 102 (by way of the cognitive agent 1 10) and the user provides data responsive to the microsurvey 1 16 using the user device 104. Additional details of the microsurvey 1 16 are described below.
  • Yet another example source that provides data to the knowledge cloud 106 is the cognitive intelligence platform 102, itself.
  • the cognitive intelligence platform 102 collects, analyzes, and processes information from the user, healthcare providers, and other eco-system participants, and consolidates and integrates the information into knowledge.
  • the knowledge can be shared with the user and stored in the knowledge cloud 106.
  • the computing devices used by the service provider 1 12 and the facility 1 14 are communicatively coupled to the cognitive intelligence platform 102, by way of the network 120. While data is used individually by various entities including: a hospital, practice group, facility, or provider, the data is less frequently integrated and seamlessly shared between the various entities in the current art.
  • the cognitive intelligence platform 102 provides a solution that integrates data from the various entities. That is, the cognitive intelligence platform 102 ingests, processes, and disseminates data and knowledge in an accessible fashion, where the reason for a particular answer or dissemination of data is accessible by a user.
  • the cognitive intelligence platform 102 (e.g., by way of the cognitive agent 1 10 interacting with the user) holistically manages and executes a health plan for durational care and wellness of the user (e.g., a patient or consumer).
  • the health plan includes various aspects of durational management that is coordinated through a care continuum.
  • the cognitive agent 1 10 can implement various personas that are customizable.
  • the personas can include knowledgeable (sage), advocate (coach), and witty friend (jester).
  • the cognitive agent 1 10 persists with a user across various interactions (e.g., conversations streams), instead of being transactional or transient.
  • the cognitive agent 1 10 engages in dynamic conversations with the user, where the cognitive intelligence platform 102 continuously deciphers topics that a user wants to talk about.
  • the cognitive intelligence platform 102 has relevant conversations with the user by ascertaining topics of interest from a given text posed in a natural language input by the user.
  • the cognitive agent 1 10 connects the user to healthcare service providers, hyperlocal health communities, and a variety of services and tools/devices, based on an assessed interest of the user.
  • the cognitive agent 1 10 may connect the user to healthcare service providers that are in a vicinity of the geolocation of the user device 104 based on certain information stored in the hyperledger 1 18 (e.g., which healthcare service providers have valid authorizing credentials, location of the healthcare service providers, speciality of the healthcare service provider, health issue of the patient, etc.).
  • the cognitive agent 1 10 can also act as a coach and advocate while delivering pieces of information to the user based on tonal knowledge, human-like empathies, and motivational dialog within a respective conversational stream, where the conversational stream is a technical discussion focused on a specific topic.
  • the cognitive intelligence platform 102 consumes data from and related to the user and computes an answer. The answer is generated using a rationale that makes use of common sense knowledge, domain knowledge, evidence-based medicine guidelines, clinical ontologies, and curated medical advice.
  • the content displayed by the cognitive intelligence platform 102 (by way of the cognitive agent 1 10) is customized based on the language used to communicate with the user, as well as factors such as a tone, goal, and depth of topic to be discussed.
  • the cognitive intelligence platform 102 may be accessible to a user (e.g., patient entity), medical facility entities (e.g., a hospital system, clinics, pharmacies), medical personnel entities (e.g., physicians, pharmacists, dentists, optometrists, etc.), insurance provider entities, professional association entities, and government agency entities. Additionally, the cognitive intelligence platform 102 is accessible to paying entities interested in user behavior— e.g., the outcome of physician-consumer interactions in the context of disease or the progress of risk management. Additionally, entities that provides specialized services such as tests, therapies, and clinical processes that need risk based interactions can also receive filtered leads from the cognitive intelligence platform 102 for potential clients.
  • a user e.g., patient entity
  • medical facility entities e.g., a hospital system, clinics, pharmacies
  • medical personnel entities e.g., physicians, pharmacists, dentists, optometrists, etc.
  • insurance provider entities e.g., the outcome of physician-consumer interactions in the context of
  • the cognitive intelligence platform 102 is configured to perform conversational analysis in a general setting.
  • the topics covered in the general setting is driven by the combination of agents (e.g., cognitive agent 1 10) selected by a user.
  • the cognitive intelligence platform 102 uses conversational analysis to identify the intent of the user (e.g., find data, ask a question, search for facts, find references, and find products) and a respective micro-theory in which the intent is logical.
  • the cognitive intelligence platform 102 applies conversational analysis to decode what the user is asking or stated, where the question or statement is in free form language (e.g., natural language).
  • free form language e.g., natural language
  • the cognitive intelligence platform 102 responds to a statement or question according to the conversational focus and steers away from another detected conversational focus so as to focus on a goal defined by the cognitive agent 1 10.
  • the cognitive intelligence platform 102 uses conversational analysis to determine an intent of the statement. Is the user aspiring to be bird-like or does he want to travel? In the former case, the micro-theory is that of human emotions whereas in the latter case, the micro-theory is the world of travel. Answers are provided to the statement depending on the micro-theory in which the intent logically falls.
  • the cognitive intelligence platform 102 utilize a combination of linguistics, artificial intelligence, and decision trees to decode what a user is asking or stating.
  • the discussion includes methods and system design considerations and results from an existing embodiment. Additional details related to conversational analysis are discussed next.
  • Step 1 Obtain text/question and perform translations
  • the cognitive intelligence platform 102 receives a text or question and performs translations as appropriate.
  • the cognitive intelligence platform 102 supports various methods of input including text received from a touch interface (e.g., options presented in a microsurvey), text input through a microphone (e.g., words spoken into the user device), and text typed on a keyboard or on a graphical user interface. Additionally, the cognitive intelligence platform 102 supports multiple languages and auto translation (e.g., from English to Traditional/Simplified Chinese or vice versa).
  • Ramanujan For Indians, moreover, Ramanujan has a special significance. Ramanujan, through born in poor and ill-paid accountant’s family 100 years ago, has inspired many Indians to adopt mathematics as career.
  • the cognitive intelligence platform 102 analyzes the example text above to detect structural elements within the example text (e.g., paragraphs, sentences, and phrases). In some embodiments, the example text is compared to other sources of text such as dictionaries, and other general fact databases (e.g., Wikipedia) to detect synonyms and common phrases present within the example text.
  • sources of text such as dictionaries, and other general fact databases (e.g., Wikipedia) to detect synonyms and common phrases present within the example text.
  • Step 2 Understand concept, entity, intent, and micro-theory
  • step 2 the cognitive intelligence platform 102 parses the text to ascertain concepts, entities, intents, and micro-theories.
  • An example output after the cognitive intelligence platform 102 initially parses the text is shown below, where concepts, and entities are shown in bold.
  • the cognitive intelligence platform 102 ascertains that Cambridge is a university - which is a full understanding of the concept.
  • the cognitive intelligence platform e.g., the cognitive agent 110
  • understands what humans do in Cambridge and an example is described below in which the cognitive intelligence platform 102 performs steps to understand a concept.
  • the cognitive agent 110 understands the following concepts and relationships:
  • the cognitive agent 110 also assimilates other understandings to enhance the concepts, such as:
  • the statements (1 )-(7) are not picked at random. Instead the cognitive agent 1 10 dynamically constructs the statements (1 )-(7) from logic or logical inferences based on the example text above. Formally, the example statements (1 )-(7) are captured as follows:
  • Step 3 Relate and search
  • the cognitive agent 1 10 relates various entities and topics and follows the progression of topics in the example text. Relating includes the cognitive agent 1 10 understanding the different instances of Hardy are all the same person, and the instances of Hardy are different from the instances of Littlewood. The cognitive agent 1 10 also understands that the instances Hardy and Littlewood share some similarities— e.g., both are mathematicians and they did some work together at Cambridge on Number Theory. The ability to track this across the example text is referred to as following the topic progression with a context.
  • Step 4 Ascertain the existence of related concepts
  • Step 4 the cognitive agent 1 10 asserts non-existent concepts or relations to form new knowledge.
  • Step 4 is an optional step for analyzing conversational context. Step 4 enhances the degree to which relationships are understood or different parts of the example text are understood together. If two concepts appear to be separate— e.g., a relationship cannot be graphically drawn or logically expressed between enough sets of concepts— there is a barrier to understanding. The barriers are overcome by expressing additional relationships. The additional relationships can be discovered using strategies like adding common sense or general knowledge sources (e.g., using the common sense data 208) or adding in other sources including a lexical variant database, a dictionary, and a thesaurus.
  • Step 5 Logically frame concepts or needs
  • Step 5 the cognitive agent 1 10 determines missing parameters—which can include fpr example, missing entities, missing elements, and missing nodes— in the logical framework (e.g., with a respective micro-theory).
  • the cognitive agent 1 10 determines sources of data that can inform the missing parameters.
  • Step 5 can also include the cognitive agent 1 10 adding common sense reasoning and finding logical paths to solutions.
  • the cognitive agent 1 10 understands and catalogs available paths to answer questions.
  • Step 5 the cognitive agent 1 10 makes the case that the concepts (12)-(20) are expressed together.
  • Step 6 Understand the questions that can be answered from available data
  • Step 6 the cognitive agent 1 10 parses sub-intents and entities. Given the example text, the following questions are answerable from the cognitive agent’s developed understanding of the example text, where the understanding was developed using information and context ascertained from the example text as well as the common sense data 208 ( Figure 2):
  • the cognitive agent 1 10 makes a determination as the paths that are plausible and reachable with the context (e.g., micro-theory) of the example text.
  • the cognitive agent 1 10 catalogs a set of meaningful questions. The set of meaningful questions are not asked, but instead explored based on the cognitive agent’s understanding of the example text.
  • an example of exploration that yields a positive result is: “a situation X that caused Ramanujan’s position.”
  • an example of exploration that causes irrelevant results is:“a situation Y that caused Cambridge.”
  • the cognitive agent 1 10 is able to deduce that the latter exploration is meaningless, in the context of a micro-theory, because situations do not cause universities.
  • the cognitive agent 1 10 is able to deduce, there are no answers to Y, but there are answers to X.
  • Step 7 Answer the question
  • Step 7 the cognitive agent 1 10 provides a precise answer to a question.
  • a question such as:“What situation causally contributed to Ramanujan’s position at Cambridge?”
  • the cognitive agent 1 10 generates a precise answer using the example reasoning:
  • the cognitive agent 1 10 utilizes a solver or prover in the context of the example text’s micro-theory— and associated facts, logical entities, relations, and assertions.
  • the cognitive agent 1 10 uses a reasoning library that is optimized for drawing the example conclusions above within the fact, knowledge, and inference space (e.g., work space) that the cognitive agent 1 10 maintains.
  • the cognitive agent 1 10 analyzes conversational context.
  • the described method for analyzing conversation context can also be used for recommending items in conversations streams.
  • a conversational stream is defined herein as a technical discussion focused on specific topics.
  • the specific topics relate to health (e.g., diabetes).
  • a cognitive agent 1 10 collect information over may channels such as chat, voice, specialized applications, web browsers, contact centers, and the like.
  • the cognitive agent 1 10 can recommend a variety of topics and items throughout the lifetime of the conversational stream. Examples of items that can be recommended by the cognitive agent 1 10 include: surveys, topics of interest, local events, devices or gadgets, dynamically adapted health assessments, nutritional tips, reminders from a health events calendar, and the like.
  • the cognitive intelligence platform 102 provides a platform that codifies and takes into consideration a set of allowed actions and a set of desired outcomes.
  • the cognitive intelligence platform 102 relates actions, the sequences of subsequent actions (and reactions), desired sub-outcomes, and outcomes, in a way that is transparent and logical (e.g., explainable).
  • the cognitive intelligence platform 102 can plot a next best action sequence and a planning basis (e.g., health care plan template, or a financial goal achievement template), also in a manner that is explainable.
  • the cognitive intelligence platform 102 can utilize a critical thinking engine 108 and a natural language database 122 (e.g., a linguistics and natural language understanding system) to relate conversation material to actions.
  • FIG. 1 For purposes of this discussion, several examples are discussed in which conversational analysis is applied within the field of durational and whole-health management for a user.
  • the discussed embodiments holistically address the care needs and well-being of the user during the course of his life.
  • the methods and systems described herein can also be used in fields outside of whole-health management, including: phone companies that benefits from a cognitive agent; hospital systems or physicians groups that want to coach and educate patients; entities interested in user behavior and the outcome of physician-consumer interactions in terms of a progress of disease or risk management; entities that provide specialized services (e.g., test, therapies, clinical processes) to filter leads; and sellers, merchants, stores and big box retailers that want to understand which product to sell.
  • FIG. 1 For purposes of this discussion, several examples are discussed in which conversational analysis is applied within the field of durational and whole-health management for a user. The discussed embodiments holistically address the care needs and well-being of the user during the course of his life.
  • the methods and systems described herein can also be used
  • FIG. 2 shows additional details of a knowledge cloud, in accordance with various embodiments.
  • FIG. 2 illustrates various types of data received from various sources, including service provider data 202, facility data 204, microsurvey data 206, commonsense data 208, domain data 210, evidence-based guidelines 212, subject matter ontology data 214, and curated advice 216.
  • the types of data represented by the service provider data 202 and the facility data 204 include any type of data generated by the service provider 1 12 and the facility 1 14, and the above examples are not meant to be limiting.
  • the example types of data are not meant to be limiting and other types of data can also be stored within the knowledge cloud 106 without departing from the scope of this disclosure.
  • the service provider data 202 is data provided by the service provider 1 12 (described in FIG. 1 ) and the facility data 204 is data provided by the facility 1 14 (described in FIG. 1).
  • the service provider data 202 includes medical records of a respective patient of a service provider 1 12 that is a doctor.
  • the facility data 204 includes an attendance record of the respective patient, where the facility 1 14 is a gym.
  • the microsurvey data 206 is data provided by the user device 104 responsive to questions presented in the microsurvey 1 16 (FIG. 1 ).
  • Common sense data 208 is data that has been identified as“common sense”, and can include rules that govern a respective concept and used as glue to understand other concepts.
  • Domain data 210 is data that is specific to a certain domain or subject area.
  • the source of the domain data 210 can include digital libraries.
  • the domain data 210 can include data specific to the various specialties within healthcare such as, obstetrics, anesthesiology, and dermatology, to name a few examples.
  • the evidence-based guidelines 212 include systematically developed statements to assist practitioner and patient decisions about appropriate health care for specific clinical circumstances.
  • Curated advice 214 includes advice from experts in a subject matter.
  • the curated advice 214 can include peer-reviewed subject matter, and expert opinions.
  • Subject matter ontology data 216 includes a set of concepts and categories in a subject matter or domain, where the set of concepts and categories capture properties and relationships between the concepts and categories.
  • FIG. 3 illustrates an example subject matter ontology 300 that is included as part of the subject matter ontology data 216.
  • FIG. 4 illustrates aspects of a conversation 400 between a user and the cognitive intelligence platform 102, and more specifically the cognitive agent 1 10.
  • the user 401 is a patient of the service provider 1 12.
  • the user interacts with the cognitive agent 1 10 using a computing device, a smart phone, or any other device configured to communicate with the cognitive agent 1 10 (e.g., the user device 104 in FIG. 1 ).
  • the user can enter text into the device using any known means of input including a keyboard, a touchscreen, and a microphone.
  • the conversation 400 represents an example graphical user interface (GUI) presented to the user 401 on a screen of his computing device.
  • GUI graphical user interface
  • the user asks a general question, which is treated by the cognitive agent 1 10 as an“originating question.”
  • the originating question is classified into any number of potential questions (“pursuable questions”) that are pursued during the course of a subsequent conversation.
  • the pursuable questions are identified based on a subject matter domain or goal.
  • classification techniques are used to analyze language (e.g., such as those outlined in HPS ID20180901 -01_method for conversational analysis). Any known text classification technique can be used to analyze language and the originating question.
  • a subject matter e.g., blood sugar
  • I e.g., blood sugar
  • the cognitive intelligence platform 102 In response to receiving an originating question, the cognitive intelligence platform 102 (e.g., the cognitive agent 1 10 operating in conjunction with the critical thinking engine 108) performs a first round of analysis (e.g., which includes conversational analysis) of the originating question and, in response to the first round of analysis, creates a workspace and determines a first set of follow up questions.
  • a first round of analysis e.g., which includes conversational analysis
  • the cognitive agent 1 10 may go through several rounds of analysis executing within the workspace, where a round of analysis includes: identifying parameters, retrieving answers, and consolidating the answers.
  • the created workspace can represent a space where the cognitive agent 1 10 gathers data and information during the processes of answering the originating question.
  • each originating question corresponds to a respective workspace.
  • the conversation orchestrator 124 can assess data present within the workspace and query the cognitive agent 1 10 to determine if additional data or analysis should be performed.
  • the first round of analysis is performed at different levels, including analyzing natural language of the text, and analyzing what specifically is being asked about the subject matter (e.g., analyzing conversational context).
  • the first round of analysis is not based solely on a subject matter category within which the originating question is classified.
  • the cognitive intelligence platform 102 does not simply retrieve a predefined list of questions in response to a question that falls within a particular subject matter, e.g., blood sugar. That is, the cognitive intelligence platform 102 does not provide the same list of questions for all questions related to the particular subject matter. Instead, for example, the cognitive intelligence platform 102 creates dynamically formulated questions, curated based on the first round of analysis of the originating question.
  • the cognitive agent 1 10 parses aspects of the originating question into associated parameters.
  • the parameters represent variables useful for answering the originating question.
  • the question“is a blood sugar of 90 normal” may be parsed and associated parameters may include, an age of the inquirer, the source of the value 90 (e.g., in home test or a clinical test), a weight of the inquirer, and a digestive state of the user when the test was taken (e.g., fasting or recently eaten).
  • the parameters identify possible variables that can impact, inform, or direct an answer to the originating question.
  • the cognitive intelligence platform 102 inserts each parameter into the workspace associated with the originating question (line 402). Additionally, based on the identified parameters, the cognitive intelligence platform 102 identifies a customized set of follow up questions (“a first set of follow-up questions). The cognitive intelligence platform 102 inserts first set of follow-up questions in the workspace associated with the originating question. [0131] The follow up questions are based on the identified parameters, which in turn are based on the specifics of the originating question (e.g., related to an identified micro theory). Thus the first set of follow-up questions identified in response to, if a blood sugar is normal, will be different from a second set of follow up questions identified in response to a question about how to maintain a steady blood sugar.
  • the cognitive intelligence platform 102 determines which follow up question can be answered using available data and which follow-up question to present to the user. As described over the next few paragraphs, eventually, the first set of follow-up questions is reduced to a subset (“a second set of follow-up questions”) that includes the follow-up questions to present to the user.
  • available data is sourced from various locations, including a user account, the knowledge cloud 106, and other sources.
  • Other sources can include a service that supplies identifying information of the user, where the information can include demographics or other characteristics of the user (e.g., a medical condition, a lifestyle).
  • the service can include a doctor’s office or a physical therapist’s office.
  • Another example of available data includes the user account.
  • the cognitive intelligence platform 102 determines if the user asking the originating question, is identified.
  • a user can be identified if the user is logged into an account associated with the cognitive intelligence platform 102.
  • User information from the account is a source of available data.
  • the available data is inserted into the workspace of the cognitive agent 1 10 as a first data.
  • Another example of available data includes the data stored within the knowledge cloud 106.
  • the available data includes the service provider data 202 (FIG. 2), the facility data 204, the microsurvey data 206, the common sense data 208, the domain data 210, the evidence-based guidelines 212, the curated advice 214, and the subject matter ontology data 216.
  • data stored within the knowledge cloud 106 includes data generated by the cognitive intelligence platform 102, itself.
  • each dynamically formulated question can target one parameter at a time.
  • the cognitive intelligence platform 102 inserts the answer into the workspace.
  • each of the answers received from the user and in response to a dynamically formulated question is stored in a list of facts.
  • the list of facts include information specifically received from the user, and the list of facts is referred to herein as the second data.
  • the cognitive intelligence platform 102 calculates a relevance index, where the relevance index provides a ranking of the questions in the second set of follow-up questions. The ranking provides values indicative of how relevant a respective follow-up question is to the originating question.
  • the cognitive intelligence platform 102 can use conversations analysis techniques described in HPS ID20180901 -01_method.
  • the first set or second set of follow up questions is presented to the user in the form of the microsurvey 1 16.
  • the cognitive intelligence platform 102 consolidates the first and second data in the workspace and determines if additional parameters need to be identified, or if sufficient information is present in the workspace to answer the originating question.
  • the cognitive agent 1 10 assesses the data in the workspace and queries the cognitive agent 1 10 to determine if the cognitive agent 1 10 needs more data in order to answer the originating question.
  • the conversation orchestrator 124 executes as an interface
  • the cognitive intelligence platform 102 can go through several rounds of analysis. For example, in a first round of analysis the cognitive intelligence platform 102 parses the originating question. In a subsequent round of analysis, the cognitive intelligence platform 102 can create a sub question, which is subsequently parsed into parameters in the subsequent round of analysis. The cognitive intelligence platform 102 is smart enough to figure out when all information is present to answer an originating question without explicitly programming or pre-programming the sequence of parameters that need to be asked about. [0140] In some embodiments, the cognitive agent 1 10 is configured to process two or more conflicting pieces of information or streams of logic.
  • the cognitive agent 1 10 for a given originating question can create a first chain of logic and a second chain of logic that leads to different answers.
  • the cognitive agent 1 10 has the capability to assess each chain of logic and provide only one answer. That is, the cognitive agent 1 10 has the ability to process conflicting information received during a round of analysis.
  • the cognitive agent 1 10 has the ability to share its reasoning (chain of logic) to the user. If the user does not agree with an aspect of the reasoning, the user can provide that feedback which results in affecting change in a way the critical thinking engine 108 analyzed future questions and problems.
  • the cognitive agent 1 10 answers the question, and additionally can suggest a recommendation or a recommendation (e.g., line 418).
  • the cognitive agent 1 10 suggests the reference or the recommendation based on the context and questions being discussed in the conversation (e.g., conversation 400).
  • the reference or recommendation serves as additional handout material to the user and is provided for informational purposes.
  • the reference or recommendation often educates the user about the overall topic related to the originating question.
  • the cognitive intelligence platform 102 in response to receiving the originating questions (line 402), parses the originating question to determine at least one parameter: location. The cognitive intelligence platform 102 categorizes this parameter, and a corresponding dynamically formulated question in the second set of follow-up questions. Accordingly, in lines 404 and 406, the cognitive agent 1 10 responds by notifying the user“I can certainly check this...” and asking the dynamically formulated question“I need some additional information in order to answer this question, was this an in-home glucose test or was it done by a lab or testing service?”
  • the user 401 enters his answer in line 408:“It was an in-home test,” which the cognitive agent 1 10 further analyzes to determine additional parameters: e.g., a digestive state, where the additional parameter and a corresponding dynamically formulated question as an additional second set of follow-up questions. Accordingly, the cognitive agent 1 10 poses the additional dynamically formulated question in lines 410 and 412: “One other question...” and“How long before you took that in-home glucose test did you have a meal?” The user provides additional information in response“it was about an hour” (line 414).
  • the cognitive agent 1 10 consolidates all the received responses using the critical thinking engine 108 and the knowledge cloud 106 and determines an answer to the initial question posed in line 402 and proceeds to follow up with a final question to verify the user’s initial question was answered. For example, in line 416, the cognitive agent 1 10 responds:“It looks like the results of your test are at the upper end of the normal range of values for a glucose test given that you had a meal around an hour before the test.” The cognitive agent 1 10 provides additional information (e.g., provided as a link):“Here is something you could refer,” (line 418), and follows up with a question“Did that answer your question?” (line 420).
  • the cognitive agent 1 10 is able to analyze and respond to questions and statements made by a user 401 in natural language. That is, the user 401 is not restricted to using certain phrases in order for the cognitive agent 1 10 to understand what a user 401 is saying. Any phrasing, similar to how the user would speak naturally can be input by the user and the cognitive agent 1 10 has the ability to understand the user.
  • FIG. 5 illustrates a cognitive map or“knowledge graph” 500, in accordance with various embodiments.
  • the knowledge graph represents a graph traversed by the cognitive intelligence platform 102, when assessing questions from a user with Type 2 diabetes.
  • Individual nodes in the knowledge graph 500 represent a health artifact or relationship that is gleaned from direct interrogation or indirect interactions with the user (by way of the user device 104).
  • the cognitive intelligence platform 102 identified parameters for an originating question based on a knowledge graph illustrated in FIG. 5. For example, the cognitive intelligence platform 102 parses the originating question to determine which parameters are present for the originating question. In some embodiments, the cognitive intelligence platform 102 infers the logical structure of the parameters by traversing the knowledge graph 500, and additionally, knowing the logical structure enables the cognitive agent 1 10 to formulate an explanation as to why the cognitive agent 1 10 is asking a particular dynamically formulated question.
  • FIG. 6 shows a method, in accordance with various embodiments.
  • the method is performed at a user device (e.g., the user device 102) and in particular, the method is performed by an application executing on the user device 102.
  • the method begins with initiating a user registration process (block 602).
  • the user registration can include tasks such as displaying a GUI asking the user to enter in personal information such as his name and contact information.
  • the method includes prompting the user to build his profile (block 604).
  • building his profile includes displaying a GUI asking the user to enter in additional information, such as age, weight, height, and health concerns.
  • the steps of building a user profile is progressive, where building the user profile takes place over time.
  • the process of building the user profile is presented as a game. Where a user is presented with a ladder approach to create a“star profile”. Aspects of a graphical user interface presented during the profile building step are additionally discussed in FIGS. 8A-8B.
  • the method contemplates the build profile (block 604) method step is optional.
  • the user may complete building his profile at this method step 604, the user may complete his profile at a later time, or the cognitive intelligence platform 102 builds the user profile over time as more data about the user is received and processed. For example, the user is prompted to build his profile, however, the user fails to enter in information or skips the step.
  • the method proceeds to prompting a user to complete a microsurvey (block 606).
  • the cognitive agent 1 10 uses answers received in response to the microsurvey to build the profile of the user. Overall, the data collected through the user registration process is stored and used later as available data to inform answers to missing parameters.
  • FIGS. 7 A, 7B, and 7C show methods, in accordance with various embodiments. The methods are performed at the cognitive intelligence platform. In particular, in FIG. 7A, the method begins with receiving a first data including user registration data (block 702); and providing a health assessment and receiving second data including health assessment answers (block 704). In various embodiments, the health assessment is a micro-survey with dynamically formulated questions presented to the user.
  • the method determine if the user provided data to build a profile (decision block 706). If the user did not provide data to build the profile, the method proceeds to building profile based on first and second data (block 708). If the user provided data to build the profile, the method proceeds to block 710.
  • the method 700 proceeds to receiving an originating question about a specific subject matter, where the originating question is entered using natural language, and next the method proceeds to performing a round of analysis (block 712). Next, the method determines if sufficient data is present to answer originating questions (decision block 714). If no, the method proceeds to block 712 and the method performs another round of analysis. If yes, the method proceeds to setting goals (block 716), then tracking progress (block 718), and then providing updates in a news feed (block 720).
  • FIG. 7B a method 730 of performing a round of analysis is illustrated.
  • the method begins with parsing the originating question into parameters (block 732); fulfilling the parameters from available data (block 734); inserting available data (first data) into a working space (block 736); creating a dynamically formulated question to fulfill a parameter (block 738); and inserting an answer to the dynamically formulated question into the working space (block 740).
  • a method 750 is performed at the cognitive intelligence platform.
  • the method begins with receiving a health plan (block 752); accessing the knowledge cloud and retrieving first data relevant to the subject matter (block 754); and engaging in conversation with the user using natural language to general second data (block 756).
  • the second data can include information such as a user’s scheduling preferences, lifestyle choices, and education level.
  • the method includes educating and informing the user (block 758).
  • the method includes defining an action plan based, at least in part, on the first and second data (block 760); setting goals (block 762); and tracking progress (block 764).
  • FIGS. 8A, 8B, 8C, and 8D illustrate aspects of interactions between a user and the cognitive intelligence platform 102, in accordance with various embodiments.
  • the cognitive intelligence platform 102 continues to build a database of knowledge about the user based on questions asked by the user as well as answers provided by the user (e.g., available data as described in FIG. 4).
  • FIG. 8A displays a particular screen shot 801 of the user device 104 at a particular instance in time.
  • the screen shot 801 displays a graphical user interface (GUI) with menu items associated with a user’s (e.g., Nathan) profile including Messages from the doctor (element 804), Goals (element 806), Trackers (element 808), Health Record (element 810), and Health Plans & Assessments (element 812).
  • GUI graphical user interface
  • the menu item Health Plans & Assessments (element 812) additionally include child menu items: Health Assessments (element 812a), Health plans (812b).
  • the screen shot 803 displays the same GUI as in the screen shot 801 , however, the user has scrolled down the menu, such that additional menu items below Health Plans & Assessments (element 812) are shown.
  • the additional menu items include Reports (element 814), Health Team (element 816), and Purchases and Services (Element 818).
  • additional menu items include Add your Health Team (element 820) and Read about improving your A1 C levels (element 822).
  • the user selects the menu item Health Plans (element 812b). Accordingly, in response to the receiving the selection of the menu item Health Plans, types of health plans are shown, as illustrated in screen shot 805.
  • the types of health plans shown with respect to Nathan’s profile include: Diabetes (element 824), Cardiovascular, Asthma, and Back Pain. Each type of health plan leads to separate displays.
  • the user selects the Diabetes (element 824) health plan.
  • FIG. 8B the screenshot 851 is seen in response to the user’s selection of Diabetes (element 824).
  • Example elements displayed in screenshot 851 include: Know How YOUR Body Works (element 852); Know the Current Standards of Care (element 864); Expertise: Self-Assessment (element 866); Expertise: Seif-Care/Treatment (element 868); and Managing with Lifestyle (element 870).
  • Managing with Lifestyle focuses and tracks actions and lifestyle actions that a user can engage in. As a user’s daily routine helps to manage diabetes, managing the user’s lifestyle is important.
  • the cognitive agent 1 10 can align a user’s respective health plan based on a health assessment at enrollment. In various embodiments, the cognitive agent 1 10 aligns the respective health plan with an interest of the user, a goal and priority of the user, and lifestyle factors of the user— including exercise, diet and nutrition, and stress reduction.
  • Each of these elements 852, 864, 866, 868, and 870 can display additional sub elements depending on a selection of the user. For example, as shown in the screen shot 851 , Know How YOUR Body Works (element 852) includes additional sub-elements: Diabetes Personal Assessment (854); and Functional Changes (856). Additional sub elements under Functional Changes (856) include: Blood Sugar Processing (858) and Manageable Risks (860). Finally, the sub-element Manageable Risks (860) includes an additional sub-element Complications (862). For purposes of this example, the user selects the Diabetes Personal Assessment (854) and the screen shot 853 shows a GUI (872) associated with the Diabetes Personal Assessment.
  • the Diabetes Personal Assessment includes questions such as“Approximately what year was your Diabetes diagnosed” and corresponding elements a user can select to answer including“Year” and“Can’t remember” (element 874). Additional questions include“Is your Diabetes Type 1 or Type 2” and corresponding answers selectable by a user include“Type 1 ,”“Type 2,” and“Not sure” (element 876). Another question includes “Do you take medication to manage your blood sugar” and corresponding answers selectable by a user include“Yes” and“No” (element 878). An additional question asks “Do you have a healthcare professional that works with you to manage your Diabetes” and corresponding answers selectable by the user include“Yes” and“No” (element 880).
  • the cognitive intelligence platform 102 collects information about the user based on responses provided by the user or questions asked by the user as the user interacts with the GUI. For example, as the user views the screen shot 851 , if the user asks if diabetes is curable, this question provides information about the user such as a level of education of the user.
  • FIG. 8C illustrates aspects of an additional tool—e.g., a microsurvey— provided to the user that helps gather additional information about the user (e.g., available data).
  • a micro-survey represent a short targeted survey, where the questions presented in the survey are limited to a respective micro-theory.
  • a microsurvey can be created by the cognitive intelligence platform 102 for several different purposes, including: completing a user profile, and informing a missing parameter during the process of answering an originating question.
  • the microsurvey 882 gathers information related to health history, such as“when did you last see a doctor or other health professional to evaluate your health” where corresponding answers selectable by the user include specifying a month and year,“don’t recall,” and“haven’t had an appointment” (element 884).
  • An additional question asks“Which listed characteristics or conditions are true for you now? In the past?” where corresponding answers selectable by the user include“Diabetes during pregnancy,” “Over Weight,” “Insomnia,” and “Allergies” (element 886).
  • Each of the corresponding answer in element 886 also includes the option to indicate whether the characteristics or conditions are true for the user“Now”,“Past,” or“Current Treatment.”
  • FIG. 8D aspects of educating a user are shown in the screen shot 890.
  • the screen shot displays an article titled “Diabetes: Preventing High Blood Sugar Emergencies,” and proceeds to describe when high blood sugar occurs and other information related to high blood sugar.
  • the content displayed in the screen shot 890 is searchable and hearable as a podcast.
  • the cognitive agent 1 10 can answer a library of questions and provide content for many questions a user has as it related to diabetes.
  • the information provided for purposes of educating a user is based on an overall health plan of the user, which is based on meta data analysis of interactions with the user, and an analysis of the education level of the user.
  • FIGS. 9A-9B illustrate aspects of a conversational stream, in accordance with various embodiments.
  • FIG. 9A displays an example conversational stream between a user and the cognitive agent 1 10.
  • the screen shot 902 is an example of a dialogue that unfolds between a user and the cognitive agent 1 10, after the user has registered with the cognitive intelligence platform 102.
  • the cognitive agent 1 10 begins by stating“Welcome, would you like to watch a video to help you better understand my capabilities” (element 904).
  • the cognitive agent provides an option to watch the video (element 906).
  • the user inputs text“that’s quite impressive” (element 908).
  • the user inputs text using the input box 916, which instructs the user to“Talk to me or type your question”.
  • the cognitive agent 1 10 says“Thank you. I look forward to helping you meet your health goals!” (element 910).
  • the cognitive agent 1 10 can probe the user for additional data by offering a health assessment survey (e.g., a microsurvey) (element 914).
  • the cognitive agent 1 10 prompts the user to fill out the health assessment by stating:“To help further personalize your health improvement experience, I would like to start by getting to know you and your health priorities. The assessment will take about 10 minutes. Let’s get started!” (element 912).
  • FIG. 9B an additional conversational stream between the user and the cognitive agent 1 10 is shown.
  • the user previously completed a health assessment survey.
  • the conversational stream can follow the example conversational stream discussed in FIG. 9A.
  • the cognitive agent acknowledges the user’s completion of the health assessment survey (element 920) and provides additional resources to the user (element 922).
  • the cognitive agent states:“Congrats on taking the first step toward better health! Based upon your interest, I have some recommended health improvement initiatives for you to consider,” and presents the health improvement initiatives.
  • the cognitive agent 1 10 treats the statement as an originating question and undergoes an initial round of analysis (and additional rounds of analysis as needed) as described above.
  • the cognitive agent 1 10 presents an answer as shown in screen shot 926.
  • the cognitive agent 1 10 states:“You mentioned in your health assessment that you have been diagnosed with Diabetes, and my health plan can help assure your overall compliance” (element 928).
  • the cognitive agent further adds:“The following provides you a view of our health plan which builds upon your level of understanding as well as additional recommendations to assist in monitoring your blood sugar levels” (element 930).
  • the cognitive agent 1 10 provides the user with the option to view his Diabetes Health Plan (element 932).
  • the cognitive agent 1 10 receives the user’s response as another originated question and undergoes an initial round of analysis (and additional rounds of analysis as needed) as described above. In the example screen shot 926, the cognitive agent 1 10 determines additional information is needed and prompts the user for additional information.
  • FIG. 10 illustrates an additional conversational stream, in accordance with various embodiments.
  • the cognitive agent 1 10 elicit feedback (element 1002) to determine whether the information provided to the user was useful to the user.
  • FIG. 11 illustrates aspects of an action calendar, in accordance with various embodiments.
  • the action calendar is managed through the conversational stream between the cognitive agent 1 10 and the user.
  • the action calendar aligns to care and wellness protocols, which are personalized to the risk condition or wellness needs of the user.
  • the action calendar is also contextually aligned (e.g., what is being required or searched by the user) and hyper local (e.g., aligned to events and services provided in the local community specific to the user).
  • FIG. 12 illustrates aspects of a feed, in accordance with various embodiments.
  • the feed allows a user to explore new opportunities and celebrate achieving goals (e.g., therapeutic or wellness goals).
  • the feed provides a searchable interface (element 1202).
  • the feed provides an interface where the user accesses a personal log of activities the user is involved in.
  • the personal log is searchable. For example, if the user reads an article recommended by the cognitive agent 1 10 and highlights passages, the highlighted passages are accessible through the search. Additionally, the cognitive agent 1 10 can initiate a conversational stream focused on subject matter related to the highlighted passages.
  • the feed provides an interface to celebrate mini achievements and successes in the user’s personal goals (e.g., therapeutic or wellness goals).
  • the cognitive agent 1 10 is still available (ribbon 1204) to help search, guide, or steer the user toward a therapeutic or wellness goal.
  • FIG. 13 illustrates aspects of a hyper-local community, in accordance with various embodiments.
  • a hyper-local community is a digital community that is health and wellness focused and encourages the user to find opportunities for themselves and get involved in a community that is physically close to the user.
  • the hyper-local community allows a user to access a variety of care and wellness resources within his community and example recommendations include: Nutrition; Physical Activities; Healthcare Providers; Educations; Local Events; Services; Deals and Stores; Charities; and Products offered within the community.
  • the cognitive agent 1 10 optimizes suggestions which help the user progress towards a goal as opposed to providing open ended access to hyper local assets.
  • the recommendations are curated and monitored for relevance to the user, based on the user’s goals and interactions between the user and the cognitive agent 1 10.
  • the cognitive intelligence platform provides several core features including:
  • profile and health store that offers a holistic profile of each consumers health risks and interactions, combined with a repository of services, products, lab tests, devices, deals, supplements, pharmacy & telemedicine.
  • FIG. 14 illustrates a detailed view of a computing device 1400 that can be used to implement the various components described herein, according to some embodiments.
  • the detailed view illustrates various components that can be included in the user device 104 illustrated in FIG. 1 , as well as the several computing devices implementing the cognitive intelligence platform 102.
  • the computing device 1400 may also be used by the service provider 1 12 and/or the facility 1 14.
  • the computing device 1400 can include a processor 1402 that represents a microprocessor or controller for controlling the overall operation of the computing device 1400.
  • the computing device 1400 can also include a user input device 1408 that allows a user of the computing device 1400 to interact with the computing device 1400.
  • the user input device 1408 can take a variety of forms, such as a button, keypad, dial, touch screen, audio input interface, visual/image capture input interface, input in the form of sensor data, and so on.
  • the computing device 1400 can include a display 1410 that can be controlled by the processor 1402 to display information to the user.
  • a data bus 1416 can facilitate data transfer between at least a storage device 1440, the processor 1402, and a controller 1413.
  • the controller 1413 can be used to interface with and control different equipment through an equipment control bus 1414.
  • the computing device 1400 can also include a network/bus interface 141 1 that couples to a data link 1412. In the case of a wireless connection, the network/bus interface 141 1 can include a wireless transceiver.
  • the computing device 1400 also includes the storage device 1440, which can comprise a single disk or a collection of disks (e.g., hard drives), and includes a storage management module that manages one or more partitions within the storage device 1440.
  • storage device 1440 can include flash memory, semiconductor (solid-state) memory or the like.
  • the computing device 1400 can also include a Random-Access Memory (RAM) 1420 and a Read-Only Memory (ROM) 1422.
  • the ROM 1422 can store programs, utilities or processes to be executed in a non volatile manner.
  • the RAM 1420 can provide volatile data storage, and stores instructions related to the operation of processes and applications executing on the computing device.
  • FIG. 15 shows a method (1500), in accordance with various embodiments, for answering a user-generated natural language medical information query based on a diagnostic conversational template.
  • an artificial intelligence-based diagnostic conversation agent receives a user-generated natural language medical information query as entered by a user through a user interface on a computer device (FIG. 15, block 1502).
  • the artificial intelligence-based diagnostic conversation agent is the conversation agent 110 of FIG. 1 .
  • the computer device is the mobile device 104 of FIG. 1 .
  • One example of a user-generated natural language medical information query as entered by a user through a user interface is the question "Is a blood sugar of 90 normal?" as shown in line 402 of FIG. 4.
  • receiving a user-generated natural language medical information query as entered by a user through a user interface on a computer device (FIG. 15, block 1502) is Step 1 as earlier discussed in the context of "Analyzing Conversational Context As Part of Conversational Analysis".
  • the artificial intelligence-based diagnostic conversation agent selects a diagnostic fact variable set relevant to generating a medical advice query answer for the user-generated natural language medical information query by classifying the user-generated natural language medical information query into one of a set of domain-directed medical query classifications associated with respective diagnostic fact variable sets (FIG. 15, block 1504).
  • the artificial intelligence-based diagnostic conversation agent selecting a diagnostic fact variable set relevant to generating a medical advice query answer for the user-generated natural language medical information query by classifying the user-generated natural language medical information query into one of a set of domain-directed medical query classifications associated with respective diagnostic fact variable sets (FIG. 15, block 1504) is accomplished through one or more of Steps 2-6 as earlier discussed in the context of "Analyzing Conversational Context As Part of Conversational Analysis".
  • FIG. 15 further shows compiling user-specific medical fact variable values for one or more respective medical fact variables of the diagnostic fact variable set (FIG. 15, block 1506).
  • Compiling user-specific medical fact variable values for one or more respective medical fact variables of the diagnostic fact variable set (FIG. 15, block 1506) may include one or more of Steps 2-6 as earlier discussed in the context of "Analyzing Conversational Context As Part of Conversational Analysis".
  • the artificial intelligence-based diagnostic conversation agent In response to the user-specific medical fact variable values, the artificial intelligence-based diagnostic conversation agent generates a medical advice query answer in response to the user-generated natural language medical information query (FIG. 15, block 1508). In some embodiments, this is Step 7 as earlier discussed in the context of "Analyzing Conversational Context As Part of Conversational Analysis".
  • compiling user-specific medical fact variable values includes extracting a first set of user-specific medical fact variable values from a local user medical information profile associated with the user-generated natural language medical information query and requesting a second set of user specific medical fact variable values through natural-language questions sent to the user interface on the mobile device (e.g. the microsurvey data 206 of FIG. 2 that came from the microsurvey 116 of FIG.1 ).
  • the local user medical information profile can be the profile as generated in FIG. 7 A at block 708.
  • compiling user-specific medical fact variable values includes extracting a third set of user-specific medical fact variable values that are lab result values from the local user medical information profile associated with the user generated natural language medical information query.
  • the local user medical information profile can be the profile as generated in FIG. 7A at block 708.
  • compiling user-specific medical fact variable values includes extracting a fourth set of user-specific medical variable values from a remote medical data service profile associated with the local user medical information profile.
  • the remote medical data service profile can be the service provider data 202 of FIG. 2, which can come from the service provider 112 of FIG.1 .
  • the local user medical information profile can be the profile as generated in FIG. 7A at block 708.
  • compiling user-specific medical fact variable values includes extracting a fifth set of user-specific medical variable values from demographic characterizations provided by a remote data service analysis of the local user medical information profile.
  • the remote demographic characterizations can be the service provider data 202 of FIG. 2, which can come from the service provider 112 of FIG.1 .
  • the local user medical information profile can be the profile as generated in FIG. 7A at block 708.
  • generating the medical advice query answer includes providing a treatment action-item recommendation in response to user-specific medical fact values that may be non-responsive to the medical question presented in the user-generated natural language medical information query.
  • Such an action could define an action plan based on the data compiled (FIG. 15, block 1506), as shown in FIG. 7C, block 758.
  • generating the medical advice query answer includes providing a medical education media resource in response to user- specific medical fact variable values that may be non-responsive to the medical question presented in the user-generated natural language medical information query. Such an action could serve to educate and inform the user, as in block 758 of FIG. 7C.
  • selecting a diagnostic fact variable set relevant to generating a medical advice query answer for the user-generated natural language medical information query by classifying the user-generated natural language medical information query into one of a set of domain-directed medical query classifications associated with respective diagnostic fact variable sets includes classifying the user-generated natural language medical information query into one of a set of domain-directed medical query classifications based on relevance to the local user medical information profile associated with the user-generated natural language medical information query.
  • the local user medical information profile can be the profile as generated in FIG. 7A at block 708.
  • the method (1500) for answering a user-generated natural language medical information query based on a diagnostic conversational template is implemented as a computer program product in a computer-readable medium.
  • system and method 1500 shown in FIG. 15 and described above is implemented on the computing device 1400 shown in FIG. 14.
  • FIG. 16 shows a method (1600), in accordance with various embodiments, for answering a user-generated natural language query based on a conversational template.
  • an artificial intelligence-based conversation agent receives a user-generated natural language query as entered by a user through a user interface (FIG. 16, block 1602).
  • the artificial intelligence- based conversation agent is the conversation agent 110 of FIG. 1 .
  • the user interface is on a computer device.
  • the computer device is the mobile device 104 of FIG. 1.
  • One example of a user-generated natural language query as entered by a user through a user interface is the question "Is a blood sugar of 90 normal?" as shown in line 402 of FIG. 4.
  • receiving a user generated natural language query as entered by a user through a user interface on a computer device is Step 1 as earlier discussed in the context of "Analyzing Conversational Context As Part of Conversational Analysis".
  • the artificial intelligence-based conversation agent selects a fact variable set relevant to generating a query answer for the user-generated natural language query by classifying the user generated natural language query into one of a set of domain-directed query classifications associated with respective fact variable sets (FIG. 16, block 1604).
  • the artificial intelligence-based conversation agent selecting a fact variable set relevant to generating a query answer for the user-generated natural language query by classifying the user-generated natural language query into one of a set of domain-directed query classifications associated with respective fact variable sets is accomplished through one or more of Steps 2-6 as earlier discussed in the context of "Analyzing Conversational Context As Part of Conversational Analysis".
  • FIG. 16 further shows compiling user-specific variable values for one or more respective fact variables of the fact variable set (FIG. 16, block 1606).
  • Compiling user-specific fact variable values for one or more respective fact variables of the fact variable set (FIG. 16, block 1606) may include one or more of Steps 2-6 as earlier discussed in the context of "Analyzing Conversational Context As Part of Conversational Analysis".
  • the artificial intelligence- based conversation agent In response to the user-specific fact variable values, the artificial intelligence- based conversation agent generates a query answer in response to the user-generated natural language query (FIG. 16, block 1608). In some embodiments, this is Step 7 as earlier discussed in the context of "Analyzing Conversational Context As Part of Conversational Analysis".
  • compiling user-specific fact variable values includes extracting a first set of user-specific fact variable values from a local user profile associated with the user-generated natural language query and requesting a second set of user specific variable values through natural-language questions sent to the user interface on the mobile device (e.g. the microsurvey data 206 of FIG. 2 that came from the microsurvey 116 of FIG.1 ).
  • the local user profile can be the profile as generated in FIG. 7 A at block 708.
  • the natural language questions sent to the user interface on the mobile device can be a part of a conversation template.
  • compiling user-specific fact variable values includes extracting a third set of user-specific fact variable values that are test result values from the local user profile associated with the user generated natural language query.
  • the local user profile can be the profile as generated in FIG. 7A at block 708.
  • compiling user-specific fact variable values includes extracting a fourth set of user-specific variable values from a remote data service profile associated with the local user profile.
  • the remote data service profile can be the service provider data 202 of FIG. 2, which can come from the service provider 112 of FIG.1.
  • the local user profile can be the profile as generated in FIG. 7A at block 708.
  • compiling user-specific fact variable values includes extracting a fifth set of user-specific variable values from demographic characterizations provided by a remote data service analysis of the local user profile.
  • the remote demographic characterizations can be the service provider data 202 of FIG. 2, which can come from the service provider 112 of FIG.1.
  • the local user profile can be the profile as generated in FIG. 7A at block 708.
  • generating the query answer includes providing a action-item recommendation in response to user-specific fact values that may be non-responsive to the question presented in the user-generated natural language query.
  • Such an action could define an action plan based on the data compiled (FIG. 16, block 1606), as shown in FIG. 7C, block 758.
  • generating the advice query answer includes providing a education media resource in response to user-specific fact variable values that may be non-responsive to the question presented in the user generated natural language query. Such an action could serve to educate and inform the user, as in block 758 of FIG. 7C.
  • selecting a fact variable set relevant to generating a query answer for the user-generated natural language query by classifying the user-generated natural language query into one of a set of domain-directed query classifications associated with respective fact variable sets includes classifying the user-generated natural language query into one of a set of domain-directed query classifications based on relevance to the local user profile associated with the user generated natural language query.
  • the local user profile can be the profile as generated in FIG. 7 A at block 708.
  • the method (1600) for answering a user-generated natural language query based on a conversational template is implemented as a computer program product in a computer-readable medium.
  • the system and method shown in FIG. 16 and described above is implemented in the cognitive intelligence platform 102 shown in FIG. 1.
  • a cognitive agent 110 is configured for receiving a user-generated natural language query at an artificial intelligence-based conversation agent from a user interface on a user device 104 (FIG. 16, block 1602).
  • a critical thinking engine 108 is configured for, responsive to content of the user generated natural language query, selecting a fact variable set relevant to generating a query answer for the user-generated natural language query by classifying the user generated natural language query into one of a set of domain-directed query classifications associated with respective fact variable sets (FIG. 16, block 1604).
  • the cognitive agent 110 is further configured for generating the query answer in response to the user-generated natural language query (FIG. 16, block 1606).
  • system and method 1600 shown in FIG. 16 and described above is implemented on the computing device 1400 shown in FIG. 14.
  • FIG. 17 shows a computer-implemented method 1700 for answering natural language medical information questions posed by a user of a medical conversational interface of a cognitive artificial intelligence system.
  • the method 1700 is implemented on a cognitive intelligence platform.
  • the cognitive intelligence platform is the cognitive intelligence platform 102 as shown in FIG. 1 .
  • the cognitive intelligence platform is implemented on the computing device 1400 shown in FIG. 14.
  • the method 1700 involves receiving a user-generated natural language medical information query from a medical conversational user interface at an artificial intelligence- based medical conversation cognitive agent (block 1702).
  • receiving a user-generated natural language medical information query from a medical conversational user interface at an artificial intelligence-based medical conversation cognitive agent (block 1702) is performed by a cognitive agent that is a part of the cognitive intelligence platform and is configured for this purpose.
  • the artificial intelligence-based diagnostic conversation agent is the conversation agent 110 of FIG. 1 .
  • One example of a user-generated natural language medical information query is "Is a blood sugar of 90 normal?" as shown in line 402 of FIG. 4.
  • the user interface is on the mobile device 104 of FIG. 1 .
  • receiving a user-generated natural language medical information query from a medical conversational user interface at an artificial intelligence-based medical conversation cognitive agent is Step 1 as earlier discussed in the context of "Analyzing Conversational Context As Part of Conversational Analysis".
  • the method 1700 further includes extracting a medical question from a user of the medical conversational user interface from the user-generated natural language medical information query (block 1704).
  • extracting a medical question from a user of the medical conversational user interface from the user-generated natural language medical information query (block 1704) is performed by a critical thinking engine configured for this purpose.
  • the critical thinking engine is the critical thinking engine 108 of FIG. 1 .
  • extracting a medical question from a user of the medical conversational user interface from the user generated natural language medical information query (block 1704) is accomplished through one or more of Steps 2-6 as earlier discussed in the context of "Analyzing Conversational Context As Part of Conversational Analysis".
  • the method 1700 includes compiling a medical conversation language sample (block 1706).
  • compiling a medical conversation language sample (block 1706) is performed by a critical thinking engine configured for this purpose.
  • the critical thinking engine is the critical thinking engine 108 of FIG. 1 .
  • the medical conversation language sample can include items of health-information- related-text derived from a health-related conversation between the artificial intelligence- based medical conversation cognitive agent and the user.
  • compiling a medical conversation language sample (block 1706) is accomplished through one or more of Steps 2-6 as earlier discussed in the context of "Analyzing Conversational Context As Part of Conversational Analysis".
  • the method 1700 involves extracting internal medical concepts and medical data entities from the medical conversation language sample (block 1708).
  • extracting internal medical concepts and medical data entities from the medical conversation language sample (block 1708) is performed by a critical thinking engine configured for this purpose.
  • the critical thinking engine is the critical thinking engine 108 of FIG. 1.
  • the internal medical concepts can include descriptions of medical attributes of the medical data entities.
  • extracting internal medical concepts and medical data entities from the medical conversation language sample (block 1708) is accomplished through one or more of Steps 2-6 as earlier discussed in the context of "Analyzing Conversational Context As Part of Conversational Analysis".
  • the method 1700 involves inferring a therapeutic intent of the user from the internal medical concepts and the medical data entities (block 1710).
  • inferring a therapeutic intent of the user from the internal medical concepts and the medical data entities (block 1710) is performed by a critical thinking engine configured for this purpose.
  • the critical thinking engine is the critical thinking engine 108 of FIG. 1.
  • inferring a therapeutic intent of the user from the internal medical concepts and the medical data entities (block 1710) is accomplished as in Step 2 as earlier discussed in the context of "Analyzing Conversational Context As Part of Conversational Analysis".
  • the method 1700 includes generating a therapeutic paradigm logical framework 1800 for interpreting of the medical question (block 1712).
  • generating a therapeutic paradigm logical framework 1800 for interpreting of the medical question (block 1712) is performed by a critical thinking engine configured for this purpose.
  • the critical thinking engine is the critical thinking engine 108 of FIG. 1 .
  • generating a therapeutic paradigm logical framework 1800 for interpreting of the medical question (block 1712) is accomplished as in Step 5 as earlier discussed in the context of "Analyzing Conversational Context As Part of Conversational Analysis".
  • FIG. 18 shows an example therapeutic paradigm logical framework 1800.
  • the therapeutic paradigm logical framework 1800 includes a catalog 1802 of medical logical progression paths 1804 from the medical question 1806 to respective therapeutic answers 1810.
  • Each of the medical logical progression paths 1804 can include one or more medical logical linkages 1808 from the medical question 1806 to a therapeutic path- specific answer 1810.
  • the medical logical linkages 1808 can include the internal medical concepts 1812 and external therapeutic paradigm concepts 1814 derived from a store of medical subject matter ontology data 1816.
  • the store of subject matter ontology data 1816 is contained in a knowledge cloud.
  • the knowledge cloud is the knowledge cloud 102 of FIGS. 1 and 2.
  • the subject matter ontology data 1816 is the subject matter ontology data 216 of FIG. 2.
  • the subject matter ontology data 1816 includes the subject matter ontology 300 of FIG. 3.
  • the method 1700 shown in FIG. 17 further includes selecting a likely medical information path from among the medical logical progression paths 1804 to a likely path- dependent medical information answer based at least in part upon the therapeutic intent of the user (block 1714).
  • selecting a likely medical information path from among the medical logical progression paths 1804 to a likely path-dependent medical information answer based at least in part upon the therapeutic intent of the user (block 1714 is performed by a critical thinking engine configured for this purpose.
  • the critical thinking engine is the critical thinking engine 108 of FIG. 1. The selection can also be based in part upon the sufficiency of medical diagnostic data to complete the medical logical linkages 1808.
  • selection can also be based in part upon the sufficiency of medical diagnostic data to complete the medical logical linkages 1808 can be performed by a critical thinking engine that is further configured for this purpose.
  • the critical thinking engine is the critical thinking engine 108 of FIG. 1.
  • the medical diagnostic data can include user- specific medical diagnostic data.
  • the selection can also be based in part upon treatment sub-intents including tactical constituents related to the therapeutic intent of the user by the store of medical subject matter ontology data 1816.
  • selection based in part upon treatment sub-intents including tactical constituents related to the therapeutic intent of the user by the store of medical subject matter ontology data 1816 can be performed by a critical thinking engine further configured for this purpose.
  • the critical thinking engine is the critical thinking engine 108 of FIG. 1.
  • the selection can further occur after requesting additional medical diagnostic data from the user.
  • An example of requesting additional medical diagnostic data from the user is shown in FIG. 4 on line 406 "I need some additional information in order to answer this question, was this an in-home glucose test or was it done by a lab or testing service".
  • the process of selection after requesting additional medical diagnostic data from the user can be performed by a critical thinking engine further configured for this purpose.
  • the critical thinking engine is the critical thinking engine 108 of FIG. 1 .
  • selecting a likely medical information path from among the medical logical progression paths 1804 to a likely path-dependent medical information answer based at least in part upon the therapeutic intent of the user is accomplished through one or more of Steps 5-6 as earlier discussed in the context of "Analyzing Conversational Context As Part of Conversational Analysis".
  • the method 1700 involves answering the medical question by following the likely medical information path to the likely path-dependent medical information answer (block 1716).
  • answering the medical question by following the likely medical information path to the likely path-dependent medical information answer (block 1716) is performed by a critical thinking engine configured for this purpose.
  • the critical thinking engine is the critical thinking engine 108 of FIG. 1.
  • answering the medical question by following the likely medical information path to the likely path-dependent medical information answer (block 1716) is accomplished as in Step 7as earlier discussed in the context of "Analyzing Conversational Context As Part of Conversational Analysis".
  • the method 1700 can further include relating medical inference groups of the internal medical concepts.
  • relating medical inference groups of the internal medical concepts is performed by a critical thinking engine further configured for this purpose.
  • the critical thinking engine is the critical thinking engine 108 of FIG. 1.
  • Relating medical inference groups of the internal medical concepts can be based at least in part on shared medical data entities for which each internal medical concept of a medical inference group of internal medical concepts describes a respective medical data attribute.
  • relating medical inference groups of the internal medical concepts based at least in part on shared medical data entities for which each internal medical concept of a medical inference group of internal medical concepts describes a respective medical data attribute can be performed by a critical thinking engine further configured for this purpose.
  • the critical thinking engine is the critical thinking engine 108 of FIG. 1.
  • the method 1700 of FIG. 17 is implemented as a computer program product in a computer-readable medium.
  • FIG. 19 shows a computer-implemented method 1900 for answering natural language questions posed by a user of a conversational interface of an artificial intelligence system.
  • the method 1900 is implemented on a cognitive intelligence platform.
  • the cognitive intelligence platform is the cognitive intelligence platform 102 as shown in FIG. 1.
  • the cognitive intelligence platform is implemented on the computing device 1400 shown in FIG. 14.
  • the method 1900 involves receiving a user-generated natural language query at an artificial intelligence-based conversation agent (block 1902).
  • receiving a user-generated natural language query from a conversational user interface at an artificial intelligence-based conversation cognitive agent is performed by a cognitive agent that is a part of the cognitive intelligence platform and is configured for this purpose.
  • the artificial intelligence-based conversation agent is the conversation agent 110 of FIG. 1 .
  • One example of a user-generated natural language query is "Is a blood sugar of 90 normal?" as shown in line 402 of FIG. 4.
  • the user interface is on the mobile device 104 of FIG. 1 .
  • receiving a user-generated natural language query from a conversational user interface at an artificial intelligence-based conversation cognitive agent is Step 1 as earlier discussed in the context of "Analyzing Conversational Context As Part of Conversational Analysis".
  • the method 1900 further includes extracting a question from a user of the conversational user interface from the user-generated natural language query (block 1904).
  • extracting a question from a user of the conversational user interface from the user-generated natural language query is performed by a critical thinking engine configured for this purpose.
  • the critical thinking engine is the critical thinking engine 108 of FIG. 1.
  • extracting a question from a user of the conversational user interface from the user generated natural language query is accomplished through one or more of Steps 2-6 as earlier discussed in the context of "Analyzing Conversational Context As Part of Conversational Analysis".
  • the method 1900 includes compiling a language sample (block 1906).
  • compiling a language sample (block 1906) is performed by a critical thinking engine configured for this purpose.
  • the critical thinking engine is the critical thinking engine 108 of FIG. 1.
  • the language sample can include items of health-information-related-text derived from a health-related conversation between the artificial intelligence-based conversation cognitive agent and the user.
  • compiling a language sample (block 1906) is accomplished through one or more of Steps 2-6 as earlier discussed in the context of "Analyzing Conversational Context As Part of Conversational Analysis".
  • the method 1900 involves extracting internal concepts and entities from the language sample (block 1908).
  • extracting internal concepts and entities from the language sample (block 1908) is performed by a critical thinking engine configured for this purpose.
  • the critical thinking engine is the critical thinking engine 108 of FIG. 1.
  • the internal concepts can include descriptions of attributes of the entities.
  • extracting internal concepts and entities from the language sample (block 1908) is accomplished through one or more of Steps 2-6 as earlier discussed in the context of "Analyzing Conversational Context As Part of Conversational Analysis".
  • the method 1900 involves inferring an intent of the user from the internal concepts and the entities (block 1910).
  • inferring an intent of the user from the internal concepts and the entities (block 1910) is performed by a critical thinking engine configured for this purpose.
  • the critical thinking engine is the critical thinking engine 108 of FIG. 1.
  • inferring an intent of the user from the internal concepts and the entities (block 1910) is accomplished as in Step 2 as earlier discussed in the context of "Analyzing Conversational Context As Part of Conversational Analysis".
  • the method 1900 includes generating a logical framework 2000 for interpreting of the question (block 1912).
  • generating a logical framework 2000 for interpreting of the question (block 1912) is performed by a critical thinking engine configured for this purpose.
  • the critical thinking engine is the critical thinking engine 108 of FIG. 1.
  • generating a logical framework 2000 for interpreting of the question (block 1912) is accomplished as in Step 5 as earlier discussed in the context of "Analyzing Conversational Context As Part of Conversational Analysis".
  • FIG. 20 shows an example logical framework 2000.
  • the logical framework 2000 includes a catalog 2002 of paths 2004 from the question 2006 to respective answers
  • Each of the paths 2004 can include one or more linkages 2008 from the question 2006 to a path-specific answer 2010.
  • the linkages 2008 can include the internal concepts 2012 and external concepts 2014 derived from a store of subject matter ontology data 2016.
  • the store of subject matter ontology data 2016 is contained in a knowledge cloud.
  • the knowledge cloud is the knowledge cloud 102 of FIGS. 1 and 2.
  • the subject matter ontology data 2016 is the subject matter ontology data 216 of FIG. 2.
  • the subject matter ontology data 2016 includes the subject matter ontology 300 of FIG. 3.
  • the method 1900 shown in FIG. 19 further includes selecting a likely path from among the paths 2004 to a likely path-dependent answer based at least in part upon the intent of the user (block 1914).
  • selecting a likely path from among the paths 2004 to a likely path-dependent answer based at least in part upon the intent of the user (block 1914 is performed by a critical thinking engine configured for this purpose.
  • the critical thinking engine is the critical thinking engine 108 of FIG. 1 .
  • the selection can also be based in part upon the sufficiency of data to complete the linkages 2008. In some embodiments, selection can also be based in part upon the sufficiency of data to complete the linkages 2008 can be performed by a critical thinking engine that is further configured for this purpose.
  • the critical thinking engine is the critical thinking engine 108 of FIG. 1 .
  • the data can include user-specific data.
  • the selection can also be based in part upon treatment sub-intents including tactical constituents related to the intent of the user by the store of subject matter ontology data 2016.
  • selection based in part upon treatment sub intents including tactical constituents related to the intent of the user by the store of subject matter ontology data 2016 can be performed by a critical thinking engine further configured for this purpose.
  • the critical thinking engine is the critical thinking engine 108 of FIG. 1 .
  • the selection can further occur after requesting additional data from the user. An example of requesting additional data from the user is shown in FIG.
  • the process of selection after requesting additional data from the user can be performed by a critical thinking engine further configured for this purpose.
  • the critical thinking engine is the critical thinking engine 108 of FIG. 1 .
  • selecting a likely path from among the paths 2004 to a likely path-dependent answer based at least in part upon the intent of the user is accomplished through one or more of Steps 5-6 as earlier discussed in the context of "Analyzing Conversational Context As Part of Conversational Analysis".
  • the method 1900 involves answering the question by following the likely path to the likely path-dependent answer (block 1916).
  • answering the question by following the likely path to the likely path-dependent answer (block 1916) is performed by a critical thinking engine configured for this purpose.
  • the critical thinking engine is the critical thinking engine 108 of FIG. 1.
  • answering the question by following the likely path to the likely path- dependent answer (block 1916) is accomplished as in Step 7as earlier discussed in the context of "Analyzing Conversational Context As Part of Conversational Analysis".
  • the method 1900 can further include relating inference groups of the internal concepts.
  • relating inference groups of the internal concepts is performed by a critical thinking engine further configured for this purpose.
  • the critical thinking engine is the critical thinking engine 108 of FIG. 1.
  • Relating inference groups of the internal concepts can be based at least in part on shared entities for which each internal concept of an inference group of internal concepts describes a respective data attribute.
  • relating inference groups of the internal concepts based at least in part on shared entities for which each internal concept of an inference group of internal concepts describes a respective data attribute can be performed by a critical thinking engine further configured for this purpose.
  • the critical thinking engine is the critical thinking engine 108 of FIG. 1 .
  • the method 1900 of FIG. 19 is implemented as a computer program product in a computer-readable medium.
  • FIG. 21 shows a computer-implemented method 2100 for providing therapeutic medical action recommendations in response to a medical information natural language conversation stream.
  • the method 2100 is implemented as a computer program product in a non-transitory computer-readable medium.
  • the method 2100 of FIG. 21 is implemented as a system for providing therapeutic medical action recommendations in response to a medical information natural language conversation stream.
  • the system can include a knowledge cloud, a critical thinking engine, and a cognitive agent.
  • the knowledge cloud is the knowledge cloud 102 of FIGS. 1 and 2.
  • the critical thinking engine is the critical thinking engine 108 of FIG 1 .
  • the cognitive agent is the cognitive agent 110 of FIG. 1.
  • the method 2100 involves receiving segments of a medical information natural language conversation stream at an artificial intelligence- based health information conversation agent from a medical information conversation user interface (block 2102).
  • the user interface is on the mobile device 104 of FIG. 1.
  • receiving segments of a medical information natural language conversation stream at an artificial intelligence-based health information conversation agent from a medical information conversation user interface (block 2102) is performed on a processor of a computer.
  • receiving segments of a medical information natural language conversation stream at an artificial intelligence- based health information conversation agent from a medical information conversation user interface (block 2102) is performed at a knowledge clout configured for this purpose.
  • receiving segments of a medical information natural language conversation stream at an artificial intelligence-based health information conversation agent from a medical information conversation user interface is Step 1 as earlier discussed in the context of "Analyzing Conversational Context As Part of Conversational Analysis".
  • the method 2100 further involves defining a desired clinical management outcome objective relevant to health management criteria and related health management data attributes of the user medical information profile in response to medical information content of a user medical information profile associated with the medical information natural language conversation stream (block 2104).
  • defining a desired clinical management outcome objective relevant to health management criteria and related health management data attributes of the user medical information profile in response to medical information content of a user medical information profile associated with the medical information natural language conversation stream (block 2104) is performed on a processor of a computer.
  • defining a desired clinical management outcome objective relevant to health management criteria and related health management data attributes of the user medical information profile in response to medical information content of a user medical information profile associated with the medical information natural language conversation stream is performed by a critical thinking engine configured for this purpose.
  • defining a desired clinical management outcome objective relevant to health management criteria and related health management data attributes of the user medical information profile in response to medical information content of a user medical information profile associated with the medical information natural language conversation stream is accomplished through one or more of Steps 2-6 as earlier discussed in the context of "Analyzing Conversational Context As Part of Conversational Analysis".
  • the method 2100 further involves identifying a set of potential therapeutic interventions correlated to advancement of the clinical management outcome objective (block 2106).
  • identifying a set of potential therapeutic interventions correlated to advancement of the clinical management outcome objective (block 2106) is performed on a processor of a computer.
  • identifying a set of potential therapeutic interventions correlated to advancement of the clinical management outcome objective (block 2106) is performed by a critical thinking engine configured for this purpose.
  • identifying a set of potential therapeutic interventions correlated to advancement of the clinical management outcome objective (block 2106) is accomplished through one or more of Steps 2-6 as earlier discussed in the context of "Analyzing Conversational Context As Part of Conversational Analysis".
  • the method 2100 further involves selecting from among the set of potential therapeutic interventions correlated to advancement of the clinical management outcome objective a medical intervention likely to advance the clinical management outcome objective (block 2108).
  • selecting from among the set of potential therapeutic interventions correlated to advancement of the clinical management outcome objective a medical intervention likely to advance the clinical management outcome objective (block 2108) is based on a set of factors including the likelihood of patient compliance with the a recommendation for the a medical intervention and a statistical likelihood that the action will materially advance the clinical management outcome objective.
  • selecting from among the set of potential therapeutic interventions correlated to advancement of the clinical management outcome objective a medical intervention likely to advance the clinical management outcome objective is based on a set of factors comprising likelihood total expected cost expectation associated with the recommendation for the a medical intervention likely to advance the clinical management outcome objective. In some embodiments, selecting from among the set of potential therapeutic interventions correlated to advancement of the clinical management outcome objective a medical intervention likely to advance the clinical management outcome objective (block 2108) is performed on a processor of a computer. In some embodiments, selecting from among the set of potential therapeutic interventions correlated to advancement of the clinical management outcome objective a medical intervention likely to advance the clinical management outcome objective (block 2108) is performed by a critical thinking engine configured for this purpose.
  • selecting from among the set of potential therapeutic interventions correlated to advancement of the clinical management outcome objective a medical intervention likely to advance the clinical management outcome objective is accomplished through one or more of Steps 2-6 as earlier discussed in the context of "Analyzing Conversational Context As Part of Conversational Analysis".
  • the method 2100 further involves presenting in the medical information natural language conversation stream a therapeutic advice conversation stream segment designed to stimulate execution of the medical intervention likely to advance the clinical management outcome objective (block 2110).
  • the stimulation can be a motivation.
  • presenting in the medical information natural language conversation stream a therapeutic advice conversation stream segment designed to stimulate execution of the medical intervention likely to advance the clinical management outcome objective (block 2110) includes presenting to the user in the medical information natural language conversation stream a therapeutic advice conversation stream segment explaining a cost-benefit analysis comparing likely results of performance of the action likely to advance the clinical management outcome objective and likely results of non-performance of the action likely to advance the clinical management outcome objective.
  • presenting in the medical information natural language conversation stream a therapeutic advice conversation stream segment designed to stimulate execution of the medical intervention likely to advance the clinical management outcome objective includes presenting to the user in the medical information natural language conversation stream a conversation stream reinforcing the recommendation after expiration of a delay period.
  • presenting in the medical information natural language conversation stream a therapeutic advice conversation stream segment designed to stimulate execution of the medical intervention likely to advance the clinical management outcome objective includes presenting to the user in the medical information natural language conversation stream a therapeutic advice conversation stream segment explaining reasons for selection of the clinical management outcome objective.
  • presenting in the medical information natural language conversation stream a therapeutic advice conversation stream segment designed to stimulate execution of the medical intervention likely to advance the clinical management outcome objective includes notifying third party service providers of the clinical management outcome objective and the recommendation.
  • presenting in the medical information natural language conversation stream a therapeutic advice conversation stream segment designed to stimulate execution of the medical intervention likely to advance the clinical management outcome objective is performed on a processor of a computer.
  • presenting in the medical information natural language conversation stream a therapeutic advice conversation stream segment designed to stimulate execution of the medical intervention likely to advance the clinical management outcome objective (block 2110) is performed by a cognitive agent configured for this purpose.
  • presenting in the medical information natural language conversation stream a therapeutic advice conversation stream segment designed to stimulate execution of the medical intervention likely to advance the clinical management outcome objective is Steps 7 as earlier discussed in the context of "Analyzing Conversational Context As Part of Conversational Analysis".
  • the method 2100 further involves presenting to the user in the medical information natural language conversation stream a therapeutic advice conversation stream segment explaining a correlation between the medical intervention likely to advance the clinical management outcome objective and achievement of the clinical management outcome objective (block 2112).
  • presenting to the user in the medical information natural language conversation stream a therapeutic advice conversation stream segment explaining a correlation between the medical intervention likely to advance the clinical management outcome objective and achievement of the clinical management outcome objective (block 2112) is performed on a processor of a computer.
  • presenting to the user in the medical information natural language conversation stream a therapeutic advice conversation stream segment explaining a correlation between the medical intervention likely to advance the clinical management outcome objective and achievement of the clinical management outcome objective is performed by a critical thinking engine configured for this purpose.
  • presenting to the user in the medical information natural language conversation stream a therapeutic advice conversation stream segment explaining a correlation between the medical intervention likely to advance the clinical management outcome objective and achievement of the clinical management outcome objective is Steps 7 as earlier discussed in the context of "Analyzing Conversational Context As Part of Conversational Analysis".
  • FIG. 22 shows a computer-implemented method 2200 for providing action recommendations in response to a natural language conversation stream.
  • the method 2200 is implemented as a computer program product in a non- transitory computer-readable medium.
  • the method 2200 of FIG. 22 is implemented as a system for providing action recommendations in response to a natural language conversation stream.
  • the system can include a knowledge cloud, a critical thinking engine, and a cognitive agent.
  • the knowledge cloud is the knowledge cloud 102 of FIGS. 1 and 2.
  • the critical thinking engine is the critical thinking engine 108 of FIG 1.
  • the cognitive agent is the cognitive agent 110 of FIG. 1.
  • the method 2200 involves receiving segments of a natural language conversation stream at an artificial intelligence-based health information conversation agent from a conversation user interface (block 2202).
  • the user interface is on the mobile device 104 of FIG. 1 .
  • receiving segments of a natural language conversation stream at an artificial intelligence-based health information conversation agent from a conversation user interface (block 2202) is performed on a processor of a computer.
  • receiving segments of a natural language conversation stream at an artificial intelligence-based health information conversation agent from a conversation user interface (block 2202) is performed at a knowledge clout configured for this purpose.
  • receiving segments of a natural language conversation stream at an artificial intelligence-based health information conversation agent from a conversation user interface (block 2202) is Step 1 as earlier discussed in the context of "Analyzing Conversational Context As Part of Conversational Analysis".
  • the method 2200 further involves defining a desired user outcome objective relevant to health management criteria and related health management data attributes of the user profile in response to content of a user profile associated with the natural language conversation stream (block 2204).
  • defining a desired user outcome objective relevant to health management criteria and related health management data attributes of the user profile in response to content of a user profile associated with the natural language conversation stream (block 2204) is performed on a processor of a computer.
  • defining a desired user outcome objective relevant to health management criteria and related health management data attributes of the user profile in response to content of a user profile associated with the natural language conversation stream (block 2204) is performed by a critical thinking engine configured for this purpose.
  • defining a desired user outcome objective relevant to health management criteria and related health management data attributes of the user profile in response to content of a user profile associated with the natural language conversation stream is accomplished through one or more of Steps 2-6 as earlier discussed in the context of "Analyzing Conversational Context As Part of Conversational Analysis".
  • the method 2200 further involves identifying a set of potential actions correlated to advancement of the user outcome objective (block 2206). In some embodiments, identifying a set of potential actions correlated to advancement of the user outcome objective (block 2206) is performed on a processor of a computer. In some embodiments, identifying a set of potential actions correlated to advancement of the user outcome objective (block 2206) is performed by a critical thinking engine configured for this purpose. In some embodiments, identifying a set of potential actions correlated to advancement of the user outcome objective (block 2206) is accomplished through one or more of Steps 2-6 as earlier discussed in the context of "Analyzing Conversational Context As Part of Conversational Analysis".
  • the method 2200 further involves selecting from among the set of potential actions correlated to advancement of the user outcome objective an action likely to advance the user outcome objective (block 2208).
  • selecting from among the set of potential actions correlated to advancement of the user outcome objective an action likely to advance the user outcome objective (block 2208) is based on a set of factors including the likelihood of patient compliance with the a recommendation for the an action and a statistical likelihood that the action will materially advance the user outcome objective.
  • selecting from among the set of potential actions correlated to advancement of the user outcome objective an action likely to advance the user outcome objective is based on a set of factors comprising likelihood total expected cost expectation associated with the recommendation for the an action likely to advance the user outcome objective.
  • selecting from among the set of potential actions correlated to advancement of the user outcome objective an action likely to advance the user outcome objective is performed on a processor of a computer. In some embodiments, selecting from among the set of potential actions correlated to advancement of the user outcome objective an action likely to advance the user outcome objective (block 2208) is performed by a critical thinking engine configured for this purpose. In some embodiments, selecting from among the set of potential actions correlated to advancement of the user outcome objective an action likely to advance the user outcome objective (block 2208) is accomplished through one or more of Steps 2-6 as earlier discussed in the context of "Analyzing Conversational Context As Part of Conversational Analysis".
  • the method 2200 further involves presenting in the natural language conversation stream a conversation stream segment designed to motivate performance of the action likely to advance the user outcome objective (block 2210).
  • presenting in the natural language conversation stream a conversation stream segment designed to motivate performance of the action likely to advance the user outcome objective (block 2210) includes presenting to the user in the natural language conversation stream a conversation stream segment explaining a cost- benefit analysis comparing likely results of performance of the action likely to advance the user outcome objective and likely results of non-performance of the action likely to advance the user outcome objective.
  • presenting in the natural language conversation stream a conversation stream segment designed to motivate performance of the action likely to advance the user outcome objective includes presenting to the user in the natural language conversation stream a conversation stream reinforcing the recommendation after expiration of a delay period.
  • presenting in the natural language conversation stream a conversation stream segment designed to motivate performance of the action likely to advance the user outcome objective includes presenting to the user in the natural language conversation stream a conversation stream segment explaining reasons for selection of the user outcome objective.
  • presenting in the natural language conversation stream a conversation stream segment designed to motivate performance of the action likely to advance the user outcome objective includes notifying third party service providers of the user outcome objective and the recommendation.
  • presenting in the natural language conversation stream a conversation stream segment designed to motivate performance of the action likely to advance the user outcome objective is performed on a processor of a computer. In some embodiments, presenting in the natural language conversation stream a conversation stream segment designed to motivate performance of the action likely to advance the user outcome objective (block 2210) is performed by a cognitive agent configured for this purpose. In some embodiments, presenting in the natural language conversation stream a conversation stream segment designed to motivate performance of the action likely to advance the user outcome objective (block 2210) is Steps 7 as earlier discussed in the context of "Analyzing Conversational Context As Part of Conversational Analysis".
  • the method 2200 further involves presenting to the user in the natural language conversation stream a conversation stream segment explaining a correlation between the action likely to advance the user outcome objective and achievement of the user outcome objective (block 2212).
  • presenting to the user in the natural language conversation stream a conversation stream segment explaining a correlation between the action likely to advance the user outcome objective and achievement of the user outcome objective (block 2212) is performed on a processor of a computer.
  • presenting to the user in the natural language conversation stream a conversation stream segment explaining a correlation between the action likely to advance the user outcome objective and achievement of the user outcome objective (block 2212) is performed by a critical thinking engine configured for this purpose.
  • presenting to the user in the natural language conversation stream a conversation stream segment explaining a correlation between the action likely to advance the user outcome objective and achievement of the user outcome objective is Steps 7 as earlier discussed in the context of "Analyzing Conversational Context As Part of Conversational Analysis".
  • FIG. 23 shows distributed hyperledger fabric network 2300 of nodes 1 16 each maintaining a copy of a hyperledger 1 18 to manage medical transaction, in accordance with various embodiments.
  • the distributed hyperledger fabric network 2300 is divided into different organizations 2302 that may include one or more nodes 1 16 associated with that particular organization.
  • An organization 2302 may refer to a security domain, unit of identity, and/or authenticating credentials.
  • Each organization 2302 may include one or more nodes 1 16 that are associated with a particular entity.
  • one organization 2302-1 may be associated with one or more patient entities that are registered as one or more nodes 1 16-1
  • another organization 2302-2 may be associated with one or more medical personnel entities that are registered as one or more nodes 1 16-2
  • another organization 2302-3 may be associated with one or more medical facility entities that are registered as one or more nodes 1 16-3, and so on for any suitable entities (e.g., insurance providers, government agencies, professional associations, etc.) in a healthcare ecosystem.
  • suitable entities e.g., insurance providers, government agencies, professional associations, etc.
  • Other organizations 2302 may be associated with nodes 1 16 representing services provided by the distributed hyperledger fabric network 2300.
  • organization 2302-4 is associated with an ordering node 1 16-4 that ensures that the one or more rules implemented by each of the nodes 1 16-1 , 1 16-2, and/or 1 16-3 involved in a transaction are satisfied and/or there is consensus among the nodes 1 16-1 , 1 16-2, and/or 1 16-3 prior to approving performance of the transaction and addition of the transaction into the hyperledger 1 18.
  • Using the ordering node 1 16-4 enhances consistency and security of the hyperledger 1 18 by controlling what is allowed to be added to the hyperledger 1 18.
  • Each node 1 16 may implement various rules 2306 which may be installed into the hyperledger 1 18.
  • the rules 2306 may be included in each respective copy of the hyperledger 1 18 that is distributed between the various nodes 1 16.
  • a hyperledger 1 18 on one node e.g., 1 16-1
  • another node e.g., 1 16-2
  • the rules 2306 may be implemented as computer executable instructions (e.g., software modules).
  • the rules 2306 may be self-executing at certain frequencies. For example, after a period of time expires, a rule 2306 may determine whether certain information (e.g., authorizing credential) of an entity (e.g., medical personnel entity) registered as a node 1 16 needs to be updated in the hyperledger 1 18 and provide a notification to a computing device 2310 used by that entity. In other embodiments, the rules 2306 may be self executing based on certain conditions occurring. For example, when an authorizing credential of an entity expires in the hyperledger 1 18, the rule 2306 may trigger a notification to be sent to the computing device 2310 of that entity. In other instances, the rules 2306-2 may be triggered when a request to perform a transaction on the hyperledger 1 18 is received.
  • certain information e.g., authorizing credential
  • an entity e.g., medical personnel entity
  • the rules 2306 may be self executing based on certain conditions occurring. For example, when an authorizing credential of an entity expires in
  • the rules 2306 may specify when updates to the hyperledger 1 18 are to be provided.
  • the rules 2306 may be analytics-based in that they monitor states or conditions of information in the hyperledger 118, the computing devices 2310, and/or the nodes 116, and determine when hyperledger 118 updates should be provided.
  • the rules 2306 may specify that updates to the hyperledger 118 are to be provided based on any combination of geofencing (e.g., geolocation of the computing devices 2310 associated with particular nodes 116), state rules for when to dispense product like lenses, controlled substances, or other medication, adherence to dispensing guidelines, number of refills allowed for a prescription, authorizing credentials of medical personnel being valid, and so forth.
  • Each organization 2322 may include a computing device 2310 used by an entity associated with that organization 2322.
  • the computing device 2310 may include one or more memories, processors, and/or network interfaces.
  • the computing device 2310 may be similar to any computing device described with respect to FIG. 14.
  • the user may use the computing device 2310 to send requests to perform transactions using the hyperledger 118 to the cognitive intelligence platform 102 that may include the nodes 116.
  • Each organization 2302 may include a membership service provider (MSP) 2304 that is responsible for issuing identities and authenticating credentials 2312 to computing devices 2310 associated with entities.
  • MSP membership service provider
  • the computing device 2310 may provide certain information pertaining to the entity. For example, for a medical personnel entity the information may include at least an identity of the medical personnel entity, an authorizing credential, a date the authorizing credential was last updated, an address of a place of work of the medical personnel entity, gender, race, and so forth.
  • the information may include at least the patient’s identity, social security number, driver’s license number, address, medical records, allergies, medicine allergies, familial medical history, and so forth.
  • the nodes 116 may communicate with each other to determine if a consensus is reached as to whether to allow the transaction to be allowed. Further, one or more of the rules 2306 may be applied to determine whether to allow the transaction to be performed. When the consensus protocol and/or rules 2306 are satisfied, the ordering node 1 16 may order the transaction to be performed and a record of the transaction is added to the hyperledger 1 18.
  • FIG. 24 shows an example hyperledger 1 18, in accordance with various embodiments.
  • the hyperledger 1 18 includes three blocks 2400-1 , 2400-2, and 2400-3.
  • Each of the blocks is cryptographically linked to a previous block.
  • Each block 2400 includes a block hash 2402 for that block that is determined using a suitable hash function.
  • block 2400-1 has block hash 2402“12jb”
  • block 2400-2 has block hash 2402 “24sd”
  • block 2400-3 has block hash 2402“35we”.
  • the blocks 2400 are cryptographically linked together by including a block header with the block hash of the previous block.
  • block 2400-2 includes a block header including previous block hash 2404-1 with value“12jb”, which is the value of the previous block 2400-1 in the hyperledger 1 18, and block 2400-3 includes a block header including previous block hash 2404-2 with value“24sd”, which is the value of the previous block 2400-2.
  • Each block 2400 includes a signature 2406 and one or more transactions 2408.
  • the signature 2406 may be the identity of the entity that requested the transaction to be performed.
  • a block 2400 storing transactions 2408 may be added to the hyperledger 1 18 after it is determined that the one or more rules 2306 and/or consensus between the nodes 1 16 are satisfied.
  • the transactions 2408 in a given request may be grouped and added as a block 2400 to the hyperledger 1 18, or different transactions from different requests may be grouped and added as a block 2400 if the transactions are related or involve particular nodes 1 16.
  • the transactions 2408 relating to registering an entity may store identifying information pertaining to an entity, such as an identity, address, social security number, driver’s license number, and so forth. These transactions 2408 may store authorizing credentials, such as license numbers (NPIs) for physicians, license numbers for pharmacists, license numbers for a pharmacies to dispense medicine, and so forth.
  • NPIs license numbers
  • the transactions 2408 relating to medical transactions may store documents created during a consultation between a patient entity and a medical personnel entity.
  • the transactions 2408 may store a prescription (e.g., prescription ID, type of medicine, directions for taking the medicine, number of refills, date of prescription, etc.) written for a patient by a physician, doctor notes, updated medical record with treatment administered (e.g., vaccination shot, strep test, etc.), diagnosis, and so forth.
  • Such transactions may include information identifying the patient (e.g., patient ID, name, social security number, etc.), as well as information pertaining to the medical personnel involved (e.g., name, physician ID, authorizing credential, location of place of work of the physician, etc.).
  • the transactions 2408 relating to medical transactions may also store records of what transpired during a transaction 2408.
  • a medical transaction may pertain to a patient requesting a prescription be filled and/or medicine dispensed at a pharmacy. If the medical transaction is determined to be performed based on the one or more rules 2306 and/or the consensus protocol being satisfied, then the medical transaction may be performed and the prescription is filled / medicine is dispensed.
  • the record of the medical transaction may be stored in a block 2400 in the hyperledger and include information indicating that the prescription written by a particular physician was filled for a particular patient entity at a particular pharmacy by a particular pharmacist and a particular medicine was dispensed.
  • FIG. 25 shows the use of analytics based rules 2306 for providing updates to the hyperledger 1 18, in accordance with various embodiments.
  • the rules 2306 may be computer instructions executable by one or more processors of a node 1 16 (2500-1 , 2500-2, 2500-3, 2500-4) representing an entity.
  • the rules 2306 may be installed in the hyperledger 1 18 and may specify scenarios when updates to the hyperledger 1 18 based on analytics.
  • the rules 2306 may specify that the authorizing credential of a node 2500-1 representing medical personnel entity has to be updated every X period of time (2501 -1 ) in the hyperledger 1 18. For example, a physician’s 2502 medical license has to be updated every 3 years, and a pharmacist’s 2504 license has to be updated every 5 years.
  • the rules 2306 may analyze the information pertaining to the medical personnel 2500-1 in the transactions 2408 stored in the hyperledger 1 18 and may determine that the period of time for updating the authorizing credential has expired or is about to expire. As a result, the node executing the rules 2306 may cause a notification to be presented on the computing device 2310 used by the medical personnel that instructs the medical personnel to update their authorizing credential.
  • the updated authorizing credentials may be stored on the hyperledger 1 18.
  • the rules 2306 may specify that the hyperledger 1 18 is updated when a medical transaction, such as when the prescription is written (2501 -2) by a physician 2504 at a physician’s office / clinic 2500-2, is performed.
  • the rules 2306 may determine whether the physician and/or the physician’s office / clinic 2500-2 have valid authorizing credentials to allow the prescription to be written and the medical transaction to be stored on the hyperledger 1 18.
  • the prescription written by the physician 2504 for the patient may be stored on the hyperledger 1 18.
  • the rules 2306 may specify that the hyperledger 1 18 is updated when a medical transaction, such as when the prescription is filled / medicine is dispensed (2501 -3) by a pharmacy / optical / behavioral facility 2500-3, is performed.
  • the rules 2306 may determine whether the pharmacist 2504, optometrist, psychiatrist, etc. and/or the pharmacy / optical / behavioral facility 2500-3 have valid authorizing credentials to allow the prescription to be filled / the medicine to be dispensed.
  • a record of the prescription being filled / medicine being dispensed by a pharmacist for the patient at a pharmacy may be stored on the hyperledger 1 18.
  • a record of information pertaining to the insurance provider’s involvement may be stored on the hyperledger 1 18.
  • the rules 2306 may specify that the hyperledger 1 18 is updated when a medical transaction, such as when a patient 2500-3 meets with medical personnel 2500-1 , is performed.
  • the rules 2306 may determine whether a geolocation of a computing device of the patient 2500-3 and/or a geolocation of the computing device of the medical personnel are within a threshold distance from each other (e.g., using geofencing), and the rules may determine when the pharmacist 2504, optometrist, psychiatrist, etc. and/or the pharmacy / optical / behavioral facility 2500-3 have valid authorizing credentials to allow the prescription to be filled / the medicine to be dispensed.
  • FIG. 26 shows a method 2600 for maintaining a hyperledger 1 18 for medical transactions 2408 at one or more nodes 1 16, in accordance with various embodiments.
  • the method 2600 is implemented as a computer program product in a non-transitory computer-readable medium and executable by one or more processors of one or more computing devices described in the cognitive intelligence platform 102 of FIG. 1.
  • the method 2600 of FIG. 26 is implemented as a system for maintaining a hyperledger 1 18 for medical transactions 2408 at one or more nodes 1 16.
  • the system can include components described in the cognitive intelligence platform 102.
  • the method 2600 may involve receiving (2602), from a computing device 2310-1 , a request to perform a transaction 2408-1 using the hyperledger 1 18, where the transaction 2408-1 pertains to registering a medical personnel entity associated with the computing device 2310-1 as a node 1 16-1 of the one or more nodes.
  • the one or more nodes may represent a set of entities in a healthcare ecosystem, where the set of entities include one or more medical personnel, patients, medical facilities, insurance providers, professional associations, and government agencies.
  • the request may include an authorizing credential (e.g., medical license number, national provider identifier (NPI)) and other information (e.g., name, specialty of practice, years of practice, address, location of work, gender, age, race, languages spoken, etc.) pertaining to the medical personnel entity.
  • an authorizing credential e.g., medical license number, national provider identifier (NPI)
  • other information e.g., name, specialty of practice, years of practice, address, location of work, gender, age, race, languages spoken, etc.
  • the method 2600 may also involve determining (2604), based on one or more rules 2306, whether to allow the transaction 2408-1 to be performed in view of the request.
  • the rules 2306 may specify when updates to the hyperledger 1 18 are to be provided and/or when to allow a transaction to be performed that updates the hyperledger 1 18.
  • the rules 2306 may be analytics-based in that they monitor states or conditions of information in the hyperledger 1 18, the computing devices 2310, and/or the nodes 1 16, and determine when hyperledger 1 18 updates should be provided by the medical personnel entities using the computing devices 2310.
  • the rules 2306 may specify that updates to the hyperledger 1 18 are to be provided based on any combination of geofencing (e.g., geolocation of the computing devices 2310 associated with particular nodes 1 16), state rules for when to dispense product like lenses, controlled substances, or other medication, adherence to dispensing guidelines, number of refills allowed for a prescription, authorizing credentials of medical personnel being valid, and so forth.
  • the rules 2306 may specify allowing the medical personnel entity to register as a node 1 16-1 if the medical personnel entity is unique (no other node includes identical information as the medical personnel entity) and/or the other nodes in the distributed hyperledger fabric network 2300 agree to allow the node in the hyperledger fabric network 2300.
  • determining, based on the one or more rules 2306, whether to allow the transaction 2408-1 to be performed in view of the request may include transmitting a request to a computing device of a professional association or a government agency associated with the authorizing credential to validate the authorizing credential. If the professional association or government agency verifies that the authorizing credential is valid and issued to the medical personnel entity requesting registration, then the transaction may be allowed to be performed. If the professional association or government agency indicates that the authorizing credential is invalid, then the registration may be denied and the medical personnel entity may be notified to update their authorizing credential (assuming they ever had a valid authorizing credential issued to them).
  • the method 2600 may also involve registering (2606) the node 1 16-1 for the medical personnel entity by associating (2608) the medical personnel entity with the node 1 16-1 , updating (2610) the hyperledger 1 18 by adding a block 2400-1 to the hyperledger 1 18, where the block 2400-1 stores the transaction 2408-1 including the authorizing credential pertaining to the medical personnel entity, and storing (2612) the hyperledger 1 18 at the node 1 16-1 for the medical personnel entity.
  • the method 2600 may also include receiving, from a computing device 2310-1 associated with the medical personnel entity, a request to perform a medical transaction 2408-4 between the medical personnel entity and a patient entity, where the patient entity is associated with a patient node 1 16-2, and a copy of the hyperledger 1 18 is stored at the patient node 1 16-2.
  • the medical transaction 2408-4 may include at least one of a medical personnel entity creating or updating a prescription for the patient entity or the medical personnel entity filling or refilling the prescription for the patient entity.
  • the method 2600 may include identifying the block 2400-1 in the hyperledger 1 18 storing the transaction 2408-1 including the authorizing credential pertaining to the medical personnel entity, and determining whether to allow the medical transaction 2408-4 to be performed based on at least the authorizing credential of the medical personnel entity. Responsive to determining to allow the medical transaction 2408-4 to be performed, the method 2600 may include updating the hyperledger 1 18 with the medical transaction 2408-4. For example, a block 2400-3 may be added to the hyperledger 1 18 that stores the medical transaction 2408-4 or the medical transaction 2408-4 may be grouped with another transaction and stored on the same block with the another transaction.
  • FIG. 27 shows a method 2700 for maintaining a hyperledger 1 18 for medical transactions 2408 at one or more nodes 1 16, in accordance with various embodiments.
  • the method 2700 is implemented as a computer program product in a non-transitory computer-readable medium and executable by one or more processors of one or more computing devices described in the cognitive intelligence platform 102 of FIG. 1.
  • the method 2700 of FIG. 27 is implemented as a system for maintaining a hyperledger 188 for medical transactions 2408 at one or more nodes 1 1 16.
  • the system can include components described in the cognitive intelligence platform 102 of FIG. 1 .
  • the method 2700 may involve receiving (2702), from a second computing device 2310-2, a request to perform a second transaction 2408-2 using the hyperledger 1 18, where the second transaction 2408-2 pertains to registering a patient entity associated with the second computing device 2310-2 as a second node 1 16-2 of the one or more nodes.
  • the second request includes personal information pertaining to the patient entity.
  • the method 2700 may also involve determining (2704), based on one or more rules 2306, whether to allow the second transaction 2408-2 to be performed in view of the second request.
  • the rules 2306 may specify when updates to the hyperledger 1 18 are to be provided and/or when to allow a transaction to be performed that updates the hyperledger 1 18.
  • the rules 2306 may specify allowing the medical personnel entity to register as a node 1 16-1 if the medical personnel entity is unique (no other node includes identical information as the medical personnel entity) and/or the other nodes in the distributed hyperledger fabric network 2300 agree to allow the node 1 16-2 in the hyperledger fabric network 2300.
  • the method 2700 may also involve registering (2706) the second node 1 16-2 for the patient entity by associating (2708) the patient entity with the second node 1 16-2, updating (2710) the hyperledger 1 18 by adding a second block 2400-2 to the hyperledger 1 18, where the second block 2400-2 stores the second transaction 2408-3 including the personal information pertaining to the patient entity, and storing (2612) the hyperledger 1 18 at the second node 1 16-2 for the patient entity.
  • FIG. 28 shows an example use of an authenticating credential associated with a patient entity 2500-4 to perform a medical transaction, in accordance with various embodiments.
  • the medical transaction may be a request to fill a prescription at a pharmacy or optometrist, for example.
  • a computing device associated with the patient entity 2500-4 may store an authenticating credential for making requests to the hyperledger 1 18 maintained by one or more nodes 1 16 in the cognitive intelligence platform 102.
  • the patient entity 2500-4 may use the computing device to send (2800) a request to perform a medical transaction to the pharmacy / optical / behavioral entity 2500-3.
  • the request may include the authenticating credential.
  • the request may include identifying information about the patient entity 2500-4 and a computing device of the pharmacy / optical / behavioral entity 2500-3 may send the identifying information to the cognitive intelligence platform 102, along with the request, and the authenticating credentials for the patient entity 2500-4 may be identified using the identifying information.
  • a computing device of the pharmacy / optical / behavioral entity 2500-3 may send (2802)the request to perform a medical transaction to the hyperledger 1 18 stored on the nodes 1 16 of the cognitive intelligence platform 102.
  • Authenticating credentials of the pharmacy / optical / behavioral entity 2500-3, as well as the authenticating credentials of the patient entity 2500-4 may be sent to the hyperledger 1 18.
  • the request may trigger one or more rules 2306 to execute on one or more nodes 1 16.
  • One rule 2306 may determine whether the authenticating credentials of the patient entity 2500-4 are verified for the identity of the patient entity 2500-4 making the request.
  • Another rule 2306 may determine whether the authenticating credentials of the pharmacy / optical / behavioral entity 2500-3 are verified for the identity of the pharmacy / optical / behavioral entity 2500- 3 making the request. Another rule 2306 may determine whether the pharmacy / optical / behavioral entity 2500-3 has a valid authorizing credential stored in the hyperledger 1 18. Another rule 2306 may determine whether the pharmacist or optometrist that is filling the prescription or dispensing the lenses has a valid authorizing credential in the hyperledger 1 18. Another rule 2306 may determine whether the physician who wrote the prescription requested to be filled has a valid authorizing credential at the time the prescription was written and/or when the request to fill the prescription is made using the hyperledger 1 18. Another rule 2306 may determine whether there are any refills remaining for the prescription written by a physician for the patient entity 2500-4 in the hyperledger 1 18. Another rule 2306 may determine whether the prescription has expired in the hyperledger 1 18.
  • the medical transaction may be permitted to be performed and a record of the medical transaction may be stored in the hyperledger 1 18.
  • the nodes may communicate with each other to form a consensus before the medical transaction is allowed to be performed and the hyperledger 1 18 is updated.
  • a notification may be sent (2806) to the pharmacy / optical / behavioral entity 2500-3 indicating the same.
  • the pharmacy / optical / behavioral entity 2500-3 may perform the approved medical transaction by filling the prescription and/or dispensing medicine / lenses.
  • the pharmacy / optical / behavioral entity 2500-3 may transmit a notification that is presented on an application executing on the computing device associated with the patient entity 2500-4. The notification may indicate that the prescription has been filled and/or the medicine / lenses are dispensed.
  • FIG. 29 shows a method 2900 for performing a medical transaction 2408-4 using a hyperledger 1 18, in accordance with various embodiments.
  • the method 2900 is implemented as a computer program product in a non-transitory computer-readable medium and executable by one or more processors of one or more computing devices described in the cognitive intelligence platform 102 of FIG. 1 .
  • the method 2900 of FIG. 29 is implemented as a system performing a medical transaction 2408-4 using a hyperledger 1 18.
  • the system can include components described in the cognitive intelligence platform 102 of FIG. 1 .
  • the method 2900 may involve receiving (2902), from a computing device 2310-1 associated with a medical personnel entity, a request to perform the medical transaction 2408-4 between the medical personnel entity and a patient entity, where the medical personnel entity is associated with a medical personnel node 1 16-1 and the patient entity is associated with a patient node 1 16-2.
  • the medical personnel node 1 16-1 and the patient node 1 16-2 may be included in the distributed network of nodes 2300 representing entities in a healthcare ecosystem.
  • a respective copy of the hyperledger 1 18 may be maintained at both the medical personnel node 1 16-1 and the patient node 1 16-2.
  • the medical transaction may include the medical personnel entity creating or updating a prescription for the patient entity.
  • the method 2900 may also involve updating (2908) the respective copy of the hyperledger 1 18 with the medical transaction 2408-4 at the medical personnel node 1 16- 1 and the patient node 1 16-2.
  • the one or more rules 2306 may be satisfied and a consensus may be reached between nodes 1 16, thereby resulting in the ordering node 1 16-4 ordering the medical transaction 2408-4 to be added to the hyperledger 1 18.
  • the method 2900 may also involve (2904) identifying a transaction 2408-1 in the hyperledger 1 18 that stores an authorizing credential of the medical personnel entity.
  • the method 2900 may also involve determining (2906) whether to allow the medical transaction to 2408-4 be performed based on at least the authorizing credential of the medical personnel entity.
  • the method 2900 may include determining whether to allow the medical transaction 2408-4 to be performed based on at least the authorizing credential of the medical personnel entity further includes determining whether the authorizing credential is valid (e.g., has not expired).
  • the method 2900 may include determining that the authorizing credential of the medical personnel entity is expired or is about to expire, and transmitting, based on one or more rules 2306, a notification to the computing device 2310-1 associated with the medical personnel entity that instructs the medical personnel entity to renew the authorizing credential.
  • the method 2900 may include identifying another transaction 2408-3 in the hyperledger 1 18 that stores information pertaining to the patient entity.
  • the method 2900 may include determining whether to allow the medical transaction 2408-4 to be performed based on at least the authorizing credential of the medical personnel entity and the information (e.g., identity, allergies, medicine allergies, medical history, familial medical history, age, gender, race, etc.) pertaining to the patient entity. Responsive to determining to allow the medical transaction 2408-4 to be performed, the method 2900 may include updating the respective copy of the hyperledger 1 18 with the medical transaction 2408-4 at the medical personnel node 1 16-1 and the patient node 1 16-2.
  • FIG. 30 shows a method 3000 for performing a medical transaction 2408-5 using a hyperledger 1 18, in accordance with various embodiments.
  • the method 3000 is implemented as a computer program product in a non-transitory computer-readable medium and executable by one or more processors of the user device 104 (e.g., patient computing device) of FIG. 1 .
  • the method 3000 of FIG. 30 is implemented as a system performing a medical transaction 2408-5 using a hyperledger 1 18.
  • the system can include components of the user device 104 of FIG. 1 .
  • the method 3000 may involve identifying (3002), by a patient computing device 104, a medical facility computing device that is within a threshold distance of a geolocation of the patient computing device 104, where the medical facility computing device is associated with a medical facility entity and the patient computing device is associated with a patient entity.
  • the geolocation for the computing devices may be determined using the IP address of each device.
  • the threshold distance may be any suitable distance (e.g., 20 feet, 50 feet, 100 feet, 200 feet, 1000 feet, a mile, etc.) that enables distinguishing a closer medical facility entity from a farther away medical facility entity.
  • the medical transaction may be filling or refilling a prescription for the patient entity.
  • the medical facility entity may be a pharmacy or optometrist.
  • the method 3000 may involve transmitting (3004), from the patient computing device 104, a request to perform a medical transaction 2408-5 using the hyperledger 1 18 to the medical facility computing device, where the request includes an authenticating credential associated with the patient entity.
  • the authenticating credential may have been provided to the patient computing device 104 when the patient entity registered as a node 1 16-2 in the distributed hyperledger fabric network 2300.
  • Other rules 2306 may specify allowing the medical transaction 2408-5 when the authenticating credentials of the medical personnel entity involved in the medical transaction 2408-5 are verified for the identity of the medical personnel entity in the hyperledger 1 18, when the authorizing credential stored in the hyperledger 1 18 are verified for the medical personnel entity, when the authorizing credential of the pharmacist or optometrist that is filling the prescription or dispensing the lenses is verified in the hyperledger 1 18, when there are refills remaining for the prescription written by a physician for the patient entity in the hyperledger 1 18, when the prescription has not expired in the hyperledger 1 18, and so forth.
  • the rules 2306 may specify notifying the medical personnel entity to update the authorizing credential in the hyperledger at set intervals of time (e.g., every 3 years for a physician).
  • the rules 2306 may specify allowing the medical transaction 2408-5 to be added to the hyperledger 1 18 when at least an authorizing credential of the medical facility entity in the hyperledger 1 18 is verified, where the medical facility entity is a pharmacy.
  • the rules 2306 may specify allowing the medical transaction 2408-5 to be added to the hyperledger 1 18 when the prescription for the patient entity is identified at another medical transaction 2408-4 in the hyperledger 1 18, and/or when there is at least one remaining refill for the prescription identified at the another medical transaction 2408-4 in the hyperledger 1 18.
  • the method 3000 may involve receiving (3006) a notification from the medical facility computing device that indicates the medical transaction 2408-4 has been performed when the rules 2306 are satisfied and/or a consensus is reached between nodes 1 16 in the distributed hyperledger fabric network 2300.
  • the hyperledger 1 18 may be updated with the addition of a block including transaction 2408-5 or the transaction 2408-5 may be grouped with another medical transaction (e.g., 2408-4).
  • the medical transactions 2408-4 and 2408-5 may be grouped based on the same patient entity and/or medical personnel entity being involved in the medical transactions 2408-4 and 2408-5.
  • the various aspects, embodiments, implementations or features of the described embodiments can be used separately or in any combination.
  • Various aspects of the described embodiments can be implemented by software, hardware or a combination of hardware and software.
  • the described embodiments can also be embodied as computer readable code on a computer readable medium.
  • the computer readable medium is any data storage device that can store data which can thereafter be read by a computer system. Examples of the computer readable medium include read-only memory, random- access memory, CD-ROMs, DVDs, magnetic tape, hard disk drives, solid-state drives, and optical data storage devices.
  • the computer readable medium can also be distributed over network-coupled computer systems so that the computer readable code is stored and executed in a distributed fashion.
  • a cognitive intelligence platform comprising:
  • a first system configured to execute a knowledge cloud, the first system comprising:
  • a first memory coupled to the first processor, the first memory storing instructions that cause the knowledge cloud to:
  • a second system configured to implement a critical thinking engine, the critical thinking engine communicably coupled to the knowledge cloud, the second system comprising: a second processor; and
  • a second memory coupled to the second processor, the second memory storing instructions that cause the critical thinking engine to receive inputs from the knowledge cloud;
  • a third system configured to implement a cognitive agent, the cognitive agent communicably coupled to the critical thinking engine and the knowledge cloud, the third system comprising:
  • a third memory coupled to the third processor, the third memory storing instructions that cause the cognitive agent to:
  • Clause 8 The cognitive intelligence platform of any preceding clause, wherein when the cognitive agent provides the answer to the user, the third memory causes the cognitive agent to integrate data from at least three selected from the group consisting of: a micro survey, a physician’s office, common sense knowledge, domain knowledge, an evidence-based medicine guideline, a clinical ontology, and curated medical advice.
  • a system comprising:
  • the critical thinking engine communicably coupled to the knowledge cloud;
  • a cognitive agent the cognitive agent communicably coupled to the critical thinking engine and the knowledge cloud, wherein the cognitive agent is configured to interact with a user using natural language.
  • the cognitive agent interacts with the user using at least one selected from the group consisting of: touch- based input, audio input, and typed input.
  • Clause 15 The system of any preceding clause, wherein the cognitive agent is further configured to render for display a chain of logic that leads to a conclusion, wherein the conclusion, in part, informs the answer.
  • Clause 16 A computer readable media storing instructions that are executable by a processor to cause a computer to execute operations comprising:
  • executing a cognitive intelligence platform that further comprises:
  • a critical thinking engine communicably coupled to the knowledge cloud
  • a cognitive agent communicably coupled to the critical thinking engine and the knowledge cloud, wherein the cognitive agent is configured to:
  • a computer-implemented method for answering a user-generated natural language medical information query based on a diagnostic conversational template comprising:
  • selecting a diagnostic fact variable set relevant to generating a medical advice query answer for the user-generated natural language medical information query by classifying the user-generated natural language medical information query into one of a set of domain-directed medical query classifications associated with respective diagnostic fact variable sets;
  • compiling user-specific medical fact variable values for one or more respective medical fact variables of the diagnostic fact variable set wherein the compiling user-specific medical fact variable values for one or more respective medical fact variables of the diagnostic fact variable set further comprises:
  • Clause 22 The computer-implemented method for answering a user-generated natural language medical information query based on a diagnostic conversational template of any preceding clause, wherein the compiling user-specific medical fact variable values for one or more respective medical fact variables of the diagnostic fact variable set further comprises:
  • Clause 23 The computer-implemented method for answering a user-generated natural language medical information query based on a diagnostic conversational template of any preceding clause, wherein the compiling user-specific medical fact variable values for one or more respective medical fact variables of the diagnostic fact variable set further comprises:
  • Clause 24 The computer-implemented method for answering a user-generated natural language medical information query based on a diagnostic conversational template of any preceding clause, wherein the compiling user-specific medical fact variable values for one or more respective medical fact variables of the diagnostic fact variable set further comprises:
  • Clause 25 The computer-implemented method for answering a user-generated natural language medical information query based on a diagnostic conversational template of any preceding clause, wherein the generating the medical advice query answer in response to the user-generated natural language medical information query further comprises providing, in addition to text responsive to a medical question presented in the user-generated natural language medical information query, a treatment action- item recommendation responsive to user-specific medical fact variable values and non- responsive to the medical question presented in the user-generated natural language medical information query.
  • Clause 26 The computer-implemented method for answering a user-generated natural language medical information query based on a diagnostic conversational template of any preceding clause, wherein the generating the medical advice query answer in response to the user-generated natural language medical information query further comprises providing, in addition to text responsive to a medical question presented in the user-generated natural language medical information query, a medical education media resource responsive to the user-specific medical fact variable values and non- responsive to the medical question presented in the user-generated natural language medical information query.
  • Clause 27 The computer-implemented method for answering a user-generated natural language medical information query based on a diagnostic conversational template of any preceding clause, wherein selecting a diagnostic fact variable set relevant to generating a medical advice query answer for the user-generated natural language medical information query by classifying the user-generated natural language medical information query into one of a set of domain-directed medical query classifications associated with respective diagnostic fact variable set further comprises classifying the user-generated natural language medical information query into one of a set of domain- directed medical query classifications based on relevance to the local user medical information profile associated with the user-generated natural language medical information query.
  • Clause 28 A computer program product in a computer-readable medium for answering a user-generated natural language query, the computer program product in a computer-readable medium comprising program instructions which, when executed, cause a processor of a computer to perform:
  • Clause 29 The computer program product in a computer-readable medium for answering a user-generated natural language query of any preceding clause, wherein the program instructions which, when executed, cause the processor of the computer to perform compiling user-specific fact variable values for one or more respective fact variables of the fact variable set further comprise program instructions which, when executed, cause the computer program product to perform:
  • Clause 30 The computer program product in a computer-readable medium for answering a user-generated natural language query of any preceding clause, wherein the program instructions which, when executed, cause the processor of the computer to perform compiling user-specific fact variable values for one or more respective fact variables of the fact variable set further comprise program instructions which, when executed, cause the computer program product to perform:
  • Clause 32 The computer program product in a computer-readable medium for answering a user-generated natural language query of any preceding clause, wherein program instructions which, when executed, cause the processor of the computer to perform the generating the query answer in response to the user-generated natural language query further comprise program instructions which, when executed, cause the processor of the computer to perform providing, in addition to text responsive to a question presented in the user-generated natural language query, an action-item recommendation responsive to the fact variable values and non-responsive to the question presented in the user-generated natural language query.
  • Clause 33 The computer program product in a computer-readable medium for answering a user-generated natural language query of any preceding clause, wherein the program instructions which, when executed, cause the processor of the computer to perform generating the query answer in response to the user-generated natural language query further comprise program instructions which, when executed, cause the processor of the computer to perform providing, in addition to text responsive to a question presented in the user-generated natural language query, an education media resource responsive to the fact variable values and non-responsive to the question presented in the user-generated natural language query.
  • Clause 34 The computer program product in a computer-readable medium for answering a user-generated natural language query of any preceding clause, wherein the program instructions which, when executed, cause the processor of the computer to perform selecting a fact variable set relevant to generating a query answer for the user generated natural language query by classifying the user-generated natural language query into one of a set of domain-directed query classifications associated with respective fact variable sets further comprise program instructions which, when executed, cause the processor of the computer to perform classifying the user-generated natural language query into one of a set of domain-directed query classifications based on relevance to a local user profile associated with the user-generated natural language query.
  • a cognitive intelligence platform for answering a user-generated natural language query comprising:
  • a cognitive agent configured for receiving a user-generated natural language query at an artificial intelligence-based conversation agent from a user interface
  • a critical thinking engine configured for, responsive to content of the user generated natural language query, selecting a fact variable set relevant to generating a query answer for the user-generated natural language query by classifying the user generated natural language query into one of a set of domain-directed query classifications associated with respective fact variable sets;
  • the cognitive agent is further configured for generating the query answer in response to the user-generated natural language query.
  • Clause 38 The cognitive intelligence platform of any preceding clause, wherein the knowledge cloud is further configured for: extracting a fourth set of user-specific fact variable values derived from demographic characterizations provided by a remote data service analysis of the local user profile.
  • cognitive agent is further configured for providing, in addition to text responsive to a question presented in the user-generated natural language query, an action-item recommendation responsive to the fact variable values and non-responsive to the question presented in the user-generated natural language query.
  • Clause 40 The cognitive intelligence platform of any preceding clause, wherein the critical thinking engine is further configured for providing, in addition to text responsive to a question presented in the user-generated natural language query, an education media resource responsive to the fact variable values and non-responsive to the question presented in the user-generated natural language query.
  • a computer-implemented method for answering a user-generated natural language query comprising:
  • selecting a fact variable set relevant to generating a query answer for the user-generated natural language query by classifying the user-generated natural language query into one of a set of domain-directed query classifications associated with respective fact variable sets; compiling user-specific fact variable values for one or more respective fact variables of the fact variable set;
  • Clause 45 The method of any preceding clause, wherein the generating the query answer in response to the user-generated natural language query further comprises providing, in addition to text responsive to a question presented in the user generated natural language query, an action-item recommendation responsive to the fact variable values and non-responsive to the question presented in the user-generated natural language query.
  • Clause 46 The method of any preceding clause, wherein the generating the query answer in response to the user-generated natural language query further comprises providing, in addition to text responsive to a question presented in the user generated natural language query, an education media resource responsive to the fact variable values and non-responsive to the question presented in the user-generated natural language query.
  • Clause 47 The method of any preceding clause, wherein selecting a fact variable set relevant to generating a query answer for the user-generated natural language query by classifying the user-generated natural language query into one of a set of domain-directed query classifications associated with respective fact variable sets further comprises classifying the user-generated natural language query into one of a set of domain-directed query classifications based on relevance to a local user profile associated with the user-generated natural language query.
  • Clause 48 A computer-implemented method for answering natural language medical information questions posed by a user of a medical conversational interface of a cognitive artificial intelligence system, the method comprising:
  • the therapeutic paradigm logical framework comprises a catalog of medical logical progression paths from the medical question to respective therapeutic answers
  • each of the medical logical progression paths comprises one or more medical logical linkages from the medical question to a therapeutic path- specific answer
  • the medical logical linkages comprise the internal medical concepts and external therapeutic paradigm concepts derived from a store of medical subject matter ontology data; selecting a likely medical information path from among the medical logical progression paths to a likely path-dependent medical information answer based upon the therapeutic intent of the user; and
  • Clause 49 The computer-implemented method for answering natural language medical information questions posed by a user of a medical conversational interface of a cognitive artificial intelligence system of any of any of the preceding clauses, further comprising relating medical inference groups of the internal medical concepts.
  • Clause 50 The computer-implemented method for answering natural language medical information questions posed by a user of a medical conversational interface of a cognitive artificial intelligence system of any of any of the preceding clauses, wherein the relating medical inference groups of the internal medical concepts further comprises relating groups of the internal medical concepts based at least in part on shared medical data entities for which each internal medical concept of a medical inference group of internal medical concepts describes a respective medical data attribute.
  • Clause 51 The computer-implemented method for answering natural language medical information questions posed by a user of a medical conversational interface of a cognitive artificial intelligence system of any of the preceding clauses, wherein selecting a likely medical information path from among the medical logical progression paths to a likely path-dependent medical information answer based upon the intent further comprises selecting a likely medical information path from among the medical logical progression paths to a likely path-dependent medical information answer based in part upon the therapeutic intent of the user and in part upon sufficiency of medical diagnostic data to complete the medical logical linkages.
  • Clause 52 The computer-implemented method for answering natural language medical information questions posed by a user of a medical conversational interface of a cognitive artificial intelligence system of any of the preceding clauses, wherein selecting a likely medical information path from among the medical logical progression paths to a likely path-dependent medical information answer based upon the intent further comprises selecting a likely medical information path from among the medical logical progression paths to a likely path-dependent medical information answer after requesting additional medical diagnostic data from the user.
  • Clause 53 The computer-implemented method for answering natural language medical information questions posed by a user of a medical conversational interface of a cognitive artificial intelligence system of any of the preceding clauses, wherein selecting a likely medical information path from among the medical logical progression paths to a likely path-dependent medical information answer based upon the intent further comprises selecting a likely medical information path from among the medical logical progression paths to a likely path-dependent medical information answer based in part upon treatment sub-intents comprising tactical constituents related to the therapeutic intent of the user by the store of medical subject matter ontology data.
  • Clause 54 The computer-implemented method for answering natural language medical information questions posed by a user of a medical conversational interface of a cognitive artificial intelligence system of any of the preceding clauses, wherein selecting a likely medical information path from among the medical logical progression paths to a likely path-dependent medical information answer based upon the intent further comprises selecting a likely medical information path from among the medical logical progression paths to a likely path-dependent medical information answer based in part upon the therapeutic intent of the user and in part upon sufficiency of medical diagnostic data to complete the medical logical linkages, wherein the medical diagnostic data to complete the medical logical linkages includes user-specific medical diagnostic data.
  • a cognitive intelligence platform for answering natural language questions posed by a user of a conversational interface of an artificial intelligence system comprising:
  • a cognitive agent configured for receiving from a user interface a user generated natural language query, wherein the cognitive agent is an artificial intelligence-based conversation agent;
  • a knowledge cloud containing a store of subject matter ontology data
  • a critical thinking engine configured for:
  • the logical framework comprises a catalog of paths from the question to respective answers
  • each of the paths comprises one or more linkages from the question to a path-specific answer
  • the linkages comprise the internal concepts and external concepts derived from the store of subject matter ontology data, selecting a likely path from among the paths to a likely path- dependent answer based upon the intent, and
  • Clause 56 The cognitive intelligence platform for answering natural language questions posed by a user of a conversational interface of an artificial intelligence system of any of the preceding clauses, wherein the critical thinking engine is further configured for relating groups of the internal concepts.
  • Clause 59 The cognitive intelligence platform for answering natural language questions posed by a user of a conversational interface of an artificial intelligence system of any of the preceding clauses, wherein the critical thinking engine is further configured for selecting a likely path from among the paths to a likely path-dependent answer based upon the intent further comprises selecting a likely path from among the paths to a likely path-dependent answer after requesting additional data from the user.
  • Clause 60 The cognitive intelligence platform for answering natural language questions posed by a user of a conversational interface of an artificial intelligence system of 8, wherein the critical thinking engine is further configured for selecting a likely path from among the paths to a likely path-dependent answer based upon the intent further comprises selecting a likely path from among the paths to a likely path-dependent answer based in part upon sub-intents comprising tactical constituents related to the intent by the store of subject matter ontology data.
  • the cognitive intelligence platform for answering natural language questions posed by a user of a conversational interface of an artificial intelligence system of any of the preceding clauses, wherein the critical thinking engine is further configured for selecting a likely path from among the paths to a likely path-dependent answer based upon the intent further comprises selecting a likely path from among the paths to a likely path-dependent answer based in part upon the intent and in part upon sufficiency of data to complete the linkages, wherein the data to complete the linkages includes user-specific data.
  • a computer program product in a computer-readable medium for answering natural language questions posed by a user of a conversational interface of an artificial intelligence system the computer program product in a computer-readable medium comprising instructions, which, when executed, cause a processor of a computer to perform:
  • the language sample comprises items of text derived from a conversation between the artificial intelligence-based conversation agent and the user;
  • each of the paths comprises one or more linkages from the question to a path-specific answer
  • the linkages comprise the internal concepts and external concepts derived from a store of subject matter ontology data
  • Clause 63 The computer program product in a computer-readable medium for answering natural language questions posed by a user of a conversational interface of an artificial intelligence system of any of the preceding clauses, further comprising instructions, which, when executed, cause the processor of the computer to perform relating groups of the internal concepts.
  • Clause 64 The computer program product in a computer-readable medium for answering natural language questions posed by a user of a conversational interface of an artificial intelligence system of any of the preceding clauses, wherein the instructions, which, when executed, cause the processor of the computer to perform relating groups of the internal concepts further comprise instructions, which, when executed, cause the processor of the computer to perform relating groups of the internal concepts based at least in part on shared entities for which each internal concept of a group of internal concepts describes a respective attribute.
  • Clause 65 The computer program product in a computer-readable medium for answering natural language questions posed by a user of a conversational interface of an artificial intelligence system of any of the preceding clauses, wherein the instructions, which, when executed, cause the processor of the computer to perform selecting a likely path from among the paths to a likely path-dependent answer based upon the intent further comprise instructions, which, when executed, cause the processor of the computer to perform selecting a likely path from among the paths to a likely path-dependent answer based in part upon the intent and in part upon sufficiency of data to complete the linkages.
  • Clause 66 The computer program product in a computer-readable medium for answering natural language questions posed by a user of a conversational interface of an artificial intelligence system of any of the preceding clauses, wherein instructions, which, when executed, cause the processor of the computer to perform selecting a likely path from among the paths to a likely path-dependent answer based upon the intent further comprise instructions, which, when executed, cause the processor of the computer to perform selecting a likely path from among the paths to a likely path-dependent answer after requesting additional data from the user.
  • Clause 67 The computer program product in a computer-readable medium for answering natural language questions posed by a user of a conversational interface of an artificial intelligence system of any of the preceding clauses, wherein the instructions, which, when executed, cause the processor of the computer to perform selecting a likely path from among the paths to a likely path-dependent answer based upon the intent further comprise instructions, which, when executed, cause the processor of the computer to perform selecting a likely path from among the paths to a likely path-dependent answer based in part upon sub-intents comprising tactical constituents related to the intent by the store of subject matter ontology data.
  • Clause 68 A method for answering natural language questions posed by a user of a conversational interface of an artificial intelligence system, the method comprising:
  • the language sample comprises items of text derived from a conversation between the artificial intelligence-based conversation agent and the user;
  • each of the paths comprises one or more linkages from the question to a path-specific answer
  • the linkages comprise the internal concepts and external concepts derived from a store of subject matter ontology data
  • Clause 69 The method for answering natural language questions posed by a user of a conversational interface of an artificial intelligence system of any of the preceding clauses, further comprising relating groups of the internal concepts.
  • Clause 70 The method for answering natural language questions posed by a user of a conversational interface of an artificial intelligence system of any of the preceding clauses, wherein the relating groups of the internal concepts further comprises relating groups of the internal concepts based at least in part on shared entities for which each internal concept of a group of internal concepts describes a respective attribute.
  • Clause 71 The method for answering natural language questions posed by a user of a conversational interface of an artificial intelligence system of any of the preceding clauses, wherein selecting a likely path from among the paths to a likely path- dependent answer based upon the intent further comprises selecting a likely path from among the paths to a likely path-dependent answer based in part upon the intent and in part upon sufficiency of data to complete the linkages.
  • Clause 72 The method for answering natural language questions posed by a user of a conversational interface of an artificial intelligence system of any of the preceding clauses, wherein selecting a likely path from among the paths to a likely path- dependent answer based upon the intent further comprises selecting a likely path from among the paths to a likely path-dependent answer after requesting additional data from the user.
  • Clause 73 The method for answering natural language questions posed by a user of a conversational interface of an artificial intelligence system of any of the preceding clauses, wherein selecting a likely path from among the paths to a likely path- dependent answer based upon the intent further comprises selecting a likely path from among the paths to a likely path-dependent answer based in part upon sub-intents comprising tactical constituents related to the intent by the store of subject matter ontology data.
  • Clause 74 The method for answering natural language questions posed by a user of a conversational interface of an artificial intelligence system of any of the preceding clauses, wherein selecting a likely path from among the paths to a likely path- dependent answer based upon the intent further comprises selecting a likely path from among the paths to a likely path-dependent answer based in part upon the intent and in part upon sufficiency of data to complete the linkages, wherein the data to complete the linkages includes user-specific data.
  • a computer-implemented method for providing therapeutic medical action recommendations in response to a medical information natural language conversation stream comprising: receiving segments of a medical information natural language conversation stream at an artificial intelligence-based health information conversation agent from a medical information conversation user interface;
  • a desired clinical management outcome objective relevant to health management criteria and related health management data attributes of the user medical information profile; identifying a set of potential therapeutic interventions correlated to advancement of the clinical management outcome objective;
  • Clause 76 The computer-implemented method for providing therapeutic medical action recommendations in response to a medical information natural language conversation stream of any preceding clause, wherein the selecting from among the set of potential therapeutic interventions correlated to advancement of the clinical management outcome objective a medical intervention likely to advance the clinical management outcome objective further comprises:
  • the computer-implemented method for providing therapeutic medical action recommendations in response to a medical information natural language conversation stream any preceding clause wherein the presenting to the user in the medical information natural language conversation stream a therapeutic advice conversation stream segment designed to stimulate execution of the action likely to advance the clinical management outcome objective further comprises presenting to the user in the medical information natural language conversation stream a therapeutic advice conversation stream segment explaining a cost-benefit analysis comparing likely results of performance of the action likely to advance the clinical management outcome objective and likely results of non-performance of the action likely to advance the clinical management outcome objective.
  • Clause 78 The computer-implemented method for providing therapeutic medical action recommendations in response to a medical information natural language conversation stream of any preceding clause, wherein the selecting from among the set of potential therapeutic interventions correlated to advancement of the clinical management outcome objective a medical intervention likely to advance the clinical management outcome objective further comprises:
  • Clause 79 The computer-implemented method for providing therapeutic medical action recommendations in response to a medical information natural language conversation stream of any preceding clause, wherein the presenting to the user in the medical information natural language conversation stream a therapeutic advice conversation stream segment designed to stimulate execution of the action likely to advance the clinical management outcome objective further comprises presenting to the user in the medical information natural language conversation stream a conversation stream reinforcing the recommendation after expiration of a delay period.
  • the computer-implemented method for providing therapeutic medical action recommendations in response to a medical information natural language conversation stream of any preceding clause wherein the presenting to the user in the medical information natural language conversation stream a therapeutic advice conversation stream segment designed to stimulate execution of the action likely to advance the clinical management outcome objective further comprises presenting to the user in the medical information natural language conversation stream a therapeutic advice conversation stream segment explaining reasons for selection of the clinical management outcome objective.
  • Clause 81 The computer-implemented method for providing therapeutic medical action recommendations in response to a medical information natural language conversation stream of any preceding clause, wherein the presenting to the user in the medical information natural language conversation stream a therapeutic advice conversation stream segment designed to stimulate execution of the action likely to advance the clinical management outcome objective further comprises notifying third party service providers of the clinical management outcome objective and the recommendation.
  • a computer program product in a non-transitory computer-readable medium for providing therapeutic medical action recommendations in response to a medical information natural language conversation stream comprising instructions which, when executed cause a processor of a computer to perform:
  • selecting the action likely to advance the user outcome objective based on a set of factors comprising likelihood of performance of the action likely to advance the user outcome objective and likelihood that the action will materially advance the user outcome objective.
  • Clause 84 The computer program product in a non-transitory computer- readable medium of any preceding clause, wherein the instructions which, when executed cause the processor of the computer to perform presenting to the user in the medical information natural language conversation stream a therapeutic advice conversation stream segment designed to stimulate execution of the action likely to advance the clinical management outcome objective further comprise instructions which, when executed cause the processor of the computer to perform presenting to the user in the medical information natural language conversation stream a therapeutic advice conversation stream segment explaining a correlation between the action likely to advance the clinical management outcome objective and achievement of the clinical management outcome objective.
  • Clause 86 The computer program product in a non-transitory computer- readable medium of any preceding clause, wherein the instructions which, when executed cause the processor of the computer to perform presenting to the user in the medical information natural language conversation stream a therapeutic advice conversation stream segment designed to stimulate execution of the action likely to advance the clinical management outcome objective further comprise instructions which, when executed cause the processor of the computer to perform presenting to the user in the medical information natural language conversation stream a conversation stream reinforcing the recommendation after expiration of a delay period.
  • Clause 87 The computer program product in a non-transitory computer- readable medium of any preceding clause, wherein the instructions which, when executed cause the processor of the computer to perform presenting to the user in the medical information natural language conversation stream a therapeutic advice conversation stream segment designed to stimulate execution of the action likely to advance the clinical management outcome objective further comprise instructions which, when executed cause the processor of the computer to perform presenting to the user in the medical information natural language conversation stream a therapeutic advice conversation stream segment explaining reasons for selection of the clinical management outcome objective.
  • Clause 88 The computer program product in a non-transitory computer- readable medium of any preceding clause, wherein the instructions which, when executed cause the processor of the computer to perform presenting to the user in the medical information natural language conversation stream a therapeutic advice conversation stream segment designed to stimulate execution of the action likely to advance the clinical management outcome objective further comprise instructions which, when executed cause the processor of the computer to perform notifying third party service providers of the clinical management outcome objective and the recommendation.
  • a system for providing therapeutic medical action recommendations in response to a medical information natural language conversation stream comprising:
  • a knowledge cloud configured for receiving segments of a medical information natural language conversation stream at an artificial intelligence-based health information from a medical information conversation user interface of a cognitive agent
  • a critical thinking engine configured for:
  • the cognitive agent wherein the cognitive agent is configure for presenting to the user in the medical information natural language conversation stream a therapeutic advice conversation stream segment designed to stimulate execution of the action likely to advance the clinical management outcome objective.
  • selecting the action likely to advance the user outcome objective based on a set of factors comprising likelihood of performance of the action likely to advance the user outcome objective and likelihood that the action will materially advance the user outcome objective.
  • a computer-implemented method for providing action recommendations in response to a user-generated natural language conversation stream comprising:
  • selecting the action likely to advance the user outcome objective based on a set of factors comprising likelihood of performance of the action likely to advance the user outcome objective and likelihood that the action will materially advance the user outcome objective.
  • Clause 100 The method of any preceding clause, wherein the presenting to the user in the user-generated natural language conversation stream a conversation stream segment designed to motivate performance of the action likely to advance the user action outcome objective further comprises presenting to the user in the user generated natural language conversation stream a conversation stream segment explaining reasons for selection of the user action outcome objective.
  • a method for maintaining a hyperledger for medical transactions at one or more nodes comprising:
  • Clause 106 The method of any preceding clause, wherein the one or more nodes represent a plurality of entities in a healthcare ecosystem, wherein the plurality of entities comprise one or more medical personnel, patients, medical facilities, insurance providers, professional associations, and government agencies.
  • a method for performing a medical transaction using a hyperledger comprising:
  • Clause 1 10. The method of any preceding clause, wherein determining whether to allow the medical transaction to be performed based on at least the authorizing credential of the medical personnel entity further comprises determining whether the authorizing credential is valid.
  • Clause 111 The method of any preceding clause, wherein the medical transaction comprises the medical personnel entity creating or updating a prescription for the patient entity.
  • Clause 114 A method for performing a medical transaction using a hyperledger, the method comprising:
  • Clause 1 15. The method of any preceding clause, wherein the medical transaction comprises filling or refilling a prescription for the patient entity.
  • Clause 1 16 The method of any preceding clause, wherein the one or more rules further specify allowing the medical transaction to be added to the hyperledger when at least an authorizing credential of a medical personnel entity in the hyperledger is verified, wherein the medical personnel entity comprises a pharmacist or a physician that wrote the prescription.
  • Clause 1 17. The method of any preceding clause, wherein the one or more rules further specify notifying the medical personnel entity to update the authorizing credential in the hyperledger at set intervals of time.
  • Clause 1 18. The method of any preceding clause, wherein the one or more rules further specify allowing the medical transaction to be added to the hyperledger when at least an authorizing credential of the medical facility entity in the hyperledger is verified, wherein the medical facility entity comprises a pharmacy.
  • Clause 1 19. The method of any preceding clause, wherein the one or more rules further specify allowing the medical transaction to be added to the hyperledger when the prescription for the patient entity is identified at another medical transaction in the hyperledger.
  • Clause 120 The method of any preceding clause, wherein the one or more rules further specify allowing the medical transaction to be added to the hyperledger when there is at least one remaining refill for the prescription identified at the another medical transaction in the hyperledger.
  • the hyperledger comprises a plurality of blocks storing transactions between any combination of a plurality of entities in a healthcare ecosystem, wherein the plurality of entities comprise one or more medical personnel, patients, medical facilities, insurance providers, professional associations, and government agencies.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Primary Health Care (AREA)
  • Public Health (AREA)
  • Business, Economics & Management (AREA)
  • General Business, Economics & Management (AREA)
  • Biomedical Technology (AREA)
  • Accounting & Taxation (AREA)
  • Strategic Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Medical Treatment And Welfare Office Work (AREA)

Abstract

A method for performing a medical transaction using a hyperledger, the method including receiving, from a computing device associated with a medical personnel entity, a request to perform the medical transaction between the medical personnel entity and a patient entity, where the medical personnel entity is associated with a medical personnel node and the patient entity is associated with a patient node, and a respective copy of the hyperledger is maintained at both the medical personnel node and the patient node. The method includes identifying a transaction in the hyperledger that stores an authorizing credential of the medical personnel entity, determining whether to allow the medical transaction to be performed based on at least the authorizing credential of the medical personnel entity, and responsive to determining to allow the medical transaction to be performed, updating the respective copy of the hyperledger with the medical transaction.

Description

SYSTEM AND METHOD FOR USING A BLOCKCHAIN TO MANAGE MEDICAL TRANSACTIONS BETWEEN ENTITIES IN A HEALTHCARE ECOSYSTEM
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application claims the benefit of U.S. Provisional Application Serial No. 62/849,075 filed May 16, 2019, which provisional application is incorporated by reference herein as if reproduced in full below.
BACKGROUND
[0002] Population health management entails aggregating patient data across multiple health information technology resources, analyzing the data with reference to a single patient, and generating actionable items through which care providers can improve both clinical and financial outcomes. In some instances, coordinating health services to perform the actionable items among multiple entities in a healthcare ecosystem can be a daunting, inefficient, and/or cumbersome task.
SUMMARY
[0003] A system and method for using a blockchain to manage medical transactions between entities in a healthcare ecosystem are disclosed herein. The medical transactions may be performed using the hyperledger to provide a population health management service. The steps of any of the following methods may be implemented as computer instructions stored on tangible, non-transitory media that are executable by one or more processors. Further, the methods may be implemented by a computing device and/or a system including one or more processors.
[0004] In one embodiment, a method for maintaining a hyperledger for healthcare transactions at one or more nodes includes receiving, a from a client device, a request to perform a transaction using the hyperledger wherein the transaction pertains to registering a medical personnel entity associated with the client device as a node of the one or more nodes, and the request includes an authorizing credential pertaining to the medical personnel entity. The method also includes determining, based on one or more rules, whether to allow the transaction to be performed in view of the request. Responsive to determining to tallow the transaction to be performed, the method also includes registering the node for the medical personnel entity by creating the node for the medical personnel entity, updating the hyperledger by adding a block to the hyperledger, where the block stores the transaction including the authorizing the credential pertaining to the medical personnel entity, and storing the hyperledger at the node for the medical personnel entity.
[0005] In one embodiment, a method for performing a medical transaction using a hyperledger includes receiving, from a computing device associated with a medical personnel entity, a request to perform the medical transaction between the medical personnel entity and a patient entity, where the medical personnel entity is associated with a medical personnel node and the patient entity is associated with a patient node, and a respective copy of the hyperledger is maintained at both the medical personnel node and the patient node. The method also includes identifying a transaction in the hyperledger that stores an authorizing credential of the medical personnel entity, determining whether to allow the medical transaction to be performed based on at least the authorizing credential of the medical personnel entity, and responsive to determining to allow the medical transaction to be performed, updating the respective copy of the hyperledger with the medical transaction at the medical personnel node and the patient node.
[0006] In one embodiment, a method for performing a medical transaction using a hyperledger includes identifying a medical facility computing device that is within a threshold distance of a geolocation of a patient computing device, where the medical facility computing device is associated with a medical facility entity and the patient computing device is associated with a patient entity. The method also includes transmitting, from the patient computing device, a request to perform a medical transaction to the medical facility computing device, where the request includes an authenticating credential associated with the patient entity, and a determination is made whether to allow performance of the medical transaction based on one or more rules that specify allowing the medical transaction to be added to a hyperledger when at least the authenticating credential in the hyperledger is verified. The method also includes receiving a notification from the medical facility computing device that indicates the medical transaction has been performed.
[0007] In one embodiment, a method may include recommending items in conversational streams by receiving conversation stream segments, defining a user action outcome objective based on the conversation stream segments and a user profile that may be stored on a hyperledger, selecting an action likely to advance the user action outcome objective, and presenting a conversation stream segment to motivate an action likely to advance the user action outcome objective.
[0008] In one embodiment, a computer-implemented method for providing therapeutic medical action recommendations in response to a medical information natural language conversation stream is disclosed. The method includes receiving segments of a medical information natural language conversation stream at an artificial intelligence-based health information conversation agent from a medical information conversation user interface. Based on the medical information content of a user medical information profile (e.g., stored in a hyperledger) associated with the medical information natural language conversation stream, the method further defines a desired clinical management outcome objective relevant to health management criteria and related health management data attributes of the user medical information profile. The method further involves identifying a set of potential therapeutic interventions correlated to advancement of the clinical management outcome objective. The method further involves selecting from among the set of potential therapeutic interventions correlated to advancement of the clinical management outcome objective a medical intervention likely to advance the clinical management outcome objective. The method further involves presenting in the medical information natural language conversation stream a therapeutic advice conversation stream segment designed to stimulate execution of the medical intervention likely to advance the clinical management outcome objective. The method further involves presenting to the user in the medical information natural language conversation stream a therapeutic advice conversation stream segment explaining a correlation between the medical intervention likely to advance the clinical management outcome objective and achievement of the clinical management outcome objective.
[0009] In one embodiment, a computer program product in a non-transitory computer- readable medium for providing therapeutic medical action recommendations in response to a medical information natural language conversation stream is disclosed. The product contains instructions that cause a computer to receive segments of a medical information natural language conversation stream at an artificial intelligence-based health information conversation agent from a medical information conversation user interface. The product contains further instructions that cause the computer to define a clinical management outcome objective relevant to health management criteria and related health management data attributes of the profile in response to the medical information content of a user medical information profile (e.g., stored in a hyperledger) associated with the medical information natural language conversation stream. The product contains further instructions that cause the computer to select a medical intervention likely to advance the clinical management outcome objective. The product contains further instructions that cause the computer to present to the user in the medical information natural language conversation stream a therapeutic advice conversation stream segment designed to stimulate execution of the action likely to advance the clinical management outcome objective.
[0010] In one embodiment, a system for providing therapeutic medical action recommendations in response to a medical information natural language conversation stream is disclosed, the system includes a knowledge cloud configured for receiving segments of a medical information natural language conversation stream at an artificial intelligence-based health information from a medical information conversation user interface of a cognitive agent. The system further includes a critical thinking engine. The critical thinking engine is configured to define a clinical management outcome objective relevant to health management criteria and related health management data attributes of the profile in response to medical information content of a user medical information profile (e.g., stored in a hyperledger) associated with the medical information natural language conversation stream in the knowledge cloud. The critical thinking engine is further configured to select a medical intervention likely to advance the clinical management outcome objective. The cognitive agent is configure for presenting to the user in the medical information natural language conversation stream a therapeutic advice conversation stream segment designed to stimulate execution of the action likely to advance the clinical management outcome objective.
[0011] In one embodiment, a computer-implemented method for providing action recommendations in response to a user-generated natural language conversation stream is disclosed. The method includes receiving segments of a user-generated natural language conversation stream at an artificial intelligence-based conversation agent from a user interface. The method further includes defining a user action outcome objective relevant to attributes of the profile in response to content of a user profile (e.g., stored in a hyperledger) associated with the user-generated natural language conversation stream. The method further includes selecting an action likely to advance the user action outcome objective. The method further includes presenting to the user in the user-generated natural language conversation stream a conversation stream segment designed to motivate performance of the action likely to advance the user action outcome objective.
BRIEF DESCRIPTION OF THE DRAWINGS
[0012] For a detailed description of example embodiments, reference will now be made to the accompanying drawings in which:
[0013] FIG. 1 illustrates, in block diagram form, a system architecture 100 that can be configured to provide a population health management service, in accordance with various embodiments.
[0014] FIG. 2 shows additional details of a knowledge cloud, in accordance with various embodiments.
[0015] FIG. 3 shows an example subject matter ontology, in accordance with various embodiments.
[0016] FIG. 4 shows aspects of a conversation, in accordance with various embodiments.
[0017] FIG. 5 shows a cognitive map or“knowledge graph”, in accordance with various embodiments.
[0018] FIG. 6 shows a method, in accordance with various embodiments.
[0019] FIGS. 7A, 7B, and 7C show methods, in accordance with various embodiments.
[0020] FIGS. 8A, 8B, 8C, and 8D show aspects of a user interface, in accordance with various embodiments.
[0021] FIGS. 9A and 9B shows aspects of a conversational stream, in accordance with various embodiments.
[0022] FIG. 10 shows aspects of a conversational stream, in accordance with various embodiments. [0023] FIG. 11 shows aspects of an action calendar, in accordance with various embodiments.
[0024] FIG. 12 shows aspects of a feed, in accordance with various embodiments.
[0025] FIG. 13 shows aspects of a hyper-local community, in accordance with various embodiments.
[0026] FIG. 14 illustrates a detailed view of a computing device that can represent the computing devices of FIG.1 used to implement the various platforms and techniques described herein, according to some embodiments.
[0027] FIG. 15 shows a method, in accordance with various embodiments.
[0028] FIG. 16 shows a method, in accordance with various embodiments.
[0029] FIG. 17 shows a method, in accordance with various embodiments.
[0030] FIG. 18 shows a therapeutic paradigm logical framework, in accordance with various embodiments
[0031] FIG. 19 shows a method, in accordance with various embodiments.
[0032] FIG. 20 shows a paradigm logical framework, in accordance with various embodiments.
[0033] FIG. 21 shows a method, in accordance with various embodiments.
[0034] FIG. 22 shows a method, in accordance with various embodiments.
[0035] FIG. 23 shows a distributed network of nodes each maintaining a copy of a hyperledger to manage medical transactions, in accordance with various embodiments.
[0036] FIG. 24 shows an example hyperledger, in accordance with various embodiments.
[0037] FIG. 25 shows the use of analytics based rules for providing updates to the hyperledger, in accordance with various embodiments.
[0038] FIG. 26 shows a method, in accordance with various embodiments.
[0039] FIG. 27 shows a method, in accordance with various embodiments.
[0040] FIG. 28 shows an example use of an authenticating credential associated with a patient entity to perform a medical transaction, in accordance with various embodiments.
[0041] FIG. 29 shows a method, in accordance with various embodiments.
[0042] FIG. 30 shows a method, in accordance with various embodiments. NOTATION AND NOMENCLATURE
[0043] Various terms are used to refer to particular system components. Different companies may refer to a component by different names - this document does not intend to distinguish between components that differ in name but not function. In the following discussion and in the claims, the terms“including” and“comprising” are used in an open- ended fashion, and thus should be interpreted to mean“including, but not limited to... Also, the term “couple” or“couples” is intended to mean either an indirect or direct connection. Thus, if a first device couples to a second device, that connection may be through a direct connection or through an indirect connection via other devices and connections.
DETAILED DESCRIPTION
[0044] The following discussion is directed to various embodiments of the disclosure. Although one or more of these embodiments may be preferred, the embodiments disclosed should not be interpreted, or otherwise used, as limiting the scope of the disclosure, including the claims. In addition, one skilled in the art will understand that the following description has broad application, and the discussion of any embodiment is meant only to be exemplary of that embodiment, and not intended to intimate that the scope of the disclosure, including the claims, is limited to that embodiment.
[0045] There are numerous entities involved in various medical transactions in a healthcare ecosystem. For example, the entities may involve patients (consumers), medical personnel (e.g., physicians, nurses, pharmacists, dentists, optometrists, orthodontists, etc.), insurance providers, clinics, hospitals, pharmacies, professional associations, government agencies, and so forth. Example medical transactions may include a physician writing a prescription for a patient, a physician requesting a pharmacy fill or refill a prescription for a patient, a physician updating a medical chart for a patient after a consultation, a patient requesting a pharmacy to fill or refill a prescription, a pharmacy filling a prescription for a patient, a pharmacy or clinic requesting an insurance provider pay for a consultation or for a prescription, a patient requesting an insurance provider pay for a consultation or for a prescription, and so forth.
[0046] Various information is provided by the various entities in order to perform the medical transactions. For example, a medical personnel may provide an authorizing credential that indicates the medical personnel is allowed to practice and perform the medical transaction. The authorizing credential may be a license or certificate that has been approved by a professional association or government agency and awarded to the medical personnel. For example, a physician and a pharmacists are required to obtain licenses to practice and perform medical transactions. In other instances, a patient may provide a form of identification (e.g., driver’s license) and information pertaining to their insurance provider to a medical facility (e.g., clinic, hospital, pharmacy etc.) to engage in a medical transaction with a medical personnel at that medical facility.
[0047] Other information may be generated during the medical transactions. For example, a physician may write a prescription for a patient after diagnosing a medical condition of the patient. The prescription may be a physical document that is sent to the pharmacy or brought by the patient to the pharmacy. Records at the various medical facilities may be generated / updated when the user fills or refills the prescription.
[0048] Oftentimes, when a patient attempts to fill a prescription, a pharmacist may attempt to verify the prescription by contacting the physician who wrote the prescription or a representative of the physician. The pharmacist may not reach the physician. Even when the physician is reached, the process may take an undesirable amount of time from start to finish to verify that the physician wrote the prescription. In other instances, the pharmacist may attempt to contact an insurance provider of the patient to verify that the insurance provider is going to pay for any medicine or devices prescribed in the prescription. Again, the insurance provider may not be reached and/or the verification process may take longer than desired.
[0049] There are a multitude of other verifications that may occur prior to allowing a medical transaction to be performed. The verifications may occur in real-time, near real time, or on an ongoing basis to allow the medical transactions to be performed. Some examples may include verifying that medical personnel have up-to-date authorizing credential to practice the medical transactions, verifying that the medical facility (e.g., clinic, hospital, pharmacy, etc.) has an up-to-date authorizing credential to allow performance of the medical transaction at the medical facility, verifying the identity of the patient, verifying information (e.g., how many refills are allowed, how many refills have been used, etc.) pertaining to a prescription of the patient, and so forth. [0050] Conventionally, the authorizing credentials of the medical personnel and/or information pertaining to a patient are stored in disparate data stores or may not be recorded in any data store. Thus, the verification process and the medical transactions in general can be inefficient. A verifiable trace of proof that the medical transactions have been performed and/or are determined to be allowed by being associated with an authorized medical personnel and patient is desired. Further, there is no reliable technique for tracking the information of the entities in the healthcare ecosystem and suggesting when an entity in the healthcare ecosystem should provide updated information to enable medical transactions to continue to be performed by the entities.
[0051] Accordingly, aspects of the disclosure generally relate to a cognitive intelligence platform using blockchain in a healthcare ecosystem to maintain information about entities and medical transactions in the healthcare ecosystem and to using analytics based rules that specify when to provide updates to the blockchain. A blockchain may refer to an immutable ledger for recording transactions. The cognitive intelligence platform integrates and consolidates data / information from various sources and entities and provides a population health management service. In some embodiments, at least some of the data / information from the various sources and entities may be stored in a blockchain. The blockchain may be maintained by a distributed network of nodes. In some embodiments, a consensus protocol may be used by the nodes to determine whether to allow transactions to be performed and groups the transactions into blocks that are added to the blockchain.
[0052] There are different kinds of blockchains, such as permissionless and permissioned. In a permissionless blockchain, any entity may participate without an identity. In a permissioned blockchain, each entity that participates in the blockchain is identified and known. An example of a permissioned blockchain is a hyperledger. The permissions cause the participating nodes to view only the appropriate transactions in the hyperledger. Programmable logic may be implemented as rules that are executed by the hyperledger. In some embodiments, the rules may be analytics-based and may specify scenarios when updates to the hyperledger are to be made by the various entities of the healthcare ecosystem. Using the analytics-based rules may make each node an active participant by updating the hyperledger at specified times. [0053] The hyperledger may provide a verifiable trace of proof that the information is associated with entities involved in a medical transaction to facilitate more efficient medical transactions, among other things. The hyperledger may provide a secure chain of record that is used to enhance the efficiency and/or security of the medical transaction process in the healthcare ecosystem.
[0054] Each entity in the healthcare ecosystem may register as a node in a distributed, decentralized network. Registering a node for an entity may involve a transaction that is added to the hyperledger. Each node may maintain a respective copy of the hyperledger as a shared single source of truth. During registration, each entity may provide certain information pertaining to the entity to be maintained by the hyperledger at the nodes. For example, a physician may register as a node and may provide information (e.g., National Provider Identifier (NPI), license number, date licensed, date license last updated, etc.) pertaining to their authorizing credential, specialty of medical practice, location of practice, and any other information relevant to practicing in the healthcare ecosystem. A pharmacist may register as a node and may provide information (e.g., license number, date licensed, date license last updated, etc.) pertaining to their authorizing credential, location of practice, and any other information relevant to practicing in the healthcare ecosystem. A patient may register as a node and may provide personal information (e.g., driver’s license number, social security number, name, insurance provider number, type of insurance, address, medical records, allergies, etc.) that enables verifying their identity and establishing a user profile, among other things.
[0055] Each time a medical transaction is requested to be performed between entities, the hyperledger may be used to verify information pertaining to the entities engaged in the medical transaction and to determine whether to allow the medical transaction to be performed. The system may already know, based on the information pertaining to the entities stored in the hyperledger, that the patient is verified and the medical personnel (e.g., physician, pharmacist, etc.) involved in the medical transaction (e.g., writing a prescription, filling the prescription, dispensing medicine) is verified. In some embodiments, a consensus protocol may be used by the nodes to validate the medical transactions, thereby enhancing security of performing the medical transactions. One or more rules may dictate when medical transactions are allowed and/or when to provide updates to the hyperledger. For example, one rule may indicate that the authorizing credential of the physician is required to be valid at the time the prescription was written or when the prescription is filled prior to allowing the medical transaction. In some embodiments, the other nodes may approve the medical transaction based on whether the one or more rules are satisfied.
[0056] The medical transactions may be recorded on the hyperledger stored at each node to maintain a ledger of the medical transactions in the healthcare ecosystem. Information maintained by the hyperledger may be protected such that just authorized nodes in any given medical transaction are allowed to use the information. For example, the information stored at a patient node typically is not allowed to be referenced by other patient nodes, unless certain circumstances apply (e.g., the patient nodes are related (parents and children)).
[0057] In some embodiments, benefits of the disclosed techniques may enable a patient that initially purchased medicine using a prescription at a first pharmacy to purchase the medicine using the prescription at a second pharmacy without any action by the pharmacist at the second pharmacy. The patient may request the prescription be refilled by the second pharmacy and the authenticating credentials of the patient may be verified by the hyperledger. The hyperledger may identify the prescription stored in a transaction in the hyperledger for the patient, determine whether the physician that wrote the prescription has a valid authorizing credential to write the prescription, whether the pharmacist at the second pharmacy has a valid authorizing credential to fill a prescription, whether the second pharmacy has a valid authorizing credential to dispense medication, and whether there are any refills left on the prescription, among other things. If the results of the determination satisfy one or more rules, then the medical transaction may be approved and the second pharmacy may refill the prescription by just using the information stored in the hyperledger. Accordingly, the medical transaction process for approving filling prescriptions, for example, may be enhanced by removing third-parties.
[0058] The cognitive intelligence platform has the ability to extract concepts, relationships, and draw conclusions from a given text posed in natural language (e.g., a passage, a sentence, a phrase, and a question) by performing conversational analysis which includes analyzing conversational context. For example, the cognitive intelligence platform has the ability to identify the relevance of a posed question to another question.
[0059] The benefits provided by the cognitive intelligence platform, in the context of healthcare, include freeing up physicians from focusing on day to day population health management. Thus a physician can focus on her core competency— which includes disease/risk diagnosis and prognosis and patient care. The cognitive intelligence platform provides the functionality of a health coach and includes a physician’s directions in accordance with the medical community’s recommended care protocols and also builds a systemic knowledge base for health management. The cognitive intelligence platform may leverage the information stored in the hyperledger to recommend certain actions be taken by a patient. For example, using the hyperledger, the recommended actions may include setting up a consultation with a physician having a valid authorizing credential at a location near the patient (e.g., based on geolocations of devices of the entities).
[0060] The cognitive intelligence platform may implement an intuitive conversational cognitive agent that engages in a question and answering system that is human-like in tone and response. The described cognitive intelligence platform endeavors to compassionately solve goals, questions and challenges. Further, the cognitive intelligence platform may use a hyperledger to manage medical transactions between entities in a healthcare ecosystem more efficiently and/or securely. The described methods and systems are described as occurring in the healthcare space, though other areas are also contemplated.
[0061] FIG. 1 shows a system architecture 100 that can be configured to provide a population health management service, in accordance with various embodiments. Specifically, FIG. 1 illustrates a high-level overview of an overall architecture that includes a cognitive intelligence platform 102 communicably coupled to a user device 104. The cognitive intelligence platform 102 includes several computing devices, where each computing device, respectively, includes at least one processor, at least one memory, and at least one storage (e.g., a hard drive, a solid-state storage device, a mass storage device, and a remote storage device). The individual computing devices can represent any form of a computing device such as a desktop computing device, a rack-mounted computing device, and a server device. The foregoing example computing devices are not meant to be limiting. On the contrary, individual computing devices implementing the cognitive intelligence platform 102 can represent any form of computing device without departing from the scope of this disclosure.
[0062] The several computing devices work in conjunction to implement components of the cognitive intelligence platform 102 including: a knowledge cloud 106; a critical thinking engine 108; a natural language database 122; a cognitive agent 1 10; and a node 1 16. The cognitive intelligence platform 102 is not limited to implementing only these components, or in the manner described in FIG. 1. That is, other system architectures can be implemented, with different or additional components, without departing from the scope of this disclosure. The example system architecture 100 illustrates one way to implement the methods and techniques described herein.
[0063] The node 1 16 represents a single computing device in a distributed blockchain network of nodes 1 16 (also referred to as a distributed hyperledger fabric herein) of the cognitive intelligence platform 102. A permissioned type of blockchain, referred to as a hyperledger 1 18, may be implemented and a respective copy of the hyperledger 1 18 may be stored on a respective node 1 16. The nodes 1 16 may represent any suitable entity in a healthcare ecosystem. For example, some of the entities may include a service provider 1 12 (e.g., medical personnel entity, such as a physician, dentist, pharmacist, optometrist, orthodontic, nurse, etc.), a facility 1 14 (e.g., medical facility entity), a patient entity, and so forth. Each entity may be associated with a respective computing device that they use to register as a node on the blockchain network and request transactions to be performed using the hyperledger 1 18.
[0064] In a permissioned blockchain, such as the hyperledger 1 18, the entities register by providing certain information to the hyperledger. Based on one or more rules associated with the hyperledger 1 18, the entity may be registered as a node 1 16 on the blockchain network and provided authenticating credentials that are used to identify the entities when they perform transactions. The rules may be executable software modules that are installed in the hyperledger 1 18 itself. In some instances, when a user sends a transaction to the hyperledger 1 18, the hyperledger 1 18 may invoke the rules, which perform functions depending on the type of transaction being requested. In addition, the nodes 1 16 may employ a consensus protocol whereby the nodes 1 16 communicate with each other to determine whether to allow the transaction to be performed to modify the hyperledger 1 18.
[0065] The entities use computing devices to send requests to perform transactions (e.g., medical transactions) using the hyperledger 1 18 to the cognitive intelligence platform 102. When applicable rules and/or the consensus protocol is satisfied, the transaction may be completed (e.g., writing a prescription, filling the prescription, etc.) and a record of the transaction may be added to the hyperledger 1 18. In some instances, the transactions may not be altered or removed, thereby providing an immutable quality to the hyperledger 1 18. Further, cryptography may be used to secure the hyperledger 1 18 and the messages between the nodes 1 16 of the blockchain network and/or the computing devices requesting the transactions. In some embodiments, just the authorized entities are allowed to perform the transactions on the hyperledger 1 18, and in some instances, just the appropriate entities are allowed to view details of particular transactions in the hyperledger 1 18.
[0066] In some embodiments, a request to register as a node 1 16 may be a type of transaction that is recorded in the hyperledger 1 18. The entities may send the requests to register as a node 1 16 using the hyperchain 1 18, and the requests include certain information pertaining to the entities. For example, a medical personnel entity may provide an authorizing credential, such as a medical license number. If the rules and/or the consensus protocol is satisfied, the entity may be associated with a node 1 16. Further, the hyperledger 1 18 may be updated by adding a block storing the transaction including the information pertaining to the entity that is associated with the node 1 16. The updated hyperledger 1 18 may be stored at the node for the entity. In some embodiments, the copies of the other hyperledgers 1 18 at the other nodes 1 16 in the blockchain network may be updated with the new transaction. Further, when the entity is registered as a node 1 16, the computing device associated with that entity may be provided with authenticating credentials for that entity. The computing device may use the authenticating credentials to make subsequent requests to the hyperledger 1 18.
[0067] In some embodiments, a medical transaction, such as a physician writing a prescription for a patient, a physician updating health records of a patient, a physician requesting a pharmacy fills a prescription, a physician approving additional refills on a prescription, a patient requesting a pharmacy fill or refill a prescription, a pharmacist filling or refilling a prescription for a patient, a pharmacy dispensing medicine specified in a prescription for a user, and so forth, may be a type of transaction that is recorded in the hyperledger 1 18. The hyperledger 1 18 may be used as a verifiable trace of proof to determine that the source of certain medical transactions (e.g., a prescription was written by a physician with a valid medical license) were performed by proper entities having valid authorizing credentials prior to allowing subsequent medical transactions (e.g., filling the prescription for the authenticated patient).
[0068] The knowledge cloud 106 represents a set of instructions executing within the cognitive intelligence platform 102 that implement a database configured to receive inputs from several sources and entities. For example, some of the sources and entities include a service provider 1 12, a facility 1 14, and a microsurvey 1 16— each described further below.
[0069] The critical thinking engine 108 represents a set of instructions executing within the cognitive intelligence platform 102 that execute tasks using artificial intelligence, such as recognizing and interpreting natural language (e.g., performing conversational analysis), and making decisions in a linear manner (e.g., in a manner similar to how the human left brain processes information). Specifically, an ability of the cognitive intelligence platform 102 to understand natural language is powered by the critical thinking engine 108. In various embodiments, the critical thinking engine 108 includes a natural language database 122. The natural language database 1 12 includes data curated over at least thirty years by linguists and computer data scientists, including data related to speech patterns, speech equivalents, and algorithms directed to parsing sentence structure.
[0070] Furthermore, the critical thinking engine 108 is configured to deduce causal relationships given a particular set of data, where the critical thinking engine 108 is capable of taking the individual data in the particular set, arranging the individual data in a logical order, deducing a causal relationship between each of the data, and drawing a conclusion. The ability to deduce a causal relationship and draw a conclusion (referred to herein as a“causal” analysis) is in direct contrast to other implementations of artificial intelligence that mimic the human left brain processes. For example, the other implementations can take the individual data and analyze the data to deduce properties of the data or statistics associated with the data (referred to herein as an“analytical” analysis). However, these other implementations are unable to perform a causal analysis— that is, deduce a causal relationship and draw a conclusion from the particular set of data. As described further below— the critical thinking engine 108 is capable of performing both types of analysis: causal and analytical.
[0071] The cognitive agent 110 represents a set of instructions executing within the cognitive intelligence platform 102 that implement a client-facing component of the cognitive intelligence platform 102. The cognitive agent 110 is an interface between the cognitive intelligence platform 102 and the user device 104. And in some embodiments, the cognitive agent 110 includes a conversation orchestrator 124 that determines pieces of communication that are presented to the user device 104 (and the user). When a user of the user device 104 interacts with the cognitive intelligence platform 102, the user interacts with the cognitive agent 110. The several references herein, to the cognitive agent 110 performing a method, can implicate actions performed by the critical thinking engine 108, which accesses data in the knowledge cloud 106, the natural language database 122, and/or the hyperledger 118.
[0072] In various embodiments, the several computing devices executing within the cognitive intelligence platform are communicably coupled by way of a network/bus interface. Furthermore, the various components (e.g., the knowledge cloud 106, the critical thinking engine 108, the cognitive agent 110, and the node 116), are communicably coupled by one or more inter-host communication protocols 118. In one example, the knowledge cloud 106 is implemented using a first computing device, the critical thinking engine 108 is implemented using a second computing device, the cognitive agent 110 is implemented using a third computing device, and the node 116 is a fourth computing device, where each of the computing devices are coupled by way of the inter-host communication protocol 118. Although in this example, the individual components are described as executing on separate computing devices this example is not meant to be limiting, the components can be implemented on the same computing device, or partially on the same computing device, without departing from the scope of this disclosure. [0073] The user device 104 represents any form of a computing device, or network of computing devices, e.g., a personal computing device, a smart phone, a tablet, a wearable computing device, a notebook computer, a media player device, and a desktop computing device. The user device 104 includes a processor, at least one memory, and at least one storage. A user uses the user device 104 to input a given text posed in natural language (e.g., typed on a physical keyboard, spoken into a microphone, typed on a touch screen, or combinations thereof) and interacts with the cognitive intelligence platform 102, by way of the cognitive agent 1 10.
[0074] A user (e.g., patient entity) may also use a software application installed on the user device 104 to request medical transactions to be performed using authenticating credentials provided to the user device 104 during registration of the user as a node 1 16 on the blockchain network. Such an implementation makes the blockchain node 1 16 an active participant in the hyperledger 1 18. In some embodiments, the medical transactions may include filling a prescription written for the user, refilling a prescription written for the user, scheduling a consultation with a medical personnel entity, and so forth. The requests may be sent to the cognitive intelligence platform 102 (e.g., by way of the cognitive agent 1 10) to determine, based on the one or more rules and/or the consensus protocol, whether to allow the medical transaction to be performed and to update the hyperledger 1 18 with a record of the medical transaction once performed.
[0075] In some embodiments, the software application may be logged into the cognitive intelligence platform 102 via the cognitive agent 1 10 using the authenticating credential for the user, and the software application may query the hyperledger 1 18 and determine that the user has not filled or refilled their prescription. The software application may present a prompt to the user on the user device 104 instructing the user to fill or refill their prescription.
[0076] The architecture 100 includes a network 120 that communicatively couples various devices, including the cognitive intelligence platform 102 and the user device 104. The network 120 can include local area network (LAN) and wide area networks (WAN). The network 102 can include wired technologies (e.g., Ethernet ®) and wireless technologies (e.g., Wi-Fi®, code division multiple access (CDMA), global system for mobile (GSM), universal mobile telephone service (UMTS), Bluetooth®, and ZigBee®. For example, the user device 104 can use a wired connection or a wireless technology (e.g., Wi-Fi®) to transmit and receive data over the network 120.
[0077] Still referring to FIG. 1 , the knowledge cloud 106 is configured to receive data from various sources and entities and integrate the data in a database. An example source that provides data to the knowledge could 106 is the service provider 1 12, an entity that provides a type of service to a user. For example, the service provider 1 12 can be a health service provider (e.g., a doctor’s office, a physical therapist’s office, a nurse’s office, or a clinical social worker’s office), and a financial service provider (e.g., an accountant’s office). For purposes of this discussion, the cognitive intelligence platform 102 provides services in the health industry (e.g., a healthcare ecosystem), thus the examples discussed herein are associated with the health industry. Flowever, any service industry can benefit from the disclosure herein, and thus the examples associated with the health industry are not meant to be limiting.
[0078] Throughout the course of a relationship between the service provider 1 12 and a user (e.g., the service provider 1 12 provides healthcare to a patient), the service provider 1 12 collects and generates data associated with the patient or the user, including health records that include doctor’s notes and prescriptions, billing records, and insurance records. The service provider 1 12, using a computing device (e.g., a desktop computer or a tablet), provides the data associated with the user to the cognitive intelligence platform 102, and more specifically the knowledge cloud 106. This data associated with the user may be stored in the hyperledger 1 18, in some embodiments.
[0079] For example, the service provider 1 12 (e.g., medical personnel entity) may use a computing device associated with the service provider 1 12 to make requests for medical transactions to be performed using authenticating credentials provided to the computing device during registration of the service provider 1 12 as a node 1 16 on the blockchain network. Such an implementation makes the blockchain node 1 16 an active participant in the hyperledger 1 18. In some embodiments, the medical transactions may include writing a prescription for the patient entity, requesting a pharmacy fill a prescription for the patient entity, authorizing additional refills for a prescription for a patient entity, updating a medical file for the patient entity based using the data associated with the user, and so forth. The requests may be sent to the cognitive intelligence platform 102 (e.g., by way of the cognitive agent 1 10) to determine, based on the one or more rules and/or the consensus protocol, whether to allow the medical transaction to be performed and to update the hyperledger 1 18 with a record of the medical transaction once performed. In some embodiments, the rule may specify that the service provider 1 12 is required to have a valid authorizing credential to perform the medical transaction. The rule may execute and check a transaction in the hyperledger 1 18 storing the authorizing credential of the service provider 1 12 to determine whether the authorizing credential is valid. In some embodiments, a request may be transmitted to a professional association or government agency that issued the authorizing credential to the service provider 1 12 to determine if the authorizing credential is still valid.
[0080] Another example source that provides data to the knowledge cloud 106 is the facility 1 14 (e.g., medical facility entity). The facility 1 14 represents a location owned, operated, or associated with any entity including the service provider 1 12. As used herein, an entity represents an individual or a collective with a distinct and independent existence. An entity can be legally recognized (e.g., a sole proprietorship, a partnership, a corporation) or less formally recognized in a community. For example, the entity can include a company that owns or operates a gym (facility). Additional examples of the facility 1 14 include, but is not limited to, a hospital, a trauma center, a clinic, a dentist’s office, a pharmacy, a store (including brick and mortar stores and online retailers), an out patient care center, a specialized care center, a birthing center, a gym, a cafeteria, and a psychiatric care center.
[0081] As the facility 1 14 represents a large number of types of locations, for purposes of this discussion and to orient the reader by way of example, the facility 1 14 represents the doctor’s office or a gym. The facility 1 14 generates additional data associated with the user such as appointment times, an attendance record (e.g., how often the user goes to the gym), a medical record, a billing record, a purchase record, an order history, and an insurance record. The facility 1 14, using a computing device (e.g., a desktop computer or a tablet), provides the data associated with the user to the cognitive intelligence platform 102, and more specifically the knowledge cloud 106. This data associated with the user may be stored in the hyperledger 1 18, in some embodiments. [0082] For example, the facility 1 14 may use a computing device associated with the facility to make requests for medical transactions to be performed using authenticating credentials provided to the computing device during registration of the facility 1 14 as a node 1 16 on the blockchain network. In some embodiments, the medical transactions may include providing an authorizing credential that authorize the facility 1 14 to perform a medical transaction (e.g., dispense a controlled substance or medicine), requesting the data generated by the facility 1 14 to be stored for the user, requesting to dispense medication or fill a prescription and so forth. The requests may be sent to the cognitive intelligence platform 102 (e.g., by way of the cognitive agent 1 10) to determine, based on the one or more rules and/or the consensus protocol, whether to allow the medical transaction to be performed and to update the hyperledger 1 18 with a record of the medical transaction once performed. In some embodiments, the rule may specify that the facility 1 14 is required to have a valid authorizing credential to perform the medical transaction. The rule may execute and check a transaction in the hyperledger 1 18 storing the authorizing credential of the facility 1 14 to determine whether the authorizing credential is valid. In some embodiments, a request may be transmitted to a professional association or government agency that issued the authorizing credential to the facility 1 14 to determine if the authorizing credential is still valid.
[0083] An additional example source that provides data to the knowledge cloud 106 is the microsurvey 1 16. The microsurvey 1 16 represents a tool created by the cognitive intelligence platform 102 that enables the knowledge cloud 106 to collect additional data associated with the user. The microsurvey 1 16 is originally provided by the cognitive intelligence platform 102 (by way of the cognitive agent 1 10) and the user provides data responsive to the microsurvey 1 16 using the user device 104. Additional details of the microsurvey 1 16 are described below.
[0084] Yet another example source that provides data to the knowledge cloud 106, is the cognitive intelligence platform 102, itself. In order to address the care needs and well being of the user, the cognitive intelligence platform 102 collects, analyzes, and processes information from the user, healthcare providers, and other eco-system participants, and consolidates and integrates the information into knowledge. The knowledge can be shared with the user and stored in the knowledge cloud 106. [0085] In various embodiments, the computing devices used by the service provider 1 12 and the facility 1 14 are communicatively coupled to the cognitive intelligence platform 102, by way of the network 120. While data is used individually by various entities including: a hospital, practice group, facility, or provider, the data is less frequently integrated and seamlessly shared between the various entities in the current art. The cognitive intelligence platform 102 provides a solution that integrates data from the various entities. That is, the cognitive intelligence platform 102 ingests, processes, and disseminates data and knowledge in an accessible fashion, where the reason for a particular answer or dissemination of data is accessible by a user.
[0086] In particular, the cognitive intelligence platform 102 (e.g., by way of the cognitive agent 1 10 interacting with the user) holistically manages and executes a health plan for durational care and wellness of the user (e.g., a patient or consumer). The health plan includes various aspects of durational management that is coordinated through a care continuum.
[0087] The cognitive agent 1 10 can implement various personas that are customizable. For example, the personas can include knowledgeable (sage), advocate (coach), and witty friend (jester). And in various embodiments, the cognitive agent 1 10 persists with a user across various interactions (e.g., conversations streams), instead of being transactional or transient. Thus, the cognitive agent 1 10 engages in dynamic conversations with the user, where the cognitive intelligence platform 102 continuously deciphers topics that a user wants to talk about. The cognitive intelligence platform 102 has relevant conversations with the user by ascertaining topics of interest from a given text posed in a natural language input by the user. Additionally the cognitive agent 1 10 connects the user to healthcare service providers, hyperlocal health communities, and a variety of services and tools/devices, based on an assessed interest of the user. In some embodiments, the cognitive agent 1 10 may connect the user to healthcare service providers that are in a vicinity of the geolocation of the user device 104 based on certain information stored in the hyperledger 1 18 (e.g., which healthcare service providers have valid authorizing credentials, location of the healthcare service providers, speciality of the healthcare service provider, health issue of the patient, etc.). [0088] As the cognitive agent 1 10 persists with the user, the cognitive agent 1 10 can also act as a coach and advocate while delivering pieces of information to the user based on tonal knowledge, human-like empathies, and motivational dialog within a respective conversational stream, where the conversational stream is a technical discussion focused on a specific topic. Overall, in response to a question— e.g., posed by the user in natural language— the cognitive intelligence platform 102 consumes data from and related to the user and computes an answer. The answer is generated using a rationale that makes use of common sense knowledge, domain knowledge, evidence-based medicine guidelines, clinical ontologies, and curated medical advice. Thus, the content displayed by the cognitive intelligence platform 102 (by way of the cognitive agent 1 10) is customized based on the language used to communicate with the user, as well as factors such as a tone, goal, and depth of topic to be discussed.
[0089] Overall, the cognitive intelligence platform 102 may be accessible to a user (e.g., patient entity), medical facility entities (e.g., a hospital system, clinics, pharmacies), medical personnel entities (e.g., physicians, pharmacists, dentists, optometrists, etc.), insurance provider entities, professional association entities, and government agency entities. Additionally, the cognitive intelligence platform 102 is accessible to paying entities interested in user behavior— e.g., the outcome of physician-consumer interactions in the context of disease or the progress of risk management. Additionally, entities that provides specialized services such as tests, therapies, and clinical processes that need risk based interactions can also receive filtered leads from the cognitive intelligence platform 102 for potential clients.
[0090] Conversational analysis
[0091] In various embodiments, the cognitive intelligence platform 102 is configured to perform conversational analysis in a general setting. The topics covered in the general setting is driven by the combination of agents (e.g., cognitive agent 1 10) selected by a user. In some embodiments, the cognitive intelligence platform 102 uses conversational analysis to identify the intent of the user (e.g., find data, ask a question, search for facts, find references, and find products) and a respective micro-theory in which the intent is logical. [0092] For example, the cognitive intelligence platform 102 applies conversational analysis to decode what the user is asking or stated, where the question or statement is in free form language (e.g., natural language). Prior to determining and sharing knowledge (e.g., with the user or the knowledge cloud 106), using conversational analysis, the cognitive intelligence platform 102 identifies an intent of the user and overall conversational focus.
[0093] The cognitive intelligence platform 102 responds to a statement or question according to the conversational focus and steers away from another detected conversational focus so as to focus on a goal defined by the cognitive agent 1 10. Given an example statement of a user,“I want to fly out tomorrow,” the cognitive intelligence platform 102 uses conversational analysis to determine an intent of the statement. Is the user aspiring to be bird-like or does he want to travel? In the former case, the micro-theory is that of human emotions whereas in the latter case, the micro-theory is the world of travel. Answers are provided to the statement depending on the micro-theory in which the intent logically falls.
[0094] The cognitive intelligence platform 102 utilize a combination of linguistics, artificial intelligence, and decision trees to decode what a user is asking or stating. The discussion includes methods and system design considerations and results from an existing embodiment. Additional details related to conversational analysis are discussed next.
[0095] Analyzing Conversational Context As Part of Conversational Analysis
For purposes of this discussion, the concept of analyzing conversational context as part of conversational analysis is now described. To analyze conversational context, the following steps are taken: 1 ) obtain text (e.g., receive a question) and perform translations; 2) understand concepts, entities, intents, and micro-theory; 3) relate and search; 4) ascertain the existence of related concepts; 5) logically frame concepts or needs; 6) understand the questions that can be answered from available data; and 7) answer the question. Each of the foregoing steps is discussed next, in turn.
[0096] Step 1 : Obtain text/question and perform translations
In various embodiments, the cognitive intelligence platform 102 (Figure 1 ) receives a text or question and performs translations as appropriate. The cognitive intelligence platform 102 supports various methods of input including text received from a touch interface (e.g., options presented in a microsurvey), text input through a microphone (e.g., words spoken into the user device), and text typed on a keyboard or on a graphical user interface. Additionally, the cognitive intelligence platform 102 supports multiple languages and auto translation (e.g., from English to Traditional/Simplified Chinese or vice versa).
[0097] The example text below is used to described methods in accordance with various embodiments herein:
“One day in January 1913. G.H. Hardy, a famous Cambridge University mathematician received a letter from an Indian named Srinivasa Ramanujan asking him for his opinion of 120 mathematical theorems that Ramanujan said he had discovered. To Hardy, many of the theorems made no sense. Of the others, one or two were already well-known. Ramanujan must be some kind of trickplayer, Hardy decided, and put the letter aside.
But all that day the letter kept hanging round Hardy. Might there by something in those wild-looking theorems?
That evening Hardy invited another brilliant Cambridge mathematician, J.
E. Littlewood, and the two men set out to assess the Indian’s worth. That incident was a turning point in the history of mathematics.
At the time, Ramanujan was an obscure Madras Port Trust clerk. A little more than a year later, he was at Cambridge University, and beginning to be recognized as one of the most amazing mathematicians the world has ever known. Though he died in 1920, much of his work was so far in advance of his time that only in recent years is it beginning to be properly understood.
Indeed, his results are helping solve today’s problems in computer science and physics, problems that he could have had no notion of.
For Indians, moreover, Ramanujan has a special significance. Ramanujan, through born in poor and ill-paid accountant’s family 100 years ago, has inspired many Indians to adopt mathematics as career.
Much of Ramanujan’s work is in number theory, a branch of mathematics that deals with the subtle laws and relationships that govern numbers. Mathematicians describe his results as elegant and beautiful but they are much too complex to be appreciated by laymen.
His life, though, is full of drama and sorrow. It is one of the great romantic stories of mathematics, a distressing reminder that genius can surface and rise in the most unpromising circumstances.”
[0098] The cognitive intelligence platform 102 analyzes the example text above to detect structural elements within the example text (e.g., paragraphs, sentences, and phrases). In some embodiments, the example text is compared to other sources of text such as dictionaries, and other general fact databases (e.g., Wikipedia) to detect synonyms and common phrases present within the example text.
[0099] Step 2: Understand concept, entity, intent, and micro-theory
In step 2, the cognitive intelligence platform 102 parses the text to ascertain concepts, entities, intents, and micro-theories. An example output after the cognitive intelligence platform 102 initially parses the text is shown below, where concepts, and entities are shown in bold.
“One day in January 1913. G.H. Hardy, a famous Cambridge University mathematician received a letter from an Indian named Srinivasa Ramanujan asking him for his opinion of 120 mathematical theorems that
Ramanujan said he had discovered. To Hardy, many of the theorems made no sense. Of the others, one or two were already well-known.
Ramanujan must be some kind of trickplayer, Hardy decided, and put the letter aside. But all that day the letter kept hanging round Hardy. Might there by something in those wild-looking theorems?
That evening Hardy invited another brilliant Cambridge mathematician,
J. E. Littlewood, and the two men set out to assess the Indian’s worth.
That incident was a turning point in the history of mathematics.
At the time, Ramanujan was an obscure Madras Port Trust clerk. A little more than a year later, he was at Cambridge University, and beginning to be recognized as one of the most amazing mathematicians the world has ever known. Though he died in 1920, much of his work was so far in advance of his time that only in recent years is it beginning to be properly understood.
Indeed, his results are helping solve today’s problems in computer science and physics, problems that he could have had no notion of.
For Indians, moreover, Ramanujan has a special significance.
Ramanujan, through born in poor and ill-paid accountant’s family 100 years ago, has inspired many Indians to adopt mathematics as career.
Much of Ramanujan’s work is in number theory, a branch of mathematics that deals with the subtle laws and relationships that govern numbers.
Mathematicians describe his results as elegant and beautiful but they are much too complex to be appreciated by laymen.
His life, though, is full of drama and sorrow. It is one of the great romantic stories of mathematics, a distressing reminder that genius can surface and rise in the most unpromising circumstances.”
[0100] For example, the cognitive intelligence platform 102 ascertains that Cambridge is a university - which is a full understanding of the concept. The cognitive intelligence platform (e.g., the cognitive agent 110) understands what humans do in Cambridge, and an example is described below in which the cognitive intelligence platform 102 performs steps to understand a concept.
[0101] For example, in the context of the above example, the cognitive agent 110 understands the following concepts and relationships:
Cambridge employed John Edensor Littlewood (1 )
Cambridge has the position Ramanujan’s position at Cambridge University (2) Cambridge employed G. H. Hardy. (3)
[0102] The cognitive agent 110 also assimilates other understandings to enhance the concepts, such as:
Cambridge has Trinity College as a suborganization. (4)
Cambride is located in Cambridge. (5)
Alan Turing is previously enrolled at Cambridge. (6)
Stephen Hawking attended Cambridge. (7) [0103] The statements (1 )-(7) are not picked at random. Instead the cognitive agent 1 10 dynamically constructs the statements (1 )-(7) from logic or logical inferences based on the example text above. Formally, the example statements (1 )-(7) are captured as follows:
(#$subOrganizations #$UniversityOfCambridge #$TrinityCollege-Cambridge- England) (8)
(#$placelnCity #$UniversityOfCambridge #$Cityof CambridgeEngland) (9)
(#$schooling #$AlanTuring #$UniversityOfCambridge #$PreviouslyEnrolled)(10) (#$hasAlumni #$UniversityOfCambridge #$StephenHawking) (1 1 )
[0104] Step 3: Relate and search
Next, in step 3, the cognitive agent 1 10 relates various entities and topics and follows the progression of topics in the example text. Relating includes the cognitive agent 1 10 understanding the different instances of Hardy are all the same person, and the instances of Hardy are different from the instances of Littlewood. The cognitive agent 1 10 also understands that the instances Hardy and Littlewood share some similarities— e.g., both are mathematicians and they did some work together at Cambridge on Number Theory. The ability to track this across the example text is referred to as following the topic progression with a context.
[0105] Step 4: Ascertain the existence of related concepts
Next, in Step 4, the cognitive agent 1 10 asserts non-existent concepts or relations to form new knowledge. Step 4 is an optional step for analyzing conversational context. Step 4 enhances the degree to which relationships are understood or different parts of the example text are understood together. If two concepts appear to be separate— e.g., a relationship cannot be graphically drawn or logically expressed between enough sets of concepts— there is a barrier to understanding. The barriers are overcome by expressing additional relationships. The additional relationships can be discovered using strategies like adding common sense or general knowledge sources (e.g., using the common sense data 208) or adding in other sources including a lexical variant database, a dictionary, and a thesaurus.
[0106] One example of concept progression from the example text is as follows: the cognitive agent 1 10 ascertains the phrase “theorems that Ramanujan said he had discovered” is related to the phrase“his results”, which is related to“Ramanujan’s work is in number theory, a branch of mathematics that deals with the subtle laws and relationships that govern numbers.”
[0107] Step 5: Logically frame concepts or needs
In Step 5, the cognitive agent 1 10 determines missing parameters— which can include fpr example, missing entities, missing elements, and missing nodes— in the logical framework (e.g., with a respective micro-theory). The cognitive agent 1 10 determines sources of data that can inform the missing parameters. Step 5 can also include the cognitive agent 1 10 adding common sense reasoning and finding logical paths to solutions.
[0108] With regards to the example text, some common sense concepts include:
Mathematicians develop Theorems. (12)
Theorems are hard to comprehend. (13)
Interpretations are not apparent for years. (14)
Applications are developed over time. (15)
Mathematicians collaborate and assess work. (16)
[0109] With regards to the example text, some passage concepts include:
Ramanujan did Theorems in Early 20th Century. (17)
Hardy assessed Ramanujan’s Theorems. (18)
Hardy collaborated with Littlewood. (19)
Hardy and Littlewood assessed Ramanujan’s work (20)
Within the micro-theory of the passage analysis, the cognitive agent 1 10 understands and catalogs available paths to answer questions. In Step 5, the cognitive agent 1 10 makes the case that the concepts (12)-(20) are expressed together.
[0110] Step 6: Understand the questions that can be answered from available data
In Step 6, the cognitive agent 1 10 parses sub-intents and entities. Given the example text, the following questions are answerable from the cognitive agent’s developed understanding of the example text, where the understanding was developed using information and context ascertained from the example text as well as the common sense data 208 (Figure 2):
What situation causally contributed to Ramanujan’s position at Cambridge? (21 )
Does the author of the passage regret that Ramanujan died prematurely? (22) Does the author of the passage believe that Ramanujan is a mathematical genius?(23) Based on the information that is understood by the cognitive agent 1 10, the questions (21 )-(23) can be answered.
[0111] By using an exploration method such as random walks, the cognitive agent 1 10 makes a determination as the paths that are plausible and reachable with the context (e.g., micro-theory) of the example text. Upon explorations, the cognitive agent 1 10 catalogs a set of meaningful questions. The set of meaningful questions are not asked, but instead explored based on the cognitive agent’s understanding of the example text.
[0112] Given the example text, an example of exploration that yields a positive result is: “a situation X that caused Ramanujan’s position.” In contrast, an example of exploration that causes irrelevant results is:“a situation Y that caused Cambridge.” The cognitive agent 1 10 is able to deduce that the latter exploration is meaningless, in the context of a micro-theory, because situations do not cause universities. Thus the cognitive agent 1 10 is able to deduce, there are no answers to Y, but there are answers to X.
[0113] Step 7 : Answer the question
In Step 7, the cognitive agent 1 10 provides a precise answer to a question. For an example question such as:“What situation causally contributed to Ramanujan’s position at Cambridge?” the cognitive agent 1 10 generates a precise answer using the example reasoning:
HardyandLittlewoodsEvaluatingOfRamanujansWork (24)
HardyBeliefThatRamanujanlsAnExpertlnMathematics (25)
HardysBeliefThatRamanujanlsAnExpertlnMathematicsAndAGenius (26)
In order to generate the above reasoning statements (24)-(26), the cognitive agent 1 10 utilizes a solver or prover in the context of the example text’s micro-theory— and associated facts, logical entities, relations, and assertions. As an additional example, the cognitive agent 1 10 uses a reasoning library that is optimized for drawing the example conclusions above within the fact, knowledge, and inference space (e.g., work space) that the cognitive agent 1 10 maintains.
[0114] By implementing the steps 1 -7, the cognitive agent 1 10 analyzes conversational context. The described method for analyzing conversation context can also be used for recommending items in conversations streams. A conversational stream is defined herein as a technical discussion focused on specific topics. As related to described examples herein, the specific topics relate to health (e.g., diabetes). Throughout the lifetime of a conversational stream, a cognitive agent 1 10 collect information over may channels such as chat, voice, specialized applications, web browsers, contact centers, and the like.
[0115] By implementing the methods to analyze conversational context, the cognitive agent 1 10 can recommend a variety of topics and items throughout the lifetime of the conversational stream. Examples of items that can be recommended by the cognitive agent 1 10 include: surveys, topics of interest, local events, devices or gadgets, dynamically adapted health assessments, nutritional tips, reminders from a health events calendar, and the like.
[0116] Accordingly, the cognitive intelligence platform 102 provides a platform that codifies and takes into consideration a set of allowed actions and a set of desired outcomes. The cognitive intelligence platform 102 relates actions, the sequences of subsequent actions (and reactions), desired sub-outcomes, and outcomes, in a way that is transparent and logical (e.g., explainable). The cognitive intelligence platform 102 can plot a next best action sequence and a planning basis (e.g., health care plan template, or a financial goal achievement template), also in a manner that is explainable. The cognitive intelligence platform 102 can utilize a critical thinking engine 108 and a natural language database 122 (e.g., a linguistics and natural language understanding system) to relate conversation material to actions.
[0117] For purposes of this discussion, several examples are discussed in which conversational analysis is applied within the field of durational and whole-health management for a user. The discussed embodiments holistically address the care needs and well-being of the user during the course of his life. The methods and systems described herein can also be used in fields outside of whole-health management, including: phone companies that benefits from a cognitive agent; hospital systems or physicians groups that want to coach and educate patients; entities interested in user behavior and the outcome of physician-consumer interactions in terms of a progress of disease or risk management; entities that provide specialized services (e.g., test, therapies, clinical processes) to filter leads; and sellers, merchants, stores and big box retailers that want to understand which product to sell. [0118] FIG. 2 shows additional details of a knowledge cloud, in accordance with various embodiments. In particular, FIG. 2 illustrates various types of data received from various sources, including service provider data 202, facility data 204, microsurvey data 206, commonsense data 208, domain data 210, evidence-based guidelines 212, subject matter ontology data 214, and curated advice 216. The types of data represented by the service provider data 202 and the facility data 204 include any type of data generated by the service provider 1 12 and the facility 1 14, and the above examples are not meant to be limiting. Thus, the example types of data are not meant to be limiting and other types of data can also be stored within the knowledge cloud 106 without departing from the scope of this disclosure.
[0119] The service provider data 202 is data provided by the service provider 1 12 (described in FIG. 1 ) and the facility data 204 is data provided by the facility 1 14 (described in FIG. 1). For example, the service provider data 202 includes medical records of a respective patient of a service provider 1 12 that is a doctor. In another example, the facility data 204 includes an attendance record of the respective patient, where the facility 1 14 is a gym. The microsurvey data 206 is data provided by the user device 104 responsive to questions presented in the microsurvey 1 16 (FIG. 1 ).
[0120] Common sense data 208 is data that has been identified as“common sense”, and can include rules that govern a respective concept and used as glue to understand other concepts.
[0121] Domain data 210 is data that is specific to a certain domain or subject area. The source of the domain data 210 can include digital libraries. In the healthcare industry, for example, the domain data 210 can include data specific to the various specialties within healthcare such as, obstetrics, anesthesiology, and dermatology, to name a few examples. In the example described herein, the evidence-based guidelines 212 include systematically developed statements to assist practitioner and patient decisions about appropriate health care for specific clinical circumstances.
[0122] Curated advice 214 includes advice from experts in a subject matter. The curated advice 214 can include peer-reviewed subject matter, and expert opinions. Subject matter ontology data 216 includes a set of concepts and categories in a subject matter or domain, where the set of concepts and categories capture properties and relationships between the concepts and categories.
[0123] In particular, FIG. 3 illustrates an example subject matter ontology 300 that is included as part of the subject matter ontology data 216.
[0124] FIG. 4 illustrates aspects of a conversation 400 between a user and the cognitive intelligence platform 102, and more specifically the cognitive agent 1 10. For purposes of this discussion, the user 401 is a patient of the service provider 1 12. The user interacts with the cognitive agent 1 10 using a computing device, a smart phone, or any other device configured to communicate with the cognitive agent 1 10 (e.g., the user device 104 in FIG. 1 ). The user can enter text into the device using any known means of input including a keyboard, a touchscreen, and a microphone. The conversation 400 represents an example graphical user interface (GUI) presented to the user 401 on a screen of his computing device.
[0125] Initially, the user asks a general question, which is treated by the cognitive agent 1 10 as an“originating question.” The originating question is classified into any number of potential questions (“pursuable questions”) that are pursued during the course of a subsequent conversation. In some embodiments, the pursuable questions are identified based on a subject matter domain or goal. In some embodiments, classification techniques are used to analyze language (e.g., such as those outlined in HPS ID20180901 -01_method for conversational analysis). Any known text classification technique can be used to analyze language and the originating question. For example, in line 402, the user enters an originating question about a subject matter (e.g., blood sugar) such as:“Is a blood sugar of 90 normal”? I
[0126] In response to receiving an originating question, the cognitive intelligence platform 102 (e.g., the cognitive agent 1 10 operating in conjunction with the critical thinking engine 108) performs a first round of analysis (e.g., which includes conversational analysis) of the originating question and, in response to the first round of analysis, creates a workspace and determines a first set of follow up questions.
[0127] In various embodiments, the cognitive agent 1 10 may go through several rounds of analysis executing within the workspace, where a round of analysis includes: identifying parameters, retrieving answers, and consolidating the answers. The created workspace can represent a space where the cognitive agent 1 10 gathers data and information during the processes of answering the originating question. In various embodiments, each originating question corresponds to a respective workspace. The conversation orchestrator 124 can assess data present within the workspace and query the cognitive agent 1 10 to determine if additional data or analysis should be performed.
[0128] In particular, the first round of analysis is performed at different levels, including analyzing natural language of the text, and analyzing what specifically is being asked about the subject matter (e.g., analyzing conversational context). The first round of analysis is not based solely on a subject matter category within which the originating question is classified. For example, the cognitive intelligence platform 102 does not simply retrieve a predefined list of questions in response to a question that falls within a particular subject matter, e.g., blood sugar. That is, the cognitive intelligence platform 102 does not provide the same list of questions for all questions related to the particular subject matter. Instead, for example, the cognitive intelligence platform 102 creates dynamically formulated questions, curated based on the first round of analysis of the originating question.
[0129] In particular, during the first round of analysis, the cognitive agent 1 10 parses aspects of the originating question into associated parameters. The parameters represent variables useful for answering the originating question. For example, the question“is a blood sugar of 90 normal” may be parsed and associated parameters may include, an age of the inquirer, the source of the value 90 (e.g., in home test or a clinical test), a weight of the inquirer, and a digestive state of the user when the test was taken (e.g., fasting or recently eaten). The parameters identify possible variables that can impact, inform, or direct an answer to the originating question.
[0130] For purposes of the example illustrated in FIG. 4, in the first round of analysis, the cognitive intelligence platform 102 inserts each parameter into the workspace associated with the originating question (line 402). Additionally, based on the identified parameters, the cognitive intelligence platform 102 identifies a customized set of follow up questions (“a first set of follow-up questions). The cognitive intelligence platform 102 inserts first set of follow-up questions in the workspace associated with the originating question. [0131] The follow up questions are based on the identified parameters, which in turn are based on the specifics of the originating question (e.g., related to an identified micro theory). Thus the first set of follow-up questions identified in response to, if a blood sugar is normal, will be different from a second set of follow up questions identified in response to a question about how to maintain a steady blood sugar.
[0132] After identifying the first set of follow up questions, in this example first round of analysis, the cognitive intelligence platform 102 determines which follow up question can be answered using available data and which follow-up question to present to the user. As described over the next few paragraphs, eventually, the first set of follow-up questions is reduced to a subset (“a second set of follow-up questions”) that includes the follow-up questions to present to the user.
[0133] In various embodiments, available data is sourced from various locations, including a user account, the knowledge cloud 106, and other sources. Other sources can include a service that supplies identifying information of the user, where the information can include demographics or other characteristics of the user (e.g., a medical condition, a lifestyle). For example, the service can include a doctor’s office or a physical therapist’s office.
[0134] Another example of available data includes the user account. For example, the cognitive intelligence platform 102 determines if the user asking the originating question, is identified. A user can be identified if the user is logged into an account associated with the cognitive intelligence platform 102. User information from the account is a source of available data. The available data is inserted into the workspace of the cognitive agent 1 10 as a first data.
[0135] Another example of available data includes the data stored within the knowledge cloud 106. For example, the available data includes the service provider data 202 (FIG. 2), the facility data 204, the microsurvey data 206, the common sense data 208, the domain data 210, the evidence-based guidelines 212, the curated advice 214, and the subject matter ontology data 216. Additionally data stored within the knowledge cloud 106 includes data generated by the cognitive intelligence platform 102, itself.
[0136] Follow up questions presented to the user (the second set of follow-up questions) are asked using natural language and are specifically formulated (“dynamically formulated question”) to elicit a response that will inform or fulfill an identified parameter. Each dynamically formulated question can target one parameter at a time. When answers are received from the user in response to a dynamically formulated question, the cognitive intelligence platform 102 inserts the answer into the workspace. In some embodiments, each of the answers received from the user and in response to a dynamically formulated question, is stored in a list of facts. Thus the list of facts include information specifically received from the user, and the list of facts is referred to herein as the second data.
[0137] With regards to the second set of follow-up questions (or any set of follow-up questions), the cognitive intelligence platform 102 calculates a relevance index, where the relevance index provides a ranking of the questions in the second set of follow-up questions. The ranking provides values indicative of how relevant a respective follow-up question is to the originating question. To calculate the relevance index, the cognitive intelligence platform 102 can use conversations analysis techniques described in HPS ID20180901 -01_method. In some embodiments, the first set or second set of follow up questions is presented to the user in the form of the microsurvey 1 16.
[0138] In this first round of analysis, the cognitive intelligence platform 102 consolidates the first and second data in the workspace and determines if additional parameters need to be identified, or if sufficient information is present in the workspace to answer the originating question. In some embodiments, the cognitive agent 1 10 (FIG. 1 ) assesses the data in the workspace and queries the cognitive agent 1 10 to determine if the cognitive agent 1 10 needs more data in order to answer the originating question. The conversation orchestrator 124 executes as an interface
[0139] For a complex originating question, the cognitive intelligence platform 102 can go through several rounds of analysis. For example, in a first round of analysis the cognitive intelligence platform 102 parses the originating question. In a subsequent round of analysis, the cognitive intelligence platform 102 can create a sub question, which is subsequently parsed into parameters in the subsequent round of analysis. The cognitive intelligence platform 102 is smart enough to figure out when all information is present to answer an originating question without explicitly programming or pre-programming the sequence of parameters that need to be asked about. [0140] In some embodiments, the cognitive agent 1 10 is configured to process two or more conflicting pieces of information or streams of logic. That is, the cognitive agent 1 10, for a given originating question can create a first chain of logic and a second chain of logic that leads to different answers. The cognitive agent 1 10 has the capability to assess each chain of logic and provide only one answer. That is, the cognitive agent 1 10 has the ability to process conflicting information received during a round of analysis.
[0141] Additionally, at any given time, the cognitive agent 1 10 has the ability to share its reasoning (chain of logic) to the user. If the user does not agree with an aspect of the reasoning, the user can provide that feedback which results in affecting change in a way the critical thinking engine 108 analyzed future questions and problems.
[0142] Subsequent to determining enough information is present in the workspace to answer the originating question, the cognitive agent 1 10 answers the question, and additionally can suggest a recommendation or a recommendation (e.g., line 418). The cognitive agent 1 10 suggests the reference or the recommendation based on the context and questions being discussed in the conversation (e.g., conversation 400). The reference or recommendation serves as additional handout material to the user and is provided for informational purposes. The reference or recommendation often educates the user about the overall topic related to the originating question.
[0143] In the example illustrated in FIG. 4, in response to receiving the originating questions (line 402), the cognitive intelligence platform 102 (e.g., the cognitive agent 1 10 in conjunction with the critical thinking engine 108) parses the originating question to determine at least one parameter: location. The cognitive intelligence platform 102 categorizes this parameter, and a corresponding dynamically formulated question in the second set of follow-up questions. Accordingly, in lines 404 and 406, the cognitive agent 1 10 responds by notifying the user“I can certainly check this...” and asking the dynamically formulated question“I need some additional information in order to answer this question, was this an in-home glucose test or was it done by a lab or testing service?”
[0144] The user 401 enters his answer in line 408:“It was an in-home test,” which the cognitive agent 1 10 further analyzes to determine additional parameters: e.g., a digestive state, where the additional parameter and a corresponding dynamically formulated question as an additional second set of follow-up questions. Accordingly, the cognitive agent 1 10 poses the additional dynamically formulated question in lines 410 and 412: “One other question...” and“How long before you took that in-home glucose test did you have a meal?” The user provides additional information in response“it was about an hour” (line 414).
[0145] The cognitive agent 1 10 consolidates all the received responses using the critical thinking engine 108 and the knowledge cloud 106 and determines an answer to the initial question posed in line 402 and proceeds to follow up with a final question to verify the user’s initial question was answered. For example, in line 416, the cognitive agent 1 10 responds:“It looks like the results of your test are at the upper end of the normal range of values for a glucose test given that you had a meal around an hour before the test.” The cognitive agent 1 10 provides additional information (e.g., provided as a link):“Here is something you could refer,” (line 418), and follows up with a question“Did that answer your question?” (line 420).
[0146] As described above, due to the natural language database 108, in various embodiments, the cognitive agent 1 10 is able to analyze and respond to questions and statements made by a user 401 in natural language. That is, the user 401 is not restricted to using certain phrases in order for the cognitive agent 1 10 to understand what a user 401 is saying. Any phrasing, similar to how the user would speak naturally can be input by the user and the cognitive agent 1 10 has the ability to understand the user.
[0147] FIG. 5 illustrates a cognitive map or“knowledge graph” 500, in accordance with various embodiments. In particular, the knowledge graph represents a graph traversed by the cognitive intelligence platform 102, when assessing questions from a user with Type 2 diabetes. Individual nodes in the knowledge graph 500 represent a health artifact or relationship that is gleaned from direct interrogation or indirect interactions with the user (by way of the user device 104).
[0148] In one embodiment, the cognitive intelligence platform 102 identified parameters for an originating question based on a knowledge graph illustrated in FIG. 5. For example, the cognitive intelligence platform 102 parses the originating question to determine which parameters are present for the originating question. In some embodiments, the cognitive intelligence platform 102 infers the logical structure of the parameters by traversing the knowledge graph 500, and additionally, knowing the logical structure enables the cognitive agent 1 10 to formulate an explanation as to why the cognitive agent 1 10 is asking a particular dynamically formulated question.
[0149] FIG. 6 shows a method, in accordance with various embodiments. The method is performed at a user device (e.g., the user device 102) and in particular, the method is performed by an application executing on the user device 102. The method begins with initiating a user registration process (block 602). The user registration can include tasks such as displaying a GUI asking the user to enter in personal information such as his name and contact information.
[0150] Next, the method includes prompting the user to build his profile (block 604). In various embodiments, building his profile includes displaying a GUI asking the user to enter in additional information, such as age, weight, height, and health concerns. In various embodiments, the steps of building a user profile is progressive, where building the user profile takes place over time. In some embodiments, the process of building the user profile is presented as a game. Where a user is presented with a ladder approach to create a“star profile”. Aspects of a graphical user interface presented during the profile building step are additionally discussed in FIGS. 8A-8B.
[0151] The method contemplates the build profile (block 604) method step is optional. For example, the user may complete building his profile at this method step 604, the user may complete his profile at a later time, or the cognitive intelligence platform 102 builds the user profile over time as more data about the user is received and processed. For example, the user is prompted to build his profile, however, the user fails to enter in information or skips the step. The method proceeds to prompting a user to complete a microsurvey (block 606). In some embodiments, the cognitive agent 1 10 uses answers received in response to the microsurvey to build the profile of the user. Overall, the data collected through the user registration process is stored and used later as available data to inform answers to missing parameters.
[0152] Next, the cognitive agent 1 10 proceeds to scheduling a service (block 608). The service can be scheduled such that it aligns with a health plan of the user or a protocol that results in a therapeutic goal. Next, the cognitive agent 1 10 proceeds to reaching agreement on a care plan (block 610). [0153] FIGS. 7 A, 7B, and 7C, show methods, in accordance with various embodiments. The methods are performed at the cognitive intelligence platform. In particular, in FIG. 7A, the method begins with receiving a first data including user registration data (block 702); and providing a health assessment and receiving second data including health assessment answers (block 704). In various embodiments, the health assessment is a micro-survey with dynamically formulated questions presented to the user.
[0154] Next the method determine if the user provided data to build a profile (decision block 706). If the user did not provide data to build the profile, the method proceeds to building profile based on first and second data (block 708). If the user provided data to build the profile, the method proceeds to block 710.
[0155] At block 710, the method 700 proceeds to receiving an originating question about a specific subject matter, where the originating question is entered using natural language, and next the method proceeds to performing a round of analysis (block 712). Next, the method determines if sufficient data is present to answer originating questions (decision block 714). If no, the method proceeds to block 712 and the method performs another round of analysis. If yes, the method proceeds to setting goals (block 716), then tracking progress (block 718), and then providing updates in a news feed (block 720).
[0156] In FIG. 7B, a method 730 of performing a round of analysis is illustrated. The method begins with parsing the originating question into parameters (block 732); fulfilling the parameters from available data (block 734); inserting available data (first data) into a working space (block 736); creating a dynamically formulated question to fulfill a parameter (block 738); and inserting an answer to the dynamically formulated question into the working space (block 740).
[0157] In FIG. 7C, a method 750 is performed at the cognitive intelligence platform. The method begins with receiving a health plan (block 752); accessing the knowledge cloud and retrieving first data relevant to the subject matter (block 754); and engaging in conversation with the user using natural language to general second data (block 756). In various embodiments, the second data can include information such as a user’s scheduling preferences, lifestyle choices, and education level. During the process of engaging in conversation, the method includes educating and informing the user (block 758). Next, the method includes defining an action plan based, at least in part, on the first and second data (block 760); setting goals (block 762); and tracking progress (block 764).
[0158] FIGS. 8A, 8B, 8C, and 8D illustrate aspects of interactions between a user and the cognitive intelligence platform 102, in accordance with various embodiments. As a user interacts with the GUI, the cognitive intelligence platform 102 continues to build a database of knowledge about the user based on questions asked by the user as well as answers provided by the user (e.g., available data as described in FIG. 4). In particular, FIG. 8A displays a particular screen shot 801 of the user device 104 at a particular instance in time. The screen shot 801 displays a graphical user interface (GUI) with menu items associated with a user’s (e.g., Nathan) profile including Messages from the doctor (element 804), Goals (element 806), Trackers (element 808), Health Record (element 810), and Health Plans & Assessments (element 812). The menu item Health Plans & Assessments (element 812), additionally include child menu items: Health Assessments (element 812a), Health plans (812b).
[0159] The screen shot 803 displays the same GUI as in the screen shot 801 , however, the user has scrolled down the menu, such that additional menu items below Health Plans & Assessments (element 812) are shown. The additional menu items include Reports (element 814), Health Team (element 816), and Purchases and Services (Element 818). Furthermore, additional menu items include Add your Health Team (element 820) and Read about improving your A1 C levels (element 822).
[0160] For purposes of the example in FIG. 8A, the user selects the menu item Health Plans (element 812b). Accordingly, in response to the receiving the selection of the menu item Health Plans, types of health plans are shown, as illustrated in screen shot 805. The types of health plans shown with respect to Nathan’s profile include: Diabetes (element 824), Cardiovascular, Asthma, and Back Pain. Each type of health plan leads to separate displays. For purposes of this example in FIG. 8A, the user selects the Diabetes (element 824) health plan.
[0161] In FIG. 8B, the screenshot 851 is seen in response to the user’s selection of Diabetes (element 824). Example elements displayed in screenshot 851 include: Know How YOUR Body Works (element 852); Know the Current Standards of Care (element 864); Expertise: Self-Assessment (element 866); Expertise: Seif-Care/Treatment (element 868); and Managing with Lifestyle (element 870). Managing with Lifestyle (element 870) focuses and tracks actions and lifestyle actions that a user can engage in. As a user’s daily routine helps to manage diabetes, managing the user’s lifestyle is important. The cognitive agent 1 10 can align a user’s respective health plan based on a health assessment at enrollment. In various embodiments, the cognitive agent 1 10 aligns the respective health plan with an interest of the user, a goal and priority of the user, and lifestyle factors of the user— including exercise, diet and nutrition, and stress reduction.
[0162] Each of these elements 852, 864, 866, 868, and 870 can display additional sub elements depending on a selection of the user. For example, as shown in the screen shot 851 , Know How YOUR Body Works (element 852) includes additional sub-elements: Diabetes Personal Assessment (854); and Functional Changes (856). Additional sub elements under Functional Changes (856) include: Blood Sugar Processing (858) and Manageable Risks (860). Finally, the sub-element Manageable Risks (860) includes an additional sub-element Complications (862). For purposes of this example, the user selects the Diabetes Personal Assessment (854) and the screen shot 853 shows a GUI (872) associated with the Diabetes Personal Assessment.
[0163] The Diabetes Personal Assessment includes questions such as“Approximately what year was your Diabetes diagnosed” and corresponding elements a user can select to answer including“Year” and“Can’t remember” (element 874). Additional questions include“Is your Diabetes Type 1 or Type 2” and corresponding answers selectable by a user include“Type 1 ,”“Type 2,” and“Not sure” (element 876). Another question includes “Do you take medication to manage your blood sugar” and corresponding answers selectable by a user include“Yes” and“No” (element 878). An additional question asks “Do you have a healthcare professional that works with you to manage your Diabetes” and corresponding answers selectable by the user include“Yes” and“No” (element 880).
[0164] In various embodiments, the cognitive intelligence platform 102 collects information about the user based on responses provided by the user or questions asked by the user as the user interacts with the GUI. For example, as the user views the screen shot 851 , if the user asks if diabetes is curable, this question provides information about the user such as a level of education of the user. [0165] FIG. 8C illustrates aspects of an additional tool— e.g., a microsurvey— provided to the user that helps gather additional information about the user (e.g., available data). In various embodiments, a micro-survey represent a short targeted survey, where the questions presented in the survey are limited to a respective micro-theory. A microsurvey can be created by the cognitive intelligence platform 102 for several different purposes, including: completing a user profile, and informing a missing parameter during the process of answering an originating question.
[0166] In FIG. 8C, the microsurvey 882 gathers information related to health history, such as“when did you last see a doctor or other health professional to evaluate your health” where corresponding answers selectable by the user include specifying a month and year,“don’t recall,” and“haven’t had an appointment” (element 884). An additional question asks“Which listed characteristics or conditions are true for you now? In the past?” where corresponding answers selectable by the user include“Diabetes during pregnancy,” “Over Weight,” “Insomnia,” and “Allergies” (element 886). Each of the corresponding answer in element 886 also includes the option to indicate whether the characteristics or conditions are true for the user“Now”,“Past,” or“Current Treatment.”
[0167] In FIG. 8D, aspects of educating a user are shown in the screen shot 890. The screen shot displays an article titled “Diabetes: Preventing High Blood Sugar Emergencies,” and proceeds to describe when high blood sugar occurs and other information related to high blood sugar. The content displayed in the screen shot 890 is searchable and hearable as a podcast.
[0168] Accordingly, the cognitive agent 1 10 can answer a library of questions and provide content for many questions a user has as it related to diabetes. The information provided for purposes of educating a user is based on an overall health plan of the user, which is based on meta data analysis of interactions with the user, and an analysis of the education level of the user.
[0169] FIGS. 9A-9B illustrate aspects of a conversational stream, in accordance with various embodiments. In particular, FIG. 9A displays an example conversational stream between a user and the cognitive agent 1 10. The screen shot 902 is an example of a dialogue that unfolds between a user and the cognitive agent 1 10, after the user has registered with the cognitive intelligence platform 102. In the screen shot 902, the cognitive agent 1 10 begins by stating“Welcome, would you like to watch a video to help you better understand my capabilities” (element 904). The cognitive agent provides an option to watch the video (element 906). In response, the user inputs text“that’s quite impressive” (element 908). In various embodiments, the user inputs text using the input box 916, which instructs the user to“Talk to me or type your question”.
[0170] Next, the cognitive agent 1 10 says“Thank you. I look forward to helping you meet your health goals!” (element 910). At this point, the cognitive agent 1 10 can probe the user for additional data by offering a health assessment survey (e.g., a microsurvey) (element 914). The cognitive agent 1 10 prompts the user to fill out the health assessment by stating:“To help further personalize your health improvement experience, I would like to start by getting to know you and your health priorities. The assessment will take about 10 minutes. Let’s get started!” (element 912).
[0171] In FIG. 9B, an additional conversational stream between the user and the cognitive agent 1 10 is shown. In this example conversational stream, the user previously completed a health assessment survey. The conversational stream can follow the example conversational stream discussed in FIG. 9A.
[0172] In the screen shot 918, the cognitive agent acknowledges the user’s completion of the health assessment survey (element 920) and provides additional resources to the user (element 922). In element 920, the cognitive agent states:“Congrats on taking the first step toward better health! Based upon your interest, I have some recommended health improvement initiatives for you to consider,” and presents the health improvement initiatives. In the example conversational stream, the user gets curious about a particular aspect of his health and states: “While I finished my health assessment, it made me remember that a doctor I saw before moving here told me that my blood sugar test was higher than normal.” (element 924). After receiving the statement in element 924, the cognitive agent 1 10 treats the statement as an originating question and undergoes an initial round of analysis (and additional rounds of analysis as needed) as described above.
[0173] The cognitive agent 1 10 presents an answer as shown in screen shot 926. For example, the cognitive agent 1 10 states:“You mentioned in your health assessment that you have been diagnosed with Diabetes, and my health plan can help assure your overall compliance” (element 928). The cognitive agent further adds:“The following provides you a view of our health plan which builds upon your level of understanding as well as additional recommendations to assist in monitoring your blood sugar levels” (element 930). The cognitive agent 1 10 provides the user with the option to view his Diabetes Health Plan (element 932).
[0174] The user responds“That would be great, how do we get started” (element 934). The cognitive agent 1 10 receives the user’s response as another originated question and undergoes an initial round of analysis (and additional rounds of analysis as needed) as described above. In the example screen shot 926, the cognitive agent 1 10 determines additional information is needed and prompts the user for additional information.
[0175] FIG. 10 illustrates an additional conversational stream, in accordance with various embodiments. In particular, in the screen shot 1000, the cognitive agent 1 10 elicit feedback (element 1002) to determine whether the information provided to the user was useful to the user.
[0176] FIG. 11 illustrates aspects of an action calendar, in accordance with various embodiments. The action calendar is managed through the conversational stream between the cognitive agent 1 10 and the user. The action calendar aligns to care and wellness protocols, which are personalized to the risk condition or wellness needs of the user. The action calendar is also contextually aligned (e.g., what is being required or searched by the user) and hyper local (e.g., aligned to events and services provided in the local community specific to the user).
[0177] FIG. 12 illustrates aspects of a feed, in accordance with various embodiments. The feed allows a user to explore new opportunities and celebrate achieving goals (e.g., therapeutic or wellness goals). The feed provides a searchable interface (element 1202).
[0178] The feed provides an interface where the user accesses a personal log of activities the user is involved in. The personal log is searchable. For example, if the user reads an article recommended by the cognitive agent 1 10 and highlights passages, the highlighted passages are accessible through the search. Additionally, the cognitive agent 1 10 can initiate a conversational stream focused on subject matter related to the highlighted passages.
[0179] The feed provides an interface to celebrate mini achievements and successes in the user’s personal goals (e.g., therapeutic or wellness goals). In the feed, the cognitive agent 1 10 is still available (ribbon 1204) to help search, guide, or steer the user toward a therapeutic or wellness goal.
[0180] FIG. 13 illustrates aspects of a hyper-local community, in accordance with various embodiments. A hyper-local community is a digital community that is health and wellness focused and encourages the user to find opportunities for themselves and get involved in a community that is physically close to the user. The hyper-local community allows a user to access a variety of care and wellness resources within his community and example recommendations include: Nutrition; Physical Activities; Healthcare Providers; Educations; Local Events; Services; Deals and Stores; Charities; and Products offered within the community. The cognitive agent 1 10 optimizes suggestions which help the user progress towards a goal as opposed to providing open ended access to hyper local assets. The recommendations are curated and monitored for relevance to the user, based on the user’s goals and interactions between the user and the cognitive agent 1 10.
[0181] Accordingly, the cognitive intelligence platform provides several core features including:
1 ) the ability to identify an appropriate action plan using narrative style interactions that generates data that includes intent and causation and using narrative style interactions;
2) monitoring: integration of offline to online clinical results across the functional medicine clinical standards;
3) the knowledge cloud that includes a comprehensive knowledge base of thousands of health related topics, an educational guide to better health aligned to western and eastern culture;
4) coaching using artificial intelligence; and
5) profile and health store that offers a holistic profile of each consumers health risks and interactions, combined with a repository of services, products, lab tests, devices, deals, supplements, pharmacy & telemedicine.
[0182] FIG. 14 illustrates a detailed view of a computing device 1400 that can be used to implement the various components described herein, according to some embodiments. In particular, the detailed view illustrates various components that can be included in the user device 104 illustrated in FIG. 1 , as well as the several computing devices implementing the cognitive intelligence platform 102. The computing device 1400 may also be used by the service provider 1 12 and/or the facility 1 14. As shown in FIG. 14, the computing device 1400 can include a processor 1402 that represents a microprocessor or controller for controlling the overall operation of the computing device 1400. The computing device 1400 can also include a user input device 1408 that allows a user of the computing device 1400 to interact with the computing device 1400. For example, the user input device 1408 can take a variety of forms, such as a button, keypad, dial, touch screen, audio input interface, visual/image capture input interface, input in the form of sensor data, and so on. Still further, the computing device 1400 can include a display 1410 that can be controlled by the processor 1402 to display information to the user. A data bus 1416 can facilitate data transfer between at least a storage device 1440, the processor 1402, and a controller 1413. The controller 1413 can be used to interface with and control different equipment through an equipment control bus 1414. The computing device 1400 can also include a network/bus interface 141 1 that couples to a data link 1412. In the case of a wireless connection, the network/bus interface 141 1 can include a wireless transceiver.
[0183] As noted above, the computing device 1400 also includes the storage device 1440, which can comprise a single disk or a collection of disks (e.g., hard drives), and includes a storage management module that manages one or more partitions within the storage device 1440. In some embodiments, storage device 1440 can include flash memory, semiconductor (solid-state) memory or the like. The computing device 1400 can also include a Random-Access Memory (RAM) 1420 and a Read-Only Memory (ROM) 1422. The ROM 1422 can store programs, utilities or processes to be executed in a non volatile manner. The RAM 1420 can provide volatile data storage, and stores instructions related to the operation of processes and applications executing on the computing device.
[0184] FIG. 15 shows a method (1500), in accordance with various embodiments, for answering a user-generated natural language medical information query based on a diagnostic conversational template.
[0185] In the method as shown in FIG. 15, an artificial intelligence-based diagnostic conversation agent receives a user-generated natural language medical information query as entered by a user through a user interface on a computer device (FIG. 15, block 1502). In some embodiments, the artificial intelligence-based diagnostic conversation agent is the conversation agent 110 of FIG. 1 . In some embodiments the computer device is the mobile device 104 of FIG. 1 . One example of a user-generated natural language medical information query as entered by a user through a user interface is the question "Is a blood sugar of 90 normal?" as shown in line 402 of FIG. 4. In some embodiments, receiving a user-generated natural language medical information query as entered by a user through a user interface on a computer device (FIG. 15, block 1502) is Step 1 as earlier discussed in the context of "Analyzing Conversational Context As Part of Conversational Analysis".
[0186] In response to the user-generated natural language medical information query, the artificial intelligence-based diagnostic conversation agent selects a diagnostic fact variable set relevant to generating a medical advice query answer for the user-generated natural language medical information query by classifying the user-generated natural language medical information query into one of a set of domain-directed medical query classifications associated with respective diagnostic fact variable sets (FIG. 15, block 1504). In some embodiments, the artificial intelligence-based diagnostic conversation agent selecting a diagnostic fact variable set relevant to generating a medical advice query answer for the user-generated natural language medical information query by classifying the user-generated natural language medical information query into one of a set of domain-directed medical query classifications associated with respective diagnostic fact variable sets (FIG. 15, block 1504) is accomplished through one or more of Steps 2-6 as earlier discussed in the context of "Analyzing Conversational Context As Part of Conversational Analysis".
[0187] FIG. 15 further shows compiling user-specific medical fact variable values for one or more respective medical fact variables of the diagnostic fact variable set (FIG. 15, block 1506). Compiling user-specific medical fact variable values for one or more respective medical fact variables of the diagnostic fact variable set (FIG. 15, block 1506) may include one or more of Steps 2-6 as earlier discussed in the context of "Analyzing Conversational Context As Part of Conversational Analysis".
[0188] In response to the user-specific medical fact variable values, the artificial intelligence-based diagnostic conversation agent generates a medical advice query answer in response to the user-generated natural language medical information query (FIG. 15, block 1508). In some embodiments, this is Step 7 as earlier discussed in the context of "Analyzing Conversational Context As Part of Conversational Analysis".
[0189] In some embodiments, compiling user-specific medical fact variable values (FIG. 15, block 1506) includes extracting a first set of user-specific medical fact variable values from a local user medical information profile associated with the user-generated natural language medical information query and requesting a second set of user specific medical fact variable values through natural-language questions sent to the user interface on the mobile device (e.g. the microsurvey data 206 of FIG. 2 that came from the microsurvey 116 of FIG.1 ). The local user medical information profile can be the profile as generated in FIG. 7 A at block 708.
[0190] In some embodiments, compiling user-specific medical fact variable values (FIG. 15, block 1506) includes extracting a third set of user-specific medical fact variable values that are lab result values from the local user medical information profile associated with the user generated natural language medical information query. The local user medical information profile can be the profile as generated in FIG. 7A at block 708.
[0191] In some embodiments, compiling user-specific medical fact variable values (FIG. 15, block 1506) includes extracting a fourth set of user-specific medical variable values from a remote medical data service profile associated with the local user medical information profile. The remote medical data service profile can be the service provider data 202 of FIG. 2, which can come from the service provider 112 of FIG.1 . The local user medical information profile can be the profile as generated in FIG. 7A at block 708.
[0192] In some embodiments, compiling user-specific medical fact variable values (FIG. 15, block 1506) includes extracting a fifth set of user-specific medical variable values from demographic characterizations provided by a remote data service analysis of the local user medical information profile. The remote demographic characterizations can be the service provider data 202 of FIG. 2, which can come from the service provider 112 of FIG.1 . The local user medical information profile can be the profile as generated in FIG. 7A at block 708.
[0193] In some embodiments, generating the medical advice query answer (FIG. 15, block 1508) includes providing a treatment action-item recommendation in response to user-specific medical fact values that may be non-responsive to the medical question presented in the user-generated natural language medical information query. Such an action could define an action plan based on the data compiled (FIG. 15, block 1506), as shown in FIG. 7C, block 758.
[0194] In some embodiments, generating the medical advice query answer (FIG. 15, block 1506) includes providing a medical education media resource in response to user- specific medical fact variable values that may be non-responsive to the medical question presented in the user-generated natural language medical information query. Such an action could serve to educate and inform the user, as in block 758 of FIG. 7C.
[0195] In some embodiments, selecting a diagnostic fact variable set relevant to generating a medical advice query answer for the user-generated natural language medical information query by classifying the user-generated natural language medical information query into one of a set of domain-directed medical query classifications associated with respective diagnostic fact variable sets (FIG. 15, block 1504) includes classifying the user-generated natural language medical information query into one of a set of domain-directed medical query classifications based on relevance to the local user medical information profile associated with the user-generated natural language medical information query. The local user medical information profile can be the profile as generated in FIG. 7A at block 708.
[0196] In some embodiments, the method (1500) for answering a user-generated natural language medical information query based on a diagnostic conversational template is implemented as a computer program product in a computer-readable medium.
[0197] In some embodiments, the system and method 1500 shown in FIG. 15 and described above is implemented on the computing device 1400 shown in FIG. 14.
[0198] FIG. 16 shows a method (1600), in accordance with various embodiments, for answering a user-generated natural language query based on a conversational template.
[0199] In the method as shown in FIG. 16, an artificial intelligence-based conversation agent receives a user-generated natural language query as entered by a user through a user interface (FIG. 16, block 1602). In some embodiments, the artificial intelligence- based conversation agent is the conversation agent 110 of FIG. 1 . In some embodiments, the user interface is on a computer device. In some embodiments the computer device is the mobile device 104 of FIG. 1. One example of a user-generated natural language query as entered by a user through a user interface is the question "Is a blood sugar of 90 normal?" as shown in line 402 of FIG. 4. In some embodiments, receiving a user generated natural language query as entered by a user through a user interface on a computer device (FIG. 16, block 1602) is Step 1 as earlier discussed in the context of "Analyzing Conversational Context As Part of Conversational Analysis".
[0200] In response to the user-generated natural language query, the artificial intelligence-based conversation agent selects a fact variable set relevant to generating a query answer for the user-generated natural language query by classifying the user generated natural language query into one of a set of domain-directed query classifications associated with respective fact variable sets (FIG. 16, block 1604). In some embodiments, the artificial intelligence-based conversation agent selecting a fact variable set relevant to generating a query answer for the user-generated natural language query by classifying the user-generated natural language query into one of a set of domain-directed query classifications associated with respective fact variable sets (FIG. 16, block 1604) is accomplished through one or more of Steps 2-6 as earlier discussed in the context of "Analyzing Conversational Context As Part of Conversational Analysis".
[0201] FIG. 16 further shows compiling user-specific variable values for one or more respective fact variables of the fact variable set (FIG. 16, block 1606). Compiling user- specific fact variable values for one or more respective fact variables of the fact variable set (FIG. 16, block 1606) may include one or more of Steps 2-6 as earlier discussed in the context of "Analyzing Conversational Context As Part of Conversational Analysis".
[0202] In response to the user-specific fact variable values, the artificial intelligence- based conversation agent generates a query answer in response to the user-generated natural language query (FIG. 16, block 1608). In some embodiments, this is Step 7 as earlier discussed in the context of "Analyzing Conversational Context As Part of Conversational Analysis".
[0203] In some embodiments, compiling user-specific fact variable values (FIG. 16, block 1606) includes extracting a first set of user-specific fact variable values from a local user profile associated with the user-generated natural language query and requesting a second set of user specific variable values through natural-language questions sent to the user interface on the mobile device (e.g. the microsurvey data 206 of FIG. 2 that came from the microsurvey 116 of FIG.1 ). The local user profile can be the profile as generated in FIG. 7 A at block 708. In some embodiments, the natural language questions sent to the user interface on the mobile device can be a part of a conversation template.
[0204] In some embodiments, compiling user-specific fact variable values (FIG. 16, block 1606) includes extracting a third set of user-specific fact variable values that are test result values from the local user profile associated with the user generated natural language query. The local user profile can be the profile as generated in FIG. 7A at block 708. In some embodiments, compiling user-specific fact variable values (FIG. 16, block 1606) includes extracting a fourth set of user-specific variable values from a remote data service profile associated with the local user profile. The remote data service profile can be the service provider data 202 of FIG. 2, which can come from the service provider 112 of FIG.1. The local user profile can be the profile as generated in FIG. 7A at block 708.
[0205] In some embodiments, compiling user-specific fact variable values (FIG. 16, block 1606) includes extracting a fifth set of user-specific variable values from demographic characterizations provided by a remote data service analysis of the local user profile. The remote demographic characterizations can be the service provider data 202 of FIG. 2, which can come from the service provider 112 of FIG.1. The local user profile can be the profile as generated in FIG. 7A at block 708.
[0206] In some embodiments, generating the query answer (FIG. 16, block 1608) includes providing a action-item recommendation in response to user-specific fact values that may be non-responsive to the question presented in the user-generated natural language query. Such an action could define an action plan based on the data compiled (FIG. 16, block 1606), as shown in FIG. 7C, block 758.
[0207] In some embodiments, generating the advice query answer (FIG. 16, block 1606) includes providing a education media resource in response to user-specific fact variable values that may be non-responsive to the question presented in the user generated natural language query. Such an action could serve to educate and inform the user, as in block 758 of FIG. 7C. [0208] In some embodiments, selecting a fact variable set relevant to generating a query answer for the user-generated natural language query by classifying the user-generated natural language query into one of a set of domain-directed query classifications associated with respective fact variable sets (FIG. 16, block 1604) includes classifying the user-generated natural language query into one of a set of domain-directed query classifications based on relevance to the local user profile associated with the user generated natural language query. The local user profile can be the profile as generated in FIG. 7 A at block 708.
[0209] In some embodiments, the method (1600) for answering a user-generated natural language query based on a conversational template is implemented as a computer program product in a computer-readable medium.
[0210] In some embodiments, the system and method shown in FIG. 16 and described above is implemented in the cognitive intelligence platform 102 shown in FIG. 1.
[0211] In the cognitive intelligence platform 102, a cognitive agent 110 is configured for receiving a user-generated natural language query at an artificial intelligence-based conversation agent from a user interface on a user device 104 (FIG. 16, block 1602).
[0212] A critical thinking engine 108 is configured for, responsive to content of the user generated natural language query, selecting a fact variable set relevant to generating a query answer for the user-generated natural language query by classifying the user generated natural language query into one of a set of domain-directed query classifications associated with respective fact variable sets (FIG. 16, block 1604).
[0213] Included is a knowledge cloud 106 that compiles user-specific fact variable values for one or more respective fact variables of the fact variable set (FIG. 16, block 1606)
[0214] Responsive to the fact variable values, the cognitive agent 110 is further configured for generating the query answer in response to the user-generated natural language query (FIG. 16, block 1606).
[0215] In some embodiments, the system and method 1600 shown in FIG. 16 and described above is implemented on the computing device 1400 shown in FIG. 14.
[0216] FIG. 17 shows a computer-implemented method 1700 for answering natural language medical information questions posed by a user of a medical conversational interface of a cognitive artificial intelligence system. In some embodiments, the method 1700 is implemented on a cognitive intelligence platform. In some embodiments, the cognitive intelligence platform is the cognitive intelligence platform 102 as shown in FIG. 1 . In some embodiments, the cognitive intelligence platform is implemented on the computing device 1400 shown in FIG. 14.
[0217] The method 1700 involves receiving a user-generated natural language medical information query from a medical conversational user interface at an artificial intelligence- based medical conversation cognitive agent (block 1702). In some embodiments, receiving a user-generated natural language medical information query from a medical conversational user interface at an artificial intelligence-based medical conversation cognitive agent (block 1702) is performed by a cognitive agent that is a part of the cognitive intelligence platform and is configured for this purpose. In some embodiments, the artificial intelligence-based diagnostic conversation agent is the conversation agent 110 of FIG. 1 . One example of a user-generated natural language medical information query is "Is a blood sugar of 90 normal?" as shown in line 402 of FIG. 4. In some embodiments, the user interface is on the mobile device 104 of FIG. 1 . In some embodiments, receiving a user-generated natural language medical information query from a medical conversational user interface at an artificial intelligence-based medical conversation cognitive agent (block 1702) is Step 1 as earlier discussed in the context of "Analyzing Conversational Context As Part of Conversational Analysis".
[0218] The method 1700 further includes extracting a medical question from a user of the medical conversational user interface from the user-generated natural language medical information query (block 1704). In some embodiments, extracting a medical question from a user of the medical conversational user interface from the user-generated natural language medical information query (block 1704) is performed by a critical thinking engine configured for this purpose. In some embodiments, the critical thinking engine is the critical thinking engine 108 of FIG. 1 . In some embodiments, extracting a medical question from a user of the medical conversational user interface from the user generated natural language medical information query (block 1704) is accomplished through one or more of Steps 2-6 as earlier discussed in the context of "Analyzing Conversational Context As Part of Conversational Analysis". [0219] The method 1700 includes compiling a medical conversation language sample (block 1706). In some embodiments, compiling a medical conversation language sample (block 1706) is performed by a critical thinking engine configured for this purpose. In some embodiments, the critical thinking engine is the critical thinking engine 108 of FIG. 1 . The medical conversation language sample can include items of health-information- related-text derived from a health-related conversation between the artificial intelligence- based medical conversation cognitive agent and the user. In some embodiments compiling a medical conversation language sample (block 1706) is accomplished through one or more of Steps 2-6 as earlier discussed in the context of "Analyzing Conversational Context As Part of Conversational Analysis".
[0220] The method 1700 involves extracting internal medical concepts and medical data entities from the medical conversation language sample (block 1708). In some embodiments, extracting internal medical concepts and medical data entities from the medical conversation language sample (block 1708) is performed by a critical thinking engine configured for this purpose. In some embodiments, the critical thinking engine is the critical thinking engine 108 of FIG. 1. The internal medical concepts can include descriptions of medical attributes of the medical data entities. In some embodiments, extracting internal medical concepts and medical data entities from the medical conversation language sample (block 1708) is accomplished through one or more of Steps 2-6 as earlier discussed in the context of "Analyzing Conversational Context As Part of Conversational Analysis".
[0221] The method 1700 involves inferring a therapeutic intent of the user from the internal medical concepts and the medical data entities (block 1710). In some embodiments, inferring a therapeutic intent of the user from the internal medical concepts and the medical data entities (block 1710) is performed by a critical thinking engine configured for this purpose. In some embodiments, the critical thinking engine is the critical thinking engine 108 of FIG. 1. In some embodiments, inferring a therapeutic intent of the user from the internal medical concepts and the medical data entities (block 1710) is accomplished as in Step 2 as earlier discussed in the context of "Analyzing Conversational Context As Part of Conversational Analysis". [0222] The method 1700 includes generating a therapeutic paradigm logical framework 1800 for interpreting of the medical question (block 1712). In some embodiments, generating a therapeutic paradigm logical framework 1800 for interpreting of the medical question (block 1712) is performed by a critical thinking engine configured for this purpose. In some embodiments, the critical thinking engine is the critical thinking engine 108 of FIG. 1 . In some embodiments, generating a therapeutic paradigm logical framework 1800 for interpreting of the medical question (block 1712) is accomplished as in Step 5 as earlier discussed in the context of "Analyzing Conversational Context As Part of Conversational Analysis".
[0223] FIG. 18 shows an example therapeutic paradigm logical framework 1800. The therapeutic paradigm logical framework 1800 includes a catalog 1802 of medical logical progression paths 1804 from the medical question 1806 to respective therapeutic answers 1810.
[0224] Each of the medical logical progression paths 1804 can include one or more medical logical linkages 1808 from the medical question 1806 to a therapeutic path- specific answer 1810.
[0225] The medical logical linkages 1808 can include the internal medical concepts 1812 and external therapeutic paradigm concepts 1814 derived from a store of medical subject matter ontology data 1816. In some embodiments, the store of subject matter ontology data 1816 is contained in a knowledge cloud. In some embodiments, the knowledge cloud is the knowledge cloud 102 of FIGS. 1 and 2. In some embodiments, the subject matter ontology data 1816 is the subject matter ontology data 216 of FIG. 2. In some embodiments, the subject matter ontology data 1816 includes the subject matter ontology 300 of FIG. 3.
[0226] The method 1700 shown in FIG. 17 further includes selecting a likely medical information path from among the medical logical progression paths 1804 to a likely path- dependent medical information answer based at least in part upon the therapeutic intent of the user (block 1714). In some embodiments, selecting a likely medical information path from among the medical logical progression paths 1804 to a likely path-dependent medical information answer based at least in part upon the therapeutic intent of the user (block 1714 is performed by a critical thinking engine configured for this purpose. In some embodiments, the critical thinking engine is the critical thinking engine 108 of FIG. 1. The selection can also be based in part upon the sufficiency of medical diagnostic data to complete the medical logical linkages 1808. In some embodiments, selection can also be based in part upon the sufficiency of medical diagnostic data to complete the medical logical linkages 1808 can be performed by a critical thinking engine that is further configured for this purpose. In some embodiments, the critical thinking engine is the critical thinking engine 108 of FIG. 1. The medical diagnostic data can include user- specific medical diagnostic data. The selection can also be based in part upon treatment sub-intents including tactical constituents related to the therapeutic intent of the user by the store of medical subject matter ontology data 1816. In some embodiments, selection based in part upon treatment sub-intents including tactical constituents related to the therapeutic intent of the user by the store of medical subject matter ontology data 1816 can be performed by a critical thinking engine further configured for this purpose. In some embodiments, the critical thinking engine is the critical thinking engine 108 of FIG. 1. The selection can further occur after requesting additional medical diagnostic data from the user. An example of requesting additional medical diagnostic data from the user is shown in FIG. 4 on line 406 "I need some additional information in order to answer this question, was this an in-home glucose test or was it done by a lab or testing service". In some embodiments, the process of selection after requesting additional medical diagnostic data from the user can be performed by a critical thinking engine further configured for this purpose. In some embodiments, the critical thinking engine is the critical thinking engine 108 of FIG. 1 . In some embodiments, selecting a likely medical information path from among the medical logical progression paths 1804 to a likely path-dependent medical information answer based at least in part upon the therapeutic intent of the user (block 1714) is accomplished through one or more of Steps 5-6 as earlier discussed in the context of "Analyzing Conversational Context As Part of Conversational Analysis".
[0227] The method 1700 involves answering the medical question by following the likely medical information path to the likely path-dependent medical information answer (block 1716). In some embodiments, answering the medical question by following the likely medical information path to the likely path-dependent medical information answer (block 1716) is performed by a critical thinking engine configured for this purpose. In some embodiments, the critical thinking engine is the critical thinking engine 108 of FIG. 1. In some embodiments, answering the medical question by following the likely medical information path to the likely path-dependent medical information answer (block 1716) is accomplished as in Step 7as earlier discussed in the context of "Analyzing Conversational Context As Part of Conversational Analysis".
[0228] The method 1700 can further include relating medical inference groups of the internal medical concepts. In some embodiments, relating medical inference groups of the internal medical concepts is performed by a critical thinking engine further configured for this purpose. In some embodiments, the critical thinking engine is the critical thinking engine 108 of FIG. 1. Relating medical inference groups of the internal medical concepts can be based at least in part on shared medical data entities for which each internal medical concept of a medical inference group of internal medical concepts describes a respective medical data attribute. In some embodiments, relating medical inference groups of the internal medical concepts based at least in part on shared medical data entities for which each internal medical concept of a medical inference group of internal medical concepts describes a respective medical data attribute can be performed by a critical thinking engine further configured for this purpose. In some embodiments, the critical thinking engine is the critical thinking engine 108 of FIG. 1.
[0229] In some embodiments, the method 1700 of FIG. 17 is implemented as a computer program product in a computer-readable medium.
[0230] FIG. 19 shows a computer-implemented method 1900 for answering natural language questions posed by a user of a conversational interface of an artificial intelligence system. In some embodiments, the method 1900 is implemented on a cognitive intelligence platform. In some embodiments, the cognitive intelligence platform is the cognitive intelligence platform 102 as shown in FIG. 1. In some embodiments, the cognitive intelligence platform is implemented on the computing device 1400 shown in FIG. 14.
[0231] The method 1900 involves receiving a user-generated natural language query at an artificial intelligence-based conversation agent (block 1902). In some embodiments, receiving a user-generated natural language query from a conversational user interface at an artificial intelligence-based conversation cognitive agent (block 1902) is performed by a cognitive agent that is a part of the cognitive intelligence platform and is configured for this purpose. In some embodiments, the artificial intelligence-based conversation agent is the conversation agent 110 of FIG. 1 . One example of a user-generated natural language query is "Is a blood sugar of 90 normal?" as shown in line 402 of FIG. 4. In some embodiments, the user interface is on the mobile device 104 of FIG. 1 . In some embodiments, receiving a user-generated natural language query from a conversational user interface at an artificial intelligence-based conversation cognitive agent (block 1902) is Step 1 as earlier discussed in the context of "Analyzing Conversational Context As Part of Conversational Analysis".
[0232] The method 1900 further includes extracting a question from a user of the conversational user interface from the user-generated natural language query (block 1904). In some embodiments, extracting a question from a user of the conversational user interface from the user-generated natural language query (block 1904) is performed by a critical thinking engine configured for this purpose. In some embodiments, the critical thinking engine is the critical thinking engine 108 of FIG. 1. In some embodiments, extracting a question from a user of the conversational user interface from the user generated natural language query (block 1904) is accomplished through one or more of Steps 2-6 as earlier discussed in the context of "Analyzing Conversational Context As Part of Conversational Analysis".
[0233] The method 1900 includes compiling a language sample (block 1906). In some embodiments, compiling a language sample (block 1906) is performed by a critical thinking engine configured for this purpose. In some embodiments, the critical thinking engine is the critical thinking engine 108 of FIG. 1. The language sample can include items of health-information-related-text derived from a health-related conversation between the artificial intelligence-based conversation cognitive agent and the user. In some embodiments compiling a language sample (block 1906) is accomplished through one or more of Steps 2-6 as earlier discussed in the context of "Analyzing Conversational Context As Part of Conversational Analysis".
[0234] The method 1900 involves extracting internal concepts and entities from the language sample (block 1908). In some embodiments, extracting internal concepts and entities from the language sample (block 1908) is performed by a critical thinking engine configured for this purpose. In some embodiments, the critical thinking engine is the critical thinking engine 108 of FIG. 1. The internal concepts can include descriptions of attributes of the entities. In some embodiments, extracting internal concepts and entities from the language sample (block 1908) is accomplished through one or more of Steps 2-6 as earlier discussed in the context of "Analyzing Conversational Context As Part of Conversational Analysis".
[0235] The method 1900 involves inferring an intent of the user from the internal concepts and the entities (block 1910). In some embodiments, inferring an intent of the user from the internal concepts and the entities (block 1910) is performed by a critical thinking engine configured for this purpose. In some embodiments, the critical thinking engine is the critical thinking engine 108 of FIG. 1. In some embodiments, inferring an intent of the user from the internal concepts and the entities (block 1910) is accomplished as in Step 2 as earlier discussed in the context of "Analyzing Conversational Context As Part of Conversational Analysis".
[0236] The method 1900 includes generating a logical framework 2000 for interpreting of the question (block 1912). In some embodiments, generating a logical framework 2000 for interpreting of the question (block 1912) is performed by a critical thinking engine configured for this purpose. In some embodiments, the critical thinking engine is the critical thinking engine 108 of FIG. 1. In some embodiments, generating a logical framework 2000 for interpreting of the question (block 1912) is accomplished as in Step 5 as earlier discussed in the context of "Analyzing Conversational Context As Part of Conversational Analysis".
[0237] FIG. 20 shows an example logical framework 2000. The logical framework 2000 includes a catalog 2002 of paths 2004 from the question 2006 to respective answers
2010
[0238] Each of the paths 2004 can include one or more linkages 2008 from the question 2006 to a path-specific answer 2010.
[0239] The linkages 2008 can include the internal concepts 2012 and external concepts 2014 derived from a store of subject matter ontology data 2016. In some embodiments, the store of subject matter ontology data 2016 is contained in a knowledge cloud. In some embodiments, the knowledge cloud is the knowledge cloud 102 of FIGS. 1 and 2. In some embodiments, the subject matter ontology data 2016 is the subject matter ontology data 216 of FIG. 2. In some embodiments, the subject matter ontology data 2016 includes the subject matter ontology 300 of FIG. 3.
[0240] The method 1900 shown in FIG. 19 further includes selecting a likely path from among the paths 2004 to a likely path-dependent answer based at least in part upon the intent of the user (block 1914). In some embodiments, selecting a likely path from among the paths 2004 to a likely path-dependent answer based at least in part upon the intent of the user (block 1914 is performed by a critical thinking engine configured for this purpose. In some embodiments, the critical thinking engine is the critical thinking engine 108 of FIG. 1 . The selection can also be based in part upon the sufficiency of data to complete the linkages 2008. In some embodiments, selection can also be based in part upon the sufficiency of data to complete the linkages 2008 can be performed by a critical thinking engine that is further configured for this purpose. In some embodiments, the critical thinking engine is the critical thinking engine 108 of FIG. 1 . The data can include user-specific data. The selection can also be based in part upon treatment sub-intents including tactical constituents related to the intent of the user by the store of subject matter ontology data 2016. In some embodiments, selection based in part upon treatment sub intents including tactical constituents related to the intent of the user by the store of subject matter ontology data 2016 can be performed by a critical thinking engine further configured for this purpose. In some embodiments, the critical thinking engine is the critical thinking engine 108 of FIG. 1 . The selection can further occur after requesting additional data from the user. An example of requesting additional data from the user is shown in FIG. 4 on line 406 "I need some additional information in order to answer this question, was this an in-home glucose test or was it done by a lab or testing service". In some embodiments, the process of selection after requesting additional data from the user can be performed by a critical thinking engine further configured for this purpose. In some embodiments, the critical thinking engine is the critical thinking engine 108 of FIG. 1 . In some embodiments, selecting a likely path from among the paths 2004 to a likely path-dependent answer based at least in part upon the intent of the user (block 1914) is accomplished through one or more of Steps 5-6 as earlier discussed in the context of "Analyzing Conversational Context As Part of Conversational Analysis". [0241] The method 1900 involves answering the question by following the likely path to the likely path-dependent answer (block 1916). In some embodiments, answering the question by following the likely path to the likely path-dependent answer (block 1916) is performed by a critical thinking engine configured for this purpose. In some embodiments, the critical thinking engine is the critical thinking engine 108 of FIG. 1. In some embodiments, answering the question by following the likely path to the likely path- dependent answer (block 1916) is accomplished as in Step 7as earlier discussed in the context of "Analyzing Conversational Context As Part of Conversational Analysis".
[0242] The method 1900 can further include relating inference groups of the internal concepts. In some embodiments, relating inference groups of the internal concepts is performed by a critical thinking engine further configured for this purpose. In some embodiments, the critical thinking engine is the critical thinking engine 108 of FIG. 1. Relating inference groups of the internal concepts can be based at least in part on shared entities for which each internal concept of an inference group of internal concepts describes a respective data attribute. In some embodiments, relating inference groups of the internal concepts based at least in part on shared entities for which each internal concept of an inference group of internal concepts describes a respective data attribute can be performed by a critical thinking engine further configured for this purpose. In some embodiments, the critical thinking engine is the critical thinking engine 108 of FIG. 1 .
[0243] In some embodiments, the method 1900 of FIG. 19 is implemented as a computer program product in a computer-readable medium.
[0244] FIG. 21 shows a computer-implemented method 2100 for providing therapeutic medical action recommendations in response to a medical information natural language conversation stream. In some embodiments, the method 2100 is implemented as a computer program product in a non-transitory computer-readable medium. In some embodiments, the method 2100 of FIG. 21 is implemented as a system for providing therapeutic medical action recommendations in response to a medical information natural language conversation stream. The system can include a knowledge cloud, a critical thinking engine, and a cognitive agent. In some embodiments, the knowledge cloud is the knowledge cloud 102 of FIGS. 1 and 2. In some embodiments, the critical thinking engine is the critical thinking engine 108 of FIG 1 . In some embodiments, the cognitive agent is the cognitive agent 110 of FIG. 1.
[0245] In some embodiments, the method 2100 involves receiving segments of a medical information natural language conversation stream at an artificial intelligence- based health information conversation agent from a medical information conversation user interface (block 2102). In some embodiments the user interface is on the mobile device 104 of FIG. 1. In some embodiments, receiving segments of a medical information natural language conversation stream at an artificial intelligence-based health information conversation agent from a medical information conversation user interface (block 2102) is performed on a processor of a computer. In some embodiments, receiving segments of a medical information natural language conversation stream at an artificial intelligence- based health information conversation agent from a medical information conversation user interface (block 2102) is performed at a knowledge clout configured for this purpose. In some embodiments, receiving segments of a medical information natural language conversation stream at an artificial intelligence-based health information conversation agent from a medical information conversation user interface (block 2102) is Step 1 as earlier discussed in the context of "Analyzing Conversational Context As Part of Conversational Analysis".
[0246] In some embodiments, the method 2100 further involves defining a desired clinical management outcome objective relevant to health management criteria and related health management data attributes of the user medical information profile in response to medical information content of a user medical information profile associated with the medical information natural language conversation stream (block 2104). In some embodiments, defining a desired clinical management outcome objective relevant to health management criteria and related health management data attributes of the user medical information profile in response to medical information content of a user medical information profile associated with the medical information natural language conversation stream (block 2104) is performed on a processor of a computer. In some embodiments, defining a desired clinical management outcome objective relevant to health management criteria and related health management data attributes of the user medical information profile in response to medical information content of a user medical information profile associated with the medical information natural language conversation stream (block 2104) is performed by a critical thinking engine configured for this purpose.
[0247] In some embodiments, defining a desired clinical management outcome objective relevant to health management criteria and related health management data attributes of the user medical information profile in response to medical information content of a user medical information profile associated with the medical information natural language conversation stream (block 2104) is accomplished through one or more of Steps 2-6 as earlier discussed in the context of "Analyzing Conversational Context As Part of Conversational Analysis".
[0248] In some embodiments, the method 2100 further involves identifying a set of potential therapeutic interventions correlated to advancement of the clinical management outcome objective (block 2106). In some embodiments, identifying a set of potential therapeutic interventions correlated to advancement of the clinical management outcome objective (block 2106) is performed on a processor of a computer. In some embodiments, identifying a set of potential therapeutic interventions correlated to advancement of the clinical management outcome objective (block 2106) is performed by a critical thinking engine configured for this purpose. In some embodiments, identifying a set of potential therapeutic interventions correlated to advancement of the clinical management outcome objective (block 2106) is accomplished through one or more of Steps 2-6 as earlier discussed in the context of "Analyzing Conversational Context As Part of Conversational Analysis".
[0249] In some embodiments, the method 2100 further involves selecting from among the set of potential therapeutic interventions correlated to advancement of the clinical management outcome objective a medical intervention likely to advance the clinical management outcome objective (block 2108). In some embodiments, selecting from among the set of potential therapeutic interventions correlated to advancement of the clinical management outcome objective a medical intervention likely to advance the clinical management outcome objective (block 2108) is based on a set of factors including the likelihood of patient compliance with the a recommendation for the a medical intervention and a statistical likelihood that the action will materially advance the clinical management outcome objective. In some embodiments, selecting from among the set of potential therapeutic interventions correlated to advancement of the clinical management outcome objective a medical intervention likely to advance the clinical management outcome objective (block 2108) is based on a set of factors comprising likelihood total expected cost expectation associated with the recommendation for the a medical intervention likely to advance the clinical management outcome objective. In some embodiments, selecting from among the set of potential therapeutic interventions correlated to advancement of the clinical management outcome objective a medical intervention likely to advance the clinical management outcome objective (block 2108) is performed on a processor of a computer. In some embodiments, selecting from among the set of potential therapeutic interventions correlated to advancement of the clinical management outcome objective a medical intervention likely to advance the clinical management outcome objective (block 2108) is performed by a critical thinking engine configured for this purpose. In some embodiments, selecting from among the set of potential therapeutic interventions correlated to advancement of the clinical management outcome objective a medical intervention likely to advance the clinical management outcome objective (block 2108) is accomplished through one or more of Steps 2-6 as earlier discussed in the context of "Analyzing Conversational Context As Part of Conversational Analysis".
[0250] In some embodiments, the method 2100 further involves presenting in the medical information natural language conversation stream a therapeutic advice conversation stream segment designed to stimulate execution of the medical intervention likely to advance the clinical management outcome objective (block 2110). In some embodiments, the stimulation can be a motivation. In some embodiments, presenting in the medical information natural language conversation stream a therapeutic advice conversation stream segment designed to stimulate execution of the medical intervention likely to advance the clinical management outcome objective (block 2110) includes presenting to the user in the medical information natural language conversation stream a therapeutic advice conversation stream segment explaining a cost-benefit analysis comparing likely results of performance of the action likely to advance the clinical management outcome objective and likely results of non-performance of the action likely to advance the clinical management outcome objective. In some embodiments, presenting in the medical information natural language conversation stream a therapeutic advice conversation stream segment designed to stimulate execution of the medical intervention likely to advance the clinical management outcome objective (block 2110) includes presenting to the user in the medical information natural language conversation stream a conversation stream reinforcing the recommendation after expiration of a delay period. In some embodiments, presenting in the medical information natural language conversation stream a therapeutic advice conversation stream segment designed to stimulate execution of the medical intervention likely to advance the clinical management outcome objective (block 2110) includes presenting to the user in the medical information natural language conversation stream a therapeutic advice conversation stream segment explaining reasons for selection of the clinical management outcome objective. In some embodiments, presenting in the medical information natural language conversation stream a therapeutic advice conversation stream segment designed to stimulate execution of the medical intervention likely to advance the clinical management outcome objective (block 2110) includes notifying third party service providers of the clinical management outcome objective and the recommendation. In some embodiments, presenting in the medical information natural language conversation stream a therapeutic advice conversation stream segment designed to stimulate execution of the medical intervention likely to advance the clinical management outcome objective (block 2110) is performed on a processor of a computer. In some embodiments, presenting in the medical information natural language conversation stream a therapeutic advice conversation stream segment designed to stimulate execution of the medical intervention likely to advance the clinical management outcome objective (block 2110) is performed by a cognitive agent configured for this purpose. In some embodiments, presenting in the medical information natural language conversation stream a therapeutic advice conversation stream segment designed to stimulate execution of the medical intervention likely to advance the clinical management outcome objective (block 2110) is Steps 7 as earlier discussed in the context of "Analyzing Conversational Context As Part of Conversational Analysis".
[0251] In some embodiments, the method 2100 further involves presenting to the user in the medical information natural language conversation stream a therapeutic advice conversation stream segment explaining a correlation between the medical intervention likely to advance the clinical management outcome objective and achievement of the clinical management outcome objective (block 2112). In some embodiments, presenting to the user in the medical information natural language conversation stream a therapeutic advice conversation stream segment explaining a correlation between the medical intervention likely to advance the clinical management outcome objective and achievement of the clinical management outcome objective (block 2112) is performed on a processor of a computer. In some embodiments, presenting to the user in the medical information natural language conversation stream a therapeutic advice conversation stream segment explaining a correlation between the medical intervention likely to advance the clinical management outcome objective and achievement of the clinical management outcome objective (block 2112) is performed by a critical thinking engine configured for this purpose. In some embodiments, presenting to the user in the medical information natural language conversation stream a therapeutic advice conversation stream segment explaining a correlation between the medical intervention likely to advance the clinical management outcome objective and achievement of the clinical management outcome objective (block 2112) is Steps 7 as earlier discussed in the context of "Analyzing Conversational Context As Part of Conversational Analysis".
[0252] FIG. 22 shows a computer-implemented method 2200 for providing action recommendations in response to a natural language conversation stream. In some embodiments, the method 2200 is implemented as a computer program product in a non- transitory computer-readable medium. In some embodiments, the method 2200 of FIG. 22 is implemented as a system for providing action recommendations in response to a natural language conversation stream. The system can include a knowledge cloud, a critical thinking engine, and a cognitive agent. In some embodiments, the knowledge cloud is the knowledge cloud 102 of FIGS. 1 and 2. In some embodiments, the critical thinking engine is the critical thinking engine 108 of FIG 1. In some embodiments, the cognitive agent is the cognitive agent 110 of FIG. 1.
[0253] In some embodiments, the method 2200 involves receiving segments of a natural language conversation stream at an artificial intelligence-based health information conversation agent from a conversation user interface (block 2202). In some embodiments the user interface is on the mobile device 104 of FIG. 1 . In some embodiments, receiving segments of a natural language conversation stream at an artificial intelligence-based health information conversation agent from a conversation user interface (block 2202) is performed on a processor of a computer. In some embodiments, receiving segments of a natural language conversation stream at an artificial intelligence-based health information conversation agent from a conversation user interface (block 2202) is performed at a knowledge clout configured for this purpose. In some embodiments, receiving segments of a natural language conversation stream at an artificial intelligence-based health information conversation agent from a conversation user interface (block 2202) is Step 1 as earlier discussed in the context of "Analyzing Conversational Context As Part of Conversational Analysis".
[0254] In some embodiments, the method 2200 further involves defining a desired user outcome objective relevant to health management criteria and related health management data attributes of the user profile in response to content of a user profile associated with the natural language conversation stream (block 2204). In some embodiments, defining a desired user outcome objective relevant to health management criteria and related health management data attributes of the user profile in response to content of a user profile associated with the natural language conversation stream (block 2204) is performed on a processor of a computer. In some embodiments, defining a desired user outcome objective relevant to health management criteria and related health management data attributes of the user profile in response to content of a user profile associated with the natural language conversation stream (block 2204) is performed by a critical thinking engine configured for this purpose.
[0255] In some embodiments, defining a desired user outcome objective relevant to health management criteria and related health management data attributes of the user profile in response to content of a user profile associated with the natural language conversation stream (block 2204) is accomplished through one or more of Steps 2-6 as earlier discussed in the context of "Analyzing Conversational Context As Part of Conversational Analysis".
[0256] In some embodiments, the method 2200 further involves identifying a set of potential actions correlated to advancement of the user outcome objective (block 2206). In some embodiments, identifying a set of potential actions correlated to advancement of the user outcome objective (block 2206) is performed on a processor of a computer. In some embodiments, identifying a set of potential actions correlated to advancement of the user outcome objective (block 2206) is performed by a critical thinking engine configured for this purpose. In some embodiments, identifying a set of potential actions correlated to advancement of the user outcome objective (block 2206) is accomplished through one or more of Steps 2-6 as earlier discussed in the context of "Analyzing Conversational Context As Part of Conversational Analysis".
[0257] In some embodiments, the method 2200 further involves selecting from among the set of potential actions correlated to advancement of the user outcome objective an action likely to advance the user outcome objective (block 2208). In some embodiments, selecting from among the set of potential actions correlated to advancement of the user outcome objective an action likely to advance the user outcome objective (block 2208) is based on a set of factors including the likelihood of patient compliance with the a recommendation for the an action and a statistical likelihood that the action will materially advance the user outcome objective. In some embodiments, selecting from among the set of potential actions correlated to advancement of the user outcome objective an action likely to advance the user outcome objective (block 2208) is based on a set of factors comprising likelihood total expected cost expectation associated with the recommendation for the an action likely to advance the user outcome objective. In some embodiments, selecting from among the set of potential actions correlated to advancement of the user outcome objective an action likely to advance the user outcome objective (block 2208) is performed on a processor of a computer. In some embodiments, selecting from among the set of potential actions correlated to advancement of the user outcome objective an action likely to advance the user outcome objective (block 2208) is performed by a critical thinking engine configured for this purpose. In some embodiments, selecting from among the set of potential actions correlated to advancement of the user outcome objective an action likely to advance the user outcome objective (block 2208) is accomplished through one or more of Steps 2-6 as earlier discussed in the context of "Analyzing Conversational Context As Part of Conversational Analysis". [0258] In some embodiments, the method 2200 further involves presenting in the natural language conversation stream a conversation stream segment designed to motivate performance of the action likely to advance the user outcome objective (block 2210). In some embodiments, presenting in the natural language conversation stream a conversation stream segment designed to motivate performance of the action likely to advance the user outcome objective (block 2210) includes presenting to the user in the natural language conversation stream a conversation stream segment explaining a cost- benefit analysis comparing likely results of performance of the action likely to advance the user outcome objective and likely results of non-performance of the action likely to advance the user outcome objective. In some embodiments, presenting in the natural language conversation stream a conversation stream segment designed to motivate performance of the action likely to advance the user outcome objective (block 2210) includes presenting to the user in the natural language conversation stream a conversation stream reinforcing the recommendation after expiration of a delay period. In some embodiments, presenting in the natural language conversation stream a conversation stream segment designed to motivate performance of the action likely to advance the user outcome objective (block 2210) includes presenting to the user in the natural language conversation stream a conversation stream segment explaining reasons for selection of the user outcome objective. In some embodiments, presenting in the natural language conversation stream a conversation stream segment designed to motivate performance of the action likely to advance the user outcome objective (block 2210) includes notifying third party service providers of the user outcome objective and the recommendation. In some embodiments, presenting in the natural language conversation stream a conversation stream segment designed to motivate performance of the action likely to advance the user outcome objective (block 2210) is performed on a processor of a computer. In some embodiments, presenting in the natural language conversation stream a conversation stream segment designed to motivate performance of the action likely to advance the user outcome objective (block 2210) is performed by a cognitive agent configured for this purpose. In some embodiments, presenting in the natural language conversation stream a conversation stream segment designed to motivate performance of the action likely to advance the user outcome objective (block 2210) is Steps 7 as earlier discussed in the context of "Analyzing Conversational Context As Part of Conversational Analysis".
[0259] In some embodiments, the method 2200 further involves presenting to the user in the natural language conversation stream a conversation stream segment explaining a correlation between the action likely to advance the user outcome objective and achievement of the user outcome objective (block 2212). In some embodiments, presenting to the user in the natural language conversation stream a conversation stream segment explaining a correlation between the action likely to advance the user outcome objective and achievement of the user outcome objective (block 2212) is performed on a processor of a computer. In some embodiments, presenting to the user in the natural language conversation stream a conversation stream segment explaining a correlation between the action likely to advance the user outcome objective and achievement of the user outcome objective (block 2212) is performed by a critical thinking engine configured for this purpose. In some embodiments, presenting to the user in the natural language conversation stream a conversation stream segment explaining a correlation between the action likely to advance the user outcome objective and achievement of the user outcome objective (block 2212) is Steps 7 as earlier discussed in the context of "Analyzing Conversational Context As Part of Conversational Analysis".
[0260] FIG. 23 shows distributed hyperledger fabric network 2300 of nodes 1 16 each maintaining a copy of a hyperledger 1 18 to manage medical transaction, in accordance with various embodiments. The distributed hyperledger fabric network 2300 is divided into different organizations 2302 that may include one or more nodes 1 16 associated with that particular organization. An organization 2302 may refer to a security domain, unit of identity, and/or authenticating credentials. Each organization 2302 may include one or more nodes 1 16 that are associated with a particular entity. For example, one organization 2302-1 may be associated with one or more patient entities that are registered as one or more nodes 1 16-1 , another organization 2302-2 may be associated with one or more medical personnel entities that are registered as one or more nodes 1 16-2, another organization 2302-3 may be associated with one or more medical facility entities that are registered as one or more nodes 1 16-3, and so on for any suitable entities (e.g., insurance providers, government agencies, professional associations, etc.) in a healthcare ecosystem.
[0261] Other organizations 2302 may be associated with nodes 1 16 representing services provided by the distributed hyperledger fabric network 2300. For example, organization 2302-4 is associated with an ordering node 1 16-4 that ensures that the one or more rules implemented by each of the nodes 1 16-1 , 1 16-2, and/or 1 16-3 involved in a transaction are satisfied and/or there is consensus among the nodes 1 16-1 , 1 16-2, and/or 1 16-3 prior to approving performance of the transaction and addition of the transaction into the hyperledger 1 18. Using the ordering node 1 16-4 enhances consistency and security of the hyperledger 1 18 by controlling what is allowed to be added to the hyperledger 1 18.
[0262] Each node 1 16 may implement various rules 2306 which may be installed into the hyperledger 1 18. In some embodiments, the rules 2306 may be included in each respective copy of the hyperledger 1 18 that is distributed between the various nodes 1 16. In some embodiments, a hyperledger 1 18 on one node (e.g., 1 16-1 ) may have a first subset of the rules 2306 installed and another node (e.g., 1 16-2) may have a second subset of the rules 2306 installed where at least one rule in the first subset is different than a rule in the second subset. The rules 2306 may be implemented as computer executable instructions (e.g., software modules).
[0263] The rules 2306 may be self-executing at certain frequencies. For example, after a period of time expires, a rule 2306 may determine whether certain information (e.g., authorizing credential) of an entity (e.g., medical personnel entity) registered as a node 1 16 needs to be updated in the hyperledger 1 18 and provide a notification to a computing device 2310 used by that entity. In other embodiments, the rules 2306 may be self executing based on certain conditions occurring. For example, when an authorizing credential of an entity expires in the hyperledger 1 18, the rule 2306 may trigger a notification to be sent to the computing device 2310 of that entity. In other instances, the rules 2306-2 may be triggered when a request to perform a transaction on the hyperledger 1 18 is received.
[0264] In general, the rules 2306 may specify when updates to the hyperledger 1 18 are to be provided. The rules 2306 may be analytics-based in that they monitor states or conditions of information in the hyperledger 118, the computing devices 2310, and/or the nodes 116, and determine when hyperledger 118 updates should be provided. For example, the rules 2306 may specify that updates to the hyperledger 118 are to be provided based on any combination of geofencing (e.g., geolocation of the computing devices 2310 associated with particular nodes 116), state rules for when to dispense product like lenses, controlled substances, or other medication, adherence to dispensing guidelines, number of refills allowed for a prescription, authorizing credentials of medical personnel being valid, and so forth.
[0265] Each organization 2322 may include a computing device 2310 used by an entity associated with that organization 2322. The computing device 2310 may include one or more memories, processors, and/or network interfaces. The computing device 2310 may be similar to any computing device described with respect to FIG. 14. The user may use the computing device 2310 to send requests to perform transactions using the hyperledger 118 to the cognitive intelligence platform 102 that may include the nodes 116.
[0266] Each organization 2302 may include a membership service provider (MSP) 2304 that is responsible for issuing identities and authenticating credentials 2312 to computing devices 2310 associated with entities. As described herein, when a computing device 2308 requests to perform a transaction, such as registering as a node 116 on the distributed hyperledger fabric network 2300, the computing device 2310 may provide certain information pertaining to the entity. For example, for a medical personnel entity the information may include at least an identity of the medical personnel entity, an authorizing credential, a date the authorizing credential was last updated, an address of a place of work of the medical personnel entity, gender, race, and so forth. For a patient entity, the information may include at least the patient’s identity, social security number, driver’s license number, address, medical records, allergies, medicine allergies, familial medical history, and so forth.
[0267] The nodes 116 may communicate with each other to determine if a consensus is reached as to whether to allow the transaction to be allowed. Further, one or more of the rules 2306 may be applied to determine whether to allow the transaction to be performed. When the consensus protocol and/or rules 2306 are satisfied, the ordering node 1 16 may order the transaction to be performed and a record of the transaction is added to the hyperledger 1 18.
[0268] FIG. 24 shows an example hyperledger 1 18, in accordance with various embodiments. As depicted, the hyperledger 1 18 includes three blocks 2400-1 , 2400-2, and 2400-3. Each of the blocks is cryptographically linked to a previous block. Each block 2400 includes a block hash 2402 for that block that is determined using a suitable hash function. For example, block 2400-1 has block hash 2402“12jb”, block 2400-2 has block hash 2402 “24sd”, block 2400-3 has block hash 2402“35we”. The blocks 2400 are cryptographically linked together by including a block header with the block hash of the previous block. For example, block 2400-2 includes a block header including previous block hash 2404-1 with value“12jb”, which is the value of the previous block 2400-1 in the hyperledger 1 18, and block 2400-3 includes a block header including previous block hash 2404-2 with value“24sd”, which is the value of the previous block 2400-2.
[0269] Each block 2400 includes a signature 2406 and one or more transactions 2408. The signature 2406 may be the identity of the entity that requested the transaction to be performed. In some embodiments, a block 2400 storing transactions 2408 may be added to the hyperledger 1 18 after it is determined that the one or more rules 2306 and/or consensus between the nodes 1 16 are satisfied. The transactions 2408 in a given request may be grouped and added as a block 2400 to the hyperledger 1 18, or different transactions from different requests may be grouped and added as a block 2400 if the transactions are related or involve particular nodes 1 16.
[0270] In some embodiments, the transactions 2408 relating to registering an entity may store identifying information pertaining to an entity, such as an identity, address, social security number, driver’s license number, and so forth. These transactions 2408 may store authorizing credentials, such as license numbers (NPIs) for physicians, license numbers for pharmacists, license numbers for a pharmacies to dispense medicine, and so forth.
[0271] The transactions 2408 relating to medical transactions may store documents created during a consultation between a patient entity and a medical personnel entity. For example, the transactions 2408 may store a prescription (e.g., prescription ID, type of medicine, directions for taking the medicine, number of refills, date of prescription, etc.) written for a patient by a physician, doctor notes, updated medical record with treatment administered (e.g., vaccination shot, strep test, etc.), diagnosis, and so forth. Such transactions may include information identifying the patient (e.g., patient ID, name, social security number, etc.), as well as information pertaining to the medical personnel involved (e.g., name, physician ID, authorizing credential, location of place of work of the physician, etc.).
[0272] The transactions 2408 relating to medical transactions may also store records of what transpired during a transaction 2408. For example, a medical transaction may pertain to a patient requesting a prescription be filled and/or medicine dispensed at a pharmacy. If the medical transaction is determined to be performed based on the one or more rules 2306 and/or the consensus protocol being satisfied, then the medical transaction may be performed and the prescription is filled / medicine is dispensed. The record of the medical transaction may be stored in a block 2400 in the hyperledger and include information indicating that the prescription written by a particular physician was filled for a particular patient entity at a particular pharmacy by a particular pharmacist and a particular medicine was dispensed.
[0273] FIG. 25 shows the use of analytics based rules 2306 for providing updates to the hyperledger 1 18, in accordance with various embodiments. The rules 2306 may be computer instructions executable by one or more processors of a node 1 16 (2500-1 , 2500-2, 2500-3, 2500-4) representing an entity. The rules 2306 may be installed in the hyperledger 1 18 and may specify scenarios when updates to the hyperledger 1 18 based on analytics.
[0274] In one scenario, the rules 2306 may specify that the authorizing credential of a node 2500-1 representing medical personnel entity has to be updated every X period of time (2501 -1 ) in the hyperledger 1 18. For example, a physician’s 2502 medical license has to be updated every 3 years, and a pharmacist’s 2504 license has to be updated every 5 years. The rules 2306 may analyze the information pertaining to the medical personnel 2500-1 in the transactions 2408 stored in the hyperledger 1 18 and may determine that the period of time for updating the authorizing credential has expired or is about to expire. As a result, the node executing the rules 2306 may cause a notification to be presented on the computing device 2310 used by the medical personnel that instructs the medical personnel to update their authorizing credential. The updated authorizing credentials may be stored on the hyperledger 1 18.
[0275] In one scenario, the rules 2306 may specify that the hyperledger 1 18 is updated when a medical transaction, such as when the prescription is written (2501 -2) by a physician 2504 at a physician’s office / clinic 2500-2, is performed. The rules 2306 may determine whether the physician and/or the physician’s office / clinic 2500-2 have valid authorizing credentials to allow the prescription to be written and the medical transaction to be stored on the hyperledger 1 18. The prescription written by the physician 2504 for the patient may be stored on the hyperledger 1 18.
[0276] In one scenario, the rules 2306 may specify that the hyperledger 1 18 is updated when a medical transaction, such as when the prescription is filled / medicine is dispensed (2501 -3) by a pharmacy / optical / behavioral facility 2500-3, is performed. The rules 2306 may determine whether the pharmacist 2504, optometrist, psychiatrist, etc. and/or the pharmacy / optical / behavioral facility 2500-3 have valid authorizing credentials to allow the prescription to be filled / the medicine to be dispensed. A record of the prescription being filled / medicine being dispensed by a pharmacist for the patient at a pharmacy may be stored on the hyperledger 1 18. In addition, if an insurance provider entity paid for some or all of the cost of the medicine, a record of information pertaining to the insurance provider’s involvement may be stored on the hyperledger 1 18.
[0277] In one scenario, the rules 2306 may specify that the hyperledger 1 18 is updated when a medical transaction, such as when a patient 2500-3 meets with medical personnel 2500-1 , is performed. The rules 2306 may determine whether a geolocation of a computing device of the patient 2500-3 and/or a geolocation of the computing device of the medical personnel are within a threshold distance from each other (e.g., using geofencing), and the rules may determine when the pharmacist 2504, optometrist, psychiatrist, etc. and/or the pharmacy / optical / behavioral facility 2500-3 have valid authorizing credentials to allow the prescription to be filled / the medicine to be dispensed. A record of the meeting between the patient and the medical personnel, including doctor’s notes, prescriptions, diagnosis, location of meeting, identity of the medical personnel, identity of the patient, and so forth may be stored on the hyperledger 1 18. [0278] FIG. 26 shows a method 2600 for maintaining a hyperledger 1 18 for medical transactions 2408 at one or more nodes 1 16, in accordance with various embodiments. In some embodiments, the method 2600 is implemented as a computer program product in a non-transitory computer-readable medium and executable by one or more processors of one or more computing devices described in the cognitive intelligence platform 102 of FIG. 1. In some embodiments, the method 2600 of FIG. 26 is implemented as a system for maintaining a hyperledger 1 18 for medical transactions 2408 at one or more nodes 1 16. The system can include components described in the cognitive intelligence platform 102.
[0279] In some embodiments, the method 2600 may involve receiving (2602), from a computing device 2310-1 , a request to perform a transaction 2408-1 using the hyperledger 1 18, where the transaction 2408-1 pertains to registering a medical personnel entity associated with the computing device 2310-1 as a node 1 16-1 of the one or more nodes. The one or more nodes may represent a set of entities in a healthcare ecosystem, where the set of entities include one or more medical personnel, patients, medical facilities, insurance providers, professional associations, and government agencies. The request may include an authorizing credential (e.g., medical license number, national provider identifier (NPI)) and other information (e.g., name, specialty of practice, years of practice, address, location of work, gender, age, race, languages spoken, etc.) pertaining to the medical personnel entity.
[0280] The method 2600 may also involve determining (2604), based on one or more rules 2306, whether to allow the transaction 2408-1 to be performed in view of the request. The rules 2306 may specify when updates to the hyperledger 1 18 are to be provided and/or when to allow a transaction to be performed that updates the hyperledger 1 18. The rules 2306 may be analytics-based in that they monitor states or conditions of information in the hyperledger 1 18, the computing devices 2310, and/or the nodes 1 16, and determine when hyperledger 1 18 updates should be provided by the medical personnel entities using the computing devices 2310. For example, the rules 2306 may specify that updates to the hyperledger 1 18 are to be provided based on any combination of geofencing (e.g., geolocation of the computing devices 2310 associated with particular nodes 1 16), state rules for when to dispense product like lenses, controlled substances, or other medication, adherence to dispensing guidelines, number of refills allowed for a prescription, authorizing credentials of medical personnel being valid, and so forth. In one example, the rules 2306 may specify allowing the medical personnel entity to register as a node 1 16-1 if the medical personnel entity is unique (no other node includes identical information as the medical personnel entity) and/or the other nodes in the distributed hyperledger fabric network 2300 agree to allow the node in the hyperledger fabric network 2300.
[0281] In some embodiments, determining, based on the one or more rules 2306, whether to allow the transaction 2408-1 to be performed in view of the request may include transmitting a request to a computing device of a professional association or a government agency associated with the authorizing credential to validate the authorizing credential. If the professional association or government agency verifies that the authorizing credential is valid and issued to the medical personnel entity requesting registration, then the transaction may be allowed to be performed. If the professional association or government agency indicates that the authorizing credential is invalid, then the registration may be denied and the medical personnel entity may be notified to update their authorizing credential (assuming they ever had a valid authorizing credential issued to them).
[0282] Responsive to determining to allow the transaction 2408-1 to be performed, the method 2600 may also involve registering (2606) the node 1 16-1 for the medical personnel entity by associating (2608) the medical personnel entity with the node 1 16-1 , updating (2610) the hyperledger 1 18 by adding a block 2400-1 to the hyperledger 1 18, where the block 2400-1 stores the transaction 2408-1 including the authorizing credential pertaining to the medical personnel entity, and storing (2612) the hyperledger 1 18 at the node 1 16-1 for the medical personnel entity.
[0283] In some embodiments, the method 2600 may also include receiving, from a computing device 2310-1 associated with the medical personnel entity, a request to perform a medical transaction 2408-4 between the medical personnel entity and a patient entity, where the patient entity is associated with a patient node 1 16-2, and a copy of the hyperledger 1 18 is stored at the patient node 1 16-2. The medical transaction 2408-4 may include at least one of a medical personnel entity creating or updating a prescription for the patient entity or the medical personnel entity filling or refilling the prescription for the patient entity. The method 2600 may include identifying the block 2400-1 in the hyperledger 1 18 storing the transaction 2408-1 including the authorizing credential pertaining to the medical personnel entity, and determining whether to allow the medical transaction 2408-4 to be performed based on at least the authorizing credential of the medical personnel entity. Responsive to determining to allow the medical transaction 2408-4 to be performed, the method 2600 may include updating the hyperledger 1 18 with the medical transaction 2408-4. For example, a block 2400-3 may be added to the hyperledger 1 18 that stores the medical transaction 2408-4 or the medical transaction 2408-4 may be grouped with another transaction and stored on the same block with the another transaction.
[0284] FIG. 27 shows a method 2700 for maintaining a hyperledger 1 18 for medical transactions 2408 at one or more nodes 1 16, in accordance with various embodiments. In some embodiments, the method 2700 is implemented as a computer program product in a non-transitory computer-readable medium and executable by one or more processors of one or more computing devices described in the cognitive intelligence platform 102 of FIG. 1. In some embodiments, the method 2700 of FIG. 27 is implemented as a system for maintaining a hyperledger 188 for medical transactions 2408 at one or more nodes 1 1 16. The system can include components described in the cognitive intelligence platform 102 of FIG. 1 .
[0285] In some embodiments, the method 2700 may involve receiving (2702), from a second computing device 2310-2, a request to perform a second transaction 2408-2 using the hyperledger 1 18, where the second transaction 2408-2 pertains to registering a patient entity associated with the second computing device 2310-2 as a second node 1 16-2 of the one or more nodes. The second request includes personal information pertaining to the patient entity.
[0286] The method 2700 may also involve determining (2704), based on one or more rules 2306, whether to allow the second transaction 2408-2 to be performed in view of the second request. The rules 2306 may specify when updates to the hyperledger 1 18 are to be provided and/or when to allow a transaction to be performed that updates the hyperledger 1 18. In one example, the rules 2306 may specify allowing the medical personnel entity to register as a node 1 16-1 if the medical personnel entity is unique (no other node includes identical information as the medical personnel entity) and/or the other nodes in the distributed hyperledger fabric network 2300 agree to allow the node 1 16-2 in the hyperledger fabric network 2300.
[0287] Responsive to determining to allow the second transaction 2408-3 to be performed, the method 2700 may also involve registering (2706) the second node 1 16-2 for the patient entity by associating (2708) the patient entity with the second node 1 16-2, updating (2710) the hyperledger 1 18 by adding a second block 2400-2 to the hyperledger 1 18, where the second block 2400-2 stores the second transaction 2408-3 including the personal information pertaining to the patient entity, and storing (2612) the hyperledger 1 18 at the second node 1 16-2 for the patient entity.
[0288] FIG. 28 shows an example use of an authenticating credential associated with a patient entity 2500-4 to perform a medical transaction, in accordance with various embodiments. The medical transaction may be a request to fill a prescription at a pharmacy or optometrist, for example. A computing device associated with the patient entity 2500-4 may store an authenticating credential for making requests to the hyperledger 1 18 maintained by one or more nodes 1 16 in the cognitive intelligence platform 102. The patient entity 2500-4 may use the computing device to send (2800) a request to perform a medical transaction to the pharmacy / optical / behavioral entity 2500-3. The request may include the authenticating credential. In some embodiments, the request may include identifying information about the patient entity 2500-4 and a computing device of the pharmacy / optical / behavioral entity 2500-3 may send the identifying information to the cognitive intelligence platform 102, along with the request, and the authenticating credentials for the patient entity 2500-4 may be identified using the identifying information.
[0289] A computing device of the pharmacy / optical / behavioral entity 2500-3 may send (2802)the request to perform a medical transaction to the hyperledger 1 18 stored on the nodes 1 16 of the cognitive intelligence platform 102. Authenticating credentials of the pharmacy / optical / behavioral entity 2500-3, as well as the authenticating credentials of the patient entity 2500-4 may be sent to the hyperledger 1 18. The request may trigger one or more rules 2306 to execute on one or more nodes 1 16. One rule 2306 may determine whether the authenticating credentials of the patient entity 2500-4 are verified for the identity of the patient entity 2500-4 making the request. Another rule 2306 may determine whether the authenticating credentials of the pharmacy / optical / behavioral entity 2500-3 are verified for the identity of the pharmacy / optical / behavioral entity 2500- 3 making the request. Another rule 2306 may determine whether the pharmacy / optical / behavioral entity 2500-3 has a valid authorizing credential stored in the hyperledger 1 18. Another rule 2306 may determine whether the pharmacist or optometrist that is filling the prescription or dispensing the lenses has a valid authorizing credential in the hyperledger 1 18. Another rule 2306 may determine whether the physician who wrote the prescription requested to be filled has a valid authorizing credential at the time the prescription was written and/or when the request to fill the prescription is made using the hyperledger 1 18. Another rule 2306 may determine whether there are any refills remaining for the prescription written by a physician for the patient entity 2500-4 in the hyperledger 1 18. Another rule 2306 may determine whether the prescription has expired in the hyperledger 1 18.
[0290] If the various rules 2306 are satisfied, the medical transaction may be permitted to be performed and a record of the medical transaction may be stored in the hyperledger 1 18. In some embodiments, prior to allowing the medical transaction to be performed, the nodes may communicate with each other to form a consensus before the medical transaction is allowed to be performed and the hyperledger 1 18 is updated. Once the medical transaction is approved, a notification may be sent (2806) to the pharmacy / optical / behavioral entity 2500-3 indicating the same. The pharmacy / optical / behavioral entity 2500-3 may perform the approved medical transaction by filling the prescription and/or dispensing medicine / lenses. The pharmacy / optical / behavioral entity 2500-3 may transmit a notification that is presented on an application executing on the computing device associated with the patient entity 2500-4. The notification may indicate that the prescription has been filled and/or the medicine / lenses are dispensed.
[0291] FIG. 29 shows a method 2900 for performing a medical transaction 2408-4 using a hyperledger 1 18, in accordance with various embodiments. In some embodiments, the method 2900 is implemented as a computer program product in a non-transitory computer-readable medium and executable by one or more processors of one or more computing devices described in the cognitive intelligence platform 102 of FIG. 1 . In some embodiments, the method 2900 of FIG. 29 is implemented as a system performing a medical transaction 2408-4 using a hyperledger 1 18. The system can include components described in the cognitive intelligence platform 102 of FIG. 1 .
[0292] In some embodiments, the method 2900 may involve receiving (2902), from a computing device 2310-1 associated with a medical personnel entity, a request to perform the medical transaction 2408-4 between the medical personnel entity and a patient entity, where the medical personnel entity is associated with a medical personnel node 1 16-1 and the patient entity is associated with a patient node 1 16-2. The medical personnel node 1 16-1 and the patient node 1 16-2 may be included in the distributed network of nodes 2300 representing entities in a healthcare ecosystem. A respective copy of the hyperledger 1 18 may be maintained at both the medical personnel node 1 16-1 and the patient node 1 16-2. The medical transaction may include the medical personnel entity creating or updating a prescription for the patient entity.
[0293] Responsive to determining to allow the medical transaction 2408-4 to be performed, the method 2900 may also involve updating (2908) the respective copy of the hyperledger 1 18 with the medical transaction 2408-4 at the medical personnel node 1 16- 1 and the patient node 1 16-2. For example, the one or more rules 2306 may be satisfied and a consensus may be reached between nodes 1 16, thereby resulting in the ordering node 1 16-4 ordering the medical transaction 2408-4 to be added to the hyperledger 1 18.
[0294] In some embodiments, the method 2900 may also involve (2904) identifying a transaction 2408-1 in the hyperledger 1 18 that stores an authorizing credential of the medical personnel entity. The method 2900 may also involve determining (2906) whether to allow the medical transaction to 2408-4 be performed based on at least the authorizing credential of the medical personnel entity. In some embodiments, the method 2900 may include determining whether to allow the medical transaction 2408-4 to be performed based on at least the authorizing credential of the medical personnel entity further includes determining whether the authorizing credential is valid (e.g., has not expired). In some embodiments, the method 2900 may include determining that the authorizing credential of the medical personnel entity is expired or is about to expire, and transmitting, based on one or more rules 2306, a notification to the computing device 2310-1 associated with the medical personnel entity that instructs the medical personnel entity to renew the authorizing credential.
[0295] In some embodiments, the method 2900 may include identifying another transaction 2408-3 in the hyperledger 1 18 that stores information pertaining to the patient entity. The method 2900 may include determining whether to allow the medical transaction 2408-4 to be performed based on at least the authorizing credential of the medical personnel entity and the information (e.g., identity, allergies, medicine allergies, medical history, familial medical history, age, gender, race, etc.) pertaining to the patient entity. Responsive to determining to allow the medical transaction 2408-4 to be performed, the method 2900 may include updating the respective copy of the hyperledger 1 18 with the medical transaction 2408-4 at the medical personnel node 1 16-1 and the patient node 1 16-2.
[0296] FIG. 30 shows a method 3000 for performing a medical transaction 2408-5 using a hyperledger 1 18, in accordance with various embodiments. In some embodiments, the method 3000 is implemented as a computer program product in a non-transitory computer-readable medium and executable by one or more processors of the user device 104 (e.g., patient computing device) of FIG. 1 . In some embodiments, the method 3000 of FIG. 30 is implemented as a system performing a medical transaction 2408-5 using a hyperledger 1 18. The system can include components of the user device 104 of FIG. 1 .
[0297] In some embodiments, the method 3000 may involve identifying (3002), by a patient computing device 104, a medical facility computing device that is within a threshold distance of a geolocation of the patient computing device 104, where the medical facility computing device is associated with a medical facility entity and the patient computing device is associated with a patient entity. In some embodiments, the geolocation for the computing devices may be determined using the IP address of each device. The threshold distance may be any suitable distance (e.g., 20 feet, 50 feet, 100 feet, 200 feet, 1000 feet, a mile, etc.) that enables distinguishing a closer medical facility entity from a farther away medical facility entity. The medical transaction may be filling or refilling a prescription for the patient entity. The medical facility entity may be a pharmacy or optometrist. [0298] The method 3000 may involve transmitting (3004), from the patient computing device 104, a request to perform a medical transaction 2408-5 using the hyperledger 1 18 to the medical facility computing device, where the request includes an authenticating credential associated with the patient entity. The authenticating credential may have been provided to the patient computing device 104 when the patient entity registered as a node 1 16-2 in the distributed hyperledger fabric network 2300.
[0299] A determination may be made whether to allow performance of the medical transaction 2408-5 based on one or more rules 2306 that specify allowing the medical transaction 2408-5 to be added to the hyperledger 1 18 when at least the authenticating credential in the hyperledger 1 18 is verified. Other rules 2306 may specify allowing the medical transaction 2408-5 when the authenticating credentials of the medical personnel entity involved in the medical transaction 2408-5 are verified for the identity of the medical personnel entity in the hyperledger 1 18, when the authorizing credential stored in the hyperledger 1 18 are verified for the medical personnel entity, when the authorizing credential of the pharmacist or optometrist that is filling the prescription or dispensing the lenses is verified in the hyperledger 1 18, when there are refills remaining for the prescription written by a physician for the patient entity in the hyperledger 1 18, when the prescription has not expired in the hyperledger 1 18, and so forth.
[0300] In some embodiments, the rules 2306 may specify notifying the medical personnel entity to update the authorizing credential in the hyperledger at set intervals of time (e.g., every 3 years for a physician). The rules 2306 may specify allowing the medical transaction 2408-5 to be added to the hyperledger 1 18 when at least an authorizing credential of the medical facility entity in the hyperledger 1 18 is verified, where the medical facility entity is a pharmacy. The rules 2306 may specify allowing the medical transaction 2408-5 to be added to the hyperledger 1 18 when the prescription for the patient entity is identified at another medical transaction 2408-4 in the hyperledger 1 18, and/or when there is at least one remaining refill for the prescription identified at the another medical transaction 2408-4 in the hyperledger 1 18.
[0301] The method 3000 may involve receiving (3006) a notification from the medical facility computing device that indicates the medical transaction 2408-4 has been performed when the rules 2306 are satisfied and/or a consensus is reached between nodes 1 16 in the distributed hyperledger fabric network 2300. The hyperledger 1 18 may be updated with the addition of a block including transaction 2408-5 or the transaction 2408-5 may be grouped with another medical transaction (e.g., 2408-4). For example, the medical transactions 2408-4 and 2408-5 may be grouped based on the same patient entity and/or medical personnel entity being involved in the medical transactions 2408-4 and 2408-5.
[0302] The various aspects, embodiments, implementations or features of the described embodiments can be used separately or in any combination. Various aspects of the described embodiments can be implemented by software, hardware or a combination of hardware and software. The described embodiments can also be embodied as computer readable code on a computer readable medium. The computer readable medium is any data storage device that can store data which can thereafter be read by a computer system. Examples of the computer readable medium include read-only memory, random- access memory, CD-ROMs, DVDs, magnetic tape, hard disk drives, solid-state drives, and optical data storage devices. The computer readable medium can also be distributed over network-coupled computer systems so that the computer readable code is stored and executed in a distributed fashion.
[0303] Consistent with the above disclosure, the examples of systems and method enumerated in the following clauses are specifically contemplated and are intended as a non-limiting set of examples.
[0304] Clause 1. A cognitive intelligence platform, comprising:
a first system configured to execute a knowledge cloud, the first system comprising:
a first processor; and
a first memory coupled to the first processor, the first memory storing instructions that cause the knowledge cloud to:
receive inputs from medical facilities; and
receive inputs from service providers;
a second system configured to implement a critical thinking engine, the critical thinking engine communicably coupled to the knowledge cloud, the second system comprising: a second processor; and
a second memory coupled to the second processor, the second memory storing instructions that cause the critical thinking engine to receive inputs from the knowledge cloud; and
a third system configured to implement a cognitive agent, the cognitive agent communicably coupled to the critical thinking engine and the knowledge cloud, the third system comprising:
a third processor; and
a third memory coupled to the third processor, the third memory storing instructions that cause the cognitive agent to:
receive an originating question from a user related to a subject matter;
execute, using the critical thinking engine, a first round of analysis to generate an answer; and
provide the answer to the user including a recommendation associated with the subject matter.
[0305] Clause 2. The cognitive intelligence platform of any preceding clause, wherein the second memory stores instructions that further cause the critical thinking engine to: receive a first information;
receive a second information that contradicts the first information; and
process the first information and second information.
[0306] Clause 3. The cognitive intelligence platform of any preceding clause, wherein the second memory stores instructions that further cause the critical thinking engine to: parse the originating question;
retrieve data from the knowledge cloud; and
perform a causal analysis of the data in view of the originating question, wherein the causal analysis, in part, informs the answer.
[0307] Clause 4. The cognitive intelligence platform of any preceding clause, wherein the second memory stores instructions that further cause the critical thinking engine to: receive the originating question from the cognitive agent;
assess a first chain of logic associated with the originating question; assess a second chain of logic associated with the originating question; and provide the answer to the cognitive agent, wherein the answer is associated with the first chain of logic.
[0308] Clause 5. The cognitive intelligence platform of any preceding clause, wherein the third memory stores instructions that further cause the cognitive agent to communicate a logical argument that leads to a conclusion, wherein the conclusion, in part, informs the recommendation associated with the subject matter.
[0309] Clause 6. The cognitive intelligence platform of any preceding clause, wherein the third memory stores instructions that further cause the cognitive agent to:
render for display, to the user, a chain of logic that leads to the conclusion;
receive, from the user, an adjustment to the chain of logic; and
affect change in the critical thinking engine.
[0310] Clause 7. The cognitive intelligence platform of any preceding clause, wherein the third memory stores instructions that further cause the cognitive agent to:
render for display a micro survey;
receive data associated with the micro survey, wherein the data, in part, informs the recommendation associated with the subject matter.
[0311] Clause 8. The cognitive intelligence platform of any preceding clause, wherein when the cognitive agent provides the answer to the user, the third memory causes the cognitive agent to integrate data from at least three selected from the group consisting of: a micro survey, a physician’s office, common sense knowledge, domain knowledge, an evidence-based medicine guideline, a clinical ontology, and curated medical advice.
[0312] Clause 9. A system comprising:
a knowledge cloud;
a critical thinking engine, the critical thinking engine communicably coupled to the knowledge cloud; and
a cognitive agent, the cognitive agent communicably coupled to the critical thinking engine and the knowledge cloud, wherein the cognitive agent is configured to interact with a user using natural language. [0313] Clause 10. The system of any preceding clause, wherein the cognitive agent interacts with the user using at least one selected from the group consisting of: touch- based input, audio input, and typed input.
[0314] Clause 1 1. The system of claim any preceding clause, wherein the critical thinking engine is configured to:
receive a first information;
receive a second information that contradicts the first information; and
process the first information and the second information.
[0315] Clause 12. The system of any preceding clause, wherein the cognitive agent is configured to:
receive an originating question from the user related to a subject matter;
execute, using the critical thinking engine, a logical reasoning to generate an answer; and
provide the answer to the user including a recommendation associated with the subject matter.
[0316] Clause 13. The system of any preceding clause, wherein the critical thinking engine is configured to:
parse the originating question;
retrieve data from the knowledge cloud; and
perform a causal analysis of the data in view of the originating question, wherein the causal analysis, in part informs the answer.
[0317] Clause 14. The system of any preceding clause, wherein the critical thinking engine is configured to:
receive the originating question from the cognitive agent;
assess a first chain of logic associated with the originating question;
assess a second chain of logic associated with the originating question; and provide the answer to the cognitive agent, wherein the answer is associated with the first chain of logic.
[0318] Clause 15. The system of any preceding clause, wherein the cognitive agent is further configured to render for display a chain of logic that leads to a conclusion, wherein the conclusion, in part, informs the answer. [0319] Clause 16. A computer readable media storing instructions that are executable by a processor to cause a computer to execute operations comprising:
executing a cognitive intelligence platform that further comprises:
a knowledge cloud;
a critical thinking engine communicably coupled to the knowledge cloud; and a cognitive agent communicably coupled to the critical thinking engine and the knowledge cloud, wherein the cognitive agent is configured to:
receive an originating question from a user related to a subject matter;
execute, using the critical thinking engine, a logical reasoning to generate an answer; and
provide the answer to the user including a recommendation associated with the subject matter.
[0320] Clause 17. The computer-readable media of any preceding clause, wherein the cognitive agent executing within the cognitive intelligence platform is further configured to:
render for display a micro survey;
receive data associated with the micro survey, wherein the data, in part, informs the recommendation associated with the subject matter.
[0321] Clause 18. The computer-readable media of any preceding clause, wherein the critical thinking engine executing within the cognitive intelligence platform is further configured to:
receive the originating question from the cognitive agent;
assess a first chain of logic associated with the originating question to create a first answer;
assess a second chain of logic associated with the originating question to create a second answer, wherein the first answer contradicts the second answer; and
provide the first answer to the cognitive agent, wherein the first answer is the answer provided to the user. [0322] Clause 19. The computer-readable media of any preceding clause, wherein the cognitive agent executing within the cognitive intelligence platform is further configured to render for display the first chain of logic to the user.
[0323] Clause 20. The computer-readable media of any preceding clause, wherein the cognitive agent executing within the cognitive intelligence platform is further configured to integrate data from at least three selected from the group consisting of: a micro survey, a physician’s office, common sense knowledge, domain knowledge, an evidence-based medicine guideline, a clinical ontology, and curated medical advice.
[0324] Clause 21 . A computer-implemented method for answering a user-generated natural language medical information query based on a diagnostic conversational template, the method comprising:
receiving a user-generated natural language medical information query at an artificial intelligence-based diagnostic conversation agent from a user interface on a mobile device;
responsive to content of the user-generated natural language medical information query, selecting a diagnostic fact variable set relevant to generating a medical advice query answer for the user-generated natural language medical information query by classifying the user-generated natural language medical information query into one of a set of domain-directed medical query classifications associated with respective diagnostic fact variable sets;
compiling user-specific medical fact variable values for one or more respective medical fact variables of the diagnostic fact variable set, wherein the compiling user- specific medical fact variable values for one or more respective medical fact variables of the diagnostic fact variable set further comprises:
extracting a first set of user-specific medical fact variable values from a local user medical information profile associated with the user-generated natural language medical information query, and
requesting a second set of user-specific medical fact variable values through natural-language questions sent to the user interface on the mobile device; and responsive to the user-specific medical fact variable values, generating a medical advice query answer in response to the user-generated natural language medical information query.
[0325] Clause 22. The computer-implemented method for answering a user-generated natural language medical information query based on a diagnostic conversational template of any preceding clause, wherein the compiling user-specific medical fact variable values for one or more respective medical fact variables of the diagnostic fact variable set further comprises:
extracting a third set of user-specific medical fact variable values comprising lab result values from the local user medical information profile associated with the user generated natural language medical information query.
[0326] Clause 23. The computer-implemented method for answering a user-generated natural language medical information query based on a diagnostic conversational template of any preceding clause, wherein the compiling user-specific medical fact variable values for one or more respective medical fact variables of the diagnostic fact variable set further comprises:
extracting a fourth set of user-specific medical fact variable values from a remote medical data service profile associated with the local user medical information profile.
[0327] Clause 24. The computer-implemented method for answering a user-generated natural language medical information query based on a diagnostic conversational template of any preceding clause, wherein the compiling user-specific medical fact variable values for one or more respective medical fact variables of the diagnostic fact variable set further comprises:
extracting a fifth set of user-specific medical fact variable values derived from demographic characterizations provided by a remote data service analysis of the local user medical information profile.
[0328] Clause 25. The computer-implemented method for answering a user-generated natural language medical information query based on a diagnostic conversational template of any preceding clause, wherein the generating the medical advice query answer in response to the user-generated natural language medical information query further comprises providing, in addition to text responsive to a medical question presented in the user-generated natural language medical information query, a treatment action- item recommendation responsive to user-specific medical fact variable values and non- responsive to the medical question presented in the user-generated natural language medical information query.
[0329] Clause 26. The computer-implemented method for answering a user-generated natural language medical information query based on a diagnostic conversational template of any preceding clause, wherein the generating the medical advice query answer in response to the user-generated natural language medical information query further comprises providing, in addition to text responsive to a medical question presented in the user-generated natural language medical information query, a medical education media resource responsive to the user-specific medical fact variable values and non- responsive to the medical question presented in the user-generated natural language medical information query.
[0330] Clause 27. The computer-implemented method for answering a user-generated natural language medical information query based on a diagnostic conversational template of any preceding clause, wherein selecting a diagnostic fact variable set relevant to generating a medical advice query answer for the user-generated natural language medical information query by classifying the user-generated natural language medical information query into one of a set of domain-directed medical query classifications associated with respective diagnostic fact variable set further comprises classifying the user-generated natural language medical information query into one of a set of domain- directed medical query classifications based on relevance to the local user medical information profile associated with the user-generated natural language medical information query.
[0331] Clause 28. A computer program product in a computer-readable medium for answering a user-generated natural language query, the computer program product in a computer-readable medium comprising program instructions which, when executed, cause a processor of a computer to perform:
receiving a user-generated natural language query at an artificial intelligence- based conversation agent from a user interface; responsive to content of the user-generated natural language query, selecting a fact variable set relevant to generating a query answer for the user-generated natural language query by classifying the user-generated natural language query into one of a set of domain-directed query classifications associated with respective fact variable sets; compiling user-specific fact variable values for one or more respective fact variables of the fact variable set; and
responsive to the fact variable values, generating the query answer in response to the user-generated natural language query.
[0332] Clause 29. The computer program product in a computer-readable medium for answering a user-generated natural language query of any preceding clause, wherein the program instructions which, when executed, cause the processor of the computer to perform compiling user-specific fact variable values for one or more respective fact variables of the fact variable set further comprise program instructions which, when executed, cause the computer program product to perform:
extracting a first set of user-specific fact variable values from a local user profile associated with the user-generated natural language query; and
requesting a second set of user-specific fact variable values through a conversational template comprising natural-language questions sent to the user interface on a mobile device.
[0333] Clause 30. The computer program product in a computer-readable medium for answering a user-generated natural language query of any preceding clause, wherein the program instructions which, when executed, cause the processor of the computer to perform compiling user-specific fact variable values for one or more respective fact variables of the fact variable set further comprise program instructions which, when executed, cause the computer program product to perform:
extracting a third set of user-specific fact variable values from a remote data service profile associated with the local user profile.
[0334] Clause 31 . The computer program product in a computer-readable medium for answering a user-generated natural language query of any preceding clause, wherein the program instructions which, when executed, cause the processor of the computer to perform compiling user-specific fact variable values for one or more respective fact variables of the fact variable set further comprise program instructions which, when executed, cause the computer program product to perform:
extracting a fourth set of user-specific fact variable values derived from demographic characterizations provided by a remote data service analysis of the local user profile.
[0335] Clause 32. The computer program product in a computer-readable medium for answering a user-generated natural language query of any preceding clause, wherein program instructions which, when executed, cause the processor of the computer to perform the generating the query answer in response to the user-generated natural language query further comprise program instructions which, when executed, cause the processor of the computer to perform providing, in addition to text responsive to a question presented in the user-generated natural language query, an action-item recommendation responsive to the fact variable values and non-responsive to the question presented in the user-generated natural language query.
[0336] Clause 33. The computer program product in a computer-readable medium for answering a user-generated natural language query of any preceding clause, wherein the program instructions which, when executed, cause the processor of the computer to perform generating the query answer in response to the user-generated natural language query further comprise program instructions which, when executed, cause the processor of the computer to perform providing, in addition to text responsive to a question presented in the user-generated natural language query, an education media resource responsive to the fact variable values and non-responsive to the question presented in the user-generated natural language query.
[0337] Clause 34. The computer program product in a computer-readable medium for answering a user-generated natural language query of any preceding clause, wherein the program instructions which, when executed, cause the processor of the computer to perform selecting a fact variable set relevant to generating a query answer for the user generated natural language query by classifying the user-generated natural language query into one of a set of domain-directed query classifications associated with respective fact variable sets further comprise program instructions which, when executed, cause the processor of the computer to perform classifying the user-generated natural language query into one of a set of domain-directed query classifications based on relevance to a local user profile associated with the user-generated natural language query.
[0338] Clause 35. A cognitive intelligence platform for answering a user-generated natural language query, the cognitive intelligence platform comprising:
a cognitive agent configured for receiving a user-generated natural language query at an artificial intelligence-based conversation agent from a user interface;
a critical thinking engine configured for, responsive to content of the user generated natural language query, selecting a fact variable set relevant to generating a query answer for the user-generated natural language query by classifying the user generated natural language query into one of a set of domain-directed query classifications associated with respective fact variable sets; and
a knowledge cloud compiling user-specific fact variable values for one or more respective fact variables of the fact variable set; and
wherein, responsive to the fact variable values, the cognitive agent is further configured for generating the query answer in response to the user-generated natural language query.
[0339] Clause 36. The cognitive intelligence platform of any preceding clause, wherein the knowledge cloud is further configured for:
extracting a first set of user-specific fact variable values from a local user profile associated with the user-generated natural language query; and
requesting a second set of user-specific fact variable values through a conversational template comprising natural-language questions sent to the user interface on a mobile device.
[0340] Clause 37. The cognitive intelligence platform of any preceding clause, wherein the knowledge cloud is further configured for:
extracting a third set of user-specific fact variable values from a remote data service profile associated with the local user profile.
[0341] Clause 38. The cognitive intelligence platform of any preceding clause, wherein the knowledge cloud is further configured for: extracting a fourth set of user-specific fact variable values derived from demographic characterizations provided by a remote data service analysis of the local user profile.
[0342] Clause 39. The cognitive intelligence platform of any preceding clause, wherein cognitive agent is further configured for providing, in addition to text responsive to a question presented in the user-generated natural language query, an action-item recommendation responsive to the fact variable values and non-responsive to the question presented in the user-generated natural language query.
[0343] Clause 40. The cognitive intelligence platform of any preceding clause, wherein the critical thinking engine is further configured for providing, in addition to text responsive to a question presented in the user-generated natural language query, an education media resource responsive to the fact variable values and non-responsive to the question presented in the user-generated natural language query.
[0344] Clause 41 . A computer-implemented method for answering a user-generated natural language query, the method comprising:
receiving a user-generated natural language query at an artificial intelligence- based conversation agent from a user interface;
responsive to content of the user-generated natural language query, selecting a fact variable set relevant to generating a query answer for the user-generated natural language query by classifying the user-generated natural language query into one of a set of domain-directed query classifications associated with respective fact variable sets; compiling user-specific fact variable values for one or more respective fact variables of the fact variable set; and
responsive to the fact variable values, generating the query answer in response to the user-generated natural language query.
[0345] Clause 42. The method of any preceding clause, wherein the compiling user- specific fact variable values for one or more respective fact variables of the fact variable set further comprises:
extracting a first set of user-specific fact variable values from a local user profile associated with the user-generated natural language query; and requesting a second set of user-specific fact variable values through a conversational template comprising natural-language questions sent to the user interface on a mobile device.
[0346] Clause 43. The method of any preceding clause, wherein the compiling user- specific fact variable values for one or more respective fact variables of the fact variable set further comprises:
extracting a third set of user-specific fact variable values from a remote data service profile associated with the local user profile.
[0347] Clause 44. The method of any preceding clause, wherein the compiling user- specific fact variable values for one or more respective fact variables of the fact variable set further comprises:
[0348] extracting a fourth set of user-specific fact variable values derived from demographic characterizations provided by a remote data service analysis of the local user profile.
[0349] Clause 45. The method of any preceding clause, wherein the generating the query answer in response to the user-generated natural language query further comprises providing, in addition to text responsive to a question presented in the user generated natural language query, an action-item recommendation responsive to the fact variable values and non-responsive to the question presented in the user-generated natural language query.
[0350] Clause 46. The method of any preceding clause, wherein the generating the query answer in response to the user-generated natural language query further comprises providing, in addition to text responsive to a question presented in the user generated natural language query, an education media resource responsive to the fact variable values and non-responsive to the question presented in the user-generated natural language query.
[0351] Clause 47. The method of any preceding clause, wherein selecting a fact variable set relevant to generating a query answer for the user-generated natural language query by classifying the user-generated natural language query into one of a set of domain-directed query classifications associated with respective fact variable sets further comprises classifying the user-generated natural language query into one of a set of domain-directed query classifications based on relevance to a local user profile associated with the user-generated natural language query.
[0352] Clause 48. A computer-implemented method for answering natural language medical information questions posed by a user of a medical conversational interface of a cognitive artificial intelligence system, the method comprising:
receiving from a medical conversational user interface a user-generated natural language medical information query at an artificial intelligence-based medical conversation cognitive agent;
extracting from the user-generated natural language medical information query a medical question from a user of the medical conversational user interface; compiling a medical conversation language sample, wherein the medical conversation language sample comprises items of health-information-related-text derived from a health-related conversation between the artificial intelligence-based medical conversation cognitive agent and the user;
extracting from the medical conversation language sample internal medical concepts and medical data entities present within the medical conversation language sample, wherein the internal medical concepts comprise descriptions of medical attributes of the medical data entities;
inferring a therapeutic intent of the user from the internal medical concepts and the medical data entities;
generating a therapeutic paradigm logical framework for interpreting of the medical question, wherein
the therapeutic paradigm logical framework comprises a catalog of medical logical progression paths from the medical question to respective therapeutic answers,
each of the medical logical progression paths comprises one or more medical logical linkages from the medical question to a therapeutic path- specific answer, and
the medical logical linkages comprise the internal medical concepts and external therapeutic paradigm concepts derived from a store of medical subject matter ontology data; selecting a likely medical information path from among the medical logical progression paths to a likely path-dependent medical information answer based upon the therapeutic intent of the user; and
answering the medical question by following the likely medical information path to the likely path-dependent medical information answer.
[0353] Clause 49. The computer-implemented method for answering natural language medical information questions posed by a user of a medical conversational interface of a cognitive artificial intelligence system of any of any of the preceding clauses, further comprising relating medical inference groups of the internal medical concepts.
[0354] Clause 50. The computer-implemented method for answering natural language medical information questions posed by a user of a medical conversational interface of a cognitive artificial intelligence system of any of any of the preceding clauses, wherein the relating medical inference groups of the internal medical concepts further comprises relating groups of the internal medical concepts based at least in part on shared medical data entities for which each internal medical concept of a medical inference group of internal medical concepts describes a respective medical data attribute.
[0355] Clause 51. The computer-implemented method for answering natural language medical information questions posed by a user of a medical conversational interface of a cognitive artificial intelligence system of any of the preceding clauses, wherein selecting a likely medical information path from among the medical logical progression paths to a likely path-dependent medical information answer based upon the intent further comprises selecting a likely medical information path from among the medical logical progression paths to a likely path-dependent medical information answer based in part upon the therapeutic intent of the user and in part upon sufficiency of medical diagnostic data to complete the medical logical linkages.
[0356] Clause 52. The computer-implemented method for answering natural language medical information questions posed by a user of a medical conversational interface of a cognitive artificial intelligence system of any of the preceding clauses, wherein selecting a likely medical information path from among the medical logical progression paths to a likely path-dependent medical information answer based upon the intent further comprises selecting a likely medical information path from among the medical logical progression paths to a likely path-dependent medical information answer after requesting additional medical diagnostic data from the user.
[0357] Clause 53. The computer-implemented method for answering natural language medical information questions posed by a user of a medical conversational interface of a cognitive artificial intelligence system of any of the preceding clauses, wherein selecting a likely medical information path from among the medical logical progression paths to a likely path-dependent medical information answer based upon the intent further comprises selecting a likely medical information path from among the medical logical progression paths to a likely path-dependent medical information answer based in part upon treatment sub-intents comprising tactical constituents related to the therapeutic intent of the user by the store of medical subject matter ontology data.
[0358] Clause 54. The computer-implemented method for answering natural language medical information questions posed by a user of a medical conversational interface of a cognitive artificial intelligence system of any of the preceding clauses, wherein selecting a likely medical information path from among the medical logical progression paths to a likely path-dependent medical information answer based upon the intent further comprises selecting a likely medical information path from among the medical logical progression paths to a likely path-dependent medical information answer based in part upon the therapeutic intent of the user and in part upon sufficiency of medical diagnostic data to complete the medical logical linkages, wherein the medical diagnostic data to complete the medical logical linkages includes user-specific medical diagnostic data.
[0359] Clause 55. A cognitive intelligence platform for answering natural language questions posed by a user of a conversational interface of an artificial intelligence system, the cognitive intelligence platform comprising:
a cognitive agent configured for receiving from a user interface a user generated natural language query, wherein the cognitive agent is an artificial intelligence-based conversation agent;
a knowledge cloud containing a store of subject matter ontology data; a critical thinking engine configured for:
extracting from the user-generated natural language query a question from a user of the user interface, compiling a language sample, wherein the language sample comprises items of text derived from a conversation between the artificial intelligence-based conversation agent and the user,
extracting from the language sample internal concepts and entities present within the language sample, wherein the internal concepts comprise descriptions of attributes of the entities,
inferring an intent of the user from the internal concepts and the entities,
generating a logical framework for interpreting of the question, wherein
the logical framework comprises a catalog of paths from the question to respective answers,
each of the paths comprises one or more linkages from the question to a path-specific answer, and
the linkages comprise the internal concepts and external concepts derived from the store of subject matter ontology data, selecting a likely path from among the paths to a likely path- dependent answer based upon the intent, and
answering the question by following the likely path to the likely path- dependent answer.
[0360] Clause 56. The cognitive intelligence platform for answering natural language questions posed by a user of a conversational interface of an artificial intelligence system of any of the preceding clauses, wherein the critical thinking engine is further configured for relating groups of the internal concepts.
[0361] Clause 57. The cognitive intelligence platform for answering natural language questions posed by a user of a conversational interface of an artificial intelligence system of any of the preceding clauses, wherein the critical thinking engine is further configured for relating groups of the internal concepts by relating groups of the internal concepts based at least in part on shared entities for which each internal concept of a group of internal concepts describes a respective attribute. [0362] Clause 58. The cognitive intelligence platform for answering natural language questions posed by a user of a conversational interface of an artificial intelligence system of any of the preceding clauses, wherein the critical thinking engine is further configured for selecting a likely path from among the paths to a likely path-dependent answer based upon the intent further comprises selecting a likely path from among the paths to a likely path-dependent answer based in part upon the intent and in part upon sufficiency of data to complete the linkages.
[0363] Clause 59. The cognitive intelligence platform for answering natural language questions posed by a user of a conversational interface of an artificial intelligence system of any of the preceding clauses, wherein the critical thinking engine is further configured for selecting a likely path from among the paths to a likely path-dependent answer based upon the intent further comprises selecting a likely path from among the paths to a likely path-dependent answer after requesting additional data from the user.
[0364] Clause 60. The cognitive intelligence platform for answering natural language questions posed by a user of a conversational interface of an artificial intelligence system of 8, wherein the critical thinking engine is further configured for selecting a likely path from among the paths to a likely path-dependent answer based upon the intent further comprises selecting a likely path from among the paths to a likely path-dependent answer based in part upon sub-intents comprising tactical constituents related to the intent by the store of subject matter ontology data.
[0365] Clause 61 . The cognitive intelligence platform for answering natural language questions posed by a user of a conversational interface of an artificial intelligence system of any of the preceding clauses, wherein the critical thinking engine is further configured for selecting a likely path from among the paths to a likely path-dependent answer based upon the intent further comprises selecting a likely path from among the paths to a likely path-dependent answer based in part upon the intent and in part upon sufficiency of data to complete the linkages, wherein the data to complete the linkages includes user-specific data.
[0366] Clause 62. A computer program product in a computer-readable medium for answering natural language questions posed by a user of a conversational interface of an artificial intelligence system, the computer program product in a computer-readable medium comprising instructions, which, when executed, cause a processor of a computer to perform:
receiving from a user interface a user-generated natural language query at an artificial intelligence-based conversation agent;
extracting from the user-generated natural language query a question from a user of the user interface;
compiling a language sample, wherein the language sample comprises items of text derived from a conversation between the artificial intelligence-based conversation agent and the user;
extracting from the language sample internal concepts and entities present within the language sample, wherein the internal concepts comprise descriptions of attributes of the entities;
inferring an intent of the user from the internal concepts and the entities; generating a logical framework for interpreting of the question, wherein the logical framework comprises a catalog of paths from the question to respective answers,
each of the paths comprises one or more linkages from the question to a path-specific answer, and
the linkages comprise the internal concepts and external concepts derived from a store of subject matter ontology data;
selecting a likely path from among the paths to a likely path-dependent answer based upon the intent; and
answering the question by following the likely path to the likely path- dependent answer.
[0367] Clause 63. The computer program product in a computer-readable medium for answering natural language questions posed by a user of a conversational interface of an artificial intelligence system of any of the preceding clauses, further comprising instructions, which, when executed, cause the processor of the computer to perform relating groups of the internal concepts.
[0368] Clause 64. The computer program product in a computer-readable medium for answering natural language questions posed by a user of a conversational interface of an artificial intelligence system of any of the preceding clauses, wherein the instructions, which, when executed, cause the processor of the computer to perform relating groups of the internal concepts further comprise instructions, which, when executed, cause the processor of the computer to perform relating groups of the internal concepts based at least in part on shared entities for which each internal concept of a group of internal concepts describes a respective attribute.
[0369] Clause 65. The computer program product in a computer-readable medium for answering natural language questions posed by a user of a conversational interface of an artificial intelligence system of any of the preceding clauses, wherein the instructions, which, when executed, cause the processor of the computer to perform selecting a likely path from among the paths to a likely path-dependent answer based upon the intent further comprise instructions, which, when executed, cause the processor of the computer to perform selecting a likely path from among the paths to a likely path-dependent answer based in part upon the intent and in part upon sufficiency of data to complete the linkages.
[0370] Clause 66. The computer program product in a computer-readable medium for answering natural language questions posed by a user of a conversational interface of an artificial intelligence system of any of the preceding clauses, wherein instructions, which, when executed, cause the processor of the computer to perform selecting a likely path from among the paths to a likely path-dependent answer based upon the intent further comprise instructions, which, when executed, cause the processor of the computer to perform selecting a likely path from among the paths to a likely path-dependent answer after requesting additional data from the user.
[0371] Clause 67. The computer program product in a computer-readable medium for answering natural language questions posed by a user of a conversational interface of an artificial intelligence system of any of the preceding clauses, wherein the instructions, which, when executed, cause the processor of the computer to perform selecting a likely path from among the paths to a likely path-dependent answer based upon the intent further comprise instructions, which, when executed, cause the processor of the computer to perform selecting a likely path from among the paths to a likely path-dependent answer based in part upon sub-intents comprising tactical constituents related to the intent by the store of subject matter ontology data. [0372] Clause 68. A method for answering natural language questions posed by a user of a conversational interface of an artificial intelligence system, the method comprising:
receiving from a user interface a user-generated natural language query at an artificial intelligence-based conversation agent;
extracting from the user-generated natural language query a question from a user of the user interface;
compiling a language sample, wherein the language sample comprises items of text derived from a conversation between the artificial intelligence-based conversation agent and the user;
extracting from the language sample internal concepts and entities present within the language sample, wherein the internal concepts comprise descriptions of attributes of the entities;
inferring an intent of the user from the internal concepts and the entities; generating a logical framework for interpreting of the question, wherein the logical framework comprises a catalog of paths from the question to respective answers,
each of the paths comprises one or more linkages from the question to a path-specific answer, and
the linkages comprise the internal concepts and external concepts derived from a store of subject matter ontology data;
selecting a likely path from among the paths to a likely path-dependent answer based upon the intent; and
answering the question by following the likely path to the likely path- dependent answer.
[0373] Clause 69. The method for answering natural language questions posed by a user of a conversational interface of an artificial intelligence system of any of the preceding clauses, further comprising relating groups of the internal concepts.
[0374] Clause 70. The method for answering natural language questions posed by a user of a conversational interface of an artificial intelligence system of any of the preceding clauses, wherein the relating groups of the internal concepts further comprises relating groups of the internal concepts based at least in part on shared entities for which each internal concept of a group of internal concepts describes a respective attribute.
[0375] Clause 71. The method for answering natural language questions posed by a user of a conversational interface of an artificial intelligence system of any of the preceding clauses, wherein selecting a likely path from among the paths to a likely path- dependent answer based upon the intent further comprises selecting a likely path from among the paths to a likely path-dependent answer based in part upon the intent and in part upon sufficiency of data to complete the linkages.
[0376] Clause 72. The method for answering natural language questions posed by a user of a conversational interface of an artificial intelligence system of any of the preceding clauses, wherein selecting a likely path from among the paths to a likely path- dependent answer based upon the intent further comprises selecting a likely path from among the paths to a likely path-dependent answer after requesting additional data from the user.
[0377] Clause 73. The method for answering natural language questions posed by a user of a conversational interface of an artificial intelligence system of any of the preceding clauses, wherein selecting a likely path from among the paths to a likely path- dependent answer based upon the intent further comprises selecting a likely path from among the paths to a likely path-dependent answer based in part upon sub-intents comprising tactical constituents related to the intent by the store of subject matter ontology data.
[0378] Clause 74. The method for answering natural language questions posed by a user of a conversational interface of an artificial intelligence system of any of the preceding clauses, wherein selecting a likely path from among the paths to a likely path- dependent answer based upon the intent further comprises selecting a likely path from among the paths to a likely path-dependent answer based in part upon the intent and in part upon sufficiency of data to complete the linkages, wherein the data to complete the linkages includes user-specific data.
[0379] Clause 75. A computer-implemented method for providing therapeutic medical action recommendations in response to a medical information natural language conversation stream, the computer-implemented method comprising: receiving segments of a medical information natural language conversation stream at an artificial intelligence-based health information conversation agent from a medical information conversation user interface;
responsive to medical information content of a user medical information profile associated with the medical information natural language conversation stream, defining a desired clinical management outcome objective relevant to health management criteria and related health management data attributes of the user medical information profile; identifying a set of potential therapeutic interventions correlated to advancement of the clinical management outcome objective;
selecting from among the set of potential therapeutic interventions correlated to advancement of the clinical management outcome objective a medical intervention likely to advance the clinical management outcome objective;
presenting in the medical information natural language conversation stream a therapeutic advice conversation stream segment designed to stimulate execution of the medical intervention likely to advance the clinical management outcome objective; and presenting to the user in the medical information natural language conversation stream a therapeutic advice conversation stream segment explaining a correlation between the medical intervention likely to advance the clinical management outcome objective and achievement of the clinical management outcome objective.
[0380] Clause 76. The computer-implemented method for providing therapeutic medical action recommendations in response to a medical information natural language conversation stream of any preceding clause, wherein the selecting from among the set of potential therapeutic interventions correlated to advancement of the clinical management outcome objective a medical intervention likely to advance the clinical management outcome objective further comprises:
[0381] selecting from among the set of potential therapeutic interventions correlated to advancement of the clinical management outcome objective the medical intervention likely to advance the clinical management outcome objective based on a set of factors comprising likelihood of patient compliance with the a recommendation for the a medical intervention likely to advance the clinical management outcome objective and a statistical likelihood that the action will materially advance the clinical management outcome objective. Clause 77. The computer-implemented method for providing therapeutic medical action recommendations in response to a medical information natural language conversation stream any preceding clause, wherein the presenting to the user in the medical information natural language conversation stream a therapeutic advice conversation stream segment designed to stimulate execution of the action likely to advance the clinical management outcome objective further comprises presenting to the user in the medical information natural language conversation stream a therapeutic advice conversation stream segment explaining a cost-benefit analysis comparing likely results of performance of the action likely to advance the clinical management outcome objective and likely results of non-performance of the action likely to advance the clinical management outcome objective.
[0382] Clause 78. The computer-implemented method for providing therapeutic medical action recommendations in response to a medical information natural language conversation stream of any preceding clause, wherein the selecting from among the set of potential therapeutic interventions correlated to advancement of the clinical management outcome objective a medical intervention likely to advance the clinical management outcome objective further comprises:
selecting from among the set of potential therapeutic interventions correlated to advancement of the clinical management outcome objective the medical intervention likely to advance the clinical management outcome objective based on a set of factors comprising likelihood total expected cost expectation associated with the recommendation for the a medical intervention likely to advance the clinical management outcome objective.
[0383] Clause 79. The computer-implemented method for providing therapeutic medical action recommendations in response to a medical information natural language conversation stream of any preceding clause, wherein the presenting to the user in the medical information natural language conversation stream a therapeutic advice conversation stream segment designed to stimulate execution of the action likely to advance the clinical management outcome objective further comprises presenting to the user in the medical information natural language conversation stream a conversation stream reinforcing the recommendation after expiration of a delay period. [0384] Clause 80. The computer-implemented method for providing therapeutic medical action recommendations in response to a medical information natural language conversation stream of any preceding clause, wherein the presenting to the user in the medical information natural language conversation stream a therapeutic advice conversation stream segment designed to stimulate execution of the action likely to advance the clinical management outcome objective further comprises presenting to the user in the medical information natural language conversation stream a therapeutic advice conversation stream segment explaining reasons for selection of the clinical management outcome objective.
[0385] Clause 81 . The computer-implemented method for providing therapeutic medical action recommendations in response to a medical information natural language conversation stream of any preceding clause, wherein the presenting to the user in the medical information natural language conversation stream a therapeutic advice conversation stream segment designed to stimulate execution of the action likely to advance the clinical management outcome objective further comprises notifying third party service providers of the clinical management outcome objective and the recommendation.
[0386] Clause 82. A computer program product in a non-transitory computer-readable medium for providing therapeutic medical action recommendations in response to a medical information natural language conversation stream, the computer program product in a non-transitory computer-readable medium comprising instructions which, when executed cause a processor of a computer to perform:
[0387] receiving segments of a medical information natural language conversation stream at an artificial intelligence-based health information conversation agent from a medical information conversation user interface;
[0388] responsive to medical information content of a user medical information profile associated with the medical information natural language conversation stream, defining a clinical management outcome objective relevant to health management criteria and related health management data attributes of the profile;
selecting a medical intervention likely to advance the clinical management outcome objective; and [0389] presenting to the user in the medical information natural language conversation stream a therapeutic advice conversation stream segment designed to stimulate execution of the action likely to advance the clinical management outcome objective.
[0390] 83. The computer program product in a non-transitory computer-readable medium of any preceding clause, wherein the instructions which, when executed cause the processor of the computer to perform selecting a medical intervention likely to advance the clinical management outcome objective further comprise instructions which, when executed cause the processor of the computer to perform :
identifying a set of potential therapeutic interventions correlated to advancement of the clinical management outcome objective; and
selecting the action likely to advance the user outcome objective based on a set of factors comprising likelihood of performance of the action likely to advance the user outcome objective and likelihood that the action will materially advance the user outcome objective.
[0391] Clause 84. The computer program product in a non-transitory computer- readable medium of any preceding clause, wherein the instructions which, when executed cause the processor of the computer to perform presenting to the user in the medical information natural language conversation stream a therapeutic advice conversation stream segment designed to stimulate execution of the action likely to advance the clinical management outcome objective further comprise instructions which, when executed cause the processor of the computer to perform presenting to the user in the medical information natural language conversation stream a therapeutic advice conversation stream segment explaining a correlation between the action likely to advance the clinical management outcome objective and achievement of the clinical management outcome objective.
[0392] Clause 85. The computer program product in a non-transitory computer- readable medium of any preceding clause, wherein the instructions which, when executed cause the processor of the computer to perform presenting to the user in the medical information natural language conversation stream a therapeutic advice conversation stream segment designed to stimulate execution of the action likely to advance the clinical management outcome objective further comprise instructions which, when executed cause the processor of the computer to perform presenting to the user in the medical information natural language conversation stream a therapeutic advice conversation stream segment explaining a plan of subsequent actions likely to advance the clinical management outcome objective.
[0393] Clause 86. The computer program product in a non-transitory computer- readable medium of any preceding clause, wherein the instructions which, when executed cause the processor of the computer to perform presenting to the user in the medical information natural language conversation stream a therapeutic advice conversation stream segment designed to stimulate execution of the action likely to advance the clinical management outcome objective further comprise instructions which, when executed cause the processor of the computer to perform presenting to the user in the medical information natural language conversation stream a conversation stream reinforcing the recommendation after expiration of a delay period.
[0394] Clause 87. The computer program product in a non-transitory computer- readable medium of any preceding clause, wherein the instructions which, when executed cause the processor of the computer to perform presenting to the user in the medical information natural language conversation stream a therapeutic advice conversation stream segment designed to stimulate execution of the action likely to advance the clinical management outcome objective further comprise instructions which, when executed cause the processor of the computer to perform presenting to the user in the medical information natural language conversation stream a therapeutic advice conversation stream segment explaining reasons for selection of the clinical management outcome objective.
[0395] Clause 88. The computer program product in a non-transitory computer- readable medium of any preceding clause, wherein the instructions which, when executed cause the processor of the computer to perform presenting to the user in the medical information natural language conversation stream a therapeutic advice conversation stream segment designed to stimulate execution of the action likely to advance the clinical management outcome objective further comprise instructions which, when executed cause the processor of the computer to perform notifying third party service providers of the clinical management outcome objective and the recommendation.
[0396] Clause 89. A system for providing therapeutic medical action recommendations in response to a medical information natural language conversation stream, the system comprising:
a knowledge cloud configured for receiving segments of a medical information natural language conversation stream at an artificial intelligence-based health information from a medical information conversation user interface of a cognitive agent;
a critical thinking engine configured for:
responsive to medical information content of a user medical information profile associated with the medical information natural language conversation stream in the knowledge cloud, defining a clinical management outcome objective relevant to health management criteria and related health management data attributes of the profile, and selecting a medical intervention likely to advance the clinical management outcome objective; and
the cognitive agent, wherein the cognitive agent is configure for presenting to the user in the medical information natural language conversation stream a therapeutic advice conversation stream segment designed to stimulate execution of the action likely to advance the clinical management outcome objective.
[0397] Clause 90. The system of any preceding clause, wherein the selecting a medical intervention likely to advance the clinical management outcome objective further comprises:
identifying a set of potential therapeutic interventions correlated to advancement of the clinical management outcome objective; and
selecting the action likely to advance the user outcome objective based on a set of factors comprising likelihood of performance of the action likely to advance the user outcome objective and likelihood that the action will materially advance the user outcome objective.
[0398] Clause 91 . The system of claim any preceding clause, wherein the presenting to the user in the medical information natural language conversation stream a therapeutic advice conversation stream segment designed to stimulate execution of the action likely to advance the clinical management outcome objective further comprises presenting to the user in the medical information natural language conversation stream a therapeutic advice conversation stream segment explaining a correlation between the action likely to advance the clinical management outcome objective and achievement of the clinical management outcome objective.
[0399] Clause 92. The system of any preceding clause, wherein the presenting to the user in the medical information natural language conversation stream a therapeutic advice conversation stream segment designed to stimulate execution of the action likely to advance the clinical management outcome objective further comprises presenting to the user in the medical information natural language conversation stream a therapeutic advice conversation stream segment explaining a plan of subsequent actions likely to advance the clinical management outcome objective.
[0400] Clause 93. The system of any preceding clause, wherein the presenting to the user in the medical information natural language conversation stream a therapeutic advice conversation stream segment designed to stimulate execution of the action likely to advance the clinical management outcome objective further comprises presenting to the user in the medical information natural language conversation stream a conversation stream reinforcing the recommendation after expiration of a delay period.
[0401] Clause 94. The system of any preceding clause, wherein the presenting to the user in the medical information natural language conversation stream a conversation stream segment designed to stimulate execution of the action likely to advance the clinical management outcome objective further comprises presenting to the user in the medical information natural language conversation stream a conversation stream segment explaining reasons for selection of the clinical management outcome objective.
[0402] Clause 95. A computer-implemented method for providing action recommendations in response to a user-generated natural language conversation stream, the method comprising:
receiving segments of a user-generated natural language conversation stream at an artificial intelligence-based conversation agent from a user interface; responsive to content of a user profile associated with the user-generated natural language conversation stream, defining a user action outcome objective relevant to attributes of the profile;
selecting an action likely to advance the user action outcome objective; and presenting to the user in the user-generated natural language conversation stream a conversation stream segment designed to motivate performance of the action likely to advance the user action outcome objective.
[0403] Clause 96. The method of any preceding clause, wherein the selecting an action likely to advance the user action outcome objective further comprises:
[0404] identifying a set of actions correlated to advancement of the user action outcome objective; and
[0405] selecting the action likely to advance the user outcome objective based on a set of factors comprising likelihood of performance of the action likely to advance the user outcome objective and likelihood that the action will materially advance the user outcome objective.
[0406] Clause 97. The method of any preceding clause, wherein the presenting to the user in the user-generated natural language conversation stream a conversation stream segment designed to motivate performance of the action likely to advance the user action outcome objective further comprises presenting to the user in the user-generated natural language conversation stream a conversation stream segment explaining a correlation between the action likely to advance the user action outcome objective and achievement of the user action outcome objective.
[0407] Clause 98. The method of any preceding clause, wherein the presenting to the user in the user-generated natural language conversation stream a conversation stream segment designed to motivate performance of the action likely to advance the user action outcome objective further comprises presenting to the user in the user-generated natural language conversation stream a conversation stream segment explaining a plan of subsequent actions likely to advance the user action outcome objective.
[0408] Clause 99. The method of any preceding clause, wherein the presenting to the user in the user-generated natural language conversation stream a conversation stream segment designed to motivate performance of the action likely to advance the user action outcome objective further comprises presenting to the user in the user-generated natural language conversation stream a conversation stream reinforcing the recommendation after expiration of a delay period.
[0409] Clause 100. The method of any preceding clause, wherein the presenting to the user in the user-generated natural language conversation stream a conversation stream segment designed to motivate performance of the action likely to advance the user action outcome objective further comprises presenting to the user in the user generated natural language conversation stream a conversation stream segment explaining reasons for selection of the user action outcome objective.
[0410] Clause 101 . The method of any preceding clause, wherein the presenting to the user in the user-generated natural language conversation stream a conversation stream segment designed to motivate performance of the action likely to advance the user action outcome objective further comprises notifying third party service providers of the user action outcome objective and the recommendation.
[0411] Clause 102. A method for maintaining a hyperledger for medical transactions at one or more nodes, comprising:
[0412] receiving, from a computing device, a request to perform a transaction using the hyperledger, wherein the transaction pertains to registering a medical personnel entity associated with the computing device as a node of the one or more nodes, and the request comprises an authorizing credential pertaining to the medical personnel entity;
[0413] determining, based one or more rules, whether to allow the transaction to be performed in view of the request;
[0414] responsive to determining to allow the transaction to be performed, registering the node for the medical personnel entity by:
[0415] associating the medical personnel entity with the node;
[0416] updating the hyperledger by adding a block to the hyperledger, wherein the block stores the transaction including the authorizing credential pertaining to the medical personnel entity; and
[0417] storing the hyperledger at the node for the medical personnel entity.
[0418] Clause 103. The method of any preceding clause, further comprising: [0419] receiving, from a second computing device, a second request to perform a second transaction using the hyperledger, wherein the second transaction pertains to registering a patient entity associated with the second computing device as a second node of the one or more nodes, and the request comprises personal information pertaining to the patient entity;
[0420] determining, based on the one or more rules, whether to allow the second transaction to be performed in view of the second request;
[0421] responsive to determining to allow the second transaction to be performed, registering the second node for the patient entity by:
[0422] associating the patient entity with the second node;
[0423] updating the hyperledger by adding a second block to the hyperledger, wherein the second block stores the second transaction including the personal information pertaining to the patient entity; and
[0424] storing the hyperledger at the second node for the patient entity.
[0425] Clause 104. The method of any preceding clause, wherein determining, based on the one or more rules, whether to allow the transaction to be performed in view of the request further comprises:
[0426] transmitting a request to a computing device of a professional association or a government agency associated with the authorizing credential to validate the authorizing credential.
[0427] Clause 105. The method of any preceding clause, wherein the authorizing credential is a National Provider Identifier (NPI).
[0428] Clause 106. The method of any preceding clause, wherein the one or more nodes represent a plurality of entities in a healthcare ecosystem, wherein the plurality of entities comprise one or more medical personnel, patients, medical facilities, insurance providers, professional associations, and government agencies.
[0429] Clause 107. The method of any preceding clause, further comprising:
[0430] receiving, from the computing device associated with the medical personnel entity, a request to perform a medical transaction between the medical personnel entity and a patient entity, wherein the patient entity is associated with a patient node, and a copy of the hyperledger is stored at the patient node; [0431] identifying the block in the hyperledger storing the transaction that includes the authorizing credential pertaining to the medical personnel entity;
[0432] determining whether to allow the medical transaction to be performed based on at least the authorizing credential of the medical personnel entity; and
[0433] responsive to determining to allow the medical transaction to be performed, updating the hyperledger with the medical transaction.
[0434] Clause 108. The method of any preceding clause, wherein the medical transaction comprises:
[0435] the medical personnel entity creating or updating a prescription for the patient entity; or
[0436] the medical personnel entity filling or refilling the prescription for the patient entity.
[0437] Clause 109. A method for performing a medical transaction using a hyperledger, the method comprising:
[0438] receiving, from a computing device associated with a medical personnel entity, a request to perform the medical transaction between the medical personnel entity and a patient entity, wherein the medical personnel entity is associated with a medical personnel node and the patient entity is associated with a patient node, and a respective copy of the hyperledger is maintained at both the medical personnel node and the patient node;
[0439] identifying a transaction in the hyperledger that stores an authorizing credential of the medical personnel entity;
[0440] determining whether to allow the medical transaction to be performed based on at least the authorizing credential of the medical personnel entity; and
[0441] responsive to determining to allow the medical transaction to be performed, updating the respective copy of the hyperledger with the medical transaction at the medical personnel node and the patient node.
[0442] Clause 1 10. The method of any preceding clause, wherein determining whether to allow the medical transaction to be performed based on at least the authorizing credential of the medical personnel entity further comprises determining whether the authorizing credential is valid. [0443] Clause 111. The method of any preceding clause, wherein the medical transaction comprises the medical personnel entity creating or updating a prescription for the patient entity.
[0444] Clause 112. The method of any preceding clause, further comprising:
[0445] determining that the authorizing credential of the medical personnel entity is expired or is about to expire;
[0446] transmitting, based on one or more rules, a notification to the computing device associated with the medical personnel entity that instructs the medical personnel entity to renew the authorizing credential.
[0447] Clause 113. The method of any preceding clause, further comprising:
[0448] identifying another transaction in the hyperledger that stores information pertaining to the patient entity;
[0449] determining whether to allow the medical transaction to be performed based on at least the authorizing credential of the medical personnel entity and the information pertaining to the patient entity; and
[0450] responsive to determining to allow the medical transaction to be performed, updating the respective copy of the hyperledger with the medical transaction at the medical personnel node and the patient node.
[0451] Clause 114. A method for performing a medical transaction using a hyperledger, the method comprising:
[0452] identifying, by a patient computing device, a medical facility computing device that is within a threshold distance of a geolocation of the patient computing device, wherein the medical facility computing device is associated with a medical facility entity and the patient computing device is associated with a patient entity;
[0453] transmitting, from the patient computing device, a request to perform a medical transaction to the medical facility computing device, wherein the request comprises an authenticating credential associated with the patient entity, and a determination is made whether to allow performance of the medical transaction based on one or more rules that specify allowing the medical transaction to be added to a hyperledger when at least the authenticating credential in the hyperledger is verified; and [0454] receiving a notification from the medical facility computing device that indicates the medical transaction has been performed.
[0455] Clause 1 15. The method of any preceding clause, wherein the medical transaction comprises filling or refilling a prescription for the patient entity.
[0456] Clause 1 16. The method of any preceding clause, wherein the one or more rules further specify allowing the medical transaction to be added to the hyperledger when at least an authorizing credential of a medical personnel entity in the hyperledger is verified, wherein the medical personnel entity comprises a pharmacist or a physician that wrote the prescription.
[0457] Clause 1 17. The method of any preceding clause, wherein the one or more rules further specify notifying the medical personnel entity to update the authorizing credential in the hyperledger at set intervals of time.
[0458] Clause 1 18. The method of any preceding clause, wherein the one or more rules further specify allowing the medical transaction to be added to the hyperledger when at least an authorizing credential of the medical facility entity in the hyperledger is verified, wherein the medical facility entity comprises a pharmacy.
[0459] Clause 1 19. The method of any preceding clause, wherein the one or more rules further specify allowing the medical transaction to be added to the hyperledger when the prescription for the patient entity is identified at another medical transaction in the hyperledger.
[0460] Clause 120. The method of any preceding clause, wherein the one or more rules further specify allowing the medical transaction to be added to the hyperledger when there is at least one remaining refill for the prescription identified at the another medical transaction in the hyperledger.
[0461] Clause 121 . The method of any preceding clause, wherein the hyperledger comprises a plurality of blocks storing transactions between any combination of a plurality of entities in a healthcare ecosystem, wherein the plurality of entities comprise one or more medical personnel, patients, medical facilities, insurance providers, professional associations, and government agencies.
[0462] The foregoing description, for purposes of explanation, used specific nomenclature to provide a thorough understanding of the described embodiments. However, it should be apparent to one skilled in the art that the specific details are not required in order to practice the described embodiments. Thus, the foregoing descriptions of specific embodiments are presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the described embodiments to the precise forms disclosed. It should be apparent to one of ordinary skill in the art that many modifications and variations are possible in view of the above teachings.
[0463] The above discussion is meant to be illustrative of the principles and various embodiments of the present disclosure. Numerous variations and modifications will become apparent to those skilled in the art once the above disclosure is fully appreciated. It is intended that the following claims be interpreted to embrace all such variations and modifications.

Claims

CLAIMS What is claimed is:
1. A method for maintaining a hyperledger for medical transactions at one or more nodes, comprising:
receiving, from a computing device, a request to perform a transaction using the hyperledger, wherein the transaction pertains to registering a medical personnel entity associated with the computing device as a node of the one or more nodes, and the request comprises an authorizing credential pertaining to the medical personnel entity; determining, based one or more rules, whether to allow the transaction to be performed in view of the request;
responsive to determining to allow the transaction to be performed, registering the node for the medical personnel entity by:
associating the medical personnel entity with the node;
updating the hyperledger by adding a block to the hyperledger, wherein the block stores the transaction including the authorizing credential pertaining to the medical personnel entity; and
storing the hyperledger at the node for the medical personnel entity.
2. The method of claim 1 , further comprising:
receiving, from a second computing device, a second request to perform a second transaction using the hyperledger, wherein the second transaction pertains to registering a patient entity associated with the second computing device as a second node of the one or more nodes, and the request comprises personal information pertaining to the patient entity;
determining, based on the one or more rules, whether to allow the second transaction to be performed in view of the second request;
responsive to determining to allow the second transaction to be performed, registering the second node for the patient entity by:
associating the patient entity with the second node; updating the hyperledger by adding a second block to the hyperledger, wherein the second block stores the second transaction including the personal information pertaining to the patient entity; and
storing the hyperledger at the second node for the patient entity.
3. The method of claim 1 , wherein determining, based on the one or more rules, whether to allow the transaction to be performed in view of the request further comprises: transmitting a request to a computing device of a professional association or a government agency associated with the authorizing credential to validate the authorizing credential.
4. The method of claim 1 , wherein the authorizing credential is a National Provider Identifier (NPI).
5. The method of claim 1 , wherein the one or more nodes represent a plurality of entities in a healthcare ecosystem, wherein the plurality of entities comprise one or more medical personnel, patients, medical facilities, insurance providers, professional associations, and government agencies.
6. The method of claim 1 , further comprising:
receiving, from the computing device associated with the medical personnel entity, a request to perform a medical transaction between the medical personnel entity and a patient entity, wherein the patient entity is associated with a patient node, and a copy of the hyperledger is stored at the patient node;
identifying the block in the hyperledger storing the transaction that includes the authorizing credential pertaining to the medical personnel entity;
determining whether to allow the medical transaction to be performed based on at least the authorizing credential of the medical personnel entity; and
responsive to determining to allow the medical transaction to be performed, updating the hyperledger with the medical transaction.
7. The method of claim 6, wherein the medical transaction comprises:
the medical personnel entity creating or updating a prescription for the patient entity; or
the medical personnel entity filling or refilling the prescription for the patient entity.
8. A method for performing a medical transaction using a hyperledger, the method comprising:
receiving, from a computing device associated with a medical personnel entity, a request to perform the medical transaction between the medical personnel entity and a patient entity, wherein the medical personnel entity is associated with a medical personnel node and the patient entity is associated with a patient node, and a respective copy of the hyperledger is maintained at both the medical personnel node and the patient node; identifying a transaction in the hyperledger that stores an authorizing credential of the medical personnel entity;
determining whether to allow the medical transaction to be performed based on at least the authorizing credential of the medical personnel entity; and
responsive to determining to allow the medical transaction to be performed, updating the respective copy of the hyperledger with the medical transaction at the medical personnel node and the patient node.
9. The method of claim 8, wherein determining whether to allow the medical transaction to be performed based on at least the authorizing credential of the medical personnel entity further comprises determining whether the authorizing credential is valid.
10. The method of claim 8, wherein the medical transaction comprises the medical personnel entity creating or updating a prescription for the patient entity.
1 1 . The method of claim 8, further comprising:
determining that the authorizing credential of the medical personnel entity is expired or is about to expire; transmitting, based on one or more rules, a notification to the computing device associated with the medical personnel entity that instructs the medical personnel entity to renew the authorizing credential.
12. The method of claim 8, further comprising:
identifying another transaction in the hyperledger that stores information pertaining to the patient entity;
determining whether to allow the medical transaction to be performed based on at least the authorizing credential of the medical personnel entity and the information pertaining to the patient entity; and
responsive to determining to allow the medical transaction to be performed, updating the respective copy of the hyperledger with the medical transaction at the medical personnel node and the patient node.
13. A method for performing a medical transaction using a hyperledger, the method comprising:
identifying, by a patient computing device, a medical facility computing device that is within a threshold distance of a geolocation of the patient computing device, wherein the medical facility computing device is associated with a medical facility entity and the patient computing device is associated with a patient entity;
transmitting, from the patient computing device, a request to perform a medical transaction to the medical facility computing device, wherein the request comprises an authenticating credential associated with the patient entity, and a determination is made whether to allow performance of the medical transaction based on one or more rules that specify allowing the medical transaction to be added to a hyperledger when at least the authenticating credential in the hyperledger is verified; and
receiving a notification from the medical facility computing device that indicates the medical transaction has been performed.
14. The method of claim 13, wherein the medical transaction comprises filling or refilling a prescription for the patient entity.
15. The method of claim 14, wherein the one or more rules further specify allowing the medical transaction to be added to the hyperledger when at least an authorizing credential of a medical personnel entity in the hyperledger is verified, wherein the medical personnel entity comprises a pharmacist or a physician that wrote the prescription.
16. The method of claim 15, wherein the one or more rules further specify notifying the medical personnel entity to update the authorizing credential in the hyperledger at set intervals of time.
17. The method of claim 14, wherein the one or more rules further specify allowing the medical transaction to be added to the hyperledger when at least an authorizing credential of the medical facility entity in the hyperledger is verified, wherein the medical facility entity comprises a pharmacy.
18. The method of claim 14, wherein the one or more rules further specify allowing the medical transaction to be added to the hyperledger when the prescription for the patient entity is identified at another medical transaction in the hyperledger.
19. The method of claim 18, wherein the one or more rules further specify allowing the medical transaction to be added to the hyperledger when there is at least one remaining refill for the prescription identified at the another medical transaction in the hyperledger.
20. The method of claim 13, wherein the hyperledger comprises a plurality of blocks storing transactions between any combination of a plurality of entities in a healthcare ecosystem, wherein the plurality of entities comprise one or more medical personnel, patients, medical facilities, insurance providers, professional associations, and government agencies.
PCT/US2020/033284 2019-05-16 2020-05-15 System and method for using a blockchain to manage medical transactions between entities in a healthcare ecosystem WO2020232411A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/611,476 US20220245637A1 (en) 2019-05-16 2020-05-15 System and method for using a blockchain to manage medical transactions between entities in a healthcare ecosystem

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201962849075P 2019-05-16 2019-05-16
US62/849,075 2019-05-16
US16/593,491 2019-10-04
US16/593,491 US11263405B2 (en) 2018-10-10 2019-10-04 System and method for answering natural language questions posed by a user

Publications (1)

Publication Number Publication Date
WO2020232411A1 true WO2020232411A1 (en) 2020-11-19

Family

ID=73289701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2020/033284 WO2020232411A1 (en) 2019-05-16 2020-05-15 System and method for using a blockchain to manage medical transactions between entities in a healthcare ecosystem

Country Status (1)

Country Link
WO (1) WO2020232411A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4318483A4 (en) * 2021-03-26 2024-07-17 Ntt Comm Corp Drug-dispensation information managing device, managing method, and program recording medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120239560A1 (en) * 2011-03-04 2012-09-20 Pourfallah Stacy S Healthcare payment collection portal apparatuses, methods and systems
US20160321406A1 (en) * 2015-04-30 2016-11-03 Mckesson Corporation High-Risk Medication Monitoring
US20170132393A1 (en) * 2015-11-10 2017-05-11 Wal-Mart Stores, Inc. Prescription home delivery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120239560A1 (en) * 2011-03-04 2012-09-20 Pourfallah Stacy S Healthcare payment collection portal apparatuses, methods and systems
US20160321406A1 (en) * 2015-04-30 2016-11-03 Mckesson Corporation High-Risk Medication Monitoring
US20170132393A1 (en) * 2015-11-10 2017-05-11 Wal-Mart Stores, Inc. Prescription home delivery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4318483A4 (en) * 2021-03-26 2024-07-17 Ntt Comm Corp Drug-dispensation information managing device, managing method, and program recording medium

Similar Documents

Publication Publication Date Title
US12032913B2 (en) System and method for answering natural language questions posed by a user
US20230052573A1 (en) System and method for autonomously generating personalized care plans
US20220391270A1 (en) Cloud-based healthcare platform
US20230360779A1 (en) Systems and methods for using a distributed ledger to manage knowledge in a healthcare ecosystem
US20220384003A1 (en) Patient viewer customized with curated medical knowledge
US20220384052A1 (en) Performing mapping operations to perform an intervention
US20240087700A1 (en) System and Method for Steering Care Plan Actions by Detecting Tone, Emotion, and/or Health Outcome
US20230187036A1 (en) Method for controlled and trust-aware contact tracing with active involvement of contact actors
US20230047253A1 (en) System and Method for Dynamic Goal Management in Care Plans
US20220343081A1 (en) System and Method for an Autonomous Multipurpose Application for Scheduling, Check-In, and Education
WO2021041241A1 (en) System and method for defining a user experience of medical data systems through a knowledge graph
US20220384001A1 (en) System and method for a clinic viewer generated using artificial-intelligence
US20230082381A1 (en) Image and information extraction to make decisions using curated medical knowledge
US20230170079A1 (en) Method to build a trust chain of testing or dispensation of medical consultation in a medical network
US20210398671A1 (en) System and method for recommending items in conversational streams
WO2021138013A1 (en) System and method for determining and presenting clinical answers
US20230343460A1 (en) Tracking infectious disease using a comprehensive clinical risk profile and performing actions in real-time via a clinic portal
WO2020236832A1 (en) System and method for using a blockchain to manage knowledge in a healthcare ecosystem
US20230115939A1 (en) Evaluation of comprehensive clinical risk profiles of infectious disease in real-time
US20230177502A1 (en) System & method to detect fraudulent or abusive behavior as part of medical record and medication management
US20220245355A1 (en) System and method for using a blockchain to manage knowledge in a healthcare ecosystem
WO2021141744A1 (en) Generating a registry of people using a criteria and performing an action for the registry of people
WO2020232411A1 (en) System and method for using a blockchain to manage medical transactions between entities in a healthcare ecosystem
US20220391730A1 (en) System and method for an administrator viewer using artificial intelligence
US20240086366A1 (en) System and Method for Creating Electronic Care Plans Through Graph Projections on Curated Medical Knowledge

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20805813

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/04/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20805813

Country of ref document: EP

Kind code of ref document: A1