[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020232480A1 - Membranreaktor - Google Patents

Membranreaktor Download PDF

Info

Publication number
WO2020232480A1
WO2020232480A1 PCT/AT2020/060065 AT2020060065W WO2020232480A1 WO 2020232480 A1 WO2020232480 A1 WO 2020232480A1 AT 2020060065 W AT2020060065 W AT 2020060065W WO 2020232480 A1 WO2020232480 A1 WO 2020232480A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
membrane
process gas
permeate
flow channel
Prior art date
Application number
PCT/AT2020/060065
Other languages
English (en)
French (fr)
Inventor
Roland Kirchberger
Michael Lang
Nicole Wermuth
Igor SAUPERL
Original Assignee
Lec Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lec Gmbh filed Critical Lec Gmbh
Priority to EP20711774.8A priority Critical patent/EP3972730A1/de
Publication of WO2020232480A1 publication Critical patent/WO2020232480A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2475Membrane reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/008Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction
    • B01J8/009Membranes, e.g. feeding or removing reactants or products to or from the catalyst bed through a membrane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/323Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2491Other constructional details
    • B01J2219/2492Assembling means
    • B01J2219/2496Means for assembling modules together, e.g. casings, holders, fluidic connectors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation
    • C01B2203/041In-situ membrane purification during hydrogen production
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1217Alcohols
    • C01B2203/1223Methanol

Definitions

  • the invention relates to a membrane reactor with a housing penetrating, a catalyst receiving flow channel for a process gas and with a flow path for a permeate, which is separated from the flow channel for the process gas by a permeate membrane.
  • methanol which has a high energy density and unlimited storage without losses, be used as a liquid, easily manageable hydrogen storage device.
  • a vaporized methanol-water mixture is converted as a process gas in a catalytic reaction essentially into hydrogen and carbon dioxide, the hydrogen being the main component of the permeate and the carbon monoxide being the main component of the retentate.
  • the process gas which is essentially made up of methanol and water, is passed through a tubular duct equipped with a catalyst, the jacket of which serves as a porous support for the membrane.
  • the permeate formed by the hydrogen penetrating the membrane is withdrawn in countercurrent to the process gas through the annular gap between the pipe channel and the reactor housing enclosing the pipe channel at a distance.
  • the invention is therefore based on the object of designing a membrane reactor in such a way that over the entire local and temporal course of the reaction, favorable parameters for the catalytic conversion of a process gas into a permeate, in particular for the production of hydrogen from methanol, can be guaranteed.
  • the invention solves the problem in that the housing is composed of individual housing modules that form the flow channel for the process gas that runs from housing module to housing module and that are connected to a collecting line for the permeate, transversely have hollow bodies aligned with the flow channel as a carrier for the membrane.
  • housing modules form housing rings which are flanged together between two end caps provided on the one hand with an inlet for the process gas and on the other hand with an outlet for the retentate, so that between the two end caps they differ in their structure and number Housing modules can be combined into a membrane reactor adapted to the respective requirements.
  • the individual housing rings can be sealed against one another in a simple manner with the aid of ring seals.
  • housing modules for permeate discharge on the flow inlet side can be provided with appropriate catalysts, there are advantages in terms of freedom of design if the catalyst and the hollow body provided with the membrane are provided in separate housing modules.
  • the aligned transversely to the flow channel, enclosed with a membrane for Permeatab conduction hollow bodies can be formed in a simple manner from porous tubes which open into collecting spaces provided on the outside of the housing modules and connected to the collecting line. With the number and the diameter of these tubes carrying the membrane, the ratio of the membrane area to the cross section of the flow channel for the process gas or the reaction gas can easily be determined.
  • At least one housing module can have a heat exchanger.
  • heat exchanger modules heat can both be supplied and removed as required in order to be able to set the most favorable process temperature in each case.
  • Show it 1 shows a membrane reactor according to the invention in a schematic longitudinal section
  • FIGS. 1 and 2 shows a section along the line II-II in FIGS. 1 and
  • FIG. 3 shows an embodiment variant of a membrane reactor according to the invention in a schematic section corresponding to FIG. 1.
  • a membrane reactor according to the invention has a housing 1, which is composed of individual, preferably housing rings forming housing modules 2, 3 and 4, which are flanged together sealingly between two end caps 5, 6.
  • the flanged housing modules 2, 3 and 4 form a continuous flow channel 7, which is exposed to a process gas 9 through an inlet 8 of the end cap 5 and opens into an outlet 10 for the retentate 11 in the area of the opposite end cap 6.
  • the housing modules 2 have hollow bodies 12 running transversely to the flow channel 7 in the form of porous tubes as supports for a membrane 13. These hollow bodies 12 open into a collecting space 16 provided on the outside of the housing modules 2 and connected to a collecting line 14 for the permeate 15.
  • the housing modules 2 for permeate discharge are provided in the flow direction of the process gas 9 with a catalyst 17 housing modules 3 vorgela.
  • the catalytic conversion of the process gas 9 into a permeate 15 and a retentate 11 takes place.
  • the permeate that forms is deposited in the respective subsequent housing module 2 via the membrane 13 and discharged through the hollow body 12.
  • the process gas portion is catalytically converted again in a subsequent flow section in order to be able to remove a largely process gas-free retentate 11 from the membrane reactor after a multistage catalytic conversion with subsequent permeate discharge.
  • the influence of temperature on the catalytic reaction can be taken into account by housing modules 4 which accommodate a heat exchanger 18, for example in the form of coiled tubes for a heat carrier, with the help of which heat can either be introduced or removed as required.
  • a membrane reactor according to FIG. 1 is charged with a methanol-water vapor mixture as process gas 9 for hydrogen production, a partially catalytic conversion of the process gas 9 into the main components carbon dioxide and hydrogen takes place first in a housing module 3, which in the following housing module 2 via the Membrane 13 is derived through the hollow body 12.
  • the remaining reaction gas from process gas enriched with carbon dioxide is heated to a process temperature favorable for the subsequent catalytic reaction by supplying heat in the subsequent heat exchanger 18 of a housing module 4 in order to be able to divert the hydrogen converted from the process gas into a housing module 2.
  • the hydrogen deposited in the individual housing modules 2 is drawn off for further use through a collecting line 14 common to these housing modules 2.
  • FIG. 3 shows a membrane reactor whose inlet side catalyst section has been extended compared to the exemplary embodiment according to FIG. 1 by connecting two housing modules 3 accommodating a catalyst 17 in series.
  • the process temperature in this extended catalyst section is influenced by an upstream heat exchanger 18 of a housing module 4.
  • the subsequent implementation of the process gas remaining in the reaction gas is optimized according to FIG.
  • the modular structure of the membrane reactor can be optimally adapted to different requirements of the conversion and separation processes, because the arrangement and properties of catalysts, heat exchangers and membranes can be changed as required and to the respective reaction as well as initially unknown boundary conditions and component properties can be coordinated so that all housing modules can work in an optimal range of the parameters relevant for the conversion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

Es wird ein Membranreaktor mit einem ein Gehäuse (1) durchsetzenden, einen Katalysator (17) aufnehmenden Strömungskanal (7) für ein Prozessgas (9) und mit einem Strömungsweg für ein Permeat (15) beschrieben, der vom Strömungskanal (7) für das Prozessgas (9) durch eine für das Permeat (15) durchlässige Membran (13) getrennt ist. Um vorteilhafte Konstruktionsbedingungen zu schaffen, wird vorgeschlagen, dass das Gehäuse (1) aus einzelnen Gehäusemodulen (2, 3, 4) zusammengesetzt ist, die den von Gehäusemodul (2, 3, 4) zu Gehäusemodul (2, 3, 4) durchgehenden Strömungskanal (7) für das Prozessgas (9) bilden und an eine Sammelleitung (14) für das Permeat (15) angeschlossene, quer zum Strömungskanal (7) ausgerichtete Hohlkörper (12) als Träger für die Membran (13) aufweisen.

Description

Membranreaktor
Technisches Gebiet
Die Erfindung bezieht sich auf einen Membranreaktor mit einem ein Gehäuse durchsetzenden, einen Katalysator aufnehmenden Strömungskanal für ein Pro zessgas und mit einem Strömungsweg für ein Permeat, der vom Strömungskanal für das Prozessgas durch eine für das Permeat durchlässige Membran getrennt ist.
Stand der Technik
Um die mit der Lagerung von Wasserstoff beispielsweise als Treibstoff für Schiffs antriebe verbundenen Schwierigkeiten zu vermeiden, wurde bereits vorgeschla gen, Methanol, das eine hohe Energiedichte besitzt und eine unbegrenzte Lage rung ohne Verluste erlaubt, als flüssigen, gut handhabbaren Wasserstoffspeicher einzusetzen. In einem Membranreaktor wird ein verdampftes Methanol- Wassergemisch als Prozessgas in einer katalytischen Reaktion im Wesentlichen in Wasserstoff und Kohlendioxid umgesetzt, wobei der Wasserstoff die Haupt komponente des Permeats und das Kohlenmonoxid die Hauptkomponente des Retentats bilden. Das im Wesentlichen aus Methanol und Wasser gebildete Pro zessgas wird durch einen mit einem Katalysator bestückten Rohrkanal geleitet, dessen Mantel als poröser Träger für die Membran dient. Das durch den die Membran durchsetzenden Wasserstoff gebildete Permeat wird im Gegenstrom zum Prozessgas durch den Ringspalt zwischen dem Rohrkanal und dem den Rohrkanal mit Abstand umschließenden Reaktorgehäuse abgezogen.
Nachteilig bei diesen Membranreaktoren ist, dass sich entlang des axialen Strö mungswegs des Prozessgases durch den Rohrkanal die für die katalytische Reak tion bestimmenden Parameter, wie Druck, Temperatur und chem ische Zusam- mensetzung, ändern, sodass sich hinsichtlich der Optimierung des Umsetzungs prozesses Schwierigkeiten ergeben, die zu ungünstigen Wirkungsgraden führen.
Darstellung der Erfindung
Der Erfindung liegt somit die Aufgabe zugrunde, einen Membranreaktor so auszu gestalten, dass über den gesamten örtlichen und zeitlichen Reaktionsverlauf vor teilhafte Parameter für die katalytische Umsetzung eines Prozessgases in ein Permeat, insbesondere zur Gewinnung von Wasserstoff aus Methanol, gewähr leistet werden können.
Ausgehend von einem Membranreaktor der eingangs geschilderten Art löst die Er findung die gestellte Aufgabe dadurch, dass das Gehäuse aus einzelnen Gehäu semodulen zusammengesetzt ist, die den von Gehäusemodul zu Gehäusemodul durchgehenden Strömungskanal für das Prozessgas bilden und an eine Sammel leitung für das Permeat angeschlossene, quer zum Strömungskanal ausgerichtete Hohlkörper als Träger für die Membran aufweisen.
Aufgrund der Zusammensetzung des Gehäuses des Membranreaktors aus ein zelnen Gehäusemodulen, die je einen Strömungskanalabschnitt bilden, können für jeden Strömungsabschnitt des Prozessgases bzw. des Reaktionsgases, das sich aus dem Prozessgas und dem Retentat aus dem bereits umgesetzten Prozessgas zusammensetzt, jeweils vorteilhafte Parameter für die katalytische Umsetzung und die Abscheidung des Permeats vorgegeben werden, weil die einzelnen Gehäuse- module entsprechend gestaltet werden können. Mit dem Vorsehen von einzelnen Gehäusemodulen zur Permeatableitung entlang des Strömungskanals für das Produktgas und von diesen Gehäusemodulen zugeordneten Katalysatoren, die gegebenenfalls die sich aufgrund der Permeatableitung und der chemischen Re aktionen ändernde Zusammensetzung des Reaktionsgases berücksichtigen, kön nen im Bereich jeder dieser voneinander gesonderten Abschnitte für die katalyti schen Reaktionen vorteilhafte, weitgehend konstante Umsetzungsparameter ge währleistet werden. Besonders einfache Konstruktionsverhältnisse ergeben sich, wenn die Gehäuse- module Gehäuseringe bilden, die zwischen zwei einerseits mit einem Zulauf für das Prozessgas und anderseits mit einem Ablauf für das Retentat versehenen Endkappen zusammengeflanscht sind, sodass zwischen den beiden Endkappen in ihrem Aufbau und in ihrer Anzahl unterschiedliche Gehäusemodule zu einem an die jeweiligen Anforderungen angepassten Membranreaktor zusammengefasst werden können. Die einzelnen Gehäuseringe können dabei in einfacher Weise mithilfe von Ringdichtungen gegeneinander abgedichtet werden.
Obwohl die Gehäusemodule zur Permeatableitung auf der Strömungszulaufseite mit entsprechenden Katalysatoren versehen sein können, ergeben sich hinsicht lich der Gestaltungsfreiheit Vorteile, wenn der Katalysator und die mit der Memb ran versehenen Hohlkörper in gesonderten Gehäusemodulen vorgesehen sind.
Die quer zum Strömungskanal ausgerichteten, mit einer Membran zur Permeatab leitung umschlossenen Hohlkörper können in einfacher Weise aus porösen Roh ren gebildet werden, die in außen an den Gehäusemodulen vorgesehene, an die Sammelleitung angeschlossene Sammelräume münden. Mit der Anzahl und dem Durchmesser dieser die Membran tragenden Rohre lässt sich das Verhältnis der Membranfläche zum Querschnitt des Strömungskanals für das Prozessgas bzw. das Reaktionsgas einfach festlegen.
Um Einfluss auf die Temperatur nehmen zu können, kann zumindest ein Gehäu semodul einen Wärmetauscher aufweisen. Mit solchen Wärmetauschermodulen kann je nach Bedarf Wärme sowohl zugeführt als auch abgeführt werden, um die jeweils günstigste Prozesstemperatur einstellen zu können.
Kurze Beschreibung der Erfindung
In der Zeichnung ist der Erfindungsgegenstand beispielsweise dargestellt. Es zei gen Fig. 1 einen erfindungsgemäßen Membranreaktor in einem schematischen Längsschnitt,
Fig. 2 einen Schnitt nach der Linie ll-ll der Fig. 1 und
Fig. 3 eine Ausführungsvariante eines erfindungsgemäßen Membranreaktors in einem der Fig. 1 entsprechenden, schematischen Schnitt.
Wege zur Ausführung der Erfindung
Ein erfindungsgemäßer Membranreaktor weist ein Gehäuse 1 auf, das sich aus einzelnen, vorzugsweise Gehäuseringe bildenden Gehäusemodulen 2, 3 und 4 zusammensetzt, die zwischen zwei Endkappen 5, 6 dichtend zusammenge flanscht sind. Die zusammengeflanschten Gehäusemodule 2, 3 und 4 bilden einen durchgehenden Strömungskanal 7, der durch einen Zulauf 8 der Endkappe 5 mit einem Prozessgas 9 beaufschlagt wird und im Bereich der gegenüberliegenden Endkappe 6 in einen Ablauf 10 für das Retentat 1 1 mündet.
Wie insbesondere der Fig. 2 entnommen werden kann, weisen die Gehäusemodu le 2 quer zum Strömungskanal 7 verlaufende Hohlkörper 12 in Form von porösen Rohren als Träger für eine Membran 13 auf. Diese Hohlkörper 12 münden in einen außen an den Gehäusemodulen 2 vorgesehenen, an eine Sammelleitung 14 für das Permeat 15 angeschlossenen Sammelraum 16.
Den Gehäusemodulen 2 zur Permeatableitung sind in Strömungsrichtung des Prozessgases 9 mit einem Katalysator 17 versehene Gehäusemodule 3 vorgela gert. In diesen Katalysatoren 17 findet die katalytische Umsetzung des Prozess gases 9 in ein Permeat 15 und ein Retentat 1 1 statt. Das sich bildende Permeat wird in dem jeweils nachfolgenden Gehäusemodul 2 über die Membran 13 abge schieden und durch die Hohlkörper 12 ausgetragen. Von dem Reaktionsgas ver bleibenden, wird der Prozessgasanteil in einem nachfolgenden Strömungsab schnitt wieder katalytisch umgewandelt, um gegebenenfalls nach einer mehrstufi gen katalytischen Umwandlung mit nachfolgender Permeatableitung ein weitge hend prozessgasfreies Retentat 1 1 aus dem Membranreaktor abführen zu kön- nen. Der Temperatureinfluss auf die katalytische Reaktion kann durch Gehäusemodule 4 berücksichtigt werden, die einen Wärmetauscher 18 aufnehmen, beispielsweise in Form von in Windungen verlegte Rohrschlangen für einen Wärmeträger, mit dessen Hilfe je nach Bedarf entweder Wärme eingebracht oder abgeführt werden kann.
Wird ein Membranreaktor gemäß der Fig. 1 zur Wasserstoffgewinnung mit einem Methanol-Wasserdampfgemisch als Prozessgas 9 beaufschlagt, so erfolgt zu nächst in einem Gehäusemodul 3 eine teilweise katalytische Umsetzung des Pro zessgases 9 in die Hauptkomponenten Kohlendioxid und Wasserstoff, der im nachfolgenden Gehäusemodul 2 über die Membran 13 durch die Hohlkörper 12 abgeleitet wird. Das verbleibende Reaktionsgas aus mit Kohlendioxid angereicher tem Prozessgas wird durch Wärmezufuhr im anschließenden Wärmetauscher 18 eines Gehäusemoduls 4 auf eine für die nachfolgende katalytische Reaktion güns tige Prozesstemperatur erwärmt, um im Anschluss den aus dem Prozessgas um gesetzten Wasserstoff in einem Gehäusemodul 2 ableiten zu können. Der in den einzelnen Gehäusemodulen 2 abgeschiedene Wasserstoff wird durch eine diesen Gehäusemodulen 2 gemeinsame Sammelleitung 14 zur weiteren Verwendung ab gezogen. Das Rententat 1 1 , im Wesentlichen Kohlendioxid und Wasser, verlässt den Membranreaktor durch den Ablauf 10 der Endkappe 6.
Durch unterschiedliche Kombinationen der Gehäusemodule 2, 3 und 4 lässt sich der Membranreaktor in einfacher Art an unterschiedliche Anforderungen anpas sen. So zeigt die Fig. 3 beispielsweise einen Membranreaktor, dessen zulaufseiti ger Katalysatorabschnitt gegenüber dem Ausführungsbeispiel nach der Fig. 1 durch das Hintereinanderschalten von zwei einen Katalysator 17 aufnehmenden Gehäusemodulen 3 verlängert wurde. Außerdem wird auf die Prozesstemperatur in diesem verlängerten Katalysatorabschnitt durch einen vorgelagerten Wärme tauscher 18 eines Gehäusemoduls 4 Einfluss genommen. Die nachfolgende Um setzung des im Reaktionsgas verbleibenden Prozessgases wird entsprechend der Fig. 1 optimiert, indem zunächst nach dem Ableiten des Permeats das verbleiben de Gasgemisch im Wärmetauscher 18 eines nachfolgenden Gehäusemoduls 4 auf die gewünschte Prozesstemperatur gebracht und dann das restliche Prozessgas in einem Gehäusemodul 3 in ein Permeat und ein Retentat umgesetzt wird, bevor das Permeat in einem abschließenden Gehäusemodul 2 aus dem Gasgemisch abgeleitet wird.
Es zeigt sich somit, dass durch den modulartigen Aufbau der Membranreaktor in optimaler Art an unterschiedliche Anforderungen der Umwandlungs- und Abschei devorgänge angepasst werden kann, weil die Anordnung und Eigenschaften von Katalysatoren, Wärmetauschern und Membranen beliebig verändert werden und auf die jeweilige Reaktion sowie auf anfangs unbekannte Randbedingungen und Komponenteneigenschaften abgestimmt werden können, sodass sämtliche Ge- häusemodule in einem optimalen Bereich der für die Umwandlung maßgebenden Parameter arbeiten können.

Claims

Patentansprüche
1. Membranreaktor mit einem ein Gehäuse (1 ) durchsetzenden, einen Kataly sator (17) aufnehmenden Strömungskanal (7) für ein Prozessgas (9) und mit ei nem Strömungsweg für ein Permeat (15), der vom Strömungskanal (7) für das Prozessgas (9) durch eine für das Permeat (15) durchlässige Membran (13) ge trennt ist, dadurch gekennzeichnet, dass das Gehäuse (1 ) aus einzelnen Gehäu semodulen (2, 3, 4) zusammengesetzt ist, die den von Gehäusemodul (2, 3, 4) zu Gehäusemodul (2, 3, 4) durchgehenden Strömungskanal (7) für das Prozessgas (9) bilden und an eine Sammelleitung (14) für das Permeat (15) angeschlossene, quer zum Strömungskanal (7) ausgerichtete Hohlkörper (12) als Träger für die Membran (13) aufweisen.
2. Membranreaktor nach Anspruch 1 , dadurch gekennzeichnet, dass die Ge- häusemodule (2, 3, 4) Gehäuseringe bilden, die zwischen zwei einerseits mit ei nem Zulauf (8) für das Prozessgas (9) und anderseits mit einem Ablauf (10) für das Retentat (11 ) versehenen Endkappen (5, 6) zusammengeflanscht sind.
3. Membranreaktor nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Katalysator (17) und die mit der Membran (13) versehenen Hohlkörper (12) in gesonderten Gehäusemodulen (2, 3) vorgesehen sind.
4. Membranreaktor nach einem der Ansprüche 1 bis 3, dadurch gekennzeich- net, dass die die Membran (13) tragenden Hohlkörper (12) Rohre bilden, die in außen an den Gehäusemodulen (2) vorgesehene, an die Sammelleitung (14) an geschlossene Sammelräume (16) münden.
5. Membranreaktor nach einem der Ansprüche 1 bis 4, dadurch gekennzeich net, dass zumindest ein Gehäusemodul (4) einen Wärmetauscher (18) aufweist.
PCT/AT2020/060065 2019-05-21 2020-03-05 Membranreaktor WO2020232480A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20711774.8A EP3972730A1 (de) 2019-05-21 2020-03-05 Membranreaktor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA50467/2019 2019-05-21
ATA50467/2019A AT522323B1 (de) 2019-05-21 2019-05-21 Membranreaktor

Publications (1)

Publication Number Publication Date
WO2020232480A1 true WO2020232480A1 (de) 2020-11-26

Family

ID=69844996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AT2020/060065 WO2020232480A1 (de) 2019-05-21 2020-03-05 Membranreaktor

Country Status (3)

Country Link
EP (1) EP3972730A1 (de)
AT (1) AT522323B1 (de)
WO (1) WO2020232480A1 (de)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0457352A1 (de) * 1990-05-18 1991-11-21 Instytut Chemii Nieorganicznej Reaktor mit internem Wärmeaustausch und mit festem Katalysator
US20020094310A1 (en) * 2000-12-05 2002-07-18 Krause Curtis L. Compact fuel processor for producing a hydrogen rich gas
US20070079703A1 (en) * 2005-10-11 2007-04-12 Carolan Michael F Feed gas contaminant control in ion transport membrane systems
US8206667B2 (en) * 2007-12-31 2012-06-26 Chevron U.S.A. Inc. Membrane reactor with in-situ dehydration and method for using the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR9914560A (pt) * 1998-10-14 2001-06-26 Ida Tech Llc Reformador de vapor, e, processo para produzir hidrogênio que contenha concentrações de monóxido de carbono e de dióxido de carbono abaixo de um nìvel mìnimo definido
US20030039601A1 (en) * 2001-08-10 2003-02-27 Halvorson Thomas Gilbert Oxygen ion transport membrane apparatus and process for use in syngas production
US7658788B2 (en) * 2003-08-06 2010-02-09 Air Products And Chemicals, Inc. Ion transport membrane module and vessel system with directed internal gas flow
NL2006245C2 (en) * 2011-02-18 2012-08-21 Stichting Energie MEMBRANE REACTOR AND PROCESS FOR THE PRODUCTION OF A GASEOUS PRODUCT WITH SUCH REACTOR.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0457352A1 (de) * 1990-05-18 1991-11-21 Instytut Chemii Nieorganicznej Reaktor mit internem Wärmeaustausch und mit festem Katalysator
US20020094310A1 (en) * 2000-12-05 2002-07-18 Krause Curtis L. Compact fuel processor for producing a hydrogen rich gas
US20070079703A1 (en) * 2005-10-11 2007-04-12 Carolan Michael F Feed gas contaminant control in ion transport membrane systems
US8206667B2 (en) * 2007-12-31 2012-06-26 Chevron U.S.A. Inc. Membrane reactor with in-situ dehydration and method for using the same

Also Published As

Publication number Publication date
EP3972730A1 (de) 2022-03-30
AT522323A4 (de) 2020-10-15
AT522323B1 (de) 2020-10-15

Similar Documents

Publication Publication Date Title
CH687004A5 (de) Membranreaktor fuer die Umsetzung von gasfoermigen Ausgangsstoffen.
EP3573927B1 (de) Verfahren und anlage zur herstellung von salpetersäure
EP0787679A1 (de) Verfahren und Vorrichtung zur Gewinnung eines wasserstoffreichen, kohlenmonoxidarmen Gases
DE3424208A1 (de) Verfahren und vorrichtung zur umsatzsteigerung von mit wasserstoffbildung ablaufenden gasreaktionen
WO1985004470A2 (en) Installation for heat exchange and material transfer between two or more flowing media
DE19804286A1 (de) Reaktor für eine katalytische chemische Reaktion, insbesondere Methanolreformierungsreaktor
DE102011018442A1 (de) Membranreaktor zur Erzeugung von Wasserstoff
WO2009056488A1 (de) Horizontaler reaktor zur umsetzung eines fluiden eduktstromes mit einem fluiden oxidatorstrom in gegenwart eines feststoffkatalysators
DE112019001266T5 (de) Vorrichtung und Verfahren zur Herstellung von Methan
EP3972730A1 (de) Membranreaktor
EP1123256B1 (de) Verfahren zur durchführung von gas-flüssig-reaktionen und durchflussreaktor hierfür
DE523114C (de) Trennung von Gasgemischen mit Hilfe eines dampffoermigen Diffusionsmittels
WO2018029084A1 (de) Plattenwärmetauscher, synthesevorrichtung und verfahren zur herstellung eines produkts
DE10233818B4 (de) Abhitzekessel für eine Claus-Anlage
DE60133314T2 (de) Strömungsregelung in einem dreiphasenreaktor mit monolithischem katalysator
WO2005068354A2 (de) Vorrichtung zur erzeugung von wasserstoff
EP3894062A1 (de) Reaktorkaskade und verfahren zum betreiben einer reaktorkaskade
EP3650116A1 (de) Katalytischer durchgangsmembranreaktor zur durchführung chemischer gleichgewichtsreaktionen
DE102015114885A1 (de) Katalytischer Reaktor
DE10213709A1 (de) Membranreaktor
DE10056787A1 (de) Reaktor
BE1027663B1 (de) Reaktor für die katalytische Behandlung eines Gasstroms
DE112021002379T5 (de) Trennsystem
DE2232712C3 (de) Verfahren und Anlage zur Gewinnung eines mit Deuterium angereicherten Einspeisestromes für eine Anlage zur Gewinnung von schwerem Wasser
DE2211105A1 (de) Verfahren und anlage zur herstellung von wasserstoff mit natuerlicher deuteriumkonzentration

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20711774

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020711774

Country of ref document: EP

Effective date: 20211221