WO2020230685A1 - Floating offshore wind turbine and installation method for floating offshore wind turbine - Google Patents
Floating offshore wind turbine and installation method for floating offshore wind turbine Download PDFInfo
- Publication number
- WO2020230685A1 WO2020230685A1 PCT/JP2020/018523 JP2020018523W WO2020230685A1 WO 2020230685 A1 WO2020230685 A1 WO 2020230685A1 JP 2020018523 W JP2020018523 W JP 2020018523W WO 2020230685 A1 WO2020230685 A1 WO 2020230685A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- floating
- shaft
- arm
- wind turbine
- wing
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D13/00—Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
- F03D13/20—Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
- F03D13/25—Arrangements for mounting or supporting wind motors; Masts or towers for wind motors specially adapted for offshore installation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D13/00—Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
- F03D13/40—Arrangements or methods specially adapted for transporting wind motor components
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D3/00—Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor
- F03D3/06—Rotors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/727—Offshore wind turbines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/74—Wind turbines with rotation axis perpendicular to the wind direction
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- This technology relates to the installation method of floating type water turbines and floating type water turbines.
- the height of the tower is about 100 m, and the weight of the wind turbine head is several hundred tons. Therefore, in order to install the wind turbine head at the top of the tower, a land crane is insufficient and a large crane vessel must be used. Do not get. However, the charter fee for a large crane vessel is more than 10 million yen per day, and it is extremely difficult to install a floating horizontal axis wind turbine at sea from the viewpoint of cost.
- the present disclosure has been made in view of such circumstances, and an object of the present disclosure is to provide a floating wind turbine that can be practically installed on water and a method of installing the wind turbine.
- the floating floating wind turbine includes a floating body, a shaft connected to the floating body, and a wing structure connected to the shaft and foldable in a direction approaching the shaft.
- the floating floating wind turbine can be made smaller and towed on the water becomes easier.
- the blade structure may be deployed at a desired position, and the work of attaching the blade structure to the shaft on the water becomes unnecessary.
- the wing structure protrudes radially from the shaft and is rotatable around an axis that intersects the shaft, and a shaft that intersects the shaft at the protruding end of the arm. It has wings that are rotatably connected around and extend along the shaft.
- the deployment of the wings is realized by rotating the arms and wings.
- the floating floating wind turbine according to the present disclosure includes a reinforcing member for reinforcing the wing structure.
- the deployed wing structure is reinforced.
- the floating floating wind turbine according to the present disclosure includes a plurality of the arms, the plurality of arms include a first arm and a second arm arranged in the axial direction of the shaft, and the reinforcing member includes the first arm and the first arm and the second arm.
- the connecting portion of the wing and the connecting portion of the shaft and the second arm are connected to form a truss structure.
- the wing structure can be reinforced and the deployed state of the wing structure can be maintained by forming the truss structure.
- the wing structure includes a reinforced fiber plastic material or an aluminum member.
- the weight of the wing structure can be reduced by using a reinforced fiber plastic material or an aluminum material. Moreover, the manufacturing cost of the wing structure can be suppressed.
- the shaft is configured to be expandable and contractible.
- the shaft can be shrunk during towing to facilitate towing.
- the method for installing a floating floating wind turbine is a floating floating wind turbine including a floating body, a shaft connected to the floating body, and a wing structure connected to the shaft and foldable in a direction approaching the shaft. Is assembled in a state where the wing structure is folded and laid on its side, the assembled floating floating wind turbine is towed to a desired position on the water, and the floating floating wind turbine is erected on the water with the floating body on the lower side. , The wing structure of the floating floating wind turbine that stands up is deployed.
- the load of the assembly work can be reduced as compared with the case where the parts are attached to the upright shaft. Also, by folding the wing structure, it is easy to tow a floating surface wind turbine. Further, since it is not necessary to attach the wing structure to the shaft on the water and it is only necessary to deploy the wing structure previously attached to the shaft, it is possible to reduce the installation cost, labor saving and time reduction of the installation work.
- the floating floating wind turbine and its installation method by bringing the wing structure closer to the shaft, the floating floating wind turbine can be made smaller and towed on the water becomes easier. Further, the blade structure may be deployed at a desired position, which eliminates the need for the work of attaching the blade structure to the shaft on the water, and can reduce the installation cost, labor saving and time reduction of the installation work.
- FIG. It is a schematic perspective view of the floating wind power generator which concerns on Embodiment 1.
- FIG. It is a schematic diagram explaining the assembly process of a floating wind power generator. It is a schematic diagram explaining the assembly process of a floating wind power generator. It is a schematic diagram explaining the assembly process of a floating wind power generator. It is a schematic diagram explaining the assembly process of a floating wind power generator. It is a schematic diagram explaining the assembly process of a floating wind power generator. It is a schematic enlarged view of an arm, a wing and a reinforcing member of a floating wind power generator whose composition was partially changed. It is a perspective view which shows the telescopic shaft of the floating wind power generator which concerns on Embodiment 2. FIG. It is a perspective view which shows the telescopic shaft of the floating wind power generator which concerns on Embodiment 2. FIG. It is a perspective view which shows the telescopic shaft of the floating wind power generator which concerns on Embodiment 2.
- FIG. It is a partially enlarged
- the shaft 3 is coaxially connected to the portion of the floating body 2 protruding from the water surface.
- a steel material, a reinforced fiber plastic material, or an aluminum material is used for the shaft 3.
- a plurality of connecting rings 9 are attached to the outer periphery of the shaft 3.
- the plurality of connecting rings 9 are arranged at predetermined intervals in the axial direction of the shaft 3.
- a plurality of arms 7 (three in this embodiment) are rotatably attached to each of the connecting rings 9.
- the plurality of arms 7 project radially from the connecting ring 9 and are arranged in the circumferential direction with substantially the same phase spacing.
- One end of the arm 7 is connected to the connecting ring 9 via a hinge 10 whose rotation axis direction is orthogonal to the shaft 3.
- the length of each arm 7 is substantially the same.
- the arm 7 has a flat columnar shape.
- Wings 6 are rotatably attached to the other ends of a plurality of arms 7 arranged in the same phase in the circumferential direction and arranged in the axial direction.
- the airfoil 6 has a flat columnar shape extending along the shaft 3 and has an airfoil cross-sectional shape in a plan view.
- the other end of the arm 7 is connected to the blade 6 via a hinge 10 whose rotation axis direction is orthogonal to the shaft 3.
- the arm 7 arranged at the position closest to the floating body 2 (hereinafter, also referred to as the first arm 71), and the arm 7 arranged next to the first arm 71 in the axial direction (hereinafter, also referred to as the second arm 72).
- a reinforcing member 8 is provided between the two.
- the reinforcing member 8 has a flat columnar shape, and one end of the reinforcing member 8 is connected to the connecting portion between the first arm 71 and the wing 6 via a hinge 12 whose rotation axis direction is orthogonal to the shaft 3. ..
- the other end of the reinforcing member 8 is fixed to the connecting portion between the second arm 72 and the shaft 3 by the fixing member 11.
- Reinforcing fiber plastic material is used for the wing 6, the arm 7, and the reinforcing member 8, and since the wing 6, the arm 7, and the reinforcing member 8 have a substantially constant flat shape over the length direction, they are continuous at high speed. And can be manufactured, and the manufacturing cost can be reduced. Further, the weight of the wing 6, the arm 7, and the reinforcing member 8 can be reduced.
- An aluminum material may be used instead of the reinforced fiber plastic material.
- a power generation device 4 is attached to the outer periphery of the shaft 3 between the first arm 71 and the floating body 2.
- the power generation device 4 is moored by a plurality of ropes 5, and the rotation of the power generation device 4 around the axis is restricted.
- the power generation device 4 When wind power acts on the blade 6, the floating body 2 and the shaft 3 rotate around the axis.
- the power generation device 4 does not rotate. That is, the shaft 3 and the power generation device 4 rotate relatively around the axis, and the power generation device 4 generates power by the rotation of the shaft 3.
- Power generation is performed, for example, by meshing gears provided on the shaft 3 and the power generation device 4, or by providing an electromagnet and a coil on the shaft 3 and the power generation device 4. Permanent magnets may be used instead of electromagnets.
- FIG. 2 to 5 are schematic views illustrating an assembly process of the floating wind power generator 1.
- the floating body 2 and the shaft 3 are placed sideways on the ground 50, and the connecting ring 9, the arm 7, and the wing 6 are attached to the shaft 3.
- the arm 7 and the wing 6 are attached to the shaft 3 in a substantially parallel state. That is, the arm 7 and the wing 6 are folded in a direction approaching the shaft 3.
- the floating wind power generator 1 is transported to the water surface 51, placed on the auxiliary floating body 40, and towed to a desired position.
- a ballast material such as water, an iron material, and a rock is put into the floating body 2, and the floating body 2 and the shaft 3 stand up.
- the floating body 2 is formed with an opening for inserting the ballast material.
- each arm 7 is rotated toward the water surface 51, and each wing 6 is moved in a direction away from the shaft 3. That is, the wings 6 are deployed.
- a wire (not shown) is attached to the arm 7 and the wing 6 in advance, the arm 7 and the wing 6 facing the water surface 51 by their own weight are held by the wire, the amount of movement of the wire is controlled, and the wing 6 is gradually expanded.
- one end of the reinforcing member 8 is rotatably connected to the connecting portion between the first arm 71 and the wing 6. At this time, the other end of the reinforcing member 8 is a free end.
- a winch 20 is installed on the second arm 72, and a wire 21 is pulled out from the winch 20 and connected to the other end of the reinforcing member 8. After that, the winch 20 is driven to bring the other end of the reinforcing member 8 close to the connecting portion between the second arm 72 and the shaft 3, and the winch 20 is fixed to the connecting portion by the fixing member 11.
- a ladder for the worker to move and an operation unit for operating the winch 20 are provided in the shaft 3, and the operator can operate the operation unit to control the drive of the winch 20.
- the floating wind power generator 1 is made smaller by bringing the arm 7 and the wing 6 closer to the shaft 3, and the towing on water is performed. It will be easier. Further, the arm 7 and the wing 6 may be deployed at a desired position, eliminating the need for the work of attaching the arm 7 and the wing 6 to the shaft 3 on the water, reducing the installation cost, labor saving and time reduction of the installation work. Can be planned. Further, by rotating the arm 7 and the wing 6, the wing 6 can be deployed.
- the reinforcing member 8 by attaching the reinforcing member 8 and forming the truss structure, it is possible to prevent the deployed wings 6 and the arm 7 from rotating toward the floating body 2 due to their own weight and to prevent them from being folded. Further, the arm 7 and the wing 6 can be reinforced. Further, by using a reinforced fiber plastic material or an aluminum material for the wing 6, the arm 7, and the reinforcing member 8, the weight of the wing 6, the arm 7, and the reinforcing member 8 can be reduced. Further, the manufacturing cost of the blade 6, the arm 7, and the reinforcing member 8 can be suppressed.
- FIG. 6 is a schematic enlarged view of the arm 7, the blade 6, and the reinforcing member 8 of the floating wind power generator 1 whose configuration has been partially changed.
- the reinforcing member 8 may be attached as follows.
- a connecting ring 90 is slidably attached to the outer periphery of the shaft 3 between the first arm 71 and the second arm 72.
- the connecting ring 90 is arranged at a position close to the first arm 71.
- one end of the reinforcing member 8 is connected to the connecting portion between the first arm 71 and the wing 6 via a hinge 12.
- the other end of the reinforcing member 8 is connected to the connecting ring 90 via a hinge 10 that rotates about an axis orthogonal to the shaft 3.
- the connecting ring 90 is moved toward the second arm 72, the other end of the reinforcing member 8 is adjacent to the connecting portion between the second arm 72 and the connecting ring 9, and the connecting ring 90 is fixed to the shaft 3.
- FIGS. 7A to 7C are perspective views showing the telescopic shaft 3.
- the shaft 3 is configured to be expandable and contractible.
- the shaft 3 includes a cylindrical large diameter portion 3a, a middle diameter portion 3b, and a small diameter portion 3c.
- the diameter of the middle diameter portion 3b is smaller than the diameter of the large diameter portion 3a, and the middle diameter portion 3b is arranged in the large diameter portion 3a.
- a locking portion (not shown) that locks to the large diameter portion 3a is formed in the middle diameter portion 3b.
- the middle diameter portion 3b can be pulled out until the locking portion locks on the large diameter portion 3a.
- the diameter of the small diameter portion 3c is smaller than the diameter of the middle diameter portion 3b, and the small diameter portion 3c is arranged in the middle diameter portion 3b.
- a locking portion (not shown) that locks to the middle warp portion 3b is formed in the small diameter portion 3c.
- the small diameter portion 3c can be pulled out until the locking portion is locked to the middle warp portion 3b.
- the direction of pulling out the middle warp portion 3b and the small diameter portion 3c is the axial direction of the shaft 3 and is the same direction.
- the middle diameter portion 3b is housed in the large diameter portion 3a
- the small diameter portion 3c is housed in the middle diameter portion 3b.
- the small diameter portion 3c is pulled out until the locking portion is locked to the middle diameter portion 3b, and further, as shown in FIG. 7C, the locking portion engages with the large diameter portion 3a. Pull out the middle part 3b until it stops. Then, the small diameter portion 3c and the middle warp portion 3b are fixed in a pulled out state.
- FIG. 8 is a partially enlarged schematic view of the first arm 71, the second arm 72, and the shaft 3.
- the wing 6 is connected only to the large diameter portion 3a via the first arm 71 and the second arm 72. Since the middle diameter portion 3b and the small diameter portion 3c are arranged inside the large diameter portion 3a, the middle diameter portion 3b and the small diameter portion 3c and the wing 6 cannot be connected by the arm 7. That is, the arm 7 connecting the middle warp portion 3b, the small diameter portion 3c, and the wing 6 is removed.
- the shaft 3 is contracted, and the first arm 71, the second arm 72 and the wing 6 are folded.
- the wing 6 As shown in FIG. 8, after the shaft 3 stands on the water, the wing 6, the first arm 71 and the second arm 72 are deployed. After that, the shaft 3 is extended, and the middle warp portion 3b, the small diameter portion 3c, and the wing 6 are connected by the arm 7.
- a wire and a winch are used for the installation of the arm 7, for example.
- the shaft 3 is contracted at the time of towing to facilitate towing. Further, the shaft 3 can be erected at a desired position and then extended to deploy the wing 6.
- the floating wind power generator 1 protects the shaft 3, wings 6, arms 7, connecting rings 9, hinges 10, 12 or power generator 4 from moisture, for example, seawater droplets.
- a cover is provided for this.
- a device for supplying lubricating oil may be provided at the contact points of the parts, for example, the hinges 10 and 12.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Wind Motors (AREA)
Abstract
Provided are a floating wind turbine that can be installed offshore, and an installation method for said wind turbine. This floating offshore wind turbine comprises a float (2), a shaft (3) that is connected to the float, and a blade structure that is connected to the shaft and can be folded in a direction approaching the shaft. Preferably, the blade structure further comprises: arms (7) that protrude radially from the shaft and are capable of rotation about a rotational axis that intersects the shaft; and blades (6) that are connected to the protruding ends of the arms so as to be capable of rotating about the rotational axis that intersects the shaft, said blades extending along the shaft.
Description
本技術は、浮体式水上風車及び浮体式水上風車の設置方法に関する。
This technology relates to the installation method of floating type water turbines and floating type water turbines.
従来、洋上に設置する浮体式の水平軸型風車が提案されている(例えば特許文献1参照)。水平軸型風車を洋上に設置するためには、浮体の上にタワーを設置し、該タワーの頂きに風車ヘッドを設置する必要がある。
Conventionally, a floating horizontal axis type wind turbine installed on the ocean has been proposed (see, for example, Patent Document 1). In order to install the horizontal axis type wind turbine at sea, it is necessary to install the tower on the floating body and install the wind turbine head at the top of the tower.
一般にタワーの高さは約100mあり、風車ヘッドの重量は数百トンにもなることから、タワーの頂きに風車ヘッドを設置するためには、陸上クレーンでは不足し、大型クレーン船を使用せざるを得ない。しかし、大型クレーン船のチャーター料は一日当たり1千万円以上にも及び、浮体式の水平軸型風車を洋上に設置することはコストの面から現実的には極めて困難である。
Generally, the height of the tower is about 100 m, and the weight of the wind turbine head is several hundred tons. Therefore, in order to install the wind turbine head at the top of the tower, a land crane is insufficient and a large crane vessel must be used. Do not get. However, the charter fee for a large crane vessel is more than 10 million yen per day, and it is extremely difficult to install a floating horizontal axis wind turbine at sea from the viewpoint of cost.
本開示は斯かる事情に鑑みてなされたものであり、水上に現実的に設置可能な浮体式の風車及び該風車の設置方法を提供することを目的とする。
The present disclosure has been made in view of such circumstances, and an object of the present disclosure is to provide a floating wind turbine that can be practically installed on water and a method of installing the wind turbine.
本開示に係る浮体式水上風車は、浮体と、該浮体に連結されたシャフトと、該シャフトに連結され、前記シャフトに接近する方向に折り畳み可能な翼構造とを備える。
The floating floating wind turbine according to the present disclosure includes a floating body, a shaft connected to the floating body, and a wing structure connected to the shaft and foldable in a direction approaching the shaft.
本開示においては、翼構造をシャフトに接近させることによって、浮体式水上風車を小型にし、水上での曳航が容易になる。また所望の位置にて翼構造を展開させればよく、水上にて翼構造をシャフトに取り付ける作業が不要になる。
In the present disclosure, by bringing the wing structure closer to the shaft, the floating floating wind turbine can be made smaller and towed on the water becomes easier. Further, the blade structure may be deployed at a desired position, and the work of attaching the blade structure to the shaft on the water becomes unnecessary.
本開示に係る浮体式水上風車は、前記翼構造は、前記シャフトから径方向に突出し、前記シャフトに交差する軸回りに回転可能なアームと、前記アームの突出端部に前記シャフトに交差する軸回りに回転可能に連結し、前記シャフトに沿って延びる翼とを有する。
In the floating water wind turbine according to the present disclosure, the wing structure protrudes radially from the shaft and is rotatable around an axis that intersects the shaft, and a shaft that intersects the shaft at the protruding end of the arm. It has wings that are rotatably connected around and extend along the shaft.
本開示においては、アーム及び翼を回転させることによって、翼の展開が実現される。
In the present disclosure, the deployment of the wings is realized by rotating the arms and wings.
本開示に係る浮体式水上風車は、前記翼構造を補強する補強部材を備える。
The floating floating wind turbine according to the present disclosure includes a reinforcing member for reinforcing the wing structure.
本開示においては、展開した翼構造を補強する。
In this disclosure, the deployed wing structure is reinforced.
本開示に係る浮体式水上風車は、前記アームを複数備え、前記複数のアームは、前記シャフトの軸方向に並んだ第一アーム及び第二アームを含み、前記補強部材は、前記第一アーム及び翼の連結部分と、前記シャフト及び第二アームの連結部分とを連結し、トラス構造を構成する。
The floating floating wind turbine according to the present disclosure includes a plurality of the arms, the plurality of arms include a first arm and a second arm arranged in the axial direction of the shaft, and the reinforcing member includes the first arm and the first arm and the second arm. The connecting portion of the wing and the connecting portion of the shaft and the second arm are connected to form a truss structure.
本開示においては、トラス構造を形成させることによって、翼構造を補強し、翼構造の展開状態を維持することができる。
In the present disclosure, the wing structure can be reinforced and the deployed state of the wing structure can be maintained by forming the truss structure.
本開示に係る浮体式水上風車は、前記翼構造は、強化繊維プラスチック材又はアルミニウム部材を含む。
In the floating water turbine according to the present disclosure, the wing structure includes a reinforced fiber plastic material or an aluminum member.
本開示においては、強化繊維プラスチック材又はアルミニウム材を使用することによって、翼構造の軽量化を図ることができる。また翼構造の製造費用を抑制することができる。
In the present disclosure, the weight of the wing structure can be reduced by using a reinforced fiber plastic material or an aluminum material. Moreover, the manufacturing cost of the wing structure can be suppressed.
本開示に係る浮体式水上風車は、前記シャフトは伸縮可能に構成されている。
In the floating type water turbine according to the present disclosure, the shaft is configured to be expandable and contractible.
本開示においては、曳航時にはシャフトを縮ませ、曳航し易くすることができる。
In this disclosure, the shaft can be shrunk during towing to facilitate towing.
本開示に係る浮体式水上風車の設置方法は、浮体と、該浮体に連結されたシャフトと、該シャフトに連結され、前記シャフトに接近する方向に折り畳み可能な翼構造とを備える浮体式水上風車を、前記翼構造が折り畳まれた横倒しの状態で組み立て、組み立てられた前記浮体式水上風車を水上の所望の位置まで曳航し、前記浮体を下側にして前記浮体式水上風車を水上に起立させ、起立した前記浮体式水上風車の前記翼構造を展開させる。
The method for installing a floating floating wind turbine according to the present disclosure is a floating floating wind turbine including a floating body, a shaft connected to the floating body, and a wing structure connected to the shaft and foldable in a direction approaching the shaft. Is assembled in a state where the wing structure is folded and laid on its side, the assembled floating floating wind turbine is towed to a desired position on the water, and the floating floating wind turbine is erected on the water with the floating body on the lower side. , The wing structure of the floating floating wind turbine that stands up is deployed.
本開示においては、横倒しの状態で風車を組み立てることによって、起立したシャフトに対して部品を取り付ける場合よりも、組み立て作業の負荷を軽減させることができる。また翼構造を折り畳むことによって、浮体式水上風車の曳航を容易にする。また水上にて翼構造をシャフトに取り付ける必要が無く、シャフトに予め取り付けた翼構造を展開させるだけでよいので、設置費用の削減、設置作業の省力化及び時間短縮を図ることができる。
In the present disclosure, by assembling the wind turbine in a sideways state, the load of the assembly work can be reduced as compared with the case where the parts are attached to the upright shaft. Also, by folding the wing structure, it is easy to tow a floating surface wind turbine. Further, since it is not necessary to attach the wing structure to the shaft on the water and it is only necessary to deploy the wing structure previously attached to the shaft, it is possible to reduce the installation cost, labor saving and time reduction of the installation work.
本開示に係る浮体式水上風車及びその設置方法にあっては、翼構造をシャフトに接近させることによって、浮体式水上風車を小型にし、水上での曳航が容易になる。また所望の位置にて翼構造を展開させればよく、水上にて翼構造をシャフトに取り付ける作業が不要になり、設置費用の削減、設置作業の省力化及び時間短縮を図ることができる。
In the floating floating wind turbine and its installation method according to the present disclosure, by bringing the wing structure closer to the shaft, the floating floating wind turbine can be made smaller and towed on the water becomes easier. Further, the blade structure may be deployed at a desired position, which eliminates the need for the work of attaching the blade structure to the shaft on the water, and can reduce the installation cost, labor saving and time reduction of the installation work.
(実施の形態1)
以下本発明を実施の形態1に係る浮体式風力発電機を示す図面に基づいて説明する。図1は、浮体式風力発電機1の略示斜視図である。浮体式風力発電機1は、浮体式垂直軸型水上風車と、発電装置4と、ロープ5とを備える。浮体式垂直軸型水上風車は、中空の円柱状をなす浮体2と、シャフト3と、アーム7と、翼6とを備える。浮体2は海上又は湖上などの水上に浮かぶ。浮体2の内側には、水、鉄材及び岩などのバラスト材が投入され、一部が水面よりも下側に配置される。 (Embodiment 1)
Hereinafter, the present invention will be described with reference to the drawings showing the floating wind power generator according to the first embodiment. FIG. 1 is a schematic perspective view of a floatingwind power generator 1. The floating wind power generator 1 includes a floating vertical axis type water turbine, a power generator 4, and a rope 5. The floating vertical axis type floating wind turbine includes a floating body 2 forming a hollow columnar shape, a shaft 3, an arm 7, and a wing 6. The floating body 2 floats on water such as on the sea or on a lake. Ballast material such as water, iron material, and rock is put into the inside of the floating body 2, and a part of the ballast material is arranged below the water surface.
以下本発明を実施の形態1に係る浮体式風力発電機を示す図面に基づいて説明する。図1は、浮体式風力発電機1の略示斜視図である。浮体式風力発電機1は、浮体式垂直軸型水上風車と、発電装置4と、ロープ5とを備える。浮体式垂直軸型水上風車は、中空の円柱状をなす浮体2と、シャフト3と、アーム7と、翼6とを備える。浮体2は海上又は湖上などの水上に浮かぶ。浮体2の内側には、水、鉄材及び岩などのバラスト材が投入され、一部が水面よりも下側に配置される。 (Embodiment 1)
Hereinafter, the present invention will be described with reference to the drawings showing the floating wind power generator according to the first embodiment. FIG. 1 is a schematic perspective view of a floating
シャフト3は、浮体2の水面から突出した部分に同軸的に連なっている。シャフト3には、鋼材、強化繊維プラスチック材又はアルミニウム材が使用される。シャフト3の外周には複数の連結環9が取り付けられている。複数の連結環9はシャフト3の軸方向に所定の間隔を空けて並んでいる。連結環9それぞれに、複数(本実施例では三つ)のアーム7が回転可能に取り付けられている。複数のアーム7は連結環9から径方向に突出し、略同じ位相間隔を空けて、周方向に並ぶ。アーム7の一端部は、シャフト3に直交する方向を回転軸方向としたヒンジ10を介して連結環9に連結する。各アーム7の長さは略同じである。アーム7は偏平な柱状をなす。
The shaft 3 is coaxially connected to the portion of the floating body 2 protruding from the water surface. A steel material, a reinforced fiber plastic material, or an aluminum material is used for the shaft 3. A plurality of connecting rings 9 are attached to the outer periphery of the shaft 3. The plurality of connecting rings 9 are arranged at predetermined intervals in the axial direction of the shaft 3. A plurality of arms 7 (three in this embodiment) are rotatably attached to each of the connecting rings 9. The plurality of arms 7 project radially from the connecting ring 9 and are arranged in the circumferential direction with substantially the same phase spacing. One end of the arm 7 is connected to the connecting ring 9 via a hinge 10 whose rotation axis direction is orthogonal to the shaft 3. The length of each arm 7 is substantially the same. The arm 7 has a flat columnar shape.
周方向における同じ位相に配置され、軸方向に並んだ複数のアーム7の他端部には、翼6が回転可能に取り付けられている。翼6はシャフト3に沿って延びた偏平な柱状をなし、平面視にて翼断面形状を有する。アーム7の他端部は、シャフト3に直交する方向を回転軸方向としたヒンジ10を介して翼6に連結する。
Wings 6 are rotatably attached to the other ends of a plurality of arms 7 arranged in the same phase in the circumferential direction and arranged in the axial direction. The airfoil 6 has a flat columnar shape extending along the shaft 3 and has an airfoil cross-sectional shape in a plan view. The other end of the arm 7 is connected to the blade 6 via a hinge 10 whose rotation axis direction is orthogonal to the shaft 3.
最も浮体2に近い位置に配されたアーム7(以下、第一アーム71とも称する)、及び軸方向にて第一アーム71の隣に配されたアーム7(以下、第二アーム72とも称する)の間に補強部材8が設けられている。補強部材8は偏平な柱状をなし、補強部材8の一端部は、第一アーム71と翼6との連結部分に、シャフト3に直交する方向を回転軸方向としたヒンジ12を介して連結する。補強部材8の他端部は、第二アーム72とシャフト3との連結部分に、固定部材11によって固定されている。
The arm 7 arranged at the position closest to the floating body 2 (hereinafter, also referred to as the first arm 71), and the arm 7 arranged next to the first arm 71 in the axial direction (hereinafter, also referred to as the second arm 72). A reinforcing member 8 is provided between the two. The reinforcing member 8 has a flat columnar shape, and one end of the reinforcing member 8 is connected to the connecting portion between the first arm 71 and the wing 6 via a hinge 12 whose rotation axis direction is orthogonal to the shaft 3. .. The other end of the reinforcing member 8 is fixed to the connecting portion between the second arm 72 and the shaft 3 by the fixing member 11.
第一アーム71、第二アーム72、補強部材8、翼6,及びシャフト3によって、トラス構造が形成されている。なお、補強部材8の配置位置は、第一アーム71及び第二アーム72の間に限定されず、他の二つのアームの間に補強部材8を配置し、トラス構造を形成してもよい。補強部材8は維持部材に対応する。
A truss structure is formed by the first arm 71, the second arm 72, the reinforcing member 8, the wings 6, and the shaft 3. The arrangement position of the reinforcing member 8 is not limited to between the first arm 71 and the second arm 72, and the reinforcing member 8 may be arranged between the other two arms to form a truss structure. The reinforcing member 8 corresponds to a maintenance member.
翼6、アーム7及び補強部材8には強化繊維プラスチック材が使用されており、翼6、アーム7及び補強部材8はその長さ方向にわたって概ね一定の偏平な形状をなすことから、高速に連続して製造することができ、製造費用を削減することができる。また翼6、アーム7及び補強部材8の軽量化を図ることができる。なお強化繊維プラスチック材に代えて、アルミニウム材を使用してもよい。
Reinforcing fiber plastic material is used for the wing 6, the arm 7, and the reinforcing member 8, and since the wing 6, the arm 7, and the reinforcing member 8 have a substantially constant flat shape over the length direction, they are continuous at high speed. And can be manufactured, and the manufacturing cost can be reduced. Further, the weight of the wing 6, the arm 7, and the reinforcing member 8 can be reduced. An aluminum material may be used instead of the reinforced fiber plastic material.
第一アーム71と浮体2との間において、発電装置4がシャフト3の外周に取り付けられている。発電装置4は複数のロープ5によって繋留されており、発電装置4の軸回りの回転が規制される。
A power generation device 4 is attached to the outer periphery of the shaft 3 between the first arm 71 and the floating body 2. The power generation device 4 is moored by a plurality of ropes 5, and the rotation of the power generation device 4 around the axis is restricted.
翼6に風力が作用した場合、浮体2及びシャフト3は軸回りに回転する。一方、発電装置4は回転しない。即ちシャフト3と発電装置4とは相対的に軸回りに回転し、発電装置4はシャフト3の回転によって発電する。発電は、例えば、シャフト3及び発電装置4それぞれに設けたギヤを噛合させることによって行うか、又はシャフト3及び発電装置4に、電磁石及びコイルを設けることによって行う。電磁石に代えて、永久磁石を使用してもよい。
When wind power acts on the blade 6, the floating body 2 and the shaft 3 rotate around the axis. On the other hand, the power generation device 4 does not rotate. That is, the shaft 3 and the power generation device 4 rotate relatively around the axis, and the power generation device 4 generates power by the rotation of the shaft 3. Power generation is performed, for example, by meshing gears provided on the shaft 3 and the power generation device 4, or by providing an electromagnet and a coil on the shaft 3 and the power generation device 4. Permanent magnets may be used instead of electromagnets.
次に、浮体式風力発電機1の組み立て工程について説明する。図2~図5は、浮体式風力発電機1の組み立て工程を説明する模式図である。図2に示すように、浮体2及びシャフト3を横倒しにして地上50に配置し、連結環9、アーム7及び翼6をシャフト3に取り付ける。アーム7及び翼6はシャフト3に略平行な状態で取り付けられている。即ち、アーム7及び翼6はシャフト3に接近する方向に折り畳まれている。
Next, the assembly process of the floating wind power generator 1 will be described. 2 to 5 are schematic views illustrating an assembly process of the floating wind power generator 1. As shown in FIG. 2, the floating body 2 and the shaft 3 are placed sideways on the ground 50, and the connecting ring 9, the arm 7, and the wing 6 are attached to the shaft 3. The arm 7 and the wing 6 are attached to the shaft 3 in a substantially parallel state. That is, the arm 7 and the wing 6 are folded in a direction approaching the shaft 3.
図3に示すように、連結環9、アーム7及び翼6の取り付け完了後、浮体式風力発電機1は水面51まで搬送され、補助浮体40に載せられ、所望の位置まで曳航される。次に、図4に示すように、浮体2に水、鉄材及び岩などのバラスト材が投入され、浮体2及びシャフト3は起立する。なお浮体2には、バラスト材を投入するための開口が形成されている。
As shown in FIG. 3, after the attachment of the connecting ring 9, the arm 7, and the blade 6 is completed, the floating wind power generator 1 is transported to the water surface 51, placed on the auxiliary floating body 40, and towed to a desired position. Next, as shown in FIG. 4, a ballast material such as water, an iron material, and a rock is put into the floating body 2, and the floating body 2 and the shaft 3 stand up. The floating body 2 is formed with an opening for inserting the ballast material.
次に、図5に示すように、各アーム7を水面51に向かうように回転させ、各翼6をシャフト3から離れる方向に移動させる。即ち、翼6を展開させる。例えば、図示しないワイヤをアーム7及び翼6に予め取り付けておき、自重によって水面51に向かうアーム7及び翼6をワイヤによって保持し、ワイヤの移動量を制御し、翼6を徐々に展開させる。展開時には、全ての翼6を同時的に展開させることが好ましい。一部の翼6のみを展開させた場合、水上にて浮体式風力発電機1の平衡を維持することが難しくなるからである。
Next, as shown in FIG. 5, each arm 7 is rotated toward the water surface 51, and each wing 6 is moved in a direction away from the shaft 3. That is, the wings 6 are deployed. For example, a wire (not shown) is attached to the arm 7 and the wing 6 in advance, the arm 7 and the wing 6 facing the water surface 51 by their own weight are held by the wire, the amount of movement of the wire is controlled, and the wing 6 is gradually expanded. At the time of deployment, it is preferable to deploy all the wings 6 at the same time. This is because it becomes difficult to maintain the equilibrium of the floating wind power generator 1 on the water when only a part of the blades 6 is deployed.
翼6の展開後、そして、補強部材8の一端部を第一アーム71と翼6との連結部分に回転可能に連結させる。このとき、補強部材8の他端部は自由端である。第二アーム72にウインチ20を設置し、ウインチ20からワイヤ21を引き出して、補強部材8の他端部に連結する。その後、ウインチ20を駆動させて、補強部材8の他端部を第二アーム72とシャフト3との連結部分に接近させ、前記連結部分に固定部材11によって固定させる。なおシャフト3内には、作業員が移動するための梯子及びウインチ20を操作する操作部などが設けられ、作業者は操作部を操作して、ウインチ20の駆動を制御することができる。
After the wing 6 is deployed, one end of the reinforcing member 8 is rotatably connected to the connecting portion between the first arm 71 and the wing 6. At this time, the other end of the reinforcing member 8 is a free end. A winch 20 is installed on the second arm 72, and a wire 21 is pulled out from the winch 20 and connected to the other end of the reinforcing member 8. After that, the winch 20 is driven to bring the other end of the reinforcing member 8 close to the connecting portion between the second arm 72 and the shaft 3, and the winch 20 is fixed to the connecting portion by the fixing member 11. A ladder for the worker to move and an operation unit for operating the winch 20 are provided in the shaft 3, and the operator can operate the operation unit to control the drive of the winch 20.
実施の形態1に係る浮体式風力発電機1及びその設置方法にあっては、アーム7及び翼6をシャフト3に接近させることによって、浮体式風力発電機1を小型にし、水上での曳航が容易になる。また所望の位置にてアーム7及び翼6を展開させればよく、水上にてアーム7及び翼6をシャフト3に取り付ける作業が不要になり、設置費用の削減、設置作業の省力化及び時間短縮を図ることができる。またアーム7及び翼6を回転させることによって、翼6の展開が実現される。
In the floating wind power generator 1 and its installation method according to the first embodiment, the floating wind power generator 1 is made smaller by bringing the arm 7 and the wing 6 closer to the shaft 3, and the towing on water is performed. It will be easier. Further, the arm 7 and the wing 6 may be deployed at a desired position, eliminating the need for the work of attaching the arm 7 and the wing 6 to the shaft 3 on the water, reducing the installation cost, labor saving and time reduction of the installation work. Can be planned. Further, by rotating the arm 7 and the wing 6, the wing 6 can be deployed.
また補強部材8を取り付け、トラス構造を形成させることによって、展開した翼6及びアーム7が自重によって、浮体2に向けて回転することを防止し、折り畳まれることを防止することができる。またアーム7及び翼6を補強することができる。また翼6、アーム7及び補強部材8に強化繊維プラスチック材又はアルミニウム材を使用することによって、翼6、アーム7及び補強部材8の軽量化を図ることができる。また翼6、アーム7及び補強部材8の製造費用を抑制することができる。
Further, by attaching the reinforcing member 8 and forming the truss structure, it is possible to prevent the deployed wings 6 and the arm 7 from rotating toward the floating body 2 due to their own weight and to prevent them from being folded. Further, the arm 7 and the wing 6 can be reinforced. Further, by using a reinforced fiber plastic material or an aluminum material for the wing 6, the arm 7, and the reinforcing member 8, the weight of the wing 6, the arm 7, and the reinforcing member 8 can be reduced. Further, the manufacturing cost of the blade 6, the arm 7, and the reinforcing member 8 can be suppressed.
図6は、構成を一部変更した浮体式風力発電機1のアーム7、翼6及び補強部材8の模式的拡大図である。補強部材8の取り付けは、以下のように行ってもよい。第一アーム71と第二アーム72との間において、連結環90をシャフト3の外周に摺動可能に取り付ける。連結環90は第一アーム71に近い位置に配される。前述したように、補強部材8の一端部は、第一アーム71と翼6との連結部分にヒンジ12を介して連結されている。補強部材8の他端部を、シャフト3に直交する軸回りに回転するヒンジ10を介して連結環90に連結させる。
FIG. 6 is a schematic enlarged view of the arm 7, the blade 6, and the reinforcing member 8 of the floating wind power generator 1 whose configuration has been partially changed. The reinforcing member 8 may be attached as follows. A connecting ring 90 is slidably attached to the outer periphery of the shaft 3 between the first arm 71 and the second arm 72. The connecting ring 90 is arranged at a position close to the first arm 71. As described above, one end of the reinforcing member 8 is connected to the connecting portion between the first arm 71 and the wing 6 via a hinge 12. The other end of the reinforcing member 8 is connected to the connecting ring 90 via a hinge 10 that rotates about an axis orthogonal to the shaft 3.
連結環90を第二アーム72に向けて移動させ、補強部材8の他端部を第二アーム72と連結環9との連結部分に隣接させて、連結環90をシャフト3に固定させる。
The connecting ring 90 is moved toward the second arm 72, the other end of the reinforcing member 8 is adjacent to the connecting portion between the second arm 72 and the connecting ring 9, and the connecting ring 90 is fixed to the shaft 3.
(実施の形態2)
以下本発明を実施の形態2に係る浮体式風力発電機1を示す図面に基づいて説明する。図7A~図7Cは、伸縮可能なシャフト3を示す斜視図である。シャフト3は伸縮可能に構成されている。シャフト3は、円筒状の大径部3a、中経部3b及び小径部3cを備える。中経部3bの直径は大径部3aの直径よりも小さく、中経部3bは大径部3a内に配置される。中経部3bには大径部3aに係止する係止部(図示略)が形成されている。係止部が大径部3aに係止するまで中経部3bを引き出すことができる。 (Embodiment 2)
Hereinafter, the present invention will be described with reference to the drawings showing the floatingwind power generator 1 according to the second embodiment. 7A to 7C are perspective views showing the telescopic shaft 3. The shaft 3 is configured to be expandable and contractible. The shaft 3 includes a cylindrical large diameter portion 3a, a middle diameter portion 3b, and a small diameter portion 3c. The diameter of the middle diameter portion 3b is smaller than the diameter of the large diameter portion 3a, and the middle diameter portion 3b is arranged in the large diameter portion 3a. A locking portion (not shown) that locks to the large diameter portion 3a is formed in the middle diameter portion 3b. The middle diameter portion 3b can be pulled out until the locking portion locks on the large diameter portion 3a.
以下本発明を実施の形態2に係る浮体式風力発電機1を示す図面に基づいて説明する。図7A~図7Cは、伸縮可能なシャフト3を示す斜視図である。シャフト3は伸縮可能に構成されている。シャフト3は、円筒状の大径部3a、中経部3b及び小径部3cを備える。中経部3bの直径は大径部3aの直径よりも小さく、中経部3bは大径部3a内に配置される。中経部3bには大径部3aに係止する係止部(図示略)が形成されている。係止部が大径部3aに係止するまで中経部3bを引き出すことができる。 (Embodiment 2)
Hereinafter, the present invention will be described with reference to the drawings showing the floating
小径部3cの直径は中経部3bの直径よりも小さく、小径部3cは中経部3b内に配置される。小径部3cには中経部3bに係止する係止部(図示略)が形成されている。係止部が中経部3bに係止するまで小径部3cを引き出すことができる。なお、中経部3b及び小径部3cを引き出す方向は、シャフト3の軸方向であって、同じ向きである。
The diameter of the small diameter portion 3c is smaller than the diameter of the middle diameter portion 3b, and the small diameter portion 3c is arranged in the middle diameter portion 3b. A locking portion (not shown) that locks to the middle warp portion 3b is formed in the small diameter portion 3c. The small diameter portion 3c can be pulled out until the locking portion is locked to the middle warp portion 3b. The direction of pulling out the middle warp portion 3b and the small diameter portion 3c is the axial direction of the shaft 3 and is the same direction.
図7Aに示すように、シャフト3を最も短くした場合、大径部3a内に中経部3bは収められており、中経部3b内に小径部3cは収められている。シャフト3を伸ばす場合、図7Bに示すように、係止部が中経部3bに係止するまで小径部3cを引き出し、更に図7Cに示すように、係止部が大径部3aに係止するまで中経部3bを引き出す。そして、小径部3c及び中経部3bを引き出された状態で固定させる。
As shown in FIG. 7A, when the shaft 3 is the shortest, the middle diameter portion 3b is housed in the large diameter portion 3a, and the small diameter portion 3c is housed in the middle diameter portion 3b. When extending the shaft 3, as shown in FIG. 7B, the small diameter portion 3c is pulled out until the locking portion is locked to the middle diameter portion 3b, and further, as shown in FIG. 7C, the locking portion engages with the large diameter portion 3a. Pull out the middle part 3b until it stops. Then, the small diameter portion 3c and the middle warp portion 3b are fixed in a pulled out state.
図8は、第一アーム71、第二アーム72、及びシャフト3の部分拡大模式図である。水上に展開する前において、翼6は第一アーム71及び第二アーム72を介して大径部3aにのみ連結される。中経部3b及び小径部3cは大径部3aの内側に配置されているので、中経部3b及び小径部3cと、翼6とをアーム7によって連結することはできない。即ち、中経部3b及び小径部3cと、翼6とを連結するアーム7は取り外されている。曳航時には、シャフト3を縮ませ、第一アーム71、第二アーム72及び翼6を折り畳む。
FIG. 8 is a partially enlarged schematic view of the first arm 71, the second arm 72, and the shaft 3. Before deploying on water, the wing 6 is connected only to the large diameter portion 3a via the first arm 71 and the second arm 72. Since the middle diameter portion 3b and the small diameter portion 3c are arranged inside the large diameter portion 3a, the middle diameter portion 3b and the small diameter portion 3c and the wing 6 cannot be connected by the arm 7. That is, the arm 7 connecting the middle warp portion 3b, the small diameter portion 3c, and the wing 6 is removed. At the time of towing, the shaft 3 is contracted, and the first arm 71, the second arm 72 and the wing 6 are folded.
図8に示すように、水上にてシャフト3が起立した後、翼6、第一アーム71及び第二アーム72を展開させる。その後、シャフト3を伸ばし、中経部3b及び小径部3cと、翼6とをアーム7によって連結させる。アーム7の設置には、例えばワイヤ及びウインチを使用する。
As shown in FIG. 8, after the shaft 3 stands on the water, the wing 6, the first arm 71 and the second arm 72 are deployed. After that, the shaft 3 is extended, and the middle warp portion 3b, the small diameter portion 3c, and the wing 6 are connected by the arm 7. For the installation of the arm 7, for example, a wire and a winch are used.
なお展開前に大径部3aに一つの翼6のみ連結させておき、該翼6を展開させた後、クレーンを使用して残りの翼6をシャフト3に連結させてもよい。また展開前にシャフト3には翼6及びアーム7を連結させず、水上にてシャフト3を起立させ、伸長させた後、クレーンを使用して翼6及びアーム7をシャフト3に連結させてもよい。
It is also possible to connect only one blade 6 to the large diameter portion 3a before deployment, deploy the blade 6, and then connect the remaining blade 6 to the shaft 3 using a crane. Further, the wing 6 and the arm 7 may not be connected to the shaft 3 before deployment, and the wing 6 and the arm 7 may be connected to the shaft 3 by using a crane after the shaft 3 is erected and extended on the water. Good.
実施の形態2に係る浮体式風力発電機1にあっては、曳航時にはシャフト3を縮ませ、曳航し易くさせる。また所望の位置にてシャフト3を起立させた後、伸ばし、翼6を展開させることができる。
In the floating wind power generator 1 according to the second embodiment, the shaft 3 is contracted at the time of towing to facilitate towing. Further, the shaft 3 can be erected at a desired position and then extended to deploy the wing 6.
図示は省略したが、上述の浮体式風力発電機1には、シャフト3、翼6、アーム7、連結環9、ヒンジ10、12、又は発電装置4などを、水分、例えば海水飛沫から保護するためのカバーが設けられている。なお部品の接触箇所、例えばヒンジ10、12に潤滑油を供給する装置を設けてもよい。
Although not shown, the floating wind power generator 1 protects the shaft 3, wings 6, arms 7, connecting rings 9, hinges 10, 12 or power generator 4 from moisture, for example, seawater droplets. A cover is provided for this. A device for supplying lubricating oil may be provided at the contact points of the parts, for example, the hinges 10 and 12.
今回開示した実施の形態は、全ての点で例示であって、制限的なものではないと考えられるべきである。各実施例にて記載されている技術的特徴は互いに組み合わせることができ、本発明の範囲は、請求の範囲内での全ての変更及び請求の範囲と均等の範囲が含まれることが意図される。
The embodiment disclosed this time is an example in all respects and should be considered not to be restrictive. The technical features described in each example can be combined with each other and the scope of the invention is intended to include all modifications within the claims and claims equivalent to the claims. ..
1 浮体式風力発電機
2 浮体
3 シャフト
6 翼
7 アーム
8 補強部材
11 固定部材
10、12 ヒンジ 1 Floatingwind power generator 2 Floating 3 Shaft 6 Wings 7 Arm 8 Reinforcing member 11 Fixing member 10, 12 Hinge
2 浮体
3 シャフト
6 翼
7 アーム
8 補強部材
11 固定部材
10、12 ヒンジ 1 Floating
Claims (7)
- 浮体と、
該浮体に連結されたシャフトと、
該シャフトに連結され、前記シャフトに接近する方向に折り畳み可能な翼構造と
を備える浮体式水上風車。 Floating body and
A shaft connected to the floating body and
A floating floating wind turbine provided with a wing structure connected to the shaft and foldable in a direction approaching the shaft. - 前記翼構造は、
前記シャフトから径方向に突出し、前記シャフトに交差する軸回りに回転可能なアームと、
前記アームの突出端部に前記シャフトに交差する軸回りに回転可能に連結し、前記シャフトに沿って延びる翼と
を有する
請求項1に記載の浮体式水上風車。 The wing structure
An arm that projects radially from the shaft and can rotate about an axis that intersects the shaft.
The floating floating wind turbine according to claim 1, further comprising a wing that is rotatably connected to a protruding end of the arm around an axis intersecting the shaft and extends along the shaft. - 前記翼構造を補強する補強部材を備える
請求項2に記載の浮体式水上風車。 The floating water turbine according to claim 2, further comprising a reinforcing member for reinforcing the wing structure. - 前記アームを複数備え、
前記複数のアームは、前記シャフトの軸方向に並んだ第一アーム及び第二アームを含み、
前記補強部材は、前記第一アーム及び翼の連結部分と、前記シャフト及び第二アームの連結部分とを連結し、トラス構造を構成する
請求項3に記載の浮体式水上風車。 With multiple arms
The plurality of arms include a first arm and a second arm aligned in the axial direction of the shaft.
The floating floating wind turbine according to claim 3, wherein the reinforcing member connects the connecting portion of the first arm and the wing and the connecting portion of the shaft and the second arm to form a truss structure. - 前記翼構造は、強化繊維プラスチック材又はアルミニウム部材を含む
請求項1から4のいずれか一つに記載の浮体式水上風車。 The floating floating wind turbine according to any one of claims 1 to 4, wherein the wing structure includes a reinforced fiber plastic material or an aluminum member. - 前記シャフトは伸縮可能に構成されている
請求項1から5のいずれか一つに記載の浮体式水上風車。 The floating floating wind turbine according to any one of claims 1 to 5, wherein the shaft is configured to be expandable and contractible. - 浮体と、該浮体に連結されたシャフトと、該シャフトに連結され、前記シャフトに接近する方向に折り畳み可能な翼構造とを備える浮体式水上風車を、前記翼構造が折り畳まれた横倒しの状態で組み立て、
組み立てられた前記浮体式水上風車を水上の所望の位置まで曳航し、
前記浮体を下側にして前記浮体式水上風車を水上に起立させ、
起立した前記浮体式水上風車の前記翼構造を展開させる
浮体式水上風車の設置方法。 A floating floating wind turbine having a floating body, a shaft connected to the floating body, and a wing structure connected to the shaft and foldable in a direction approaching the shaft, in a state where the wing structure is folded and laid down. assembly,
Tow the assembled floating water turbine to the desired position on the water,
With the floating body on the lower side, the floating floating wind turbine is erected on the water.
A method of installing a floating floating wind turbine that deploys the wing structure of the floating floating wind turbine that stands up.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021519390A JPWO2020230685A1 (en) | 2019-05-10 | 2020-05-07 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019089827 | 2019-05-10 | ||
JP2019-089827 | 2019-05-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020230685A1 true WO2020230685A1 (en) | 2020-11-19 |
Family
ID=73289025
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/018523 WO2020230685A1 (en) | 2019-05-10 | 2020-05-07 | Floating offshore wind turbine and installation method for floating offshore wind turbine |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2020230685A1 (en) |
WO (1) | WO2020230685A1 (en) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2407114A (en) * | 2003-10-15 | 2005-04-20 | Arup Group Ltd | A method of installing an offshore structure |
WO2010110330A1 (en) * | 2009-03-24 | 2010-09-30 | 戸田建設株式会社 | Offshore wind power generator and construction method thereof |
JP2011038482A (en) * | 2009-08-12 | 2011-02-24 | Nasu Denki Tekko Co Ltd | Wind turbine for wind power generation |
US20110042958A1 (en) * | 2007-02-27 | 2011-02-24 | Vaxsis Inc. | Collapsible vertical-axis turbine |
US20110241347A1 (en) * | 2008-12-18 | 2011-10-06 | Single Buoy Moorings Inc. | Removable offshore wind turbines with pre-installed mooring system |
WO2013069757A1 (en) * | 2011-11-11 | 2013-05-16 | Nakamura Takuju | Structure that utilizes hydrodynamic forces |
US20130216379A1 (en) * | 2012-02-21 | 2013-08-22 | Clean Green Energy LLC | Fluid driven vertical axis turbine |
JP2014058959A (en) * | 2012-09-14 | 2014-04-03 | M Craft:Kk | Wind power generator |
JP2017218998A (en) * | 2016-06-09 | 2017-12-14 | 達広 佐野 | Wind power generator |
JP2019010608A (en) * | 2017-06-29 | 2019-01-24 | 聡 安斎 | Micro bubble generating device |
-
2020
- 2020-05-07 JP JP2021519390A patent/JPWO2020230685A1/ja active Pending
- 2020-05-07 WO PCT/JP2020/018523 patent/WO2020230685A1/en active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2407114A (en) * | 2003-10-15 | 2005-04-20 | Arup Group Ltd | A method of installing an offshore structure |
US20110042958A1 (en) * | 2007-02-27 | 2011-02-24 | Vaxsis Inc. | Collapsible vertical-axis turbine |
US20110241347A1 (en) * | 2008-12-18 | 2011-10-06 | Single Buoy Moorings Inc. | Removable offshore wind turbines with pre-installed mooring system |
WO2010110330A1 (en) * | 2009-03-24 | 2010-09-30 | 戸田建設株式会社 | Offshore wind power generator and construction method thereof |
JP2011038482A (en) * | 2009-08-12 | 2011-02-24 | Nasu Denki Tekko Co Ltd | Wind turbine for wind power generation |
WO2013069757A1 (en) * | 2011-11-11 | 2013-05-16 | Nakamura Takuju | Structure that utilizes hydrodynamic forces |
US20130216379A1 (en) * | 2012-02-21 | 2013-08-22 | Clean Green Energy LLC | Fluid driven vertical axis turbine |
JP2014058959A (en) * | 2012-09-14 | 2014-04-03 | M Craft:Kk | Wind power generator |
JP2017218998A (en) * | 2016-06-09 | 2017-12-14 | 達広 佐野 | Wind power generator |
JP2019010608A (en) * | 2017-06-29 | 2019-01-24 | 聡 安斎 | Micro bubble generating device |
Also Published As
Publication number | Publication date |
---|---|
JPWO2020230685A1 (en) | 2020-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103210211B (en) | Wind turbine blade is arranged on the Apparatus and method on wind turbine tower | |
CN108349713B (en) | Hoisting system for mounting a wind turbine | |
EP2606228B1 (en) | Offshore wind turbine and methods of installing same | |
KR101205261B1 (en) | Method and device for constructing marine wind power generation device | |
US8668455B2 (en) | Turbine wheel | |
WO2013051167A1 (en) | Blade attaching and detaching device and method for wind turbine generator | |
US20100254813A1 (en) | Winch servicing of wind turbines | |
GB2469740A (en) | Extraction of energy from the wind using kites | |
KR20160042169A (en) | Kite ground station and system using same | |
WO2013069757A1 (en) | Structure that utilizes hydrodynamic forces | |
US20120228881A1 (en) | Wind Turbine Having a Lifting Device | |
MXPA06015165A (en) | Vertical-axis wind turbine. | |
US7775760B1 (en) | Turbine wheel | |
WO2017008818A1 (en) | Methods for erecting or dismantling a multirotor wind turbine | |
GB2461265A (en) | Tidal turbine with limited axial thrust | |
EP3992451B1 (en) | Method and system for attaching vortex suppression devices to a wind turbine tower | |
WO2020230685A1 (en) | Floating offshore wind turbine and installation method for floating offshore wind turbine | |
EP2487364A2 (en) | Vessel and method for mounting an offshore wind turbine | |
EP3085958A1 (en) | A system for installing a cable in a tower of a wind turbine and method therefor | |
EP3631193B1 (en) | Method for dismantling a wind turbine and erecting an airborne wind energy generating system | |
US12071924B2 (en) | Devices and methods for mitigating vibrations in wind turbines | |
JP2011174379A (en) | Method of mounting rotor blade for wind power generation | |
KR102731732B1 (en) | Marine power plant assembly | |
WO2023059203A1 (en) | Floating foundation for wind turbine generators | |
WO2024078673A1 (en) | Method for handling a wind turbine blade using a crane system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20806206 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021519390 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20806206 Country of ref document: EP Kind code of ref document: A1 |