WO2020226321A1 - Separator for lithium secondary battery and lithium secondary battery comprising same - Google Patents
Separator for lithium secondary battery and lithium secondary battery comprising same Download PDFInfo
- Publication number
- WO2020226321A1 WO2020226321A1 PCT/KR2020/005569 KR2020005569W WO2020226321A1 WO 2020226321 A1 WO2020226321 A1 WO 2020226321A1 KR 2020005569 W KR2020005569 W KR 2020005569W WO 2020226321 A1 WO2020226321 A1 WO 2020226321A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lithium
- secondary battery
- lithium secondary
- separator
- molybdenum disulfide
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
- H01M50/491—Porosity
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a separator for a lithium secondary battery and a lithium secondary battery including the same.
- lithium secondary batteries As the scope of use of lithium secondary batteries has expanded to not only portable electronic devices and communication devices, but also electric vehicles (EVs) and electric storage systems (ESSs), the high capacity of lithium secondary batteries used as power sources has been improved. The demand is increasing.
- EVs electric vehicles
- ESSs electric storage systems
- a lithium-sulfur battery uses a sulfur-based material containing a sulfur-sulfur bond as a positive electrode active material, and lithium metal, a carbon-based material in which lithium ions are inserted/deinserted, or lithium It is a secondary battery that uses silicon or tin, which forms an alloy with, as an anode active material.
- sulfur which is the main material of the positive electrode active material, has a low weight per atom, rich in resources, easy supply and demand, inexpensive, non-toxic, and has the advantage of being an environmentally friendly material.
- a lithium-sulfur battery is a lithium ion and the sulfur conversion (conversion) reaction at the anode - the theoretical discharge capacity resulting from (S 8 + 16Li + + 16e ⁇ 8Li 2 S) reached 1,675 mAh / g, a lithium metal as a negative electrode ( Theoretical capacity: 3,860 mAh/g) shows a theoretical energy density of 2,600 Wh/kg.
- Li-MH battery 450Wh/kg
- Li-FeS battery 480Wh/kg
- Li-MnO 2 battery 1,000Wh/kg
- Na-S battery 800Wh/kg
- commercial lithium Since it has a very high value compared to the theoretical energy density of a secondary battery (LiCoO 2 /graphite), it is attracting attention as a high-capacity, eco-friendly, and inexpensive lithium secondary battery among secondary batteries being developed so far. Is losing.
- lithium-sulfur battery when discharging, sulfur accepts electrons from the positive electrode and undergoes a reduction reaction, while the negative electrode undergoes an oxidation reaction in which lithium is ionized.
- the positive electrode which is dissolved in the electrolyte and eluted from the positive electrode, so that the reversible capacity of the positive electrode is greatly reduced.
- the dissolved lithium polysulfide diffuses to the negative electrode, causing various side reactions.
- the lithium polysulfide causes a shuttle reaction, which greatly reduces charging and discharging efficiency.
- Korean Patent Application Publication No. 2018-0020096 discloses that by including a separator on which a catalyst layer containing a transition metal compound is formed, it is possible to improve the capacity and cycle characteristics of a battery by suppressing the shuttle reaction due to elution of lithium polysulfide. have.
- Korean Patent Application Publication No. 2016-0046775 provides a positive electrode coating layer made of an amphiphilic polymer on a portion of the positive electrode active part including a sulfur-carbon composite to prevent the elution of lithium polysulfide and facilitate the movement of lithium ions. It discloses that the cycle characteristics of a battery can be improved.
- Korean Patent Laid-Open No. 2016-0037084 discloses that by coating graphene on a carbon nanotube aggregate containing sulfur, it blocks the dissolution of lithium polysulfide, and increases the conductivity of the sulfur-carbon nanotube composite and the loading amount of sulfur. Disclosed that you can.
- the present inventors conducted various studies to solve the above problem. As a result, by introducing a coating layer containing molybdenum disulfide containing defects on the substrate of the separator, the problem of the elution of lithium polysulfide in the lithium-sulfur battery was solved and the negative electrode The present invention was completed by confirming that the lithium dendrite growth can be suppressed to improve the performance and lifespan of the lithium secondary battery.
- an object of the present invention is to provide a separator for a lithium secondary battery that improves capacity and life characteristics of a lithium secondary battery by solving the problem caused by the elution of lithium polysulfide.
- Another object of the present invention is to provide a lithium secondary battery including the separator.
- the present invention is a porous substrate; And a coating layer formed on at least one surface of the porous substrate,
- the coating layer provides a separator for a lithium secondary battery containing molybdenum disulfide containing defects.
- Molybdenum disulfide including the defect may have a nanosheet shape.
- Molybdenum disulfide including the defect may have a thickness of 1 to 20 nm.
- Molybdenum disulfide containing the defect may be crystalline.
- Molybdenum disulfide containing the defect has diffraction peaks that appear in the ranges of 14.0 ⁇ 0.2°, 33.1 ⁇ 0.2°, 39.4 ⁇ 0.2°, and 58.7 ⁇ 0.2°, respectively, when the diffraction angle (2 ⁇ ) is measured by X-ray diffraction (XRD). It may be included.
- the defect may be one or more selected from the group consisting of point defects, line defects, and surface defects.
- the coating layer may have a thickness of 0.1 to 10 ⁇ m.
- the coating layer may be disposed to face the negative electrode of the lithium secondary battery.
- the present invention provides a lithium secondary battery including the separator for the lithium secondary battery.
- Molybdenum disulfide containing defects included in the coating layer of the separation membrane according to the present invention includes these by promoting the effect of inhibiting lithium polysulfide adsorption and lithium dendrite generation by imparting additional electrochemical catalytic activity to the edges of the defects. It improves the capacity and life characteristics of a lithium secondary battery, specifically a lithium-sulfur battery.
- a lithium secondary battery provided with a separator on which a coating layer containing molybdenum disulfide containing the defects is formed does not cause a decrease in the capacity of sulfur, so that a high-capacity battery can be implemented, and it is possible to stably apply sulfur by high loading, as well as lithium-den Dry growth is prevented, and there are no problems such as short circuit or heat generation of the battery, improving battery stability.
- such a lithium secondary battery has an advantage in that the charging/discharging efficiency of the battery is high and life characteristics are improved.
- SEM scanning electron microscope
- FIG. 3 is a graph showing the result of X-ray diffraction measurement of molybdenum disulfide containing defects according to Preparation Example 1 of the present invention.
- FIG. 6 is a graph showing the evaluation result of the lithium polysulfide adsorption effect of molybdenum disulfide containing defects according to Preparation Example 1 of the present invention.
- Example 7 is a scanning electron microscope (SEM) image of a separator according to Example 1 of the present invention.
- porosity used in the present invention means the ratio of the volume occupied by pores to the total volume in a structure, and uses% as its unit, and can be used interchangeably with terms such as porosity and porosity. I can.
- the measurement of the porosity is not particularly limited, for example, the size (micro) and mesopore volume by a BET (Brunauer-Emmett-Teller) measurement method or a mercury permeation method (Hg porosimeter). ) Can be measured.
- Lithium-sulfur batteries have a high theoretical discharge capacity and theoretical energy density among various secondary batteries, and sulfur used as a positive electrode active material is in the spotlight as a next-generation secondary battery due to the advantage of being inexpensive and environmentally friendly due to its abundant reserves.
- lithium polysulfide which is an intermediate product of the sulfur reduction reaction, lithium polysulfide (Li 2 S x , usually x> 4) with a high oxidation number of sulfur is a material with strong polarity and is easily dissolved in an electrolyte containing a hydrophilic organic solvent to react with the anode. There is a loss of sulfur that elutes out of the domain and no longer participates in the electrochemical reaction.
- a material capable of suppressing the elution of lithium polysulfide is introduced into the anode or separator in the form of an additive or coating layer, the composition of the electrolyte is changed, or a protective layer or solid-electrolyte interphase (SEI) on the surface of the cathode is introduced.
- SEI solid-electrolyte interphase
- molybdenum disulfide (defect-rich MoS 2 ) containing a defect capable of adsorbing lithium polysulfide in order to secure an effect of improving the capacity and life characteristics of a lithium secondary battery by suppressing the elution of lithium polysulfide. It provides a separator for a lithium secondary battery having a coating layer comprising a.
- the separator for a lithium secondary battery according to the present invention includes a porous substrate; And a coating layer formed on at least one surface of the porous substrate, wherein the coating layer includes molybdenum disulfide (defect-rich MoS 2 ) containing defects.
- the coating layer includes molybdenum disulfide (defect-rich MoS 2 ) containing defects.
- the porous substrate constituting the separator for a lithium secondary battery of the present invention enables transport of lithium ions between the positive electrode and the negative electrode while separating or insulating the negative electrode and the positive electrode from each other.
- the separator of the present invention is porous and may be made of a non-conductive or insulating material.
- the separator may be an independent member such as a film.
- a porous polymer film may be used alone or by stacking them, and for example, a nonwoven fabric or a polyolefin-based porous film made of high melting point glass fibers, polyethylene terephthalate fibers, etc. may be used, but limited thereto. It does not become.
- the material of the porous substrate is not particularly limited in the present invention, and any porous substrate commonly used in an electrochemical device may be used.
- the porous substrate is a polyester such as polyethylene, polyolefin such as polypropylene, polyethylene terephthalate, polybutyleneterephthalate, and polyamide.
- polyamide polyacetal, polycarbonate, polyimide, polyetheretherketone, polyethersulfone, polyphenyleneoxide, polyphenylene sulfide polyphenylenesulfide), polyethylenenaphthalate, polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl chloride, polyacrylonitrile, cellulose, nylon (nylon), polyparaphenylene benzobisoxazole (poly(p-phenylene benzobisoxazole)) and polyarylate (polyarylate) may include at least one material selected from the group consisting of.
- the thickness of the porous substrate is not particularly limited, but may be 1 to 100 ⁇ m, preferably 5 to 50 ⁇ m.
- the thickness range of the porous substrate is not limited to the above-described range, when the thickness is too thin than the above-described lower limit, mechanical properties are deteriorated and the separator may be easily damaged during battery use.
- the average diameter and pores of the pores present in the porous substrate are also not particularly limited, but may be 0.001 to 50 ⁇ m and 10 to 95%, respectively.
- the coating layer is formed on at least one surface of the aforementioned porous substrate, and includes molybdenum disulfide (defect-rich MoS 2 ) containing defects.
- Molybdenum disulfide (defect-rich MoS 2 ) containing the defect solves the problem of loss of sulfur and capacity loss caused by elution of lithium polysulfide in conventional lithium-sulfur batteries by adsorbing lithium polysulfide
- molybdenum disulfide (defect-rich MoS 2 ) containing the defect is a side reaction on the negative electrode surface caused by the shuttle effect of lithium polysulfide by constraining lithium polysulfide to the coating layer of the separator, for example, the negative electrode It is possible to improve the coulomb efficiency and lifespan of the battery by reacting with the lithium metal used as a lithium metal to form a high resistance layer of Li 2 S at the interface or by solving the problem of lithium dendrite growth in which lithium is deposited at the negative electrode interface. .
- molybdenum disulfide (defect-rich MoS 2 ) containing the defect has a layered structure, and in-plane carrier mobility of 200 to 500 cm 2 /Vs Because it represents the lithium ion insertion (intercalation) / deintercalation (deintercalation) is easy as well as the movement of ions is easy. This reduces the interfacial resistance of the lithium metal and promotes a constant flow of lithium on the surface of the lithium metal, thereby controlling the speed of movement of electrons on the surface of the lithium metal and promoting a uniform distribution of lithium ions, effectively inhibiting the growth of lithium dendrites. I can.
- molybdenum disulfide is a material having adsorption capacity for lithium polysulfide, and has been used in lithium-sulfur batteries, but molybdenum disulfide used at this time is molybdenum disulfide (defect-free MoS 2 ) without defects in its crystal structure.
- the molybdenum disulfide included in the coating layer of the present invention includes an artificially formed defect, and the defect additionally provides an'active edge site' to the molybdenum disulfide, so that the lithium polysulfide of the above-described
- the defect By imparting electrochemical catalytic activity that can promote the elution and lithium dendrite growth inhibition effect, it has improved adsorption of lithium polysulfide and prevention of lithium dendrite formation than that of conventionally used defect-free molybdenum disulfide (defect-free MoS 2 ). Therefore, the capacity and life characteristics of a lithium secondary battery including the same can be remarkably improved.
- a disordered atomic arrangement on the surface of molybdenum disulfide including the defect is included as a defect, and may be expressed as MoS 2-x (0 ⁇ x ⁇ 0.5) in the chemical formula.
- the defect can secure an additional open space due to the chemical structure of molybdenum disulfide, and this open space facilitates the movement of ions, thereby including the defect.
- Molybdenum disulfide can exhibit improved electrochemical reactivity compared to molybdenum disulfide without defects.
- Molybdenum disulfide containing the above defects will be described later as being manufactured by the manufacturing method presented in the present invention.
- Molybdenum disulfide containing defects prepared according to the manufacturing method of the present invention is in the shape of a nanosheet having a thickness of 1 to 20 nm, preferably 1 to 10 nm, and the molybdenum disulfide of the nanosheet shape is regularly or irregularly in various sizes. It includes defects formed.
- the defect may be a structural defect as an inherent defect formed during the production of molybdenum disulfide, and may be, for example, at least one selected from the group consisting of point defects, line defects, and surface defects. Specifically, the defect may be at least one selected from the group consisting of point defects such as vacancy and interstitial atoms, line defects such as dislocaiton, and surface defects such as grain boundaries.
- Molybdenum disulfide including the defect may include a plurality of defects. Separation distances between the plurality of defects may correspond to each other or may be different from each other. The plurality of defects may correspond to each other or may have different sizes.
- Molybdenum disulfide containing the defects of the present invention may be crystalline. This can be confirmed through X-ray diffraction (XRD) measurement.
- XRD X-ray diffraction
- a significant or effective peak means a peak that is detected repeatedly in a substantially the same pattern in XRD data without being significantly affected by the analysis conditions or the person performing the analysis. It may be 1.5 times or more compared to the (backgound level), and preferably refers to a peak having a height, intensity, intensity, etc. of 2 times or more, more preferably 2.5 times or more.
- Molybdenum disulfide containing the defect was obtained by X-ray diffraction (XRD) analysis using a Cu-K ⁇ X-ray wavelength, diffraction angles (2 ⁇ ) of 14.0 ⁇ 0.2°, 33.1 ⁇ 0.2°, 39.4 ⁇ 0.2°, and 58.7 ⁇ 0.2°. Effective peaks each appearing in the range of ° are included, which mean diffraction peaks corresponding to (002), (100, 101), (103) and (110) crystal planes, respectively, from which disulfide including defects of the present invention It can be seen that molybdenum is crystalline.
- Molybdenum disulfide containing the defect can be confirmed that the Mo:S atomic ratio is 1:1.7 as a result of Energy Dispersive X-ray Spectrometer (EDS) analysis, through which the defect of the present invention
- EDS Energy Dispersive X-ray Spectrometer
- molybdenum disulfide containing it can be seen that it is a compound represented by MoS 2-x (0 ⁇ x ⁇ 0.5).
- the coating layer may be disposed facing the negative electrode or the positive electrode, and is not particularly limited in the present invention.
- the lithium secondary battery of the present invention contains lithium metal as a negative electrode active material
- the coating layer is preferably disposed facing the negative electrode. At this time, the coating layer is formed facing the negative electrode, thereby suppressing side reactions between lithium polysulfide and lithium metal diffused from the positive electrode containing sulfur, as well as preventing the growth of lithium dendrites, thereby increasing the life and stability of the battery.
- the thickness of the coating layer is not particularly limited, and has a range that does not increase the internal resistance of the battery while securing the above-described effects.
- the thickness of the coating layer may be 0.1 to 10 ⁇ m, preferably 0.1 to 5 ⁇ m, more preferably 0.1 to 1 ⁇ m.
- the thickness of the coating layer is less than the above range, the function as a coating layer cannot be performed.
- the thickness of the coating layer exceeds the above range, interfacial resistance may increase, resulting in an increase in internal resistance during battery operation.
- the manufacturing method of the separator for a lithium secondary battery presented in the present invention is not particularly limited, and a known method or various methods of modifying it may be used by a person skilled in the art.
- the method of manufacturing a separator for a lithium secondary battery As an example, the method of manufacturing a separator for a lithium secondary battery,
- the preparation of molybdenum disulfide including the defect in step (a) may be performed by reaction of a molybdenum precursor and a sulfur precursor.
- step of preparing molybdenum disulfide including the defect of step (a)
- (a-3) It may include drying the molybdenum disulfide formed in the step (a-2).
- the molybdenum precursor of step (a-1) refers to a material capable of forming molybdenum disulfide (MoS 2 ) by reacting with a sulfur precursor.
- the molybdenum precursor is sodium molybdate (Na 2 MoO 4 ), ammonium tetrathiomolybdate ((NH 4 ) 2 MoS 4 ), ammonium heptamolybdate tetrahydrate ((NH 4 ) 6 Mo 7 O 24 ⁇ 4H 2 O), molybdenum trioxide (MoO 3 ) and molybdenum chloride (MoCl 5 )
- ammonium heptamolybdate tetrahydrate may be preferably used.
- Types of the sulfur precursor include thiourea (CH 4 N 2 S), sodium thiosulfate (Na 2 S 2 O 3 ), sodium sulfide (Na 2 S), and hydrogen sulfide (H 2 S).
- thiourea CH 4 N 2 S
- sodium thiosulfate Na 2 S 2 O 3
- sodium sulfide Na 2 S
- hydrogen sulfide H 2 S.
- thiourea may be preferably used.
- the molybdenum precursor and the sulfur precursor are added to an aqueous solvent such as deionized water, and vigorously stirred for 10 minutes to 1 hour to prepare a mixed solution.
- an aqueous solvent such as deionized water
- the molar ratio of molybdenum and sulfur based on the mixed solution may be 1:2 or higher, preferably 1:3 to 1:5. If the proportion of sulfur is less than the above range, a sufficient amount of molybdenum disulfide may not be prepared based on the reactant added. When the molar ratio of molybdenum and sulfur falls within the above-described range, a sufficient amount of sulfur not only reduces Mo(VI) to Mo(IV), but also stabilizes the morphology of molybdenum disulfide in a nanosheet shape to be described later. Will function.
- the prepared mixed solution is introduced into a hydrothermal synthesis reactor such as an autoclave to form molybdenum disulfide.
- the hydrothermal synthesis reaction may be performed at a temperature of 180 to 240° C. for 10 to 24 hours, and preferably at a temperature of 200 to 220° C., and a synthesis reaction may be performed for 16 to 20 hours.
- the reaction product may be slowly cooled to room temperature, and the final product may be washed several times using water and ethanol. Through this process, residual ionic components or impurities remaining in the final product can be removed.
- the final product of the hydrothermal synthesis is dried at 60 to 80°C to obtain molybdenum disulfide.
- the drying is preferably performed under vacuum conditions for 6 to 12 hours.
- Molybdenum disulfide prepared according to the manufacturing method including steps (a-1) to (a-3) is molybdenum disulfide containing defects by adding a sulfur precursor having a predetermined molar ratio or more as described above.
- step (b) of preparing a coating composition containing molybdenum disulfide containing defects manufactured by the above-described manufacturing method is performed.
- the coating composition may further include a solvent other than molybdenum disulfide including the defects described above, and the solvent is not particularly limited as long as it is capable of dissolving molybdenum disulfide including the defect.
- the solvent may be a mixed solvent of water and alcohol, or a mixture of one or more organic solvents, and in this case, the alcohol may be a lower alcohol having 1 to 6 carbon atoms, preferably methanol, ethanol, propanol, isopropanol, etc. have.
- polar solvents such as acetic acid, dimethyl formamide (DMF), N-methyl-2-pyrrolidone (NMP) dimethyl sulfoxide (DMSO), etc., Acetonitrile, ethyl acetate, methyl acetate, fluoroalkane, pentane, 2,2,4-trimethylpentane, decane, cyclohexane, cyclopentane, diisobutylene, 1-pentene, 1-chlorobutane, 1-chloropentane , o-xylene, diisopropyl ether, 2-chloropropane, toluene, 1-chloropropane, chlorobenzene, benzene, diethyl ether, diethyl sulfide, chloroform, dichloromethane, 1,2-dichloroethane, aniline,
- Non-polar solvents such as diethylamine, ether, carbon tetrach
- the content of the solvent may be contained at a level having a concentration that can facilitate coating, and the specific content varies depending on the coating method and apparatus.
- molybdenum disulfide containing the defects may be dispersed in a solvent and then mixed to prepare a coating composition, at which time the concentration of the final coating composition is adjusted to be in the range of 0.1 to 10% by weight (solid content). Then carry out the coating.
- step (c) of applying the above-described coating composition to at least one surface of the porous substrate is performed.
- step (c) is not particularly limited in the present invention, and any known wet coating method may be used.
- any known wet coating method may be used.
- a method of uniformly dispersing using a doctor blade, etc., die casting, comma coating, screen printing, vacuum filtration coating, etc. Method, etc. are mentioned.
- a drying process for removing the solvent may be further performed.
- the drying process is performed at a temperature and time at a level that can sufficiently remove the solvent, and the conditions may vary depending on the type of solvent, and thus are not specifically mentioned in the present invention.
- drying may be performed in a vacuum oven at 30 to 200° C., and drying methods such as hot air, hot air, drying by low humid air, and vacuum drying may be used.
- it does not specifically limit about the drying time, it is normally performed in the range of 30 seconds-24 hours.
- the thickness of the finally formed coating layer can be adjusted.
- the present invention provides a lithium secondary battery including the separator.
- the lithium secondary battery includes a positive electrode; cathode; It includes a separator and an electrolyte interposed therebetween, and includes the separator according to the present invention as the separator.
- the lithium secondary battery may be a lithium-sulfur battery containing sulfur as a positive electrode active material.
- the positive electrode may include a positive electrode current collector and a positive electrode active material applied to one or both surfaces of the positive electrode current collector.
- the positive electrode current collector supports a positive electrode active material and is not particularly limited as long as it has high conductivity without causing chemical changes in the battery.
- a positive electrode active material for example, copper, stainless steel, aluminum, nickel, titanium, palladium, calcined carbon, copper or stainless steel surface treated with carbon, nickel, silver, etc., aluminum-cadmium alloy, and the like may be used.
- the positive electrode current collector may form fine irregularities on its surface to enhance the bonding strength with the positive electrode active material, and various forms such as films, sheets, foils, meshes, nets, porous bodies, foams, and nonwoven fabrics may be used.
- the positive electrode active material may include a positive electrode active material and optionally a conductive material and a binder.
- a sulfur-based compound specifically, elemental sulfur or a sulfur-based compound is included as the positive electrode active material.
- the sulfur element may include inorganic sulfur (S 8 ).
- inorganic sulfur (S 8 ) may be used.
- the sulfur-based compound alone has no electrical conductivity, it is used in combination with a conductive material.
- the positive electrode active material may be a sulfur-carbon composite.
- carbon is a porous carbon material, providing a skeleton through which sulfur, which is a positive electrode active material, can be uniformly and stably fixed, and complements the electrical conductivity of sulfur so that an electrochemical reaction can proceed smoothly.
- the porous carbon material may generally be prepared by carbonizing precursors of various carbon materials.
- the porous carbon material includes irregular pores therein, the average diameter of the pores is in the range of 1 to 200 nm, and the porosity or porosity may be in the range of 10 to 90% of the total volume of the porosity. If the average diameter of the pores is less than the above range, the pore size is only at the molecular level and impregnation of sulfur is impossible. Conversely, if the pore size exceeds the above range, the mechanical strength of the porous carbon is weakened, which is preferable to be applied to the manufacturing process of the electrode. Not.
- the porous carbon material may be spherical, rod-shaped, needle-shaped, plate-shaped, tube-shaped, or bulk-shaped, and may be used without limitation as long as it is commonly used in lithium-sulfur batteries.
- the porous carbon material may have a porous structure or a high specific surface area, so long as it is commonly used in the art.
- the porous carbon material graphite; Graphene; Carbon blacks such as denka black, acetylene black, ketjen black, channel black, furnace black, lamp black, and summer black; Carbon nanotubes (CNT) such as single-walled carbon nanotubes (SWCNT) and multi-walled carbon nanotubes (MWCNT); Carbon fibers such as graphite nanofibers (GNF), carbon nanofibers (CNF), and activated carbon fibers (ACF); It may be one or more selected from the group consisting of natural graphite, artificial graphite, expanded graphite, and activated carbon, but is not limited thereto.
- the porous carbon material may be a carbon nanotube.
- the sulfur-carbon composite may contain 60 to 90 parts by weight of sulfur, preferably 65 to 85 parts by weight, more preferably 70 to 80 parts by weight, based on 100 parts by weight of the sulfur-carbon composite.
- the sulfur content is less than the above-described range, the specific surface area increases as the content of the porous carbon material in the sulfur-carbon composite is relatively increased, so that the content of the binder increases when preparing the slurry.
- Increasing the amount of the binder used may eventually increase the sheet resistance of the positive electrode and act as an insulator to prevent electron pass, thereby deteriorating the performance of the battery.
- the positive electrode active material may further include at least one additive selected from a transition metal element, a group IIIA element, a group IVA element, a sulfur compound of these elements, and an alloy of these elements and sulfur.
- the transition metal element is Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Os, Ir, Pt, Au, or Hg and the like are included, and the group IIIA element includes Al, Ga, In, and Ti, and the group IVA element may include Ge, Sn, and Pb.
- the positive electrode active material may be included in an amount of 50 to 95 parts by weight, preferably 70 to 90 parts by weight, based on 100 parts by weight of the positive electrode slurry composition.
- the content of the positive electrode active material is less than the above range, it is difficult to sufficiently exhibit the electrochemical reaction of the positive electrode, and on the contrary, when the content of the positive electrode active material exceeds the above range, the content of the conductive material and binder described below is relatively insufficient, and the resistance of the positive electrode increases, There is a problem that the physical properties of the anode are deteriorated.
- the positive electrode may further include a conductive material, and the conductive material is a material that serves as a path through which electrons move from a current collector to the positive electrode active material by electrically connecting the electrolyte and the positive electrode active material.
- the conductive material is a material that serves as a path through which electrons move from a current collector to the positive electrode active material by electrically connecting the electrolyte and the positive electrode active material.
- any one having conductivity can be used without limitation.
- a carbon-based material having a porosity may be used as the conductive material, and examples of such a carbon-based material include carbon black, graphite, graphene, activated carbon, carbon fiber, etc., and metallic fibers such as metal mesh; Metallic powders such as copper, silver, nickel, and aluminum; Or an organic conductive material such as a polyphenylene derivative.
- the conductive materials may be used alone or in combination.
- the conductive material may be included in an amount of 1 to 10 parts by weight, preferably 5 parts by weight, based on 100 parts by weight of the positive electrode slurry composition. If the content of the conductive material is less than the above range, the non-reacting portion of sulfur in the positive electrode increases, resulting in a decrease in capacity. On the contrary, if it exceeds the above range, it is preferable to determine an appropriate content within the above-described range since it adversely affects the high-efficiency discharge characteristics and charge/discharge cycle life.
- the positive electrode may further include a binder, and the binder further enhances binding strength between components constituting the positive electrode and between them and a current collector, and any binder known in the art may be used.
- the binder may include a fluororesin binder including polyvinylidene fluoride (PVdF) or polytetrafluoroethylene (PTFE); A rubber-based binder including styrene-butadiene rubber (SBR), acrylonitrile-butadiene rubber, and styrene-isoprene rubber; Cellulose-based binders including carboxyl methyl cellulose (CMC), starch, hydroxy propyl cellulose, and regenerated cellulose; Poly alcohol-based binder; Polyolefin-based binders including polyethylene and polypropylene; Polyimide binder; Polyester binder; And a silane-based binder; one, two or more mixtures or copolymers selected from the group consisting of may be used.
- PVdF polyvinylidene fluoride
- PTFE polytetrafluoroethylene
- a rubber-based binder including styrene-butadiene rubber (SBR), acrylon
- the binder may be included in an amount of 1 to 10 parts by weight, preferably about 5 parts by weight, based on 100 parts by weight of the positive electrode slurry composition. If the content of the binder is less than the above range, the physical properties of the positive electrode may be deteriorated and the positive electrode active material and the conductive material may be eliminated, and if the content of the binder exceeds the above range, the ratio of the active material and the conductive material in the positive electrode may be relatively reduced, thereby reducing the battery capacity. It is desirable to determine the appropriate content within one range.
- the positive electrode can be manufactured by a conventional method known in the art. For example, after preparing a slurry by mixing and stirring a solvent, a binder, a conductive material, and a dispersant as necessary in a positive electrode active material, it is applied (coated) to a current collector of a metal material, compressed, and dried to prepare a positive electrode have.
- a positive electrode active material, a binder, and a conductive material may be uniformly dispersed.
- water is most preferred as an aqueous solvent, and in this case, water may be distilled water or deionzied water.
- the present invention is not limited thereto, and if necessary, lower alcohol that can be easily mixed with water may be used. Examples of the lower alcohol include methanol, ethanol, propanol, isopropanol, butanol, and the like, and preferably, they may be used by mixing with water.
- the porosity of the positive electrode, specifically the positive electrode active material layer, prepared by the above-described composition and manufacturing method may be 60 to 75%, preferably 60 to 70%.
- the filling degree of the positive electrode slurry composition including the positive electrode active material, the conductive material, and the binder becomes too high, so that a sufficient electrolyte solution capable of showing ionic conduction and/or electrical conduction between the positive electrode active materials is provided. Since it cannot be maintained, the output characteristics or cycle characteristics of the battery may be deteriorated, and there is a problem that the overvoltage and discharge capacity of the battery are severely reduced.
- the porosity of the positive electrode exceeds 75% and has an excessively high porosity, there is a problem that the physical and electrical connection with the current collector is lowered, resulting in a decrease in adhesion and difficulty in reaction, and the increased porosity is filled with an electrolyte solution. Since there is a problem that the energy density of may be lowered, it is appropriately adjusted within the above range.
- the negative electrode is a material capable of reversibly intercalating or deintercalating lithium (Li + ) as a negative active material, a material capable of reversibly forming a lithium-containing compound by reacting with lithium ions, lithium metal or lithium It may contain an alloy.
- the material capable of reversibly intercalating or deintercalating lithium ions may be, for example, crystalline carbon, amorphous carbon, or a mixture thereof.
- a material capable of reversibly forming a lithium-containing compound by reacting with the lithium ions (Li + ) may be, for example, tin oxide, titanium nitrate, or silicon.
- the lithium alloy is, for example, lithium (Li) and sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), francium (Fr), beryllium (Be), magnesium (Mg), calcium ( It may be an alloy of a metal selected from the group consisting of Ca), strontium (Sr), barium (Ba), radium (Ra), aluminum (Al), and tin (Sn).
- the negative active material may be lithium metal, and specifically, may be in the form of a lithium metal thin film or lithium metal powder.
- the negative electrode current collector is as described in the positive electrode current collector.
- the negative electrode may further include additives such as a binder, a conductive material and a thickener, and is not particularly limited as long as it is a conventional one used in manufacturing the negative electrode.
- the binder and the conductive material are as described in the positive electrode.
- the separator is as described above.
- the electrolyte contains lithium ions, and is for causing an electrochemical oxidation or reduction reaction at the anode and the cathode through this.
- the electrolyte may be a non-aqueous electrolyte or a solid electrolyte that does not react with lithium metal, but is preferably a non-aqueous electrolyte, and includes an electrolyte salt and an organic solvent.
- the electrolyte salt contained in the non-aqueous electrolyte solution is a lithium salt.
- the lithium salt may be used without limitation as long as it is commonly used in an electrolyte for a lithium secondary battery.
- LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 SO 3 Li, ( CF 3 SO 2 ) 2 NLi, LiN(SO 2 F) 2 , lithium chloroborane, lithium lower aliphatic carboxylic acid, lithium 4-phenyl borate, lithium imide, and the like may be used.
- the concentration of the lithium salt depends on several factors such as the exact composition of the electrolyte solvent mixture, the solubility of the salt, the conductivity of the dissolved salt, the charging and preconditioning of the battery, the working temperature and other factors known in the lithium battery field, from 0.2 to 2 M, Specifically, it may be 0.4 to 2 M, more specifically 0.4 to 1.7 M. If the concentration of the lithium salt is less than 0.2 M, the conductivity of the electrolyte may be lowered, resulting in deterioration of electrolyte performance, and if the concentration of the lithium salt exceeds 2 M, the viscosity of the electrolyte may increase, thereby reducing the mobility of lithium ions.
- organic solvents included in the non-aqueous electrolyte those commonly used in electrolytes for lithium secondary batteries can be used without limitation, for example, ether, ester, amide, linear carbonate, cyclic carbonate, etc., alone or in combination of two or more Can be used. Among them, representatively, an ether-based compound may be included.
- the ether compound may include an acyclic ether and a cyclic ether.
- the acyclic ether includes dimethyl ether, diethyl ether, dipropyl ether, methylethyl ether, methylpropyl ether, ethylpropyl ether, dimethoxyethane, diethoxyethane, methoxyethoxyethane, diethylene glycol Dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methylethyl ether, triethylene glycol dimethyl ether, triethylene glycol diethyl ether, triethylene glycol methylethyl ether, tetraethylene glycol dimethyl ether, tetraethylene glycol diethyl ether, At least one selected from the group consisting of tetraethylene glycol methylethyl ether, polyethylene glycol dimethyl ether, polyethylene glycol diethyl ether, and polyethylene glycol methylethyl ether may be used, but is not limited thereto.
- the cyclic ether is 1,3-dioxolane, 4,5-dimethyl-dioxolane, 4,5-diethyl-dioxolane, 4-methyl-1,3-dioxolane, 4-ethyl-1, 3-dioxolane, tetrahydrofuran, 2-methyltetrahydrofuran, 2,5-dimethyltetrahydrofuran, 2,5-dimethoxytetrahydrofuran, 2-ethoxytetrahydrofuran, 2-methyl-1,3 -Dioxolane, 2-vinyl-1,3-dioxolane, 2,2-dimethyl-1,3-dioxolane, 2-methoxy-1,3-dioxolane, 2-ethyl-2-methyl-1, 3-dioxolane, tetrahydropyran, 1,4-dioxane, 1,2-dimethoxy benzene, 1,3-dimethoxy benzen
- esters in the organic solvent methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ - Any one selected from the group consisting of valerolactone and ⁇ -caprolactone or a mixture of two or more of them may be used, but the present invention is not limited thereto.
- linear carbonate compound examples include any one selected from the group consisting of dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate, ethylmethyl carbonate (EMC), methylpropyl carbonate, and ethylpropyl carbonate, or any one of them.
- DMC dimethyl carbonate
- DEC diethyl carbonate
- EMC ethylmethyl carbonate
- methylpropyl carbonate methylpropyl carbonate
- ethylpropyl carbonate methylpropyl carbonate
- ethylpropyl carbonate methylpropyl carbonate
- cyclic carbonate compound examples include ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate , 2,3-pentylene carbonate, vinylene carbonate, vinylethylene carbonate, and any one selected from the group consisting of halides thereof, or a mixture of two or more thereof.
- halides include, for example, fluoroethylene carbonate (FEC), but are not limited thereto.
- the injection of the non-aqueous electrolyte may be performed at an appropriate step in the manufacturing process of the electrochemical device according to the manufacturing process and required physical properties of the final product. That is, it can be applied before assembling the electrochemical device or at the final stage of assembling the electrochemical device.
- the lithium secondary battery according to the present invention in addition to winding, which is a general process, lamination and stacking of a separator and an electrode and folding are possible.
- the shape of the lithium secondary battery is not particularly limited and may be in various shapes such as a cylindrical shape, a stacked type, and a coin type.
- the present invention provides a battery module including the lithium secondary battery as a unit cell.
- the battery module can be used as a power source for medium and large-sized devices that require high temperature stability, long cycle characteristics, and high capacity characteristics.
- Examples of the medium and large-sized devices include a power tool that is driven by an electric motor; Electric vehicles including electric vehicles (EV), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and the like; Electric two-wheeled vehicles including electric bicycles (E-bikes) and electric scooters (E-scooters); Electric golf cart; Power storage systems, etc., but are not limited thereto.
- Electric vehicles including electric vehicles (EV), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and the like
- Electric two-wheeled vehicles including electric bicycles (E-bikes) and electric scooters (E-scooters); Electric golf cart; Power storage systems, etc., but are not limited thereto.
- the mixed solution was placed in an autoclave made of stainless steel with a Teflon surface treatment, and hydrothermal synthesis reaction was performed at 220° C. for 18 hours.
- a 20 ⁇ m polyethylene (porosity 68%) film was prepared as a porous substrate.
- a coating composition containing 1% by weight of molybdenum disulfide containing defects obtained in Preparation Example 1 was applied to ethanol to form a coating layer on the porous substrate, and then dried at 60° C. for 12 hours to a thickness of 1 ⁇ m. This formed separator was prepared.
- the prepared positive electrode slurry composition was applied on an aluminum current collector, dried at 50° C. for 12 hours, and compressed with a roll press to prepare a positive electrode.
- the loading amount of the obtained positive electrode was 5.9 mAh/cm 2, and the porosity was 68%.
- LiTFSI bis(trifluoromethanesulfonyl)imide
- LiNO 3 lithium nitrate
- the prepared positive electrode and the negative electrode were positioned to face each other, and the coating layer of the separator was placed to face the negative electrode therebetween, and 0.1 ml of the prepared electrolyte was injected to prepare a lithium secondary battery.
- a lithium secondary battery was manufactured in the same manner as in Example 1, except that the coating layer of the separator was disposed to face the positive electrode during battery manufacturing.
- a lithium secondary battery was manufactured in the same manner as in Example 1, except that a coating layer was not formed on the separator and a porous substrate was used as it is.
- a plurality of disordered atomic arrangements are found on the surface of molybdenum disulfide including nanosheet-shaped defects, and it can be confirmed that a plurality of defects (arrows) exist.
- XRD X-ray diffraction
- EDS Energy Dispersive X-ray Spectrometer
- the absorbance of the molybdenum disulfide containing defects according to Preparation Example 1 and the carbon nanotubes used as a conventional lithium-polysulfide adsorption material for lithium polysulfide (Li 2 S 6 ) solution was measured.
- an Agilent 8453 of Agilent was used as a UV-Vis spectrophotometer. The lower the measured absorbance is, the better the adsorption effect on lithium polysulfide is, and the results obtained at this time are shown in FIG. 6.
- the separation membrane prepared in Example 1 was observed with a scanning electron microscope (SEM). As a scanning electron microscope, Hitachi's S-4800 was used. The results obtained at this time are shown in FIG. 7.
- the batteries prepared in Examples and Comparative Examples were discharged and charged three times at a current density of 0.1 C, and then discharged and charged three times at a current density of 0.2 C, followed by 0.5 C discharge and 0.3 C charge. While measuring the discharge capacity and coulomb efficiency, the battery life characteristics were evaluated. The results obtained at this time are shown in FIG. 8.
- Example 1 in which the coating layer was arranged to face the cathode was superior to that of the Example in which the coating layer was arranged to face the anode have.
- lithium polysulfide in which molybdenum disulfide including defects contained in the coating layer is eluted from the positive electrode is adsorbed to the coating layer, thereby inhibiting the growth of lithium dendrites. Therefore, it can be seen that the capacity characteristics of the lithium secondary battery are excellent and the life characteristics are also improved.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Secondary Cells (AREA)
Abstract
The present invention relates to a separator for a lithium secondary battery and a lithium secondary battery comprising same and, more specifically, to a separator, for a lithium secondary battery, comprising: a porous substrate; and a coating layer formed on at least one surface of the porous substrate, wherein the coating layer comprises molybdenum disulfide comprising a defect. A separator for a lithium secondary battery of the present invention adsorbs lithium polysulfide and inhibits lithium dendrite growth by means of a coating layer comprising molybdenum disulfide comprising a defect, and thus enhances the capacity and state of health of the lithium secondary battery.
Description
본 출원은 2019년 05월 03일자 한국 특허 출원 제10-2019-0052462호 및 2020년 04월 24일자 한국 특허 출원 제10-2020-0050190호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함한다.This application claims the benefit of priority based on Korean Patent Application No. 10-2019-0052462 filed May 03, 2019 and Korean Patent Application No. 10-2020-0050190 filed April 24, 2020. All contents disclosed in the literature are included as part of this specification.
본 발명은 리튬 이차전지용 분리막 및 이를 포함하는 리튬 이차전지에 관한 것이다.The present invention relates to a separator for a lithium secondary battery and a lithium secondary battery including the same.
리튬 이차전지의 활용 범위가 휴대용 전자기기 및 통신기기뿐만 아니라 전기자동차(electric vehicle; EV), 전력저장장치(electric storage system; ESS)에까지 확대되면서 이들의 전원으로 사용되는 리튬 이차전지의 고용량화에 대한 요구가 높아지고 있다.As the scope of use of lithium secondary batteries has expanded to not only portable electronic devices and communication devices, but also electric vehicles (EVs) and electric storage systems (ESSs), the high capacity of lithium secondary batteries used as power sources has been improved. The demand is increasing.
여러 리튬 이차전지 중에서 리튬-황 전지는 황-황 결합(sulfur-sulfur bond)을 포함하는 황 계열 물질을 양극 활물질로 사용하며, 리튬 금속, 리튬 이온의 삽입/탈삽입이 일어나는 탄소계 물질 또는 리튬과 합금을 형성하는 실리콘이나 주석 등을 음극 활물질로 사용하는 이차전지이다. Among various lithium secondary batteries, a lithium-sulfur battery uses a sulfur-based material containing a sulfur-sulfur bond as a positive electrode active material, and lithium metal, a carbon-based material in which lithium ions are inserted/deinserted, or lithium It is a secondary battery that uses silicon or tin, which forms an alloy with, as an anode active material.
리튬-황 전지에서 양극 활물질의 주재료인 황은 낮은 원자당 무게를 가지며, 자원이 풍부하여 수급이 용이하며 값이 저렴하고, 독성이 없으며, 환경친화적 물질이라는 장점이 있다. In lithium-sulfur batteries, sulfur, which is the main material of the positive electrode active material, has a low weight per atom, rich in resources, easy supply and demand, inexpensive, non-toxic, and has the advantage of being an environmentally friendly material.
또한, 리튬-황 전지는 양극에서 리튬 이온과 황의 변환(conversion) 반응(S8+16Li++16e- → 8Li2S)으로부터 나오는 이론 방전용량이 1,675 mAh/g에 이르고, 음극으로 리튬 금속(이론 용량: 3,860 mAh/g)을 사용하는 경우 2,600 Wh/kg의 이론 에너지 밀도를 나타낸다. 이는 현재 연구되고 있는 다른 전지 시스템 (Ni-MH 전지: 450Wh/kg, Li-FeS 전지: 480Wh/kg, Li-MnO2 전지: 1,000Wh/kg, Na-S 전지: 800Wh/kg) 및 상용 리튬 이차전지(LiCoO2/graphite)의 이론 에너지 밀도에 비하여 매우 높은 수치를 가지기 때문에 현재까지 개발되고 있는 이차전지 중 고용량, 친환경 및 저가의 리튬 이차전지로 주목받고 있으며, 차세대 전지 시스템으로 여러 연구가 이루어지고 있다.Further, a lithium-sulfur battery is a lithium ion and the sulfur conversion (conversion) reaction at the anode - the theoretical discharge capacity resulting from (S 8 + 16Li + + 16e → 8Li 2 S) reached 1,675 mAh / g, a lithium metal as a negative electrode ( Theoretical capacity: 3,860 mAh/g) shows a theoretical energy density of 2,600 Wh/kg. This is another battery system currently being studied (Ni-MH battery: 450Wh/kg, Li-FeS battery: 480Wh/kg, Li-MnO 2 battery: 1,000Wh/kg, Na-S battery: 800Wh/kg) and commercial lithium Since it has a very high value compared to the theoretical energy density of a secondary battery (LiCoO 2 /graphite), it is attracting attention as a high-capacity, eco-friendly, and inexpensive lithium secondary battery among secondary batteries being developed so far. Is losing.
리튬-황 전지는 방전시 양극(positive electrode)에서는 황이 전자를 받아들여 환원 반응이, 음극(negative electrode)에서는 리튬이 이온화되는 산화 반응이 각각 진행된다. 이러한 리튬-황 전지의 방전 도중에 양극에서는 리튬 폴리설파이드(lithium polysulfide, Li2Sx, x=2~8)가 생성되고, 이는 전해질에 용해되어 양극으로부터 용출됨에 따라 양극의 가역 용량이 크게 줄어들 뿐만 아니라 용해된 리튬 폴리설파이드는 음극으로 확산되어 여러 가지 부반응(side reaction)을 일으키게 된다. 또한, 충전과정 중 상기 리튬 폴리설파이드는 셔틀 반응(shuttle reaction)을 일으켜 충방전 효율을 크게 저하시킨다.In a lithium-sulfur battery, when discharging, sulfur accepts electrons from the positive electrode and undergoes a reduction reaction, while the negative electrode undergoes an oxidation reaction in which lithium is ionized. During the discharge of such a lithium-sulfur battery, lithium polysulfide (Li 2 S x , x = 2 to 8) is produced in the positive electrode, which is dissolved in the electrolyte and eluted from the positive electrode, so that the reversible capacity of the positive electrode is greatly reduced. In addition, the dissolved lithium polysulfide diffuses to the negative electrode, causing various side reactions. In addition, during the charging process, the lithium polysulfide causes a shuttle reaction, which greatly reduces charging and discharging efficiency.
이러한 리튬 폴리설파이드의 용출은 전지의 용량 및 수명 특성에 악영향을 미치는 바, 리튬 폴리설파이드 문제를 해결하기 위한 다양한 기술이 제안되었다.Since the elution of lithium polysulfide adversely affects the capacity and life characteristics of the battery, various techniques have been proposed to solve the lithium polysulfide problem.
일례로, 대한민국 공개특허 제2018-0020096호는 전이금속 화합물을 포함하는 촉매층이 형성된 분리막을 포함함으로써 리튬 폴리설파이드 용출로 인한 셔틀 반응을 억제하여 전지의 용량 및 사이클 특성을 개선할 수 있음을 개시하고 있다.For example, Korean Patent Application Publication No. 2018-0020096 discloses that by including a separator on which a catalyst layer containing a transition metal compound is formed, it is possible to improve the capacity and cycle characteristics of a battery by suppressing the shuttle reaction due to elution of lithium polysulfide. have.
또한, 대한민국 공개특허 제2016-0046775호는 황-탄소 복합체를 포함하는 양극 활성부의 일부 표면에 양친매성 고분자로 이루어진 양극 코팅층을 구비하여 리튬 폴리설파이드의 용출 억제와 함께 리튬 이온의 이동을 용이하게 하여 전지의 사이클 특성을 향상시킬 수 있음을 개시하고 있다.In addition, Korean Patent Application Publication No. 2016-0046775 provides a positive electrode coating layer made of an amphiphilic polymer on a portion of the positive electrode active part including a sulfur-carbon composite to prevent the elution of lithium polysulfide and facilitate the movement of lithium ions. It discloses that the cycle characteristics of a battery can be improved.
또한, 대한민국 공개특허 제2016-0037084호는 황을 포함하는 탄소나노튜브 응집체에 그래핀을 코팅함으로써 리튬 폴리설파이드가 녹아나오는 것을 차단하고, 황-탄소나노튜브 복합체의 도전성 및 황의 로딩양을 증가시킬 수 있음을 개시하고 있다.In addition, Korean Patent Laid-Open No. 2016-0037084 discloses that by coating graphene on a carbon nanotube aggregate containing sulfur, it blocks the dissolution of lithium polysulfide, and increases the conductivity of the sulfur-carbon nanotube composite and the loading amount of sulfur. Disclosed that you can.
이들 특허들은 리튬 폴리설파이드 흡착 능력이 있는 물질을 양극 또는 분리막에 도입함으로써 황의 손실을 방지하여 리튬-황 전지의 성능 또는 수명 저하 문제를 어느 정도 개선하였으나 그 효과가 충분치 않다. 또한, 새로이 도입된 물질로 인해 열화 문제가 발생할 수 있고, 이들 특허에서 제시하는 방법은 다소 복잡할 뿐만 아니라 양극 활물질인 황을 넣을 수 있는 양(즉, 로딩양)이 제한된다는 문제가 있다. 따라서, 리튬 폴리설파이드 용출 문제를 해결하여 우수한 성능을 갖는 리튬-황 전지의 개발이 더욱 필요한 실정이다.These patents have improved the problem of reducing the performance or lifespan of the lithium-sulfur battery to some extent by introducing a material having the ability to adsorb lithium polysulfide to the positive electrode or separator to prevent the loss of sulfur, but the effect is not sufficient. In addition, a deterioration problem may occur due to a newly introduced material, and the method proposed in these patents is somewhat complicated, and there is a problem that the amount of sulfur, which is a positive electrode active material, is limited (ie, the loading amount). Accordingly, there is a need for further development of a lithium-sulfur battery having excellent performance by solving the lithium polysulfide elution problem.
[선행기술문헌][Prior technical literature]
[특허문헌][Patent Literature]
대한민국 공개특허 제2018-0020096호(2018.02.27), 촉매층이 코팅된 리튬설퍼전지용 다층구조 분리막 및 이를 이용한 리튬설퍼전지Republic of Korea Patent Publication No. 2018-0020096 (2018.02.27), Multi-layered separator for lithium sulfur battery coated with catalyst layer and lithium sulfur battery using the same
대한민국 공개특허 제2016-0046775호(2016.04.29), 리튬-황 전지용 양극 및 이의 제조방법Republic of Korea Patent Publication No. 2016-0046775 (2016.04.29), lithium-sulfur battery positive electrode and its manufacturing method
대한민국 공개특허 제2016-0037084호(2016.04.05), 황-탄소나노튜브 복합체, 이의 제조방법, 이를 포함하는 리튬-황 전지용 캐소드 활물질 및 이를 포함한 리튬-황 전지Republic of Korea Patent Publication No. 2016-0037084 (2016.04.05), sulfur-carbon nanotube composite, manufacturing method thereof, cathode active material for lithium-sulfur battery including the same, and lithium-sulfur battery including the same
이에 본 발명자들은 상기 문제를 해결하고자 다각적으로 연구를 수행한 결과, 분리막의 기재 상에 결함을 포함하는 이황화몰리브덴을 포함하는 코팅층을 도입함으로써 리튬-황 전지의 리튬 폴리설파이드 용출의 문제를 해소하고 음극 상에 리튬 덴드라이트 성장을 억제하여 리튬 이차전지의 성능 및 수명을 향상시킬 수 있음을 확인하여 본 발명을 완성하였다.Accordingly, the present inventors conducted various studies to solve the above problem. As a result, by introducing a coating layer containing molybdenum disulfide containing defects on the substrate of the separator, the problem of the elution of lithium polysulfide in the lithium-sulfur battery was solved and the negative electrode The present invention was completed by confirming that the lithium dendrite growth can be suppressed to improve the performance and lifespan of the lithium secondary battery.
따라서, 본 발명의 목적은 리튬 폴리설파이드 용출에 의한 문제를 해결하여 리튬 이차전지의 용량 및 수명 특성을 개선시키는 리튬 이차전지용 분리막을 제공하는데 있다.Accordingly, an object of the present invention is to provide a separator for a lithium secondary battery that improves capacity and life characteristics of a lithium secondary battery by solving the problem caused by the elution of lithium polysulfide.
또한, 본 발명의 다른 목적은 상기 분리막을 포함하는 리튬 이차전지를 제공하는 것이다.In addition, another object of the present invention is to provide a lithium secondary battery including the separator.
상기 목적을 달성하기 위해, 본 발명은 다공성 기재; 및 상기 다공성 기재의 적어도 일면에 형성된 코팅층을 포함하되,In order to achieve the above object, the present invention is a porous substrate; And a coating layer formed on at least one surface of the porous substrate,
상기 코팅층은 결함을 포함하는 이황화몰리브덴을 포함하는 리튬 이차전지용 분리막을 제공한다.The coating layer provides a separator for a lithium secondary battery containing molybdenum disulfide containing defects.
상기 결함을 포함하는 이황화몰리브덴은 나노시트 형상인 것일 수 있다.Molybdenum disulfide including the defect may have a nanosheet shape.
상기 결함을 포함하는 이황화몰리브덴은 두께가 1 내지 20 ㎚일 수 있다.Molybdenum disulfide including the defect may have a thickness of 1 to 20 nm.
상기 결함을 포함하는 이황화몰리브덴은 결정성인 것일 수 있다.Molybdenum disulfide containing the defect may be crystalline.
상기 결함을 포함하는 이황화몰리브덴은 X선 회절(XRD) 측정시, 회절 각도(2θ)가 14.0±0.2°, 33.1±0.2°, 39.4±0.2° 및 58.7±0.2°인 범위에서 각각 나타나는 회절 피크를 포함하는 것일 수 있다.Molybdenum disulfide containing the defect has diffraction peaks that appear in the ranges of 14.0±0.2°, 33.1±0.2°, 39.4±0.2°, and 58.7±0.2°, respectively, when the diffraction angle (2θ) is measured by X-ray diffraction (XRD). It may be included.
상기 결함은 점결함, 선결함 및 면결함으로 이루어진 군에서 선택되는 1종 이상일 수 있다.The defect may be one or more selected from the group consisting of point defects, line defects, and surface defects.
상기 코팅층은 두께가 0.1 내지 10 ㎛일 수 있다.The coating layer may have a thickness of 0.1 to 10 μm.
상기 코팅층은 리튬 이차전지의 음극에 대면하여 배치되는 것일 수 있다.The coating layer may be disposed to face the negative electrode of the lithium secondary battery.
또한, 본 발명은 상기 리튬 이차전지용 분리막을 포함하는 리튬 이차전지를 제공한다.In addition, the present invention provides a lithium secondary battery including the separator for the lithium secondary battery.
본 발명에 따른 분리막의 코팅층에 포함되는 결함을 포함하는 이황화몰리브덴은 상기 결함의 경계(edge)가 추가적인 전기화학 촉매활성을 부여함으로써 리튬 폴리설파이드 흡착 및 리튬 덴드라이트 생성 억제 효과를 촉진하여 이를 포함하는 리튬 이차전지, 구체적으로 리튬-황 전지의 용량 및 수명 특성을 향상시킨다.Molybdenum disulfide containing defects included in the coating layer of the separation membrane according to the present invention includes these by promoting the effect of inhibiting lithium polysulfide adsorption and lithium dendrite generation by imparting additional electrochemical catalytic activity to the edges of the defects. It improves the capacity and life characteristics of a lithium secondary battery, specifically a lithium-sulfur battery.
따라서, 상기 결함을 포함하는 이황화몰리브덴을 포함하는 코팅층이 형성된 분리막이 구비된 리튬 이차전지는 황의 용량 저하가 발생하지 않아 고용량 전지 구현이 가능하고, 황을 고로딩으로 안정적으로 적용 가능할 뿐만 아니라 리튬 덴드라이트 성장이 방지되어 전지의 쇼트, 발열 등의 문제가 없어 전지 안정성이 향상된다. 더불어, 이러한 리튬 이차전지는 전지의 충방전 효율이 높고 수명 특성이 개선되는 이점을 갖는다.Therefore, a lithium secondary battery provided with a separator on which a coating layer containing molybdenum disulfide containing the defects is formed does not cause a decrease in the capacity of sulfur, so that a high-capacity battery can be implemented, and it is possible to stably apply sulfur by high loading, as well as lithium-den Dry growth is prevented, and there are no problems such as short circuit or heat generation of the battery, improving battery stability. In addition, such a lithium secondary battery has an advantage in that the charging/discharging efficiency of the battery is high and life characteristics are improved.
도 1은 본 발명의 제조예 1에 따른 결함을 포함하는 이황화몰리브덴의 주사 전자 현미경(SEM) 이미지이다.1 is a scanning electron microscope (SEM) image of molybdenum disulfide including defects according to Preparation Example 1 of the present invention.
도 2는 본 발명의 제조예 1에 따른 결함을 포함하는 이황화몰리브덴의 고분해능 투과전자 현미경(HR-TEM) 이미지이다.2 is a high-resolution transmission electron microscope (HR-TEM) image of molybdenum disulfide containing defects according to Preparation Example 1 of the present invention.
도 3은 본 발명의 제조예 1에 따른 결함을 포함하는 이황화몰리브덴의 X-선 회절 측정 결과를 나타내는 그래프이다.3 is a graph showing the result of X-ray diffraction measurement of molybdenum disulfide containing defects according to Preparation Example 1 of the present invention.
도 4는 본 발명의 제조예 1에 따른 결함을 포함하는 이황화몰리브덴의 EDS 분석 결과를 나타내는 이미지이다.4 is an image showing an EDS analysis result of molybdenum disulfide containing defects according to Preparation Example 1 of the present invention.
도 5는 본 발명의 결함이 없는 이황화몰리브덴의 EDS 분석 결과를 나타내는 이미지이다.5 is an image showing the EDS analysis result of molybdenum disulfide without defects of the present invention.
도 6은 본 발명의 제조예 1에 따른 결함을 포함하는 이황화몰리브덴의 리튬 폴리설파이드 흡착 효과 평가 결과를 나타내는 그래프이다.6 is a graph showing the evaluation result of the lithium polysulfide adsorption effect of molybdenum disulfide containing defects according to Preparation Example 1 of the present invention.
도 7은 본 발명의 실시예 1에 따른 분리막의 주사 전자 현미경(SEM) 이미지이다.7 is a scanning electron microscope (SEM) image of a separator according to Example 1 of the present invention.
도 8은 본 발명의 실험예 5에 따른 실시예 및 비교예의 전지의 수명 특성 평가 결과를 나타내는 그래프이다.8 is a graph showing evaluation results of lifespan characteristics of batteries of Examples and Comparative Examples according to Experimental Example 5 of the present invention.
이하, 본 발명을 더욱 상세히 설명한다.Hereinafter, the present invention will be described in more detail.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms or words used in the specification and claims should not be construed as being limited to their usual or dictionary meanings, and the inventor may appropriately define the concept of terms in order to describe his own invention in the best way. It should be interpreted as a meaning and concept consistent with the technical idea of the present invention based on the principle that there is.
본 발명에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 발명에서, ‘포함하다’ 또는 ‘가지다’등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terms used in the present invention are only used to describe specific embodiments, and are not intended to limit the present invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In the present invention, terms such as'include' or'have' are intended to designate the presence of features, numbers, steps, actions, components, parts, or a combination thereof described in the specification, but one or more other features It is to be understood that the presence or addition of elements or numbers, steps, actions, components, parts, or combinations thereof, does not preclude in advance.
본 발명에서 사용되고 있는 용어 “기공도(porosity)”는 어느 구조체에서 전체 부피에 대해 기공이 차지하는 부피의 비율을 의미하고, 그의 단위로서 %를 사용하며, 공극률, 다공도 등의 용어와 상호 교환하여 사용할 수 있다. 본 발명에 있어서, 상기 기공도의 측정은 특별히 한정되지 않으며, 예를 들어 BET(Brunauer-Emmett-Teller) 측정법 또는 수은 침투법 (Hg porosimeter)에 의해 크기(micro) 및 메조 세공 부피(meso pore volume)를 측정할 수 있다.The term “porosity” used in the present invention means the ratio of the volume occupied by pores to the total volume in a structure, and uses% as its unit, and can be used interchangeably with terms such as porosity and porosity. I can. In the present invention, the measurement of the porosity is not particularly limited, for example, the size (micro) and mesopore volume by a BET (Brunauer-Emmett-Teller) measurement method or a mercury permeation method (Hg porosimeter). ) Can be measured.
본 발명에서 사용되고 있는 용어 “폴리설파이드”는 “폴리설파이드 이온(Sx
2-, x = 8, 6, 4, 2))” 및 “리튬 폴리설파이드(Li2Sx 또는 LiSx
-, x = 8, 6, 4, 2)”를 모두 포함하는 개념이다.The term used in the present invention "polysulfide""The polysulfide ions (S x 2-, x = 8 , 6, 4, 2))" and "lithium polysulfide (Li 2 S x, or LiS x -, x = It is a concept that includes all of “8, 6, 4, 2)”.
리튬-황 전지는 여러 이차전지 중에서 높은 이론 방전용량 및 이론 에너지 밀도를 가지고, 양극 활물질로 사용되는 황은 매장량이 풍부하여 저가이고, 환경친화적이라는 이점으로 인해 차세대 이차전지로 각광받고 있다.Lithium-sulfur batteries have a high theoretical discharge capacity and theoretical energy density among various secondary batteries, and sulfur used as a positive electrode active material is in the spotlight as a next-generation secondary battery due to the advantage of being inexpensive and environmentally friendly due to its abundant reserves.
리튬-황 전지에서 양극 활물질로 사용되는 황은 환형의 S8에서 환원 반응에 의해 선형 구조의 리튬 폴리설파이드(lithium polysulfide, Li2Sx, x = 8, 6, 4, 2)로 변환되게 되며, 이러한 리튬 폴리설파이드가 완전히 환원되면 최종적으로 리튬 설파이드(lithium sulfide, Li2S)가 생성되게 된다. 이러한 황의 환원 반응의 중간 생성물인 리튬 폴리설파이드 중에서, 황의 산화수가 높은 리튬 폴리설파이드(Li2Sx, 보통 x > 4)는 극성이 강한 물질로 친수성 유기 용매를 포함하는 전해질에 쉽게 녹아 양극의 반응 영역 밖으로 용출되어 더 이상 전기화학 반응에 참여하지 못하게 되는 황의 손실이 발생한다.Sulfur, which is used as a positive electrode active material in a lithium-sulfur battery, is converted from cyclic S 8 to linear lithium polysulfide (Li 2 S x , x = 8, 6, 4, 2) by a reduction reaction, When the lithium polysulfide is completely reduced, lithium sulfide (Li 2 S) is finally produced. Among lithium polysulfide, which is an intermediate product of the sulfur reduction reaction, lithium polysulfide (Li 2 S x , usually x> 4) with a high oxidation number of sulfur is a material with strong polarity and is easily dissolved in an electrolyte containing a hydrophilic organic solvent to react with the anode. There is a loss of sulfur that elutes out of the domain and no longer participates in the electrochemical reaction.
이러한 황의 유출로 인해 전기화학 반응에 참여하는 황의 양이 급격히 줄어들어 리튬-황 전지는 전술한 장점에도 불구하고 실제 구동에 있어서는 이론 용량 및 에너지 밀도 전부를 구현하지 못한다. 이에 더해서, 음극으로 사용하는 리튬 금속과 리튬 폴리설파이드의 부반응으로 인해 일정 사이클 이후에는 초기 용량 및 사이클 특성의 저하가 가속화되는 문제가 있다.Due to the outflow of sulfur, the amount of sulfur participating in the electrochemical reaction is drastically reduced, and the lithium-sulfur battery does not realize all of the theoretical capacity and energy density in actual operation, despite the above-described advantages. In addition, there is a problem in that the deterioration of initial capacity and cycle characteristics is accelerated after a certain cycle due to a side reaction between lithium metal used as a negative electrode and lithium polysulfide.
이를 위해 종래 기술에서는 리튬 폴리설파이드의 용출을 억제할 수 있는 물질을 첨가제 또는 코팅층의 형태로 양극이나 분리막에 도입, 전해질의 조성 변경 또는 음극 표면에 보호층 또는 고체 전해질 계면(solid-electrolyte interphase; SEI)층 형성 등의 방법이 제안되었으나, 리튬 폴리설파이드의 용출 개선 효과가 미미하였을 뿐만 아니라 황의 로딩양에 제한이 있으며, 전지의 안정성에 심각한 문제를 야기하거나 공정 측면에서 비효율적이라는 단점이 있다.To this end, in the prior art, a material capable of suppressing the elution of lithium polysulfide is introduced into the anode or separator in the form of an additive or coating layer, the composition of the electrolyte is changed, or a protective layer or solid-electrolyte interphase (SEI) on the surface of the cathode is introduced. ) A method such as layer formation has been proposed, but the effect of improving the dissolution of lithium polysulfide is insignificant, there is a limitation in the loading amount of sulfur, and there is a disadvantage of causing a serious problem in the stability of the battery or inefficient in terms of the process.
이에 본 발명에서는 리튬 폴리설파이드의 용출을 억제하여 리튬 이차전지의 용량 및 수명 특성 개선 효과를 확보하기 위해 리튬 폴리설파이드를 흡착할 수 있는 결함(defect)을 포함하는 이황화몰리브덴(defect-rich MoS2)을 포함하는 코팅층을 구비한 리튬 이차전지용 분리막을 제공한다.Accordingly, in the present invention, molybdenum disulfide (defect-rich MoS 2 ) containing a defect capable of adsorbing lithium polysulfide in order to secure an effect of improving the capacity and life characteristics of a lithium secondary battery by suppressing the elution of lithium polysulfide. It provides a separator for a lithium secondary battery having a coating layer comprising a.
구체적으로, 본 발명에 따른 리튬 이차전지용 분리막은 다공성 기재; 및 상기 다공성 기재의 적어도 일면에 형성된 코팅층을 포함하되, 상기 코팅층은 결함을 포함하는 이황화몰리브덴(defect-rich MoS2)을 포함한다.Specifically, the separator for a lithium secondary battery according to the present invention includes a porous substrate; And a coating layer formed on at least one surface of the porous substrate, wherein the coating layer includes molybdenum disulfide (defect-rich MoS 2 ) containing defects.
본 발명의 리튬 이차전지용 분리막을 구성하는 다공성 기재는 음극과 양극을 서로 분리 또는 절연시키면서 상기 양극과 음극 사이에 리튬 이온의 수송을 가능하게 한다. 따라서, 본 발명의 분리막은 다공성이고 비전도성 또는 절연성 물질로 이루어질 수 있다. 또한, 상기 분리막은 필름과 같은 독립적인 부재일 수 있다.The porous substrate constituting the separator for a lithium secondary battery of the present invention enables transport of lithium ions between the positive electrode and the negative electrode while separating or insulating the negative electrode and the positive electrode from each other. Accordingly, the separator of the present invention is porous and may be made of a non-conductive or insulating material. In addition, the separator may be an independent member such as a film.
구체적으로, 상기 다공성 기재는 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 예를 들어, 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포 또는 폴리올레핀계 다공성 막을 사용할 수 있으나, 이에 한정되는 것은 아니다.Specifically, as the porous substrate, a porous polymer film may be used alone or by stacking them, and for example, a nonwoven fabric or a polyolefin-based porous film made of high melting point glass fibers, polyethylene terephthalate fibers, etc. may be used, but limited thereto. It does not become.
상기 다공성 기재의 재질로는 본 발명에서 특별히 한정하지 않고, 통상적으로 전기화학소자에 사용되는 다공성 기재라면 모두 사용이 가능하다. 예를 들어, 상기 다공성 기재는 폴리에틸렌(polyethylene), 폴리프로필렌(polypropylene) 등의 폴리올레핀(polyolefin), 폴리에틸렌테레프탈레이트(polyethyleneterephthalate), 폴리부틸렌테레프탈레이트(polybutyleneterephthalate) 등의 폴리에스테르(polyester), 폴리아미드(polyamide), 폴리아세탈(polyacetal), 폴리카보네이트(polycarbonate), 폴리이미드(polyimide), 폴리에테르에테르케톤(polyetheretherketone), 폴리에테르설폰(polyethersulfone), 폴리페닐렌옥사이드(polyphenyleneoxide), 폴리페닐렌설파이드(polyphenylenesulfide), 폴리에틸렌나프탈렌(polyethylenenaphthalate), 폴리테트라플루오로에틸렌(polytetrafluoroethylene), 폴리비닐리덴 플루오라이드(polyvinylidene fluoride), 폴리염화비닐(polyvinyl chloride), 폴리아크릴로니트릴(polyacrylonitrile), 셀룰로오스(cellulose), 나일론(nylon), 폴리파라페닐렌벤조비스옥사졸(poly(p-phenylene benzobisoxazole) 및 폴리아릴레이트(polyarylate)로 이루어진 군에서 선택된 1종 이상의 재질을 포함할 수 있다.The material of the porous substrate is not particularly limited in the present invention, and any porous substrate commonly used in an electrochemical device may be used. For example, the porous substrate is a polyester such as polyethylene, polyolefin such as polypropylene, polyethylene terephthalate, polybutyleneterephthalate, and polyamide. (polyamide), polyacetal, polycarbonate, polyimide, polyetheretherketone, polyethersulfone, polyphenyleneoxide, polyphenylene sulfide polyphenylenesulfide), polyethylenenaphthalate, polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl chloride, polyacrylonitrile, cellulose, nylon (nylon), polyparaphenylene benzobisoxazole (poly(p-phenylene benzobisoxazole)) and polyarylate (polyarylate) may include at least one material selected from the group consisting of.
상기 다공성 기재의 두께는 특별히 제한되지 않으나, 1 내지 100 ㎛, 바람직하게는 5 내지 50 ㎛일 수 있다. 상기 다공성 기재의 두께 범위가 전술한 범위로 한정되는 것은 아니지만, 두께가 전술한 하한보다 지나치게 얇을 경우에는 기계적 물성이 저하되어 전지 사용 중 분리막이 쉽게 손상될 수 있다.The thickness of the porous substrate is not particularly limited, but may be 1 to 100 μm, preferably 5 to 50 μm. Although the thickness range of the porous substrate is not limited to the above-described range, when the thickness is too thin than the above-described lower limit, mechanical properties are deteriorated and the separator may be easily damaged during battery use.
상기 다공성 기재에 존재하는 기공의 평균 직경 및 기공도 역시 특별히 제한되지 않으나 각각 0.001 내지 50 ㎛ 및 10 내지 95 %일 수 있다.The average diameter and pores of the pores present in the porous substrate are also not particularly limited, but may be 0.001 to 50 μm and 10 to 95%, respectively.
본 발명에 있어서, 상기 코팅층은 전술한 다공성 기재의 적어도 일면에 형성되고, 결함을 포함하는 이황화몰리브덴(defect-rich MoS2)을 포함한다.In the present invention, the coating layer is formed on at least one surface of the aforementioned porous substrate, and includes molybdenum disulfide (defect-rich MoS 2 ) containing defects.
상기 결함을 포함하는 이황화몰리브덴(defect-rich MoS2)은 리튬 폴리설파이드를 흡착함으로써 종래 리튬-황 전지에서 리튬 폴리설파이드의 용출로 인해 발생하는 황의 유실 및 이로 인한 용량 감소(capacity loss) 문제를 해결하여 리튬 이차전지, 구체적으로 리튬-황 전지의 용량 및 수명을 향상시킬 수 있고, 황의 고로딩시에도 안정적으로 구동이 가능하다.Molybdenum disulfide (defect-rich MoS 2 ) containing the defect solves the problem of loss of sulfur and capacity loss caused by elution of lithium polysulfide in conventional lithium-sulfur batteries by adsorbing lithium polysulfide Thus, it is possible to improve the capacity and life of a lithium secondary battery, specifically a lithium-sulfur battery, and it is possible to stably drive even when high-loading of sulfur.
또한, 상기 결함을 포함하는 이황화몰리브덴(defect-rich MoS2)는 리튬 폴리설파이드를 분리막의 코팅층에 구속하여 리튬 폴리설파이드의 셔틀 효과(shuttle effect)에 의해 발생하는 음극 표면에서의 부반응, 일례로 음극으로 사용되는 리튬 금속과 반응하여 계면에 Li2S의 고저항층을 형성하거나 음극 계면에 리튬이 석출되는 리튬 덴드라이트 성장 문제를 해소하여 전지의 쿨롱 효율(coulomb efficiency)과 수명을 개선시킬 수 있다. In addition, molybdenum disulfide (defect-rich MoS 2 ) containing the defect is a side reaction on the negative electrode surface caused by the shuttle effect of lithium polysulfide by constraining lithium polysulfide to the coating layer of the separator, for example, the negative electrode It is possible to improve the coulomb efficiency and lifespan of the battery by reacting with the lithium metal used as a lithium metal to form a high resistance layer of Li 2 S at the interface or by solving the problem of lithium dendrite growth in which lithium is deposited at the negative electrode interface. .
전술한 리튬 덴드라이트의 성장 문제와 관련하여 상기 결함을 포함하는 이황화몰리브덴(defect-rich MoS2)는 층상 구조를 가지고, 200 내지 500 ㎠/Vs의 면 내 전자 이동도(in-plane carrier mobility)를 나타내기 때문에 리튬 이온의 삽입(intercalation)/탈삽입(deintercalation)이 용이할 뿐만 아니라 이온의 이동이 수월하다. 이는 리튬 금속의 계면 저항을 감소시키고 리튬 금속의 표면에 일정한 리튬 흐름을 촉진함으로써 리튬 금속 표면에서의 전자의 이동 속도를 제어하고 리튬 이온의 균일한 분포를 도모하여 리튬 덴드라이트의 성장을 효과적으로 억제할 수 있다.In relation to the aforementioned growth problem of lithium dendrites, molybdenum disulfide (defect-rich MoS 2 ) containing the defect has a layered structure, and in-plane carrier mobility of 200 to 500 cm 2 /Vs Because it represents the lithium ion insertion (intercalation) / deintercalation (deintercalation) is easy as well as the movement of ions is easy. This reduces the interfacial resistance of the lithium metal and promotes a constant flow of lithium on the surface of the lithium metal, thereby controlling the speed of movement of electrons on the surface of the lithium metal and promoting a uniform distribution of lithium ions, effectively inhibiting the growth of lithium dendrites. I can.
종래 기술에서도 이황화몰리브덴은 리튬 폴리설파이드에 대한 흡착 능력을 가지는 물질로 리튬-황 전지에 사용되었으나, 이때 사용되는 이황화몰리브덴은 결정구조에 결함이 없는 이황화몰리브덴(defect-free MoS2)이다. 이와 비교하여 본 발명의 코팅층에 포함되는 이황화몰리브덴은 인위적으로 형성된 결함을 포함하는 것으로, 상기 결함은 이황화몰리브덴에 '반응 경계 장소(active edge site)’를 추가적으로 제공하여 전술한 바의 리튬 폴리설파이드의 용출 및 리튬 덴드라이트 성장 억제 효과를 촉진시킬 수 있는 전기화학적 촉매활성을 부여함으로써 종래 사용되는 결함이 없는 이황화몰리브덴(defect-free MoS2)보다 향상된 리튬 폴리설파이드의 흡착 및 리튬 덴드라이트 생성 방지 효과가 나타나므로 이를 포함하는 리튬 이차전지의 용량 및 수명 특성을 현저히 향상시킬 수 있다.In the prior art, molybdenum disulfide is a material having adsorption capacity for lithium polysulfide, and has been used in lithium-sulfur batteries, but molybdenum disulfide used at this time is molybdenum disulfide (defect-free MoS 2 ) without defects in its crystal structure. In comparison, the molybdenum disulfide included in the coating layer of the present invention includes an artificially formed defect, and the defect additionally provides an'active edge site' to the molybdenum disulfide, so that the lithium polysulfide of the above-described By imparting electrochemical catalytic activity that can promote the elution and lithium dendrite growth inhibition effect, it has improved adsorption of lithium polysulfide and prevention of lithium dendrite formation than that of conventionally used defect-free molybdenum disulfide (defect-free MoS 2 ). Therefore, the capacity and life characteristics of a lithium secondary battery including the same can be remarkably improved.
구체적으로, 상기 결함을 포함하는 이황화몰리브덴 표면에 무질서한(disordered) 원자 배열을 결함(defect)으로 포함하는 것으로, 화학식으로는 MoS2-x(0 < x < 0.5)로 표시될 수 있다. 본 발명의 결함을 포함하는 이황화몰리브덴에서 상기 결함은 이황화몰리브덴의 화학 구조 상 추가적인 열린 공간(open space)를 확보할 수 있도록 하고, 이러한 열린 공간은 이온의 이동을 보다 용이하게 함으로써 상기 결함을 포함하는 이황화몰리브덴은 결함이 없는 이황화몰리브덴에 비해 개선된 전기화학적 반응성을 나타낼 수 있는 것이다.Specifically, a disordered atomic arrangement on the surface of molybdenum disulfide including the defect is included as a defect, and may be expressed as MoS 2-x (0 <x <0.5) in the chemical formula. In the molybdenum disulfide containing the defect of the present invention, the defect can secure an additional open space due to the chemical structure of molybdenum disulfide, and this open space facilitates the movement of ions, thereby including the defect. Molybdenum disulfide can exhibit improved electrochemical reactivity compared to molybdenum disulfide without defects.
상기 결함을 포함하는 이황화몰리브덴은 본 발명에서 제시하는 제조방법에 의해 제조된 것으로 후술하여 설명하기로 한다. 본 발명의 제조방법에 따라 제조된 결함을 포함하는 이황화몰리브덴은 1 내지 20 ㎚, 바람직하게는 1 내지 10 ㎚ 두께의 나노시트 형상이며, 상기 나노시트 형상의 이황화몰리브덴에 다양한 크기의 규칙 또는 불규칙적으로 형성된 결함(defect)을 포함하는 것이다.Molybdenum disulfide containing the above defects will be described later as being manufactured by the manufacturing method presented in the present invention. Molybdenum disulfide containing defects prepared according to the manufacturing method of the present invention is in the shape of a nanosheet having a thickness of 1 to 20 nm, preferably 1 to 10 nm, and the molybdenum disulfide of the nanosheet shape is regularly or irregularly in various sizes. It includes defects formed.
상기 결함은 이황화몰리브덴의 제조시 형성된 자체적 결함(inherent defect)으로 구조적 결함(structural defect)일 수 있으며, 예를 들어, 점결함, 선결함 및 면결함으로 이루어진 군에서 선택되는 1종 이상일 수 있다. 구체적으로, 상기 결함은 공공(vacancy), 침입형 원자 등과 같은 점결함, 전위(dislocaiton)와 같은 선결함 및 결정입계(grain boundary)와 같은 면결함으로 이루어진 군에서 선택되는 1종 이상일 수 있다.The defect may be a structural defect as an inherent defect formed during the production of molybdenum disulfide, and may be, for example, at least one selected from the group consisting of point defects, line defects, and surface defects. Specifically, the defect may be at least one selected from the group consisting of point defects such as vacancy and interstitial atoms, line defects such as dislocaiton, and surface defects such as grain boundaries.
상기 결함을 포함하는 이황화몰리브덴은 복수 개의 결함을 포함할 수 있다. 상기 복수 개의 결함들 사이의 이격 거리는 서로 대응되거나 서로 다를 수 있다. 상기 복수 개의 결함들은 서로 대응되거나 서로 다른 크기를 가질 수 있다.Molybdenum disulfide including the defect may include a plurality of defects. Separation distances between the plurality of defects may correspond to each other or may be different from each other. The plurality of defects may correspond to each other or may have different sizes.
본 발명의 결함을 포함하는 이황화몰리브덴은 결정성일 수 있다. 이는 X선 회절(X-ray diffraction, XRD) 측정을 통해 확인할 수 있다. X-선 회절(XRD) 분석에서 유효(significant or effective) 피크란 XRD 데이터에서 분석 조건이나 분석 수행자에 크게 영향을 받지 않고 실질적으로 동일한 패턴으로 반복 검출되는 피크를 의미하고, 이를 달리 표현하면 백그라운드 수준(backgound level) 대비 1.5배 이상일 수 있고, 바람직하게는 2배 이상, 더욱 바람직하게는 2.5배 이상의 높이, 세기, 강도 등을 갖는 피크를 의미한다.Molybdenum disulfide containing the defects of the present invention may be crystalline. This can be confirmed through X-ray diffraction (XRD) measurement. In X-ray diffraction (XRD) analysis, a significant or effective peak means a peak that is detected repeatedly in a substantially the same pattern in XRD data without being significantly affected by the analysis conditions or the person performing the analysis. It may be 1.5 times or more compared to the (backgound level), and preferably refers to a peak having a height, intensity, intensity, etc. of 2 times or more, more preferably 2.5 times or more.
상기 결함을 포함하는 이황화몰리브덴은 Cu-Kα X-선 파장을 이용한 X-선 회절(XRD) 분석 결과, 회절 각도(2θ) 14.0±0.2°, 33.1±0.2°, 39.4±0.2° 및 58.7±0.2°인 범위에서 각각 나타나는 유효 피크가 포함하는데 이는 각각 (002), (100, 101), (103) 및 (110) 결정면에 대응되는 회절 피크를 의미하며, 이로부터 본 발명의 결함을 포함하는 이황화몰리브덴이 결정성임을 확인할 수 있다.Molybdenum disulfide containing the defect was obtained by X-ray diffraction (XRD) analysis using a Cu-Kα X-ray wavelength, diffraction angles (2θ) of 14.0±0.2°, 33.1±0.2°, 39.4±0.2°, and 58.7±0.2°. Effective peaks each appearing in the range of ° are included, which mean diffraction peaks corresponding to (002), (100, 101), (103) and (110) crystal planes, respectively, from which disulfide including defects of the present invention It can be seen that molybdenum is crystalline.
상기 결함을 포함하는 이황화몰리브덴은 에너지 분산형 X-선 분광(Energy Dispersive X-ray Spectrometer, EDS) 분석 결과, Mo:S 원자 비율이 1:1.7로 형성됨을 확인할 수 있으며, 이를 통해 본 발명의 결함을 포함하는 이황화몰리브덴의 경우 MoS2-x(0 < x < 0.5)으로 표시되는 화합물인 것을 알 수 있다.Molybdenum disulfide containing the defect can be confirmed that the Mo:S atomic ratio is 1:1.7 as a result of Energy Dispersive X-ray Spectrometer (EDS) analysis, through which the defect of the present invention In the case of molybdenum disulfide containing, it can be seen that it is a compound represented by MoS 2-x (0 <x <0.5).
상기 결함을 포함하는 이황화몰리브덴을 포함하는 코팅층을 상기 다공성 기재의 일면에 형성할 경우 상기 코팅층은 음극 또는 양극에 대면하여 배치될 수 있으며, 본 발명에서 특별히 한정하지는 않는다. 다만, 본 발명의 리튬 이차전지가 음극 활물질로 리튬 금속을 포함하는 경우 상기 코팅층은 음극에 대면하여 배치되는 것이 바람직하다. 이때 상기 코팅층은 음극과 대면하여 형성됨으로써 황을 포함하는 양극으로부터 확산된 리튬 폴리설파이드과 리튬 금속 간의 부반응을 억제할 뿐만 아니라 리튬 덴드라이트가 성장하는 것을 방지하여 전지의 수명 및 안정성을 높일 수 있다.When a coating layer containing molybdenum disulfide containing the defects is formed on one surface of the porous substrate, the coating layer may be disposed facing the negative electrode or the positive electrode, and is not particularly limited in the present invention. However, when the lithium secondary battery of the present invention contains lithium metal as a negative electrode active material, the coating layer is preferably disposed facing the negative electrode. At this time, the coating layer is formed facing the negative electrode, thereby suppressing side reactions between lithium polysulfide and lithium metal diffused from the positive electrode containing sulfur, as well as preventing the growth of lithium dendrites, thereby increasing the life and stability of the battery.
본 발명에 따른 리튬 이차전지용 분리막에서 상기 코팅층의 두께는 특별히 한정하지 않으며, 전술한 바의 효과를 확보하면서도 전지의 내부 저항을 높이지 않는 범위를 가진다. 일례로, 상기 코팅층의 두께는 0.1 내지 10 ㎛, 바람직하기로 0.1 내지 5 ㎛, 보다 바람직하기로 0.1 내지 1 ㎛일 수 있다. 상기 코팅층의 두께가 상기 범위 미만인 경우 코팅층으로서의 기능을 수행할 수 없고, 이와 반대로 상기 범위를 초과하면 계면 저항이 높아져 전지 구동시 내부 저항의 증가를 초래할 수 있다.In the separator for a lithium secondary battery according to the present invention, the thickness of the coating layer is not particularly limited, and has a range that does not increase the internal resistance of the battery while securing the above-described effects. As an example, the thickness of the coating layer may be 0.1 to 10 ㎛, preferably 0.1 to 5 ㎛, more preferably 0.1 to 1 ㎛. When the thickness of the coating layer is less than the above range, the function as a coating layer cannot be performed. Conversely, when the thickness of the coating layer exceeds the above range, interfacial resistance may increase, resulting in an increase in internal resistance during battery operation.
본 발명에서 제시하는 리튬 이차전지용 분리막의 제조방법은 특별히 한정하지 않으며, 통상의 기술자에 의해 공지의 방법 또는 이를 변형하는 다양한 방법이 사용 가능하다.The manufacturing method of the separator for a lithium secondary battery presented in the present invention is not particularly limited, and a known method or various methods of modifying it may be used by a person skilled in the art.
일례로, 상기 리튬 이차전지용 분리막의 제조방법은,As an example, the method of manufacturing a separator for a lithium secondary battery,
(a) 결함을 포함하는 이황화몰리브덴을 제조하는 단계 (a) preparing molybdenum disulfide containing defects
(b) 상기 결함을 포함하는 이황화몰리브덴을 포함하는 코팅용 조성물을 제조하는 단계 및(b) preparing a coating composition comprising molybdenum disulfide containing the defect, and
(c) 상기 코팅용 조성물을 다공성 기재의 적어도 일면에 도포하는 단계를 포함한다.(c) applying the coating composition to at least one surface of the porous substrate.
먼저, 상기 단계 (a)의 결함을 포함하는 이황화몰리브덴의 제조는 몰리브덴 전구체와 황 전구체의 반응에 의해 진행될 수 있다. First, the preparation of molybdenum disulfide including the defect in step (a) may be performed by reaction of a molybdenum precursor and a sulfur precursor.
구체적으로, 상기 단계 (a)의 결함을 포함하는 이황화몰리브덴을 제조하는 단계는Specifically, the step of preparing molybdenum disulfide including the defect of step (a)
(a-1) 몰리브덴 전구체 및 황 전구체를 수계 용매에 용해하여 혼합 용액을 제조하는 단계;(a-1) preparing a mixed solution by dissolving a molybdenum precursor and a sulfur precursor in an aqueous solvent;
(a-2) 상기 혼합 용액을 수열합성하여 이황화몰리브덴을 형성하는 단계 및(a-2) hydrothermal synthesis of the mixed solution to form molybdenum disulfide, and
(a-3) 상기 단계 (a-2)에서 형성된 이황화몰리브덴을 건조하는 단계를 포함할 수 있다.(a-3) It may include drying the molybdenum disulfide formed in the step (a-2).
상기 단계 (a-1)의 몰리브덴 전구체는 황 전구체과 반응하여 이황화몰리브덴(MoS2)을 형성할 수 있는 물질을 의미한다. 상기 몰리브덴 전구체는 소디움 몰리브데이트(Na2MoO4), 암모늄 테트라티오몰리브데이트((NH4)2MoS4), 암모늄 헵타몰리브데이트 테트라하이드레이트((NH4)6Mo7O24·4H2O), 몰리브데늄 트리옥사이드(MoO3) 및 몰리브데늄 클로라이드 (MoCl5) 등 그 종류가 다양하나, 반응 조건 등을 고려할 때 바람직하게는 암모늄 헵타몰리브데이트 테트라하이드레이트을 사용할 수 있다.The molybdenum precursor of step (a-1) refers to a material capable of forming molybdenum disulfide (MoS 2 ) by reacting with a sulfur precursor. The molybdenum precursor is sodium molybdate (Na 2 MoO 4 ), ammonium tetrathiomolybdate ((NH 4 ) 2 MoS 4 ), ammonium heptamolybdate tetrahydrate ((NH 4 ) 6 Mo 7 O 24 · 4H 2 O), molybdenum trioxide (MoO 3 ) and molybdenum chloride (MoCl 5 ) There are various types, but in consideration of reaction conditions, ammonium heptamolybdate tetrahydrate may be preferably used.
상기 황 전구체의 종류로는 티오우레아(CH4N2S), 티오황산나트륨(Na2S2O3), 황화나트륨(Na2S) 및 황화수소(H2S) 등이 있으나, 수계 용매와의 반응성, 수열 합성 온도 등을 고려할 때 바람직하게는 티오우레아를 사용할 수 있다.Types of the sulfur precursor include thiourea (CH 4 N 2 S), sodium thiosulfate (Na 2 S 2 O 3 ), sodium sulfide (Na 2 S), and hydrogen sulfide (H 2 S). In consideration of reactivity, hydrothermal synthesis temperature, and the like, thiourea may be preferably used.
상기 몰리브덴 전구체 및 황 전구체를 탈이온수(deionized water) 등의 수계 용매에 투입하고, 10분 내지 1시간 동안 격렬하게 교반하여 혼합 용액을 제조한다.The molybdenum precursor and the sulfur precursor are added to an aqueous solvent such as deionized water, and vigorously stirred for 10 minutes to 1 hour to prepare a mixed solution.
이때, 혼합 용액을 기준으로 몰리브덴 및 황은 몰비율이 1:2 이상, 바람직하게는 1:3 내지 1:5일 수 있다. 만일 황의 비율이 상기 범위 미만인 경우, 투입한 반응물을 기준으로 충분한 양의 이황화몰리브덴이 제조되지 않을 수 있다. 상기 몰리브덴과 황의 몰비율이 전술한 범위에 해당하는 경우, 충분한 양의 황이 Mo(VI)을 Mo(IV)으로 환원시킬 뿐만 아니라, 후술할 나노시트 형상의 이황화몰리브덴의 모폴로지(morphology)를 안정화시키는 기능을 하게 된다. 따라서 과량의 황 전구체는 이황화몰리브덴 1차 나노 결정의 표면에 흡착되어 방향 결정 성장을 부분적으로 방해하며, 준주기적(quasiperiodic) 구성을 갖는 결함이 많은 구조의 이황화몰리브덴을 형성할 수 있도록 한다.In this case, the molar ratio of molybdenum and sulfur based on the mixed solution may be 1:2 or higher, preferably 1:3 to 1:5. If the proportion of sulfur is less than the above range, a sufficient amount of molybdenum disulfide may not be prepared based on the reactant added. When the molar ratio of molybdenum and sulfur falls within the above-described range, a sufficient amount of sulfur not only reduces Mo(VI) to Mo(IV), but also stabilizes the morphology of molybdenum disulfide in a nanosheet shape to be described later. Will function. Therefore, an excess of sulfur precursor is adsorbed on the surface of the molybdenum disulfide primary nanocrystals, partially hindering the growth of directional crystals, and makes it possible to form molybdenum disulfide having a defect-rich structure having a quasi-periodic configuration.
다음으로, 상기 제조된 혼합 용액을 오토클레이브(Autoclave) 등의 수열합성 반응기에 투입하여 이황화몰리브덴을 형성하는 단계를 거친다.Next, the prepared mixed solution is introduced into a hydrothermal synthesis reactor such as an autoclave to form molybdenum disulfide.
상기 수열합성 반응은 180 내지 240 ℃ 온도에서, 10 내지 24 시간 동안 진행될 수 있으며, 바람직하게는 200 내지 220 ℃ 온도에서, 16 내지 20 시간 동안 합성 반응을 진행할 수 있다.The hydrothermal synthesis reaction may be performed at a temperature of 180 to 240° C. for 10 to 24 hours, and preferably at a temperature of 200 to 220° C., and a synthesis reaction may be performed for 16 to 20 hours.
상기 수열합성반응 후, 반응 생성물을 실온으로 서냉하고 최종 생성물을 물과 에탄올을 이용하여 수차례 세척하는 과정을 거칠 수 있다. 이 과정을 통하여 최종 생성물 내에 남아있는 잔여 이온 성분 또는 불순물을 제거할 수 있다.After the hydrothermal synthesis reaction, the reaction product may be slowly cooled to room temperature, and the final product may be washed several times using water and ethanol. Through this process, residual ionic components or impurities remaining in the final product can be removed.
다음으로 상기 수열합성의 최종 생성물을 60 내지 80 ℃에서 건조하여 이황화몰리브덴을 수득한다. 상기 건조는 6 내지 12 시간 동안 진공 조건에서 진행하는 것이 바람직하다.Next, the final product of the hydrothermal synthesis is dried at 60 to 80°C to obtain molybdenum disulfide. The drying is preferably performed under vacuum conditions for 6 to 12 hours.
상기 단계 (a-1) 내지 (a-3)를 포함하는 제조방법에 따라 제조된 이황화몰리브덴은 전술한 바와 같이 일정 몰비율 이상의 황 전구체를 투입하여 제조함으로써 결함을 포함하는 이황화몰리브덴이다.Molybdenum disulfide prepared according to the manufacturing method including steps (a-1) to (a-3) is molybdenum disulfide containing defects by adding a sulfur precursor having a predetermined molar ratio or more as described above.
이어서, 전술한 바의 제조방법에 의해 제조된 결함을 포함하는 이황화몰리브덴을 포함하는 코팅용 조성물을 제조하는 단계 (b)를 수행한다.Subsequently, step (b) of preparing a coating composition containing molybdenum disulfide containing defects manufactured by the above-described manufacturing method is performed.
상기 코팅용 조성물은 전술한 바의 결함을 포함하는 이황화몰리브덴 이외에 용매를 더 포함할 수 있으며, 상기 용매는 상기 결함을 포함하는 이황화몰리브을 용해시킬 수 있는 것이라면 특별히 한정하지 않는다. 일례로, 상기 용매는 물과 알코올의 혼합 용매, 또는 하나 혹은 그 이상의 유기용매 혼합물일 수 있으며, 이 경우 상기 알코올은 탄소수 1 내지 6의 저급 알코올, 바람직하게는 메탄올, 에탄올, 프로판올, 이소프로판올 등일 수 있다. 유기 용매로는 아세트산, 디메틸포름아미드(dimethyl formamide; DMF), N-메틸-2-피롤리돈(N-methyl-2-pyrrolidone; NMP) 디메틸술폭시드(dimethyl sulfoxide; DMSO) 등의 극성 용매, 아세토니트릴, 에틸 아세테이트, 메틸 아세테이트, 플루오로알칸, 펜탄, 2,2,4-트리메틸펜탄, 데칸, 사이클로헥산, 사이클로펜탄, 디이소부틸렌, 1-펜텐, 1-클로로부탄, 1-클로로펜탄, o-자일렌, 디이소프로필 에테르, 2-클로로프로판, 톨루엔, 1-클로로프로판, 클로로벤젠, 벤젠, 디에틸 에테르, 디에틸 설파이드, 클로로포름, 디클로로메탄, 1,2-디클로로에탄, 아닐린, 디에틸아민, 에테르, 사염화탄소, 메틸렌 클로라이드(methylene chloride) 및 테트라하이드로퓨란(tetrahydrofuran; THF) 등의 비극성 용매를 사용할 수도 있다. 바람직하기로는 디메틸포름아미드, 메틸렌 클로라이드 및 N-메틸-2-피롤리돈으로 이루어진 군에서 선택되는 1종 이상일 수 있다.The coating composition may further include a solvent other than molybdenum disulfide including the defects described above, and the solvent is not particularly limited as long as it is capable of dissolving molybdenum disulfide including the defect. As an example, the solvent may be a mixed solvent of water and alcohol, or a mixture of one or more organic solvents, and in this case, the alcohol may be a lower alcohol having 1 to 6 carbon atoms, preferably methanol, ethanol, propanol, isopropanol, etc. have. As an organic solvent, polar solvents such as acetic acid, dimethyl formamide (DMF), N-methyl-2-pyrrolidone (NMP) dimethyl sulfoxide (DMSO), etc., Acetonitrile, ethyl acetate, methyl acetate, fluoroalkane, pentane, 2,2,4-trimethylpentane, decane, cyclohexane, cyclopentane, diisobutylene, 1-pentene, 1-chlorobutane, 1-chloropentane , o-xylene, diisopropyl ether, 2-chloropropane, toluene, 1-chloropropane, chlorobenzene, benzene, diethyl ether, diethyl sulfide, chloroform, dichloromethane, 1,2-dichloroethane, aniline, Non-polar solvents such as diethylamine, ether, carbon tetrachloride, methylene chloride, and tetrahydrofuran (THF) may also be used. Preferably, it may be one or more selected from the group consisting of dimethylformamide, methylene chloride, and N-methyl-2-pyrrolidone.
상기 용매의 함량은 코팅을 용이하게 할 수 있는 정도의 농도를 갖는 수준으로 함유될 수 있으며, 구체적인 함량은 코팅 방법 및 장치에 따라 달라진다. 일례로, 상기 결함을 포함하는 이황화몰리브덴을 용매에 분산시킨 후 이를 혼합하여 코팅용 조성물을 제조할 수 있으며, 이때 최종 코팅용 조성물의 농도가 0.1 내지 10 중량% (고형분 함량)의 범위가 되도록 조절한 다음 코팅을 수행한다.The content of the solvent may be contained at a level having a concentration that can facilitate coating, and the specific content varies depending on the coating method and apparatus. For example, molybdenum disulfide containing the defects may be dispersed in a solvent and then mixed to prepare a coating composition, at which time the concentration of the final coating composition is adjusted to be in the range of 0.1 to 10% by weight (solid content). Then carry out the coating.
이어서, 전술한 바의 코팅용 조성물을 다공성 기재의 적어도 일면에 도포하는 단계 (c)를 수행한다.Subsequently, step (c) of applying the above-described coating composition to at least one surface of the porous substrate is performed.
상기 단계 (c)에서의 도포는 본 발명에서 특별히 한정하지 않으며, 공지의 습식 코팅 방식이면 어느 것이든 가능하다. 일례로, 닥터 블레이드(Doctor blade) 등을 사용하여 균일하게 분산시키는 방법, 다이 캐스팅(Die casting), 콤마 코팅(Comma coating), 스크린 프린팅(Screen printing), 감압 여과 코팅(vacuum filtration coating) 등의 방법 등을 들 수 있다.The application in step (c) is not particularly limited in the present invention, and any known wet coating method may be used. For example, a method of uniformly dispersing using a doctor blade, etc., die casting, comma coating, screen printing, vacuum filtration coating, etc. Method, etc. are mentioned.
추가적으로, 상기 단계 (c) 이후 용매 제거를 위한 건조 공정을 더 수행할 수 있다. 상기 건조 공정은 용매를 충분히 제거할 수 있는 수준의 온도 및 시간에서 수행하며, 그 조건은 용매의 종류에 따라 달라질 수 있으므로 본 발명에서 특별히 언급하지는 않는다. 일례로, 건조는 30 내지 200 ℃의 진공 오븐에서 수행할 수 있고, 건조 방법으로는 온풍, 열풍, 저습풍에 의한 건조, 진공 건조 등의 건조법을 사용할 수 있다. 건조 시간에 대해서는 특별히 한정되지 않지만, 통상적으로 30초 내지 24시간의 범위에서 행해진다.Additionally, after step (c), a drying process for removing the solvent may be further performed. The drying process is performed at a temperature and time at a level that can sufficiently remove the solvent, and the conditions may vary depending on the type of solvent, and thus are not specifically mentioned in the present invention. As an example, drying may be performed in a vacuum oven at 30 to 200° C., and drying methods such as hot air, hot air, drying by low humid air, and vacuum drying may be used. Although it does not specifically limit about the drying time, it is normally performed in the range of 30 seconds-24 hours.
본 발명에 따른 코팅용 조성물의 농도 또는 코팅 횟수 등을 조절하여 최종적으로 형성되는 코팅층의 두께를 조절할 수 있다.By adjusting the concentration or the number of coatings of the coating composition according to the present invention, the thickness of the finally formed coating layer can be adjusted.
또한, 본 발명은 상기 분리막을 포함하는 리튬 이차전지를 제공한다.In addition, the present invention provides a lithium secondary battery including the separator.
상기 리튬 이차전지는 양극; 음극; 이들 사이에 개재되는 분리막 및 전해질을 포함하며, 상기 분리막으로서 본 발명에 따른 분리막을 포함한다.The lithium secondary battery includes a positive electrode; cathode; It includes a separator and an electrolyte interposed therebetween, and includes the separator according to the present invention as the separator.
바람직하기로, 상기 리튬 이차전지는 양극 활물질로 황을 포함하는 리튬-황 전지일 수 있다.Preferably, the lithium secondary battery may be a lithium-sulfur battery containing sulfur as a positive electrode active material.
상기 양극은 양극 집전체와 상기 양극 집전체의 일면 또는 양면에 도포된 양극 활물질을 포함할 수 있다.The positive electrode may include a positive electrode current collector and a positive electrode active material applied to one or both surfaces of the positive electrode current collector.
상기 양극 집전체는 양극 활물질을 지지하며, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니다. 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티타늄, 팔라듐, 소성 탄소, 구리나 스테인리스 스틸 표면에 카본, 니켈, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다.The positive electrode current collector supports a positive electrode active material and is not particularly limited as long as it has high conductivity without causing chemical changes in the battery. For example, copper, stainless steel, aluminum, nickel, titanium, palladium, calcined carbon, copper or stainless steel surface treated with carbon, nickel, silver, etc., aluminum-cadmium alloy, and the like may be used.
상기 양극 집전체는 그것의 표면에 미세한 요철을 형성하여 양극 활물질과의 결합력을 강화시킬 수 있으며, 필름, 시트, 호일, 메쉬, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태를 사용할 수 있다.The positive electrode current collector may form fine irregularities on its surface to enhance the bonding strength with the positive electrode active material, and various forms such as films, sheets, foils, meshes, nets, porous bodies, foams, and nonwoven fabrics may be used.
상기 양극 활물질은 양극 활물질과 선택적으로 도전재 및 바인더를 포함할 수 있다.The positive electrode active material may include a positive electrode active material and optionally a conductive material and a binder.
상기 양극 활물질로 황 계열 화합물, 구체적으로, 황 원소 또는 황계 화합물을 포함한다. 상기 황 원소는 무기 황(S8)을 포함할 수 있다. 또한, 상기 황계 화합물은 Li2Sn(n≥1), 디설파이드 화합물, 유기황 화합물 및 탄소-황 폴리머((C2Sx)n, x=2.5 내지 50, n≥2)로 이루어진 군으로부터 선택되는 1종 이상일 수 있다. 바람직하게는 무기 황(S8)을 사용할 수 있다.A sulfur-based compound, specifically, elemental sulfur or a sulfur-based compound is included as the positive electrode active material. The sulfur element may include inorganic sulfur (S 8 ). In addition, the sulfur-based compound is from the group consisting of Li 2 S n (n≥1), a disulfide compound, an organosulfur compound and a carbon-sulfur polymer ((C 2 S x ) n , x=2.5 to 50, n≥2) It may be one or more selected. Preferably, inorganic sulfur (S 8 ) may be used.
상기 황 계열 화합물은 단독으로는 전기 전도성이 없기 때문에 도전재와 복합화하여 사용된다. 바람직하기로, 상기 양극 활물질은 황-탄소 복합체일 수 있다.Since the sulfur-based compound alone has no electrical conductivity, it is used in combination with a conductive material. Preferably, the positive electrode active material may be a sulfur-carbon composite.
상기 황-탄소 복합체에서 탄소는 다공성 탄소재로 양극 활물질인 황이 균일하고 안정적으로 고정될 수 있는 골격을 제공하며, 황의 전기 전도도를 보완하여 전기화학 반응이 원활하게 진행될 수 있도록 한다.In the sulfur-carbon composite, carbon is a porous carbon material, providing a skeleton through which sulfur, which is a positive electrode active material, can be uniformly and stably fixed, and complements the electrical conductivity of sulfur so that an electrochemical reaction can proceed smoothly.
상기 다공성 탄소재는 일반적으로 다양한 탄소 재질의 전구체를 탄화시킴으로써 제조될 수 있다. 상기 다공성 탄소재는 내부에 일정하지 않은 기공을 포함하며, 상기 기공의 평균 직경은 1 내지 200 ㎚ 범위이며, 기공도 또는 공극률은 다공성 전체 체적의 10 내지 90 % 범위일 수 있다. 만일 상기 기공의 평균 직경이 상기 범위 미만인 경우 기공 크기가 분자 수준에 불과하여 황의 함침이 불가능하며, 이와 반대로 상기 범위를 초과하는 경우 다공성 탄소의 기계적 강도가 약화되어 전극의 제조공정에 적용하기에 바람직하지 않다.The porous carbon material may generally be prepared by carbonizing precursors of various carbon materials. The porous carbon material includes irregular pores therein, the average diameter of the pores is in the range of 1 to 200 nm, and the porosity or porosity may be in the range of 10 to 90% of the total volume of the porosity. If the average diameter of the pores is less than the above range, the pore size is only at the molecular level and impregnation of sulfur is impossible. Conversely, if the pore size exceeds the above range, the mechanical strength of the porous carbon is weakened, which is preferable to be applied to the manufacturing process of the electrode. Not.
상기 다공성 탄소재의 형태는 구형, 봉형, 침상형, 판상형, 튜브형 또는 벌크형으로 리튬-황 전지에 통상적으로 사용되는 것이라면 제한없이 사용될 수 있다.The porous carbon material may be spherical, rod-shaped, needle-shaped, plate-shaped, tube-shaped, or bulk-shaped, and may be used without limitation as long as it is commonly used in lithium-sulfur batteries.
상기 다공성 탄소재는 다공성 구조이거나 비표면적이 높은 것으로 당업계에서 통상적으로 사용되는 것이라면 어느 것이든 무방하다. 예를 들어, 상기 다공성 탄소재로는 그래파이트(graphite); 그래핀(graphene); 덴카 블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본 블랙; 단일벽 탄소나노튜브(SWCNT), 다중벽 탄소나노튜브(MWCNT) 등의 탄소나노튜브(CNT); 그라파이트 나노파이버(GNF), 카본 나노파이버(CNF), 활성화 탄소 파이버(ACF) 등의 탄소 섬유; 천연 흑연, 인조 흑연, 팽창 흑연 및 활성탄소로 이루어진 군으로부터 선택된 1종 이상일 수 있으나 이에 제한되지 않는다. 바람직하게 상기 다공성 탄소재는 탄소나노튜브일 수 있다.The porous carbon material may have a porous structure or a high specific surface area, so long as it is commonly used in the art. For example, as the porous carbon material, graphite; Graphene; Carbon blacks such as denka black, acetylene black, ketjen black, channel black, furnace black, lamp black, and summer black; Carbon nanotubes (CNT) such as single-walled carbon nanotubes (SWCNT) and multi-walled carbon nanotubes (MWCNT); Carbon fibers such as graphite nanofibers (GNF), carbon nanofibers (CNF), and activated carbon fibers (ACF); It may be one or more selected from the group consisting of natural graphite, artificial graphite, expanded graphite, and activated carbon, but is not limited thereto. Preferably, the porous carbon material may be a carbon nanotube.
본 발명에 있어서, 상기 황-탄소 복합체는 황-탄소 복합체 100 중량부를 기준으로 황을 60 내지 90 중량부, 바람직하게는 65 내지 85 중량부, 보다 바람직하게는 70 내지 80 중량부로 포함할 수 있다. 상기 황의 함량이 전술한 범위 미만인 경우 황-탄소 복합체 내 다공성 탄소재의 함량이 상대적으로 많아짐에 따라 비표면적이 증가하여 슬러리 제조시에 바인더의 함량이 증가한다. 이러한 바인더의 사용량 증가는 결국 양극의 면저항을 증가시키고 전자 이동(electron pass)을 막는 절연체 역할을 하게 되어 전지의 성능을 저하시킬 수 있다. 이와 반대로 상기 황의 함량이 전술한 범위를 초과하는 경우 다공성 탄소재와 결합하지 못한 황 또는 황 화합물이 그들끼리 뭉치거나 다공성 탄소재의 표면으로 재용출됨에 따라 전자를 받기 어려워져 전기화학적 반응에 참여하지 못하게 되어 전지의 용량 손실이 발생할 수 있다.In the present invention, the sulfur-carbon composite may contain 60 to 90 parts by weight of sulfur, preferably 65 to 85 parts by weight, more preferably 70 to 80 parts by weight, based on 100 parts by weight of the sulfur-carbon composite. . When the sulfur content is less than the above-described range, the specific surface area increases as the content of the porous carbon material in the sulfur-carbon composite is relatively increased, so that the content of the binder increases when preparing the slurry. Increasing the amount of the binder used may eventually increase the sheet resistance of the positive electrode and act as an insulator to prevent electron pass, thereby deteriorating the performance of the battery. On the contrary, when the sulfur content exceeds the above-described range, the sulfur or sulfur compounds that cannot be combined with the porous carbon material are aggregated with each other or re-elute to the surface of the porous carbon material, making it difficult to receive electrons and thus not participating in the electrochemical reaction. This may result in loss of battery capacity.
상기 양극 활물질은 전술한 조성 이외에 전이금속 원소, ⅢA족 원소, ⅣA족 원소, 이들 원소들의 황 화합물, 및 이들 원소들과 황의 합금 중에서 선택되는 하나 이상의 첨가제를 더 포함할 수 있다.In addition to the above-described composition, the positive electrode active material may further include at least one additive selected from a transition metal element, a group IIIA element, a group IVA element, a sulfur compound of these elements, and an alloy of these elements and sulfur.
상기 전이금속 원소로는 Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Os, Ir, Pt, Au 또는 Hg 등이 포함되고, 상기 ⅢA족 원소로는 Al, Ga, In, Ti 등이 포함되며, 상기 ⅣA족 원소로는 Ge, Sn, Pb 등이 포함될 수 있다.The transition metal element is Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Os, Ir, Pt, Au, or Hg and the like are included, and the group IIIA element includes Al, Ga, In, and Ti, and the group IVA element may include Ge, Sn, and Pb.
상기 양극 활물질은 양극 슬러리 조성물 100 중량부를 기준으로 50 내지 95 중량부, 바람직하기로 70 내지 90 중량부로 포함할 수 있다. 상기 양극 활물질의 함량이 상기 범위 미만인 경우 양극의 전기화학적 반응을 충분하게 발휘하기 어렵고, 이와 반대로 상기 범위를 초과하는 경우 후술하는 도전재와 바인더의 함량이 상대적으로 부족하여 양극의 저항이 상승하며, 양극의 물리적 성질이 저하되는 문제가 있다.The positive electrode active material may be included in an amount of 50 to 95 parts by weight, preferably 70 to 90 parts by weight, based on 100 parts by weight of the positive electrode slurry composition. When the content of the positive electrode active material is less than the above range, it is difficult to sufficiently exhibit the electrochemical reaction of the positive electrode, and on the contrary, when the content of the positive electrode active material exceeds the above range, the content of the conductive material and binder described below is relatively insufficient, and the resistance of the positive electrode increases, There is a problem that the physical properties of the anode are deteriorated.
또한, 상기 양극은 도전재를 더 포함할 수 있으며, 상기 도전재는 전해질과 양극 활물질을 전기적으로 연결시켜 주어 집전체(current collector)로부터 전자가 양극 활물질까지 이동하는 경로의 역할을 하는 물질로서, 다공성 및 도전성을 갖는 것이라면 제한없이 사용할 수 있다.In addition, the positive electrode may further include a conductive material, and the conductive material is a material that serves as a path through which electrons move from a current collector to the positive electrode active material by electrically connecting the electrolyte and the positive electrode active material. And any one having conductivity can be used without limitation.
예를 들어 상기 도전재로는 다공성을 갖는 탄소계 물질을 사용할 수 있으며, 이와 같은 탄소계 물질로는 카본 블랙, 그라파이트, 그래핀, 활성탄, 탄소 섬유 등이 있고, 금속 메쉬 등의 금속성 섬유; 구리, 은, 니켈, 알루미늄 등의 금속성 분말; 또는 폴리페닐렌 유도체 등의 유기 도전성 재료가 있다. 상기 도전성 재료들은 단독 또는 혼합하여 사용될 수 있다.For example, a carbon-based material having a porosity may be used as the conductive material, and examples of such a carbon-based material include carbon black, graphite, graphene, activated carbon, carbon fiber, etc., and metallic fibers such as metal mesh; Metallic powders such as copper, silver, nickel, and aluminum; Or an organic conductive material such as a polyphenylene derivative. The conductive materials may be used alone or in combination.
상기 도전재는 양극 슬러리 조성물 100 중량부를 기준으로 1 내지 10 중량부, 바람직하기로 5 중량부 내외로 포함할 수 있다. 상기 도전재의 함량이 상기 범위 미만이면 양극 내 황 중 반응하지 못하는 부분이 증가하게 되고, 결국은 용량 감소를 일으키게 된다. 이와 반대로, 상기 범위 초과이면 고효율 방전 특성과 충, 방전 사이클 수명에 악영향을 미치게 되므로 상술한 범위 내에 서 적정 함량을 결정하는 것이 바람직하다.The conductive material may be included in an amount of 1 to 10 parts by weight, preferably 5 parts by weight, based on 100 parts by weight of the positive electrode slurry composition. If the content of the conductive material is less than the above range, the non-reacting portion of sulfur in the positive electrode increases, resulting in a decrease in capacity. On the contrary, if it exceeds the above range, it is preferable to determine an appropriate content within the above-described range since it adversely affects the high-efficiency discharge characteristics and charge/discharge cycle life.
또한, 상기 양극은 바인더를 추가로 포함할 수 있으며, 상기 바인더는 양극을 구성하는 성분들 간 및 이들과 집전체 간의 결착력을 보다 높이는 것으로, 당해 업계에서 공지된 모든 바인더를 사용할 수 있다.In addition, the positive electrode may further include a binder, and the binder further enhances binding strength between components constituting the positive electrode and between them and a current collector, and any binder known in the art may be used.
예를 들어 상기 바인더는 폴리비닐리덴 플루오라이드(polyvinylidene fluoride, PVdF) 또는 폴리테트라플루오로에틸렌(polytetrafluoroethylene, PTFE)을 포함하는 불소 수지계 바인더; 스티렌-부타디엔 고무(styrene butadiene rubber, SBR), 아크릴로니트릴-부티디엔 고무, 스티렌-이소프렌 고무를 포함하는 고무계 바인더; 카르복시메틸셀룰로우즈(carboxyl methyl cellulose, CMC), 전분, 히드록시 프로필셀룰로우즈, 재생 셀룰로오스를 포함하는 셀룰로오스계 바인더; 폴 리 알코올계 바인더; 폴리에틸렌, 폴리프로필렌를 포함하는 폴리 올레핀계 바인더; 폴리 이미드계 바인더; 폴리 에스테르계 바인더; 및 실란계 바인더;로 이루어진 군으로부터 선택된 1종, 2종 이상의 혼합물 또는 공중합체를 사용할 수 있다.For example, the binder may include a fluororesin binder including polyvinylidene fluoride (PVdF) or polytetrafluoroethylene (PTFE); A rubber-based binder including styrene-butadiene rubber (SBR), acrylonitrile-butadiene rubber, and styrene-isoprene rubber; Cellulose-based binders including carboxyl methyl cellulose (CMC), starch, hydroxy propyl cellulose, and regenerated cellulose; Poly alcohol-based binder; Polyolefin-based binders including polyethylene and polypropylene; Polyimide binder; Polyester binder; And a silane-based binder; one, two or more mixtures or copolymers selected from the group consisting of may be used.
상기 바인더는 양극 슬러리 조성물 100 중량부를 기준으로 1 내지 10 중량부, 바람직하기로 5 중량부 내외로 포함할 수 있다. 상기 바인더의 함량이 상기 범위 미만이면 양극의 물리적 성질이 저하되어 양극 활물질과 도전재가 탈락할 수 있고, 상기 범위 초과이면 양극에서 활물질과 도전재의 비율이 상대적으로 감소되어 전지 용량이 감소될 수 있으므로 상술한 범위 내에서 적정 함량을 결정하는 것이 바람직하다.The binder may be included in an amount of 1 to 10 parts by weight, preferably about 5 parts by weight, based on 100 parts by weight of the positive electrode slurry composition. If the content of the binder is less than the above range, the physical properties of the positive electrode may be deteriorated and the positive electrode active material and the conductive material may be eliminated, and if the content of the binder exceeds the above range, the ratio of the active material and the conductive material in the positive electrode may be relatively reduced, thereby reducing the battery capacity. It is desirable to determine the appropriate content within one range.
상기 양극은 당 분야에 알려져 있는 통상적인 방법으로 제조할 수 있다. 예를 들면, 양극 활물질에 용매, 필요에 따라 바인더, 도전재, 분산제를 혼합 및 교반하여 슬러리를 제조한 후 이를 금속 재료의 집전체에 도포(코팅)하고 압축한 뒤 건조하여 양극을 제조할 수 있다.The positive electrode can be manufactured by a conventional method known in the art. For example, after preparing a slurry by mixing and stirring a solvent, a binder, a conductive material, and a dispersant as necessary in a positive electrode active material, it is applied (coated) to a current collector of a metal material, compressed, and dried to prepare a positive electrode have.
상기 용매로는 양극 활물질, 바인더 및 도전재를 균일하게 분산시킬 수 있는 것을 사용한다. 이러한 용매로는 수계 용매로서 물이 가장 바람직하며, 이때 물은 증류수(distilled water), 탈이온수(deionzied water)일 수 있다. 다만 반드시 이에 한정하는 것은 아니며, 필요한 경우 물과 쉽게 혼합이 가능한 저급 알코올이 사용될 수 있다. 상기 저급 알코올로는 메탄올, 에탄올, 프로판올, 이소프로판올 및 부탄올 등이 있으며, 바람직하기로 이들은 물과 함께 혼합하여 사용될 수 있다.As the solvent, a positive electrode active material, a binder, and a conductive material may be uniformly dispersed. As such a solvent, water is most preferred as an aqueous solvent, and in this case, water may be distilled water or deionzied water. However, the present invention is not limited thereto, and if necessary, lower alcohol that can be easily mixed with water may be used. Examples of the lower alcohol include methanol, ethanol, propanol, isopropanol, butanol, and the like, and preferably, they may be used by mixing with water.
전술한 조성 및 제조방법으로 제조된 상기 양극, 구체적으로 양극 활물질층의 기공도는 60 내지 75 %, 바람직하기로 60 내지 70 %일 수 있다. 상기 양극의 기공도가 60 %에 미치지 못하는 경우에는 양극 활물질, 도전재 및 바인더를 포함하는 양극 슬러리 조성물의 충진도가 지나치게 높아져서 양극 활물질 사이에 이온전도 및/또는 전기 전도를 나타낼 수 있는 충분한 전해액이 유지될 수 없게 되어 전지의 출력특성이나 사이클 특성이 저하될 수 있으며, 전지의 과전압 및 방전용량 감소가 심하게 되는 문제가 있다. 이와 반대로 상기 양극의 기공도가 75 % 를 초과하여 지나치게 높은 기공도를 갖는 경우 집전체와 물리적 및 전기적 연결이 낮아져 접착력이 저하되고 반응이 어려워지는 문제가 있으며, 높아진 기공도를 전해액이 충진되어 전지의 에너지 밀도가 낮아질 수 있는 문제가 있으므로 상기 범위에서 적절히 조절한다.The porosity of the positive electrode, specifically the positive electrode active material layer, prepared by the above-described composition and manufacturing method may be 60 to 75%, preferably 60 to 70%. When the porosity of the positive electrode is less than 60%, the filling degree of the positive electrode slurry composition including the positive electrode active material, the conductive material, and the binder becomes too high, so that a sufficient electrolyte solution capable of showing ionic conduction and/or electrical conduction between the positive electrode active materials is provided. Since it cannot be maintained, the output characteristics or cycle characteristics of the battery may be deteriorated, and there is a problem that the overvoltage and discharge capacity of the battery are severely reduced. On the contrary, when the porosity of the positive electrode exceeds 75% and has an excessively high porosity, there is a problem that the physical and electrical connection with the current collector is lowered, resulting in a decrease in adhesion and difficulty in reaction, and the increased porosity is filled with an electrolyte solution. Since there is a problem that the energy density of may be lowered, it is appropriately adjusted within the above range.
상기 음극은 음극 활물질로 리튬 (Li+)을 가역적으로 삽입(intercalation) 또는 탈삽입(deintercalation)할 수 있는 물질, 리튬 이온과 반응하여 가역적으로 리튬 함유 화합물을 형성할 수 있는 물질, 리튬 금속 또는 리튬 합금을 포함할 수 있다. The negative electrode is a material capable of reversibly intercalating or deintercalating lithium (Li + ) as a negative active material, a material capable of reversibly forming a lithium-containing compound by reacting with lithium ions, lithium metal or lithium It may contain an alloy.
상기 리튬 이온(Li+)을 가역적으로 삽입 또는 탈삽입할 수 있는 물질은 예컨대 결정질 탄소, 비정질 탄소 또는 이들의 혼합물일 수 있다. 상기 리튬 이온(Li+)과 반응하여 가역적으로 리튬 함유 화합물을 형성할 수 있는 물질은 예를 들어, 산화주석, 티타늄나이트레이트 또는 실리콘일 수 있다. 상기 리튬 합금은 예를 들어, 리튬(Li)과 나트륨(Na), 칼륨(K), 루비듐(Rb), 세슘(Cs), 프랑슘(Fr), 베릴륨(Be), 마그네슘(Mg), 칼슘(Ca), 스트론튬(Sr), 바륨(Ba), 라듐(Ra), 알루미늄(Al) 및 주석(Sn)으로 이루어지는 군에서 선택되는 금속의 합금일 수 있다.The material capable of reversibly intercalating or deintercalating lithium ions (Li + ) may be, for example, crystalline carbon, amorphous carbon, or a mixture thereof. A material capable of reversibly forming a lithium-containing compound by reacting with the lithium ions (Li + ) may be, for example, tin oxide, titanium nitrate, or silicon. The lithium alloy is, for example, lithium (Li) and sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), francium (Fr), beryllium (Be), magnesium (Mg), calcium ( It may be an alloy of a metal selected from the group consisting of Ca), strontium (Sr), barium (Ba), radium (Ra), aluminum (Al), and tin (Sn).
바람직하게 상기 음극 활물질은 리튬 금속일 수 있으며, 구체적으로, 리튬 금속 박막 또는 리튬 금속 분말의 형태일 수 있다.Preferably, the negative active material may be lithium metal, and specifically, may be in the form of a lithium metal thin film or lithium metal powder.
상기 음극 집전체는 양극 집전체에서 설명한 바와 같다.The negative electrode current collector is as described in the positive electrode current collector.
또한, 상기 음극은 바인더, 도전재 및 증점제 등의 첨가제들을 추가로 포함할 수 있으며, 음극 제조시 사용되는 통상적인 것이라면 특별히 제한되지 않는다. 상기 바인더 및 도전재는 양극에서 설명한 바와 같다.In addition, the negative electrode may further include additives such as a binder, a conductive material and a thickener, and is not particularly limited as long as it is a conventional one used in manufacturing the negative electrode. The binder and the conductive material are as described in the positive electrode.
상기 분리막은 전술한 바를 따른다.The separator is as described above.
상기 전해질은 리튬 이온을 포함하며, 이를 매개로 양극과 음극에서 전기 화학적인 산화 또는 환원 반응을 일으키기 위한 것이다.The electrolyte contains lithium ions, and is for causing an electrochemical oxidation or reduction reaction at the anode and the cathode through this.
상기 전해질은 리튬 금속과 반응하지 않는 비수 전해액 또는 고체 전해질이 가능하나 바람직하게는 비수 전해질이고, 전해질 염 및 유기 용매를 포함한다.The electrolyte may be a non-aqueous electrolyte or a solid electrolyte that does not react with lithium metal, but is preferably a non-aqueous electrolyte, and includes an electrolyte salt and an organic solvent.
상기 비수 전해액에 포함되는 전해질 염은 리튬염이다. 상기 리튬염은 리튬 이차전지용 전해액에 통상적으로 사용되는 것이라면 제한없이 사용될 수 있다. 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, (CF3SO2)2NLi, LiN(SO2F)2, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4-페닐 붕산 리튬, 리튬 이미드 등이 사용될 수 있다.The electrolyte salt contained in the non-aqueous electrolyte solution is a lithium salt. The lithium salt may be used without limitation as long as it is commonly used in an electrolyte for a lithium secondary battery. For example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 SO 3 Li, ( CF 3 SO 2 ) 2 NLi, LiN(SO 2 F) 2 , lithium chloroborane, lithium lower aliphatic carboxylic acid, lithium 4-phenyl borate, lithium imide, and the like may be used.
상기 리튬염의 농도는 전해질 용매 혼합물의 정확한 조성, 염의 용해도, 용해된 염의 전도성, 전지의 충전 및 전 조건, 작업 온도 및 리튬 배터리 분야에 공지된 다른 요인과 같은 여러 요인에 따라, 0.2 내지 2 M, 구체적으로 0.4 내지 2 M, 더욱 구체적으로 0.4 내지 1.7 M일 수 있다. 상기 리튬염의 농도가 0.2 M 미만으로 사용하면 전해질의 전도도가 낮아져서 전해질 성능이 저하될 수 있고, 2 M 을 초과하여 사용하면 전해질의 점도가 증가하여 리튬 이온의 이동성이 감소될 수 있다.The concentration of the lithium salt depends on several factors such as the exact composition of the electrolyte solvent mixture, the solubility of the salt, the conductivity of the dissolved salt, the charging and preconditioning of the battery, the working temperature and other factors known in the lithium battery field, from 0.2 to 2 M, Specifically, it may be 0.4 to 2 M, more specifically 0.4 to 1.7 M. If the concentration of the lithium salt is less than 0.2 M, the conductivity of the electrolyte may be lowered, resulting in deterioration of electrolyte performance, and if the concentration of the lithium salt exceeds 2 M, the viscosity of the electrolyte may increase, thereby reducing the mobility of lithium ions.
상기 비수 전해액에 포함되는 유기 용매로는 리튬 이차전지용 전해액에 통상적으로 사용되는 것들을 제한 없이 사용할 수 있으며, 예를 들면 에테르, 에스테르, 아미드, 선형 카보네이트, 환형 카보네이트 등을 각각 단독으로 또는 2종 이상 혼합하여 사용할 수 있다. 그 중에서 대표적으로는 에테르계 화합물을 포함할 수 있다.As organic solvents included in the non-aqueous electrolyte, those commonly used in electrolytes for lithium secondary batteries can be used without limitation, for example, ether, ester, amide, linear carbonate, cyclic carbonate, etc., alone or in combination of two or more Can be used. Among them, representatively, an ether-based compound may be included.
상기 에테르계 화합물은 비환형 에테르 및 환형 에테르를 포함할 수 있다.The ether compound may include an acyclic ether and a cyclic ether.
예를 들어, 상기 비환형 에테르로는 디메틸 에테르, 디에틸 에테르, 디프로필 에테르, 메틸에틸 에테르, 메틸프로필 에테르, 에틸프로필 에테르, 디메톡시에탄, 디에톡시에탄, 메톡시에톡시에탄, 디에틸렌 글리콜 디메틸 에테르, 디에틸렌 글리콜 디에틸 에테르, 디에틸렌 글리콜 메틸에틸 에테르, 트리에틸렌 글리콜 디메틸 에테르, 트리에틸렌 글리콜 디에틸 에테르, 트리에틸렌 글리콜 메틸에틸 에테르, 테트라에틸렌 글리콜 디메틸 에테르, 테트라에틸렌 글리콜 디에틸 에테르, 테트라에틸렌 글리콜 메틸에틸 에테르, 폴리에틸렌 글리콜 디메틸 에테르, 폴리에틸렌 글리콜 디에틸 에테르, 폴리에틸렌 글리콜 메틸에틸 에테르로 이루어진 군에서 선택되는 1종 이상이 사용될 수 있으나, 이에 한정되는 것은 아니다.For example, the acyclic ether includes dimethyl ether, diethyl ether, dipropyl ether, methylethyl ether, methylpropyl ether, ethylpropyl ether, dimethoxyethane, diethoxyethane, methoxyethoxyethane, diethylene glycol Dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methylethyl ether, triethylene glycol dimethyl ether, triethylene glycol diethyl ether, triethylene glycol methylethyl ether, tetraethylene glycol dimethyl ether, tetraethylene glycol diethyl ether, At least one selected from the group consisting of tetraethylene glycol methylethyl ether, polyethylene glycol dimethyl ether, polyethylene glycol diethyl ether, and polyethylene glycol methylethyl ether may be used, but is not limited thereto.
일례로, 상기 환형 에테르는 1,3-디옥솔란, 4,5-디메틸-디옥솔란, 4,5-디에틸-디옥솔란, 4-메틸-1,3-디옥솔란, 4-에틸-1,3-디옥솔란, 테트라하이드로퓨란, 2-메틸테트라하이드로퓨란, 2,5-디메틸테트라하이드로퓨란, 2,5-디메톡시테트라하이드로퓨란, 2-에톡시테트라하이드로퓨란, 2-메틸-1,3-디옥솔란, 2-비닐-1,3-디옥솔란, 2,2-디메틸-1,3-디옥솔란, 2-메톡시-1,3-디옥솔란, 2-에틸-2-메틸-1,3-디옥솔란, 테트라하이드로파이란, 1,4-디옥산, 1,2-디메톡시 벤젠, 1,3-디메톡시 벤젠, 1,4-디메톡시 벤젠, 아이소소바이드 디메틸 에테르(isosorbide dimethyl ether)로 이루어진 군에서 선택되는 1종 이상이 사용될 수 있으나, 이에 한정되는 것은 아니다.For example, the cyclic ether is 1,3-dioxolane, 4,5-dimethyl-dioxolane, 4,5-diethyl-dioxolane, 4-methyl-1,3-dioxolane, 4-ethyl-1, 3-dioxolane, tetrahydrofuran, 2-methyltetrahydrofuran, 2,5-dimethyltetrahydrofuran, 2,5-dimethoxytetrahydrofuran, 2-ethoxytetrahydrofuran, 2-methyl-1,3 -Dioxolane, 2-vinyl-1,3-dioxolane, 2,2-dimethyl-1,3-dioxolane, 2-methoxy-1,3-dioxolane, 2-ethyl-2-methyl-1, 3-dioxolane, tetrahydropyran, 1,4-dioxane, 1,2-dimethoxy benzene, 1,3-dimethoxy benzene, 1,4-dimethoxy benzene, isosorbide dimethyl ether One or more selected from the group consisting of may be used, but is not limited thereto.
상기 유기 용매 중 에스테르로는 메틸 아세테이트, 에틸 아세테이트, 프로필 아세테이트, 메틸 프로피오네이트, 에틸 프로피오네이트, 프로필 프로피오네이트, γ-부티로락톤, γ-발레로락톤, γ-카프로락톤, σ-발레로락톤 및 ε-카프로락톤으로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있으나, 이에 한정되는 것은 아니다.As esters in the organic solvent, methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate, γ-butyrolactone, γ-valerolactone, γ-caprolactone, σ- Any one selected from the group consisting of valerolactone and ε-caprolactone or a mixture of two or more of them may be used, but the present invention is not limited thereto.
상기 선형 카보네이트 화합물의 구체적인 예로는 디메틸 카보네이트(DMC), 디에틸 카보네이트(DEC), 디프로필 카보네이트, 에틸메틸 카보네이트(EMC), 메틸프로필 카보네이트 및 에틸프로필 카보네이트로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물 등이 대표적으로 사용될 수 있으나, 이에 한정되는 것은 아니다.Specific examples of the linear carbonate compound include any one selected from the group consisting of dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate, ethylmethyl carbonate (EMC), methylpropyl carbonate, and ethylpropyl carbonate, or any one of them. A mixture of two or more types may be used as a representative, but is not limited thereto.
또한 상기 환형 카보네이트 화합물의 구체적인 예로는 에틸렌 카보네이트(ethylene carbonate, EC), 프로필렌 카보네이트(propylene carbonate, PC), 1,2-부틸렌 카보네이트, 2,3-부틸렌 카보네이트, 1,2-펜틸렌 카보네이트, 2,3-펜틸렌 카보네이트, 비닐렌 카보네이트, 비닐에틸렌 카보네이트 및 이들의 할로겐화물로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물이 있다. 이들의 할로겐화물로는 예를 들면, 플루오로에틸렌 카보네이트(fluoroethylene carbonate, FEC) 등이 있으며, 이에 한정되는 것은 아니다.In addition, specific examples of the cyclic carbonate compound include ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate , 2,3-pentylene carbonate, vinylene carbonate, vinylethylene carbonate, and any one selected from the group consisting of halides thereof, or a mixture of two or more thereof. These halides include, for example, fluoroethylene carbonate (FEC), but are not limited thereto.
상기 비수 전해액의 주입은 최종 제품의 제조 공정 및 요구 물성에 따라, 전기화학소자의 제조 공정 중 적절한 단계에서 행해질 수 있다. 즉, 전기화학소자 조립 전 또는 전기화학소자 조립 최종 단계 등에서 적용될 수 있다.The injection of the non-aqueous electrolyte may be performed at an appropriate step in the manufacturing process of the electrochemical device according to the manufacturing process and required physical properties of the final product. That is, it can be applied before assembling the electrochemical device or at the final stage of assembling the electrochemical device.
본 발명에 따른 리튬 이차전지는 일반적인 공정인 권취(winding) 이외에도 세퍼레이터와 전극의 적층(lamination, stack) 및 접음(folding) 공정이 가능하다.In the lithium secondary battery according to the present invention, in addition to winding, which is a general process, lamination and stacking of a separator and an electrode and folding are possible.
상기 리튬 이차전지의 형상은 특별히 제한되지 않으며 원통형, 적층형, 코인형 등 다양한 형상으로 할 수 있다.The shape of the lithium secondary battery is not particularly limited and may be in various shapes such as a cylindrical shape, a stacked type, and a coin type.
또한, 본 발명은 상기 리튬 이차전지를 단위전지로 포함하는 전지모듈을 제공한다.In addition, the present invention provides a battery module including the lithium secondary battery as a unit cell.
상기 전지모듈은 고온 안정성, 긴 사이클 특성 및 높은 용량 특성 등이 요구되는 중대형 디바이스의 전원으로 사용될 수 있다.The battery module can be used as a power source for medium and large-sized devices that require high temperature stability, long cycle characteristics, and high capacity characteristics.
상기 중대형 디바이스의 예로는 전기적 모터에 의해 동력을 받아 움직이는 파워 툴(power tool); 전기자동차(electric vehicle, EV), 하이브리드 전기자동차(hybrid electric vehicle, HEV), 플러그-인 하이브리드 전기자동차(plug-in hybrid electric vehicle, PHEV) 등을 포함하는 전기차; 전기 자전거(E-bike), 전기 스쿠터(E-scooter)를 포함하는 전기 이륜차; 전기 골프 카트(electric golf cart); 전력저장용 시스템 등을 들 수 있으나, 이에 한정되는 것은 아니다.Examples of the medium and large-sized devices include a power tool that is driven by an electric motor; Electric vehicles including electric vehicles (EV), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and the like; Electric two-wheeled vehicles including electric bicycles (E-bikes) and electric scooters (E-scooters); Electric golf cart; Power storage systems, etc., but are not limited thereto.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.Hereinafter, a preferred embodiment is presented to aid the understanding of the present invention, but the following examples are only illustrative of the present invention, and it is obvious to those skilled in the art that various changes and modifications are possible within the scope and spirit of the present invention, It is natural that such modifications and modifications fall within the appended claims.
제조예Manufacturing example
: 결함을 포함하는 : Containing defects
이황화몰리브덴의Of molybdenum disulfide
제조 Produce
[제조예 1][Production Example 1]
암모늄 헵타몰리브데이트 테트라하이드레이트((NH4)6Mo7O24·4H2O), 준세이 케미컬(junsei chemical)사 제품) 0.82 g 및 티오우레아(CH4N2S, 시그마 알드리치(sigma aldrich)사 제품) 1.54 g을 탈이온수 20 ㎖에 투입하고, 30 분간 격렬하게 교반하여 균일한 혼합 용액을 제조하였다(Mo:S = 1:4.3 몰비율).Ammonium heptamolybdate tetrahydrate ((NH 4 ) 6 Mo 7 O 24 4H 2 O), manufactured by Junsei Chemical) 0.82 g and thiourea (CH 4 N 2 S, Sigma aldrich) Co., Ltd.) 1.54 g was added to 20 ml of deionized water, and stirred vigorously for 30 minutes to prepare a uniform mixed solution (Mo:S = 1:4.3 molar ratio).
상기 혼합 용액을 테프론 표면 처리된 스테인리스 스틸 재질의 오토클레이브(Autoclave)에 넣고, 220 ℃에서 18시간 동안 수열합성 반응을 진행하였다.The mixed solution was placed in an autoclave made of stainless steel with a Teflon surface treatment, and hydrothermal synthesis reaction was performed at 220° C. for 18 hours.
이후, 실온으로 서냉 후 최종 생성물을 물과 에탄올을 이용하여 수차례 세척하고, 60 ℃에서 진공건조하여 나노시트 형상의 결함을 포함하는 이황화몰리브덴(defect-rich MoS2)을 제조하였다.Thereafter, after slow cooling to room temperature, the final product was washed several times with water and ethanol, and vacuum-dried at 60° C. to prepare molybdenum disulfide (defect-rich MoS 2 ) containing defects in the shape of nanosheets.
실시예 및 비교예Examples and Comparative Examples
[실시예 1][Example 1]
(1) 분리막 제조(1) Separation membrane manufacturing
다공성 기재로 20 ㎛의 폴리에틸렌(기공도 68 %) 필름을 준비하였다.A 20 μm polyethylene (porosity 68%) film was prepared as a porous substrate.
에탄올에 제조예 1에서 얻어진 결함을 포함하는 이황화몰리브덴을 1 중량%로 포함하는 코팅용 조성물을 상기 다공성 기재 상에 도포하여 코팅층을 형성한 후, 60 ℃에서 12 시간 동안 건조하여 1 ㎛ 두께로 코팅층이 형성된 분리막을 제조하였다.A coating composition containing 1% by weight of molybdenum disulfide containing defects obtained in Preparation Example 1 was applied to ethanol to form a coating layer on the porous substrate, and then dried at 60° C. for 12 hours to a thickness of 1 μm. This formed separator was prepared.
(2) 리튬 이차전지의 제조(2) Manufacture of lithium secondary battery
양극 활물질로 황-탄소 복합체(S/C 7:3 중량부)를 90 중량부, 도전재로 덴카블랙을 5 중량부, 바인더로 스티렌 부타디엔 고무/카르복시메틸 셀룰로오스(SBR/CMC 7:3) 5 중량부를 투입하고 믹싱하여 양극 슬러리 조성물을 제조하였다.90 parts by weight of a sulfur-carbon composite (S/C 7:3 parts by weight) as a positive electrode active material, 5 parts by weight of Denka Black as a conductive material, styrene butadiene rubber/carboxymethyl cellulose (SBR/CMC 7:3) as a binder 5 Part by weight was added and mixed to prepare a positive electrode slurry composition.
이어서 상기 제조된 양극 슬러리 조성물을 알루미늄 집전체 상에 도포하고 50 ℃에서 12 시간 동안 건조하고 롤프레스(roll press)기기로 압착하여 양극을 제조하였다. 얻어진 양극의 로딩양은 5.9 mAh/㎠이고, 기공도는 68 %였다.Subsequently, the prepared positive electrode slurry composition was applied on an aluminum current collector, dried at 50° C. for 12 hours, and compressed with a roll press to prepare a positive electrode. The loading amount of the obtained positive electrode was 5.9 mAh/cm 2, and the porosity was 68%.
상기 양극과 함께, 음극으로 35 ㎛ 두께의 리튬 금속 박막을 사용하였고, 전해질로 1,3-디옥솔란과 디메틸 에테르(DOL:DME=1:1(부피비))로 이루어진 유기 용매에 1M 농도의 리튬 비스(트리플루오로메탄설포닐)이미드(LiTFSI)와 1 중량%의 질산 리튬(LiNO3)를 용해시킨 혼합액을 사용하였다.Along with the positive electrode, a 35 μm-thick lithium metal thin film was used as the negative electrode, and 1M concentration of lithium in an organic solvent consisting of 1,3-dioxolane and dimethyl ether (DOL:DME=1:1 (volume ratio)) as an electrolyte A mixed solution in which bis(trifluoromethanesulfonyl)imide (LiTFSI) and 1% by weight of lithium nitrate (LiNO 3 ) were dissolved was used.
구체적으로, 상기 제조된 양극과 음극을 대면하도록 위치시키고 그 사이에 상기 분리막의 코팅층이 음극과 대면하도록 게재한 후, 상기 제조된 전해질 0.1㎖을 주입하여 리튬 이차전지를 제조하였다.Specifically, the prepared positive electrode and the negative electrode were positioned to face each other, and the coating layer of the separator was placed to face the negative electrode therebetween, and 0.1 ml of the prepared electrolyte was injected to prepare a lithium secondary battery.
[실시예 2] [Example 2]
전지 제조시 분리막의 코팅층을 양극과 대면하도록 배치한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 리튬 이차전지를 제조하였다.A lithium secondary battery was manufactured in the same manner as in Example 1, except that the coating layer of the separator was disposed to face the positive electrode during battery manufacturing.
[비교예 1][Comparative Example 1]
분리막에 코팅층을 형성하지 않고, 다공성 기재를 그대로 사용한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 리튬 이차전지를 제조하였다.A lithium secondary battery was manufactured in the same manner as in Example 1, except that a coating layer was not formed on the separator and a porous substrate was used as it is.
[비교예 2] [Comparative Example 2]
분리막 제조시 제조예 1에서 얻어진 결함을 포함하는 이황화몰리브덴 대신 결함이 없는 이황화몰리브덴(defect-free MoS2, 시그마 알드리치사 제품)을 동일 함량으로 용해시킨 코팅용 조성물을 사용하여 코팅층을 형성한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 리튬 이차전지를 제조하였다.Except for forming a coating layer using a coating composition in which molybdenum disulfide (defect-free MoS 2 , manufactured by Sigma Aldrich) was dissolved in the same amount instead of molybdenum disulfide containing defects obtained in Preparation Example 1 when manufacturing the separator. Then, a lithium secondary battery was manufactured in the same manner as in Example 1.
실험예 1. 주사 전자 현미경 및 고분해능 투과 전자 현미경 분석Experimental Example 1. Scanning Electron Microscopy and High Resolution Transmission Electron Microscopy Analysis
제조예 1에서 제조한 결함을 포함하는 이황화몰리브덴에 대하여 주사 전자 현미경(scanning electron microscope; SEM) 및 고분해능 투과전자 현미경(high resolution transmission electron microscopy; HR-TEM)으로 관찰하였다. 주사 전자 현미경으로는 히타치(hitachi)사의 S-4800을, 고분해능 투과전자 현미경으로는 제올(JEOL)사의 JEM-2100F을 이용하였다. 이때 얻어진 결과는 도 1 및 2에 나타내었다.Molybdenum disulfide containing defects prepared in Preparation Example 1 was observed with a scanning electron microscope (SEM) and a high resolution transmission electron microscopy (HR-TEM). Hitachi S-4800 was used as a scanning electron microscope, and JEM-2100F from JEOL was used as a high-resolution transmission electron microscope. The results obtained at this time are shown in FIGS. 1 and 2.
도 1을 참조하면, 제조예 1로부터 얇은 나노시트(sheet) 형태의 결함을 포함하는 이황화몰리브덴이 형성된 것을 확인할 수 있다.Referring to FIG. 1, it can be seen that molybdenum disulfide including defects in the form of a thin nanosheet was formed from Preparation Example 1.
도 2를 참조하면, 나노시트 형상의 결함을 포함하는 이황화몰리브덴의 표면에서 무질서한 원자 배열이 여러 개 확인되는 바, 복수의 결함(defect, 화살표)이 존재하는 것을 확인할 수 있다.Referring to FIG. 2, a plurality of disordered atomic arrangements are found on the surface of molybdenum disulfide including nanosheet-shaped defects, and it can be confirmed that a plurality of defects (arrows) exist.
실험예 2.Experimental Example 2.
X-선 회절 측정X-ray diffraction measurement
제조예 1에 따른 결함을 포함하는 이황화몰리브덴에 대하여 X-선 회절(X-ray diffraction, XRD) 패턴을 측정하였다. 상기 실험에 이용된 XRD 장치는 고체상 검출기로 1.5418 Å Cu-Kα X-선 파장을 사용하는 Rigaku MiniFlex 600 X-선 회절 분석 장비이었다. 이때 얻어진 결과를 도 3에 나타내었다.An X-ray diffraction (XRD) pattern was measured for molybdenum disulfide containing defects according to Preparation Example 1. The XRD apparatus used in the above experiment was a Rigaku MiniFlex 600 X-ray diffraction analyzer using a 1.5418 Å Cu-Kα X-ray wavelength as a solid phase detector. The results obtained at this time are shown in FIG. 3.
도 3을 참조하면, 제조예 1에 따라 제조된 결함을 포함하는 이황화몰리브덴의 경우 회절 각도(2θ) 14.0±0.2°, 33.1±0.2°, 39.4±0.2° 및 58.7±0.2에서 유효 피크가 관찰되며, 이는 각각 (002), (100, 101), (103) 및 (110) 결정면에 대응되는 유효 피크로 제조예 1의 결함을 포함하는 이황화몰리브덴이 결정성임을 확인할 수 있다.Referring to FIG. 3, in the case of molybdenum disulfide containing defects prepared according to Preparation Example 1, effective peaks were observed at diffraction angles (2θ) of 14.0±0.2°, 33.1±0.2°, 39.4±0.2°, and 58.7±0.2. , This is an effective peak corresponding to the (002), (100, 101), (103), and (110) crystal planes, respectively, and it can be confirmed that molybdenum disulfide including the defects of Preparation Example 1 is crystalline.
실험예 3. 에너지 분산형 X-선 분광 분석Experimental Example 3. Energy dispersive X-ray spectroscopic analysis
제조예 1에 따른 결함을 포함하는 이황화몰리브덴 및 비교예 2에서 사용한 결함이 없는 이황화몰리브덴에 대하여 에너지 분산형 X-선 분광(Energy Dispersive X-ray Spectrometer, EDS) 분석을 수행하였다. 상기 실험에 이용된 EDS 장치는 제올(JEOL)사의 JSM-7610F이었다. 이때 얻어진 결과는 표 1과 도 4 및 5에 나타내었다.Energy Dispersive X-ray Spectrometer (EDS) analysis was performed on molybdenum disulfide containing defects according to Preparation Example 1 and molybdenum disulfide without defects used in Comparative Example 2. The EDS device used in the experiment was JSM-7610F from JEOL. The results obtained at this time are shown in Table 1 and FIGS. 4 and 5.
결함을 포함하는 이황화몰리브덴Molybdenum disulfide containing defects | 결함이 없는 이황화몰리브덴Molybdenum disulfide without defects | ||||||
spectrum spectrum | 1One | 22 | 33 | 44 | 66 | 77 | 88 |
S(원자%)S (atomic%) | 64.6464.64 | 62.9762.97 | 64.2064.20 | 64.0264.02 | 66.4766.47 | 66.4566.45 | 67.7667.76 |
Mo(원자%)Mo (atomic%) | 35.3635.36 | 37.0337.03 | 35.8035.80 | 35.9835.98 | 33.5333.53 | 33.5533.55 | 32.2432.24 |
S/MoS/Mo | 1.821.82 | 1.701.70 | 1.791.79 | 1.771.77 | 1.981.98 | 1.981.98 | 2.102.10 |
도 4, 도 5 및 상기 표 1을 참조하면, 결함이 없는 이황화몰리브덴(spectrum 6 내지 8)의 경우 S/Mo의 비율이 2.0이므로 MoS2의 화학식으로 표시되는 반면, 결함을 포함하는 이황화몰리브덴(spectrum 1 내지 4)에 대하여 EDS를 통해 원소 분석을 실시하면, S/Mo의 비율이 평균적으로 1.77임을 확인할 수 있다.4, 5 and Table 1, in the case of molybdenum disulfide without defects (spectrum 6 to 8), since the ratio of S/Mo is 2.0, it is represented by the formula of MoS 2 , whereas molybdenum disulfide containing defects ( When elemental analysis is performed through EDS for spectrum 1 to 4), it can be seen that the ratio of S/Mo is 1.77 on average.
실험예 4.Experimental Example 4.
리튬 폴리설파이드 흡착 효과 평가Lithium polysulfide adsorption effect evaluation
제조예 1에 따른 결함을 포함하는 이황화몰리브덴과 종래 리튬- 폴리설파이드 흡착 물질로 사용되는 탄소나노튜브의 리튬 폴리설파이드(Li2S6) 용액에 대한 흡광도를 측정하였다. 상기 흡광도 측정시 UV-Vis 분광기(UV-Vis spectrophotometer)는 Agilent사의 Agilent 8453을 이용하였다. 측정된 흡광도가 낮을수록 리튬 폴리설파이드에 대한 흡착 효과가 우수함을 의미하고, 이때 얻어진 결과를 도 6에 나타내었다.The absorbance of the molybdenum disulfide containing defects according to Preparation Example 1 and the carbon nanotubes used as a conventional lithium-polysulfide adsorption material for lithium polysulfide (Li 2 S 6 ) solution was measured. When measuring the absorbance, an Agilent 8453 of Agilent was used as a UV-Vis spectrophotometer. The lower the measured absorbance is, the better the adsorption effect on lithium polysulfide is, and the results obtained at this time are shown in FIG. 6.
도 6에 나타낸 바와 같이, 제조예 1의 결함을 포함하는 이황화몰리브덴 및 탄소나노튜브 각각을 이용하여 리튬 폴리설파이드를 흡착한 결과 흡광도가 감소하였으며 이를 통해 두 물질 모두 리튬 폴리설파이드 흡착 효과를 나타냄을 확인할 수 있다. 특히, 도 6에 있어서, 탄소나노튜브에 비해 제조예 1의 결함을 포함하는 이황화몰리브덴의 흡광도 감소폭이 크므로 본 발명의 결함을 포함하는 이황화몰리브덴리튬 폴리설파이드의 흡착능력이 더욱 뛰어난 것을 알 수 있다.As shown in FIG. 6, as a result of adsorbing lithium polysulfide using molybdenum disulfide and carbon nanotubes each containing defects of Preparation Example 1, the absorbance was decreased, and it was confirmed that both materials exhibited lithium polysulfide adsorption effect. I can. In particular, in FIG. 6, it can be seen that the absorption capacity of the molybdenum disulfide lithium polysulfide including the defects of the present invention is more excellent than that of the carbon nanotubes, since the absorbance of molybdenum disulfide including the defects of Preparation Example 1 is large. .
실험예 5. 주사 전자 현미경 분석Experimental Example 5. Scanning Electron Microscopy Analysis
실시예 1에서 제조한 분리막에 대하여 주사 전자 현미경(scanning electron microscope; SEM)으로 관찰하였다. 주사 전자 현미경으로는 히타치(hitachi)사의 S-4800을 이용하였다. 이때 얻어진 결과는 도 7에 나타내었다.The separation membrane prepared in Example 1 was observed with a scanning electron microscope (SEM). As a scanning electron microscope, Hitachi's S-4800 was used. The results obtained at this time are shown in FIG. 7.
도 7을 통해 실시예 1의 분리막의 경우 기재 상에 결함을 포함하는 이황화몰리브덴을 포함하는 코팅층이 균일하게 형성됨을 확인할 수 있다.Referring to FIG. 7, in the case of the separator of Example 1, it can be seen that a coating layer including molybdenum disulfide including defects is uniformly formed on the substrate.
실험예 6. 전지의 수명 특성 평가Experimental Example 6. Evaluation of battery life characteristics
상기 실시예 및 비교예에서 제조된 전지를 0.1 C의 전류밀도로 방전과 충전을 3 회 반복한 후 0.2 C의 전류밀도로 방전과 충전을 3회 진행한 후 0.5 C 방전과 0.3 C 충전을 진행하면서 방전 용량 및 쿨롱 효율을 측정하여 전지의 수명 특성을 평가하였다. 이때 얻어진 결과를 도 8에 나타내었다.The batteries prepared in Examples and Comparative Examples were discharged and charged three times at a current density of 0.1 C, and then discharged and charged three times at a current density of 0.2 C, followed by 0.5 C discharge and 0.3 C charge. While measuring the discharge capacity and coulomb efficiency, the battery life characteristics were evaluated. The results obtained at this time are shown in FIG. 8.
도 8에 나타낸 바와 같이, 실시예에 따른 전지의 방전 용량의 수치가 비교예에 비해 높을 뿐만 아니라 쿨롱 효율 또한 우수하여 수명 특성이 보다 향상됨을 알 수 있다.As shown in FIG. 8, it can be seen that not only the numerical value of the discharge capacity of the battery according to the embodiment is higher than that of the comparative example, but also the coulomb efficiency is also excellent, so that the life characteristics are further improved.
또한, 코팅층의 위치를 달리한 실시예 1 및 2의 결과를 비교해 보면, 코팅층을 음극과 대면하도록 배치한 실시예 1의 수명 특성이 코팅층을 양극과 대면하도록 배치한 실시예에 비해 우수한 것을 확인할 수 있다.In addition, comparing the results of Examples 1 and 2 in which the positions of the coating layers were different, it can be seen that the life characteristics of Example 1 in which the coating layer was arranged to face the cathode was superior to that of the Example in which the coating layer was arranged to face the anode have.
이와 같은 결과로부터, 본 발명에 따른 코팅층을 포함하는 분리막을 사용하는 경우 코팅층에 포함된 결함을 포함하는 이황화몰리브덴이 양극에서 용출된 리튬 폴리설파이드가 코팅층에 흡착되고, 리튬 덴드라이트의 성장을 억제함으로 인해 리튬 이차전지의 용량 특성이 우수한 동시에 수명 특성 또한 개선됨을 확인할 수 있다.From these results, when the separator including the coating layer according to the present invention is used, lithium polysulfide in which molybdenum disulfide including defects contained in the coating layer is eluted from the positive electrode is adsorbed to the coating layer, thereby inhibiting the growth of lithium dendrites. Therefore, it can be seen that the capacity characteristics of the lithium secondary battery are excellent and the life characteristics are also improved.
Claims (10)
- 다공성 기재; 및Porous substrate; And상기 다공성 기재의 적어도 일면에 형성된 코팅층을 포함하되,Including a coating layer formed on at least one surface of the porous substrate,상기 코팅층은 결함(defect)을 포함하는 이황화몰리브덴을 포함하는 리튬 이차전지용 분리막.The coating layer is a separator for a lithium secondary battery containing molybdenum disulfide including defects.
- 제1항에 있어서,The method of claim 1,상기 결함을 포함하는 이황화몰리브덴은 나노시트 형상인, 리튬 이차전지용 분리막.Molybdenum disulfide containing the defect is a nano-sheet shape, a separator for a lithium secondary battery.
- 제2항에 있어서,The method of claim 2,상기 결함을 포함하는 이황화몰리브덴은 두께가 1 내지 20 ㎚인, 리튬 이차전지용 분리막.Molybdenum disulfide containing the defect is a separator for a lithium secondary battery having a thickness of 1 to 20 nm.
- 제1항에 있어서,The method of claim 1,상기 결함을 포함하는 이황화몰리브덴은 결정성인, 리튬 이차전지용 분리막.Molybdenum disulfide containing the defect is crystalline, a separator for a lithium secondary battery.
- 제4항에 있어서,The method of claim 4,상기 결함을 포함하는 이황화몰리브덴은 X선 회절(XRD) 측정시, 회절 각도(2θ)가 14.0±0.2°, 33.1±0.2°, 39.4±0.2° 및 58.7±0.2°인 범위에서 각각 나타나는 회절 피크를 포함하는, 리튬 이차전지용 분리막.Molybdenum disulfide containing the defect has diffraction peaks that appear in the ranges of 14.0±0.2°, 33.1±0.2°, 39.4±0.2°, and 58.7±0.2°, respectively, when the diffraction angle (2θ) is measured by X-ray diffraction (XRD) Containing, a separator for a lithium secondary battery.
- 제1항에 있어서,The method of claim 1,상기 결함은 점결함, 선결함 및 면결함으로 이루어진 군에서 선택되는 1종 이상인, 리튬 이차전지용 분리막.The defect is at least one selected from the group consisting of point defects, line defects, and surface defects, a separator for a lithium secondary battery.
- 제1항에 있어서,The method of claim 1,상기 코팅층은 두께가 0.1 내지 10 ㎛인, 리튬 이차전지용 분리막.The coating layer has a thickness of 0.1 to 10 μm, a separator for a lithium secondary battery.
- 제1항에 있어서,The method of claim 1,상기 코팅층은 리튬 이차전지의 음극에 대면하여 배치되는, 리튬 이차전지용 분리막.The coating layer is disposed to face the negative electrode of the lithium secondary battery, a separator for a lithium secondary battery.
- 양극; 음극; 이들 사이에 개재되는 분리막 및 전해질을 포함하는 리튬 이차전지에 있어서,anode; cathode; In a lithium secondary battery comprising a separator and an electrolyte interposed therebetween,상기 분리막은 제1항에 따른 분리막을 포함하는 리튬 이차전지.The separator is a lithium secondary battery comprising the separator according to claim 1.
- 제9항에 있어서,The method of claim 9,상기 양극은 황 원소 및 황계 화합물로 이루어진 군에서 선택되는 1종 이상을 양극 활물질로 포함하는, 리튬 이차전지.The positive electrode comprises at least one selected from the group consisting of elemental sulfur and a sulfur-based compound as a positive electrode active material.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/312,650 US12107296B2 (en) | 2019-05-03 | 2020-04-28 | Separator for lithium secondary battery and lithium secondary battery comprising same |
CN202080007114.2A CN113243060B (en) | 2019-05-03 | 2020-04-28 | Separator for lithium secondary battery and lithium secondary battery comprising same |
EP20801464.7A EP3883009A4 (en) | 2019-05-03 | 2020-04-28 | Separator for lithium secondary battery and lithium secondary battery comprising same |
JP2021532465A JP7275273B2 (en) | 2019-05-03 | 2020-04-28 | Separation membrane for lithium secondary battery and lithium secondary battery including the same |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2019-0052462 | 2019-05-03 | ||
KR20190052462 | 2019-05-03 | ||
KR1020200050190A KR20200127873A (en) | 2019-05-03 | 2020-04-24 | Seperator for lithium secondary battery and lithium secondary battery comprising the same |
KR10-2020-0050190 | 2020-04-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020226321A1 true WO2020226321A1 (en) | 2020-11-12 |
Family
ID=73051491
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2020/005569 WO2020226321A1 (en) | 2019-05-03 | 2020-04-28 | Separator for lithium secondary battery and lithium secondary battery comprising same |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2020226321A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114229824A (en) * | 2021-12-14 | 2022-03-25 | 中国石油大学(华东) | Porous carbon material and preparation method thereof, lithium-sulfur battery modified diaphragm and preparation method thereof, and lithium-sulfur battery |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160037084A (en) | 2014-09-26 | 2016-04-05 | 주식회사 엘지화학 | Surfur-carbonnanotube complex, method of preparing the same, cathode active material for lithium-sulfur battery including the same and lithium-sulfur battery including the same |
KR20160046775A (en) | 2013-08-01 | 2016-04-29 | 주식회사 엘지화학 | Cathode for lithium-sulfur battery and method of preparing the same |
KR20180020096A (en) | 2016-08-17 | 2018-02-27 | 부산대학교 산학협력단 | separator for lithium sulfur batteries with catalyst coating |
KR20190052462A (en) | 2017-11-08 | 2019-05-16 | 주식회사 서연이화 | Washer liquid injection nozzle |
KR20200050190A (en) | 2018-11-01 | 2020-05-11 | 경희대학교 산학협력단 | Bracket For Orthodontic Treatment |
-
2020
- 2020-04-28 WO PCT/KR2020/005569 patent/WO2020226321A1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160046775A (en) | 2013-08-01 | 2016-04-29 | 주식회사 엘지화학 | Cathode for lithium-sulfur battery and method of preparing the same |
KR20160037084A (en) | 2014-09-26 | 2016-04-05 | 주식회사 엘지화학 | Surfur-carbonnanotube complex, method of preparing the same, cathode active material for lithium-sulfur battery including the same and lithium-sulfur battery including the same |
KR20180020096A (en) | 2016-08-17 | 2018-02-27 | 부산대학교 산학협력단 | separator for lithium sulfur batteries with catalyst coating |
KR20190052462A (en) | 2017-11-08 | 2019-05-16 | 주식회사 서연이화 | Washer liquid injection nozzle |
KR20200050190A (en) | 2018-11-01 | 2020-05-11 | 경희대학교 산학협력단 | Bracket For Orthodontic Treatment |
Non-Patent Citations (5)
Title |
---|
BIAO CHEN, ENZUO LIU, FANG HE, CHUNSHENG SHI, CHUNNIAN HE, JIAJUN LI, NAIQIN ZHAO: "2D sandwich-like carbon-coated ultrathin Ti02@defect-rich MoS2 hybrid nanosheets: Synergistic-effect-promoted electrochemical performance for lithium ion batteries", NANO ENERGY, vol. 26, 7 June 2016 (2016-06-07), pages 541 - 549, XP055760320, DOI: 10.1016/j.nanoen.2016.06.003 * |
HONG-EN WANG, XUECHENG LI, NING QIN, XU ZHAO, HUA CHENG, GUOZHONG CAO, WENJUN ZHANG: "Sulfur-deficient MoS2 grown inside hollow mesoporous carbon as a functional polysulfide mediator", JOURNAL OF MATERIALS CHEMISTRY A, vol. 7, no. 12, 29 April 2019 (2019-04-29), pages 12068 - 12074, XP055760308, DOI: 10.1039/C9TA01722D * |
SHUANG YANG, JUNFAN ZHANG,TAIZHE TAN, YAN ZHAO, NING LIU, AND HAIPENG LI: "A 3D MoS2/Graphene Microsphere Coated Separatorfor Excellent Performance Li-S Batteries", MATERIALS, vol. 11, no. 10, 2018, pages 2064, XP055760313, DOI: 10.3390/ma11102064 * |
ZAHID ALI GHAZI, XIAO HE, ABDUL MUQSIT KHATTAK, NIAZ ALI KHAN, BIN LIANG, AZHAR IQBAL, JINXIN WANG, HAKSONG SIN, LIANSHAN LI, ZHIY: "MoS2/Celgard Separator as Efficient Polysulfide Barrier for Long-Life Lithium-Sulfur Batteries", ADVANCED MATERIAL, vol. 29, no. 21, 2017, pages 1606817, XP055760307, DOI: 10.1002/adma.201606817 * |
ZHENGCUI WU, BAOER LI, YEJING XUE, JINGJING LI, YALI ZHANG, FENG GAO: "Fabrication of defect-rich MoS2 ultrathin nanosheets for application in lithium-ion batteries and supercapacitors", JOURNAL OF MATERIALS CHEMISTRY A, vol. 3, no. 38, 2015, pages 19445 - 19454, XP055760315, DOI: 10.1039/C5TA04549E * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114229824A (en) * | 2021-12-14 | 2022-03-25 | 中国石油大学(华东) | Porous carbon material and preparation method thereof, lithium-sulfur battery modified diaphragm and preparation method thereof, and lithium-sulfur battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020045854A1 (en) | Method for preparing carbon nanostructure comprising molybdenum disulfide, lithium secondary battery cathode comprising carbon nanostructure comprising molybdenum disulfide, prepared thereby, and lithium secondary battery comprising same | |
WO2019151813A1 (en) | Anode active material, anode comprising same, and lithium secondary battery | |
WO2019151814A1 (en) | Anode active material, anode comprising same, and lithium secondary battery | |
WO2020040446A1 (en) | Cathode active material for lithium secondary battery, manufacturing method thereof, and lithium secondary battery comprising same | |
WO2019088475A1 (en) | Sulfur-carbon composite and lithium-sulfur battery including same | |
WO2020226310A1 (en) | Separator for lithium-sulfur battery, and lithium-sulfur battery comprising same | |
WO2021010625A1 (en) | Lithium-sulfur secondary battery | |
WO2019103409A1 (en) | Method for manufacture of sulfur-carbon composite | |
WO2019088628A2 (en) | Sulfur-carbon composite, method for preparing same and lithium secondary battery comprising same | |
WO2022035120A1 (en) | Cathode active material for lithium-sulfur battery, preparation method therefor, and lithium-sulfur battery comprising same | |
WO2020105980A1 (en) | Lithium-sulfur secondary battery | |
WO2022060181A1 (en) | Anode and lithium secondary battery comprising same | |
WO2024136282A1 (en) | Electrolyte for lithium secondary battery and lithium secondary battery comprising same | |
WO2021010626A1 (en) | Lithium-sulfur secondary battery | |
WO2020226321A1 (en) | Separator for lithium secondary battery and lithium secondary battery comprising same | |
WO2020166871A1 (en) | Cathode active material for lithium secondary battery | |
WO2022149913A1 (en) | Sulfur-carbon composite, method for preparing same, and lithium-sulfur battery including same | |
WO2020013482A1 (en) | Method for preparing iron nitrate oxyhydroxide, cathode containing iron nitrate oxyhydroxide prepared thereby for lithium secondary battery, and lithium secondary battery comprising same | |
WO2020060199A1 (en) | Method for preparing iron sulfide, cathode comprising iron sulfide prepared thereby for lithium secondary battery, and lithium secondary battery comprising same | |
WO2020009333A1 (en) | Sulfur-carbon composite, method for producing same, and positive electrode for lithium-sulfur battery and lithium-sulfur battery which comprise same | |
WO2022019698A1 (en) | Negative electrode for lithium-sulfur battery and lithium-sulfur battery including same | |
WO2022255672A1 (en) | Lithium electrode and lithium secondary battery comprising same | |
WO2019198949A1 (en) | Method of producing iron phosphide, positive electrode for lithium secondary battery comprising iron phosphide, and lithium secondary battery comprising same | |
WO2022270739A1 (en) | Electrolyte for lithium secondary battery and lithium secondary battery comprising same | |
WO2022164212A1 (en) | Separator for lithium secondary battery and manufacturing method therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20801464 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021532465 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2020801464 Country of ref document: EP Effective date: 20210615 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |