[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020225936A1 - 鋼板及びその製造方法 - Google Patents

鋼板及びその製造方法 Download PDF

Info

Publication number
WO2020225936A1
WO2020225936A1 PCT/JP2019/044956 JP2019044956W WO2020225936A1 WO 2020225936 A1 WO2020225936 A1 WO 2020225936A1 JP 2019044956 W JP2019044956 W JP 2019044956W WO 2020225936 A1 WO2020225936 A1 WO 2020225936A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
less
steel
content
temperature
Prior art date
Application number
PCT/JP2019/044956
Other languages
English (en)
French (fr)
Inventor
健悟 竹田
裕也 鈴木
登代充 中村
古迫 誠司
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to JP2020513367A priority Critical patent/JP6750759B1/ja
Priority to EP19928200.5A priority patent/EP3967779B1/en
Priority to MX2021012807A priority patent/MX2021012807A/es
Priority to CN201980088698.8A priority patent/CN113348258B/zh
Priority to KR1020217025975A priority patent/KR102626001B1/ko
Priority to US17/599,443 priority patent/US20220177994A1/en
Publication of WO2020225936A1 publication Critical patent/WO2020225936A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C47/00Winding-up, coiling or winding-off metal wire, metal band or other flexible metal material characterised by features relevant to metal processing only
    • B21C47/02Winding-up or coiling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/007Heat treatment of ferrous alloys containing Co
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/021Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • C22C38/105Ferrous alloys, e.g. steel alloys containing cobalt containing Co and Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a steel sheet and a method for manufacturing the same.
  • Galvanized steel sheets are widely used in fields such as construction and automobiles from the viewpoint of improving the corrosion resistance of structural members.
  • spot welding or the like is performed between galvanized steel sheets or between the galvanized steel sheet and another steel sheet for assembling a structure, a vehicle body, etc.
  • the molten zinc becomes the galvanized steel sheet or another steel sheet. It may penetrate into the steel sheet and cause cracks inside the steel sheet.
  • Such a phenomenon is called liquid metal embrittlement cracking (LME), and various proposals have been made in the prior art to suppress the occurrence of such LME cracking.
  • the base material has a predetermined chemical composition, and has an internal oxide layer in which at least a part of the grain boundaries is coated with an oxide from the surface of the base material to a depth of 5.0 ⁇ m or more. Moreover, in the region from the surface of the base material to a depth of 5.0 ⁇ m, a steel sheet having a grain boundary coverage of the oxide of 60% or more and a tensile strength of 900 MPa or more is described. Further, in Patent Document 1, at least a part of the crystal grain boundaries of the base material has an internal oxide layer coated with an oxide of an easily oxidizing element such as Si or Mn, and the grain boundaries are coated with the oxide. It is described that this makes it possible to suppress the invasion of molten metal into the grain boundaries during welding and to suppress LME cracking during welding.
  • Patent Document 2 by controlling the B content contained in the steel material according to the steel material component that determines the tensile strength of the base metal, segregation and melting are performed at the austenite grain boundaries of the weld heat-affected zone structure. It is described that the effective B solid solution amount for suppressing the invasion of plating can be maintained and the occurrence of liquid metal cracking can be suppressed.
  • Patent Document 2 also describes that B is segregated and concentrated at the grain boundaries in the austenite temperature range of about 900 ° C. or higher to suppress the invasion of the low melting point molten metal into the grain boundaries.
  • B in the steel plate is sufficiently segregated at the grain boundaries even by heating during welding.
  • LME cracks are particularly high-strength galvanized steel sheets, for example, galvanized. It is known that it occurs remarkably when a high-strength TRIP steel sheet (transformation-induced plastic steel sheet) or the like is spot-welded. On the other hand, as the strength of the steel sheet increases, there is also a problem that the formability of the steel sheet, for example, mechanical properties such as ductility, generally deteriorates.
  • the present invention has an improved LME resistance due to a novel configuration, particularly an improved LME resistance even in a welding method such as spot welding, and a steel sheet having high strength and excellent ductility. It is an object of the present invention to provide a manufacturing method.
  • the present invention that achieves the above object is as follows. (1) By mass% C: 0.050 to 0.300%, Si: 0.01-2.00%, Mn: 0.10 to 4.00%, P: 0.0001-0.0200%, S: 0.0001 to 0.0200%, N: 0.0001 to 0.0200%, Al: 0.001 to 1.000%, Ti: 0.001 to 0.500%, B: 0.0007-0.0100%, Co: 0 to 0.50%, Ni: 0 to 1.00%, Mo: 0 to 1.00%, Cr: 0-2.000%, Nb: 0 to 0.500%, V: 0 to 0.500%, Cu: 0 to 0.500%, W: 0 to 0.100%, Ta: 0 to 0.100%, Sn: 0 to 0.050%, Sb: 0 to 0.050%, As: 0 to 0.050%, Mg: 0-0.0500%, Ca: 0 to 0.050%, Y: 0 to 0.050%, Zr: 0 to 0.050%,
  • the residual tissue is composed of 10.0% or less of pearlite.
  • one (Fe, Mn) 2 B having a diameter equivalent to a circle of 50 to 300 nm is present at a number density of 1 piece / 500 ⁇ m 2 or more. Steel plate.
  • Casting process including A hot rolling step including finish rolling of the steel pieces, wherein the finish rolling is completed at a temperature of 650 to 950 ° C.
  • a method for producing a steel sheet which comprises a step of winding the obtained hot-rolled steel sheet at a winding temperature of 400 to 700 ° C., and a step of cold-rolling the hot-rolled steel sheet and then annealing.
  • a welding method such as spot welding in which the amount of heat input is relatively small.
  • (Fe, Mn) with pinning the grain boundaries by 2 B the (Fe, Mn) 2 at least partially the grain boundaries of the B
  • the solid solution B can be preferentially supplied and segregated along the grain boundaries by melting above, and as a result, the LME resistance of the steel plate can be significantly improved.
  • the steel sheet according to the embodiment of the present invention is based on mass%.
  • the residual tissue is composed of 10.0% or less of pearlite.
  • (Fe, Mn) 2 B having a diameter equivalent to a circle of 50 to 300 nm is present at a number density of 1 piece / 500 ⁇ m 2 or more.
  • LME cracking in spot welding refers to tensile stress generated by the heat effect of the spot welding, which melts the galvanized steel plate surface and heat shrinks the heat affected zone in the subsequent cooling process. This is a phenomenon in which the molten zinc invades the grain boundaries of the steel due to the generation of stress when the steel plate is pressed by the electrodes during spot welding, thereby causing macroscopic cracks.
  • FIG. 1 is a diagram schematically showing LME cracks generated in a heat-affected zone during spot welding.
  • a nugget (molten solidification portion) 3 is formed by stacking steel plates 1a and steel plates 1b and spot welding them using a pair of electrodes 2a and 2b to form two steel plates 1a and 1b. Can be joined.
  • LME cracking 5 may occur in the heat-affected zone 4 formed around the nugget 3.
  • the heat-affected zone 4 is in a ferrite ( ⁇ ) state because it undergoes a thermal history of being rapidly heated from room temperature to a high temperature in a few seconds during spot welding and then immediately rapidly cooled. After the steel is once transformed into an austenite ( ⁇ ) state, it is generally rapidly cooled within about 1 to 2 seconds.
  • FIG. 2 is a diagram schematically showing the state of the base steel plate and the galvanized layer during spot welding.
  • the structure in the base steel sheet 11 after rapid heating by spot welding is transformed from the ferrite ( ⁇ ) state to the austenite ( ⁇ ) state, and zinc in the plating layer 12 arranged on the ferrite ( ⁇ ) state is transformed. Is in a molten state (FIG. 2 (a)).
  • the tensile stress or the like generated by the heat shrinkage of the heat-affected zone in the immediate cooling process triggers the molten zinc 13 to invade the grain boundaries 14 in the base steel sheet 11 (FIG. 2B). , Which causes LME cracking.
  • FIG. 3 is a graph showing the effect of the addition of B on the relationship between the LME crack length and the nugget diameter when a steel plate sample having a plate thickness of 1.4 mm is used.
  • the nugget diameter corresponds to the length of the molten portion during welding. For this reason, the longer the nugget diameter, the greater the amount of heat input and therefore the greater the amount of zinc that melts, resulting in a generally longer LME crack length.
  • FIG. 4 is a diagram schematically showing segregation of solid solution B into grain boundaries during welding and suppression of LME cracking due to the segregation.
  • B is an element having a property of segregating at grain boundaries
  • B which is solid-solved in the base steel sheet 11 is heated at the time of welding by utilizing such a property.
  • the solid solution B segregated at the grain boundaries allows the molten zinc 13 to penetrate into the steel sheet, for example, the outermost surface layer (several ⁇ m) of the base steel sheet.
  • a welding method having a relatively small amount of heat input such as spot welding has a relatively short holding time at a high temperature, and therefore, as shown in FIG. 5A, spot welding
  • the solid solution B may not be sufficiently supplied to the grain boundaries 14 to be segregated.
  • the tensile stress or the like generated in the subsequent cooling process triggers the molten zinc 13 to invade the grain boundaries 14 in which the solid solution B is not segregated (FIG. 5 (b)), thereby causing the LME. Cracks will occur.
  • the present inventors have studied the structure of a steel sheet capable of efficiently supplying and / or segregating the solid solution B to the grain boundaries during welding. Consequently, the present inventors have found that certain B precipitates in the surface layer region of the steel sheet, and more specifically the use of steel containing at (Fe, Mn) 2 predetermined amount of becomes B precipitates from B Therefore, even in a welding method such as spot welding in which the amount of heat input is relatively small, the solid solution B can be sufficiently supplied and / or segregated at the grain boundaries, and as a result, the LME resistance of the steel sheet is remarkably improved. I found that I could do it.
  • FIG. 6 is a diagram schematically showing the segregation behavior of the solid solution B when spot welding is performed using the steel sheet according to the embodiment of the present invention.
  • the steel sheet according to an embodiment of the present invention the surface region of the base material steel plate 11 at the bottom of the plating layer 12 (Fe, Mn) B precipitates 15 consisting of 2 B is It is present in a predetermined amount.
  • the grain boundaries 14 move due to heating during the spot welding, they are present in the surface layer region of the base steel plate 11 as shown in FIG. 6A (Fe, The grain boundaries 14 are pinned by Mn) 2 B, and as a result, (Fe, Mn) 2 B is inevitably present at the grain boundaries in the surface layer region of the base steel plate 11.
  • (Fe, Mn) 2 B pin the grain boundaries 14 as described above, and at least a part of the (Fe, Mn) 2 B. Preferably most of it dissolves on the grain boundaries 14 so that the solid solution B is preferentially fed and segregated along the grain boundaries 14. Therefore, even if tensile stress is generated due to heat shrinkage of the heat-affected zone in the subsequent quenching process, or even if stress is generated on the surface layer of the steel sheet due to being pressed by the electrodes during spot welding, along the grain boundaries 14.
  • the segregated solid solution B makes it possible to reliably suppress the invasion of molten zinc 13 into the steel sheet (FIG. 6 (b)).
  • a solid solution B is immediately supplied to the grain boundaries under heating during welding by utilizing a B precipitate consisting of (Fe, Mn) 2 B in the steel plate and thereby pinning the grain boundaries. Therefore, the amount of heat input such as spot welding is compared with the case where the solid solution B is supplied to the grain boundaries and segregated from a relatively distant place in the steel plate as shown in FIG. Even with a few welding methods, it is possible to reliably prevent molten metal such as zinc in the plating layer from entering the inside of the steel plate.
  • the steel sheet according to the present invention is not necessarily limited to such a plated steel sheet. It also includes unplated steel sheets. This is because even if the steel sheet is not plated, for example, when spot welding is performed with the galvanized steel sheet, the zinc melted in the galvanized steel sheet penetrates into the unplated steel sheet and LME. This is because cracks may occur.
  • the present inventors can appropriately control the composition and structure of the steel sheet to achieve high strength and high ductility, more specifically, high strength of 700 MPa or more and elongation at break. It was found that high ductility of 0% or more can be achieved.
  • Carbon (C) is an element necessary for improving the strength of the steel sheet. If the C content is less than 0.050%, sufficient strength cannot be obtained, so the C content is set to 0.050% or more.
  • the C content may be 0.060% or more, 0.080% or more, or 0.100% or more.
  • the C content exceeds 0.300%, the strength of the welded portion increases and the LME resistance decreases, so the C content is set to 0.300% or less.
  • the C content may be 0.280% or less, 0.250% or less, or 0.220% or less.
  • Si is an element that suppresses the precipitation of iron-based carbides and contributes to the improvement of strength and moldability.
  • Si content is 0.01% or more.
  • the Si content may be 0.10% or more, 0.50% or more, or 1.00% or more.
  • Si content is set to 2.00% or less.
  • the Si content may be 1.80% or less, 1.60% or less, or 1.50% or less.
  • Manganese (Mn) is an element that enhances hardenability and contributes to the improvement of steel sheet strength.
  • Mn is an essential element for forming a B precipitate composed of (Fe, Mn) 2 B.
  • the Mn content is set to 0.10% or more.
  • the Mn content may be 0.50% or more, 0.70% or more, or 1.00% or more.
  • the Mn content is set to 4.00% or less.
  • the Mn content may be 3.50% or less, 3.20% or less, or 3.00% or less.
  • Phosphorus (P) is an element that has the effect of increasing the strength of the steel sheet and suppressing the invasion of hot-dip zinc into the steel sheet structure. However, if the P content is less than 0.0001%, the above effect may not be sufficiently obtained. In addition, in order to reduce the P content to less than 0.0001%, it takes time for smelting, which causes a decrease in productivity. Therefore, the P content is set to 0.0001% or more. The P content may be 0.0005% or more, 0.0010% or more, or 0.0020% or more. On the other hand, if the P content exceeds 0.0200%, the steel sheet may become brittle due to segregation of P at the grain boundaries, which may reduce the LME resistance. Therefore, the P content is 0.0200% or less. The P content may be 0.0180% or less, 0.0150% or less, or 0.0120% or less.
  • S 0.0001 to 0.0200%
  • Sulfur (S) is an element that causes hot brittleness and also inhibits weldability and corrosion resistance.
  • the S content is set to 0.0001% or more.
  • the S content may be 0.0005% or more, 0.0010% or more, or 0.0020% or more.
  • the S content exceeds 0.0200%, the steel sheet may be embrittled and the LME resistance may be lowered. Therefore, the S content is 0.0200% or less.
  • the S content may be 0.0180% or less, 0.0150% or less, or 0.0120% or less.
  • N Nitrogen (N) is an element that forms a nitride, inhibits stretch flangeability, and causes blowholes during welding.
  • N content is set to 0.0001% or more.
  • the N content may be 0.0005% or more, 0.0010% or more, or 0.0020% or more.
  • N exceeds 0.0200%, the stretch flangeability is remarkably lowered, and blow holes are generated during welding.
  • the N content is 0.0200% or less.
  • the N content may be 0.0180% or less, 0.0150% or less, or 0.0120% or less.
  • Aluminum (Al) is a deoxidizing element and is an element that suppresses the formation of iron-based carbides and contributes to the improvement of strength.
  • the Al content is set to 0.001% or more.
  • the Al content may be 0.005% or more, 0.008% or more, or 0.010% or more.
  • the Al content is set to 1.000% or less.
  • the Al content may be 0.800% or less, 0.500% or less, or 0.300% or less.
  • Titanium (Ti) is an element that contributes to the improvement of steel sheet strength by strengthening precipitation, strengthening fine grains by suppressing the growth of crystal grains, and strengthening dislocations by suppressing recrystallization. Further, Ti forms titanium nitride when producing the steel plate according to the embodiment of the present invention and consumes the solid-dissolved nitrogen in the steel, so that B is combined with the solid-dissolved nitrogen to form boron nitride (BN). and inhibit the formation (Fe, Mn) has an effect of promoting the formation of 2 B. However, if the Ti content is less than 0.001%, the above effects may not be sufficiently obtained.
  • the Ti content is set to 0.001% or more.
  • the Ti content may be 0.005% or more, 0.008% or more, or 0.010% or more.
  • the Ti content is set to 0.500% or less.
  • the Ti content may be 0.400% or less, 0.300% or less, or 0.100% or less.
  • B 0.0007 to 0.0100%
  • Boron (B) is an element that segregates at grain boundaries during welding and contributes to the improvement of LME resistance.
  • the B content is less than 0.0007%
  • (Fe, Mn) 2 B precipitate at all or its formation does not form less consisting of B, and B because of the inability to sufficiently segregated at the grain boundaries The effect of improving LME resistance cannot be sufficiently obtained. Therefore, the B content is set to 0.0007% or more.
  • the B content may be 0.0010% or more, 0.0015% or more, or 0.0020% or more.
  • the B content exceeds 0.0100%, coarse carbides and / or nitrides are generated, the above effects are saturated, the steel pieces are easily cracked, and the ductility is lowered. Therefore, the B content is 0.0100% or less.
  • the B content may be 0.0080% or less, 0.0060% or less, or 0.0050% or less.
  • the basic composition of the steel sheet according to the embodiment of the present invention is as described above. Further, the steel sheet may contain the following elements, if necessary.
  • Co is a carbide-forming element, which is an element effective for ensuring the strength of a member which has been hardened by forming a precipitate, and which also contributes to the improvement of LME resistance.
  • the Co content is preferably 0.01% or more.
  • the Co content may be 0.02% or more, 0.03% or more, or 0.04% or more.
  • the Co content is 0.50% or less.
  • the Co content may be 0.40% or less, 0.30% or less, or 0.20% or less.
  • Nickel (Ni) is an element that contributes to the improvement of strength and also contributes to the improvement of LME resistance.
  • the Ni content is preferably 0.01% or more.
  • the Ni content may be 0.02% or more, 0.03% or more, or 0.04% or more.
  • the Ni content is set to 1.00% or less.
  • the Ni content may be 0.90% or less, 0.80% or less, or 0.70% or less.
  • Molybdenum is an element that enhances the hardenability of steel and contributes to the improvement of strength, and is also an element that contributes to the improvement of LME resistance.
  • the Mo content is preferably 0.01% or more.
  • the Mo content may be 0.02% or more, 0.03% or more, or 0.04% or more.
  • the Mo content is set to 1.00% or less.
  • the Mo content may be 0.90% or less, 0.80% or less, or 0.70% or less.
  • Chromium (Cr) is an element that contributes to the improvement of strength and also contributes to the improvement of LME resistance.
  • the Cr content is preferably 0.001% or more.
  • the Cr content may be 0.010% or more, 0.050% or more, or 0.100% or more.
  • the Cr content exceeds 2.000%, the pickling property, weldability and hot workability may decrease.
  • the Cr content is set to 2.000% or less.
  • the Cr content may be 1.500% or less, 1.300% or less, or 1.000% or less.
  • Nb 0 to 0.500%
  • V vanadium
  • Nb and V contents are preferably 0.001% or more, even if they are 0.005% or more, 0.008% or more, or 0.010% or more, respectively. Good.
  • the Nb and V contents are 0.500% or less, respectively, and may be 0.400% or less, 0.300% or less, or 0.100% or less.
  • Copper (Cu) is an element that contributes to the improvement of strength and also contributes to the improvement of LME resistance.
  • the Cu content is preferably 0.001% or more.
  • the Cu content may be 0.010% or more, 0.050% or more, or 0.100% or more.
  • the Cu content is set to 0.500% or less.
  • the Cu content may be 0.400% or less, 0.350% or less, or 0.300% or less.
  • Tungsten (W) and tantalum (Ta) are both effective elements for controlling the morphology of carbides and increasing the strength of steel, and are also elements that contribute to the improvement of LME resistance. Therefore, one or more selected from these elements may be contained as required.
  • the W and Ta contents are preferably 0.001% or more, even if they are 0.005% or more, 0.007% or more, or 0.010% or more, respectively. Good.
  • the W and Ta contents exceed 0.100%, coarse carbides are precipitated and the amount of solid solution C is reduced, so that the martensite fraction is lowered and sufficient strength may not be obtained. .. Therefore, the W and Ta contents are 0.100% or less, respectively, and may be 0.080% or less, 0.060% or less, or 0.050% or less.
  • Tin (Sn) is an element contained in steel when scrap is used as a raw material, and the smaller the amount, the more preferably 0%. However, since the reduction to less than 0.001% causes an increase in smelting cost, the lower limit is set to 0.001% or more when Sn is included.
  • the Sn content may be 0.002% or more, 0.003% or more, or 0.005% or more.
  • the Sn content is set to 0.050% or less.
  • the Sn content may be 0.040% or less, 0.030% or less, or 0.020% or less.
  • Antimony (Sb) and arsenic (As) are elements that are contained when scrap is used as a steel raw material like Sn and are strongly segregated at grain boundaries, and the smaller the amount, the more preferably 0%.
  • the lower limit is set to 0.001% or more when Sb and As are included.
  • the Sb and As contents may be 0.002% or more, 0.003% or more, or 0.005% or more, respectively.
  • the Sb and As contents are set to 0.050% or less and 0.040%, respectively. Hereinafter, it may be 0.030% or less or 0.020% or less.
  • Mg Magnesium (Mg) is an element that can control the morphology of sulfide by adding a small amount, and is an element that also contributes to the improvement of LME resistance.
  • the Mg content is preferably 0.0001% or more.
  • the Mg content may be 0.0005% or more, 0.0010% or more, or 0.0020% or more.
  • the Mg content is 0.0500% or less.
  • the Mg content may be 0.0400% or less, 0.0300% or less, or 0.0200% or less.
  • Calcium (Ca), yttrium (Y), zirconia (Zr) and lanthanum (La) are elements that can control the morphology of sulfides by adding a small amount like Mg, and also contribute to the improvement of LME resistance. is there. Therefore, one or more selected from these elements may be contained as required.
  • the Ca, Y, Zr and La contents are preferably 0.001% or more, 0.002% or more, 0.003% or more or 0.005% or more, respectively. It may be.
  • the Ca, Y, Zr and La contents may be 0.050% or less, respectively, and may be 0.040% or less, 0.020% or less, or 0.010% or less.
  • Cerium (Ce) is an element that can control the morphology of sulfide by adding a small amount, and is an element that also contributes to the improvement of LME resistance.
  • the Ce content is preferably 0.001% or more.
  • the Ce content may be 0.002% or more, 0.003% or more, or 0.005% or more.
  • the Ce content is set to 0.050% or less.
  • the Ce content may be 0.040% or less, 0.020% or less, or 0.010% or less.
  • the balance other than the above elements consists of Fe and impurities.
  • Impurities are components that are mixed in by various factors in the manufacturing process, including raw materials such as ores and scraps, when steel sheets are industrially manufactured, and are the components that are mixed in with respect to the steel sheets according to the embodiment of the present invention. It includes those that are not intentionally added components (so-called unavoidable impurities).
  • the impurity is an element other than the components described above, and includes an element contained in the steel sheet at a level at which the action and effect peculiar to the element do not affect the characteristics of the steel sheet according to the embodiment of the present invention. Is what you do.
  • the equivalent circle diameter is 50 to 50 in the surface layer region from the surface of the steel sheet (the surface of the base steel sheet when the steel sheet has a plating layer) to a depth of 100 ⁇ m in the plate thickness direction.
  • One 300 nm (Fe, Mn) 2 B exists at a number density of 500 ⁇ m 2 or more, and is particularly dispersed.
  • (Fe, Mn) 2 B having such a number density and a diameter equivalent to a circle in a predetermined range exists or is dispersed in the surface layer region of the steel sheet
  • the grain boundaries in the steel sheet move due to heating during welding.
  • the grain boundary is pinned by (Fe, Mn) 2 B, and as a result, (Fe, Mn) 2 B can be reliably present at the grain boundary in the surface layer region of the steel sheet.
  • (Fe, Mn) 2 B pin the grain boundaries as described above, and at least a part, preferably most of the grain boundaries of the (Fe, Mn) 2 B are grains. It dissolves on the boundaries, which allows the solid solution B to be preferentially supplied and segregated along the grain boundaries.
  • (Fe, Mn) 2 B is present in an amount sufficient to prevent the intrusion of molten metal such as zinc from the surface of the steel sheet, it does not have to be present in the entire steel sheet. As shown above, it is sufficient that the steel sheet exists at a number density of 1 piece / 500 ⁇ m 2 or more in the surface layer region from the surface of the steel sheet to a depth of 100 ⁇ m in the plate thickness direction.
  • (Fe, Mn) 2 B is less than 50 nm, or if the number density of (Fe, Mn) 2 B in the surface layer region is less than 1 piece / 500 ⁇ m 2 , (Fe, Mn) 2 B effect obtained by the presence or dispersed in the surface region, i.e. (Fe, Mn) grain boundary pinning by 2 B, it may be impossible to sufficiently achieve the segregation to the grain boundaries of the solid solution B thus. On the other hand, in some cases (Fe, Mn) the circle equivalent diameter of 2 B becomes excessively large beyond 300 nm, the adjacent (Fe, Mn) the binding of 2 B grains occurs.
  • the surface layer region of the steel sheet may contain (Fe, Mn) 2 B having a circle-equivalent diameter of 50 to 300 nm at a number density of 1 piece / 500 ⁇ m 2 or more, and therefore the circle-equivalent diameter is less than 50 nm. or a 300nm greater (Fe, Mn) may include 2 B.
  • (Fe, Mn) 2 B having a circle-equivalent diameter of 50 to 300 nm is, for example, 3 pieces / 500 ⁇ m 2 or more, 5 pieces / 500 ⁇ m 2 or more, 12 pieces / 500 ⁇ m 2 or more, 25 pieces / It may be present or dispersed at a number density of 500 ⁇ m 2 or more or 50 pieces / 500 ⁇ m 2 or more, and preferably present or dispersed at a number density of 5 pieces / 500 ⁇ m 2 or more.
  • (Fe, Mn) 2 upper limit of the number density of B is not particularly defined, when the number density is too large, as in the case of a circle equivalent diameter, adjacent (Fe, Mn) 2 B grains Bonding may occur, which is therefore undesirable. Further, if the number density of (Fe, Mn) 2 B becomes too large, the ductility of the obtained steel sheet may decrease. Therefore, from the viewpoint of further improving the ductility of the steel sheet, the upper limit of the number density of the circle equivalent diameter of 50 ⁇ 300nm (Fe, Mn) 2 B is preferably 500/500 [mu] m 2 or less, more preferably 400 Pieces / 500 ⁇ m 2 or less, and even more preferably 250 pieces / 500 ⁇ m 2 or less.
  • a connected image of a region of 10 ⁇ m ⁇ 10 ⁇ m is acquired for 5 fields of view at a magnification of at least 30,000 times, and a circle-equivalent diameter of 50 to 300 nm in a region of 500 ⁇ m 2 in total is (Fe, Mn) 2 B.
  • the total number of (Fe, Mn) 2 B obtained is defined as the number density (unit: piece / 500 ⁇ m 2 ).
  • the circle equivalent diameter by applying image analysis on the acquired tissue observation image, and calculates the equivalent circle diameter determined the area of the individual (Fe, Mn) 2 B.
  • the polished surface is finished and polished with alumina abrasive grains.
  • III. The mirror surface is etched by the SPEED method (selective constant potential electrolytic etching method) (asahiclean is used for sample cleaning).
  • IV. A carbon extraction replica sample is prepared from the designated location (Cu is used for the mesh).
  • Electropolishing solution 10% Acetylacetone-1% Tetramethylammonium chloride-methanol
  • Electropolishing conditions -100 mV VS SCE / 10 Coulomb / cm 2 ⁇ TEM observation method>
  • Electron diffraction Nanobeam diffraction (NBD) An electron diffraction image for investigating the structure of the precipitate is obtained with a probe diameter of 3 nm.
  • Ferrite has excellent ductility but a soft structure. It is contained according to the required strength or ductility in order to improve the elongation of the steel sheet. From the viewpoint of improving the ductility of the steel sheet, the ferrite content is 5.0% or more in terms of area ratio, and is 8.0% or more, 10.0% or more, 12.0% or more, or 15.0% or more. May be good. On the other hand, if ferrite is excessively contained, it may be difficult to secure the desired steel sheet strength. Therefore, the ferrite content may be 40.0% or less in terms of area ratio, and may be 38.0% or less, 35.0% or less, 30.0% or less, or 25.0% or less.
  • Martensite and tempered martensite are important structures for ensuring the desired steel sheet strength and the like. From this point of view, the total content of martensite and tempered martensite shall be 10.0% or more in terms of area ratio, 12.0% or more, 15.0% or more, 20.0% or more, or 25. It may be 0% or more. On the other hand, if martensite and tempered martensite are excessively contained, the ductility of the steel sheet is lowered. Therefore, the total content of martensite and tempered martensite should be 60.0% or less in terms of area ratio, and 58.0% or less, 55.0% or less, 50.0% or less or 45.0% or less. There may be.
  • Bainite is an effective structure for ensuring the ductility and strength of steel sheets.
  • the bainite content may be 5.0% or more in terms of area ratio, and may be 8.0% or more, 10.0% or more, or 15.0% or more.
  • the bainite content may be 40.0% or less in terms of area ratio, and may be 35.0% or less, 30.0% or less, or 25.0% or less.
  • the retained austenite improves the ductility of the steel sheet by the TRIP effect of transforming it into martensite by work-induced transformation during the deformation of the steel sheet. Therefore, from the viewpoint of improving the ductility of the steel sheet, the retained austenite content may be 5.0% or more in terms of area ratio, and may be 8.0% or more or 10.0% or more. On the other hand, if the retained austenite is excessively contained, the retained austenite is excessively stabilized and the austenite region is widened after welding, which may reduce the LME resistance of the steel sheet.
  • the retained austenite content may be 25.0% or less in terms of area ratio, and may be 22.0% or less or 20.0% or less.
  • the surface layer region (Fe, Mn) and B precipitates consisting of 2 B that contain a predetermined amount, even at relatively low welding process heat input, such as spot welding Since the solid solution B can be preferentially supplied and segregated along the grain boundaries, the LME resistance of the steel sheet can be remarkably improved.
  • the remaining structure other than the above structure may be 0%, but if the remaining structure exists, the remaining structure is composed of pearlite having an area ratio of 10.0% or less. If the pearlite content exceeds 10.0%, the strength and / or ductility of the steel sheet may decrease. Therefore, the pearlite content may be 8.0% or less, 5.0% or less, or 3.0% or less in terms of area ratio.
  • EBSD electron backscatter diffraction method
  • X-ray diffraction and nightal reagent or repera solution are used to identify ferrite, martensite, tempered martensite, bainite, retained austenite and pearlite and calculate the area ratio. It is carried out by observing and measuring the structure of the steel plate in the rolling direction or in the direction perpendicular to the rolling direction at a magnification of 1000 to 50,000 times by SEM (scanning electron microscope) observation after the corrosion used.
  • the area ratio of ferrite is measured by the following method.
  • the EBSD attached to the SEM measures a range of 1/8 to 3/8 thickness centered on a position of 1/4 of the plate thickness from the surface of the steel plate at intervals (pitch) of 0.2 ⁇ m.
  • the value of the average orientation difference (GAM: Grain average misorientation) in the crystal grains is calculated.
  • a region having a GAM value of less than 0.5 ° is defined as ferrite, and the area ratio thereof is measured.
  • the average orientation difference in the crystal grains is the orientation difference between adjacent measurement points in a region surrounded by grain boundaries having a crystal orientation difference of 5 ° or more, and the measurement points in the crystal grains are calculated. It is an averaged value for all.
  • the area ratio of martensite is obtained by etching the cross section of the steel plate in the plate thickness direction with a repera solution and observing the range of 1/8 to 3/8 thickness centered on the position of 1/4 of the plate thickness from the surface by FE-SEM. However, it is calculated by subtracting the area ratio of retained austenite measured by the X-ray diffraction method described later from the area ratio of the region where the degree of corrosion is relatively smaller than that of other structures.
  • the cross section in the plate thickness direction is corroded by the nital reagent, and the range of 1/8 to 3/8 thickness centered on the position of 1/4 of the plate thickness from the surface of the steel plate is FE-. This is done by observing with SEM and observing the position and variant of cementite contained inside the tissue.
  • cementite is generated inside the martensite truss, but since there are two or more types of crystal orientation relationships between martensite and cementite, the generated cementite has a plurality of variants.
  • cementite or retained austenite is formed at the interface of lath-shaped bainite ferrite.
  • the area ratio of retained austenite is calculated by the X-ray diffraction method.
  • the sample is removed from the plate surface to the depth 1/4 position in the plate thickness direction by mechanical polishing and chemical polishing.
  • the diffraction peaks of the bcc phase (200) and (211) and the fcc phase (200), (220) and (311) obtained by using MoK ⁇ rays as characteristic X-rays with respect to the polished sample.
  • the tissue fraction of retained austenite is calculated from the integrated intensity ratio, and this is used as the area ratio of retained austenite.
  • the steel sheet according to the embodiment of the present invention may have a zinc-containing plating layer (hereinafter, also referred to as “zinc-containing plating layer”) on at least one surface, preferably both surfaces.
  • the plating layer may be a zinc-containing plating layer having an arbitrary composition known to those skilled in the art, and may contain an additive element such as aluminum or magnesium in addition to zinc. Further, the zinc-containing plating layer may or may not be alloyed. Further, the adhesion amount of the zinc-containing plating layer is not particularly limited and may be a general adhesion amount.
  • the steel sheet according to the embodiment of the present invention since the steel sheet contains in (Fe, Mn) 2 predetermined amount of becomes B precipitates from B, a relatively small heat input, such as spot welding Even in the welding method, the solid solution B can be sufficiently supplied and / or segregated at the grain boundaries, and as a result, the LME resistance of the steel sheet can be remarkably improved.
  • high tensile strength specifically, a tensile strength of 700 MPa or more can be achieved while suppressing the occurrence of LME cracking.
  • the tensile strength is preferably 800 MPa or more, more preferably 900 MPa or more.
  • the upper limit of the tensile strength is not particularly limited, but is generally 2000 MPa or less, and may be 1800 MPa or less.
  • the steel sheet according to the embodiment of the present invention excellent ductility can be achieved, and more specifically, the elongation at break is 3.0% or more, preferably 5.0% or more, more preferably. Can achieve ductility of 10.0% or more. Since the steel sheet has a breaking elongation of 3.0% or more, for example, even when the steel sheet is held down by electrodes during welding, the steel sheet can be appropriately welded without cracking.
  • the method for producing a steel sheet according to the embodiment of the present invention is a casting step of continuously casting molten steel having the same chemical composition as that described above for the steel sheet to form a steel piece, and is formed on the surface layer of the steel piece.
  • each step will be described in detail.
  • molten steel having the same chemical composition as that described above for the steel sheet is continuously cast to form a steel piece, which is formed during the continuous casting.
  • Oxygen of more than 10 ppm and less than 100 ppm is introduced into the surface layer of the steel piece.
  • introduction of oxygen can be carried out by any suitable method known to those skilled in the art.
  • the introduction of the oxygen is not particularly limited, but for example, it may be carried out by introducing a powder made of an oxide such as iron oxide near the surface layer of molten steel (that is, near the mold wall on the long side) during continuous casting.
  • it may be carried out by introducing an iron wire near the surface layer of molten steel during continuous casting. Since the surface of iron wire is oxidized, oxygen is easily taken into the surface layer of molten steel during continuous casting by using this, and the diameter and number of iron wires to be introduced should be selected appropriately. Therefore, it is possible to relatively easily control the amount of oxygen introduced into the surface layer of the formed steel piece within the range of more than 10 ppm and less than 100 ppm.
  • iron oxide is formed in the surface layer of the steel piece obtained after solidification by introducing oxygen of more than 10 ppm and less than 100 ppm into the surface layer of the steel piece formed during continuous casting to concentrate it. be able to. Since iron oxide functions as a titanium nitride production site, the solid nitrogen in the steel is consumed for the formation of titanium nitride by forming iron oxide in the surface layer of the steel piece. The consumption of solute nitrogen in the steel for the formation of titanium nitride prevents B in the steel from combining with the solute nitrogen to form boron nitride (BN) during the subsequent annealing step. in the surface layer region of the Yue steel (Fe, Mn) the formation of 2 B can be promoted. As a result, it is possible to achieve improved LME resistance in the finally obtained steel sheet, particularly improved LME resistance even in a welding method such as spot welding.
  • the amount of oxygen introduced into the surface layer of the steel piece is more than 10 ppm and less than 100 ppm, preferably 20 ppm or more or 30 ppm or more, and / or 90 ppm or less or 70 ppm or less.
  • the oxygen concentration on the surface layer of the steel piece is measured by the following procedure. First, a steel piece cooled to room temperature after casting is cut, and a rectangular parallelepiped material having a length of 5 mm in each of the casting direction and the direction perpendicular to the casting direction and a length in the thickness direction of 25 mm is cut out from the surface of the steel piece. .. Since oxidation scale is attached to the surface of the cut out material, after removing the oxidation scale by shot blasting, JIS G 1239 (iron and steel-oxygen quantification method-inert gas melting-infrared) established in 2014. Oxygen concentration is measured according to the absorption method).
  • oxygen is introduced into the surface layer of the slab in the casting process.
  • the heating rate and atmosphere when the slab after casting is reheated for hot rolling can be determined.
  • Oxygen may be introduced into the surface layer of the slab by adjusting. More specifically, by heating the slab after casting relatively slowly and lowering the oxygen concentration in the atmosphere around the slab, the oxide scale present on the slab is outside the Fe ions from the steel. Oxygen in the oxidation scale can be diffused into the steel by inward diffusion while suppressing further growth by lateral diffusion. As a result, it becomes possible to introduce oxygen into the surface layer of the slab to form iron oxide in the surface layer.
  • the cast steel pieces are then subjected to a hot rolling process, in which the cast steel pieces are directly or once cooled and then reheated for hot rolling. Can be carried out by.
  • the heating temperature of the steel piece is generally 1100 ° C. or higher, and the upper limit is not particularly specified, but may be, for example, 1250 ° C. or lower.
  • the cast steel pieces may be roughly rolled before the finish rolling, for example, in order to adjust the plate thickness.
  • Such rough rolling is not particularly limited as long as a desired seat bar size can be secured.
  • the completion temperature in the finish-rolling is controlled in the range of 650 to 950 ° C. If the completion temperature of finish rolling exceeds 950 ° C., the ferrite content in the steel sheet becomes high, and sufficient strength may not be obtained. Therefore, the completion temperature of the finishing temperature is 950 ° C. or lower, preferably 920 ° C. or lower or 900 ° C. or lower. On the other hand, if the completion temperature of finish rolling is less than 650 ° C., cracks may occur on the steel surface and the occurrence of cracks during welding may be promoted as well. Therefore, the completion temperature of the finishing temperature is 650 ° C. or higher, preferably 680 ° C. or higher or 700 ° C. or higher.
  • the obtained hot-rolled steel sheet is wound at a winding temperature of 400 to 700 ° C. in the next winding step.
  • the coiling temperature by controlling the 400 ⁇ 700 ° C., certainly in the surface region of the finally obtained steel sheet (Fe, Mn) 2 can be the formation of B, as a result, improved resistance to LME Improved properties, especially improved LME resistance, can also be achieved in welding methods such as spot welding. If the winding temperature is too high, the ferrite grain size in the hot-rolled steel sheet becomes large, and sufficient strength may not be obtained after annealing the cold-rolled sheet. Therefore, the winding temperature is 700 ° C. or lower, preferably 680 ° C. or lower or 650 ° C.
  • the winding temperature is 400 ° C. or higher, preferably 420 ° C. or higher or 450 ° C. or higher. If the operation of precipitating titanium nitride on the oxide is not performed in advance, (Fe, Mn) 2 B cannot be formed even if the winding temperature is controlled only after winding.
  • Cold rolling and annealing process Finally, the obtained hot-rolled steel sheet is pickled or the like, if necessary, and then cold-rolled and annealed to obtain the steel sheet according to the embodiment of the present invention.
  • Cold rolling and annealing are not particularly limited and can be carried out under any suitable conditions. According to this method, since the solid solution nitrogen in the steel is sufficiently reduced during the annealing step, the steel sheet does not form B with the solid solution nitrogen to form boron nitride (BN). (Fe, Mn) 2 B can be reliably formed in the surface layer region of.
  • a zinc-containing plating layer may be formed on at least one surface of the steel sheet, preferably both surfaces.
  • a plating layer can be formed by any method known to those skilled in the art, and is not particularly limited.
  • the steel sheet after cold rolling is immersed in a zinc-containing plating bath and then annealed. Can be formed.
  • the wound hot-rolled steel sheet is unwound and subjected to pickling.
  • pickling the oxide scale on the surface of the hot-rolled steel sheet can be removed, and the chemical conversion treatment property and the plating property of the cold-rolled steel sheet can be improved.
  • Pickling may be performed once or may be divided into a plurality of times.
  • the cold rolling reduction rate affects the recrystallization behavior of ferrite during cold rolling annealing. If it is less than 10.0%, the directional integration degree of ferrite may decrease and the ductility may deteriorate. Therefore, the lower limit is preferably 10.0% or more, more preferably 15.0% or more. Further, if it exceeds 90.0%, recrystallization of ferrite becomes easy, but austenite generated in the hot-rolled plate undergoes work-induced transformation, and the degree of orientational integration of martensite and tempered martensite increases, so ductility May deteriorate. Therefore, the upper limit is preferably 90.0% or less, and more preferably 85.0% or less.
  • the heating rate when the cold-rolled steel sheet passes through a continuous annealing line or a plating line is not particularly limited, but if the heating rate is less than 0.5 ° C./sec, productivity may be significantly impaired.
  • the heating rate is slow, there tends to be formed in the surface layer region of the steel sheet (Fe, Mn) is a circle equivalent diameter of 2 B increases, having a circle equivalent diameter of greater than for example 300nm (Fe, Mn) 2 B tends to be produced in a relatively large amount. Therefore, the heating rate is preferably 0.5 ° C./sec or more. On the other hand, when the heating rate in excess of 100 ° C.
  • the heating rate is preferably 100 ° C./sec or less.
  • the annealing temperature is a factor that affects the recrystallization behavior of ferrite. It also affects the formation behavior of austenite and is an extremely important control factor in controlling the strength ductile balance of steel. Below 700 ° C., the amount of austenite produced is small, and unrecrystallized ferrite remains, so ductility may deteriorate. Therefore, the lower limit is preferably 700 ° C. or higher, more preferably 750 ° C. or higher.
  • the upper limit is preferably 900 ° C. or lower, more preferably 850 ° C. or lower. It is not necessary to raise the dew point of the annealing atmosphere to form an internal oxide. Even if an internal oxide layer is formed during annealing, the previously formed (Fe, Mn) 2 B is maintained.
  • the steel sheet is subjected to a continuous annealing line and annealed by heating to an annealing temperature.
  • the holding time is preferably 10 to 600 seconds. If the holding time is less than 10 seconds, the fraction of austenite at the annealing temperature is insufficient, or the carbides existing before annealing are insufficiently dissolved, resulting in a predetermined structure and properties. It may not be obtained. Even if the holding time exceeds 600 seconds, there is no problem in terms of characteristics, but since the line length of the equipment becomes long, about 600 seconds is a practical upper limit.
  • the lower limit of the average cooling rate is not particularly limited, but may be, for example, 2.5 ° C./sec.
  • the reason why the lower limit of the average cooling rate is set to 2.5 ° C./sec is to prevent the base steel sheet from being softened due to ferrite transformation. If the average cooling rate is slower than 2.5 ° C / sec, the strength may decrease. It is more preferably 5.0 ° C./sec or higher, still more preferably 10.0 ° C./sec or higher, and even more preferably 20.0 ° C./sec or higher.
  • cooling rate is not limited. At temperatures below 550 ° C., a low temperature transformation structure is obtained and therefore the cooling rate is not limited. Cooling at a rate faster than 100.0 ° C./sec causes a low-temperature transformation structure on the surface layer, which causes variations in hardness. Therefore, cooling is preferably performed at 100.0 ° C./sec or less. More preferably, it is 80.0 ° C./sec or less. More preferably, it is 60.0 ° C./sec or less.
  • the above cooling is stopped at a temperature of 25 ° C to 550 ° C (cooling stop temperature), and subsequently, when the cooling stop temperature is less than the plating bath temperature of -40 ° C, the temperature range is 350 ° C to 550 ° C. It may be reheated and retained.
  • martensite is formed from untransformed austenite during cooling. After that, by reheating, martensite is tempered, carbide precipitation and dislocation recovery / rearrangement occur in the hard phase, and hydrogen embrittlement resistance is improved.
  • the lower limit of the cooling stop temperature is set to 25 ° C. because excessive cooling not only requires a large capital investment but also saturates the effect.
  • the steel sheet may be retained in a temperature range of 350 to 550 ° C. after reheating and before immersion in the plating bath.
  • the retention in this temperature range not only contributes to tempering of martensite, but also eliminates temperature unevenness in the width direction of the plate and improves the appearance after plating.
  • the cooling stop temperature is 350 ° C. to 550 ° C., retention may be performed without reheating.
  • the residence time is 10 seconds or more and 600 seconds or less in order to obtain the effect.
  • the cold-rolled sheet or the steel sheet plated on the cold-rolled sheet is reheated after being cooled to room temperature or in the middle of cooling to room temperature (however, below the martensite transformation start temperature (Ms)). May be started and held in a temperature range of 150 ° C. or higher and 400 ° C. or lower for 2 seconds or longer. According to this step, hydrogen embrittlement resistance can be improved by tempering the martensite generated during cooling after reheating to obtain tempered martensite. When the tempering step is performed, if the holding temperature is less than 150 ° C.
  • tempering when tempering is performed, it is preferable to hold the tempering in a temperature range of 150 ° C. or higher and 400 ° C. or lower for 2 seconds or longer. Tempering may be carried out in a continuous annealing facility, or may be carried out offline after continuous annealing in a separate facility. At this time, the tempering time differs depending on the tempering temperature. That is, the lower the temperature, the longer the time, and the higher the temperature, the shorter the time.
  • the cold-rolled steel sheet during or after the annealing process is hot-dip galvanized by heating or cooling it to (galvanizing bath temperature -40) ° C to (zinc plating bath temperature +50) ° C, if necessary. You may.
  • the hot-dip galvanizing step forms a hot-dip galvanizing layer on at least one surface, preferably both surfaces, of the cold-rolled steel sheet. In this case, the corrosion resistance of the cold-rolled steel sheet is improved, which is preferable. Even if hot-dip galvanizing is applied, the hydrogen embrittlement resistance of the cold-rolled steel sheet can be sufficiently maintained.
  • the plating treatment is performed by the Zenzimer method, in which "after degreasing and pickling, heating in a non-oxidizing atmosphere, annealing in a reducing atmosphere containing H 2 and N 2 , then cooling to near the plating bath temperature and immersing in a plating bath".
  • An all-reduction furnace method that "adjusts the atmosphere at the time of annealing, first oxidizes the surface of the steel sheet, then reduces it to clean it before plating, and then immerse it in the plating bath", or "the steel sheet There is a flux method such as "after degreasing and pickling, flaxing with ammonium chloride or the like and immersing in a plating bath", but the effect of the present invention can be exhibited regardless of the conditions.
  • Ni plating before plating is not necessary in the present invention, and the steel sheet is directly galvanized. However, Ni plating itself (Fe, Mn) does not affect the formation maintenance of 2 B, Ni plating itself may be there.
  • the plating bath temperature is preferably 450 to 490 ° C. If the plating bath temperature is less than 450 ° C., the viscosity of the plating bath becomes excessively high, it becomes difficult to control the thickness of the plating layer, and the appearance of the hot-dip galvanized steel sheet may be impaired. On the other hand, if the plating bath temperature exceeds 490 ° C., a large amount of fume is generated, which may make safe plating operation difficult.
  • the plating bath temperature is more preferably 455 ° C. or higher, and more preferably 480 ° C. or lower.
  • composition of the plating bath is preferably Zn as the main component, and the effective Al amount (value obtained by subtracting the total Fe amount from the total Al amount in the plating bath) is 0.050 to 0.250% by mass. If the amount of effective Al in the plating bath is less than 0.050% by mass, Fe may penetrate into the plating layer excessively and the plating adhesion may decrease. On the other hand, when the effective Al amount in the plating bath exceeds 0.250% by mass, an Al-based oxide that inhibits the movement of Fe atoms and Zn atoms is generated at the boundary between the steel sheet and the plating layer, and the plating adhesion is improved. It may decrease.
  • the amount of effective Al in the plating bath is more preferably 0.065% by mass or more, and more preferably 0.180% by mass or less.
  • the plating bath dipping plate temperature (the temperature of the steel plate when immersed in the hot dip galvanizing bath) is from a temperature 40 ° C lower than the hot dip galvanizing bath temperature (hot dip galvanizing bath temperature -40 ° C) to 50 ° C lower than the hot dip galvanizing bath temperature.
  • a temperature range up to a high temperature is preferable. If the temperature of the hot-dip galvanizing plate is lower than the hot-dip galvanizing bath temperature of ⁇ 40 ° C., the heat removed during the dipping in the plating bath is large, and a part of the hot-dip zinc may solidify, which is not desirable.
  • the plate temperature before immersion is lower than the hot-dip galvanizing bath temperature of -40 ° C, further heating is performed before immersion in the plating bath by any method to control the plate temperature to -40 ° C or higher. It may be immersed in a plating bath. Further, when the temperature of the plating bath dipping plate exceeds the hot dip galvanizing bath temperature + 50 ° C., an operational problem is induced due to the rise in the plating bath temperature.
  • the base steel sheet may be plated with one or more of Ni, Cu, Co, and Fe before annealing in the continuous hot-dip galvanizing line.
  • Hot-dip galvanized steel sheets and alloyed hot-dip galvanized steel sheets are top-layer plated for the purpose of improving coatability and weldability, and various treatments such as chromate treatment, phosphate treatment, and lubricity improvement are performed. It is also possible to perform treatment, weldability improvement treatment and the like.
  • skin pass rolling may be performed for the purpose of improving ductility by straightening the shape of the steel sheet and introducing movable dislocations.
  • the rolling reduction of the skin pass after the heat treatment is preferably in the range of 0.1 to 1.5%. If it is less than 0.1%, the effect is small and control is difficult. Therefore, 0.1% is set as the lower limit. If it exceeds 1.5%, the productivity will drop significantly, so the upper limit is 1.5%.
  • the skin path may be done inline or offline.
  • the skin pass of the desired reduction rate may be performed at one time, or may be performed in several times.
  • Example 1 When the steel having the chemical composition shown in Table 1 was melted and the steel piece was cast, the steel piece was produced by melt-adding an iron wire to the surface layer of the steel piece. These steel pieces were inserted into a furnace heated to 1220 ° C., subjected to a homogenization treatment of holding for 60 minutes, then taken out into the atmosphere and hot-rolled to obtain a steel sheet having a plate thickness of 2.8 mm.
  • the completion temperature of finish rolling in hot rolling is 920 ° C., and 1.5 seconds after the completion of finish rolling, cooling is performed by water cooling, and the temperature is cooled to 550 ° C. at a rate of 28 ° C./sec at 550 ° C. I rolled it up.
  • the oxide scale of the hot-rolled steel sheet was removed by pickling and cold-rolled with a reduction ratio of 50% to finish the sheet thickness to 1.4 mm. Further, the cold-rolled steel sheet is heated to 850 ° C. at a rate of 4.5 ° C./sec, held at 850 ° C. for 110 seconds, cooled to 330 ° C. at an average cooling rate of 40.0 ° C./sec, and subsequently. A cold rolled sheet was annealed at 380 ° C. for 200 seconds. Further, the plate after annealing the cold-rolled plate was subjected to skin pass rolling with a steel strip elongation rate of 0.1%.
  • Table 2 shows the evaluation results of the characteristics of the steel sheet subjected to the above processing heat treatment.
  • the balance other than the components shown in Table 1 is Fe and impurities.
  • the chemical composition of the sample collected from the produced steel sheet was the same as that of the steel shown in Table 1.
  • Tensile strength (MPa) and elongation at break (%) are based on JIS Z 2241 (2011) using JIS No. 5 test pieces collected with the direction perpendicular to the rolling direction (width direction) of the obtained steel sheet as the longitudinal direction. And evaluated.
  • the LME resistance was evaluated as follows. A welding test was performed on GA mild steel (alloyed hot-dip zinc-plated steel sheet) and the steel sheet shown in Table 2 under the following conditions to prepare test pieces welded by changing the current amount from 4.0 kA to 10.0 kA, and then welded. Observe the cross-sectional structure to confirm the nugget diameter and crack length, and if the crack length is less than 0.1 mm in the region where the nugget diameter is 5.5 mm or less, pass ( ⁇ ) and the nugget diameter is When the crack length was 0.1 mm or more in the region of 5.5 mm or less, the result was rejected (x).
  • Electrode DR type electrode made of Cr-Cu (tip outer diameter: 8 mm, R: 40 mm) Pressurized pressure P: 450 kg Electrode tilt angle ⁇ : 5 ° Upslope: None 1st energization time t1: 0.2 seconds Non-energized tc: 0.04 seconds 2nd energization time t2: 0.4 seconds Current ratio I1 / I2: 0.7 Retention time after energization: 0.1 seconds
  • the steel sheet When the evaluation of LME resistance is ⁇ , the tensile strength is 700 MPa or more, and the elongation at break is 3.0% or more, the steel sheet has improved LME resistance, high strength, and excellent ductility. Evaluated as.
  • Example Y-1 had a low C content, so that the tensile strength was less than 700 MPa. Since Example Z-1 had a high C content, the strength of the welded portion increased, and as a result, the LME resistance decreased.
  • Example AA-1 had a high Si content, so that retained austenite was excessively stabilized, resulting in a decrease in LME resistance.
  • AB-1 was less Mn content, (Fe, Mn) can not be precipitated B precipitates consisting of 2 B, anti-LME property deteriorate.
  • Example AC-1 had a high Mn content, so that the austenite phase in the steel sheet was stabilized and the austenite phase remained after welding, resulting in a decrease in LME resistance.
  • Example AD-1 had a high P content, so that the steel sheet became brittle, and cracks occurred when the thermal stress during welding increased.
  • Example AE-1 had a high S content, so that the steel sheet was similarly brittle and cracked when the thermal stress during welding increased.
  • AF-1 had high N content, and generate boron nitride (BN) (Fe, Mn) form of 2 B is inhibited, anti-LME property deteriorate as a result.
  • AG-1 had a high Al content, ferrite transformation in the steel plate was promoted and sufficient tensile strength could not be obtained.
  • Example AH-1 had a high Ti content, so that bainite transformation in the steel sheet was suppressed and sufficient ductility could not be obtained.
  • AI-1 was less B content, (Fe, Mn) can not be precipitated B precipitates consisting of 2 B, anti-LME property deteriorate.
  • Example AJ-1 had a high B content, so that coarse B carbide was generated and the ductility was lowered.
  • Example AK-1 had a high Co content, so that pearlite transformation was promoted and sufficient tensile strength could not be obtained.
  • Examples AL-1 and AM-1 had high Ni and Mo contents, respectively, so that ferrite transformation in the steel sheet was suppressed and ductility was lowered.
  • Example AN-1 had a high Cr content, so that pearlite transformation was promoted and the strength decreased.
  • Examples AP-1 and AQ-1 had high Nb and V contents, respectively, so that coarse carbides were precipitated and the amount of solid solution C was reduced. As a result, the martensite fraction was lowered and sufficient strength was obtained. There wasn't.
  • Example AR-1 had a high Cu content, which led to embrittlement of the steel sheet and reduced ductility.
  • Examples AS-1 and AT-1 have high W and Ta contents, respectively, so that coarse carbides are precipitated and the amount of solid solution C is reduced, and as a result, the martensite fraction is lowered and sufficient strength is obtained. There wasn't.
  • Examples AU-1 to BC-1 had high contents of Sn, Sb, As, Mg, Ca, Y, Zr, La and Ce, respectively, which caused embrittlement of the steel sheet and reduced ductility.
  • Examples A-1 to X-1 by appropriately controlling the chemical composition and structure of the steel sheet, the steel sheet has improved LME resistance, high strength and excellent ductility. I was able to get.
  • Example 2 Further, in order to investigate the influence of the manufacturing conditions, the steel types A to X whose excellent properties were recognized in Table 2 were subjected to the processing heat treatment under the manufacturing conditions shown in Table 3 to heat the sheet thickness to 2.3 mm. Rolled steel sheets were prepared and their characteristics after cold annealing were evaluated.
  • the symbols GI and GA of the plating treatment indicate the method of the galvanizing treatment
  • GI is a steel sheet in which the steel sheet is immersed in a hot-dip galvanizing bath at 460 ° C. to give a zinc plating layer on the surface of the steel sheet.
  • GA is a steel sheet in which an alloy layer of iron and zinc is provided on the surface of the steel sheet by immersing the steel sheet in a hot-dip galvanizing bath and then raising the temperature of the steel sheet to 485 ° C. Further, in the cold-rolled plate annealing, the steel plate once cooled to 150 ° C. is reheated and held for 2 to 250 seconds before the steel plate is cooled to room temperature after being held at each residence temperature. It was.
  • the examples in which the tempering times are 10800 and 33100 seconds are examples in which the wound coil is tempered by another annealing device (box annealing furnace) after cooling to room temperature. Further, in Table 3, the example in which the tempering temperature is described as “none” is an example in which tempering is not given. The results obtained are shown in Table 4.
  • the characteristic evaluation method is the same as in Example 1.
  • Examples C-2, T-2, E-3 and V-3 introduced a small amount of oxygen into the surface layer of the steel piece during the casting process, so that the surface layer region of the steel sheet (Fe, Mn) 2 B could not be formed, and as a result, the LME resistance was lowered.
  • Example U-2 since the winding temperature was low, the total content of martensite and tempered martensite was high, and the steel sheet became hard and brittle, resulting in a decrease in ductility.
  • Example W-2 since the completion temperature of finish rolling was high, the ferrite content in the steel sheet was high, and the total content of martensite and tempered martensite was low, resulting in insufficient strength. ..
  • Example F-3 since the winding temperature was high, the ferrite content in the steel sheet was high, and as a result, sufficient strength could not be obtained.
  • Example G-3 the completion temperature of finish rolling was low, so that the surface of the steel sheet was cracked. Therefore, no tissue analysis or mechanical property evaluation was performed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Metal Rolling (AREA)

Abstract

所定の化学組成及び組織を有し、表面から板厚方向に深さ100μmまでの表層領域において、円相当直径50~300nmの(Fe,Mn)2Bが1個/500μm2以上の数密度で存在している鋼板が提供される。所定の化学組成を有する溶鋼を連続鋳造して鋼片を形成する鋳造工程であって、鋼片の表層に10ppm超、100ppm未満の酸素を導入することを含む鋳造工程、鋼片を仕上げ圧延することを含む熱間圧延工程であって、仕上げ圧延の完了温度が650~950℃である熱間圧延工程、得られた熱延鋼板を400~700℃の巻取温度で巻き取る工程、並びに熱延鋼板に冷間圧延及び焼鈍を施す工程を含む鋼板の製造方法がさらに提供される。

Description

鋼板及びその製造方法
 本発明は、鋼板及びその製造方法に関する。
 亜鉛めっき鋼板は、建築や自動車などの分野において構造部材の耐食性を向上させる観点から幅広く用いられている。しかしながら、構造物や車体等の組み立てのために、亜鉛めっき鋼板同士や、あるいは当該亜鉛めっき鋼板と他の鋼板との間でスポット溶接等を施すと、溶融した亜鉛が亜鉛めっき鋼板や他の鋼板の鋼中に侵入して鋼板内部に割れを生じることがある。このような現象は、液体金属脆化割れ(LME)と呼ばれており、従来技術では、このようなLME割れの発生を抑制するために種々の提案がなされている。
 特許文献1では、母材が所定の化学組成を有し、前記母材の表面から5.0μm以上の深さまで、結晶粒界の少なくとも一部が酸化物に被覆された内部酸化層を有し、かつ、前記母材の表面から5.0μmの深さまでの領域において、前記酸化物の粒界被覆率が60%以上であり、900MPa以上の引張強さを有する鋼板が記載されている。また、特許文献1では、母材の結晶粒界の少なくとも一部がSi、Mn等の易酸化性元素の酸化物によって被覆された内部酸化層を有し、結晶粒界が当該酸化物によって被覆されることで、溶接時に溶融金属の結晶粒界への侵入を抑制するとともに、溶接中のLME割れを抑制することが可能になると記載されている。
 特許文献2では、亜鉛系合金めっき層を鋼材表面に設けた亜鉛系合金めっき鋼材において、前記鋼材が、質量%で、C:0.01~0.3%、Si:0.01~2.0%、Mn:0.1~3.0%、S:0.015%以下、Al:0.001~0.5%、N:0.0005~0.006%、さらに、Nb、V、および、Zrのうちの1種または2種以上を合計量で0.01~0.60%を含有し、下記式:E値=[%C]+[%Si]/17+[%Mn]/7.5+[%Ni]/17+[%Nb]/2+[%V]/1.5+[%Zr]/2で示される液体金属脆化の感度指数E値が0.24を超え、かつB含有量が3ppm以上、-102×E+61ppm以下を満足し、残部がFeおよび不可避的不純物からなることを特徴とする亜鉛系合金めっき鋼材が記載されている。また、特許文献2では、母材の引張り強さを決定する鋼材成分に応じて鋼材中に含有させるB含有量を制御することにより、溶接熱影響部組織のオーステナイト粒界に偏析し、かつ溶融めっきの侵入を抑制するための有効B固溶量を維持し、液体金属割れ発生を抑制することができると記載されている。
特許第6388099号公報 特開2006-249521号公報
 特許文献2ではまた、約900℃以上のオーステナイト温度域でBが粒界に偏析・濃化することにより低融点溶融金属の粒界侵入が抑制される旨が記載されている。しかしながら、入熱量が比較的少ない溶接方法、例えば、高温で保持する時間が比較的短いスポット溶接などの溶接方法においては、溶接時の加熱によっても鋼板中のBを粒界に十分に偏析させることができない場合があり、このような場合には、亜鉛等の溶融金属が粒界に侵入することを確実に抑制することができないため、結果として鋼板内部にLME割れを生じさせてしまうことがある。したがって、当技術分野では、スポット溶接などの特定の溶接方法においても、亜鉛等の溶融金属が粒界に侵入することをより確実に抑制することができる、改善された耐LME性を有する鋼板が求められている。
 また、自動車業界等では、車体の軽量化の要求を満足させるために高強度鋼板の開発が進められているが、上記のLME割れは、特に高強度の亜鉛めっき鋼板、例えば亜鉛めっきがされた高強度のTRIP鋼板(変態誘起塑性鋼板)等をスポット溶接した際に顕著に発生することが知られている。一方で、鋼板の高強度化に伴い、一般的には鋼板の成形性、例えば、延性などの機械特性が低下するという問題もある。
 そこで、本発明は、新規な構成により、改善された耐LME性、特にはスポット溶接などの溶接方法においても改善された耐LME性を有するとともに、高強度でかつ延性にも優れた鋼板及びその製造方法を提供することを目的とする。
 上記目的を達成する本発明は下記のとおりである。
 (1)質量%で、
 C:0.050~0.300%、
 Si:0.01~2.00%、
 Mn:0.10~4.00%、
 P:0.0001~0.0200%、
 S:0.0001~0.0200%、
 N:0.0001~0.0200%、
 Al:0.001~1.000%、
 Ti:0.001~0.500%、
 B:0.0007~0.0100%、
 Co:0~0.50%、
 Ni:0~1.00%、
 Mo:0~1.00%、
 Cr:0~2.000%、
 Nb:0~0.500%、
 V:0~0.500%、
 Cu:0~0.500%、
 W:0~0.100%、
 Ta:0~0.100%、
 Sn:0~0.050%、
 Sb:0~0.050%、
 As:0~0.050%、
 Mg:0~0.0500%、
 Ca:0~0.050%、
 Y:0~0.050%、
 Zr:0~0.050%、
 La:0~0.050%、及び
 Ce:0~0.050%
を含有し、残部がFe及び不純物からなる化学組成を有し、
 面積率で、
 フェライト:5.0~40.0%、
 マルテンサイト及び焼き戻しマルテンサイトの合計:10.0~60.0%、
 ベイナイト:5.0~40.0%、及び
 残留オーステナイト:5.0~25.0%
を含有し、残部組織が存在する場合には、前記残部組織が10.0%以下のパーライトからなり、
 表面から板厚方向に深さ100μmまでの表層領域において、円相当直径50~300nmの(Fe,Mn)2Bが1個/500μm2以上の数密度で存在していることを特徴とする、鋼板。
 (2)Co:0.01~0.50%、
 Ni:0.01~1.00%、
 Mo:0.01~1.00%、
 Cr:0.001~2.000%、
 Nb:0.001~0.500%、
 V:0.001~0.500%、
 Cu:0.001~0.500%、
 W:0.001~0.100%、
 Ta:0.001~0.100%、
 Sn:0.001~0.050%、
 Sb:0.001~0.050%、
 As:0.001~0.050%、
 Mg:0.0001~0.0500%、
 Ca:0.001~0.050%、
 Y:0.001~0.050%、
 Zr:0.001~0.050%、
 La:0.001~0.050%、及び
 Ce:0.001~0.050%
の1種又は2種以上を含有することを特徴とする、上記(1)に記載の鋼板。
 (3)引張強度が700MPa以上であり、破断伸びが3.0%以上であることを特徴とする、上記(1)又は(2)に記載の鋼板。
 (4)円相当直径50~300nmの(Fe,Mn)2Bが1~500個/500μm2の数密度で存在していることを特徴とする、上記(1)~(3)のいずれかに記載の鋼板。
 (5)前記鋼板の少なくとも一方の表面に亜鉛を含有するめっき層を有することを特徴とする、上記(1)~(4)のいずれかに記載の鋼板。
 (6)上記(1)又は(2)に記載の化学組成を有する溶鋼を連続鋳造して鋼片を形成する鋳造工程であって、前記鋼片の表層に10ppm超、100ppm未満の酸素を導入することを含む鋳造工程、
 前記鋼片を仕上げ圧延することを含む熱間圧延工程であって、前記仕上げ圧延の完了温度が650~950℃である熱間圧延工程、
 得られた熱延鋼板を400~700℃の巻取温度で巻き取る工程、並びに
 前記熱延鋼板を冷間圧延し、次いで焼鈍する工程
を含むことを特徴とする、鋼板の製造方法。
 (7)冷間圧延後の焼鈍において、鋼板の少なくとも一方の表面に亜鉛を含有するめっき層が形成されることを特徴とする、上記(6)に記載の鋼板の製造方法。
 本発明によれば、鋼板の表層領域において(Fe,Mn)2BからなるB析出物を所定の量において含有する鋼板を使用することで、スポット溶接のような入熱量が比較的少ない溶接方法においても、溶接時の加熱により鋼板中の粒界が移動する際に、(Fe,Mn)2Bによって粒界をピン止めするとともに、当該(Fe,Mn)2Bの少なくとも一部が粒界上で溶解し、それによって固溶Bを粒界に沿って優先的に供給しそして偏析させることができるので、その結果として鋼板の耐LME性を顕著に改善させることができる。加えて、本発明によれば、700MPa以上の高強度及び破断伸びが3.0%以上の高延性を達成することが可能である。
スポット溶接の際に熱影響部に生じるLME割れを模式的に示す図である。 スポット溶接の際の母材鋼板と亜鉛めっき層の状態を模式的に示す図である。 板厚1.4mmの鋼板試料を用いた場合にBの添加がLME割れ長さとナゲット径の関係に及ぼす影響を示すグラフである。 溶接時の固溶Bの粒界への偏析及びそれによるLME割れの抑制を模式的に示す図である。 スポット溶接等の場合における例示的な固溶Bの挙動を模式的に示す図である。 本発明の実施形態に係る鋼板を用いてスポット溶接した場合の固溶Bの偏析挙動を模式的に示す図である。
<鋼板>
 本発明の実施形態に係る鋼板は、質量%で、
 C:0.050~0.300%、
 Si:0.01~2.00%、
 Mn:0.10~4.00%、
 P:0.0001~0.0200%、
 S:0.0001~0.0200%、
 N:0.0001~0.0200%、
 Al:0.001~1.000%、
 Ti:0.001~0.500%、
 B:0.0007~0.0100%、
 Co:0~0.50%、
 Ni:0~1.00%、
 Mo:0~1.00%、
 Cr:0~2.000%、
 Nb:0~0.500%、
 V:0~0.500%、
 Cu:0~0.500%、
 W:0~0.100%、
 Ta:0~0.100%、
 Sn:0~0.050%、
 Sb:0~0.050%、
 As:0~0.050%、
 Mg:0~0.0500%、
 Ca:0~0.050%、
 Y:0~0.050%、
 Zr:0~0.050%、
 La:0~0.050%、及び
 Ce:0~0.050%
を含有し、残部がFe及び不純物からなる化学組成を有し、
 面積率で、
 フェライト:5.0~40.0%、
 マルテンサイト及び焼き戻しマルテンサイトの合計:10.0~60.0%、
 ベイナイト:5.0~40.0%、及び
 残留オーステナイト:5.0~25.0%
を含有し、残部組織が存在する場合には、前記残部組織が10.0%以下のパーライトからなり、
 表面から板厚方向に深さ100μmまでの表層領域において、円相当直径50~300nmの(Fe,Mn)2Bが1個/500μm2以上の数密度で存在していることを特徴としている。
 先に述べたとおり、高温で保持する時間が比較的短いスポット溶接などの溶接方法においては、溶接時の加熱によっても鋼板中のBを粒界に十分に偏析させることができない場合があり、このような場合には、溶接時の熱で溶融しためっき層中の亜鉛等の溶融金属が溶接部組織の粒界に侵入して鋼板内部にLME割れを生じさせてしまうという問題がある。より詳しく説明すると、スポット溶接におけるLME割れとは、当該スポット溶接中の熱影響によって鋼板表面の亜鉛めっきが溶融するとともに、その後の冷却過程において熱影響部が熱収縮することで発生する引張応力や鋼板がスポット溶接時に電極で押さえつけられる際の応力発生等によってこの溶融亜鉛が鋼の粒界に侵入し、それによって巨視的な割れを発生させる現象である。
 図1は、スポット溶接の際に熱影響部に生じるLME割れを模式的に示す図である。図1に示されるように、鋼板1a及び鋼板1bを重ねて一対の電極2a及び2bを用いてスポット溶接することにより、ナゲット(溶融凝固部)3を形成して2枚の鋼板1a及び1bを接合することができる。この際、図1に示されるように、ナゲット3の周囲に形成される熱影響部4においてLME割れ5が発生することがある。当該熱影響部4は、スポット溶接の際に室温から数秒で高温まで急速加熱され、次いで直ちに急冷されるという熱履歴を受けるため、当該熱影響部4では、フェライト(α)の状態にあった鋼が一旦オーステナイト(γ)の状態に変態した後、一般的には約1~2秒程度の間に急冷されることになる。
 図2は、スポット溶接の際の母材鋼板と亜鉛めっき層の状態を模式的に示す図である。図2を参照すると、スポット溶接による急速加熱後の母材鋼板11中の組織はフェライト(α)の状態からオーステナイト(γ)の状態に変態し、その上に配置されるめっき層12中の亜鉛は溶融した状態にある(図2(a))。次に、直後の急冷過程において熱影響部が熱収縮することで発生する引張応力等が引き金となり、この溶融亜鉛13が母材鋼板11中の粒界14に侵入し(図2(b))、それによってLME割れが発生する。
 このようなLME割れを抑制するためには、図2(b)に示されるような粒界への溶融亜鉛13の侵入を防ぐことが極めて重要である。そこで、例えば、1つの解決策として、粒界に固溶Bを偏析させることによって当該粒界への溶融亜鉛の侵入を防ぐ方法が考えられる。図3は、板厚1.4mmの鋼板試料を用いた場合にBの添加がLME割れ長さとナゲット径の関係に及ぼす影響を示すグラフである。ナゲット径は溶接時の溶融部の長さに相当する。このため、ナゲット径が長いほど、入熱量が多く、それゆえ溶融する亜鉛の量も多くなり、結果としてLME割れ長さは一般に長くなる。図3を参照すると、鋼板に成分元素としてBを添加しない場合には、LME割れが生じるナゲット径が小さく、それゆえより小さい入熱量でLME割れが生じていることがわかる。一方で、図3から明らかなように、成分元素としてBを添加した場合には、ナゲット径が約6mm程度の入熱量になるまでLME割れが生じておらず、したがってBを添加することで比較的多い入熱量の溶接に対してもLME割れの発生を抑制できることがわかる。
 次に、固溶BによってLME割れが抑制されるメカニズムについて説明する。図4は、溶接時の固溶Bの粒界への偏析及びそれによるLME割れの抑制を模式的に示す図である。図4を参照してより詳しく説明すると、Bは粒界に偏析する性質を有する元素であるため、このような性質を利用して母材鋼板11中に固溶したBを溶接時の加熱の際に粒界14に偏析させることにより(図4(a))、当該粒界に偏析した固溶Bによって鋼板内部への溶融亜鉛13の侵入を、例えば母材鋼板の極最表層(数μm程度)のみに抑制することができる(図4(b))。とりわけ、入熱量が比較的多い継手溶接などの場合には、高温で保持する時間が比較的長時間となるために、図4(a)において示されるように、溶接時の比較的長時間の加熱過程において固溶Bを粒界14に十分に供給して偏析させることができるため、当該固溶Bによって鋼板内部への溶融亜鉛13の侵入を確実に抑制することが可能となる。
 しかしながら、種々の溶接方法の中でも、例えば、スポット溶接などの入熱量が比較的少ない溶接方法では、高温で保持する時間が比較的短いために、図5(a)において示されるように、スポット溶接時の瞬間的な短時間の加熱過程では、固溶Bを粒界14に十分に供給して偏析させることができない場合がある。このような場合には、その後の冷却過程において発生する引張応力等が引き金となり、固溶Bが偏析していない粒界14に溶融亜鉛13が侵入し(図5(b))、それによってLME割れが発生してしまうことになる。
 そこで、本発明者らは、溶接時の粒界への固溶Bの供給及び/又は偏析を効率よく進めることができる鋼板の組織等について検討を行った。その結果として、本発明者らは、鋼板の表層領域において特定のB析出物、より具体的には(Fe,Mn)2BからなるB析出物を所定の量において含有する鋼板を使用することで、スポット溶接のような入熱量が比較的少ない溶接方法においても、粒界に固溶Bを十分に供給及び/又は偏析させることができ、その結果として鋼板の耐LME性を顕著に改善させることができることを見出した。
 図6は、本発明の実施形態に係る鋼板を用いてスポット溶接した場合の固溶Bの偏析挙動を模式的に示す図である。図6を参照してより詳しく説明すると、本発明の実施形態に係る鋼板では、めっき層12の下にある母材鋼板11の表層領域に(Fe,Mn)2BからなるB析出物15が所定の量において存在している。このような状態でスポット溶接を行うと、当該スポット溶接時の加熱により粒界14が移動する際、図6(a)において示されるように、母材鋼板11の表層領域に存在する(Fe,Mn)2Bによって粒界14がピン止めされ、その結果として母材鋼板11の表層領域においては必然的に粒界に(Fe,Mn)2Bが存在することになる。
 また、スポット溶接時の瞬間的なオーステナイト域における加熱下では、上記のように(Fe,Mn)2Bが粒界14をピン止めするとともに、当該(Fe,Mn)2Bの少なくとも一部、好ましくはその大部分が粒界14上で溶解し、それによって固溶Bが粒界14に沿って優先的に供給されそして偏析する。したがって、その後の急冷過程において熱影響部が熱収縮することで引張応力が発生したとしても、あるいはスポット溶接時に電極で押さえつけられることによって鋼板表層に応力が発生したとしても、粒界14に沿って偏析した固溶Bによって鋼板内部への溶融亜鉛13の侵入を確実に抑制することが可能となる(図6(b))。本発明によれば、鋼板において(Fe,Mn)2BからなるB析出物を利用しそしてそれによって粒界をピン止めすることで、溶接時の加熱下において直ちに固溶Bを粒界に供給して偏析させることができるので、図5に示されるような鋼板中の比較的遠い場所から固溶Bを粒界に供給及び偏析させる場合と比較して、スポット溶接のような入熱量が比較的少ない溶接方法においても、めっき層中の亜鉛等の溶融金属が鋼板内部に侵入することを確実に抑制することが可能となる。
 なお、図6では、理解を容易にするため、母材鋼板の表面にめっき層を含むいわゆるめっき鋼板の場合について詳しく説明したが、本発明に係る鋼板は、このようなめっき鋼板には必ずしも限定されず、めっきを施していない鋼板をも包含するものである。なぜならば、めっきを施していない鋼板であっても、例えば、亜鉛めっき鋼板とスポット溶接を行う際には、当該亜鉛めっき鋼板において溶融した亜鉛がめっきを施していない鋼板中に侵入することでLME割れが発生することがあるためである。
 さらに、本発明者らは、上記の構成に加えて、鋼板の組成及び組織を適切に制御することで、高強度及び高延性、より具体的には700MPa以上の高強度及び破断伸びが3.0%以上の高延性を達成することができることを見出した。
 以下、本発明の実施形態に係る鋼板について詳しく説明する。以下の説明において、各元素の含有量の単位である「%」は、特に断りがない限り「質量%」を意味するものである。
[C:0.050~0.300%]
 炭素(C)は、鋼板強度の向上に必要な元素である。C含有量が0.050%未満では十分な強度が得られないため、C含有量は0.050%以上とする。C含有量は0.060%以上、0.080%以上又は0.100%以上であってもよい。一方、C含有量が0.300%を超えると、溶接部の強度が増加して耐LME性が低下するため、C含有量は0.300%以下とする。C含有量は0.280%以下、0.250%以下又は0.220%以下であってもよい。
[Si:0.01~2.00%]
 ケイ素(Si)は、鉄系炭化物の析出を抑制し、強度と成形性の向上に寄与する元素である。しかしながら、Si含有量が0.01%未満では、上記の効果が十分に得られない場合がある。加えて、Si含有量を0.01%未満にするためには製錬に時間を要し、生産性の低下を招く。したがって、Si含有量は0.01%以上とする。Si含有量は0.10%以上、0.50%以上又は1.00%以上であってもよい。一方で、Siを過度に添加すると、残留オーステナイトが過剰に安定化して溶接後にオーステナイト域が広がるため、鋼板の耐LME性を低下させる。したがって、Si含有量は2.00%以下とする。Si含有量は1.80%以下、1.60%以下又は1.50%以下であってもよい。
[Mn:0.10~4.00%]
 マンガン(Mn)は、焼入れ性を高め、鋼板強度の向上に寄与する元素である。また、Mnは(Fe,Mn)2BからなるB析出物を形成するのに必須の元素である。しかしながら、Mn含有量が0.10%未満では、上記のB析出物を十分に形成できない場合がある。加えて、Mn含有量を0.10%未満にするためには製錬に時間を要し、生産性の低下を招く。したがって、Mn含有量は0.10%以上とする。Mn含有量は0.50%以上、0.70%以上又は1.00%以上であってもよい。一方で、Mnを過度に添加すると、鋼板中のオーステナイト相が安定化して溶接後に当該オーステナイト相が残存してしまい、鋼板の耐LME性を低下させる。したがって、Mn含有量は4.00%以下とする。Mn含有量は3.50%以下、3.20%以下又は3.00%以下であってもよい。
[P:0.0001~0.0200%]
 リン(P)は、鋼板強度を高め、溶融亜鉛の鋼板組織への侵入を抑制する作用を有する元素である。しかしながら、P含有量が0.0001%未満では、上記の効果が十分に得られない場合がある。加えて、P含有量を0.0001%未満にするためには製錬に時間を要し、生産性の低下を招く。したがって、P含有量は0.0001%以上とする。P含有量は0.0005%以上、0.0010%以上又は0.0020%以上であってもよい。一方、P含有量が0.0200%を超えると、結晶粒界へのPの偏析により鋼板が脆化して耐LME性を低下させる場合がある。したがって、P含有量は0.0200%以下とする。P含有量は0.0180%以下、0.0150%以下又は0.0120%以下であってもよい。
[S:0.0001~0.0200%]
 硫黄(S)は、熱間脆性の原因をなし、また、溶接性及び耐食性を阻害する元素である。しかしながら、S含有量を0.0001%未満にするためには製錬に時間を要し、生産性の低下を招く。したがって、S含有量は0.0001%以上とする。S含有量は0.0005%以上、0.0010%以上又は0.0020%以上であってもよい。一方、S含有量が0.0200%を超えると、鋼板の脆化を招き、耐LME性が低下する場合がある。したがって、S含有量は0.0200%以下とする。S含有量は0.0180%以下、0.0150%以下又は0.0120%以下であってもよい。
[N:0.0001~0.0200%]
 窒素(N)は、窒化物を形成して、伸びフランジ性を阻害し、また、溶接時のブローホールの発生原因になる元素である。しかしながら、N含有量を0.0001%未満にするためには製錬に時間を要し、生産性の低下を招く。したがって、N含有量は0.0001%以上とする。N含有量は0.0005%以上、0.0010%以上又は0.0020%以上であってもよい。一方、Nが0.0200%を超えると、伸びフランジ性が著しく低下し、また、溶接時、ブローホールが発生する。加えて、Nが0.0200%を超えると、窒化ホウ素(BN)が生成して(Fe,Mn)2Bの形成が阻害され、その結果として耐LME性が低下する場合がある。したがって、N含有量は0.0200%以下とする。N含有量は0.0180%以下、0.0150%以下又は0.0120%以下であってもよい。
[Al:0.001~1.000%]
 アルミニウム(Al)は、脱酸元素であり、また、鉄系炭化物の生成を抑えて、強度の向上に寄与する元素である。しかしながら、Al含有量が0.001%未満では、脱酸効果が十分に得られない。加えて、Al含有量を0.001%未満にするためには製錬に時間を要し、生産性の低下を招く。したがって、Al含有量は0.001%以上とする。Al含有量は0.005%以上、0.008%以上又は0.010%以上であってもよい。一方、Al含有量が1.000%を超えると、鋼板中のフェライト変態が促進されて十分な強度が得られない場合がある。したがって、Al含有量は1.000%以下とする。Al含有量は0.800%以下、0.500%以下又は0.300%以下であってもよい。
[Ti:0.001~0.500%]
 チタン(Ti)は、析出強化、結晶粒の成長抑制による細粒強化及び再結晶の抑制を通じた転位強化により、鋼板強度の向上に寄与する元素である。さらに、Tiは、本発明の実施形態に係る鋼板を製造する際に窒化チタンを形成して鋼中の固溶窒素を消費することにより、Bが固溶窒素と結びついて窒化ホウ素(BN)を形成するのを阻害して(Fe,Mn)2Bの形成を促進させるという効果も有する。しかしながら、Ti含有量が0.001%未満では、上記の効果が十分に得られない場合がある。加えて、Ti含有量を0.001%未満にするためには製錬に時間を要し、生産性の低下を招く。したがって、Ti含有量は0.001%以上とする。Ti含有量は0.005%以上、0.008%以上又は0.010%以上であってもよい。一方、Ti含有量が0.500%を超えると、鋼板中のベイナイト変態が抑制されて十分な延性が得られない場合がある。したがって、Ti含有量は0.500%以下とする。Ti含有量は0.400%以下、0.300%以下又は0.100%以下であってもよい。
[B:0.0007~0.0100%]
 ホウ素(B)は、溶接時に、粒界に偏析して耐LME性の向上に寄与する元素である。しかしながら、B含有量が0.0007%未満では、(Fe,Mn)2BからなるB析出物が全く形成しないか又はその形成が少なく、Bを粒界に十分に偏析させることができないために耐LME性向上の効果を十分に得ることができない。したがって、B含有量は0.0007%以上とする。B含有量は0.0010%以上、0.0015%以上又は0.0020%以上であってもよい。一方、B含有量が0.0100%を超えると、粗大な炭化物及び/又は窒化物が生成し、上記の効果が飽和するとともに、鋼片が割れやすくなり、延性が低下する。したがって、B含有量は0.0100%以下とする。B含有量は0.0080%以下、0.0060%以下又は0.0050%以下であってもよい。
 本発明の実施形態に係る鋼板の基本成分組成は上記のとおりである。さらに、当該鋼板は、必要に応じて以下の元素を含有していてもよい。
[Co:0~0.50%]
 コバルト(Co)は炭化物生成元素であり、析出物を生成させて焼き入れした部材の強度確保に有効な元素であり、耐LME性の向上にも寄与する元素である。上記の効果を十分に得るためには、Co含有量は0.01%以上とすることが好ましい。Co含有量は0.02%以上、0.03%以上又は0.04%以上であってもよい。一方、Co含有量が0.50%を超えると、鋼板中のフェライト変態及び/又はパーライト変態が促進されて十分な強度が得られない場合がある。したがって、Co含有量は0.50%以下とする。Co含有量は0.40%以下、0.30%以下又は0.20%以下であってもよい。
[Ni:0~1.00%]
 ニッケル(Ni)は強度の向上に寄与する元素であり、耐LME性の向上にも寄与する元素である。上記の効果を十分に得るためには、Ni含有量は0.01%以上とすることが好ましい。Ni含有量は0.02%以上、0.03%以上又は0.04%以上であってもよい。一方、Ni含有量が1.00%を超えると、鋼板中のフェライト変態が抑制されて延性が低下する場合がある。したがって、Ni含有量は1.00%以下とする。Ni含有量は0.90%以下、0.80%以下又は0.70%以下であってもよい。
[Mo:0~1.00%]
 モリブデン(Mo)は鋼の焼入れ性を高め、強度の向上に寄与する元素であり、耐LME性の向上にも寄与する元素である。上記の効果を十分に得るためには、Mo含有量は0.01%以上とすることが好ましい。Mo含有量は0.02%以上、0.03%以上又は0.04%以上であってもよい。一方、Mo含有量が1.00%を超えると、鋼板中のフェライト変態が抑制されて延性が低下する場合がある。したがって、Mo含有量は1.00%以下とする。Mo含有量は0.90%以下、0.80%以下又は0.70%以下であってもよい。
[Cr:0~2.000%]
 クロム(Cr)は強度の向上に寄与する元素であり、耐LME性の向上にも寄与する元素である。上記の効果を十分に得るためには、Cr含有量は0.001%以上とすることが好ましい。Cr含有量は0.010%以上、0.050%以上又は0.100%以上であってもよい。一方、Cr含有量が2.000%を超えると、酸洗性、溶接性及び熱間加工性が低下する場合がある。更に、冷延板焼鈍においてオーステナイトへの炭素の濃化が抑えられるため、焼鈍温度で保持した後、室温までの冷却においてパーライト変態を促すため、強度の低下を引き起こす場合がある。したがって、Cr含有量は2.000%以下とする。Cr含有量は1.500%以下、1.300%以下又は1.000%以下であってもよい。
[Nb:0~0.500%、V:0~0.500%]
 ニオブ(Nb)及びバナジウム(V)は、いずれも析出強化、結晶粒の成長抑制による細粒強化及び再結晶の抑制を通じた転位強化により、鋼板強度の向上に寄与する元素であり、耐LME性の向上にも寄与する元素である。このため、これらの元素から選択される1種以上を必要に応じて含有させてもよい。上記の効果を十分に得るためには、Nb及びV含有量はそれぞれ0.001%以上とすることが好ましく、0.005%以上、0.008%以上又は0.010%以上であってもよい。一方、Nb及びV含有量が0.500%を超えると、粗大な炭化物が析出して固溶C量が減少するため、マルテンサイト分率が低下し、十分な強度が得られない場合がある。したがって、Nb及びV含有量はそれぞれ0.500%以下とし、0.400%以下、0.300%以下又は0.100%以下であってもよい。
[Cu:0~0.500%]
 銅(Cu)は強度の向上に寄与する元素であり、耐LME性の向上にも寄与する元素である。上記の効果を十分に得るためには、Cu含有量は0.001%以上とすることが好ましい。Cu含有量は0.010%以上、0.050%以上又は0.100%以上であってもよい。一方、Cu含有量が0.500%を超えると、鋼板の脆化を招き、延性が低下する場合がある。したがって、Cu含有量は0.500%以下とする。Cu含有量は0.400%以下、0.350%以下又は0.300%以下であってもよい。
[W:0~0.100%、Ta:0~0.100%]
 タングステン(W)及びタンタル(Ta)は、いずれも炭化物の形態制御と鋼の強度の増加に有効な元素であり、耐LME性の向上にも寄与する元素である。このため、これらの元素から選択される1種以上を必要に応じて含有させてもよい。上記の効果を十分に得るためには、W及びTa含有量はそれぞれ0.001%以上とすることが好ましく、0.005%以上、0.007%以上又は0.010%以上であってもよい。一方、W及びTa含有量が0.100%を超えると、粗大な炭化物が析出して固溶C量が減少するため、マルテンサイト分率が低下し、十分な強度が得られない場合がある。したがって、W及びTa含有量はそれぞれ0.100%以下とし、0.080%以下、0.060%以下又は0.050%以下であってもよい。
[Sn:0~0.050%]
 錫(Sn)は、原料としてスクラップを用いた場合に鋼中に含有される元素であり、少ないほど好ましく、0%であってもよい。しかしながら、0.001%未満への低減には製錬コストの増加を招くため、Snが含まれる場合には下限を0.001%以上とする。Sn含有量は0.002%以上、0.003%以上又は0.005%以上であってもよい。一方、Sn含有量が0.050%を超えると、鋼板の脆化を招き、延性が低下する場合がある。したがって、Sn含有量は0.050%以下とする。Sn含有量は0.040%以下、0.030%以下又は0.020%以下であってもよい。
[Sb:0~0.050%、As:0~0.050%]
 アンチモン(Sb)及びヒ素(As)は、Snと同様に鋼原料としてスクラップを用いた場合に含有され、粒界に強く偏析する元素であり、少ないほど好ましく0%であってもよい。しかしながら、0.001%未満への低減には製錬コストの増加を招くため、Sb及びAsが含まれる場合には下限をそれぞれ0.001%以上とする。Sb及びAs含有量はそれぞれ0.002%以上、0.003%以上又は0.005%以上であってもよい。一方、Sb及びAs含有量が0.050%を超えると、鋼板の脆化を招き、延性が低下する場合があるため、Sb及びAs含有量はそれぞれ0.050%以下とし、0.040%以下、0.030%以下又は0.020%以下であってもよい。
[Mg:0~0.0500%]
 マグネシウム(Mg)は微量添加で硫化物の形態を制御できる元素であり、耐LME性の向上にも寄与する元素である。上記の効果を十分に得るためには、Mg含有量は0.0001%以上とすることが好ましい。Mg含有量は0.0005%以上、0.0010%以上又は0.0020%以上であってもよい。一方、Mg含有量が0.0500%を超えると、鋼板の脆化を招き、延性が低下する場合がある。したがって、Mg含有量は0.0500%以下とする。Mg含有量は0.0400%以下、0.0300%以下又は0.0200%以下であってもよい。
[Ca:0~0.050%、Y:0~0.050%、Zr:0~0.050%、La:0~0.050%]
 カルシウム(Ca)、イットリウム(Y)、ジルコニア(Zr)及びランタン(La)は、Mgと同様に微量添加で硫化物の形態を制御できる元素であり、耐LME性の向上にも寄与する元素である。このため、これらの元素から選択される1種以上を必要に応じて含有させてもよい。上記の効果を十分に得るためには、Ca、Y、Zr及びLa含有量はそれぞれ0.001%以上とすることが好ましく、0.002%以上、0.003%以上又は0.005%以上であってもよい。一方、Ca、Y、Zr及びLa含有量が0.050%を超えると、鋼板の脆化を招き、延性が低下する場合がある。したがって、Ca、Y、Zr及びLa含有量はそれぞれ0.050%以下とし、0.040%以下、0.020%以下又は0.010%以下であってもよい。
[Ce:0~0.050%]
 セリウム(Ce)は、微量添加で硫化物の形態を制御できる元素であり、耐LME性の向上にも寄与する元素である。上記の効果を十分に得るためには、Ce含有量は0.001%以上とすることが好ましい。Ce含有量は0.002%以上、0.003%以上又は0.005%以上であってもよい。一方、Ce含有量が0.050%を超えると、鋼板の脆化を招き、延性が低下する場合がある。したがって、Ce含有量は0.050%以下とする。Ce含有量は0.040%以下、0.020%以下又は0.010%以下であってもよい。
 本発明の実施形態に係る鋼板において、上記の元素以外の残部は、Fe及び不純物からなる。不純物とは、鋼板を工業的に製造する際に、鉱石やスクラップ等のような原料を始めとして、製造工程の種々の要因によって混入する成分であって、本発明の実施形態に係る鋼板に対して意図的に添加した成分でないもの(いわゆる不可避的不純物)を包含するものである。また、不純物とは、上で説明した成分以外の元素であって、当該元素特有の作用効果が本発明の実施形態に係る鋼板の特性に影響しないレベルで当該鋼板中に含まれる元素をも包含するものである。
 次に、本発明の実施形態に係る鋼板の組織について説明する。
[表層領域に(Fe,Mn)2Bが1個/500μm2以上の数密度で存在]
 本発明の実施形態に係る鋼板においては、当該鋼板の表面(鋼板がめっき層を有する場合には母材鋼板の表面)から板厚方向に深さ100μmまでの表層領域において、円相当直径50~300nmの(Fe,Mn)2Bが1個/500μm2以上の数密度で存在、特には分散している。このような数密度で所定範囲の円相当直径を有する(Fe,Mn)2Bが鋼板の上記表層領域に存在又は分散していることで、溶接時の加熱により鋼板中の粒界が移動する際に、(Fe,Mn)2Bによって当該粒界がピン止めされ、その結果として鋼板の表層領域中の粒界に(Fe,Mn)2Bを確実に存在させることが可能となる。加えて、溶接時の加熱下では、上記のように(Fe,Mn)2Bが粒界をピン止めするとともに、当該(Fe,Mn)2Bの少なくとも一部、好ましくはその大部分が粒界上で溶解し、それによって固溶Bを粒界に沿って優先的に供給しそして偏析させることができる。
 (Fe,Mn)2BからなるB析出物を利用することで、スポット溶接のような入熱量が比較的少ない溶接方法においても、粒界に固溶Bを十分に供給及び/又は偏析させることができる。したがって、スポット溶接後の急冷過程において熱影響部が熱収縮することに伴って鋼板中に引張応力等が発生したとしても、粒界に沿って偏析した固溶Bにより、めっき層中の亜鉛等の溶融金属が鋼板内部に侵入することを確実に抑制することができ、それゆえ鋼板中の熱影響部におけるLME割れを十分に又は確実に抑制することが可能となる。なお、(Fe,Mn)2Bは、鋼板表面からの亜鉛等の溶融金属の侵入を防ぐのに十分な量で存在していればよいため、鋼板全体に存在している必要はなく、上記のとおり当該鋼板の表面から板厚方向に深さ100μmまでの表層領域において1個/500μm2以上の数密度で存在していれば十分である。
 (Fe,Mn)2Bの円相当直径が50nm未満であるか又は表層領域における(Fe,Mn)2Bの数密度が1個/500μm2未満であると、(Fe,Mn)2Bを表層領域に存在又は分散させたことによる効果、すなわち(Fe,Mn)2Bによる粒界のピン止め、ひいては固溶Bの粒界への偏析を十分に達成することができない場合がある。一方で、(Fe,Mn)2Bの円相当直径が300nmを超えて過度に大きくなると、隣接する(Fe,Mn)2B粒同士の結合が生じてしまう場合がある。(Fe,Mn)2B粒同士の結合が生じると、鋼板の表層領域に存在又は分散する(Fe,Mn)2Bの数が減少することになる。このような場合には、表層領域における(Fe,Mn)2Bの数密度を適切な範囲内に制御することができなくなり、すなわち(Fe,Mn)2Bを表層領域において1個/500μm2以上の数密度で存在又は分散させることができなくなる。その結果として、同様に、(Fe,Mn)2Bを表層領域に存在又は分散させたことによる効果を十分に発揮することができなくなる場合がある。なお、鋼板の上記表層領域は、円相当直径が50~300nmの(Fe,Mn)2Bを1個/500μm2以上の数密度で含んでいればよく、したがって円相当直径が50nm未満であるか又は300nm超である(Fe,Mn)2Bを含んでいてもよい。
 円相当直径が50~300nmの(Fe,Mn)2Bは、鋼板の上記表層領域において、例えば、3個/500μm2以上、5個/500μm2以上、12個/500μm2以上、25個/500μm2以上又は50個/500μm2以上の数密度で存在又は分散してもよく、好ましくは5個/500μm2以上の数密度で存在又は分散している。なお、(Fe,Mn)2Bの数密度の上限値は特に規定しないが、当該数密度が大きくなりすぎると、円相当直径の場合と同様に、隣接する(Fe,Mn)2B粒同士の結合が生じてしまう場合があり、それゆえ好ましくない。また、(Fe,Mn)2Bの数密度が大きくなりすぎると、得られる鋼板の延性が低下する場合がある。したがって、鋼板の延性をより向上させるという観点からは、円相当直径が50~300nmの(Fe,Mn)2Bの数密度の上限値は、好ましくは500個/500μm2以下、より好ましくは400個/500μm2以下、さらにより好ましくは250個/500μm2以下である。
 本発明において、「(Fe,Mn)2Bの円相当直径」及び「(Fe,Mn)2Bの数密度」は、以下のようにして決定される。まず、下記I~IVに記載する手順で抽出レプリカ試料を作製し、次いで当該抽出レプリカ試料に対して、下記(1)~(3)に記載する手順で、TEM(透過型電子顕微鏡)観察及びTEM-EDS(エネルギー分散型X線分光器付き透過型電子顕微鏡)分析にて(Fe,Mn)2BからなるB析出物の同定とともに、その円相当直径と数密度を測定する。TEM像の取得では、少なくとも30,000倍の倍率で10μm×10μmの領域の連結像を5視野分取得し、計500μm2の領域における円相当直径が50~300nmの(Fe,Mn)2Bの個数を計測し、得られた(Fe,Mn)2Bの総数を数密度(単位:個/500μm2)とする。なお、円相当直径については、取得した組織観察像に画像解析を適用し、個々の(Fe,Mn)2Bの面積を求めて円相当直径を算出する。
<試料調整方法>
 I.  供試材表面をエメリー紙、ダイアモンドペーストにて鏡面研磨する。
 II. 研磨面をアルミナ砥粒にて仕上げ研磨する。
 III.鏡面部をSPEED法(選択的定電位電解エッチング法)によりエッチングする(試料洗浄にはアサヒクリンを使用)。
 IV. 指定箇所よりカーボン抽出レプリカ試料を作製する(メッシュはCuを使用)。
<SPEED法・電解研磨条件>
 電解研磨液:10%アセチルアセトン-1%テトラメチルアンモニウムクロライド-メタノール
 電解研磨条件:-100mV VS SCE/10クーロン/cm2
<TEM観察方法>
 (1)電子顕微鏡:200kV-電界放出型透過電子顕微鏡:JEM-2100F(日本電子製)
 観察時加速電圧:200kV
 (2)分析:EDS分析装置:JED-2300T(日本電子製)
 分析時加速電圧:200kV
 B析出物の成分分析のためのEDS分析値はプローブ径=1nmで取得する。
 (3)電子回折:ナノビーム回折(NBD)
 析出物の構造調査のための電子線回折像はプローブ径=3nmで取得する。
[フェライト:5.0~40.0%]
 フェライトは延性に優れるが軟質な組織である。鋼板の伸びを向上させるために、要求される強度又は延性に応じて含有させる。フェライト含有量は、鋼板の延性を向上させる観点から、面積率で5.0%以上とし、8.0%以上、10.0%以上、12.0%以上又は15.0%以上であってもよい。一方で、フェライトを過度に含有すると、所望の鋼板強度を確保することが困難となる場合がある。したがって、フェライト含有量は、面積率で40.0%以下とし、38.0%以下、35.0%以下、30.0%以下又は25.0%以下であってもよい。
[マルテンサイト及び焼き戻しマルテンサイトの合計:10.0~60.0%]
 マルテンサイト及び焼き戻しマルテンサイトは所望の鋼板強度等を確保する上で重要な組織である。このような観点から、マルテンサイト及び焼き戻しマルテンサイトの合計の含有量は、面積率で10.0%以上とし、12.0%以上、15.0%以上、20.0%以上又は25.0%以上であってもよい。一方で、マルテンサイト及び焼き戻しマルテンサイトを過度に含有すると鋼板の延性が低下する。したがって、マルテンサイト及び焼き戻しマルテンサイトの合計の含有量は、面積率で60.0%以下とし、58.0%以下、55.0%以下、50.0%以下又は45.0%以下であってもよい。
[ベイナイト:5.0~40.0%]
 ベイナイトは、鋼板の延性及び強度を確保するのに有効な組織である。延性向上の観点から、ベイナイト含有量は、面積率で5.0%以上とし、8.0%以上、10.0%以上又は15.0%以上であってもよい。一方で、ベイナイトを過度に含有すると鋼板の強度が低下する。したがって、ベイナイト含有量は、面積率で40.0%以下とし、35.0%以下、30.0%以下又は25.0%以下であってもよい。
[残留オーステナイト:5.0~25.0%]
 残留オーステナイトは、鋼板の変形中に加工誘起変態によりマルテンサイトへと変態するTRIP効果により鋼板の延性を改善する。したがって、鋼板の延性向上の観点から、残留オーステナイト含有量は、面積率で5.0%以上とし、8.0%以上又は10.0%以上であってもよい。一方で、残留オーステナイトを過度に含有すると、残留オーステナイトが過剰に安定化して溶接後にオーステナイト域が広がるため、鋼板の耐LME性を低下させる場合がある。したがって、残留オーステナイト含有量は、面積率で25.0%以下とし、22.0%以下又は20.0%以下であってもよい。残留オーステナイトの変態誘起塑性を利用したTRIP鋼板は、先に述べたとおり、スポット溶接した際にLMEが起こりやすいことが一般に知られている。しかしながら、本発明の実施形態に係る鋼板では、表層領域において(Fe,Mn)2BからなるB析出物を所定量含有することで、スポット溶接のような入熱量が比較的少ない溶接方法においても固溶Bを粒界に沿って優先的に供給しそして偏析させることができるので、鋼板の耐LME性を顕著に改善させることができる。
 上記組織以外の残部組織は0%であってもよいが、残部組織が存在する場合には、当該残部組織は面積率で10.0%以下のパーライトからなる。パーライト含有量が10.0%を超えると、鋼板の強度及び/又は延性が低下する場合がある。したがって、パーライト含有量は、面積率で8.0%以下、5.0%以下又は3.0%以下であってもよい。
[組織の同定及び面積率の算出]
 本発明においては、フェライト、マルテンサイト、焼き戻しマルテンサイト、ベイナイト、残留オーステナイト及びパーライトの同定及び面積率の算出は、EBSD(電子線後方散乱回折法)、X線回折及びナイタール試薬又はレペラ液を用いた腐食後のSEM(走査型電子顕微鏡)観察により、鋼板の圧延方向断面又は圧延方向に直角な方向の断面を1000~50000倍の倍率において組織観察及び測定することで行われる。
 具体的には、フェライトの面積率は、以下の方法で測定される。まず、SEMに付属のEBSDにより、鋼板の表面から板厚の1/4の位置を中心とする1/8~3/8厚の範囲を0.2μmの間隔(ピッチ)で測定する。測定データから結晶粒内の平均方位差(GAM:Grain average misorientation)の値を計算する。そして、GAM値が0.5°未満の領域をフェライトとし、その面積率を測定する。ここで、結晶粒内の平均方位差とは、結晶方位差が5°以上の粒界に囲まれた領域において、隣り合う測定点間の方位差を計算し、それを結晶粒内の測定点すべてについて平均化した値である。
 マルテンサイトの面積率は、鋼板の板厚方向断面をレペラ液でエッチングし、表面から板厚の1/4の位置を中心とする1/8~3/8厚の範囲をFE-SEMにより観察し、他の組織よりも相対的に腐食の度合いが小さな領域の面積率から、後で説明するX線回折法により測定された残留オーステナイトの面積率を差し引くことで算出される。
 焼き戻しマルテンサイト及びベイナイトの同定は、板厚方向断面をナイタール試薬により腐食し、鋼板の表面から板厚の1/4の位置を中心とする1/8~3/8厚の範囲をFE-SEMにより観察し、組織の内部に含まれるセメンタイトの位置とバリアントとを観察することにより行う。具体的には、焼き戻しマルテンサイトは、マルテンサイトラスの内部にセメンタイトが生成するが、マルテンサイトラスとセメンタイトとの結晶方位関係が2種類以上あるため、生成したセメンタイトは複数のバリアントを持つ。一方、上部ベイナイトは、ラス状のベイニティックフェライトの界面にセメンタイト又は残留オーステナイトが生成する。また、下部ベイナイトは、ラス状のベイニティックフェライトの内部にセメンタイトが生成し、ベイニティックフェライトとセメンタイトとの結晶方位関係が1種類であるので、生成したセメンタイトは同一のバリアントを持つ。これらのセメンタイトの特徴を検出することにより、焼き戻しマルテンサイト及びベイナイト(上部ベイナイトと下部ベイナイト)を同定し、それらの面積率を算出する。
 残留オーステナイトの面積率はX線回折法により算出される。まず、試料の板面から板厚方向に深さ1/4位置までを機械研磨及び化学研磨により除去する。次いで、研磨後の試料に対して特性X線としてMoKα線を用いて得られたbcc相の(200)及び(211)並びにfcc相の(200)、(220)及び(311)の回折ピークの積分強度比から、残留オーステナイトの組織分率を算出し、これを残留オーステナイトの面積率とする。
 パーライトの同定は、ナイタール試薬により腐食し、鋼板の表面から板厚の1/4の位置を中心とする1/8~3/8厚の範囲をSEMによる2次電子像を用いて観察することで行うことができる。2次電子像で明るいコントラストで撮影された領域をパーライトとし、その面積率を算出する。
[めっき層]
 本発明の実施形態に係る鋼板は、少なくとも一方の表面、好ましくは両方の表面に亜鉛を含有するめっき層(以下、「亜鉛含有めっき層」ともいう)を有していてもよい。当該めっき層は、当業者に公知の任意の組成を有する亜鉛含有めっき層であってよく、亜鉛以外にもアルミニウムやマグネシウム等の添加元素を含んでいてもよい。また、この亜鉛含有めっき層は、合金化処理を施していてもよいし又は合金化処理を施していなくてもよい。また、亜鉛含有めっき層の付着量は、特に制限されず一般的な付着量であってよい。
 鋼板が亜鉛含有めっき層を有する場合には、当然ながら溶接の際に当該亜鉛含有めっき層から溶融した亜鉛が母材の鋼板中に侵入して鋼板内部にLME割れが生じることがあり、また、めっきを施していない鋼板であっても、例えば、亜鉛めっき鋼板と溶接を行う際には、当該亜鉛めっき鋼板において溶融した亜鉛がめっきを施していない鋼板中に侵入することでLME割れが生じることがある。しかしながら、本発明の実施形態に係る鋼板によれば、当該鋼板が(Fe,Mn)2BからなるB析出物を所定の量において含有することで、スポット溶接のような入熱量が比較的少ない溶接方法であっても、粒界に固溶Bを十分に供給及び/又は偏析させることができ、その結果として鋼板の耐LME性を顕著に改善させることができる。
[機械特性]
 本発明の実施形態に係る鋼板によれば、LME割れの発生を抑制しつつ、高い引張強度、具体的には700MPa以上の引張強度を達成することができる。例えば、引張強度を700MPa以上とすることで、自動車における車体の軽量化の要求を満足させることができる。引張強度は好ましくは800MPa以上であり、より好ましくは900MPa以上である。引張強度の上限値は、特に限定されないが、一般的には2000MPa以下であり、1800MPa以下であってもよい。さらに、本発明の実施形態に係る鋼板によれば、優れた延性を達成することが可能であり、より具体的には破断伸びが3.0%以上、好ましくは5.0%以上、より好ましくは10.0%以上となるような延性を達成することができる。鋼板が3.0%以上の破断伸びを有することで、例えば、溶接時に当該鋼板を電極で抑えた場合においても、鋼板が割れることなく、適切に溶接を施すことが可能である。
<鋼板の製造方法>
 次に、本発明の実施形態に係る鋼板の製造方法について説明する。以下の説明は、本発明の実施形態に係る鋼板を製造するための特徴的な方法の例示を意図するものであって、当該鋼板を以下に説明するような製造方法によって製造されるものに限定することを意図するものではない。
 本発明の実施形態に係る鋼板の製造方法は、鋼板に関して上で説明した化学組成と同じ化学組成を有する溶鋼を連続鋳造して鋼片を形成する鋳造工程であって、前記鋼片の表層に10ppm超、100ppm未満の酸素を導入することを含む鋳造工程、
 前記鋼片を仕上げ圧延することを含む熱間圧延工程であって、前記仕上げ圧延の完了温度が650~950℃である熱間圧延工程、
 得られた熱延鋼板を400~700℃の巻取温度で巻き取る工程、
 前記熱延鋼板を冷間圧延し、次いで焼鈍する工程
を含むことを特徴としている。以下、各工程について詳しく説明する。
[鋳造工程]
 本発明の実施形態に係る鋼板の製造方法では、まず、鋼板に関して上で説明した化学組成と同じ化学組成を有する溶鋼を連続鋳造して鋼片が形成され、当該連続鋳造の際に形成される鋼片の表層に10ppm超、100ppm未満の酸素が導入される。このような酸素の導入は、当業者に公知の任意の好適な方法によって実施することができる。当該酸素の導入は、特に限定されないが、例えば、連続鋳造の際に酸化鉄等の酸化物からなるパウダを溶鋼表層付近(すなわち長辺側の鋳型壁付近)に導入することによって実施してもよいし、又は同様に連続鋳造の際に鉄ワイヤを溶鋼表層付近に導入することによって実施してもよい。鉄ワイヤは表面が酸化されているため、これを使用することで連続鋳造の際に溶鋼表層に容易に酸素が取り込まれ、さらには導入される鉄ワイヤの径や本数などを適切に選択することにより、形成される鋼片の表層に導入される酸素量を10ppm超、100ppm未満の範囲内に比較的容易に制御することが可能である。
 上記のように連続鋳造の際に形成される鋼片の表層に10ppm超、100ppm未満の酸素を導入して濃化させることで、凝固後に得られた鋼片の表層中に酸化鉄を形成させることができる。酸化鉄は窒化チタンの生成サイトとして機能するため、鋼片の表層中に酸化鉄を形成させることで鋼中の固溶窒素が窒化チタンの形成に消費されることになる。鋼中の固溶窒素が窒化チタンの形成に消費されることで、後の焼鈍工程の際に鋼中のBが固溶窒素と結びついて窒化ホウ素(BN)を形成することが阻害され、それゆえ鋼板の表層領域における(Fe,Mn)2Bの形成を促進させることができる。その結果として、最終的に得られる鋼板において、改善された耐LME性、特にはスポット溶接などの溶接方法においても改善された耐LME性を達成することができる。
 しかしながら、鋼片の表層に導入される酸素量が少なすぎると、窒化ホウ素の形成を十分に阻害することができない場合がある。このような場合には、最終的に得られる鋼板の表層領域において十分に(Fe,Mn)2Bを形成させることができないため、改善された耐LME性を達成することができない。一方で、鋼片の表層に導入される酸素量が多すぎると、連続鋳造後に鋼片に割れが生じる虞がある。したがって、鋼片の表層に導入される酸素量は10ppm超、100ppm未満とし、好ましくは20ppm以上若しくは30ppm以上であり、及び/又は90ppm以下若しくは70ppm以下である。
 鋼片表層の酸素濃度は以下の手順で測定する。まず、鋳造後に室温まで冷却した鋼片を切断し、鋳造方向及び鋳造方向に対して直角方向の長さがそれぞれ5mm、かつ鋼片の表面から厚み方向の長さが25mmの直方体の素材を切り出す。切り出した素材の表面には酸化スケールが付着しているため、酸化スケールをショットブラストにより除去した後に、2014年に制定されたJIS G 1239(鉄及び鋼-酸素定量方法-不活性ガス融解-赤外線吸収法)に準拠して酸素濃度を測定する。
 上記の製造方法では、鋳造工程において鋳片の表層に酸素が導入されるが、これに代えて、例えば、鋳造後の鋳片を熱間圧延のために再加熱する際の加熱速度及び雰囲気を調整することによって鋳片の表層に酸素を導入するようにしてもよい。より具体的には、鋳造後の鋳片を比較的ゆっくりと加熱しかつ鋳片周囲の雰囲気中の酸素濃度を低くすることで、鋳片上に存在する酸化スケールが鋼中からのFeイオンの外方拡散によってさらに成長することを抑制しつつ、当該酸化スケール中の酸素を内方拡散によって鋼中に拡散させることができる。その結果として、鋳片の表層に酸素を導入して当該表層中に酸化鉄を形成させることが可能となる。
[熱間圧延工程]
 本方法では、鋳造された鋼片は、次に熱間圧延工程に供され、当該熱間圧延工程は、鋳造された鋼片を直接又は一旦冷却した後、再加熱して熱間圧延することにより実施することができる。再加熱を行う場合には、鋼片の加熱温度は、一般的には1100℃以上であり、上限値は特に規定しないが、例えば1250℃以下であってもよい。
[粗圧延]
 本方法では、例えば、鋳造された鋼片に対し、板厚調整等のために、任意選択で仕上げ圧延の前に粗圧延を施してもよい。このような粗圧延は、所望のシートバー寸法が確保できればよく、その条件は特に限定されない。
[仕上げ圧延]
 得られた鋼片又はそれに加えて必要に応じて粗圧延された鋼片は、次に仕上げ圧延を施され、当該仕上げ圧延における完了温度は650~950℃の範囲に制御される。仕上げ圧延の完了温度が950℃超であると、鋼板中のフェライト含有量が高くなり、十分な強度が得られない場合がある。したがって、仕上げ温度の完了温度は950℃以下とし、好ましくは920℃以下又は900℃以下である。一方、仕上げ圧延の完了温度が650℃未満であると、鋼表面に亀裂を生じて同様に溶接時の割れの発生が促進される場合がある。したがって、仕上げ温度の完了温度は650℃以上とし、好ましくは680℃以上又は700℃以上である。
[巻取工程]
 熱間圧延工程の後、得られた熱延鋼板は、次の巻取工程において400~700℃の巻取温度で巻き取られる。巻取温度を400~700℃に制御することで、最終的に得られる鋼板の表層領域において確実に(Fe,Mn)2Bの形成をさせることができ、その結果として、改善された耐LME性、特にはスポット溶接などの溶接方法においても改善された耐LME性を達成することができる。巻取温度が高すぎると、熱延鋼板中のフェライト粒径が大きくなり、冷延板焼鈍後において十分な強度が得られない場合がある。したがって、巻取温度は700℃以下とし、好ましくは680℃以下又は650℃以下である。一方、巻取温度が低すぎると、熱延鋼板が硬くなり脆化するため、後工程において鋼板表面に割れが生じやすくなり冷延焼鈍後の延性が低下する。したがって、巻取温度は400℃以上とし、好ましくは420℃以上又は450℃以上である。尚、事前に酸化物の上に窒化チタンを析出させる操作を行わない場合には、巻取後に巻き取り温度制御のみを行なっても、(Fe,Mn)2Bを形成させることは出来ない。
[冷間圧延及び焼鈍工程]
 最後に、得られた熱延鋼板は、必要に応じて酸洗等を行った後、冷間圧延及び焼鈍を施され、本発明の実施形態に係る鋼板が得られる。冷間圧延及び焼鈍は、特に限定されず、任意の適切な条件下で実施することができる。本方法によれば、焼鈍工程の際には、鋼中の固溶窒素が十分に低減されていることから、Bが当該固溶窒素と結びついて窒化ホウ素(BN)を形成することなく、鋼板の表層領域において(Fe,Mn)2Bを確実に形成することができる。
[めっき]
 本方法においては、鋼板の少なくとも一方の表面、好ましくは両方の表面に亜鉛を含有するめっき層を形成してもよい。このようなめっき層は、当業者に公知の任意の方法により形成することができ、特に限定されないが、例えば、上記冷間圧延後の鋼板を亜鉛含有めっき浴に浸漬し、次いで焼鈍することにより形成することができる。
 以下、冷間圧延、焼鈍及びめっき処理の好ましい実施形態について詳しく説明する。下記の記載は、冷間圧延、焼鈍及びめっき処理の好ましい実施形態の単なる例示であって、鋼板の製造方法を何ら限定するものではない。
(酸洗)
 まず、冷間圧延の前に、巻取った熱延鋼板を巻き戻し、酸洗に供する。酸洗を行うことで、熱延鋼板の表面の酸化スケールを除去して、冷延鋼板の化成処理性や、めっき性の向上を図ることができる。酸洗は、一回でもよいし、複数回に分けて行ってもよい。
(冷間圧下率)
 冷間圧下率は、冷延焼鈍時のフェライトの再結晶挙動に影響を与える。10.0%未満では、フェライトの方位集積度が低下し、延性が劣化する場合がある。このため、下限値は好ましくは10.0%以上とし、より好ましくは15.0%以上である。また、90.0%超では、フェライトの再結晶が容易になるものの、熱延板で生じさせたオーステナイトが加工誘起変態を生じ、マルテンサイト及び焼き戻しマルテンサイトの方位集積度が高まるため、延性が劣化する場合がある。このため、上限値は好ましくは90.0%以下とし、より好ましくは85.0%以下である。
(冷延板焼鈍)
(加熱速度)
 冷延鋼板が連続焼鈍ラインやめっきラインを通板する場合における加熱速度は、特に制約されないが、0.5℃/秒未満の加熱速度では、生産性が大きく損なわれる場合がある。加えて、加熱速度が遅いと、鋼板の表層領域に形成される(Fe,Mn)2Bの円相当直径が大きくなる傾向があり、例えば300nmを超える円相当直径を有する(Fe,Mn)2Bが比較的多く生成する傾向がある。このため、加熱速度は好ましくは0.5℃/秒以上とする。一方、100℃/秒を超える加熱速度とすると、過度の設備投資を招き、さらには(Fe,Mn)2Bの円相当直径が小さくなる傾向があり、例えば50nm未満の円相当直径を有する(Fe,Mn)2Bが比較的多く生成する傾向がある。このため、加熱速度は好ましくは100℃/秒以下とする。
(焼鈍温度)
 焼鈍温度は、フェライトの再結晶挙動に影響を与える因子である。また、オーステナイトの生成挙動にも影響を与え、鋼の強度延性バランスの制御において極めて重要な制御因子でもある。700℃未満では、オーステナイトの生成量が少なく、また、未再結晶フェライトが残るため、延性が劣化する場合がある。このため、下限値は好ましくは700℃以上とし、より好ましくは750℃以上である。また、900℃超では、焼鈍での恒温保持中に生じるオーステナイトの量が増えるため、冷延焼鈍後の組織においてフェライト及びベイナイトの方位集積度が低下し、延性が劣化する場合がある。このため、上限値は好ましくは900℃以下とし、より好ましくは850℃以下である。尚、焼鈍雰囲気の露点を上げて内部酸化物を形成する処理を行う必要は無い。仮に焼鈍時に内部酸化層が形成されたとしても、先に生成した(Fe,Mn)2Bは維持される。
(保持時間)
 鋼板を、連続焼鈍ラインに供し、焼鈍温度に加熱して焼鈍を施す。この際、保持時間は10~600秒であることが好ましい。保持時間が10秒未満であると焼鈍温度でのオーステナイトの分率が不十分であったり、焼鈍前までに存在していた炭化物の溶解が不十分となったりして、所定の組織及び特性が得られなくなるおそれがある。保持時間が600秒超となっても特性上は問題ないが、設備のライン長が長くなるので、600秒程度が実質的な上限となる。
(平均冷却速度)
 上記焼鈍後の冷却では、750℃から550℃まで平均冷却速度100.0℃/秒以下で冷却することが好ましい。平均冷却速度の下限値は、特に限定されないが、例えば2.5℃/秒であってよい。平均冷却速度の下限値を2.5℃/秒とする理由は、母材鋼板でフェライト変態が生じ、母材鋼板が軟化することを抑制するためである。2.5℃/秒より平均冷却速度が遅い場合、強度が低下する場合がある。より好ましくは5.0℃/秒以上、さらに好ましくは10.0℃/秒以上、さらに好ましくは20.0℃/秒以上である。750℃超ではフェライト変態が生じにくいため、冷却速度は制限しない。550℃未満の温度では、低温変態組織が得られるため、冷却速度を制限しない。100.0℃/秒より速い速度で冷却すると表層にも低温変態組織が生じ、硬さのばらつきの原因となるため、好ましくは100.0℃/秒以下で冷却する。さらに好ましくは80.0℃/秒以下である。さらに好ましくは60.0℃/秒以下である。
(冷却停止温度)
 上記の冷却は、25℃~550℃の温度で停止し(冷却停止温度)、続いて、この冷却停止温度がめっき浴温度-40℃未満であった場合には350℃~550℃の温度域に再加熱して滞留させてもよい。上述の温度範囲で冷却を行うと冷却中に未変態のオーステナイトからマルテンサイトが生成する。その後、再加熱を行うことで、マルテンサイトは焼き戻され、硬質相内での炭化物析出や転位の回復・再配列が起こり、耐水素脆性が改善する。冷却停止温度の下限を25℃としたのは、過度の冷却は大幅な設備投資を必要とするばかりでなく、その効果が飽和するためである。
(滞留温度)
 再加熱後かつめっき浴浸漬前に、350~550℃の温度域で鋼板を滞留させても良い。この温度域での滞留は、マルテンサイトの焼き戻しに寄与するばかりでなく、板の幅方向の温度ムラをなくし、めっき後の外観を向上させる。なお、冷却停止温度が350℃~550℃であった場合には、再加熱を行わずに滞留を行えばよい。
(滞留時間)
 滞留を行う時間は、その効果を得るために10秒以上600秒以下とすることが望ましい。
(焼戻し)
 一連の焼鈍工程において、冷延板又は冷延板にめっき処理を施した鋼板を、室温まで冷却した後、あるいは、室温まで冷却する途中(ただしマルテンサイト変態開始温度(Ms)以下)において再加熱を開始し、150℃以上400℃以下の温度域で2秒以上保持しても良い。この工程によれば、再加熱後の冷却中に生成したマルテンサイトを焼戻して、焼戻しマルテンサイトとすることにより、耐水素脆性を改善することができる。焼戻し工程を行う場合、保持温度が150℃未満又は保持時間が2秒未満では、マルテンサイトが十分に焼き戻されず、ミクロ組織及び機械特性において満足のいく変化をもたらすことができない場合がある。一方、保持温度が400℃を超えると、焼戻しマルテンサイト中の転位密度が低下してしまい、引張強度の低下を招く場合がある。そのため、焼戻しを行う場合には、150℃以上400℃以下の温度域で2秒以上保持することが好ましい。焼戻しは、連続焼鈍設備内で行っても良いし、連続焼鈍後にオフラインで、別設備で実施しても構わない。この際、焼戻し時間は、焼戻し温度により異なる。すなわち、低温ほど長時間となり、高温ほど短時間となる。
(めっき)
 焼鈍工程中又は焼鈍工程後の冷延鋼板に対して、必要に応じて、(亜鉛めっき浴温度-40)℃~(亜鉛めっき浴温度+50)℃に加熱又は冷却して、溶融亜鉛めっきを施してもよい。溶融亜鉛めっき工程によって、冷延鋼板の少なくとも一方の表面、好ましくは両方の表面には、溶融亜鉛めっき層が形成される。この場合、冷延鋼板の耐食性が向上するので好ましい。溶融亜鉛めっきを施しても、冷延鋼板の耐水素脆性を十分に維持することができる。
 めっき処理は、「脱脂酸洗後、非酸化雰囲気にて加熱し、H2及びN2を含む還元雰囲気にて焼鈍後、めっき浴温度近傍まで冷却し、めっき浴に浸漬する」というゼンジマー法、「焼鈍時の雰囲気を調節し、最初、鋼板表面を酸化させた後、その後還元することによりめっき前の清浄化を行った後にめっき浴に浸漬する」という全還元炉方式、あるいは、「鋼板を脱脂酸洗した後、塩化アンモニウムなどを用いてフラックス処理を行って、めっき浴に浸漬する」というフラックス法等があるが、いずれの条件で処理を行ったとしても本発明の効果は発揮できる。尚、めっき前のNiめっきは、本発明では不要で、鋼板に直接亜鉛めっきが施される。しかし、Niめっき自体は(Fe,Mn)2Bの形成維持に影響を及ぼさないので、Niめっき自体は有っても良い。
(めっき浴の温度)
 めっき浴温度は450~490℃であることが好ましい。めっき浴温度が450℃未満であると、めっき浴の粘度が過大に上昇し、めっき層の厚さの制御が困難となり、溶融亜鉛めっき鋼板の外観が損なわれるおそれがある。一方、めっき浴温度が490℃を超えると、多量のヒュームが発生し、安全なめっき操業が困難となるおそれがある。めっき浴温度は455℃以上であるのがより好ましく、480℃以下であるのがより好ましい。
(めっき浴の組成)
 めっき浴の組成は、Znを主体とし、有効Al量(めっき浴中の全Al量から全Fe量を引いた値)が0.050~0.250質量%であることが好ましい。めっき浴中の有効Al量が0.050質量%未満であると、めっき層中へのFeの侵入が過度に進み、めっき密着性が低下するおそれがある。一方、めっき浴中の有効Al量が0.250質量%を超えると、鋼板とめっき層との境界に、Fe原子及びZn原子の移動を阻害するAl系酸化物が生成し、めっき密着性が低下するおそれがある。めっき浴中の有効Al量は0.065質量%以上であるのがより好ましく、0.180質量%以下であるのがより好ましい。
(めっき浴への侵入時の鋼板温度)
 めっき浴浸漬板温度(溶融亜鉛めっき浴に浸漬する際の鋼板の温度)は、溶融亜鉛めっき浴温度より40℃低い温度(溶融亜鉛めっき浴温度-40℃)から溶融亜鉛めっき浴温度より50℃高い温度(溶融亜鉛めっき浴温度+50℃)までの温度範囲が好ましい。めっき浴浸漬板温度が溶融亜鉛めっき浴温度-40℃を下回ると、めっき浴浸漬時の抜熱が大きく、溶融亜鉛の一部が凝固してしまいめっき外観を劣化させる場合があるため望ましくない。浸漬前の板温度が溶融亜鉛めっき浴温度-40℃を下回っていた場合、任意の方法でめっき浴浸漬前にさらに加熱を行い、板温度を溶融亜鉛めっき浴温度-40℃以上に制御してからめっき浴に浸漬させても良い。また、めっき浴浸漬板温度が溶融亜鉛めっき浴温度+50℃を超えると、めっき浴温度上昇に伴う操業上の問題を誘発する。
(めっきプレ処理)
 めっき密着性をさらに向上させるために、連続溶融亜鉛めっきラインにおける焼鈍前に、母材鋼板に、Ni、Cu、Co、Feの単独あるいは複数から成るめっきを施しても良い。
(めっき後処理)
 溶融亜鉛めっき鋼板及び合金化溶融亜鉛めっき鋼板の表面に、塗装性、溶接性を改善する目的で、上層めっきを施すことや、各種の処理、例えば、クロメート処理、りん酸塩処理、潤滑性向上処理、溶接性向上処理等を施すこともできる。
(スキンパス圧延)
 さらに、鋼板形状の矯正や可動転位導入により延性の向上を図ることを目的として、スキンパス圧延を施してもよい。熱処理後のスキンパス圧延の圧下率は、0.1~1.5%の範囲が好ましい。0.1%未満では効果が小さく、制御も困難であることから、0.1%を下限とする。1.5%を超えると生産性が著しく低下するので1.5%を上限とする。スキンパスは、インラインで行っても良いし、オフラインで行っても良い。また、一度に目的の圧下率のスキンパスを行っても良いし、数回に分けて行っても構わない。
 以下、実施例によって本発明をより詳細に説明するが、本発明はこれらの実施例に何ら限定されるものではない。
[例1]
 表1に示す化学組成を有する鋼を溶製して鋼片を鋳造する際に、鋼片表層に鉄ワイヤを溶融添加した鋼片を製造した。これらの鋼片を1220℃に加熱した炉内に挿入し、60分間保持する均一化処理を与えた後に大気中に取出し、熱間圧延して板厚2.8mmの鋼板を得た。熱間圧延における仕上げ圧延の完了温度は920℃であり、仕上げ圧延完了後、1.5秒経過後に水冷にて冷却を与え、28℃/秒の速度で550℃まで冷却して、550℃で巻き取った。続いて、この熱延鋼板の酸化スケールを酸洗により除去し、圧下率50%の冷間圧延を施し、板厚を1.4mmに仕上げた。さらに、この冷延鋼板を850℃まで4.5℃/秒の速度で加熱し、850℃で110秒間保持した後に、40.0℃/秒の平均冷却速度で330℃まで冷却し、続いて、380℃で200秒間保持する冷延板焼鈍を施した。さらに、この冷延板焼鈍後の板に、鋼帯の伸び率が0.1%のスキンパス圧延を施した。表2は上記の加工熱処理を与えた鋼板の特性の評価結果である。なお、表1に示す成分以外の残部はFe及び不純物である。また、製造した鋼板から採取した試料を分析した化学組成は、表1に示す鋼の化学組成と同等であった。
(引張強度及び破断伸びの評価)
 引張強度(MPa)及び破断伸び(%)は、得られた鋼板の圧延方向に直行する方向(幅方向)を長手方向として採取したJIS5号試験片を用いて、JIS Z 2241(2011)に準拠して評価した。
(耐LME性の評価)
 耐LME性は、以下のようにして評価した。GA軟鋼(合金化溶融亜鉛めっき鋼板)と表2に示す鋼板とで下記条件にて溶接試験を行い、4.0kAから10.0kAまで電流量を変えて溶接した試験片を作製し、その後、断面組織を観察して、ナゲット径と割れの長さを確認し、ナゲット径が5.5mm以下の領域において割れ長さが0.1mm未満であった場合に合格(〇)とし、ナゲット径が5.5mm以下の領域において割れ長さが0.1mm以上であった場合に不合格(×)とした。
  電極:Cr-Cu製のDR型電極(先端外径:8mm、R:40mm)
  加圧力P:450kg
  電極の傾斜角θ:5°
  アップスロープ:なし
  第1通電時間t1:0.2秒
  無通電間tc:0.04秒
  第2通電時間t2:0.4秒
  電流比I1/I2:0.7
  通電終了後の保持時間:0.1秒
 耐LME性の評価が○であり、引張強度が700MPa以上であり、破断伸びが3.0%以上である場合を、改善された耐LME性を有するとともに高強度でかつ延性にも優れた鋼板として評価した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表2を参照すると、例Y-1はC含有量が低かったため、引張強度が700MPa未満であった。例Z-1はC含有量が高かったため、溶接部の強度が増加し、結果として耐LME性が低下した。例AA-1はSi含有量が高かったため、残留オーステナイトが過剰に安定化してしまい、耐LME性が低下した。例AB-1はMn含有量が低かったため、(Fe,Mn)2BからなるB析出物を析出させることができず、耐LME性が低下した。例AC-1はMn含有量が高かったため、鋼板中のオーステナイト相が安定化して溶接後に当該オーステナイト相が残存してしまい、耐LME性が低下した。例AD-1はP含有量が高かったため、鋼板が脆化してしまい、溶接時の熱応力の増加時に割れが発生した。例AE-1はS含有量が高かったため、同様に鋼板が脆化してしまい、溶接時の熱応力の増加時に割れが発生した。例AF-1はN含有量が高かったため、窒化ホウ素(BN)が生成して(Fe,Mn)2Bの形成が阻害され、結果として耐LME性が低下した。例AG-1はAl含有量が高かったため、鋼板中のフェライト変態が促進されて十分な引張強度が得られなかった。例AH-1はTi含有量が高かったため、鋼板中のベイナイト変態が抑制されて十分な延性が得られなかった。例AI-1はB含有量が低かったため、(Fe,Mn)2BからなるB析出物を析出させることができず、耐LME性が低下した。
 例AJ-1はB含有量が高かったため、粗大なB炭化物が生成して延性が低下した。例AK-1はCo含有量が高かったため、パーライト変態が促進されて十分な引張強度が得られなかった。例AL-1及びAM-1はそれぞれNi及びMo含有量が高かったため、鋼板中のフェライト変態が抑制されて延性が低下した。例AN-1はCr含有量が高かったため、パーライト変態が促進されて強度が低下した。例AP-1及びAQ-1はそれぞれNb及びV含有量が高かったため、粗大な炭化物が析出して固溶C量が減少し、結果としてマルテンサイト分率が低下して十分な強度が得られなかった。例AR-1はCu含有量が高かったため、鋼板の脆化を招き、延性が低下した。例AS-1及びAT-1はそれぞれW及びTa含有量が高かったため、粗大な炭化物が析出して固溶C量が減少し、結果としてマルテンサイト分率が低下して十分な強度が得られなかった。例AU-1~BC-1はそれぞれSn、Sb、As、Mg、Ca、Y、Zr、La及びCe含有量が高かったため、鋼板の脆化を招き、延性が低下した。
 これとは対照的に、例A-1~X-1では、鋼板の化学組成及び組織を適切に制御することにより、改善された耐LME性を有するとともに高強度でかつ延性にも優れた鋼板を得ることができた。
[例2]
 さらに、製造条件の影響を調べるために、表2において優れた特性が認められた鋼種A~Xを対象として、表3に記載する製造条件の加工熱処理を与えて、板厚2.3mmの熱延鋼板を作製し、冷延焼鈍後の特性を評価した。ここで、めっき処理の符号GI及びGAは亜鉛めっき処理の方法を示しており、GIは460℃の溶融亜鉛めっき浴中に鋼板を浸漬して鋼板の表面に亜鉛めっき層を与えた鋼板であり、GAは溶融亜鉛めっき浴中に鋼板を浸漬した後に485℃に鋼板を昇温させて鋼板の表面に鉄と亜鉛の合金層を与えた鋼板である。また、冷延板焼鈍においてそれぞれの滞留温度で保持した後の鋼板を室温まで冷却するまでの間に、一旦150℃まで冷却した鋼板を再加熱して、2~250秒間保持する焼戻し処理を与えた。なお、焼戻し時間が10800及び33100秒である実施例は、室温まで冷却後に、巻き取ったコイルを別の焼鈍装置(箱焼鈍炉)によって焼戻しを与えた実施例である。さらに、表3において、焼戻し温度を「なし」と記載する実施例は、焼戻しを与えていない実施例である。得られた結果を表4に示す。なお、特性の評価方法は例1の場合と同様である。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 表4を参照すると、例C-2、T-2、E-3及びV-3は鋳造工程の際に鋼片の表層に導入される酸素量が少なかったため、鋼板の表層領域に(Fe,Mn)2Bを形成させることができず、結果として耐LME性が低下した。例U-2は巻取温度が低かったため、マルテンサイト及び焼き戻しマルテンサイトの合計の含有量が高くなって鋼板が硬くなり脆化し、結果として延性が低下した。例W-2は仕上げ圧延の完了温度が高かったため、鋼板中のフェライト含有量が高く、またマルテンサイト及び焼き戻しマルテンサイトの合計の含有量が低くなり、結果として十分な強度が得られなかった。例F-3は巻取温度が高かったため、鋼板中のフェライト含有量が高くなり、結果として十分な強度が得られなかった。例G-3は仕上げ圧延の完了温度が低かったため、鋼板表面に亀裂が生じてしまった。したがって、組織の分析及び機械特性の評価は行わなかった。
 これとは対照的に、本発明に係る全ての実施例において、とりわけ鋳造工程において鋼片表層に所定量の酸素を導入し、さらに仕上げ圧延の完了温度及び巻取温度を適切に制御することにより、改善された耐LME性を有するとともに高強度でかつ延性にも優れた鋼板を得ることができた。
 1a、1b  鋼板
 2a、2b  電極
 3  ナゲット
 4  熱影響部
 5  LME割れ
 11  母材鋼板
 12  めっき層
 13  溶融亜鉛
 14  粒界
 15  B析出物

Claims (7)

  1.  質量%で、
     C:0.050~0.300%、
     Si:0.01~2.00%、
     Mn:0.10~4.00%、
     P:0.0001~0.0200%、
     S:0.0001~0.0200%、
     N:0.0001~0.0200%、
     Al:0.001~1.000%、
     Ti:0.001~0.500%、
     B:0.0007~0.0100%、
     Co:0~0.50%、
     Ni:0~1.00%、
     Mo:0~1.00%、
     Cr:0~2.000%、
     Nb:0~0.500%、
     V:0~0.500%、
     Cu:0~0.500%、
     W:0~0.100%、
     Ta:0~0.100%、
     Sn:0~0.050%、
     Sb:0~0.050%、
     As:0~0.050%、
     Mg:0~0.0500%、
     Ca:0~0.050%、
     Y:0~0.050%、
     Zr:0~0.050%、
     La:0~0.050%、及び
     Ce:0~0.050%
    を含有し、残部がFe及び不純物からなる化学組成を有し、
     面積率で、
     フェライト:5.0~40.0%、
     マルテンサイト及び焼き戻しマルテンサイトの合計:10.0~60.0%、
     ベイナイト:5.0~40.0%、及び
     残留オーステナイト:5.0~25.0%
    を含有し、残部組織が存在する場合には、前記残部組織が10.0%以下のパーライトからなり、
     表面から板厚方向に深さ100μmまでの表層領域において、円相当直径50~300nmの(Fe,Mn)2Bが1個/500μm2以上の数密度で存在していることを特徴とする、鋼板。
  2.  Co:0.01~0.50%、
     Ni:0.01~1.00%、
     Mo:0.01~1.00%、
     Cr:0.001~2.000%、
     Nb:0.001~0.500%、
     V:0.001~0.500%、
     Cu:0.001~0.500%、
     W:0.001~0.100%、
     Ta:0.001~0.100%、
     Sn:0.001~0.050%、
     Sb:0.001~0.050%、
     As:0.001~0.050%、
     Mg:0.0001~0.0500%、
     Ca:0.001~0.050%、
     Y:0.001~0.050%、
     Zr:0.001~0.050%、
     La:0.001~0.050%、及び
     Ce:0.001~0.050%
    の1種又は2種以上を含有することを特徴とする、請求項1に記載の鋼板。
  3.  引張強度が700MPa以上であり、破断伸びが3.0%以上であることを特徴とする、請求項1又は2に記載の鋼板。
  4.  円相当直径50~300nmの(Fe,Mn)2Bが1~500個/500μm2の数密度で存在していることを特徴とする、請求項1~3のいずれか1項に記載の鋼板。
  5.  前記鋼板の少なくとも一方の表面に亜鉛を含有するめっき層を有することを特徴とする、請求項1~4のいずれか1項に記載の鋼板。
  6.  請求項1又は2に記載の化学組成を有する溶鋼を連続鋳造して鋼片を形成する鋳造工程であって、前記鋼片の表層に10ppm超、100ppm未満の酸素を導入することを含む鋳造工程、
     前記鋼片を仕上げ圧延することを含む熱間圧延工程であって、前記仕上げ圧延の完了温度が650~950℃である熱間圧延工程、
     得られた熱延鋼板を400~700℃の巻取温度で巻き取る工程、並びに
     前記熱延鋼板を冷間圧延し、次いで焼鈍する工程
    を含むことを特徴とする、鋼板の製造方法。
  7.  冷間圧延後の焼鈍において、鋼板の少なくとも一方の表面に亜鉛を含有するめっき層が形成されることを特徴とする、請求項6に記載の鋼板の製造方法。
PCT/JP2019/044956 2019-05-09 2019-11-15 鋼板及びその製造方法 WO2020225936A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2020513367A JP6750759B1 (ja) 2019-05-09 2019-11-15 鋼板及びその製造方法
EP19928200.5A EP3967779B1 (en) 2019-05-09 2019-11-15 Steel sheet and method for manufacturing same
MX2021012807A MX2021012807A (es) 2019-05-09 2019-11-15 Lamina de acero y metodo para producir la misma.
CN201980088698.8A CN113348258B (zh) 2019-05-09 2019-11-15 钢板及其制造方法
KR1020217025975A KR102626001B1 (ko) 2019-05-09 2019-11-15 강판 및 그 제조 방법
US17/599,443 US20220177994A1 (en) 2019-05-09 2019-11-15 Steel sheet and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019088962 2019-05-09
JP2019-088962 2019-05-09

Publications (1)

Publication Number Publication Date
WO2020225936A1 true WO2020225936A1 (ja) 2020-11-12

Family

ID=73051362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/044956 WO2020225936A1 (ja) 2019-05-09 2019-11-15 鋼板及びその製造方法

Country Status (7)

Country Link
US (1) US20220177994A1 (ja)
EP (1) EP3967779B1 (ja)
JP (1) JP6750759B1 (ja)
KR (1) KR102626001B1 (ja)
CN (1) CN113348258B (ja)
MX (1) MX2021012807A (ja)
WO (1) WO2020225936A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022249919A1 (ja) * 2021-05-26 2022-12-01 株式会社神戸製鋼所 高強度合金化溶融亜鉛めっき鋼板およびその製造方法
WO2024154830A1 (ja) * 2023-01-20 2024-07-25 日本製鉄株式会社 冷延鋼板及びその製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116209781B (zh) * 2020-09-30 2024-09-06 日本制铁株式会社 钢板
CN112662953B (zh) * 2020-11-09 2022-03-04 刘祖瑜 一种耐高温抗氧化腐蚀的内胎及含该内胎的铜模及制备
CN112442635B (zh) * 2020-11-13 2022-03-29 唐山钢铁集团高强汽车板有限公司 高性能800MPa级以上低合金高强钢板及其制备方法
CN114622140A (zh) * 2022-03-17 2022-06-14 陕西西咸新区沣西新城能源发展有限公司 一种中深层地热地埋管用低合金耐腐蚀套管材料及其制备方法
CN115216683B (zh) * 2022-05-19 2023-05-05 北京科技大学 调控铸坯组织中铁素体形态的方法及所制备的微合金钢
CN116463546B (zh) * 2022-06-30 2024-01-09 宝山钢铁股份有限公司 一种100公斤级超高强度镀锌钢板及其制造方法
CN116463547B (zh) * 2022-06-30 2024-01-09 宝山钢铁股份有限公司 一种120公斤级超高强度镀锌钢板及其制造方法
CN116121663B (zh) * 2022-12-01 2024-02-09 内蒙古包钢钢联股份有限公司 屈服强度355MPa级的集装箱用稀土La耐候钢板及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004211158A (ja) * 2002-12-27 2004-07-29 Nippon Steel Corp 溶接用亜鉛系合金めっき鋼材およびその電縫鋼管
JP2006249521A (ja) 2005-03-11 2006-09-21 Nippon Steel Corp 溶接性に優れた亜鉛系合金めっき鋼材
JP2008231493A (ja) * 2007-03-20 2008-10-02 Nisshin Steel Co Ltd スポット溶接用合金化溶融亜鉛めっき鋼板の製造方法
WO2018043456A1 (ja) * 2016-08-31 2018-03-08 Jfeスチール株式会社 高強度冷延薄鋼板及びその製造方法
JP6388099B1 (ja) 2017-12-15 2018-09-12 新日鐵住金株式会社 鋼板、溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板
JP2019504196A (ja) * 2015-12-15 2019-02-14 ポスコPosco 表面品質及びスポット溶接性に優れた高強度溶融亜鉛めっき鋼板及びその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1284175A (en) * 1970-04-29 1972-08-02 Nippon Kokan Kk Production of rimming steel
GB1326728A (en) * 1970-11-13 1973-08-15 British Steel Corp Continuous casting of steel
JPS5838648A (ja) * 1981-08-28 1983-03-07 Kawasaki Steel Corp 連続鋳造中の溶鋼への酸素添加方法
JPH0537674Y2 (ja) 1986-11-28 1993-09-22
JPH0924445A (ja) * 1995-07-10 1997-01-28 Nippon Steel Corp 連続鋳造における鋳片表層の溶質濃化方法
JP3619603B2 (ja) * 1996-03-14 2005-02-09 Jfeスチール株式会社 2ピース缶用冷延鋼板に適用される熱延鋼板の製造方法および2ピース缶用冷延鋼板の製造方法
US20100047107A1 (en) * 2007-04-11 2010-02-25 Suguru Yoshida Steel material superior in high temperature strength and toughness and method of production of same
JP6696209B2 (ja) * 2016-02-18 2020-05-20 日本製鉄株式会社 高強度鋼板の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004211158A (ja) * 2002-12-27 2004-07-29 Nippon Steel Corp 溶接用亜鉛系合金めっき鋼材およびその電縫鋼管
JP2006249521A (ja) 2005-03-11 2006-09-21 Nippon Steel Corp 溶接性に優れた亜鉛系合金めっき鋼材
JP2008231493A (ja) * 2007-03-20 2008-10-02 Nisshin Steel Co Ltd スポット溶接用合金化溶融亜鉛めっき鋼板の製造方法
JP2019504196A (ja) * 2015-12-15 2019-02-14 ポスコPosco 表面品質及びスポット溶接性に優れた高強度溶融亜鉛めっき鋼板及びその製造方法
WO2018043456A1 (ja) * 2016-08-31 2018-03-08 Jfeスチール株式会社 高強度冷延薄鋼板及びその製造方法
JP6388099B1 (ja) 2017-12-15 2018-09-12 新日鐵住金株式会社 鋼板、溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022249919A1 (ja) * 2021-05-26 2022-12-01 株式会社神戸製鋼所 高強度合金化溶融亜鉛めっき鋼板およびその製造方法
WO2024154830A1 (ja) * 2023-01-20 2024-07-25 日本製鉄株式会社 冷延鋼板及びその製造方法

Also Published As

Publication number Publication date
CN113348258A (zh) 2021-09-03
KR102626001B1 (ko) 2024-01-19
US20220177994A1 (en) 2022-06-09
KR20210114042A (ko) 2021-09-17
JPWO2020225936A1 (ja) 2021-06-03
JP6750759B1 (ja) 2020-09-02
EP3967779B1 (en) 2024-06-05
MX2021012807A (es) 2021-11-12
EP3967779A1 (en) 2022-03-16
EP3967779A4 (en) 2023-03-08
CN113348258B (zh) 2023-04-21

Similar Documents

Publication Publication Date Title
CN111492075B (zh) 钢板、热浸镀锌钢板和合金化热浸镀锌钢板
WO2020225936A1 (ja) 鋼板及びその製造方法
JP6631760B1 (ja) 高強度亜鉛めっき鋼板および高強度部材
KR102524924B1 (ko) 강판
US9970092B2 (en) Galvanized steel sheet and method of manufacturing the same
KR20190089024A (ko) 고강도 아연 도금 강판 및 그 제조 방법
JP7001203B1 (ja) 鋼板及び部材
KR20190022769A (ko) 박강판 및 그의 제조 방법
CN114207169B (zh) 钢板及其制造方法
CN115427600B (zh) 钢板及其制造方法
JP7440800B2 (ja) 鋼板及びその製造方法
JP7001205B1 (ja) 鋼板及び部材
JP7311808B2 (ja) 鋼板及びその製造方法
CN113544301B (zh) 钢板

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020513367

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19928200

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217025975

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019928200

Country of ref document: EP

Effective date: 20211209