WO2020222392A1 - Method for robot safety evaluation on basis of collision force bigdata that enables real-time robot collision risk monitoring using graphic information - Google Patents
Method for robot safety evaluation on basis of collision force bigdata that enables real-time robot collision risk monitoring using graphic information Download PDFInfo
- Publication number
- WO2020222392A1 WO2020222392A1 PCT/KR2019/018119 KR2019018119W WO2020222392A1 WO 2020222392 A1 WO2020222392 A1 WO 2020222392A1 KR 2019018119 W KR2019018119 W KR 2019018119W WO 2020222392 A1 WO2020222392 A1 WO 2020222392A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- collision
- robot
- force
- time
- information
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 44
- 238000011156 evaluation Methods 0.000 title claims abstract description 34
- 238000012544 monitoring process Methods 0.000 title claims abstract description 16
- 238000012360 testing method Methods 0.000 claims abstract description 103
- 238000013528 artificial neural network Methods 0.000 claims abstract description 33
- 230000000007 visual effect Effects 0.000 claims abstract description 10
- 208000027418 Wounds and injury Diseases 0.000 claims description 26
- 208000014674 injury Diseases 0.000 claims description 26
- 238000004088 simulation Methods 0.000 claims description 12
- 238000004364 calculation method Methods 0.000 claims description 11
- 230000008859 change Effects 0.000 claims description 11
- 230000000704 physical effect Effects 0.000 claims description 10
- 238000005259 measurement Methods 0.000 claims description 4
- 238000002474 experimental method Methods 0.000 claims description 3
- 230000006378 damage Effects 0.000 description 12
- 238000010586 diagram Methods 0.000 description 12
- 230000000875 corresponding effect Effects 0.000 description 8
- 230000008569 process Effects 0.000 description 6
- 239000012636 effector Substances 0.000 description 5
- 238000006073 displacement reaction Methods 0.000 description 4
- 230000008520 organization Effects 0.000 description 4
- 210000000988 bone and bone Anatomy 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 210000003205 muscle Anatomy 0.000 description 3
- 210000003491 skin Anatomy 0.000 description 3
- 238000004422 calculation algorithm Methods 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 230000037394 skin elasticity Effects 0.000 description 2
- 241000282412 Homo Species 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/406—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
- G05B19/4061—Avoiding collision or forbidden zones
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/418—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
Definitions
- the present invention relates to a method for evaluating the safety of a robot based on collision physical force big data that enables real-time robot collision risk monitoring using graphic information. More specifically, the collision physical force according to the collision factor extracted from the robot is pre-data mapped or through a neural network. It is possible to learn, and extract the learned artificial neural network in real time, to grasp the safety of the robot in real time according to the movement of the test robot, and to display the safety of the robot to the user using graphic information such as color. It relates to a robot safety evaluation method based on collision physics big data that can monitor the risk level.
- the currently used way to ensure safety is to lower the speed of the robot below a certain speed.
- this method does not control the speed of the robot by evaluating the appropriateness of the speed of the robot, but to secure stability by significantly lowering the speed of the robot, so safety can be increased, but there is a problem that the efficiency is not good due to a significant decrease in productivity. .
- the safety evaluation method of most of the robots currently developed is to install and evaluate a separate device for obtaining the collision pressure, collision force, movement speed, etc. in the actual test robot, so there is a problem that the evaluation cost increases.
- An object of the present invention is to calculate the collision pressure and collision force applied to the operator according to the movement speed and movement path of each part in consideration of the shape of the test robot, and determine whether the calculated value falls within the International Standardization Organization (ISO) standard. It is to provide a method for evaluating the safety of a robot with improved accuracy of safety evaluation.
- ISO International Standardization Organization
- the subject of the present invention is to calculate the collision pressure and collision force applied to the operator according to the movement speed and movement path of each part in consideration of the shape of the test robot, and the calculated value conforms to the standards of the International Organization for Standardization (ISO). It is to provide a method of improving the safety of a robot that controls the speed and posture of a test robot to be satisfied.
- ISO International Organization for Standardization
- the present invention calculates the collision pressure and collision force applied to the operator according to the movement speed and movement path of each part in consideration of the shape of the test robot, and stores the calculated values to collect the data to build a database. , It is to train it on an artificial neural network to predict the collision physics of the robot in motion through the trained artificial neural network in real time.
- an object of the present invention is to provide a real-time collision safety monitoring method using a graphical representation of the collision physical force of the robot predicted in real time according to the movement of the test robot.
- a collision physics big data-based robot safety evaluation method capable of monitoring a real-time robot collision risk using graphic information includes a collision physical force including at least one of a collision pressure and a collision force, and a collision affecting the collision force.
- Preparing an artificial neural network from which data on factors is learned Obtaining a 3D image or a 3D model of the test robot including shape information of the actual robot; Setting a movement time and a movement path of the test robot by inputting profile information including movement time information and movement path information of the test robot; Extracting in real time a collision physical force including at least one of a collision pressure and a collision force applied to the object to be collided according to the collision factor of the test robot from the artificial neural network prepared in advance; Evaluating the safety of the test robot by determining whether the magnitude of the extracted collision physical force falls within a preset maximum collision physical force; And converting the result of the safety evaluation of the robot into a numerical value and converting it into graphic information in the simulation program and notifying the robot user as visual information.
- the collision factor including at least one of the shape of the collision site, the effective mass, the moving speed, the collision direction, and the physical properties of the human body, and the collision force according to the collision factor. It may be characterized by acquiring data.
- the step of evaluating the safety of the test robot by determining whether the magnitude of the extracted collision physical force falls within a preset maximum collision physical force may be performed by comparing the extracted collision physical force with the International Robot Collision Safety Standard (ISO). The safety of the robot can be evaluated.
- ISO International Robot Collision Safety Standard
- test robot may be a 3D image formed by inputting shape information of the robot into the simulation program or a 3D model formed through a 3D measurement sensor.
- the simulation program may be a Computer Aided Engineering (CAE) program.
- CAE Computer Aided Engineering
- the mathematical calculation method is to change the posture of the test robot, and according to the change of the posture, the avoidance is caused by the risk of injury of the test robot. It may include calculating the collision pressure and the collision force applied to the collider.
- the contact pressure applied to the object to be collided is calculated according to the area of each part of the test robot, and at least one injury to the test robot is caused through the calculated contact pressure value. It may further include the step of setting the risk area.
- the mathematical calculation method may calculate a collision pressure and a collision force applied to the collided object for each predetermined time unit.
- the step of converting the result of the safety evaluation of the robot into a numerical value and converting it into graphic information in a simulation program and notifying the robot user as visual information may include: selecting an injury-causing site that may be dangerous during a collision in the robot; Calculating collision information including at least one of force, pressure, collision energy, and deformation amount that will occur when a human collides with the injury-causing site during movement of the robot; Converting the calculated risk level of the collision information into color; And inputting a color of the injury-causing area drawing as the converted color value on a robot simulation that tracks the movement of an actual robot in real time.
- the color of the part where the collision information is not calculated in the drawing of the robot is the part where the collision information is calculated.
- the color value of can be interpolated and input.
- the magnitude of the collision pressure and the collision force applied to the object to be collided by the test robot can be obtained by simulating through a computer program such as a CAE (Computer Aided Engineering) program, or a calculation algorithm is applied to the test robot system.
- a computer program such as a CAE (Computer Aided Engineering) program
- a calculation algorithm is applied to the test robot system.
- collision pressure and collision force can be calculated in real time, so that the safety of the test robot can be evaluated in real time. Accordingly, since it is not necessary to have a separate device for obtaining the collision pressure, collision force, movement speed, etc. acting on the test robot, safety evaluation can be performed at low cost.
- the trained artificial neural network can be installed on the robot, so that a program implementing the algorithm can be installed on the robot with a small capacity. do.
- the risk of the corresponding part is displayed in color to enable safe work at the site where the robot is used, and collision damage is prevented when an unexpected accident occurs during operation. Can be minimized.
- FIG. 1 is a flowchart of a method for evaluating safety of a robot according to an embodiment of the present invention.
- Figure 2 is a flow chart for the step of preparing the learned artificial neural network.
- FIG. 3 is a diagram showing a process of selecting a collision factor and calculating the collision force according to the collision force to collect data, making the aggregated data into a data map or learning from an artificial neural network to predict the collision force of a robot in motion in real time. .
- FIG. 4 is a flow chart for explaining a detailed process of calculating the collision pressure and the collision force applied to the object by the test robot.
- FIG. 5 is a diagram schematically showing a state in which an actual robot and an object to be collided collide.
- FIG. 6 is a view showing a surface change of an object to be collided with an actual robot in FIG. 5.
- FIG. 7 is a diagram showing a three-dimensional shape of a test robot in FIG. 1.
- FIG. 8 is a view showing the magnitude of the contact pressure applied to the object to be collided according to the shape of each part of the test robot.
- 9 is a diagram showing values of collision pressure and collision force obtained through a 3D modeling program.
- FIG. 10 is a flow chart for explaining a step of converting the result of the safety evaluation of the robot into a numerical value, converting it into graphic information in a simulation program, and notifying it as visual information.
- 11 and 12 show the physical force of the collision acquired using information (joint angle, speed, weight information, etc.) of the robot in motion, safety evaluation in real time with the International Safety Standard (ISO), and the evaluation result numerically to provide a real-time graphic.
- ISO International Safety Standard
- FIG. 1 is a flow chart of a method for evaluating safety of a robot according to an embodiment of the present invention
- FIG. 2 is a flow chart for preparing a learned artificial neural network
- FIG. 3 is a flowchart of selecting a collision factor and calculating the collision physical force accordingly. It is a diagram showing a process of predicting in real time the collision physical force of a robot in motion by calculating and collecting data, making the collected data into a data map or learning from an artificial neural network.
- a collision physics big data-based robot safety evaluation method capable of real-time robot collision risk monitoring using graphic information according to the present invention includes at least one of collision pressure and collision force.
- the collision factor may include at least one or more of the shape of the collision site, the effective mass, the moving speed, the collision direction, and the physical properties of the person, and the collision physical force may include at least one of collision pressure and collision force.
- Extensive data on collision factors and collision forces obtained in this way can be stored in a database and learned through an artificial neural network.
- the artificial neural network may be in the form of a table in which a number of numerical values for a collision factor corresponding to an input and a collision force corresponding to an output are correlated.
- the step (S110) of preparing the artificial neural network in which the collision physical force and data on the collision factors affecting the collision are learned (S110), consider the collision factor, and determine a combination of the collision factors (S111), and the It may include a step (S112) of acquiring a collision force according to a combination of collision factors, and a step (S113) of learning the acquired collision force data to the artificial neural network.
- the combination of the collision factors among the collision factors such as the shape of the collision site, the effective mass, the moving speed, the collision direction, and the physical properties of the human body (for example, physical properties such as skin, bones, muscles, etc.) Can be selected.
- collision forces may be obtained by combining collision factors and selecting the number of all cases according to the combination of collision factors.
- These collision physical forces can mean collision pressure, collision force, etc., and 1) actual collision tests are performed, 2) finite element simulation programs such as Ansys are used, or 3) collision pressure and collision are mathematically calculated. It is as described above that it is possible to obtain a collision physical force such as force.
- the test robot 10 may be formed of a 3D image formed by inputting shape information of the robot R into a simulation program or a 3D model formed through a 3D measurement sensor. That is, the test robot 10 is a 3D image formed by inputting shape information of the actual robot R into a simulation program such as a CAE (Computer Aided Engineering) program, or implemented through a 3D measurement sensor, and the actual robot R It can be made of a 3D model that is driven and controlled in the same way as.
- a simulation program such as a CAE (Computer Aided Engineering) program
- the robot's CAE information includes the robot's shape, physical properties, and specifications for the robot's driving parts (motor performance and performance limits, joint angle limits, etc.).
- the CAE information of the robot may include collision factors such as the shape of the collision site, the effective mass, the moving speed, the collision direction, and the physical properties of the human body (eg, physical properties of skin, bones, muscles, etc.).
- the type of the 3D modeled robot R is not limited, it may be a cooperative robot 10 that jointly processes tasks in a certain work space.
- a collaborative robot may be formed of a manipulator formed to have a mechanical hand at its tip to grasp and transport a specific object or perform a specific task.
- the test robot 10 may be formed to have a degree of freedom to move in at least one of the X-axis direction, Y-axis direction, Z-axis direction, pitch direction, yaw direction, and roll direction. have. That is, the test robot 10 may be formed of a manipulator having at least one degree of freedom and more than one degree of freedom.
- the test robot 10 may include at least two link units 12 connected through the joint 11 and an end-effector 13 connected to one of the link units 12.
- the end effector refers to a part having a function that directly acts on a work object when the test robot 10 performs work, and may be, for example, a mechanical hand of a manipulator.
- the movement time and movement path of the test robot 10 are set by inputting profile information including movement time information and movement path information of the test robot 10 do.
- profile information including movement time information and movement path information is input to a simulation program to set the movement time and movement path of the test robot 10.
- profile information including movement time information and movement path information is input to the control system of the test robot 10 to determine the movement time and movement path of the test robot 10. Set.
- the method of controlling the driving of the test robot 10 through the simulation program and the control system of the robot is a known technique, and thus will be omitted.
- the test robot 10 In the step (S140) of extracting a collision physical force including at least one of a collision pressure and a collision force applied to the object to be collided according to the collision factor of the test robot 10 from the artificial neural network prepared in advance (S140), the test robot 10 ), including the shape of the collision site, effective mass, moving speed, collision direction, and physical properties of a person (for example, physical properties of skin, bones, muscles, etc.) included in the CAE information received when acquiring the 3D shape of As data of the collision physical force, such as the corresponding collision pressure and collision force, are extracted from the artificial neural network prepared in advance, it is possible to extract the collision physical force in real time because it takes less time than the conventional one. Accordingly, the time for evaluating the safety of the robot is drastically shortened, the safety at the industrial site where the robot is used is greatly improved, and collision damage is minimized even in the event of an unexpected accident.
- the magnitude of the collision pressure (P) and collision force (F C ) corresponding to the collision factor of the test robot 10 extracted in real time from the artificial neural network is a preset maximum collision pressure. It is determined whether it falls within the magnitude of (P MAX ) and the maximum impact force (F MAX ).
- the test robot 10 If the magnitude of the collision pressure (P) and collision force (F C ) applied to the object to be collided 20 in the step (S150) of evaluating the safety of the robot is preset maximum collision pressure (P MAX ) and maximum collision force collision force If it falls within the size of (F MAX ), the test robot 10 is determined to be safe. Conversely, if the magnitudes of the impact pressure P and the impact force F C are greater than or equal to the maximum impact pressure P MAX and the maximum impact force F MAX , the test robot 10 is determined to be unsafe.
- the moving speed of the test robot 10 can be controlled so that the impact pressure (P) and the impact force (F C ) applied to it are less than the magnitudes of the maximum impact pressure (P MAX ) and the maximum impact force (F MAX ). have. This is because reducing the moving speed of the test robot 10 reduces the force applied to the object to be collided 20.
- the preset maximum impact pressure (P MAX ) and maximum impact force (F MAX ) are sized according to the International Organization for Standardization (ISO), more specifically TS 15066.
- ISO International Organization for Standardization
- TS 15066 of the International Organization for Standardization (ISO) discloses the maximum allowable pressure and allowable force for each body part of a person, so the maximum impact pressure (P MAX ) and maximum impact force (F MAX ) If set to size, the stability of the robot R can be further improved.
- step (S160) of converting the result of the safety evaluation of the robot into a numerical value, converting it into graphic information in the simulation program, and notifying the robot user as visual information will be described later.
- FIG. 4 is a flow chart for explaining a detailed process of calculating a collision pressure and a collision force applied to an object to be collided by a test robot
- FIG. 5 is a diagram schematically showing a state in which the actual robot and the object to be collided collide 6 is a diagram showing a change in the surface of an object colliding with an actual robot in FIG. 5
- FIG. 7 is a diagram showing a three-dimensional shape of a test robot in FIG. 1
- FIG. 8 is a test It is a diagram showing the magnitude of the contact pressure applied to the object to be collided according to the shape of each part of the robot.
- a method of obtaining data on collision physical force through a mathematical calculation method among methods of obtaining data on collision physical force according to a collision factor is as follows.
- the impact pressure (P) and impact force (force, F C ) applied to the object to be collided 20 are determined by considering the shape, effective mass, movement speed, and direction of the test robot 10 at risk of injury. Can be calculated.
- the collision force (F C ) applied to the object to be collided 20 can be implemented through Equation 1 below.
- the object to be collided 20 may be a human, and the effective mass (M i ) for the collision portion of the test robot is calculated by kinematic theory, and the effective mass (M h ) for the collision portion of the object to be collided is to the user. It can be input by and predetermined.
- the displacement of the impact area of the test robot (y i ) and the displacement of the impact area of the object to be collided (y h ) can be obtained through the CAE system.
- the collision pressure P applied to the object to be collided 20 can be implemented through Equation 2 below.
- the skin elasticity (K) of the object to be collided and the skin thickness (h) of the object to be collided may be input by the user through the CAE system and stored in advance.
- K skin elasticity of the object to be collided
- h skin thickness of the object to be collided
- the collision pressure (P) and the collision force (F C ) applied to the collided object 20 are calculated for each predetermined time unit. can do. This is to improve the speed of the calculation by reducing the amount of data for calculating the collision pressure (P) and the collision force (F C ), and to prevent a load from being applied.
- the time determined in a predetermined unit may vary according to the shape of the test robot 10. That is, as the shape of the test robot 10 becomes more complex, the unit time may be shorter.
- the step (S112) of obtaining data on the collision physical force according to the collision factor in a mathematically calculated manner may further include a step (S1121) of setting an injury-causing risk area of the test robot.
- the contact pressure applied to the object to be impacted 20 is calculated according to the area of each area of the test robot 10, and the test robot is based on the calculated contact pressure value. (10) At least one injury-causing risk area is set.
- each part of the test robot 10 for setting an injury-causing risk part is a circumferential surface, an upper surface, a lower surface, an upper edge, and a lower surface. It can be a corner.
- the contact pressure applied to the object to be collided 20 is calculated according to the area of each portion.
- the part having the largest value among the contact pressures or all parts in which the contact pressure exceeds a preset value may be selected as the risk of injury.
- one or two or more areas of risk causing injury of the test robot 10 may be selected by the user.
- an injury-prone risk site of the test robot 10 may be one or two or more selected from the link unit 12 and the end effector 13.
- the step of setting the risk-producing part of the test robot (S1221) may be omitted.
- collision data such as collision pressure (P) and collision force (F C ) are acquired by the above-described method, these data are collected and the aggregated data is made into a data map, or the collision physics of the robot in motion is learned by learning from an artificial neural network. Can be predicted in real time.
- the step of obtaining data on the collision physical force according to the collision factor in a mathematically calculated manner includes calculating the collision pressure and collision force applied to the object to be collided according to the change of the posture of the test robot (S1222). It may contain more.
- the step of calculating the collision pressure and the collision force applied to the object to be collided according to the change of the posture of the test robot is by adjusting the angle of the joint 11 of the test robot 10, the link unit 12 and the end effector 13 ) To change the posture, and calculate the collision pressure (P) and the collision force (F C ) applied to the object to be collided 20 by the area at risk of causing injury according to the change of the posture.
- the reason for calculating the collision pressure (P) and collision force (F C ) applied to the object to be collided 20 while changing the posture of the test robot 10 is the change in the posture of the link unit 12 and the end effector 13 This is because the distance and the contact area with the object to be collided 20 are changed according to. In addition, when the distance and the contact portion with the object to be collided 20 are different, the magnitude of the collision pressure P and the collision force F C applied to the object to be collided 20 is also changed.
- FIG. 8 is a diagram showing the magnitude of a contact pressure applied to an object to be collided according to the shape of each part of the test robot.
- FIG. 9 is a diagram showing values of collision pressure and collision force acquired through a 3D modeling program.
- FIGS. 11 and 12 are information on the robot in motion (joint angle, speed, weight It is a diagram that implements real-time graphicization by evaluating safety in real time with international safety standards (ISO), and quantifying the evaluation results in real-time using the collision force acquired using information, etc.).
- ISO international safety standards
- the step (S160) of converting the result of the safety evaluation of the robot into a numerical value and converting it into graphic information in the simulation program and notifying the robot user as visual information (S160) is an injury that may be dangerous when a collision occurs within the robot.
- the color of the area where collision information is not calculated in the drawing of the robot is The color value of the part where the collision information is calculated is interpolated and input. Accordingly, colors can be continuously connected to the surface of the robot in the simulation without being cut off.
- the color interpolation method is basically a method of calculating in proportion to the distance from the color value calculation point, and the specific formula is as follows.
- A is a calculated point
- V a is a calculated value of A
- X is an uncalculated point
- V x is an interpolated value
- B is a calculated point
- V b is a calculated value of B.
- dis_A is the distance between X and A
- dis_B is the distance between X and B.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Manufacturing & Machinery (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- General Engineering & Computer Science (AREA)
- Quality & Reliability (AREA)
- Human Computer Interaction (AREA)
- Manipulator (AREA)
Abstract
According to the present invention, a method for robot safety evaluation on the basis of collision force bigdata that enables real-time robot collision risk monitoring using graphic information may comprise the steps of: preparing an artificial neural network trained with data on collision force and collision factors; acquiring a three-dimensional image or a three-dimensional model of a test robot; inputting profile information to configure a moving time and a moving path of the test robot; extracting, in real time, the collision force from the artificial neural network prepared in advance; determining whether the magnitude of the extracted collision force falls within preconfigured maximum collision force, so as to evaluate safety of the test robot; and converting a safety evaluation result of the robot into a numerical value, converting the numerical value into graphic information in a simulation program, and providing the graphic information as visual information.
Description
본 발명은 그래픽 정보를 이용한 실시간 로봇 충돌 위험도 모니터링이 가능한 충돌 물리력 빅데이터 기반 로봇 안전성 평가 방법에 관한 것으로, 보다 상세하게는 로봇으로부터 추출된 충돌인자에 따른 충돌 물리력을 미리 데이터 맵핑 또는 인경신경망을 통해 학습시키고, 이러한 학습된 인공신경망 등을 실시간으로 추출하여 테스트 로봇의 이동에 따라 로봇의 안전성을 실시간으로 파악하는 것이 가능하며, 로봇의 안전성을 색채 등의 그래픽 정보를 이용해 사용자에게 표시하는 실시간 로봇 충돌 위험도 모니터링이 가능한 충돌 물리력 빅데이터 기반 로봇 안전성 평가 방법에 관한 것이다. The present invention relates to a method for evaluating the safety of a robot based on collision physical force big data that enables real-time robot collision risk monitoring using graphic information. More specifically, the collision physical force according to the collision factor extracted from the robot is pre-data mapped or through a neural network. It is possible to learn, and extract the learned artificial neural network in real time, to grasp the safety of the robot in real time according to the movement of the test robot, and to display the safety of the robot to the user using graphic information such as color. It relates to a robot safety evaluation method based on collision physics big data that can monitor the risk level.
근래 로봇의 고성능화의 실현으로 인해 운전 편의성의 극대화와 아울러, 로봇의 운행시 작업자와의 충돌 방지를 통한 안전성 확보를 위해서 여러 다양한 노력이 이루어지고 있다. Recently, due to the realization of high performance of robots, various efforts have been made to maximize driving convenience and to secure safety by preventing collisions with workers during operation of the robot.
이러한 로봇은 인간과 같은 작업 공간 내에 설치될 수 있음으로 작업시 충돌에 의한 사고가 빈번히 발생하게 된다. 따라서, 로봇에 있어서 필수적으로 요구되는 것은 1) 모션의 정밀성과, 2) 모션의 안전성이다. 첫 번째 요구사항인 모션의 정밀성의 경우에는 모터 정밀제어 기술의 발전을 통해 현재 일정 궤도에 진입한 실정이나, 두 번째 요구사항인 모션의 안전성의 경우에는 모션의 정밀성에 비교하여 기술적인 완성도가 매우 미비한 실정이다. Since such a robot can be installed in the same work space as a human, accidents due to collisions occur frequently during work. Therefore, what is essential to the robot is 1) precision of motion and 2) safety of motion. In the case of motion precision, which is the first requirement, the situation has entered a certain trajectory through the development of motor precision control technology, but in the case of motion safety, the second requirement, the technical completion is very high compared to the precision of motion. It is inadequate.
특히 최근 들어 로봇 시스템에 있어서, 안전성(safety)이라는 용어가 핵심 화두로 떠오르면서 로봇의 안전성을 높이기 위한 다양한 연구가 진행되고 있다.In particular, in recent years, as the term safety has emerged as a key topic in robotic systems, various studies are being conducted to increase the safety of robots.
현재 통용되고 있는 안전성을 확보하는 방법은 로봇의 속도를 일정 속도 이하로 낮추는 것이다. 그러나 이러한 방법은 로봇 속도의 적정성을 평가하여 로봇의 속도를 제어하는 것이 아니라, 로봇의 속도를 크게 낮추어 안정성을 확보하는 것이어서, 안전성을 높일 수는 있지만 생산성이 크게 저하되어 효율성이 좋지 않은 문제가 있다.The currently used way to ensure safety is to lower the speed of the robot below a certain speed. However, this method does not control the speed of the robot by evaluating the appropriateness of the speed of the robot, but to secure stability by significantly lowering the speed of the robot, so safety can be increased, but there is a problem that the efficiency is not good due to a significant decrease in productivity. .
이러한 문제를 해결하기 위하여, 로봇에 펜스를 구축하여 사람이 펜스 안에 있지 않을 때에만 로봇을 정상적으로 운용함으로써 생산성을 증가시켰으나, 협동 로봇, 서비스 로봇 등과 같이 로봇과 사람이 같은 공간에 있는 경우에 대한 안전성 향상 해결책은 아직 구축되지 않은 실정이다. 이에 사람과 로봇이 같은 공간 내에서 작업을 하면서도 로봇에 의해 상해를 입지 않도록 하기 위한 해결책의 마련이 필요하다. In order to solve this problem, a fence was built on the robot and the robot was operated normally only when the person is not in the fence, thereby increasing productivity, but safety in case the robot and the person are in the same space, such as cooperative robots and service robots. The improvement solution has not yet been established. Therefore, it is necessary to prepare a solution to prevent injuries by robots while humans and robots work in the same space.
또한, 현재 개발된 대부분의 로봇의 안전성 평가 방법은 실제 테스트 로봇에 충돌 압력, 충돌 힘, 이동 속도 등을 구하기 위한 별도의 장치를 설치하여 평가하는 것이어서 평가 비용이 증가하는 문제가 있었다. In addition, the safety evaluation method of most of the robots currently developed is to install and evaluate a separate device for obtaining the collision pressure, collision force, movement speed, etc. in the actual test robot, so there is a problem that the evaluation cost increases.
그리고 안전성 평가시 테스트 로봇은 필요 이상으로 정지와 작동을 반복하게 되므로 작업효율이 감소되고, 테스트 로봇에 무리가 가해지는 문제가 있었다. In addition, when evaluating the safety, since the test robot repeats stopping and operating more than necessary, work efficiency is reduced, and there is a problem that an excessive force is applied to the test robot.
이러한 문제를 해결하기 위하여, 테스트 로봇의 이동에 따라 신체에 가해지는 충돌력을 수학적으로 예측하는 방법이 구현되었으나, 신체상해와 직접적으로 연관되어 있는 물리지수인 압력(ISO/TS 15066 로봇 충돌안전 평가인자)을 예측하지 않아 충돌부위의 형상에 관계없이 일정한 압력이 산출하거나 압력을 계산하지 않아 충돌로 인한 상해를 예측하는 것에 한계가 있어 안전성 평가 정확도가 낮은 문제가 있었다.In order to solve this problem, a method of mathematically predicting the collision force exerted on the body according to the movement of the test robot was implemented, but the pressure (ISO/TS 15066 robot collision safety evaluation), which is a physical index directly related to body injury. Factor) is not predicted, so there is a problem in that the accuracy of safety evaluation is low because a constant pressure is calculated regardless of the shape of the impact site, or there is a limitation in predicting injury due to a collision because the pressure is not calculated.
충돌로 인한 압력을 예측하는 방법은 유한요소법을 이용한 충돌 시뮬레이션을 수행하는 것이 대부분이지만, 해석시간이 오래 걸려 테스트 로봇의 이동에 따라 로봇의 안전성을 실시간으로 파악하는 것은 불가능한 문제가 있다.Most of the methods for predicting the pressure due to collision are to perform collision simulation using the finite element method, but it takes a long time to analyze and it is impossible to grasp the safety of the robot in real time according to the movement of the test robot.
본 발명의 과제는 테스트 로봇의 형상을 고려한 각 부위별 이동속도 및 이동경로에 따라 작업자에 가해지는 충돌 압력 및 충돌 힘을 산출하고, 산출된 값이 국제표준화기구(ISO) 규격에 내에 해당하는 지를 판단하여 안전성 평가의 정확도가 향상된 로봇의 안전성 평가 방법을 제공함에 있다.An object of the present invention is to calculate the collision pressure and collision force applied to the operator according to the movement speed and movement path of each part in consideration of the shape of the test robot, and determine whether the calculated value falls within the International Standardization Organization (ISO) standard. It is to provide a method for evaluating the safety of a robot with improved accuracy of safety evaluation.
또한, 본 발명의 과제는 테스트 로봇의 형상을 고려하여 각 부위별 이동속도 및 이동경로에 따라 작업자에 가해지는 충돌 압력 및 충돌 힘을 산출하고, 산출된 값이 국제표준화기구(ISO)의 규격을 만족하도록 테스트 로봇의 속도 및 자세를 제어하는 로봇의 안전성 향상 방법을 제공함에 있다.In addition, the subject of the present invention is to calculate the collision pressure and collision force applied to the operator according to the movement speed and movement path of each part in consideration of the shape of the test robot, and the calculated value conforms to the standards of the International Organization for Standardization (ISO). It is to provide a method of improving the safety of a robot that controls the speed and posture of a test robot to be satisfied.
또한, 본 발명은 테스트 로봇의 형상을 고려한 각 부위별 이동속도 및 이동경로에 따라 작업자에 가해지는 충돌 압력 및 충돌 힘을 산출하고, 이렇게 산출된 값을 저장하여 데이터를 집합시켜 데이터 베이스를 구축하고, 이를 인공 신경망에 트레이닝하여 트레이닝된 인공 신경망을 통하여 모션 중인 로봇의 충돌물리력을 실시간으로 예측함에 있다. In addition, the present invention calculates the collision pressure and collision force applied to the operator according to the movement speed and movement path of each part in consideration of the shape of the test robot, and stores the calculated values to collect the data to build a database. , It is to train it on an artificial neural network to predict the collision physics of the robot in motion through the trained artificial neural network in real time.
또한, 본 발명의 과제는 테스트 로봇의 이동에 따라 실시간으로 예측한 로봇의 충돌 물리력를 그래픽적 표현을 이용하여 실시간 충돌 안전 모니터링 방법을 제공함에 있다. In addition, an object of the present invention is to provide a real-time collision safety monitoring method using a graphical representation of the collision physical force of the robot predicted in real time according to the movement of the test robot.
본 발명에 일 실시예에 의한 그래픽 정보를 이용한 실시간 로봇 충돌 위험도 모니터링이 가능한 충돌 물리력 빅데이터 기반 로봇 안전성 평가 방법은, 충돌 압력, 충돌 힘 가운데 적어도 하나를 포함하는 충돌 물리력과, 이에 영향을 주는 충돌인자에 대한 데이터가 학습된 인공신경망을 준비하는 단계; 실제 로봇의 형상 정보를 포함하는 테스트 로봇의 3차원 영상 또는 3차원 모형을 획득하는 단계; 상기 테스트 로봇의 이동시간 정보 및 이동경로 정보를 포함하는 프로파일 정보를 입력하여 상기 테스트 로봇의 이동시간 및 이동경로를 설정하는 단계; 상기 테스트 로봇의 충돌 인자에 따른 피충돌체에 가해지는 충돌 압력, 충돌 힘 가운데 적어도 하나를 포함하는 충돌 물리력을 상기 미리 준비된 인공신경망에서 실시간으로 추출하는 단계; 상기 추출된 충돌 물리력의 크기가 기 설정된 최대 충돌 물리력의 크기 내에 해당하는지를 판단하여 상기 테스트 로봇의 안전성을 평가하는 단계; 및 로봇의 안전성 평가 결과를 수치화하여 시뮬레이션 프로그램 내 그래픽 정보로 변환하여 로봇 사용자에게 시각정보로 알려주는 단계;를 포함할 수 있다.A collision physics big data-based robot safety evaluation method capable of monitoring a real-time robot collision risk using graphic information according to an embodiment of the present invention includes a collision physical force including at least one of a collision pressure and a collision force, and a collision affecting the collision force. Preparing an artificial neural network from which data on factors is learned; Obtaining a 3D image or a 3D model of the test robot including shape information of the actual robot; Setting a movement time and a movement path of the test robot by inputting profile information including movement time information and movement path information of the test robot; Extracting in real time a collision physical force including at least one of a collision pressure and a collision force applied to the object to be collided according to the collision factor of the test robot from the artificial neural network prepared in advance; Evaluating the safety of the test robot by determining whether the magnitude of the extracted collision physical force falls within a preset maximum collision physical force; And converting the result of the safety evaluation of the robot into a numerical value and converting it into graphic information in the simulation program and notifying the robot user as visual information.
또한, 충돌 압력, 충돌 힘 가운데 적어도 하나를 포함하는 충돌 물리력과, 이에 영향을 주는 충돌인자에 대한 데이터가 학습된 인공신경망을 준비하는 단계에서는, 실제 로봇과 피충돌체 사이의 충돌실험을 수행하거나, 유한요소 시뮬레이션을 수행하거나, 수학적으로 계산하는 방식으로, 충돌부위 형상, 유효질량, 이동속도, 충돌방향, 사람의 신체 물성치 가운데 적어도 하나 이상을 포함하는 충돌인자와 상기 충돌 인자에 따른 충돌 물리력에 대한 데이터를 획득하는 것을 특징으로 할 수 있다.In addition, in the step of preparing the artificial neural network in which data on the collision physical force including at least one of the collision pressure and the collision force and the collision factor affecting the collision is learned, a collision experiment between an actual robot and a collided object is performed, or In a method of performing finite element simulation or mathematical calculation, the collision factor including at least one of the shape of the collision site, the effective mass, the moving speed, the collision direction, and the physical properties of the human body, and the collision force according to the collision factor. It may be characterized by acquiring data.
또한, 충돌 물리력과, 이에 영향을 주는 충돌인자에 대한 데이터가 학습된 인공신경망을 준비하는 단계에서는, 충돌인자를 고려하고, 상기 충돌인자의 조합을 결정하는 단계; 상기 충돌인자의 조합에 따른 충돌 물리력을 획득하는 단계; 및 획득된 충돌 물리력 데이터를 인공신경망에 학습시키는 단계; 를 포함할 수 있다.In addition, in the preparing of the artificial neural network in which the collision physical force and data on the collision factors affecting the collision are learned, the steps of considering the collision factors and determining a combination of the collision factors; Obtaining a collision physical force according to a combination of the collision factors; And learning the acquired collision force data to the artificial neural network. It may include.
또한, 상기 추출된 충돌 물리력의 크기가 기 설정된 최대 충돌 물리력의 크기 내에 해당하는지를 판단하여 상기 테스트 로봇의 안전성을 평가하는 단계는, 추출된 충돌 물리력을 국제 로봇충돌안전 표준(ISO)와 비교하여 테스트 로봇의 안전성을 평가할 수 있다.In addition, the step of evaluating the safety of the test robot by determining whether the magnitude of the extracted collision physical force falls within a preset maximum collision physical force may be performed by comparing the extracted collision physical force with the International Robot Collision Safety Standard (ISO). The safety of the robot can be evaluated.
또한, 상기 테스트 로봇은, 상기 시뮬레이션 프로그램에 상기 로봇의 형상 정보를 입력하여 형성된 3차원 영상 또는 3차원 계측 센서를 통해 형성된 3차원 모형일 수 있다. In addition, the test robot may be a 3D image formed by inputting shape information of the robot into the simulation program or a 3D model formed through a 3D measurement sensor.
또한, 상기 시뮬레이션 프로그램은 CAE(Computer Aided Engineering) 프로그램일 수 있다. In addition, the simulation program may be a Computer Aided Engineering (CAE) program.
또한, 충돌 인자에 따른 충돌 물리력에 대한 데이터를 획득하는 방법 가운데 수학적으로 계산하는 방식은, 상기 테스트 로봇의 자세를 변화시키고, 상기 자세의 변화에 따라 상기 테스트 로봇의 상해 유발 위험 부위에 의해 상기 피충돌체에 가해지는 충돌 압력 및 충돌 힘을 산출하는 단계를 포함할 수 있다.In addition, among the methods of obtaining data on the collision physical force according to the collision factor, the mathematical calculation method is to change the posture of the test robot, and according to the change of the posture, the avoidance is caused by the risk of injury of the test robot. It may include calculating the collision pressure and the collision force applied to the collider.
또한, 상기 수학적으로 계산하는 방식은, 상기 테스트 로봇의 각 부위별 면적에 따라 상기 피충돌체에 가해지는 접촉압력을 산출하고, 상기 산출된 접촉압력 값을 통해 상기 테스트 로봇에 대한 적어도 하나의 상해 유발 위험 부위를 설정하는 단계를 더 포함할 수 있다. In addition, in the mathematical calculation method, the contact pressure applied to the object to be collided is calculated according to the area of each part of the test robot, and at least one injury to the test robot is caused through the calculated contact pressure value. It may further include the step of setting the risk area.
또한, 상기 수학적으로 계산하는 방식은, 일정 시간 단위 별로 상기 피충돌체에 가해지는 충돌 압력 및 충돌 힘을 산출할 수 있다.In addition, the mathematical calculation method may calculate a collision pressure and a collision force applied to the collided object for each predetermined time unit.
또한, 로봇의 안전성 평가 결과를 수치화하여 시뮬레이션 프로그램 내 그래픽 정보로 변환하여 로봇 사용자에게 시각정보로 알려주는 단계는, 로봇 내에서 충돌 시에 위험할 수 있는 상해유발 부위를 선정하는 단계; 로봇의 움직임 중에 상기 상해유발 부위와 인간이 충돌 시에 발생하게 될 힘, 압력, 충돌에너지, 변형량 가운데 적어도 하나를 포함하는 충돌정보를 산출하는 단계; 상기 산출된 충돌정보의 위험정도를 색채로 변환하는 단계; 및 실제 로봇의 움직임을 실시간으로 추종하는 로봇 시뮬레이션 상에서 상기 상해유발 부위 도면의 색채를 상기 변환된 색채 값으로 입력하는 단계;를 포함할 수 있다.In addition, the step of converting the result of the safety evaluation of the robot into a numerical value and converting it into graphic information in a simulation program and notifying the robot user as visual information may include: selecting an injury-causing site that may be dangerous during a collision in the robot; Calculating collision information including at least one of force, pressure, collision energy, and deformation amount that will occur when a human collides with the injury-causing site during movement of the robot; Converting the calculated risk level of the collision information into color; And inputting a color of the injury-causing area drawing as the converted color value on a robot simulation that tracks the movement of an actual robot in real time.
또한, 실제 로봇의 움직임을 실시간으로 추종하는 로봇 시뮬레이션 상에서 해당 부위 도면의 색채를 상기 변환된 색채로 표시하는 단계에서, 로봇의 도면 내에 충돌정보가 산출되지 않은 부위의 색채는 충돌정보가 산출된 부위의 색채값을 보간하여 입력할 수 있다.In addition, in the step of displaying the color of the drawing of the corresponding part in the converted color in the robot simulation that tracks the movement of the real robot in real time, the color of the part where the collision information is not calculated in the drawing of the robot is the part where the collision information is calculated. The color value of can be interpolated and input.
본 발명에 따르면, 테스트 로봇에 의해 피충돌체에 가해지는 충돌 압력 및 충돌 힘의 크기를 CAE(Computer Aided Engineering) 프로그램 등으로 이루어진 컴퓨터 프로그램을 통해 시뮬레이션화 하여 구할 수 있거나, 계산 알고리즘을 테스트 로봇시스템에 적용하여 실시간으로 충돌압력과 충돌 힘을 산출할 수 있어 테스트 로봇의 안전성을 실시간으로 평가할 수 있다. 이에 따라, 테스트 로봇에 작용하는 충돌 압력, 충돌 힘, 이동 속도 등을 구하기 위한 별도의 장치를 구비하지 않아도 되므로, 저렴한 비용으로 안전성 평가를 수행할 수 있게 된다. According to the present invention, the magnitude of the collision pressure and the collision force applied to the object to be collided by the test robot can be obtained by simulating through a computer program such as a CAE (Computer Aided Engineering) program, or a calculation algorithm is applied to the test robot system. By applying it, collision pressure and collision force can be calculated in real time, so that the safety of the test robot can be evaluated in real time. Accordingly, since it is not necessary to have a separate device for obtaining the collision pressure, collision force, movement speed, etc. acting on the test robot, safety evaluation can be performed at low cost.
또한, 본 발명에 의하면 입력 받은 로봇의 CAE 정보를 빅데이터화하여 이를 인공신경망에 학습하여 트레이닝된 인공 신경망이 로봇에 설치될 수 있으므로, 해당 알고리즘을 구현하는 프로그램이 작은 용량으로 로봇에 설치될 수 있게 된다. In addition, according to the present invention, since the CAE information of the received robot is converted into big data and learned on the artificial neural network, the trained artificial neural network can be installed on the robot, so that a program implementing the algorithm can be installed on the robot with a small capacity. do.
또한, 본 발명에 의하면, 실제 로봇의 움직임을 실시간으로 추종하는 로봇 시뮬레이션 상에서 해당 부위의 위험도를 색채로 표시하여 로봇이 사용되는 현장에서 안전한 작업이 가능하도록 하고, 작업중 불의의 사고 발생시에 충돌 피해를 최소화할 수 있다. In addition, according to the present invention, in a robot simulation that tracks the movement of the actual robot in real time, the risk of the corresponding part is displayed in color to enable safe work at the site where the robot is used, and collision damage is prevented when an unexpected accident occurs during operation. Can be minimized.
도 1은 본 발명의 일 실시예에 따른 로봇의 안전성 평가 방법에 대한 순서도. 1 is a flowchart of a method for evaluating safety of a robot according to an embodiment of the present invention.
도 2은 학습된 인공신경망을 준비하는 단계에 대한 순서도. Figure 2 is a flow chart for the step of preparing the learned artificial neural network.
도 3은 충돌인자를 선정하고 이에 따른 충돌 물리력을 산출하여 데이터를 집합시키고, 집합된 데이터를 데이터 맵으로 만들거나 인공신경망에 학습하여 모션 중인 로봇의 충돌 물리력을 실시간으로 예측하는 과정을 도시하는 도면.FIG. 3 is a diagram showing a process of selecting a collision factor and calculating the collision force according to the collision force to collect data, making the aggregated data into a data map or learning from an artificial neural network to predict the collision force of a robot in motion in real time. .
도 4는 테스트 로봇에 의해 피충돌체에 가해지는 충돌 압력 및 충돌 힘을 산출하는 단계에 대한 상세한 과정을 설명하기 위한 순서도.4 is a flow chart for explaining a detailed process of calculating the collision pressure and the collision force applied to the object by the test robot.
도 5은 실제 로봇과 피충돌체가 충돌하는 상태를 개략적으로 도시한 도면. 5 is a diagram schematically showing a state in which an actual robot and an object to be collided collide.
도 6은 도 5에 있어서, 실제 로봇과 충돌하는 피충돌체의 표면 변화를 도시한 도면. 6 is a view showing a surface change of an object to be collided with an actual robot in FIG. 5.
도 7은 도 1에 있어서, 테스트 로봇의 3차원 형상을 도시한 도면. 7 is a diagram showing a three-dimensional shape of a test robot in FIG. 1.
도 8는 테스트 로봇의 부위별 형상에 따라 피충돌체에 가해지는 접촉압력의 크기를 도시한 도면.8 is a view showing the magnitude of the contact pressure applied to the object to be collided according to the shape of each part of the test robot.
도 9은 3D 모델링 프로그램을 통해 획득한 충돌 압력 및 충돌 힘의 값을 도시한 도면.9 is a diagram showing values of collision pressure and collision force obtained through a 3D modeling program.
도 10는 로봇의 안전성 평가 결과를 수치화하여 시뮬레이션 프로그램 내 그래픽 정보로 변환하여 시각정보로 알려주는 단계를 설명하기 위한 순서도.10 is a flow chart for explaining a step of converting the result of the safety evaluation of the robot into a numerical value, converting it into graphic information in a simulation program, and notifying it as visual information.
도 11 및 도 12는 동작중인 로봇의 정보(조인트 각도, 속도, 무게정보 등)을 이용하여 획득한 충돌 물리력을 국제안전표준(ISO)와 실시간으로 안전평가하고 평가결과를 수치화 시켜 실시간 그래픽화를 구현한 도면.11 and 12 show the physical force of the collision acquired using information (joint angle, speed, weight information, etc.) of the robot in motion, safety evaluation in real time with the International Safety Standard (ISO), and the evaluation result numerically to provide a real-time graphic. Implementation drawing.
이하 첨부된 도면을 참조하여, 바람직한 실시예에 따른 로봇의 안전성 평가 방법에 대해 상세히 설명하면 다음과 같다. 여기서, 동일한 구성에 대해서는 동일부호를 사용하며, 반복되는 설명, 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 상세한 설명은 생략한다. 발명의 실시형태는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다. 따라서, 도면에서의 요소들의 형상 및 크기 등은 보다 명확한 설명을 위해 과장될 수 있다. Hereinafter, a method for evaluating the safety of a robot according to a preferred embodiment will be described in detail with reference to the accompanying drawings. Here, the same symbols are used for the same configuration, and detailed descriptions of repetitive descriptions and known functions and configurations that may unnecessarily obscure the subject matter of the invention are omitted. Embodiments of the invention are provided to more completely explain the invention to those with average knowledge in the art. Accordingly, the shapes and sizes of elements in the drawings may be exaggerated for clearer explanation.
도 1은 본 발명의 일 실시예에 따른 로봇의 안전성 평가 방법에 대한 순서도이고, 도 2은 학습된 인공신경망을 준비하는 단계에 대한 순서도이며, 도 3은 충돌인자를 선정하고 이에 따른 충돌 물리력을 산출하여 데이터를 집합시키고, 집합된 데이터를 데이터 맵으로 만들거나 인공신경망에 학습하여 모션 중인 로봇의 충돌 물리력을 실시간으로 예측하는 과정을 도시하는 도면이다. 1 is a flow chart of a method for evaluating safety of a robot according to an embodiment of the present invention, and FIG. 2 is a flow chart for preparing a learned artificial neural network, and FIG. 3 is a flowchart of selecting a collision factor and calculating the collision physical force accordingly. It is a diagram showing a process of predicting in real time the collision physical force of a robot in motion by calculating and collecting data, making the collected data into a data map or learning from an artificial neural network.
도 1 내지 도 3을 참조하면, 본 발명에 의한 그래픽 정보를 이용한 실시간 로봇 충돌 위험도 모니터링이 가능한 충돌 물리력 빅데이터 기반 로봇 안전성 평가 방법(S100)은, 충돌 압력, 충돌 힘 가운데 적어도 하나를 포함하는 충돌 물리력과, 이에 영향을 주는 충돌인자에 대한 데이터가 학습된 인공신경망을 준비하는 단계(S110)와, 실제 로봇의 형상 정보를 포함하는 테스트 로봇의 3차원 영상 또는 3차원 모형을 획득하는 단계(S120)와, 상기 테스트 로봇의 이동시간 정보 및 이동경로 정보를 포함하는 프로파일 정보를 입력하여 상기 테스트 로봇의 이동시간 및 이동경로를 설정하는 단계(S130)와, 상기 테스트 로봇의 충돌 인자에 따른 피충돌체에 가해지는 충돌 압력, 충돌 힘 가운데 적어도 하나를 포함하는 충돌 물리력을 상기 미리 준비된 인공신경망에서 실시간으로 추출하는 단계(S140)와, 상기 추출된 충돌 물리력의 크기가 기 설정된 최대 충돌 물리력의 크기 내에 해당하는지를 판단하여 상기 테스트 로봇의 안전성을 평가하는 단계(S150), 및 로봇의 안전성 평가 결과를 수치화하여 시뮬레이션 프로그램 내 그래픽 정보로 변환하여 로봇 사용자에게 시각정보로 알려주는 단계(S160)를 포함할 수 있다. 1 to 3, a collision physics big data-based robot safety evaluation method (S100) capable of real-time robot collision risk monitoring using graphic information according to the present invention includes at least one of collision pressure and collision force. Preparing an artificial neural network in which data on physical forces and collision factors affecting it are learned (S110), and obtaining a 3D image or a 3D model of a test robot including shape information of the actual robot (S120) ), setting the movement time and movement path of the test robot by inputting profile information including movement time information and movement path information of the test robot (S130), and the collided object according to the collision factor of the test robot The step of extracting a collision physical force including at least one of a collision pressure and a collision force applied to the artificial neural network in real time (S140), and the magnitude of the extracted collision physical force falls within a preset maximum collision physical force It may include determining whether the safety of the test robot is evaluated (S150), and converting the result of the safety evaluation of the robot into graphic information in the simulation program and notifying the robot user as visual information (S160). .
충돌 압력, 충돌 힘 가운데 적어도 하나를 포함하는 충돌 물리력과, 이에 영향을 주는 충돌인자에 대한 데이터가 학습된 인공신경망을 준비하는 단계(S110)에서는, 1) 실제 충돌실험을 수행하거나, 2) Ansys 등의 유한요소 시뮬레이션 프로그램을 이용하거나, 3) 수학적으로 계산하는 방식으로, 입력에 해당하는 충돌인자의 종류 및 값을 다양하게 변화시켜 가면서 출력에 해당하는 충돌 물리력을 획득할 수 있다. 여기서, 충돌인자는 충돌부위 형상, 유효질량, 이동속도, 충돌방향, 사람의 신체 물성치 가운데 적어도 하나 이상을 포함할 수 있고, 충돌 물리력은 충돌 압력, 충돌 힘 가운데 적어도 하나 이상을 포함할 수 있다. In the step (S110) of preparing an artificial neural network in which data on the collision physical force including at least one of the collision pressure and the collision force and the collision factor affecting it is learned (S110), 1) conduct an actual collision experiment, or 2) Ansys By using a finite element simulation program such as 3) or by mathematically calculating the type and value of the collision factor corresponding to the input, collision physical force corresponding to the output can be obtained. Here, the collision factor may include at least one or more of the shape of the collision site, the effective mass, the moving speed, the collision direction, and the physical properties of the person, and the collision physical force may include at least one of collision pressure and collision force.
이러한 방식으로 획득된 충돌 인자와 충돌 물리력에 대한 방대한 데이터는 데이터 베이스에 저장될 수 있고, 인공 신경망을 통하여 학습될 수 있다. 일례로, 상기 인공 신경망은 입력에 해당하는 충돌 인자와 출력에 해당하는 충돌 물리력에 대한 수많은 수치값을 대응시키는 표의 형식이 될 수 있다. Extensive data on collision factors and collision forces obtained in this way can be stored in a database and learned through an artificial neural network. As an example, the artificial neural network may be in the form of a table in which a number of numerical values for a collision factor corresponding to an input and a collision force corresponding to an output are correlated.
또한, 충돌 물리력과, 이에 영향을 주는 충돌인자에 대한 데이터가 학습된 인공신경망을 준비하는 단계(S110)는, 충돌인자를 고려하고, 상기 충돌인자의 조합을 결정하는 단계(S111)와, 상기 충돌인자의 조합에 따른 충돌 물리력을 획득하는 단계(S112)와, 획득된 충돌 물리력 데이터를 인공신경망에 학습시키는 단계(S113)을 포함할 수 있다. In addition, the step (S110) of preparing the artificial neural network in which the collision physical force and data on the collision factors affecting the collision are learned (S110), consider the collision factor, and determine a combination of the collision factors (S111), and the It may include a step (S112) of acquiring a collision force according to a combination of collision factors, and a step (S113) of learning the acquired collision force data to the artificial neural network.
구체적으로, 충돌부위 형상, 유효질량, 이동속도, 충돌방향, 사람의 신체 물성치(예를 들어, 피부, 뼈, 근육 등의 물성치) 등의 충돌인자를 가운데 충돌인자의 조합을 결정하여 적절한 충돌인자들을 선정할 수 있다. Specifically, by determining the combination of the collision factors among the collision factors such as the shape of the collision site, the effective mass, the moving speed, the collision direction, and the physical properties of the human body (for example, physical properties such as skin, bones, muscles, etc.) Can be selected.
이와 같이 충돌인자를 조합하고, 충돌인자의 조합에 따른 모든 경우의 수를선정하여 충돌 물리력을 획득할 수 있다. 이러한 충돌 물리력은 충돌 압력, 충돌 힘 등을 의미할 수 있으며, 1) 실제 충돌실험을 수행하거나, 2) Ansys 등의 유한요소 시뮬레이션 프로그램을 이용하거나, 3) 수학적으로 계산하는 방식으로 충돌 압력 및 충돌 힘 등의 충돌 물리력을 획득할 수 있음은 상술한 바와 같다.In this way, collision forces may be obtained by combining collision factors and selecting the number of all cases according to the combination of collision factors. These collision physical forces can mean collision pressure, collision force, etc., and 1) actual collision tests are performed, 2) finite element simulation programs such as Ansys are used, or 3) collision pressure and collision are mathematically calculated. It is as described above that it is possible to obtain a collision physical force such as force.
충돌인자로부터 충돌 물리력을 획득하는 방식 가운데 수학적으로 계산하는 방식으로 충돌 물리력을 획득하는 방식은 후술하도록 한다. Among the methods of obtaining the collision physical force from the collision factor, a method of obtaining the collision physical force through a mathematical calculation method will be described later.
테스트 로봇의 3차원 형상을 획득하는 단계(S120)는 실제 로봇(R)의 형상 정보를 포함하는 테스트 로봇(10)의 3차원 영상 또는 3차원 모형을 획득한다. 구체적으로, 테스트 로봇(10)은 시뮬레이션 프로그램에 로봇(R)의 형상 정보를 입력하여 형성된 3차원 영상 또는 3차원 계측 센서를 통해 형성된 3차원 모형으로 이루어질 수 있다. 즉, 테스트 로봇(10)은 CAE(Computer Aided Engineering) 프로그램과 같은 시뮬레이션 프로그램에 실제 로봇(R)의 형상 정보를 입력하여 형성된 3차원 영상이거나, 3차원 계측 센서를 통해 구현되며 실제 로봇(R)과 동일하게 구동 및 제어되는 3차원 모형으로 이루어질 수 있다. In the step S120 of acquiring a 3D shape of the test robot, a 3D image or a 3D model of the test robot 10 including shape information of the actual robot R is obtained. Specifically, the test robot 10 may be formed of a 3D image formed by inputting shape information of the robot R into a simulation program or a 3D model formed through a 3D measurement sensor. That is, the test robot 10 is a 3D image formed by inputting shape information of the actual robot R into a simulation program such as a CAE (Computer Aided Engineering) program, or implemented through a 3D measurement sensor, and the actual robot R It can be made of a 3D model that is driven and controlled in the same way as.
로봇의 CAE 정보에는 로봇의 형상, 물성치와 로봇의 구동 부품에 대한 제원(모터의 성능 및 성능 제한, 조인트 각도 제한 등)이 포함된다. 또한, 로봇의 CAE 정보에는 충돌부위 형상, 유효질량, 이동속도, 충돌방향, 사람의 신체 물성치(예를 들어, 피부, 뼈, 근육 등의 물성치) 등의 충돌인자를 포함할 수 있다. The robot's CAE information includes the robot's shape, physical properties, and specifications for the robot's driving parts (motor performance and performance limits, joint angle limits, etc.). In addition, the CAE information of the robot may include collision factors such as the shape of the collision site, the effective mass, the moving speed, the collision direction, and the physical properties of the human body (eg, physical properties of skin, bones, muscles, etc.).
3D 모델링되는 로봇(R)의 종류는 한정되지 않으나, 일정 작업 공간에서 공동으로 업무를 처리하는 협업 로봇(10)일 수 있다. 이러한 협업 로봇은 선단에 기계 손(mechanical hand)을 구비하여 특정 물체를 파지 및 이송하거나, 특정 작업을 수행할 수 있도록 형성된 매니퓰레이터(Manipulator)로 형성될 수 있다. 그리고 테스트 로봇(10)은 X축 방향, Y축 방향, Z축 방향, 피치(pitch) 방향, 요(yaw) 방향, 롤(roll) 방향 중 적어도 한 방향의 이동이 가능한 자유도를 갖도록 형성될 수 있다. 즉, 테스트 로봇(10)은 적어도 1자유도를 갖는 1자유도 이상의 매니퓰레이터로 이루어질 수 있다. Although the type of the 3D modeled robot R is not limited, it may be a cooperative robot 10 that jointly processes tasks in a certain work space. Such a collaborative robot may be formed of a manipulator formed to have a mechanical hand at its tip to grasp and transport a specific object or perform a specific task. In addition, the test robot 10 may be formed to have a degree of freedom to move in at least one of the X-axis direction, Y-axis direction, Z-axis direction, pitch direction, yaw direction, and roll direction. have. That is, the test robot 10 may be formed of a manipulator having at least one degree of freedom and more than one degree of freedom.
구체적으로, 테스트 로봇(10)은 조인트(11)를 통해 연결된 적어도 2개의 링크부(12)와, 링크부(12) 중 하나에 연결된 엔드 이펙터(End-effector, 13)를 포함할 수 있다. 여기서, 엔드 이펙터란 테스트 로봇(10)이 작업을 할 때 작업 대상에 직접적으로 작용하는 기능을 가진 부분으로, 예를 들어 매니퓰레이터의 기계 손일 수 있다.Specifically, the test robot 10 may include at least two link units 12 connected through the joint 11 and an end-effector 13 connected to one of the link units 12. Here, the end effector refers to a part having a function that directly acts on a work object when the test robot 10 performs work, and may be, for example, a mechanical hand of a manipulator.
테스트 로봇의 이동시간 및 이동경로를 설정하는 단계(S130)는 테스트 로봇(10)의 이동시간 정보 및 이동경로 정보를 포함하는 프로파일 정보를 입력하여 테스트 로봇(10)의 이동시간 및 이동경로를 설정한다. 예를 들어, 테스트 로봇(10)이 3차원 영상일 경우에는 시뮬레이션 프로그램에 이동시간 정보 및 이동경로 정보를 포함하는 프로파일 정보를 입력하여 테스트 로봇(10)의 이동시간 및 이동경로를 설정한다. 그리고, 테스트 로봇(10)이 3차원 모형인 경우에는 테스트 로봇(10)의 제어 시스템에 이동시간 정보 및 이동경로 정보를 포함하는 프로파일 정보를 입력하여 테스트 로봇(10)의 이동시간 및 이동경로를 설정한다. 여기서, 시뮬레이션 프로그램 및 로봇의 제어 시스템을 통해 테스트 로봇(10)의 구동을 제어하는 방법은 이미 공지된 기술이므로 생략하기로 한다. In the step of setting the movement time and movement path of the test robot (S130), the movement time and movement path of the test robot 10 are set by inputting profile information including movement time information and movement path information of the test robot 10 do. For example, when the test robot 10 is a 3D image, profile information including movement time information and movement path information is input to a simulation program to set the movement time and movement path of the test robot 10. In addition, when the test robot 10 is a 3D model, profile information including movement time information and movement path information is input to the control system of the test robot 10 to determine the movement time and movement path of the test robot 10. Set. Here, the method of controlling the driving of the test robot 10 through the simulation program and the control system of the robot is a known technique, and thus will be omitted.
상기 테스트 로봇(10)의 충돌 인자에 따른 피충돌체에 가해지는 충돌 압력, 충돌 힘 가운데 적어도 하나를 포함하는 충돌 물리력을 상기 미리 준비된 인공신경망에서 실시간으로 추출하는 단계(S140)에서, 테스트 로봇(10)의 3차원 형상 획득 시에 받은 CAE정보에 포함된 충돌부위 형상, 유효질량, 이동속도, 충돌방향, 사람의 신체 물성치(예를 들어, 피부, 뼈, 근육 등의 물성치) 등의 충돌인자에 대응되는 충돌 압력 및 충돌 힘 등의 충돌 물리력의 데이터를 미리 준비된 인공신경망에서 추출함에 따라 종래에 비하여 시간이 오래 걸리지 않아서 실시간으로 충돌 물리력을 추출할 수 있게 된다. 이에 따라, 로봇의 안전성을 평가하는 시간이 획기적으로 단축되어 로봇이 사용되는 산업 현장에서 안전성이 매우 향상되고, 불의의 사고시에도 충돌 피해가 최소화되는 것이다. In the step (S140) of extracting a collision physical force including at least one of a collision pressure and a collision force applied to the object to be collided according to the collision factor of the test robot 10 from the artificial neural network prepared in advance (S140), the test robot 10 ), including the shape of the collision site, effective mass, moving speed, collision direction, and physical properties of a person (for example, physical properties of skin, bones, muscles, etc.) included in the CAE information received when acquiring the 3D shape of As data of the collision physical force, such as the corresponding collision pressure and collision force, are extracted from the artificial neural network prepared in advance, it is possible to extract the collision physical force in real time because it takes less time than the conventional one. Accordingly, the time for evaluating the safety of the robot is drastically shortened, the safety at the industrial site where the robot is used is greatly improved, and collision damage is minimized even in the event of an unexpected accident.
테스트 로봇의 안전성을 평가하는 단계(S150)는 인공 신경망에서 실시간으로 추출된 테스트 로봇(10)의 충돌 인자에 대응되는 충돌 압력(P) 및 충돌 힘(FC)의 크기가 기 설정된 최대 충돌 압력(PMAX) 및 최대 충돌 힘(FMAX)의 크기 내에 해당하는지를 판단한다. In the step of evaluating the safety of the test robot (S150), the magnitude of the collision pressure (P) and collision force (F C ) corresponding to the collision factor of the test robot 10 extracted in real time from the artificial neural network is a preset maximum collision pressure. It is determined whether it falls within the magnitude of (P MAX ) and the maximum impact force (F MAX ).
만약 로봇의 안전성을 평가하는 단계(S150)에서 피충돌체(20)에 가해지는 충돌 압력(P) 및 충돌 힘(FC)의 크기가 기 설정된 최대 충돌 압력(PMAX) 및 최대 충돌 힘 충돌 힘(FMAX)의 크기 내에 해당하면 테스트 로봇(10)은 안전한 것으로 판단한다. 반대로, 충돌 압력(P) 및 충돌 힘(FC)의 크기가 최대 충돌 압력(PMAX) 및 최대 충돌 힘(FMAX)의 크기 이상이면 테스트 로봇(10)은 안전하지 않은 것으로 판단한다. If the magnitude of the collision pressure (P) and collision force (F C ) applied to the object to be collided 20 in the step (S150) of evaluating the safety of the robot is preset maximum collision pressure (P MAX ) and maximum collision force collision force If it falls within the size of (F MAX ), the test robot 10 is determined to be safe. Conversely, if the magnitudes of the impact pressure P and the impact force F C are greater than or equal to the maximum impact pressure P MAX and the maximum impact force F MAX , the test robot 10 is determined to be unsafe.
로봇의 안전성을 평가하는 단계(S150)에서, 충돌 압력(P) 및 충돌 힘(FC)의 크기가 최대 충돌 압력(PMAX) 및 최대 충돌 힘(FMAX)의 크기 이상이면, 피충돌체(20)에 가해지는 충돌 압력(P) 및 충돌 힘(FC)이 최대 충돌 압력(PMAX) 및 최대 충돌 힘(FMAX)의 크기 미만이 되도록 테스트 로봇(10)의 이동속도를 제어할 수 있다. 이는 테스트 로봇(10)의 이동속도를 줄이면 피충돌체(20)에 가해지는 힘이 줄어들기 때문이다. 이처럼 피충돌체(20)에 가해지는 힘이 줄어들면 압력 또한 줄어들게 되므로, 테스트 로봇(10)의 이동속도를 적절하게 조절하면 최대 속도를 내면서도 인체에 상해를 입히지 않는 로봇(R)의 구현이 가능해지게 된다.In the step (S150) of evaluating the safety of the robot, if the magnitude of the collision pressure (P) and the collision force (F C ) is greater than or equal to the maximum collision pressure (P MAX ) and the maximum collision force (F MAX ), the object to be collided ( 20), the moving speed of the test robot 10 can be controlled so that the impact pressure (P) and the impact force (F C ) applied to it are less than the magnitudes of the maximum impact pressure (P MAX ) and the maximum impact force (F MAX ). have. This is because reducing the moving speed of the test robot 10 reduces the force applied to the object to be collided 20. As the force applied to the object to be collided 20 decreases, the pressure also decreases, so if the moving speed of the test robot 10 is properly adjusted, it is possible to implement a robot R that does not injure the human body while achieving the maximum speed. You lose.
로봇의 안전성을 평가하는 단계(S150)에서 기 설정된 최대 충돌 압력(PMAX) 및 최대 충돌 힘(FMAX)의 크기는 국제표준화기구(ISO), 보다 구체적으로는 TS 15066 규격에 따르는 크기로 이루어질 수 있다. 국제표준화기구(ISO)의 TS 15066에는 사람의 신체 부위별 견딜 수 있는 최대 허용 압력 및 허용 힘에 대하여 개시되어 있으므로, 이를 기준으로 하여 최대 충돌 압력(PMAX) 및 최대 충돌 힘(FMAX)의 크기로 설정하면 로봇(R)의 안정성을 한층 향상시킬 수 있게 된다. In the step of evaluating the safety of the robot (S150), the preset maximum impact pressure (P MAX ) and maximum impact force (F MAX ) are sized according to the International Organization for Standardization (ISO), more specifically TS 15066. I can. TS 15066 of the International Organization for Standardization (ISO) discloses the maximum allowable pressure and allowable force for each body part of a person, so the maximum impact pressure (P MAX ) and maximum impact force (F MAX ) If set to size, the stability of the robot R can be further improved.
로봇의 안전성 평가 결과를 수치화하여 시뮬레이션 프로그램 내 그래픽 정보로 변환하여 로봇 사용자에게 시각정보로 알려주는 단계(S160)에 대한 설명은 후술하도록 한다. A description of the step (S160) of converting the result of the safety evaluation of the robot into a numerical value, converting it into graphic information in the simulation program, and notifying the robot user as visual information will be described later.
도 4는 테스트 로봇에 의해 피충돌체에 가해지는 충돌 압력 및 충돌 힘을 산출하는 단계에 대한 상세한 과정을 설명하기 위한 순서도이고, 도 5은 실제 로봇과 피충돌체가 충돌하는 상태를 개략적으로 도시한 도면이며, 도 6은 도 5에 있어서, 실제 로봇과 충돌하는 피충돌체의 표면 변화를 도시한 도면이고, 도 7은 도 1에 있어서, 테스트 로봇의 3차원 형상을 도시한 도면이며, 도 8는 테스트 로봇의 부위별 형상에 따라 피충돌체에 가해지는 접촉압력의 크기를 도시한 도면이다. 4 is a flow chart for explaining a detailed process of calculating a collision pressure and a collision force applied to an object to be collided by a test robot, and FIG. 5 is a diagram schematically showing a state in which the actual robot and the object to be collided collide 6 is a diagram showing a change in the surface of an object colliding with an actual robot in FIG. 5, FIG. 7 is a diagram showing a three-dimensional shape of a test robot in FIG. 1, and FIG. 8 is a test It is a diagram showing the magnitude of the contact pressure applied to the object to be collided according to the shape of each part of the robot.
도 4 내지 도 8을 참조하면, 충돌 인자에 따른 충돌 물리력에 대한 데이터를 획득하는 방법 가운데 수학적으로 계산하는 방식을 통하여 충돌 물리력에 대한 데이터를 획득하는 방법 은 아래와 같다. Referring to FIGS. 4 through 8, a method of obtaining data on collision physical force through a mathematical calculation method among methods of obtaining data on collision physical force according to a collision factor is as follows.
테스트 로봇(10)의 상해 유발 위험 부위에 대한 형상과, 유효질량과, 이동속도, 및 방향을 고려하여 피충돌체(20)에 가해지는 충돌 압력(P) 및 충돌 힘(force, FC)을 산출할 수 있다. The impact pressure (P) and impact force (force, F C ) applied to the object to be collided 20 are determined by considering the shape, effective mass, movement speed, and direction of the test robot 10 at risk of injury. Can be calculated.
구체적으로, 피충돌체(20)에 가해지는 충돌 힘(FC)은 하기 수학식 1을 통해 구현 가능하다. 여기서, 피충돌체(20)는 사람일 수 있으며, 테스트 로봇의 충돌 부위에 대한 유효 질량(Mi)은 기구학적 이론에 의해 산출되며 피충돌체의 충돌 부위에 대한 유효질량(Mh)은 사용자에 의해 입력되어 미리 정해질 수 있다. 테스트 로봇의 충돌부위 변위(yi), 피충돌체의 충돌부위 변위(yh)는 CAE시스템을 통해 구해질 수 있다. Specifically, the collision force (F C ) applied to the object to be collided 20 can be implemented through Equation 1 below. Here, the object to be collided 20 may be a human, and the effective mass (M i ) for the collision portion of the test robot is calculated by kinematic theory, and the effective mass (M h ) for the collision portion of the object to be collided is to the user. It can be input by and predetermined. The displacement of the impact area of the test robot (y i ) and the displacement of the impact area of the object to be collided (y h ) can be obtained through the CAE system.
[수학식 1][Equation 1]
Mi
: 테스트 로봇의 충돌 부위에 대한 유효 질량 M i : Effective mass for the collision area of the test robot
Mh
: 피충돌체의 충돌 부위에 대한 유효질량M h : Effective mass for the collision part of the object to be collided
FC
: 충돌 힘 F C : Collision force
yi
: 테스트 로봇의 충돌부위 변위 y i : Displacement of the collision area of the test robot
yh
: 피충돌체의 충돌부위 변위y h : Displacement of the collision area of the object to be collided
그리고, 피충돌체(20)에 가해지는 충돌 압력(P)은 하기 수학식 2를 통해 구현 가능하다. 여기서, 피충돌체의 피부 탄성(K), 피충돌체의 피부 두께(h)는 CAE 시스템을 통해 사용자에 의해 입력되어 미리 저장될 수 있다. In addition, the collision pressure P applied to the object to be collided 20 can be implemented through Equation 2 below. Here, the skin elasticity (K) of the object to be collided and the skin thickness (h) of the object to be collided may be input by the user through the CAE system and stored in advance.
[수학식 2][Equation 2]
δ: 피충돌체의 피부 변형량 δ: amount of skin deformation of the object to be collided
α: 테스트 로봇과 피충돌체 사이의 충돌 각α: Collision angle between the test robot and the object to be collided
Fc: 충돌 힘 p : 충돌 압력F c : impact force p: impact pressure
K: 피충돌체의 피부 탄성 h: 피충돌체의 피부 두께K: skin elasticity of the object to be collided h: skin thickness of the object to be collided
x, y: 충돌면 좌표계x, y: collision plane coordinate system
수학적으로 계산하는 방식으로 충돌 인자에 따른 충돌 물리력에 대한 데이터를 획득하는 단계(S112)에서는, 일정 시간 단위 별로 피충돌체(20)에 가해지는 충돌 압력(P) 및 충돌 힘(FC)을 산출할 수 있다. 이는 충돌 압력(P) 및 충돌 힘(FC)을 산출하기 위한 데이터의 양을 줄여 계산의 속도를 향상시키고, 부하가 걸리지 않도록 하기 위함이다. 여기서, 일정 단위로 정해지는 시간은 테스트 로봇(10)의 형상에 따라 달라질 수 있다. 즉, 테스트 로봇(10)의 형상이 복잡할수록 단위 시간은 짧아질 수 있다. In the step (S112) of obtaining data on the collision physical force according to the collision factor in a mathematically calculated manner, the collision pressure (P) and the collision force (F C ) applied to the collided object 20 are calculated for each predetermined time unit. can do. This is to improve the speed of the calculation by reducing the amount of data for calculating the collision pressure (P) and the collision force (F C ), and to prevent a load from being applied. Here, the time determined in a predetermined unit may vary according to the shape of the test robot 10. That is, as the shape of the test robot 10 becomes more complex, the unit time may be shorter.
수학적으로 계산하는 방식으로 충돌 인자에 따른 충돌 물리력에 대한 데이터를 획득하는 단계(S112)는, 테스트 로봇의 상해 유발 위험 부위를 설정하는 단계(S1121)를 더 포함할 수 있다. The step (S112) of obtaining data on the collision physical force according to the collision factor in a mathematically calculated manner may further include a step (S1121) of setting an injury-causing risk area of the test robot.
테스트 로봇의 상해 유발 위험 부위를 설정하는 단계(S1121)는 테스트 로봇(10)의 각 부위별 면적에 따라 피충돌체(20)에 가해지는 접촉압력을 산출하고, 산출된 접촉압력 값을 통해 테스트 로봇(10)에 대한 적어도 하나의 상해 유발 위험 부위를 설정한다. In the step (S1121) of setting an injury-causing risk area of the test robot, the contact pressure applied to the object to be impacted 20 is calculated according to the area of each area of the test robot 10, and the test robot is based on the calculated contact pressure value. (10) At least one injury-causing risk area is set.
예를 들어, 테스트 로봇(10)이 원기둥 형태로 이루어진 경우, 상해 유발 위험 부위를 설정하기 위한 테스트 로봇(10)의 각 부위는 둘레 면과, 상부 면과, 하부 면과, 상부 모서리, 및 하부 모서리가 될 수 있다. 그리고, 각각의 부위별 면적에 따라 피충돌체(20)에 가해지는 접촉압력을 산출한다. 여기서, 접촉압력을 산출하는 방법은 P=F/A(P: 압력, F: 힘, A: 면적)의 관계식을 통해 계산 가능하다. For example, when the test robot 10 has a cylindrical shape, each part of the test robot 10 for setting an injury-causing risk part is a circumferential surface, an upper surface, a lower surface, an upper edge, and a lower surface. It can be a corner. Then, the contact pressure applied to the object to be collided 20 is calculated according to the area of each portion. Here, the method of calculating the contact pressure can be calculated through a relational expression of P=F/A (P: pressure, F: force, A: area).
이러한 과정을 통해 테스트 로봇(10)의 각 부위에 대한 접촉압력이 산출되면, 접촉압력 중 가장 큰 값을 갖는 부위 또는 접촉압력이 기 설정된 값을 초과하는 부위 모두를 상해 유발 위험 부위로 선택할 수 있다. When the contact pressure for each part of the test robot 10 is calculated through this process, the part having the largest value among the contact pressures or all parts in which the contact pressure exceeds a preset value may be selected as the risk of injury. .
한편, 테스트 로봇(10)의 상해 유발 위험 부위는 사용자의 선택에 의해 하나 또는 둘 이상으로 정해질 수 있다. 구체적으로, 테스트 로봇(10)의 상해 유발 위험 부위는 링크부(12) 및 엔드 이펙터(13) 중 선택된 하나 또는 둘 이상일 수 있다. 이처럼 테스트 로봇(10)의 상해 유발 위험 부위가 사용자에 의해 미리 설정된 경우에는 테스트 로봇의 상해 유발 위험 부위를 설정하는 단계(S1221)를 생략할 수도 있다. On the other hand, one or two or more areas of risk causing injury of the test robot 10 may be selected by the user. Specifically, an injury-prone risk site of the test robot 10 may be one or two or more selected from the link unit 12 and the end effector 13. As described above, when the risk-rising part of the test robot 10 is previously set by the user, the step of setting the risk-producing part of the test robot (S1221) may be omitted.
상술한 방식에 의하여 충돌 압력(P) 및 충돌 힘(FC) 등의 충돌데이터가 획득되면, 이러한 데이터를 집합시키고 집합된 데이터를 데이터 맵으로 만들거나 인공신경망에 학습하여 모션 중인 로봇의 충돌 물리력을 실시간으로 예측할 수 있다. When collision data such as collision pressure (P) and collision force (F C ) are acquired by the above-described method, these data are collected and the aggregated data is made into a data map, or the collision physics of the robot in motion is learned by learning from an artificial neural network. Can be predicted in real time.
한편, 수학적으로 계산하는 방식으로 충돌 인자에 따른 충돌 물리력에 대한 데이터를 획득하는 단계(S112)는 테스트 로봇의 자세 변화에 따라 피충돌체에 가해지는 충돌 압력 및 충돌 힘을 산출하는 단계(S1222)를 더 포함할 수 있다. On the other hand, the step of obtaining data on the collision physical force according to the collision factor in a mathematically calculated manner (S112) includes calculating the collision pressure and collision force applied to the object to be collided according to the change of the posture of the test robot (S1222). It may contain more.
테스트 로봇의 자세 변화에 따라 피충돌체에 가해지는 충돌 압력 및 충돌 힘을 산출하는 단계(S1222)는 테스트 로봇(10)의 조인트(11)의 각도를 조절하여 링크부(12) 및 엔드 이펙터(13)의 자세를 변화시키고, 자세의 변화에 따라 상해 유발 위험 부위에 의해 피충돌체(20)에 가해지는 충돌 압력(P) 및 충돌 힘(FC)을 산출한다. The step of calculating the collision pressure and the collision force applied to the object to be collided according to the change of the posture of the test robot (S1222) is by adjusting the angle of the joint 11 of the test robot 10, the link unit 12 and the end effector 13 ) To change the posture, and calculate the collision pressure (P) and the collision force (F C ) applied to the object to be collided 20 by the area at risk of causing injury according to the change of the posture.
이처럼 테스트 로봇(10)의 자세를 변화시키며 피충돌체(20)에 가해지는 충돌 압력(P) 및 충돌 힘(FC)을 산출하는 이유는 링크부(12) 및 엔드 이펙터(13)의 자세 변화에 따라 피충돌체(20)와의 거리 및 접촉부위가 달라지기 때문이다. 그리고, 피충돌체(20)와의 거리 및 접촉부위가 달라지면 피충돌체(20)에 가해지는 충돌 압력(P) 및 충돌 힘(FC)의 크기 또한 달라지게 된다. The reason for calculating the collision pressure (P) and collision force (F C ) applied to the object to be collided 20 while changing the posture of the test robot 10 is the change in the posture of the link unit 12 and the end effector 13 This is because the distance and the contact area with the object to be collided 20 are changed according to. In addition, when the distance and the contact portion with the object to be collided 20 are different, the magnitude of the collision pressure P and the collision force F C applied to the object to be collided 20 is also changed.
따라서, 자세의 변화에 따라 피충돌체(20)에 가해지는 충돌 압력(P) 및 충돌 힘(FC)의 크기를 구하게 되면, 로봇(R)이 똑같은 이동속도 및 이동경로를 따라 이동하더라도 피충돌체(20)에 최소한의 충격이 가해지는 자세의 구현이 가능해지게 된다. Therefore, if the magnitude of the collision pressure (P) and the collision force (F C ) applied to the collided object 20 according to the change of posture is obtained, even if the robot R moves along the same movement speed and movement path, the collided object It becomes possible to implement a posture in which minimal impact is applied to (20).
도 8은 테스트 로봇의 부위별 형상에 따라 피충돌체에 가해지는 접촉압력의 크기를 도시한 도면이다. 그리고, 도 9은 3D 모델링 프로그램을 통해 획득한 충돌 압력 및 충돌 힘의 값을 도시한 도면이다. 8 is a diagram showing the magnitude of a contact pressure applied to an object to be collided according to the shape of each part of the test robot. In addition, FIG. 9 is a diagram showing values of collision pressure and collision force acquired through a 3D modeling program.
도 10은 로봇의 안전성 평가 결과를 수치화하여 시뮬레이션 프로그램 내 그래픽 정보로 변환하여 시각정보로 알려주는 단계를 설명하기 위한 순서도이고, 도 11 및 도 12는 동작중인 로봇의 정보(조인트 각도, 속도, 무게정보 등)을 이용하여 획득한 충돌 물리력을 국제안전표준(ISO)와 실시간으로 안전평가하고 평가결과를 수치화 시켜 실시간 그래픽화를 구현한 도면이다. 10 is a flow chart for explaining the step of converting the safety evaluation result of the robot into a numerical value, converting it into graphic information in the simulation program, and notifying it as visual information, and FIGS. 11 and 12 are information on the robot in motion (joint angle, speed, weight It is a diagram that implements real-time graphicization by evaluating safety in real time with international safety standards (ISO), and quantifying the evaluation results in real-time using the collision force acquired using information, etc.).
도 10 내지 도 12를 참조하면, 로봇의 안전성 평가 결과를 수치화하여 시뮬레이션 프로그램 내 그래픽 정보로 변환하여 로봇 사용자에게 시각정보로 알려주는 단계(S160)는, 로봇 내에서 충돌 시에 위험할 수 있는 상해유발 부위를 선정하는 단계(S161)와, 로봇의 움직임 중에 상기 상해유발 부위와 인간이 충돌 시에 발생하게 될 힘, 압력, 충돌에너지, 변형량 가운데 적어도 하나를 포함하는 충돌정보를 산출하는 단계(S162)와, 상기 산출된 충돌정보의 위험정도를 색채로 변환하는 단계(S163)과, 실제 로봇의 움직임을 실시간으로 추종하는 로봇 시뮬레이션 상에서 상기 상해유발 부위 도면의 색채를 상기 변환된 색채 값으로 입력하는 단계(S164)를 포함할 수 있다. 10 to 12, the step (S160) of converting the result of the safety evaluation of the robot into a numerical value and converting it into graphic information in the simulation program and notifying the robot user as visual information (S160) is an injury that may be dangerous when a collision occurs within the robot. Selecting an inducing region (S161), and calculating collision information including at least one of force, pressure, collision energy, and deformation amount that will occur when the injury-causing region and a human collide with the robot during movement (S162). ), converting the calculated risk of collision information into color (S163), and inputting the color of the injury-causing area drawing as the converted color value on a robot simulation that tracks the movement of the actual robot in real time. It may include step S164.
특히, 실제 로봇의 움직임을 실시간으로 추종하는 로봇 시뮬레이션 상에서 상기 상해유발 부위 도면의 색채를 상기 변환된 색채 값으로 입력하는 단계(S164)에서, 로봇의 도면 내에 충돌정보가 산출되지 않은 부위의 색채는 충돌정보가 산출된 부위의 색채값을 보간하여 입력하게 된다. 이에 따라, 시뮬레이션 상에서 로봇 표면에 색채가 끊기지 않고 연속적으로 이어지게 될 수 있다. Particularly, in the step (S164) of inputting the color of the injury-causing area drawing as the converted color value in a robot simulation that tracks the movement of the actual robot in real time, the color of the area where collision information is not calculated in the drawing of the robot is The color value of the part where the collision information is calculated is interpolated and input. Accordingly, colors can be continuously connected to the surface of the robot in the simulation without being cut off.
색채 보간 방법은 기본적으로 색채 값 계산점에서 거리에 비례하여 계산하는 방식이며 구체적인 수식은 아래와 같다. The color interpolation method is basically a method of calculating in proportion to the distance from the color value calculation point, and the specific formula is as follows.
[규칙 제91조에 의한 정정 02.03.2020]
여기서, A는 계산점, Va는 A의 계산값, X는 계산되지 않은 점, Vx는 보간값, B는 계산점 그리고, Vb는 B의 계산값이다. 또한, dis_A는 X와 A 사이의 거리이며, dis_B는 X와 B사이의 거리이다. [Correction 02.03.2020 pursuant to Rule 91]
Here, A is a calculated point, V a is a calculated value of A, X is an uncalculated point, V x is an interpolated value, B is a calculated point, and V b is a calculated value of B. In addition, dis_A is the distance between X and A, and dis_B is the distance between X and B.
여기서, A는 계산점, Va는 A의 계산값, X는 계산되지 않은 점, Vx는 보간값, B는 계산점 그리고, Vb는 B의 계산값이다. 또한, dis_A는 X와 A 사이의 거리이며, dis_B는 X와 B사이의 거리이다. [Correction 02.03.2020 pursuant to Rule 91]
Here, A is a calculated point, V a is a calculated value of A, X is an uncalculated point, V x is an interpolated value, B is a calculated point, and V b is a calculated value of B. In addition, dis_A is the distance between X and A, and dis_B is the distance between X and B.
Claims (11)
- 충돌 압력, 충돌 힘 가운데 적어도 하나를 포함하는 충돌 물리력과, 이에 영향을 주는 충돌인자에 대한 데이터가 학습된 인공신경망을 준비하는 단계;Preparing an artificial neural network from which data on collision physical force including at least one of collision pressure and collision force and collision factors affecting the collision force are learned;실제 로봇의 형상 정보를 포함하는 테스트 로봇의 3차원 영상 또는 3차원 모형을 획득하는 단계;Obtaining a 3D image or a 3D model of the test robot including shape information of the actual robot;상기 테스트 로봇의 이동시간 정보 및 이동경로 정보를 포함하는 프로파일 정보를 입력하여 상기 테스트 로봇의 이동시간 및 이동경로를 설정하는 단계;Setting a movement time and a movement path of the test robot by inputting profile information including movement time information and movement path information of the test robot;상기 테스트 로봇의 충돌 인자에 따른 피충돌체에 가해지는 충돌 압력, 충돌 힘 가운데 적어도 하나를 포함하는 충돌 물리력을 상기 미리 준비된 인공신경망에서 실시간으로 추출하는 단계; Extracting in real time a collision physical force including at least one of a collision pressure and a collision force applied to the object to be collided according to the collision factor of the test robot from the artificial neural network prepared in advance;상기 추출된 충돌 물리력의 크기가 기 설정된 최대 충돌 물리력의 크기 내에 해당하는지를 판단하여 상기 테스트 로봇의 안전성을 평가하는 단계; 및Evaluating the safety of the test robot by determining whether the magnitude of the extracted collision physical force falls within a preset maximum collision physical force; And로봇의 안전성 평가 결과를 수치화하여 시뮬레이션 프로그램 내 그래픽 정보로 변환하여 로봇 사용자에게 시각정보로 알려주는 단계;Converting the result of the safety evaluation of the robot into a numerical value and converting it into graphic information in the simulation program, and notifying the robot user as visual information;를 포함하는 그래픽 정보를 이용한 실시간 로봇 충돌 위험도 모니터링이 가능한 충돌 물리력 빅데이터 기반 로봇 안전성 평가 방법.A robot safety evaluation method based on collision physics big data capable of monitoring a real-time robot collision risk using graphic information including a.
- 제1항에 있어서,The method of claim 1,충돌 압력, 충돌 힘 가운데 적어도 하나를 포함하는 충돌 물리력과, 이에 영향을 주는 충돌인자에 대한 데이터가 학습된 인공신경망을 준비하는 단계에서는,In the step of preparing the artificial neural network in which data on the collision physical force including at least one of the collision pressure and the collision force and the collision factor affecting the collision is learned,실제 로봇과 피충돌체 사이의 충돌실험을 수행하거나, 유한요소 시뮬레이션을 수행하거나, 수학적으로 계산하는 방식으로, 충돌부위 형상, 유효질량, 이동속도, 충돌방향, 사람의 신체 물성치 가운데 적어도 하나 이상을 포함하는 충돌인자와 상기 충돌 인자에 따른 충돌 물리력에 대한 데이터를 획득하는 것을 특징으로 하는 그래픽 정보를 이용한 실시간 로봇 충돌 위험도 모니터링이 가능한 충돌 물리력 빅데이터 기반 로봇 안전성 평가 방법.A method of performing a collision experiment between an actual robot and an object to be collided, performing a finite element simulation, or mathematically calculating, and includes at least one of the shape of the collision site, the effective mass, the moving speed, the collision direction, and the physical properties of the human body. A method for evaluating robot safety based on collision physical force big data capable of monitoring a collision risk of a robot in real time using graphic information, characterized in that acquiring data on a collision factor and collision physical force according to the collision factor.
- 제2항에 있어서,The method of claim 2,충돌 물리력과, 이에 영향을 주는 충돌인자에 대한 데이터가 학습된 인공신경망을 준비하는 단계에서는,In the step of preparing an artificial neural network in which data on collision physics and collision factors affecting it are learned,충돌인자를 고려하고, 상기 충돌인자의 조합을 결정하는 단계;Considering a collision factor and determining a combination of the collision factors;상기 충돌인자의 조합에 따른 충돌 물리력을 획득하는 단계; 및Obtaining a collision physical force according to a combination of the collision factors; And획득된 충돌 물리력 데이터를 인공신경망에 학습시키는 단계;Learning the acquired collision force data to the artificial neural network;를 포함하는 그래픽 정보를 이용한 실시간 로봇 충돌 위험도 모니터링이 가능한 충돌 물리력 빅데이터 기반 로봇 안전성 평가 방법.A robot safety evaluation method based on collision physics big data capable of monitoring a real-time robot collision risk using graphic information including a.
- 제1항에 있어서,The method of claim 1,상기 추출된 충돌 물리력의 크기가 기 설정된 최대 충돌 물리력의 크기 내에 해당하는지를 판단하여 상기 테스트 로봇의 안전성을 평가하는 단계는, The step of evaluating the safety of the test robot by determining whether the magnitude of the extracted collision physical force falls within a preset magnitude of the maximum collision physical force,추출된 충돌 물리력을 국제 로봇충돌안전 표준(ISO)와 비교하여 테스트 로봇의 안전성을 평가하는 그래픽 정보를 이용한 실시간 로봇 충돌 위험도 모니터링이 가능한 충돌 물리력 빅데이터 기반 로봇 안전성 평가 방법.A robot safety evaluation method based on collision physics big data that enables real-time robot collision risk monitoring using graphic information to evaluate the safety of a test robot by comparing the extracted collision force with the International Robot Collision Safety Standard (ISO).
- 제1항에 있어서, The method of claim 1,상기 테스트 로봇은, The test robot,상기 시뮬레이션 프로그램에 상기 로봇의 형상 정보를 입력하여 형성된 3차원 영상 또는 3차원 계측 센서를 통해 형성된 3차원 모형인 그래픽 정보를 이용한 실시간 로봇 충돌 위험도 모니터링이 가능한 충돌 물리력 빅데이터 기반 로봇 안전성 평가 방법.A robot safety evaluation method based on collision physical force big data that enables real-time robot collision risk monitoring using a three-dimensional image formed by inputting the shape information of the robot into the simulation program or a three-dimensional model formed through a three-dimensional measurement sensor.
- 제1항에 있어서, The method of claim 1,상기 시뮬레이션 프로그램은 CAE(Computer Aided Engineering) 프로그램인 그래픽 정보를 이용한 실시간 로봇 충돌 위험도 모니터링이 가능한 충돌 물리력 빅데이터 기반 로봇 안전성 평가 방법.The simulation program is a computer aided engineering (CAE) program, a robot safety evaluation method based on collision physics big data that enables real-time robot collision risk monitoring using graphic information.
- 제2항에 있어서, The method of claim 2,충돌 인자에 따른 충돌 물리력에 대한 데이터를 획득하는 방법 가운데 수학적으로 계산하는 방식은, Among the methods of obtaining data on the collision force according to the collision factor, the mathematical calculation method is:상기 테스트 로봇의 자세를 변화시키고, 상기 자세의 변화에 따라 상기 테스트 로봇의 상해 유발 위험 부위에 의해 상기 피충돌체에 가해지는 충돌 압력 및 충돌 힘을 산출하는 단계를 포함하는 그래픽 정보를 이용한 실시간 로봇 충돌 위험도 모니터링이 가능한 충돌 물리력 빅데이터 기반 로봇 안전성 평가 방법.Real-time robot collision using graphic information including the step of changing the posture of the test robot and calculating a collision pressure and a collision force applied to the object to be collided by an injury-causing risk site of the test robot according to the change of the posture A robot safety evaluation method based on collision physics big data that can monitor risk.
- 제7항에 있어서, The method of claim 7,상기 수학적으로 계산하는 방식은, The mathematical calculation method,상기 테스트 로봇의 각 부위별 면적에 따라 상기 피충돌체에 가해지는 접촉압력을 산출하고, 상기 산출된 접촉압력 값을 통해 상기 테스트 로봇에 대한 적어도 하나의 상해 유발 위험 부위를 설정하는 단계를 더 포함하는 그래픽 정보를 이용한 실시간 로봇 충돌 위험도 모니터링이 가능한 충돌 물리력 빅데이터 기반 로봇 안전성 평가 방법. The step of calculating a contact pressure applied to the object to be collided according to the area of each part of the test robot, and setting at least one injury-causing risk site for the test robot based on the calculated contact pressure value. A robot safety evaluation method based on collision physics big data that enables real-time robot collision risk monitoring using graphic information.
- 제2항에 있어서, The method of claim 2,상기 수학적으로 계산하는 방식은, The mathematical calculation method,일정 시간 단위 별로 상기 피충돌체에 가해지는 충돌 압력 및 충돌 힘을 산출하는 그래픽 정보를 이용한 실시간 로봇 충돌 위험도 모니터링이 가능한 충돌 물리력 빅데이터 기반 로봇 안전성 평가 방법.A robot safety evaluation method based on collision physics big data that enables real-time robot collision risk monitoring using graphic information that calculates collision pressure and collision force applied to the collided object for each predetermined time unit.
- 제1항에 있어서,The method of claim 1,로봇의 안전성 평가 결과를 수치화하여 시뮬레이션 프로그램 내 그래픽 정보로 변환하여 로봇 사용자에게 시각정보로 알려주는 단계는, The step of quantifying the safety evaluation result of the robot and converting it into graphic information in the simulation program and notifying the robot user as visual information is:로봇 내에서 충돌 시에 위험할 수 있는 상해유발 부위를 선정하는 단계;Selecting an injury-causing site that may be dangerous during a collision in the robot;로봇의 움직임 중에 상기 상해유발 부위와 인간이 충돌 시에 발생하게 될 힘, 압력, 충돌에너지, 변형량 가운데 적어도 하나를 포함하는 충돌정보를 산출하는 단계;Calculating collision information including at least one of force, pressure, collision energy, and deformation amount that will occur when a human collides with the injury-causing site during movement of the robot;상기 산출된 충돌정보의 위험정도를 색채로 변환하는 단계; 및Converting the calculated risk level of the collision information into color; And실제 로봇의 움직임을 실시간으로 추종하는 로봇 시뮬레이션 상에서 상기 상해유발 부위 도면의 색채를 상기 변환된 색채 값으로 입력하는 단계;Inputting a color of the injury-causing area drawing as the converted color value on a robot simulation that tracks the movement of an actual robot in real time;를 포함하는 그래픽 정보를 이용한 실시간 로봇 충돌 위험도 모니터링이 가능한 충돌 물리력 빅데이터 기반 로봇 안전성 평가 방법.A robot safety evaluation method based on collision physics big data capable of monitoring a real-time robot collision risk using graphic information including a.
- 제10항에 있어서,The method of claim 10,실제 로봇의 움직임을 실시간으로 추종하는 로봇 시뮬레이션 상에서 해당 부위 도면의 색채를 상기 변환된 색채로 표시하는 단계에서, In the step of displaying the color of the drawing of the corresponding part as the converted color on a robot simulation that tracks the movement of an actual robot in real time,로봇의 도면 내에 충돌정보가 산출되지 않은 부위의 색채는 충돌정보가 산출된 부위의 색채값을 보간하여 입력하는 그래픽 정보를 이용한 실시간 로봇 충돌 위험도 모니터링이 가능한 충돌 물리력 빅데이터 기반 로봇 안전성 평가 방법. The robot safety evaluation method based on collision physics big data that enables real-time robot collision risk monitoring using graphic information inputted by interpolating the color value of the part where collision information is calculated for the color of the part in the drawing of the robot for which collision information is not calculated.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2019-0049681 | 2019-04-29 | ||
KR20190049681 | 2019-04-29 | ||
KR1020190138364A KR102289375B1 (en) | 2019-04-29 | 2019-11-01 | Real-time safety evaluation method of robot based on the big data of collision physical force using graphic information |
KR10-2019-0138364 | 2019-11-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020222392A1 true WO2020222392A1 (en) | 2020-11-05 |
Family
ID=73028827
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2019/018119 WO2020222392A1 (en) | 2019-04-29 | 2019-12-19 | Method for robot safety evaluation on basis of collision force bigdata that enables real-time robot collision risk monitoring using graphic information |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2020222392A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114326625A (en) * | 2021-12-28 | 2022-04-12 | 毕马智能科技(上海)有限公司 | System and method for monitoring potential safety risks in power grid infrastructure construction |
CN114800496A (en) * | 2022-04-18 | 2022-07-29 | 中国科学院空间应用工程与技术中心 | Risk determination method, system, medium, and apparatus for contact operation of space robot |
EP4197711A1 (en) * | 2021-12-14 | 2023-06-21 | OMRON Corporation | Cooperation system |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009090462A (en) * | 2003-07-29 | 2009-04-30 | Panasonic Corp | Robot control method and control device |
JP2009123045A (en) * | 2007-11-16 | 2009-06-04 | Toyota Motor Corp | Traveling robot and method for displaying dangerous range of traveling robot |
KR20120073616A (en) * | 2010-12-27 | 2012-07-05 | 삼성전자주식회사 | Path planning apparatus of robot and method thereof |
KR20130101913A (en) * | 2012-03-06 | 2013-09-16 | 고려대학교 산학협력단 | Path planning system and method |
US20140316636A1 (en) * | 2013-04-23 | 2014-10-23 | Samsung Electronics Co., Ltd. | Moving robot, user terminal apparatus and control method thereof |
-
2019
- 2019-12-19 WO PCT/KR2019/018119 patent/WO2020222392A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009090462A (en) * | 2003-07-29 | 2009-04-30 | Panasonic Corp | Robot control method and control device |
JP2009123045A (en) * | 2007-11-16 | 2009-06-04 | Toyota Motor Corp | Traveling robot and method for displaying dangerous range of traveling robot |
KR20120073616A (en) * | 2010-12-27 | 2012-07-05 | 삼성전자주식회사 | Path planning apparatus of robot and method thereof |
KR20130101913A (en) * | 2012-03-06 | 2013-09-16 | 고려대학교 산학협력단 | Path planning system and method |
US20140316636A1 (en) * | 2013-04-23 | 2014-10-23 | Samsung Electronics Co., Ltd. | Moving robot, user terminal apparatus and control method thereof |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4197711A1 (en) * | 2021-12-14 | 2023-06-21 | OMRON Corporation | Cooperation system |
CN114326625A (en) * | 2021-12-28 | 2022-04-12 | 毕马智能科技(上海)有限公司 | System and method for monitoring potential safety risks in power grid infrastructure construction |
CN114326625B (en) * | 2021-12-28 | 2023-08-25 | 毕马智能科技(上海)有限公司 | Monitoring system and method for potential safety risk in power grid infrastructure construction |
CN114800496A (en) * | 2022-04-18 | 2022-07-29 | 中国科学院空间应用工程与技术中心 | Risk determination method, system, medium, and apparatus for contact operation of space robot |
CN114800496B (en) * | 2022-04-18 | 2023-11-03 | 中国科学院空间应用工程与技术中心 | Risk judgment method, system, medium and equipment for space robot contact operation |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020222392A1 (en) | Method for robot safety evaluation on basis of collision force bigdata that enables real-time robot collision risk monitoring using graphic information | |
US8583285B2 (en) | Method and device for stopping a manipulator | |
US11052537B2 (en) | Robot operation evaluation device, robot operation evaluating method, and robot system | |
KR102289375B1 (en) | Real-time safety evaluation method of robot based on the big data of collision physical force using graphic information | |
JP6883903B2 (en) | Robot safety improvement method and safety evaluation method | |
US11548153B2 (en) | Robot comprising safety system ensuring stopping time and distance | |
CN110385694B (en) | Robot motion teaching device, robot system, and robot control device | |
TWI769747B (en) | Method for calculating safety range of automated machine and device for controlling robot | |
CN106413997A (en) | Method for preventing collisions of a robot in a workstation | |
CN112706158B (en) | Industrial man-machine interaction system and method based on vision and inertial navigation positioning | |
CN103894807A (en) | Method and device for reducing potential injury to operators | |
CN114505852A (en) | Man-machine cooperation solid fuel shaping system based on digital twin and establishment method | |
CN107850892B (en) | Work area estimation device, work area estimation method, control device, control system, and storage medium | |
Makhataeva et al. | Safety aura visualization for variable impedance actuated robots | |
US11157226B2 (en) | Control apparatus, head mounted display and robot system | |
KR20230002252A (en) | Threshold value tuning system and method for collision detection of multi-degree-of-freerdom robot and graphic user interface | |
KR102003126B1 (en) | Safety evaluation method of robot | |
CN113352331B (en) | Method for force cooperation between robot and external object and cooperative robot | |
KR101976358B1 (en) | Safety improve method of robot | |
US20240269850A1 (en) | Predefining a permissible maximum speed of a robotic device | |
Kawasaki et al. | Teaching for multi-fingered robots based on motion intention in virtual reality | |
Vagas et al. | Application of speed and separation monitoring technique at automated assembly process | |
US20230202041A1 (en) | Method Of Controlling Industrial Robot, Control System And Robot System | |
CN118386237B (en) | Forging manipulator control method and system and forging manipulator | |
CN117649700A (en) | Cylindrical grinding machine processing protection method and system based on machine vision |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19926989 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19926989 Country of ref document: EP Kind code of ref document: A1 |