WO2020218600A1 - Composition for forming optical component - Google Patents
Composition for forming optical component Download PDFInfo
- Publication number
- WO2020218600A1 WO2020218600A1 PCT/JP2020/017901 JP2020017901W WO2020218600A1 WO 2020218600 A1 WO2020218600 A1 WO 2020218600A1 JP 2020017901 W JP2020017901 W JP 2020017901W WO 2020218600 A1 WO2020218600 A1 WO 2020218600A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- carbon atoms
- substituent
- independently
- compound
- Prior art date
Links
- 0 C*C1(C)C=CC(C(C=CC*)=C(C2(C(C)=C(*3)C=C(C(C)(C4(*)C=C5)C5=C)C=C4O)C4=C3C=C(C)C(C)(C(*)(CO)C=C3)C3=C4)C=CC=C)=C2C=C1 Chemical compound C*C1(C)C=CC(C(C=CC*)=C(C2(C(C)=C(*3)C=C(C(C)(C4(*)C=C5)C5=C)C=C4O)C4=C3C=C(C)C(C)(C(*)(CO)C=C3)C3=C4)C=CC=C)=C2C=C1 0.000 description 3
- YDQFDRNHMJQOCA-UHFFFAOYSA-N CC(C(OCCNC(OC)=O)=O)=C Chemical compound CC(C(OCCNC(OC)=O)=O)=C YDQFDRNHMJQOCA-UHFFFAOYSA-N 0.000 description 1
- FVKCOCLNNPLBBA-UHFFFAOYSA-N Oc1cc2cc(Oc3cc(cc(cc4)O)c4cc3C34c5ccccc5-c5c3cccc5)c4cc2cc1 Chemical compound Oc1cc2cc(Oc3cc(cc(cc4)O)c4cc3C34c5ccccc5-c5c3cccc5)c4cc2cc1 FVKCOCLNNPLBBA-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D311/00—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
- C07D311/96—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings spiro-condensed with carbocyclic rings or ring systems
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G8/00—Condensation polymers of aldehydes or ketones with phenols only
- C08G8/02—Condensation polymers of aldehydes or ketones with phenols only of ketones
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G85/00—General processes for preparing compounds provided for in this subclass
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L61/00—Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
- C08L61/04—Condensation polymers of aldehydes or ketones with phenols only
- C08L61/16—Condensation polymers of aldehydes or ketones with phenols only of ketones with phenols
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/04—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
Definitions
- the present invention relates to a composition for forming an optical component.
- a flattening film or a material used for forming a microlens that is, an optical component
- good transparency and high refractive index may be required as optical properties, and such performance.
- the development of materials is underway to improve.
- Patent Document 1 describes an ionic liquid and a compound having a predetermined polyalkylene oxide structure and a (meth) acryloyl group.
- An energy ray-curable resin composition for an optical lens sheet containing a predetermined (meth) acrylate monomer and a photopolymerization initiator is disclosed.
- Patent Document 2 a resin composition containing a copolymer having a specific structural unit, a specific curing acceleration catalyst, and a solvent is suitably used for a microlens or a flattening film. Is described.
- Patent Document 3 describes that a copolymer having a specific structural unit is suitably used for a microlens.
- Patent Documents 1 to 3 still have room for improvement from the viewpoint of achieving both high refractive index and high transparency at a higher level as optical component forming materials.
- the present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is to provide a composition for forming an optical component capable of achieving both high refractive index and high transparency.
- a composition for forming an optical component which comprises a compound represented by the following formula (0).
- X represents an oxygen atom, a sulfur atom or no crosslink.
- R 0 independently has an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, and a substituent.
- R 0 is a hydroxyl group, crosslinkable group or dissociable group.
- the alkyl group, the aryl group, the alkenyl group, the alkynyl group and the alkoxy group at R0 may contain an ether bond, a ketone bond or an ester bond.
- Each of R 2 independently has an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, and a substituent.
- atom a nitro group, an amino group, a carboxyl group, a crosslinkable group, dissociative group, a thiol group or a hydroxyl group, wherein said at R 2 alkyl group, the aryl group, the alkenyl group, the alkynyl group and the alkoxy
- the group may contain an ether bond, a ketone bond or an ester bond.
- n 1 is an integer of 1 to 2 independently of each other.
- n 0 is independently an integer from 0 to (4 + 2n 1 ), where at least one of n 0 is 1 to (4 + 2n 1 ).
- n 4 is an integer of 0 to 1 independently of each other.
- n 5 is an integer from 0 to (4 + 2n 4 ) independently of each other.
- R is independently a hydrogen atom, a linear alkyl group having 1 to 30 carbon atoms which may have a substituent, a branched form having 3 to 30 carbon atoms which may have a substituent, or A cyclic alkyl group, an aryl group having 6 to 30 carbon atoms which may have a substituent, an alkenyl group which may have a substituent and may have 2 to 20 carbon atoms, and a carbon which may have a substituent.
- the number 2 to 20 is an alkynyl group, a crosslinkable group or a dissociable group, wherein at least one of R is a hydrogen atom, a crosslinkable group or a dissociable group.
- Each of R 1 independently has an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, and a substituent.
- n 2 is an integer from 1 to (4 + 2n 1 ) independently of each other.
- n 3 is an integer from 0 to (4 + 2n 1 ⁇ n 2 ) independently of each other.
- n 2 is an integer of 1 to 6 independently of each other.
- n 3 is an integer from 0 to (6-n 2 ) independently of each other.
- the composition for forming an optical component according to [2], wherein the compound represented by the formula (1) is represented by the following formula (3).
- X, R 1 , R 2 , n 4 and n 5 have the same meaning as the above formula (1).
- n 3 is an integer of 0 to 5 independently of each other.
- a composition for forming an optical component which comprises a resin having a structural unit derived from a compound represented by the following formula (0).
- X represents an oxygen atom, a sulfur atom or no crosslink.
- R 0 independently has an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, and a substituent.
- R 0 is a hydroxyl group, crosslinkable group or dissociable group.
- the alkyl group, the aryl group, the alkenyl group, the alkynyl group and the alkoxy group at R0 may contain an ether bond, a ketone bond or an ester bond.
- Each of R 2 independently has an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, and a substituent.
- atom a nitro group, an amino group, a carboxyl group, a crosslinkable group, dissociative group, a thiol group or a hydroxyl group, wherein said at R 2 alkyl group, the aryl group, the alkenyl group, the alkynyl group and the alkoxy
- the group may contain an ether bond, a ketone bond or an ester bond.
- n 1 is an integer of 1 to 2 independently of each other.
- n 0 is independently an integer from 0 to (4 + 2n 1 ), where at least one of n 0 is 1 to (4 + 2n 1 ).
- n 4 is an integer of 0 to 1 independently of each other.
- n 5 is an integer from 0 to (4 + 2n 4 ) independently of each other.
- composition for forming an optical component according to any one of [1] to [9], which further contains a solvent [11] The composition for forming an optical component according to any one of [1] to [10], which further contains an acid generator. [12] The composition for forming an optical component according to any one of [1] to [11], which further contains a cross-linking agent.
- composition for forming an optical component that can achieve both high refractive index and high transparency.
- the present embodiment is an example for explaining the present invention, and the present invention is not limited to the present embodiment.
- alkyl group may be a linear or branched alkyl group, or may be a cyclic alkyl group, even if not specified otherwise, and means to include these.
- alkoxy group may be a linear or branched alkoxy group, or may be a cyclic alkoxy group, even if not specified, and is used in the sense of including these. To do.
- composition for forming optical components contains a compound represented by the following formula (0).
- X represents an oxygen atom, a sulfur atom or no crosslink.
- R 0 independently has an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, and a substituent.
- the alkyl group, the aryl group, the alkenyl group, the alkynyl group and the alkoxy group at R0 may contain an ether bond, a ketone bond or an ester bond.
- Each of R 2 independently has an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, and a substituent.
- n 1 is an integer of 1 to 2 independently of each other.
- n 0 is independently an integer from 0 to (4 + 2n 1 ), where at least one of n 0 is 1 to (4 + 2n 1 ).
- n 4 is an integer of 0 to 1 independently of each other.
- n 5 is an integer from 0 to (4 + 2n 4 ) independently of each other.
- the compound (0) is preferably a compound represented by the following formula (0') (hereinafter, also simply referred to as "compound (0')").
- R 0 , R 2 , n 1 , n 0 , n 4 and n 5 are synonymous with the formula (0), and p1, p2, p3 and p4 are each fused ring. Indicates the condensation position within, and n1'is an integer from 0 to 1.
- the condensation position in the fused ring (anthracene ring) is more preferably p1, p2 and / or p3, p4 in the above formula (0').
- composition for forming an optical component of the present embodiment contains the compound (0), it is useful as an optical component forming material capable of achieving both high refractive index and high transparency. More specifically, the composition for forming an optical component of the present embodiment typically has the following characteristics (I) to (IV) (hereinafter, simply "predetermined characteristics" due to the structure of the compound (0). Also called.).
- Compound (0) has excellent solubility in organic solvents (particularly safe solvents). Therefore, when compound (0) is used as an optical component forming material, an optical component can be formed by a wet process such as a spin coating method or screen printing.
- Compound (0) has a relatively high carbon concentration and a relatively low oxygen concentration. Further, when compound (0) has a phenolic hydroxyl group in the molecule, it is particularly useful for forming a cured product by reaction with a curing agent, but compound (0) alone also crosslinks the phenolic hydroxyl group at high temperature baking. By doing so, a cured product can be formed. Due to these, the compound (0) can exhibit particularly high heat resistance when it has a phenolic hydroxyl group, and when the compound (0) is used as an optical component forming material, the deterioration of the film at the time of high temperature baking is suppressed. , Coloring can be suppressed.
- Compound (0) can exhibit high heat resistance and transparency as described above, and has excellent adhesion to a resist film and a resist intermediate layer film material. Therefore, when compound (0) is used as an optical component forming material, the optical component forming property is excellent.
- optical component formability refers to a property in which large defects are unlikely to occur in the formed optical component and the optical properties such as light transmittance are excellent over a wide temperature range.
- Compound (IV) compound (0) has a high refractive index due to its high aromatic ring density, is suppressed in coloring even after heat treatment, and is excellent in transparency.
- the alkyl group is not particularly limited, but for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, neopentyl group, tert- Pentyl group, n-hexyl group, n-heptyl group, 2,2,4-trimethylpentyl group, n-octyl group, isooctyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group , N-tridecyl group, n-tetradecyl group, n-pentadecyl group, n-hexadecyl group, n-heptadecyl group, n-octadecyl group, n-n
- N-Heptacosyl group, n-Nonacosyl group and other linear or branched alkyl groups having 1 to 30 carbon atoms can be mentioned, and carbon can be used from the viewpoint of making the predetermined characteristics of the present embodiment more effective. It is preferably a linear or branched alkyl group having 1 to 20 numbers, and more preferably a linear or branched alkyl group having 1 to 10 carbon atoms.
- the cyclic alkyl group include a monocyclic group (monocyclic cycloalkyl group) and a polycyclic group (polycyclic cycloalkyl group).
- the monocyclic group is not particularly limited, but for example, it has 3 to 30 carbon atoms such as a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cyclopentyl group, a cycloheptyl group, a cyclooctyl group, a cyclodecyl group, and a cycloicosyl group.
- the polycyclic group is not particularly limited, and examples thereof include a polycyclic group having 7 to 30 carbon atoms such as a dicyclopentyl group, a dicyclohexyl group, a norbornyl group, an adamantyl group, a tricyclodecyl group, and a tetracyclododecyl group. Be done.
- the alkyl group may have a substituent.
- the substituent is not particularly limited, but is, for example, a halogen atom (for example, a fluorine atom, a chlorine atom, and a bromine atom), a nitro group, an amino group which may have a substituent, a carboxyl group, a thiol group, and a hydroxyl group. Can be mentioned.
- the number of substituents is not particularly limited and may be one or plural.
- the aryl group is not particularly limited, but is, for example, a phenyl group, a naphthyl group (for example, 1-naphthyl group and 2-naphthyl group), an anthryl group (for example, 1-anthryl group), and a phenanthryl group (for example, 1-).
- Aryl groups having 6 to 30 carbon atoms such as phenanthryl group) can be mentioned, and from the viewpoint of making the predetermined characteristics of the present embodiment more effective, aryl groups having 6 to 10 carbon atoms such as phenyl group and naphthyl group can be used. It is preferably present, and more preferably it is a phenyl group.
- the aryl group may have a substituent.
- the substituent is not particularly limited, and examples thereof include a substituent exemplified as a substituent of an alkyl group in the formula (0) and an alkyl group exemplified as an alkyl group in the formula (0).
- the number of substituents is not particularly limited and may be one or plural.
- the alkenyl group is not particularly limited, and examples thereof include an alkenyl group having 2 to 30 carbon atoms such as an ethenyl group, a propenyl group, a butenyl group, a pentenyl group, and a hexenyl group.
- the alkenyl group may have a substituent.
- the substituent is not particularly limited, and examples thereof include a substituent exemplified as a substituent of an alkyl group in the formula (0) and an alkyl group exemplified as an alkyl group in the formula (0).
- the number of substituents is not particularly limited and may be one or plural.
- the alkynyl group is not particularly limited, and examples thereof include an alkynyl group having 2 to 30 carbon atoms such as an ethynyl group and a propagyl group.
- the alkynyl group may have a substituent.
- the substituent is not particularly limited, and examples thereof include a substituent exemplified as a substituent of an alkyl group in the formula (0) and an alkyl group exemplified as an alkyl group in the formula (0).
- the number of substituents is not particularly limited and may be one or plural.
- alkoxy group is not particularly limited, for example, group (wherein, R a, in formula (0), indicating the exemplified alkyl group as the alkyl group.) Represented by -O-R a, such as Alkoxy groups having 1 to 30 carbon atoms can be mentioned.
- methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxo group, tert-butoxy group and the like It is preferably a linear or branched alkoxy group having 1 to 6 carbon atoms, more preferably a linear or branched alkoxy group having 1 to 3 carbon atoms, and is a methoxy group or an ethoxy group. Is even more preferable.
- the alkoxy group may have a substituent.
- the substituent is not particularly limited, and examples thereof include a substituent exemplified as a substituent of an alkyl group in the formula (0) and an alkyl group exemplified as an alkyl group in the formula (0).
- the number of substituents is not particularly limited and may be one or plural.
- the halogen atom is not particularly limited, and examples thereof include a chlorine atom, a bromine atom, and an iodine atom.
- R 0 is a hydroxyl group, a crosslinkable group or a dissociative group.
- the compound of the present embodiment has a predetermined property by having such R 0 .
- the density tends to be high, so that the number of atoms contained per unit thickness increases, and particularly a thin film. It tends to be advantageous for formation.
- the condensation position in the fused ring is p1, p2, p3, p4 in the formula (0')
- it tends to be more advantageous for thin film formation. ..
- crosslinkable group in the present embodiment means a group that crosslinks in the presence of a catalyst or in the absence of a catalyst.
- the crosslinkable group is not particularly limited, and has, for example, an alkoxy group having 1 to 20 carbon atoms, a group having an allyl group, a group having a (meth) acryloyl group, a group having an epoxy (meth) acryloyl group, and a hydroxyl group.
- group containing these groups include -ORx (Rx is a group having an allyl group, a group having a (meth) acryloyl group, a group having an epoxy (meth) acryloyl group, a group having a hydroxyl group, and urethane (Rx).
- Meta It has a group having an acryloyl group, a group having a glycidyl group, a group having a vinylphenylmethyl group, a group having various alkynyl groups, a group having a carbon-carbon double bond, and a carbon-carbon triple bond.
- a group and an alkoxy group represented by (a group containing these groups) are preferable.
- each of the above-mentioned functional groups (excluding the crosslinkable group) constitutes the compound of the present embodiment and there is an overlap with the crosslinkable group, it is based on the presence or absence of the crosslinkable property. Those without crosslinkability are treated as corresponding to each functional group, and those with crosslinkability are treated as corresponding to a crosslinkable group.
- the group having an allyl group is not particularly limited, and examples thereof include a group represented by the following formula (X-1).
- n X1 is an integer from 1 to 5.
- the group having a (meth) acryloyl group is not particularly limited, and examples thereof include a group represented by the following formula (X-2).
- n X2 is an integer of 1 to 5
- RX is a hydrogen atom or a methyl group.
- the group having an epoxy (meth) acryloyl group is not particularly limited, and examples thereof include a group represented by the following formula (X-3).
- the epoxy (meth) acryloyl group refers to a group formed by the reaction of an epoxy (meth) acrylate with a hydroxyl group.
- n x3 is an integer from 0 to 5, 0 are preferred, R X is hydrogen atom, or a methyl group, a methyl group is preferred.
- the group having a urethane (meth) acryloyl group is not particularly limited, and examples thereof include a group represented by the following formula (X-4).
- n x4 is an integer of 0 to 5, preferably 0, s is an integer of 0 to 3, preferably 0, and RX is a hydrogen atom or a methyl group. And a methyl group is preferable.
- the group having a hydroxyl group is not particularly limited, and examples thereof include a group represented by the following formula (X-5).
- n x 5 is an integer of 1 to 5, and 1 is preferable.
- the group having a glycidyl group is not particularly limited, and examples thereof include a group represented by the following formula (X-6).
- n x6 is an integer from 1 to 5.
- the group having a vinyl-containing phenylmethyl group is not particularly limited, and examples thereof include a group represented by the following formula (X-7).
- n x7 is an integer of 1 to 5, and 1 is preferable.
- the group having various alkynyl groups is not particularly limited, and examples thereof include a group represented by the following formula (X-8).
- n x 8 is an integer from 1 to 5.
- Examples of the carbon-carbon double bond-containing group include a (meth) acryloyl group, a substituted or unsubstituted vinylphenyl group, and a group represented by the following formula (X-9-1).
- Examples of the carbon-carbon triple bond-containing group include a substituted or unsubstituted ethynyl group and a substituted or unsubstituted propargyl group represented by the following formulas (X-9-2) and (X-9-3). The group to be used is mentioned.
- RX9A , RX9B and RX9C are independently hydrogen atoms or monovalent hydrocarbon groups having 1 to 20 carbon atoms.
- RX9D , RX9E and RX9F are independently hydrogen atoms or monovalent hydrocarbons having 1 to 20 carbon atoms. It is the basis.
- the "dissociative group” in the present embodiment means a group that dissociates in the presence or absence of a catalyst.
- the acid dissociative group refers to a group that cleaves in the presence of an acid to change the alkali-soluble group or the like.
- the alkali-soluble group is not particularly limited, and examples thereof include a phenolic hydroxyl group, a carboxyl group, a sulfonic acid group, a hexafluoroisopropanol group, and the like. Among them, from the viewpoint of easy availability of the introduction reagent, the phenolic hydroxyl group and the carboxyl group can be mentioned. Groups are preferred, phenolic hydroxyl groups are more preferred.
- the acid dissociative group preferably has the property of causing a chain cleavage reaction in the presence of an acid in order to enable highly sensitive and high resolution pattern formation.
- the acid dissociable group is not particularly limited, but is appropriately selected from those proposed in, for example, hydroxystyrene resins used in chemically amplified resist compositions for KrF and ArF, (meth) acrylic acid resins, and the like. Can be used. Specific examples of the acid dissociative group include those described in International Publication No. 2016/158168.
- Examples of the acid dissociable group include a 1-substituted ethyl group, a 1-substituted-n-propyl group, a 1-branched alkyl group, a silyl group, an acyl group, a 1-substituted alkoxymethyl group, and a cyclic group having the property of dissociating with an acid.
- an alkoxycarbonyl group eg, -C (O) OC (CH 3 ) 3, etc.
- each of the above-mentioned functional groups constitutes the compound of the present embodiment and there is an overlap with the dissociative group, it is based on the presence or absence of dissociation.
- Non-dissociative ones are treated as corresponding to each functional group, and dissociative ones are treated as corresponding to dissociative groups.
- the substituent to be substituted with the dissociable group is not particularly limited, but for example, a halogen atom, an alkyl group, an aryl group, an aralkyl group, an alkenyl group, an acyl group, an alkoxycarbonyl group, an alkyloxy group, an aryloyloxy group, and the like. Examples thereof include a cyano group, a nitro group, and a hetero atom.
- the halogen atom is not particularly limited, and examples thereof include a chlorine atom, a bromine atom, and an iodine atom.
- the alkyl group may be linear, branched or cyclic.
- the alkyl group is not particularly limited, and examples thereof include an alkyl group having 1 to 10 carbon atoms such as a methyl group, a tert-butyl group, a cyclohexyl group, and an adamantyl group.
- the aryl group is not particularly limited, and examples thereof include an aryl group having 6 to 20 carbon atoms such as a phenyl group, a tolyl group, and a naphthyl group.
- the aryl group may further have a substituent such as a halogen atom or an alkyl group having 1 to 5 carbon atoms.
- the aralkyl group is not particularly limited, and examples thereof include a benzyl group and a phenethyl group.
- the aralkyl group may further have a substituent such as a halogen atom or an alkyl group having 1 to 5 carbon atoms.
- the alkynyl group is not particularly limited, and examples thereof include an ethynyl group and a propagyl group.
- the acyl group is not particularly limited, and examples thereof include an aliphatic acyl group having 1 to 6 carbon atoms such as a formyl group and an acetyl group, and an aromatic acyl group such as a benzoyl group.
- the alkoxycarbonyl group is not particularly limited, and examples thereof include an alkoxycarbonyl group having 2 to 5 carbon atoms such as a methoxycarbonyl group.
- the alkyloxy group is not particularly limited, and examples thereof include an acetoxy group.
- the allylloyloxy group is not particularly limited, and examples thereof include a benzoyloxy group.
- the hetero atom is not particularly limited, and examples thereof include an oxygen atom, a sulfur atom, a selenium atom, a nitrogen atom, and a phosphorus atom. Heteroatoms may be substituted with the carbon atoms of each group.
- the carbon number of each group described in the present specification is the total carbon number including the substituent when the above-mentioned substituent is included.
- X in compound (0) represents an oxygen atom, a sulfur atom or no crosslink.
- X is preferably an oxygen atom or a sulfur atom, and more preferably an oxygen atom.
- N 1 in compound (0) is an integer of 1 to 2 independently, and is preferably 1.
- n 0 is independently an integer from 0 to (4 + 2n1), where at least one of n 0 is an integer from 1 to (4 + 2n 1 ), preferably 1 to 2.
- n 4 is an integer of 0 to 1, preferably 0.
- n 5 is an integer from 0 to (4 + 2n 4 ), preferably 0 to 2.
- the compound (0) of the present embodiment preferably has a cardo structure from the viewpoint of making a predetermined property more effective.
- Compound (0) has a relatively low molecular weight, but has high heat resistance due to the rigidity of its structure, so that it can be used even under high-temperature baking conditions.
- the composition for forming an optical component of the present embodiment containing the compound (0) may be used. It has excellent flatness and optical component formability.
- the organic solvent include the organic solvents described in [Solvent] described later.
- Compound (0) has a high refractive index due to its high aromatic ring density, and its coloring is suppressed even by a wide range of heat treatment from low temperature to high temperature, so that it is useful for forming various optical components described later.
- the composition for forming an optical component of the present embodiment is preferably used for forming an optical component.
- the optical component is not particularly limited, but for example, a film-shaped component, a sheet-shaped component, a prism lens, a lenticular lens, a microlens, a frennel lens, a viewing angle control lens, a plastic lens such as a contrast improving lens, a retardation film, and the like.
- the compound (0) is an embedded film and a flattening film on a photodiode, which is a member of a solid-state image sensor for which a particularly high refractive index is required, a flattening film before and after a color filter, a microlens, and a flattening on a microlens. It is particularly preferably used as a material for forming a film and a conformal film.
- the compound (0) is preferably a compound represented by the following formula (1) (hereinafter, also simply referred to as “compound (1)”) from the viewpoint of easy cross-linking and solubility in an organic solvent. ..
- R is independently a hydrogen atom, a linear alkyl group having 1 to 30 carbon atoms which may have a substituent, a branched form having 3 to 30 carbon atoms which may have a substituent, or A cyclic alkyl group, an aryl group having 6 to 30 carbon atoms which may have a substituent, an alkenyl group which may have a substituent and may have 2 to 20 carbon atoms, and a carbon which may have a substituent.
- the number 2 to 20 is an alkynyl group, a crosslinkable group or a dissociable group, wherein at least one of R is a hydrogen atom, a crosslinkable group or a dissociable group.
- Each of R 1 independently has an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, and a substituent.
- n 2 is an integer from 1 to (4 + 2n 1 ) independently of each other.
- n 3 is an integer from 0 to (4 + 2n 1 ⁇ n 2 ) independently of each other.
- an alkyl group, an aryl group, an alkenyl group, an alkoxy group, a halogen atom, a crosslinkable group, a dissociable group, and a substituent substituted for each group are not particularly limited, but for example, the formula (0) is used.
- the formula (0) is used.
- n 2 is an integer of 1 to (4 + 2n 1 ) independently of each other, and is preferably 1 to 2.
- n 3 is an integer of 0 to (4 + 2n 1 ⁇ n 2 ) independently of each other, and is preferably 0 to 2.
- the compound (1) is preferably a compound represented by the following formula (2) (hereinafter, also simply referred to as “compound (2)”) from the viewpoint of raw material supply.
- n 2 is an integer of 1 to 6 independently of each other.
- n 3 is an integer from 0 to (6-n 2 ) independently of each other.
- the compound (2) is preferably a compound represented by the following formula (3) (hereinafter, also simply referred to as “compound (3)”).
- R 1 , R 2 , n 4 and n 5 have the same meaning as the above formula (1).
- n 3 is an integer of 0 to 5 independently of each other.
- the compound (1) is preferably a compound represented by the following formula (4) (hereinafter, also simply referred to as “compound (4)”).
- n 5 is an integer of 0 to 4 independently.
- the compound (1) is preferably a compound represented by the following formula (5) (hereinafter, also simply referred to as “compound (5)”).
- n 3 are independently integers from 0 to 5 and n 5 is an integer of 0 to 4 independently.
- the method for producing the compound (0) is not particularly limited, and examples thereof include the following methods. That is, under normal pressure, a compound represented by the following formula (0-x) (hereinafter, compound (0-x)) and a compound represented by the following formula (0-y) (hereinafter, compound (0-y)). ) And the compound represented by the following formula (0-z) (hereinafter, compound (0-z)) are subjected to a polycondensation reaction under an acid catalyst or a base catalyst to obtain compound (0). Be done. In the polycondensation reaction, compounds (0-x), compounds (0-y) and precursors of compound (0-y) can also be used. The above reaction may be carried out under pressure, if necessary.
- R 0 , n 0 , n 1 and n 5 are as defined in equation (0), respectively.
- R 0 , n 0 , n 1 and n 5 are as defined in equation (0), respectively.
- R 2 , n 4 and n 5 are as defined in each formula (0).
- the compound (0-x) and the compound (0-y) may be the same.
- compound (0) is obtained by polycondensation reaction under a base catalyst.
- the compound (0-x) and the compound (0-y) are not particularly limited, and for example, 2,7-dihydroxynaphthalene, 2,7-dihydroxy-3-bromonaphthalene, 2-naphthol, 2,6-dihydroxy. Anthracene and the like can be mentioned. These compounds may be used alone or in combination of two or more. Among these compounds, 2,7-dihydroxynaphthalene is preferable.
- the compound (0-z) is not particularly limited, but for example, 9-fluorenone, 11H-benzo [b] fluorene-11-one, 11H-benzo [a] fluorene-11-one, 3,6-dibromo-.
- examples thereof include 9H-fluorene-9-one, 2-bromo-9-fluorenone, 2,7-dihydroxy-9H-fluorene-9-one, 2-hydroxy-9-fluorenone and the like. These compounds may be used alone or in combination of two or more. Among these compounds, 9-fluorenone is preferable.
- the acid catalyst used in the above reaction is not particularly limited, but is, for example, an inorganic acid such as hydrochloric acid, sulfuric acid, phosphoric acid, hydrobromic acid, or hydrofluoric acid, oxalic acid, malonic acid, succinic acid, adipic acid, and sebacic acid.
- an inorganic acid such as hydrochloric acid, sulfuric acid, phosphoric acid, hydrobromic acid, or hydrofluoric acid, oxalic acid, malonic acid, succinic acid, adipic acid, and sebacic acid.
- Citric acid fumaric acid, maleic acid, formic acid, p-toluenesulfonic acid, methanesulfonic acid, trifluoroacetic acid, dichloroacetic acid, trichloroacetic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, naphthalenesulfonic acid, naphthalenedisulfonic acid, etc.
- organic acids such as zinc chloride, aluminum chloride, iron chloride and boron trifluoride
- solid acids such as silicate tung acid, phosphotung acid, silicate molybdic acid and phosphomolybdic acid.
- organic acids and solid acids are preferable from the viewpoint of production, and hydrochloric acid or sulfuric acid is preferably used from the viewpoint of production such as easy availability and handling.
- the amount of the acid catalyst used can be appropriately set according to the raw material used, the type of catalyst used, the reaction conditions, and the like, and is not particularly limited, but is 0.01 to 100 parts by mass with respect to 100 parts by mass of the reaction raw material. Is preferable.
- the base catalyst used in the above reaction is not particularly limited, but is, for example, metal alcoxide (alkali metal such as sodium methoxide, sodium ethoxide, potassium methoxide, potassium ethoxide, or alkaline earth metal alcoxide), metal hydroxide.
- metal alcoxide alkali metal such as sodium methoxide, sodium ethoxide, potassium methoxide, potassium ethoxide, or alkaline earth metal alcoxide
- metal hydroxide metal hydroxide
- alkali metals such as sodium hydroxide and potassium hydroxide or alkaline earth metal hydroxides, etc.
- alkali metals such as sodium hydrogen carbonate and potassium hydrogen carbonate or alkaline earth hydrogen carbonates
- amines for example, third Carous acid metal salts (sodium acetate, etc.) such as secondary amines (trialkylamines such as triethylamine, aromatic tertiary amines such as N, N-dimethylaniline, heterocyclic tertiary amines such as 1-methylimidazole), etc.
- Organic bases such as alkali metals acetate such as calcium acetate or alkaline earth metal salts) can be mentioned.
- base catalysts are used alone or in combination of two or more. From the above viewpoint, metal alcoxides, metal hydroxides and amines are preferable, and sodium hydroxide is preferably used from the viewpoint of manufacturing such as easy availability and handling.
- the amount of the base catalyst used is the amount to be used. It can be appropriately set according to the type of raw material to be used, the type of catalyst used, reaction conditions, etc., and is not particularly limited, but is preferably 0.01 to 100 parts by mass with respect to 100 parts by mass of the reaction raw material.
- a reaction solvent may be used in the above reaction.
- the reaction solvent is not particularly limited, and examples thereof include water, methanol, ethanol, propanol, butanol, tetrahydrofuran, dioxane, 1-methoxy-2-propanol, ethylene glycol dimethyl ether, ethylene glycol diethyl ether and the like. These solvents may be used alone or in combination of two or more.
- the amount of the solvent used can be appropriately set according to the raw material used, the type of catalyst used, the reaction conditions, and the like, and is not particularly limited, but is in the range of 0 to 2000 parts by mass with respect to 100 parts by mass of the reaction raw material. Is preferable.
- the reaction temperature in the above reaction can be appropriately selected depending on the reactivity of the reaction raw material, and is not particularly limited, but is usually in the range of 10 to 200 ° C.
- the reaction temperature is preferably high, specifically in the range of 60 to 200 ° C.
- the reaction method is not particularly limited, and for example, there are a method of charging the raw material (reactant) and the catalyst in a batch, and a method of sequentially dropping the raw material (reactant) in the presence of the catalyst.
- isolation of the obtained compound can be carried out according to a conventional method and is not particularly limited.
- a general method such as raising the temperature of the reaction kettle to 130 to 230 ° C. and removing volatile substances at about 1 to 50 mmHg is adopted. Thereby, the target compound can be obtained.
- Preferred reaction conditions include a compound represented by the above formula (0-x) and a compound represented by the above formula (0-y) with respect to 1 mol of the ketones represented by the above formula (0-z). Examples thereof include conditions in which 1.0 mol to an excess amount is used, 0.001 to 1 mol of an acid catalyst is used, and the reaction is carried out at 50 to 150 ° C. for about 20 minutes to 100 hours at normal pressure.
- the target product can be isolated by a known method.
- the reaction solution is concentrated, pure water is added to precipitate the reaction product, the reaction product is cooled to room temperature, filtered to separate the reaction product, and the obtained solid product is filtered and dried, and then column chromatography is performed.
- the compound (0), which is the target product can be obtained by separating and purifying from the by-product, distilling off the solvent, filtering, and drying.
- the resin in this embodiment contains a structural unit derived from the compound represented by the above formula (0). That is, the resin in the present embodiment contains the compound represented by the above formula (0) as a monomer component.
- a resin having a structure represented by the following formula (6) (hereinafter, also simply referred to as “resin (6)”) is preferable.
- L is a divalent group having 1 to 60 carbon atoms
- M is a unit structure derived from a compound represented by any of the formulas (0) to (5).
- linking group examples include residues derived from a compound having a cross-linking reaction described later.
- L a divalent hydrocarbon group having 1 to 30 carbon atoms is preferably used.
- the divalent hydrocarbon group is not particularly limited, and examples thereof include a linear or branched hydrocarbon group such as an alkylene group or a cyclic hydrocarbon group.
- the resin (6) is obtained by reacting the compound (0) with a compound having a cross-linking reactivity.
- the compound having a cross-linking reactivity may be any compound capable of oligomerizing or polymerizing compound (0), for example, aldehydes, ketones, carboxylic acids, carboxylic acid halides, halogen-containing compounds, amino compounds, iminos. Examples thereof include compounds, isocyanate compounds, and unsaturated hydrocarbon group-containing compounds.
- the resin (6) is not particularly limited, and examples thereof include a novolakized resin obtained by a condensation reaction between the compound (0) and aldehydes or ketones which are compounds having a cross-linking reaction.
- the aldehydes used for novolacizing the compound (0) are not particularly limited, but for example, formaldehyde, trioxane, paraformaldehyde, benzaldehyde, acetaldehyde, propylaldehyde, phenylacetaldehyde, phenylpropionaldehyde, hydroxybenzaldehyde, and the like.
- aldehydes may be used alone or in combination of two or more. Further, in addition to these aldehydes, one or more kinds of ketones can be used in combination.
- benzaldehyde hydroxybenzaldehyde, chlorobenzaldehyde, nitrobenzaldehyde, methylbenzaldehyde
- ethylbenzaldehyde butylbenzaldehyde, cyclohexylbenzaldehyde, biphenylaldehyde, naphthaldehyde, anthracenecarbaldehyde, phenanthrencarbaldehyde, pyrenecarbaldehyde, and furfural
- formaldehyde preferable.
- the amount of the aldehydes used is not particularly limited, but is preferably
- the ketones used for novolacizing the compound (0) are not particularly limited, but for example, acetone, methyl ethyl ketone, cyclobutanone, cyclopentanone, cyclohexanone, norbornanone, cyclohexanedione, cyclohexanetrione, cyclodecantrion, adamantanone, Fluolenone, benzofluorenone, dibenzofluorenone, acenaphthenquinone, acenaphthenone, anthraquinone, acetophenone, diacetylbenzene, triacetylbenzene, acetonaphthone, acetylmethylbenzene, acetyldimethylbenzene, acetyltrimethylbenzene, acetylethylbenzene, acetylpropylbenzene, acetylbutylbenzene,
- ketones may be used alone or in combination of two or more.
- a catalyst can also be used in the condensation reaction between compound (0) and aldehydes or ketones.
- the acid catalyst or base catalyst used here can be appropriately selected from known ones and is not particularly limited.
- the acid catalyst and the base catalyst are the same as those given in the method for producing the compound (0).
- These catalysts may be used alone or in combination of two or more.
- organic acids and solid acids are preferable from the viewpoint of production, and hydrochloric acid or sulfuric acid is preferable from the viewpoint of production such as easy availability and handling.
- the amount of the acid catalyst used can be appropriately set according to the raw material used, the type of catalyst used, the reaction conditions, and the like, and is not particularly limited, but is 0.01 to 100 parts by mass with respect to 100 parts by mass of the reaction raw material. Is preferable.
- indene hydroxyindene, benzofuran, hydroxyanthracene, acenaphthylene, biphenyl, bisphenol, trisphenol, dicyclopentadiene, tetrahydroindene, 4-vinylcyclohexene, norbornadiene, 5-vinylnorborna-2-ene, ⁇ -pinene, ⁇ -pinene.
- a copolymerization reaction with a compound having a non-conjugated double bond such as limonene
- aldehydes or ketones are not always necessary.
- a reaction solvent can also be used in the condensation reaction between the compound (0) and aldehydes or ketones.
- the reaction solvent in this polycondensation can be appropriately selected from known ones and used, and is not particularly limited, but for example, water, methanol, ethanol, propanol, butanol, 1-methoxy-2-propanol, tetrahydrofuran, etc. Dioxane or a mixed solvent thereof can be mentioned. These solvents may be used alone or in combination of two or more.
- the amount of the solvent used can be appropriately set according to the raw material used, the type of catalyst used, the reaction conditions, and the like, and is not particularly limited, but is in the range of 0 to 2000 parts by mass with respect to 100 parts by mass of the reaction raw material. Is preferable.
- the reaction temperature can be appropriately selected depending on the reactivity of the reaction raw material, and is not particularly limited, but is usually in the range of 10 to 200 ° C.
- the reaction method the above compound (0), aldehydes and / or ketones and a catalyst are collectively charged, and the above compound (0), aldehydes and / or ketones are sequentially added in the presence of a catalyst. There is a method of dropping the compound into the water.
- the obtained resin can be isolated according to a conventional method and is not particularly limited.
- a general method such as raising the temperature of the reaction kettle to 130 to 230 ° C. and removing volatile substances at about 1 to 50 mmHg is adopted.
- the target product for example, a novolakized resin
- the resin (6) may be obtained together with the synthetic reaction of the compound (0). That is, the resin (6) may be a polymer of aldehydes or ketones derived from the raw materials used in the synthesis of the compound (0) and the compound (0).
- the resin (6) may be a homopolymer of the compound (0), or may be a copolymer with other phenols or the like.
- the phenols that can be copolymerized here are not particularly limited, but are, for example, phenol, cresol, dimethylphenol, trimethylphenol, butylphenol, phenylphenol, diphenylphenol, naphthylphenol, resorcinol, methylresorcinol, catechol, butylcatechol, methoxy. Examples thereof include phenol, methoxyphenol, propylphenol, pyrogallol, timol and the like.
- the resin (6) may be copolymerized with a polymerizable monomer in addition to the other phenols described above.
- the copolymerization monomer is not particularly limited, but for example, naphthol, methylnaphthol, methoxynaphthol, dihydroxynaphthalene, indene, hydroxyindene, benzofuran, hydroxyanthracene, acenaphthylene, biphenyl, bisphenol, trisphenol, dicyclopentadiene, tetrahydroindene, etc. 4-Vinylcyclohexene, norbornadiene, vinylnorbornaen, pinen, limonene and the like can be mentioned.
- the resin (6) is a copolymer of the compound (0) and the above-mentioned phenols in a binary or more (for example, 2 to 4 elements) copolymer
- the compound (0) and the above-mentioned copolymerized monomer are used.
- the compound (1), the above-mentioned phenols, and the above-mentioned copolymerized monomer are three or more elements (for example, 3 to 4). It may be a (primary) copolymer.
- the weight average molecular weight (Mw) of the resin (6) is not particularly limited, but is preferably 300 to 100,000, more preferably 500 to 30,000, in terms of polystyrene as measured by GPC. It is more preferably 750 to 20,000. Further, from the viewpoint of increasing the crosslinking efficiency and suppressing the volatile components in the bake, the resin (6) preferably has a dispersity (weight average molecular weight Mw / number average molecular weight Mn) in the range of 1 to 7.
- the above-mentioned compound (0) and / or resin (6) are preferably highly soluble in a solvent from the viewpoint of facilitating the application of a wet process. More specifically, these compounds (0) and / or the resin (6) are also referred to as propylene glycol monomethyl ether (hereinafter, also referred to as “PGME”) and / or propylene glycol monomethyl ether acetate (hereinafter, also referred to as “PGMEA”). ) Is used as a solvent, the solubility in the solvent is preferably 10% by mass or more.
- the solubility in PGME and / or PGMEA is "mass of compound (0) and / or resin (6) ⁇ (mass of compound (0) and / or resin (6) + mass of solvent) x 100 (mass). %) ”Is defined.
- 10 g of the compound (0) and / or the resin (6) is evaluated to have high solubility in 90 g of PGMEA because the solubility of the compound (0) and / or the resin (6) in PGMEA is "10 mass by mass”. % Or more, and it is evaluated that the solubility is not high when the solubility is "less than 10% by mass”.
- composition for forming an optical component of the present embodiment contains a compound (0) and / or a resin (6). Therefore, a wet process can be applied, and it is excellent in heat resistance and flattening characteristics. Further, since the composition for forming an optical component of the present embodiment contains the compound (0) and / or the resin (6), the aromatic ring density is high, so that the refractive index is high and the range from low temperature to high temperature is wide. Coloring is also suppressed by the heat treatment of. Therefore, the composition for forming an optical component of the present embodiment is suitable for forming an optical component.
- a solvent a cross-linking agent, a cross-linking accelerator, an acid generator, a basic compound, and other components may be contained, if necessary.
- these optional components will be described.
- the composition for forming an optical component of the present embodiment may contain a solvent.
- the solvent is not particularly limited as long as it is a solvent capable of dissolving the compound (0) and / or the resin (6).
- the compound (0) and / or the resin (6) are excellent in solubility in an organic solvent, and therefore various organic solvents are preferably used.
- the solvent is not particularly limited, but for example, a ketone solvent such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; a cellosolve solvent such as PGME and PGMEA; ethyl lactate, methyl acetate, ethyl acetate, butyl acetate and isoamyl acetate, Ester solvents such as ethyl lactate, methyl methoxypropionate, methyl hydroxyisobutyrate; alcohol solvents such as methanol, ethanol, isopropanol and 1-ethoxy-2-propanol; aromatic hydrocarbons such as toluene, xylene and anisole. Can be mentioned. These solvents may be used alone or in combination of two or more.
- the amount of the solid component is not particularly limited, but is preferably 1 to 80% by mass with respect to 100% by mass of the total mass of the solid component and the solvent. It is more preferably 50% by mass, further preferably 2 to 40% by mass, still more preferably 2 to 10% by mass and 90 to 98% by mass of the solvent.
- the amount of the solvent is not particularly limited, but is preferably 20 to 99% by mass, preferably 50 to 99% by mass, based on 100% by mass of the total mass of the solid component and the solvent. It is more preferably by mass, more preferably 60 to 98% by mass, and even more preferably 90 to 98% by mass.
- a "solid component" means a component other than a solvent.
- the content of the solvent is not particularly limited, but may be 100 to 10,000 parts by mass with respect to 100 parts by mass of the compound (0) and / or the resin (6) from the viewpoint of solubility and film formation. It is preferably 200 to 5,000 parts by mass, and even more preferably 200 to 1,000 parts by mass.
- the composition for forming an optical component of the present embodiment may contain a cross-linking agent from the viewpoint of improving the solvent resistance after forming the optical component.
- the cross-linking agent is not particularly limited, and for example, those described in International Publication No. 2013/024779 and International Publication No. 2018/016614 can be used.
- the cross-linking agent is not particularly limited, but for example, a phenol compound, an epoxy compound, a cyanate compound, an amino compound, a benzoxazine compound, an acrylate compound, a melamine compound, a guanamine compound, a glycoluril compound, a urea compound, an isocyanate compound, an azide compound and the like. Can be mentioned.
- These cross-linking agents may be used alone or in combination of two or more. Among these, one or more selected from the group consisting of benzoxazine compounds, epoxy compounds and cyanate compounds is preferable, and benzoxazine compounds are more preferable from the viewpoint of improving etching resistance.
- the content of the cross-linking agent is not particularly limited, but is preferably 0.1 to 100 parts by mass with respect to 100 parts by mass of the compound (0) and / or the resin (6). It is more preferably 50 parts by mass, and even more preferably 10 to 40 parts by mass.
- the content of the cross-linking agent is within the above range, the solvent resistance after forming the optical component tends to be improved, and the film-forming property after cross-linking tends to be improved.
- the composition for forming an optical component of the present embodiment may contain a cross-linking accelerator in order to promote a cross-linking reaction (curing reaction), if necessary.
- a cross-linking accelerator include a radical polymerization initiator.
- the radical polymerization initiator may be a photopolymerization initiator that initiates radical polymerization by light, or a thermal polymerization initiator that initiates radical polymerization by heat.
- the radical polymerization initiator is not particularly limited, and examples thereof include a ketone-based photopolymerization initiator, an organic peroxide-based polymerization initiator, and an azo-based polymerization initiator.
- the radical polymerization initiator is not particularly limited, but for example, the one described in International Publication No. 2018/016614 can be used.
- radical polymerization initiators are used alone or in combination of two or more.
- the content of the radical polymerization initiator in the present embodiment is not particularly limited, but is preferably 0.05 to 25 parts by mass when the compound (0) or the resin (6) is 100 parts by mass, and is 0. .1 to 10 parts by mass is more preferable.
- the content of the radical polymerization initiator is 0.05 parts by mass or more, it tends to be possible to prevent insufficient curing, while the content of the radical polymerization initiator is 25 parts by mass or less. In this case, it tends to be possible to prevent the long-term storage stability at room temperature from being impaired.
- the composition for forming an optical component of the present embodiment may contain an acid generator from the viewpoint of further promoting the cross-linking reaction by heat.
- an acid generator those that generate acid by thermal decomposition, those that generate acid by light irradiation, and the like are known, and any of them can be used.
- the acid generator is not particularly limited, but for example, the acid generator described in International Publication No. 2013/024779 can be used.
- the content of the acid generator in the composition for forming an optical component is not particularly limited, but may be 0.1 to 50 parts by mass with respect to 100 parts by mass of the compound (0) and / or the resin (6). It is preferably 0.5 to 40 parts by mass, more preferably 0.5 to 40 parts by mass. When the content of the acid generator is within the above range, the cross-linking reaction tends to be enhanced, and the solvent resistance after forming the optical component tends to be improved.
- the composition for forming an optical component of the present embodiment may contain a basic mixture from the viewpoint of improving storage stability and the like.
- the basic compound plays a role of preventing the acid generated in a small amount from the acid generator from advancing the cross-linking reaction, that is, a role of quenching against the acid.
- Such basic compounds are not particularly limited, and examples thereof include those described in International Publication No. 2013/024779.
- the content of the basic compound in the composition for forming an optical component of the present embodiment is not particularly limited, but is 0.001 to 2 parts by mass with respect to 100 parts by mass of the compound (0) and / or the resin (6). It is preferable that the amount is 0.01 to 1 part by mass.
- the content of the basic compound is within the above range, the storage stability tends to be enhanced without excessively impairing the cross-linking reaction.
- the composition for forming an optical component of the present embodiment may contain other resins and / or compounds for the purpose of imparting curability by heat or light and controlling the absorbance.
- Such other resins and / or compounds are not particularly limited, and for example, naphthalene resin, xylene resin, naphthalene-modified resin, phenol-modified resin of naphthalene resin; polyhydroxystyrene, dicyclopentadiene resin, (meth) acrylate, and the like.
- Non-resin examples thereof include resins or compounds containing an alicyclic structure such as rosin-based resins, cyclodextrines, adamantan (poly) all, tricyclodecane (poly) all and derivatives thereof.
- the lithographic film-forming composition of the present embodiment may contain known additives other than those described above.
- additives include, but are not limited to, heat and / or photocurable catalysts, polymerization inhibitors, flame retardants, fillers, coupling agents, thermosetting resins, photocurable resins, dyes, pigments. , Thickeners, lubricants, defoaming agents, leveling agents, ultraviolet absorbers, surfactants, colorants, nonionic surfactants and the like.
- the composition for forming an optical component of the present embodiment is used for forming an optical component. That is, the optical component of the present embodiment includes the composition for forming an optical component of the present embodiment.
- the optical component is not particularly limited, but for example, a film-shaped component, a sheet-shaped component, a prism lens, a lenticular lens, a micro lens, a frennel lens, a viewing angle control lens, a plastic lens such as a contrast improving lens, a retardation film, and the like.
- the compound (0) is an embedded film and a flattening film on a photodiode, which is a member of a solid-state image sensor for which a particularly high refractive index is required, a flattening film before and after a color filter, a microlens, and a flattening on a microlens. It is suitably used as a material for forming a film and a conformal film.
- the optical component is used as a film-like or sheet-like component, and after forming a desired optical component pattern on a layer formed from an optical component-forming composition formed on the film, if necessary. It may be an optical component formed by reflowing the pattern by heating.
- optical component of this embodiment when applied to devices are microlens materials, sealing materials such as LEDs and PDs, and thin display-related materials such as thin film transistor protective films, liquid crystal color filter protective films, and black matrices. , Spacers and the like.
- the optical component containing the composition for forming an optical component of the present embodiment tends to have an extremely excellent advantage that it is excellent in heat resistance and moisture resistance and is less contaminated by sublimation components.
- the material tends to be a material having high sensitivity, high heat resistance, and moisture absorption reliability with little deterioration of image quality due to important contamination.
- the composition for forming an optical component of the present embodiment may contain various kinds of curing agents and, if necessary, other resins, surfactants and dyes, fillers, cross-linking agents, dissolution accelerators and the like. It may be prepared by adding an additive and dissolving it in an organic solvent.
- the composition for forming an optical component of the present embodiment can be prepared by blending each of the above components and mixing them using a stirrer or the like.
- a disperser such as a dissolver, a homogenizer, or a three-roll mill.
- the method for purifying the compound (0) and / or the resin (6) is a solution containing an organic solvent that is arbitrarily immiscible with water and the compound (0) and / or the resin (6) (hereinafter, simply, “solution (hereinafter, simply” solution (hereinafter, “solution”). It is preferable to include an extraction step of contacting A) with an acidic aqueous solution for extraction.
- the compound (0) and / or the resin (6) is dissolved in an organic solvent that is not arbitrarily mixed with water, and the solution is brought into contact with an acidic aqueous solution to perform an extraction treatment. It is preferable that the metal component contained in the solution (A) is transferred to the aqueous phase, and then the organic phase and the aqueous phase are separated and purified.
- the purification method of the present embodiment can significantly reduce the content of various metals in the compound or resin of the present embodiment.
- the "organic solvent immiscible with water” means that the solubility in water at 20 ° C. is less than 50% by mass, and from the viewpoint of productivity, it is preferably less than 25% by mass. ..
- the organic solvent that is not arbitrarily miscible with water is not particularly limited, but an organic solvent that can be safely applied to the semiconductor manufacturing process is preferable.
- the amount of the organic solvent used is usually about 1 to 100 times by mass with respect to the compound (0) and / or the resin (6).
- organic solvent examples are not particularly limited, but examples thereof include those described in International Publication WO2015 / 080240. These solvents may be used alone or in combination of two or more. Among these, toluene, 2-heptanone, cyclohexanone, cyclopentanone, methyl isobutyl ketone, PGMEA, ethyl acetate and the like are preferable, and cyclohexanone and PGMEA are more preferable.
- the acidic aqueous solution to be used is appropriately selected from generally known organic compounds or aqueous solutions in which an inorganic compound is dissolved in water.
- these acidic aqueous solutions may be used alone or in combination of two or more.
- aqueous solutions of sulfuric acid, nitric acid, and carboxylic acids such as acetic acid, oxalic acid, tartaric acid, and citric acid are preferable
- aqueous solutions of sulfuric acid, oxalic acid, tartaric acid, and citric acid are more preferable
- aqueous solutions of oxalic acid are even more preferable.
- polyvalent carboxylic acids such as oxalic acid, tartaric acid, and citric acid can remove more metals because they coordinate with metal ions and produce a chelating effect.
- water having a low metal content for example, ion-exchanged water or the like is preferably used according to the purpose of the present embodiment.
- the pH of the acidic aqueous solution used in the present embodiment is not particularly limited, but usually, the pH range is preferably about 0 to 5, and more preferably about 0 to 3.
- the amount of the acidic aqueous solution used in the present embodiment is not particularly limited, but if the amount is too small, it is necessary to increase the number of extractions for removing the metal, and conversely, if the amount of the aqueous solution is too large, the whole The amount of liquid may increase, causing operational problems.
- the amount of the acidic aqueous solution used is usually preferably 10 to 200% by mass, preferably 20 to 100% by mass, based on the solution (A).
- the metal component is extracted by bringing the above acidic aqueous solution into contact with the solution (A).
- the temperature at which the extraction process is performed is usually preferably 20 to 90 ° C, more preferably 30 to 80 ° C.
- the extraction operation is performed by, for example, stirring well and then allowing the mixture to stand. As a result, the metal content contained in the solution (A) shifts to the aqueous phase. Further, by this operation, the acidity of the solution is lowered, and the alteration of the compound (0) and / or the resin (6) can be suppressed.
- the compound (0) and / or the resin (6) and the organic solvent are separated by decantation or the like. Recover the containing organic phase.
- the standing time is not particularly limited, but for example, it is preferably 1 minute or longer, more preferably 10 minutes or longer, and even more preferably 30 minutes or longer. Further, although the extraction process may be performed only once, it is also effective to repeat the operations of mixing, standing, and separating a plurality of times.
- the compound (0) and / or the resin (6) extracted and recovered from the acidic aqueous solution after the treatment and an organic solvent are contained.
- the organic phase is preferably further extracted with water.
- the extraction treatment is carried out by mixing the organic phase and water well by stirring or the like, and then allowing the mixture to stand. Then, the obtained solution is separated into a solution phase containing the compound (0) and / or the resin (6) and an organic solvent and an aqueous phase, so that the compound (0) and / or the resin (6) and the organic solvent are separated by decantation or the like. Recover the containing solution phase.
- the water used here is preferably one having a low metal content, for example, ion-exchanged water, etc., in line with the purpose of the present embodiment.
- the extraction process may be performed only once, but it is also effective to repeat the operations of mixing, standing, and separating a plurality of times.
- the conditions such as the ratio of use of both in the extraction treatment, temperature, and time are not particularly limited, but the same as in the case of the contact treatment with the acidic aqueous solution may be used.
- the water mixed in the solution containing the compound (0) and / or the resin (6) and the organic solvent thus obtained can be easily removed by performing an operation such as vacuum distillation. Further, if necessary, an organic solvent can be added to adjust the concentration of the compound (0) and / or the resin (6) to an arbitrary concentration.
- the method for obtaining only the compound (0) and / or the resin (6) from the obtained solution containing the compound (0) and / or the resin (6) and the organic solvent is as follows: removal under reduced pressure, separation by reprecipitation, and a combination thereof. Etc., it can be carried out by a known method. If necessary, known treatments such as concentration operation, filtration operation, centrifugation operation, and drying operation can be performed.
- the method for evaluating the amount of impurities in the compound (0) and / or the resin (6) compound (0) and / or the resin (6) after the purification method of the present embodiment, that is, after purification, is not particularly limited. , The amount of various metals measured by ICP-MS described in Examples described later can be evaluated.
- LC-MS analysis measurement of molecular weight
- Mn, Mw and Mw / Mn were determined by gel permeation chromatography (GPC) analysis in terms of polystyrene under the following measurement conditions.
- Flow velocity 1 mL / min
- Temperature 40 ° C
- ICP-MS Measurement was performed using an inductively coupled plasma mass spectrometer (hereinafter, also referred to as “ICP-MS”) “ELAN DRCII” (product name, manufactured by PerkinElmer).
- the reaction mixture is cooled, extracted twice with 1 L of ethyl acetate, concentrated, separated by column chromatography, and recrystallized with isopropyl alcohol three times.
- the target compound represented by the following formula (XBisN-F1) (XBisN-F1) 1.3 g of XBisN-F1) was obtained.
- the molecular weight of the obtained compound (XBisN-F1) was measured by the above-mentioned "LC-MS analysis" method and found to be 464.
- the obtained resin (R1-XBisN-1) was Mn: 3650, Mw: 6950, and Mw / Mn: 1.90.
- the mixture is cooled to 50 ° C., the reaction solution is dropped in pure water, the precipitated solid is filtered, dried, and then separated and purified by a column chromatograph.
- the target compound (XBisN-F1) represented by the following formula is obtained.
- -Ea) was obtained in an amount of 1.4 g.
- the mixture is cooled to 50 ° C., the reaction solution is dropped in pure water, the precipitated solid is filtered, dried, and then separated and purified by column chromatography.
- the target compound (XBisN-F1-) represented by the following formula is obtained.
- Ua) was obtained in an amount of 1.5 g.
- the mixture was neutralized and washed with water, and ethylbenzene and unreacted 1,5-dimethylnaphthalene were distilled off under reduced pressure to obtain 1.25 kg of a light brown solid dimethylnaphthalene formaldehyde resin.
- the molecular weight of the obtained dimethylnaphthalene formaldehyde resin was number average molecular weight (Mn): 562, weight average molecular weight (Mw): 1168, and dispersity (Mw / Mn): 2.08.
- a four-necked flask having an internal volume of 0.5 L equipped with a Dimroth condenser, a thermometer and a stirring blade was prepared.
- 100 g (0.51 mol) of the dimethylnaphthalene formaldehyde resin obtained as described above and 0.05 g of p-toluenesulfonic acid were charged under a nitrogen stream, and the temperature was raised to 190 ° C. After heating for 2 hours, the mixture was stirred. After that, 52.0 g (0.36 mol) of 1-naphthol was further added, the temperature was further raised to 220 ° C., and the reaction was carried out for 2 hours.
- the obtained resin (C-1) was Mn: 885, Mw: 2220, and Mw / Mn: 2.51.
- Acid generator Ditert-butyldiphenyliodonium nonafluoromethanesulfonate (hereinafter, also referred to as "DTDPI”) (manufactured by Midori Chemical Co., Ltd.)
- Crosslinking agent "Nicarax MX270” (hereinafter, also referred to as “MX270”) (Product name, manufactured by Sanwa Chemical Co., Ltd.)
- Organic solvent Propylene glycol monomethyl ether (PGME)
- composition for forming an optical component and the storage stability of the composition for forming an optical component containing a thin film forming compound are maintained at 23 ° C. for 3 days after the composition for forming an optical component is prepared.
- the presence or absence of precipitation was evaluated by visually observing.
- the composition for forming an optical component was rotationally coated on a clean silicon wafer and then baked (PB) before exposure on a hot plate at 110 ° C. to form a resist film having a thickness of 50 nm.
- the prepared composition for forming optical components was evaluated as ⁇ when it was a uniform solution and the thin film formation was good, ⁇ when it was a uniform solution but the thin film had defects, and ⁇ when there was precipitation.
- Refractive index and transparency test [Refractive index and transparency test]
- the composition for forming an optical component was applied onto a SiO 2 substrate having a film thickness of 300 nm and baked at 260 ° C. for 300 seconds to form a film for an optical component having a film thickness of 100 nm.
- the refractive index and transparency of the film for optical components were evaluated by the following methods. That is, using a vacuum ultraviolet multi-incident angle spectroscopic ellipsometer (product name "M-2000DI-YK", manufactured by JA Woolam Japan Co., Ltd.), a refractive index and transparency test at a wavelength of 633 nm were performed. The refractive index and transparency were evaluated according to the following criteria.
- the compound (0) and the resin (6) have no problems in solubility in an organic solvent, storage stability, and film formation as optical component forming materials, and have a high refractive index and transparency. It can be said that they are compatible with each other. That is, the optical component forming composition of the present embodiment is useful as an optical component film forming material.
- composition for forming an optical component containing the compound and / or resin of the present invention can be widely and effectively used in the application for forming an optical component. Therefore, according to the present invention, for example, a film-shaped or sheet-shaped component, a prism lens, a lenticular lens, a microlens, a Fresnel lens, a viewing angle control lens, a plastic lens such as a contrast improving lens, a retardation film, an electromagnetic wave shielding film, Prism, optical fiber, solder resist for flexible printed wiring, plating resist, interlayer insulating film for multilayer printed wiring board, photosensitive optical waveguide, liquid crystal display, organic electroluminescence (EL) display, optical semiconductor (LED) element, solid-state imaging element, Examples include organic thin film transistors, dye-sensitized solar cells, and organic thin film transistors (TFTs).
- TFTs organic thin film transistors, dye-sensitized solar cells, and organic thin film transistors (TFTs).
- the compound (1) is an embedded film and a flattening film on a photodiode, which is a member of a solid-state image sensor for which a particularly high refractive index is required, a flattening film before and after a color filter, a microlens, and a flattening on a microlens. It can be widely and effectively used in films and materials for forming conformal films.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Materials For Photolithography (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
A composition for forming optical components which contains a compound represented by formula (0). (In formula (0), X represents an oxygen or sulfur atom or represents a non-bridged state, the R0 moieties are each independently an optionally substituted alkyl group having 1-30 carbon atoms, an optionally substituted aryl group having 6-30 carbon atoms, an optionally substituted alkenyl group having 2-30 carbon atoms, an optionally substituted alkynyl group having 2-30 carbon atoms, an optionally substituted alkoxy group having 1-30 carbon atoms, a halogen atom, a nitro group, an amino group, a carboxyl group, a crosslinkable group, a dissociable group, a thiol group, or a hydroxyl group, at least one of the R0 moieties is a hydroxyl group, a crosslinkable group, or a dissociable group, and the alkyl, aryl, alkenyl, alkynyl, and alkoxy groups as R0 moieties each may contain an ether bond, a ketone bond, or an ester bond, the R2 moieties are each independently an optionally substituted alkyl group having 1-30 carbon atoms, an optionally substituted aryl group having 6-30 carbon atoms, an optionally substituted alkenyl group having 2-30 carbon atoms, an optionally substituted alkynyl group having 2-30 carbon atoms, an optionally substituted alkoxy group having 1-30 carbon atoms, a halogen atom, a nitro group, an amino group, a carboxyl group, a crosslinkable group, a dissociable group, a thiol group, or a hydroxyl group and the alkyl, aryl, alkenyl, alkynyl, and alkoxy groups as R2 moieties each may contain an ether bond, a ketone bond, or an ester bond, each symbol n1 is independently an integer of 1 or 2, each symbol n0 is independently an integer of 0 to (4+2n1) (at least one n0 is 1 to (4+2n1)), each symbol n4 is independently an integer of 0 or 1, and each symbol n5 is independently an integer of 0 to (4+2n4).)
Description
本発明は、光学部品形成用組成物に関する。
The present invention relates to a composition for forming an optical component.
化合物又は樹脂の骨格構造若しくは官能基を適宜選択することにより、種々の特性を示す材料が形成される。例えば、画像表示素子又は光学素子における平坦化膜や、マイクロレンズの形成に用いられる材料、すなわち光学部品においては、光学物性として、良好な透明性や高屈折率が求められる場合があり、かかる性能を向上させるべく材料の開発が進められている。
By appropriately selecting the skeletal structure or functional group of the compound or resin, materials exhibiting various properties are formed. For example, in an image display element or an optical element, a flattening film or a material used for forming a microlens, that is, an optical component, good transparency and high refractive index may be required as optical properties, and such performance. The development of materials is underway to improve.
光学部品を形成するための組成物としては、様々なものが提案されており、例えば、特許文献1には、イオン性液体と、所定のポリアルキレンオキサイド構造及び(メタ)アクリロイル基を有する化合物と、所定の(メタ)アクリレートモノマーと、光重合開始剤とを含む光学レンズシート用エネルギー線硬化型樹脂組成物が開示されている。また、特許文献2には、特定の構造単位を有する共重合体と、特定の硬化促進触媒と、溶剤とを含有する樹脂組成物は、マイクロレンズ用又は平坦化膜用に好適に用いられることが記載されている。さらに、特許文献3には、特定の構造単位を有する共重合体は、マイクロレンズ用に好適に用いられることが記載されている。
Various compositions for forming optical components have been proposed. For example, Patent Document 1 describes an ionic liquid and a compound having a predetermined polyalkylene oxide structure and a (meth) acryloyl group. , An energy ray-curable resin composition for an optical lens sheet containing a predetermined (meth) acrylate monomer and a photopolymerization initiator is disclosed. Further, in Patent Document 2, a resin composition containing a copolymer having a specific structural unit, a specific curing acceleration catalyst, and a solvent is suitably used for a microlens or a flattening film. Is described. Further, Patent Document 3 describes that a copolymer having a specific structural unit is suitably used for a microlens.
しかしながら、特許文献1~3に記載の材料は、光学部品形成材料として、さらに高い次元で高屈折率及び高透明性を両立するという観点からは、なお改善の余地がある。
However, the materials described in Patent Documents 1 to 3 still have room for improvement from the viewpoint of achieving both high refractive index and high transparency at a higher level as optical component forming materials.
本発明は、上記の従来技術が有する課題に鑑みてなされたものであり、高屈折率及び高透明性を両立できる光学部品形成用組成物を提供することを目的とする。
The present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is to provide a composition for forming an optical component capable of achieving both high refractive index and high transparency.
本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、特定構造を有する化合物が、光学部品形成用材料として有用であることを見出し、本発明を完成するに至った。
As a result of diligent studies to solve the above problems, the present inventors have found that a compound having a specific structure is useful as a material for forming an optical component, and have completed the present invention.
すなわち、本発明は、次の態様を包含する。
[1]
下記式(0)で表される化合物を含む、光学部品形成用組成物。
(前記式(0)中、
Xは、酸素原子、硫黄原子又は無架橋であることを表し、
R0は、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボキシル基、架橋性基、解離性基、チオール基、又は水酸基であり、ここで、R0の少なくとも1つは、水酸基、架橋性基又は解離性基であり、さらに、R0における前記アルキル基、前記アリール基、前記アルケニル基、前記アルキニル基及び前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、
R2は、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボキシル基、架橋性基、解離性基、チオール基又は水酸基であり、ここで、R2における前記アルキル基、前記アリール基、前記アルケニル基、前記アルキニル基及び前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、
n1は、各々独立して、1~2の整数であり、
n0は、各々独立して、0~(4+2n1)の整数であり、ここで、n0の少なくとも1つは1~(4+2n1)であり、
n4は、各々独立して、0~1の整数であり、
n5は、各々独立して、0~(4+2n4)の整数である。)
[2]
前記式(0)で表される化合物が、下記式(1)で表される、[1]に記載の光学部品形成用組成物。
(前記式(1)中、
X、R2、n1、n4及びn5は、前記式(0)と同義であり、
Rは、各々独立して、水素原子、置換基を有していてもよい炭素数1~30の直鎖状アルキル基、置換基を有していてもよい炭素数3~30の分岐状若しくは環状アルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数2~20のアルキニル基、架橋性基又は解離性基であり、ここで、Rの少なくとも1つは水素原子、架橋性基又は解離性基であり、
R1は、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボキシル基又はチオール基であり、ここで、前記アルキル基、前記アリール基、前記アルケニル基、前記アルキニル基及び前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、
n2は、各々独立して、1~(4+2n1)の整数であり、
n3は、各々独立して、0~(4+2n1-n2)の整数である。)
[3]
前記式(1)で表される化合物が、下記式(2)で表される、[2]に記載の光学部品形成用組成物。
(前記式(2)中、X、R、R1、R2、n4及びn5は、前記式(1)と同義であり、
n2は、各々独立して、1~6の整数であり、
n3は、各々独立して、0~(6-n2)の整数である。)
[4]
前記式(1)で表される化合物が、下記式(3)で表される、[2]に記載の光学部品形成用組成物。
(前記式(3)中、X、R1、R2、n4及びn5は、前記式(1)と同義であり、
n3は、各々独立して、0~5の整数である。)
[5]
前記式(1)で表される化合物が、下記式(4)で表される、[2]に記載の光学部品形成用組成物。
(前記式(4)中、X、R、R1、R2、n1、n2及びn3は、前記式(1)と同義であり、
n5は各々独立して0~4の整数である。)
[6]
前記式(1)で表される化合物が、下記式(5)で表される、[2]に記載の光学部品形成用組成物。
(前記式(5)中、X、R1及びR2は、前記式(1)と同義であり、
n3は各々独立して0~5の整数であり、
n5は各々独立して0~4の整数である。)
[7]
下記式(0)で表される化合物に由来する構成単位を有する樹脂を含む、光学部品形成用組成物。
(前記式(0)中、
Xは、酸素原子、硫黄原子又は無架橋であることを表し、
R0は、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボキシル基、架橋性基、解離性基、チオール基、又は水酸基であり、ここで、R0の少なくとも1つは、水酸基、架橋性基又は解離性基であり、さらに、R0における前記アルキル基、前記アリール基、前記アルケニル基、前記アルキニル基及び前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、
R2は、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボキシル基、架橋性基、解離性基、チオール基又は水酸基であり、ここで、R2における前記アルキル基、前記アリール基、前記アルケニル基、前記アルキニル基及び前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、
n1は、各々独立して、1~2の整数であり、
n0は、各々独立して、0~(4+2n1)の整数であり、ここで、n0の少なくとも1つは1~(4+2n1)であり、
n4は、各々独立して、0~1の整数であり、
n5は、各々独立して、0~(4+2n4)の整数である。)
[8]
前記樹脂が、下記式(6)で表される構造を有する、[7]に記載の光学部品形成用組成物。
(前記式(6)中、Lは炭素数1~60の二価の基であり、Mは、前記化合物に由来する単位構造である。)
[9]
前記Xが酸素原子又は硫黄原子である、[1]~[8]のいずれかに記載の光学部品形成用組成物。
[10]
溶媒をさらに含有する、[1]~[9]のいずれかに記載の光学部品形成用組成物。
[11]
酸発生剤をさらに含有する、[1]~[10]のいずれかに記載の光学部品形成用組成物。
[12]
架橋剤をさらに含有する、[1]~[11]のいずれかに記載の光学部品形成用組成物。 That is, the present invention includes the following aspects.
[1]
A composition for forming an optical component, which comprises a compound represented by the following formula (0).
(In the above formula (0),
X represents an oxygen atom, a sulfur atom or no crosslink.
Each of R 0 independently has an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, and a substituent. An alkenyl group having 2 to 30 carbon atoms which may be present, an alkynyl group having 2 to 30 carbon atoms which may have a substituent, an alkoxy group having 1 to 30 carbon atoms which may have a substituent, and a halogen. It is an atomic, nitro group, amino group, carboxyl group, crosslinkable group, dissociable group, thiol group, or hydroxyl group, where at least one of R 0 is a hydroxyl group, crosslinkable group or dissociable group. Further, the alkyl group, the aryl group, the alkenyl group, the alkynyl group and the alkoxy group at R0 may contain an ether bond, a ketone bond or an ester bond.
Each of R 2 independently has an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, and a substituent. An alkenyl group having 2 to 30 carbon atoms which may be present, an alkynyl group having 2 to 30 carbon atoms which may have a substituent, an alkoxy group having 1 to 30 carbon atoms which may have a substituent, and a halogen. atom, a nitro group, an amino group, a carboxyl group, a crosslinkable group, dissociative group, a thiol group or a hydroxyl group, wherein said at R 2 alkyl group, the aryl group, the alkenyl group, the alkynyl group and the alkoxy The group may contain an ether bond, a ketone bond or an ester bond.
n 1 is an integer of 1 to 2 independently of each other.
n 0 is independently an integer from 0 to (4 + 2n 1 ), where at least one of n 0 is 1 to (4 + 2n 1 ).
n 4 is an integer of 0 to 1 independently of each other.
n 5 is an integer from 0 to (4 + 2n 4 ) independently of each other. )
[2]
The composition for forming an optical component according to [1], wherein the compound represented by the formula (0) is represented by the following formula (1).
(In the above formula (1),
X, R 2 , n 1 , n 4 and n 5 are synonymous with the above equation (0).
R is independently a hydrogen atom, a linear alkyl group having 1 to 30 carbon atoms which may have a substituent, a branched form having 3 to 30 carbon atoms which may have a substituent, or A cyclic alkyl group, an aryl group having 6 to 30 carbon atoms which may have a substituent, an alkenyl group which may have a substituent and may have 2 to 20 carbon atoms, and a carbon which may have a substituent. The number 2 to 20 is an alkynyl group, a crosslinkable group or a dissociable group, wherein at least one of R is a hydrogen atom, a crosslinkable group or a dissociable group.
Each of R 1 independently has an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, and a substituent. An alkenyl group having 2 to 30 carbon atoms which may be present, an alkynyl group having 2 to 30 carbon atoms which may have a substituent, an alkoxy group having 1 to 30 carbon atoms which may have a substituent, and a halogen. It is an atomic, nitro group, amino group, carboxyl group or thiol group, wherein the alkyl group, the aryl group, the alkenyl group, the alkynyl group and the alkoxy group contain an ether bond, a ketone bond or an ester bond. You can be
n 2 is an integer from 1 to (4 + 2n 1 ) independently of each other.
n 3 is an integer from 0 to (4 + 2n 1 −n 2 ) independently of each other. )
[3]
The composition for forming an optical component according to [2], wherein the compound represented by the formula (1) is represented by the following formula (2).
(In the above formula (2), X, R, R 1 , R 2 , n 4 and n 5 have the same meaning as the above formula (1).
n 2 is an integer of 1 to 6 independently of each other.
n 3 is an integer from 0 to (6-n 2 ) independently of each other. )
[4]
The composition for forming an optical component according to [2], wherein the compound represented by the formula (1) is represented by the following formula (3).
(In the above formula (3), X, R 1 , R 2 , n 4 and n 5 have the same meaning as the above formula (1).
n 3 is an integer of 0 to 5 independently of each other. )
[5]
The composition for forming an optical component according to [2], wherein the compound represented by the formula (1) is represented by the following formula (4).
(In the above formula (4), X, R, R 1 , R 2 , n 1 , n 2 and n 3 are synonymous with the above formula (1).
n 5 is an integer of 0 to 4 independently. )
[6]
The composition for forming an optical component according to [2], wherein the compound represented by the formula (1) is represented by the following formula (5).
(In the formula (5), X, R 1 and R 2 have the same meaning as the formula (1).
n 3 are independently integers from 0 to 5 and
n 5 is an integer of 0 to 4 independently. )
[7]
A composition for forming an optical component, which comprises a resin having a structural unit derived from a compound represented by the following formula (0).
(In the above formula (0),
X represents an oxygen atom, a sulfur atom or no crosslink.
Each of R 0 independently has an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, and a substituent. An alkenyl group having 2 to 30 carbon atoms which may be present, an alkynyl group having 2 to 30 carbon atoms which may have a substituent, an alkoxy group having 1 to 30 carbon atoms which may have a substituent, and a halogen. It is an atomic, nitro group, amino group, carboxyl group, crosslinkable group, dissociable group, thiol group, or hydroxyl group, where at least one of R 0 is a hydroxyl group, crosslinkable group or dissociable group. Further, the alkyl group, the aryl group, the alkenyl group, the alkynyl group and the alkoxy group at R0 may contain an ether bond, a ketone bond or an ester bond.
Each of R 2 independently has an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, and a substituent. An alkenyl group having 2 to 30 carbon atoms which may be present, an alkynyl group having 2 to 30 carbon atoms which may have a substituent, an alkoxy group having 1 to 30 carbon atoms which may have a substituent, and a halogen. atom, a nitro group, an amino group, a carboxyl group, a crosslinkable group, dissociative group, a thiol group or a hydroxyl group, wherein said at R 2 alkyl group, the aryl group, the alkenyl group, the alkynyl group and the alkoxy The group may contain an ether bond, a ketone bond or an ester bond.
n 1 is an integer of 1 to 2 independently of each other.
n 0 is independently an integer from 0 to (4 + 2n 1 ), where at least one of n 0 is 1 to (4 + 2n 1 ).
n 4 is an integer of 0 to 1 independently of each other.
n 5 is an integer from 0 to (4 + 2n 4 ) independently of each other. )
[8]
The composition for forming an optical component according to [7], wherein the resin has a structure represented by the following formula (6).
(In the formula (6), L is a divalent group having 1 to 60 carbon atoms, and M is a unit structure derived from the compound.)
[9]
The composition for forming an optical component according to any one of [1] to [8], wherein X is an oxygen atom or a sulfur atom.
[10]
The composition for forming an optical component according to any one of [1] to [9], which further contains a solvent.
[11]
The composition for forming an optical component according to any one of [1] to [10], which further contains an acid generator.
[12]
The composition for forming an optical component according to any one of [1] to [11], which further contains a cross-linking agent.
[1]
下記式(0)で表される化合物を含む、光学部品形成用組成物。
Xは、酸素原子、硫黄原子又は無架橋であることを表し、
R0は、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボキシル基、架橋性基、解離性基、チオール基、又は水酸基であり、ここで、R0の少なくとも1つは、水酸基、架橋性基又は解離性基であり、さらに、R0における前記アルキル基、前記アリール基、前記アルケニル基、前記アルキニル基及び前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、
R2は、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボキシル基、架橋性基、解離性基、チオール基又は水酸基であり、ここで、R2における前記アルキル基、前記アリール基、前記アルケニル基、前記アルキニル基及び前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、
n1は、各々独立して、1~2の整数であり、
n0は、各々独立して、0~(4+2n1)の整数であり、ここで、n0の少なくとも1つは1~(4+2n1)であり、
n4は、各々独立して、0~1の整数であり、
n5は、各々独立して、0~(4+2n4)の整数である。)
[2]
前記式(0)で表される化合物が、下記式(1)で表される、[1]に記載の光学部品形成用組成物。
X、R2、n1、n4及びn5は、前記式(0)と同義であり、
Rは、各々独立して、水素原子、置換基を有していてもよい炭素数1~30の直鎖状アルキル基、置換基を有していてもよい炭素数3~30の分岐状若しくは環状アルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数2~20のアルキニル基、架橋性基又は解離性基であり、ここで、Rの少なくとも1つは水素原子、架橋性基又は解離性基であり、
R1は、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボキシル基又はチオール基であり、ここで、前記アルキル基、前記アリール基、前記アルケニル基、前記アルキニル基及び前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、
n2は、各々独立して、1~(4+2n1)の整数であり、
n3は、各々独立して、0~(4+2n1-n2)の整数である。)
[3]
前記式(1)で表される化合物が、下記式(2)で表される、[2]に記載の光学部品形成用組成物。
n2は、各々独立して、1~6の整数であり、
n3は、各々独立して、0~(6-n2)の整数である。)
[4]
前記式(1)で表される化合物が、下記式(3)で表される、[2]に記載の光学部品形成用組成物。
n3は、各々独立して、0~5の整数である。)
[5]
前記式(1)で表される化合物が、下記式(4)で表される、[2]に記載の光学部品形成用組成物。
n5は各々独立して0~4の整数である。)
[6]
前記式(1)で表される化合物が、下記式(5)で表される、[2]に記載の光学部品形成用組成物。
n3は各々独立して0~5の整数であり、
n5は各々独立して0~4の整数である。)
[7]
下記式(0)で表される化合物に由来する構成単位を有する樹脂を含む、光学部品形成用組成物。
Xは、酸素原子、硫黄原子又は無架橋であることを表し、
R0は、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボキシル基、架橋性基、解離性基、チオール基、又は水酸基であり、ここで、R0の少なくとも1つは、水酸基、架橋性基又は解離性基であり、さらに、R0における前記アルキル基、前記アリール基、前記アルケニル基、前記アルキニル基及び前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、
R2は、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボキシル基、架橋性基、解離性基、チオール基又は水酸基であり、ここで、R2における前記アルキル基、前記アリール基、前記アルケニル基、前記アルキニル基及び前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、
n1は、各々独立して、1~2の整数であり、
n0は、各々独立して、0~(4+2n1)の整数であり、ここで、n0の少なくとも1つは1~(4+2n1)であり、
n4は、各々独立して、0~1の整数であり、
n5は、各々独立して、0~(4+2n4)の整数である。)
[8]
前記樹脂が、下記式(6)で表される構造を有する、[7]に記載の光学部品形成用組成物。
[9]
前記Xが酸素原子又は硫黄原子である、[1]~[8]のいずれかに記載の光学部品形成用組成物。
[10]
溶媒をさらに含有する、[1]~[9]のいずれかに記載の光学部品形成用組成物。
[11]
酸発生剤をさらに含有する、[1]~[10]のいずれかに記載の光学部品形成用組成物。
[12]
架橋剤をさらに含有する、[1]~[11]のいずれかに記載の光学部品形成用組成物。 That is, the present invention includes the following aspects.
[1]
A composition for forming an optical component, which comprises a compound represented by the following formula (0).
X represents an oxygen atom, a sulfur atom or no crosslink.
Each of R 0 independently has an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, and a substituent. An alkenyl group having 2 to 30 carbon atoms which may be present, an alkynyl group having 2 to 30 carbon atoms which may have a substituent, an alkoxy group having 1 to 30 carbon atoms which may have a substituent, and a halogen. It is an atomic, nitro group, amino group, carboxyl group, crosslinkable group, dissociable group, thiol group, or hydroxyl group, where at least one of R 0 is a hydroxyl group, crosslinkable group or dissociable group. Further, the alkyl group, the aryl group, the alkenyl group, the alkynyl group and the alkoxy group at R0 may contain an ether bond, a ketone bond or an ester bond.
Each of R 2 independently has an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, and a substituent. An alkenyl group having 2 to 30 carbon atoms which may be present, an alkynyl group having 2 to 30 carbon atoms which may have a substituent, an alkoxy group having 1 to 30 carbon atoms which may have a substituent, and a halogen. atom, a nitro group, an amino group, a carboxyl group, a crosslinkable group, dissociative group, a thiol group or a hydroxyl group, wherein said at R 2 alkyl group, the aryl group, the alkenyl group, the alkynyl group and the alkoxy The group may contain an ether bond, a ketone bond or an ester bond.
n 1 is an integer of 1 to 2 independently of each other.
n 0 is independently an integer from 0 to (4 + 2n 1 ), where at least one of n 0 is 1 to (4 + 2n 1 ).
n 4 is an integer of 0 to 1 independently of each other.
n 5 is an integer from 0 to (4 + 2n 4 ) independently of each other. )
[2]
The composition for forming an optical component according to [1], wherein the compound represented by the formula (0) is represented by the following formula (1).
X, R 2 , n 1 , n 4 and n 5 are synonymous with the above equation (0).
R is independently a hydrogen atom, a linear alkyl group having 1 to 30 carbon atoms which may have a substituent, a branched form having 3 to 30 carbon atoms which may have a substituent, or A cyclic alkyl group, an aryl group having 6 to 30 carbon atoms which may have a substituent, an alkenyl group which may have a substituent and may have 2 to 20 carbon atoms, and a carbon which may have a substituent. The number 2 to 20 is an alkynyl group, a crosslinkable group or a dissociable group, wherein at least one of R is a hydrogen atom, a crosslinkable group or a dissociable group.
Each of R 1 independently has an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, and a substituent. An alkenyl group having 2 to 30 carbon atoms which may be present, an alkynyl group having 2 to 30 carbon atoms which may have a substituent, an alkoxy group having 1 to 30 carbon atoms which may have a substituent, and a halogen. It is an atomic, nitro group, amino group, carboxyl group or thiol group, wherein the alkyl group, the aryl group, the alkenyl group, the alkynyl group and the alkoxy group contain an ether bond, a ketone bond or an ester bond. You can be
n 2 is an integer from 1 to (4 + 2n 1 ) independently of each other.
n 3 is an integer from 0 to (4 + 2n 1 −n 2 ) independently of each other. )
[3]
The composition for forming an optical component according to [2], wherein the compound represented by the formula (1) is represented by the following formula (2).
n 2 is an integer of 1 to 6 independently of each other.
n 3 is an integer from 0 to (6-n 2 ) independently of each other. )
[4]
The composition for forming an optical component according to [2], wherein the compound represented by the formula (1) is represented by the following formula (3).
n 3 is an integer of 0 to 5 independently of each other. )
[5]
The composition for forming an optical component according to [2], wherein the compound represented by the formula (1) is represented by the following formula (4).
n 5 is an integer of 0 to 4 independently. )
[6]
The composition for forming an optical component according to [2], wherein the compound represented by the formula (1) is represented by the following formula (5).
n 3 are independently integers from 0 to 5 and
n 5 is an integer of 0 to 4 independently. )
[7]
A composition for forming an optical component, which comprises a resin having a structural unit derived from a compound represented by the following formula (0).
X represents an oxygen atom, a sulfur atom or no crosslink.
Each of R 0 independently has an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, and a substituent. An alkenyl group having 2 to 30 carbon atoms which may be present, an alkynyl group having 2 to 30 carbon atoms which may have a substituent, an alkoxy group having 1 to 30 carbon atoms which may have a substituent, and a halogen. It is an atomic, nitro group, amino group, carboxyl group, crosslinkable group, dissociable group, thiol group, or hydroxyl group, where at least one of R 0 is a hydroxyl group, crosslinkable group or dissociable group. Further, the alkyl group, the aryl group, the alkenyl group, the alkynyl group and the alkoxy group at R0 may contain an ether bond, a ketone bond or an ester bond.
Each of R 2 independently has an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, and a substituent. An alkenyl group having 2 to 30 carbon atoms which may be present, an alkynyl group having 2 to 30 carbon atoms which may have a substituent, an alkoxy group having 1 to 30 carbon atoms which may have a substituent, and a halogen. atom, a nitro group, an amino group, a carboxyl group, a crosslinkable group, dissociative group, a thiol group or a hydroxyl group, wherein said at R 2 alkyl group, the aryl group, the alkenyl group, the alkynyl group and the alkoxy The group may contain an ether bond, a ketone bond or an ester bond.
n 1 is an integer of 1 to 2 independently of each other.
n 0 is independently an integer from 0 to (4 + 2n 1 ), where at least one of n 0 is 1 to (4 + 2n 1 ).
n 4 is an integer of 0 to 1 independently of each other.
n 5 is an integer from 0 to (4 + 2n 4 ) independently of each other. )
[8]
The composition for forming an optical component according to [7], wherein the resin has a structure represented by the following formula (6).
[9]
The composition for forming an optical component according to any one of [1] to [8], wherein X is an oxygen atom or a sulfur atom.
[10]
The composition for forming an optical component according to any one of [1] to [9], which further contains a solvent.
[11]
The composition for forming an optical component according to any one of [1] to [10], which further contains an acid generator.
[12]
The composition for forming an optical component according to any one of [1] to [11], which further contains a cross-linking agent.
本発明によれば、高屈折率及び高透明性を両立できる光学部品形成用組成物を提供することができる。
According to the present invention, it is possible to provide a composition for forming an optical component that can achieve both high refractive index and high transparency.
以下、本発明の実施の形態(「本実施形態」ともいう。)について説明する。なお、本実施形態は、本発明を説明するための例示であり、本発明は、本実施形態のみに限定されるものではない。
Hereinafter, an embodiment of the present invention (also referred to as “the present embodiment”) will be described. It should be noted that the present embodiment is an example for explaining the present invention, and the present invention is not limited to the present embodiment.
本明細書において、「アルキル基」は、特に明記しない場合であっても、直鎖状若しくは分岐状のアルキル基であってもよく、環状のアルキル基であってもよく、これらを包含する意味で使用する。また、「アルコキシ基」についても、特に明記しない場合であっても、直鎖状若しくは分岐状のアルコキシ基であってもよく、環状のアルコキシ基であってもよく、これらを包含する意味で使用する。
In the present specification, the "alkyl group" may be a linear or branched alkyl group, or may be a cyclic alkyl group, even if not specified otherwise, and means to include these. Used in. Further, the "alkoxy group" may be a linear or branched alkoxy group, or may be a cyclic alkoxy group, even if not specified, and is used in the sense of including these. To do.
[光学部品形成用組成物]
本実施形態の光学部品形成用組成物は、下記式(0)で表される化合物を含む。
(前記式(0)中、
Xは、酸素原子、硫黄原子又は無架橋であることを表し、
R0は、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボキシル基、架橋性基、解離性基、チオール基、又は水酸基であり、ここで、R0の少なくとも1つは、水酸基、架橋性基又は解離性基であり、さらに、R0における前記アルキル基、前記アリール基、前記アルケニル基、前記アルキニル基及び前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、
R2は、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボキシル基、架橋性基、解離性基、チオール基又は水酸基であり、ここで、R2における前記アルキル基、前記アリール基、前記アルケニル基、前記アルキニル基及び前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、
n1は、各々独立して、1~2の整数であり、
n0は、各々独立して、0~(4+2n1)の整数であり、ここで、n0の少なくとも1つは1~(4+2n1)であり、
n4は、各々独立して、0~1の整数であり、
n5は、各々独立して、0~(4+2n4)の整数である。) [Composition for forming optical components]
The composition for forming an optical component of the present embodiment contains a compound represented by the following formula (0).
(In the above formula (0),
X represents an oxygen atom, a sulfur atom or no crosslink.
Each of R 0 independently has an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, and a substituent. An alkenyl group having 2 to 30 carbon atoms which may be present, an alkynyl group having 2 to 30 carbon atoms which may have a substituent, an alkoxy group having 1 to 30 carbon atoms which may have a substituent, and a halogen. It is an atom, a nitro group, an amino group, a carboxyl group, a crosslinkable group, a dissociable group, a thiol group, or a hydroxyl group, wherein at least one of R 0 is a hydroxyl group, a crosslinkable group, or a dissociable group. Further, the alkyl group, the aryl group, the alkenyl group, the alkynyl group and the alkoxy group at R0 may contain an ether bond, a ketone bond or an ester bond.
Each of R 2 independently has an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, and a substituent. An alkenyl group having 2 to 30 carbon atoms which may be present, an alkynyl group having 2 to 30 carbon atoms which may have a substituent, an alkoxy group having 1 to 30 carbon atoms which may have a substituent, and a halogen. atom, a nitro group, an amino group, a carboxyl group, a crosslinkable group, dissociative group, a thiol group or a hydroxyl group, wherein said at R 2 alkyl group, the aryl group, the alkenyl group, the alkynyl group and the alkoxy The group may contain an ether bond, a ketone bond or an ester bond.
n 1 is an integer of 1 to 2 independently of each other.
n 0 is independently an integer from 0 to (4 + 2n 1 ), where at least one of n 0 is 1 to (4 + 2n 1 ).
n 4 is an integer of 0 to 1 independently of each other.
n 5 is an integer from 0 to (4 + 2n 4 ) independently of each other. )
本実施形態の光学部品形成用組成物は、下記式(0)で表される化合物を含む。
Xは、酸素原子、硫黄原子又は無架橋であることを表し、
R0は、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボキシル基、架橋性基、解離性基、チオール基、又は水酸基であり、ここで、R0の少なくとも1つは、水酸基、架橋性基又は解離性基であり、さらに、R0における前記アルキル基、前記アリール基、前記アルケニル基、前記アルキニル基及び前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、
R2は、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボキシル基、架橋性基、解離性基、チオール基又は水酸基であり、ここで、R2における前記アルキル基、前記アリール基、前記アルケニル基、前記アルキニル基及び前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、
n1は、各々独立して、1~2の整数であり、
n0は、各々独立して、0~(4+2n1)の整数であり、ここで、n0の少なくとも1つは1~(4+2n1)であり、
n4は、各々独立して、0~1の整数であり、
n5は、各々独立して、0~(4+2n4)の整数である。) [Composition for forming optical components]
The composition for forming an optical component of the present embodiment contains a compound represented by the following formula (0).
X represents an oxygen atom, a sulfur atom or no crosslink.
Each of R 0 independently has an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, and a substituent. An alkenyl group having 2 to 30 carbon atoms which may be present, an alkynyl group having 2 to 30 carbon atoms which may have a substituent, an alkoxy group having 1 to 30 carbon atoms which may have a substituent, and a halogen. It is an atom, a nitro group, an amino group, a carboxyl group, a crosslinkable group, a dissociable group, a thiol group, or a hydroxyl group, wherein at least one of R 0 is a hydroxyl group, a crosslinkable group, or a dissociable group. Further, the alkyl group, the aryl group, the alkenyl group, the alkynyl group and the alkoxy group at R0 may contain an ether bond, a ketone bond or an ester bond.
Each of R 2 independently has an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, and a substituent. An alkenyl group having 2 to 30 carbon atoms which may be present, an alkynyl group having 2 to 30 carbon atoms which may have a substituent, an alkoxy group having 1 to 30 carbon atoms which may have a substituent, and a halogen. atom, a nitro group, an amino group, a carboxyl group, a crosslinkable group, dissociative group, a thiol group or a hydroxyl group, wherein said at R 2 alkyl group, the aryl group, the alkenyl group, the alkynyl group and the alkoxy The group may contain an ether bond, a ketone bond or an ester bond.
n 1 is an integer of 1 to 2 independently of each other.
n 0 is independently an integer from 0 to (4 + 2n 1 ), where at least one of n 0 is 1 to (4 + 2n 1 ).
n 4 is an integer of 0 to 1 independently of each other.
n 5 is an integer from 0 to (4 + 2n 4 ) independently of each other. )
化合物(0)は下記式(0’)で表される化合物(以下、単に「化合物(0’)」ともいう。)であることが好ましい。
(前記式(0’)中、R0、R2、n1、n0、n4及びn5は、前記式(0)と同義であり、p1、p2、p3及びp4は、各縮合環内の縮合位置を示し、n1’は0~1の整数である。)
式(0’)において、縮合環(アントラセン環)内の縮合位置は、上記式(0’)におけるp1,p2及び/又はp3,p4であることがさらに好ましい。なお、ここでいう縮合位置とは、アントラセン環(n1’=1)の内部において各芳香環が共有する辺の位置を意味するものである。 The compound (0) is preferably a compound represented by the following formula (0') (hereinafter, also simply referred to as "compound (0')").
(In the formula (0'), R 0 , R 2 , n 1 , n 0 , n 4 and n 5 are synonymous with the formula (0), and p1, p2, p3 and p4 are each fused ring. Indicates the condensation position within, and n1'is an integer from 0 to 1.)
In the formula (0'), the condensation position in the fused ring (anthracene ring) is more preferably p1, p2 and / or p3, p4 in the above formula (0'). The condensed position referred to here means the position of the side shared by each aromatic ring inside the anthracene ring (n 1' = 1).
式(0’)において、縮合環(アントラセン環)内の縮合位置は、上記式(0’)におけるp1,p2及び/又はp3,p4であることがさらに好ましい。なお、ここでいう縮合位置とは、アントラセン環(n1’=1)の内部において各芳香環が共有する辺の位置を意味するものである。 The compound (0) is preferably a compound represented by the following formula (0') (hereinafter, also simply referred to as "compound (0')").
In the formula (0'), the condensation position in the fused ring (anthracene ring) is more preferably p1, p2 and / or p3, p4 in the above formula (0'). The condensed position referred to here means the position of the side shared by each aromatic ring inside the anthracene ring (n 1' = 1).
本実施形態の光学部品形成用組成物は、化合物(0)を含むため、高屈折率及び高透明性を両立できる光学部品形成材料として有用である。より具体的には、本実施形態の光学部品形成用組成物は、化合物(0)が有する構造により、典型的には、下記(I)~(IV)の特性(以下、単に「所定の特性」ともいう。)を有する。
Since the composition for forming an optical component of the present embodiment contains the compound (0), it is useful as an optical component forming material capable of achieving both high refractive index and high transparency. More specifically, the composition for forming an optical component of the present embodiment typically has the following characteristics (I) to (IV) (hereinafter, simply "predetermined characteristics" due to the structure of the compound (0). Also called.).
(I)化合物(0)は、有機溶媒(特に安全溶媒)に対する優れた溶解性を有する。このため、化合物(0)を光学部品形成材料として用いると、スピンコート法やスクリーン印刷等の湿式プロセスにより光学部品を形成できる。
(I) Compound (0) has excellent solubility in organic solvents (particularly safe solvents). Therefore, when compound (0) is used as an optical component forming material, an optical component can be formed by a wet process such as a spin coating method or screen printing.
(II)化合物(0)は、炭素濃度が比較的高く、酸素濃度が比較的低い。また、化合物(0)は、分子中にフェノール性水酸基を有する場合、硬化剤との反応による硬化物の形成にとりわけ有用であるが、化合物(0)単独でも高温ベーク時にフェノール性水酸基が架橋反応することにより硬化物を形成できる。これらに起因して、化合物(0)は、フェノール性水酸基を有する場合、特に高い耐熱性を発現でき、化合物(0)を光学部品形成材料として用いると、高温ベーク時の膜の劣化が抑制され、着色を抑制できる。
(II) Compound (0) has a relatively high carbon concentration and a relatively low oxygen concentration. Further, when compound (0) has a phenolic hydroxyl group in the molecule, it is particularly useful for forming a cured product by reaction with a curing agent, but compound (0) alone also crosslinks the phenolic hydroxyl group at high temperature baking. By doing so, a cured product can be formed. Due to these, the compound (0) can exhibit particularly high heat resistance when it has a phenolic hydroxyl group, and when the compound (0) is used as an optical component forming material, the deterioration of the film at the time of high temperature baking is suppressed. , Coloring can be suppressed.
(III)化合物(0)は、上記のように、高い耐熱性及び透明性を発現できるとともに、レジスト膜やレジスト中間層膜材料との密着性に優れる。このため、化合物(0)を光学部品形成材料として用いると、光学部品形成性に優れる。なお、ここでいう「光学部品形成性」とは、形成された光学部品において大きな欠陥が生じにくく、広い温度範囲にわたって光透過率などの光学特性に優れる性質をいう。
(III) Compound (0) can exhibit high heat resistance and transparency as described above, and has excellent adhesion to a resist film and a resist intermediate layer film material. Therefore, when compound (0) is used as an optical component forming material, the optical component forming property is excellent. The term "optical component formability" as used herein refers to a property in which large defects are unlikely to occur in the formed optical component and the optical properties such as light transmittance are excellent over a wide temperature range.
(IV)化合物(0)は、芳香環密度が高いため高屈折率であり、加熱処理しても着色が抑制され、透明性に優れる。
Compound (IV) compound (0) has a high refractive index due to its high aromatic ring density, is suppressed in coloring even after heat treatment, and is excellent in transparency.
以下、本実施形態における化合物を構成する官能基について説明する。
Hereinafter, the functional groups constituting the compound in this embodiment will be described.
上記アルキル基としては、特に限定されないが、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、ネオペンチル基、tert-ペンチル基、n-ヘキシル基、n-ヘプチル基、2,2,4-トリメチルペンチル基、n-オクチル基、イソオクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n-オクタデシル基、n-ノナデシル基、n-ヘンエイコシル基、n-トリコシル基、n-ペンタコシル基、n-ヘプタコシル基、n-ノナコシル基などの炭素数が1~30の直鎖状若しくは分岐状のアルキル基が挙げられ、本実施形態の所定の特性をより有効なものとする観点から、炭素数が1~20の直鎖状若しくは分岐状のアルキル基であることが好ましく、炭素数が1~10の直鎖状若しくは分岐状のアルキル基であることがより好ましい。環状のアルキル基としては、例えば、単環式基(単環式シクロアルキル基)及び多環式基(多環式シクロアルキル基)が挙げられる。単環式基としては、特に限定されないが、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロペンチル基、シクロヘプチル基、シクロオクチル基、シクロデシル基、シクロイコシル基などの炭素数3~30の単環式基が挙げられる。多環式基としては、特に限定されないが、例えば、ジシクロペンチル基、ジシクロヘキシル基、ノルボルニル基、アダマンチル基、トリシクロデシル基、テトラシクロドデシル基などの炭素数7~30の複環式基が挙げられる。
The alkyl group is not particularly limited, but for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, neopentyl group, tert- Pentyl group, n-hexyl group, n-heptyl group, 2,2,4-trimethylpentyl group, n-octyl group, isooctyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group , N-tridecyl group, n-tetradecyl group, n-pentadecyl group, n-hexadecyl group, n-heptadecyl group, n-octadecyl group, n-nonadecil group, n-heneicosyl group, n-tricosyl group, n-pentacyl group. , N-Heptacosyl group, n-Nonacosyl group and other linear or branched alkyl groups having 1 to 30 carbon atoms can be mentioned, and carbon can be used from the viewpoint of making the predetermined characteristics of the present embodiment more effective. It is preferably a linear or branched alkyl group having 1 to 20 numbers, and more preferably a linear or branched alkyl group having 1 to 10 carbon atoms. Examples of the cyclic alkyl group include a monocyclic group (monocyclic cycloalkyl group) and a polycyclic group (polycyclic cycloalkyl group). The monocyclic group is not particularly limited, but for example, it has 3 to 30 carbon atoms such as a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cyclopentyl group, a cycloheptyl group, a cyclooctyl group, a cyclodecyl group, and a cycloicosyl group. Monocyclic group of. The polycyclic group is not particularly limited, and examples thereof include a polycyclic group having 7 to 30 carbon atoms such as a dicyclopentyl group, a dicyclohexyl group, a norbornyl group, an adamantyl group, a tricyclodecyl group, and a tetracyclododecyl group. Be done.
前記アルキル基は、置換基を有していてもよい。置換基としては、特に限定されないが、例えば、ハロゲン原子(例えば、フッ素原子、塩素原子、及び臭素原子)、ニトロ基、置換基を有してもよいアミノ基、カルボキシル基、チオール基、及び水酸基が挙げられる。置換基の数は、特に限定されず、1つであってもよく、複数であってもよい。
The alkyl group may have a substituent. The substituent is not particularly limited, but is, for example, a halogen atom (for example, a fluorine atom, a chlorine atom, and a bromine atom), a nitro group, an amino group which may have a substituent, a carboxyl group, a thiol group, and a hydroxyl group. Can be mentioned. The number of substituents is not particularly limited and may be one or plural.
前記アリール基としては、特に限定されないが、例えば、フェニル基、ナフチル基(例えば、1-ナフチル基及び2-ナフチル基)、アントリル基(例えば、1-アントリル基)、フェナントリル基(例えば、1-フェナントリル基)などの炭素数6~30のアリール基が挙げられ、本実施形態の所定の特性をより有効なものとする観点から、フェニル基、ナフチル基などの炭素数6~10のアリール基であることが好ましく、フェニル基であることがより好ましい。
The aryl group is not particularly limited, but is, for example, a phenyl group, a naphthyl group (for example, 1-naphthyl group and 2-naphthyl group), an anthryl group (for example, 1-anthryl group), and a phenanthryl group (for example, 1-). Aryl groups having 6 to 30 carbon atoms such as phenanthryl group) can be mentioned, and from the viewpoint of making the predetermined characteristics of the present embodiment more effective, aryl groups having 6 to 10 carbon atoms such as phenyl group and naphthyl group can be used. It is preferably present, and more preferably it is a phenyl group.
前記アリール基は、置換基を有していてもよい。置換基としては、特に限定されないが、例えば、式(0)において、アルキル基の置換基として例示した置換基、及び式(0)において、アルキル基として例示したアルキル基が挙げられる。置換基の数は、特に限定されず、1つであってもよく、複数であってもよい。
The aryl group may have a substituent. The substituent is not particularly limited, and examples thereof include a substituent exemplified as a substituent of an alkyl group in the formula (0) and an alkyl group exemplified as an alkyl group in the formula (0). The number of substituents is not particularly limited and may be one or plural.
上記アルケニル基としては、特に限定されないが、例えば、エテニル基、プロペニル基、ブテニル基、ペンテニル基、ヘキセニル基などの炭素数2~30のアルケニル基が挙げられる。前記アルケニル基は、置換基を有していてもよい。置換基としては、特に限定されないが、例えば、式(0)において、アルキル基の置換基として例示した置換基、及び式(0)において、アルキル基として例示したアルキル基が挙げられる。置換基の数は、特に限定されず、1つであってもよく、複数であってもよい。
The alkenyl group is not particularly limited, and examples thereof include an alkenyl group having 2 to 30 carbon atoms such as an ethenyl group, a propenyl group, a butenyl group, a pentenyl group, and a hexenyl group. The alkenyl group may have a substituent. The substituent is not particularly limited, and examples thereof include a substituent exemplified as a substituent of an alkyl group in the formula (0) and an alkyl group exemplified as an alkyl group in the formula (0). The number of substituents is not particularly limited and may be one or plural.
アルキニル基としては、特に限定されないが、例えば、エチニル基、プロパギル基等の炭素数2~30のアルキニル基が挙げられる。前記アルキニル基は、置換基を有していてもよい。置換基としては、特に限定されないが、例えば、式(0)において、アルキル基の置換基として例示した置換基、及び式(0)において、アルキル基として例示したアルキル基が挙げられる。置換基の数は、特に限定されず、1つであってもよく、複数であってもよい。
The alkynyl group is not particularly limited, and examples thereof include an alkynyl group having 2 to 30 carbon atoms such as an ethynyl group and a propagyl group. The alkynyl group may have a substituent. The substituent is not particularly limited, and examples thereof include a substituent exemplified as a substituent of an alkyl group in the formula (0) and an alkyl group exemplified as an alkyl group in the formula (0). The number of substituents is not particularly limited and may be one or plural.
上記アルコキシ基としては、特に限定されないが、例えば、-O-Raで表される基(式中、Raは、式(0)において、アルキル基として例示したアルキル基を示す。)等の炭素数1~30のアルコキシ基が挙げられる。これらの中でも、本実施形態の所定の特性をより有効なものとする観点から、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキソ基、tert-ブトキシ基などの炭素数1~6の直鎖状若しくは分岐状のアルコキシ基であることが好ましく、炭素数1~3の直鎖状若しくは分岐状のアルコキシ基であることがより好ましく、メトキシ基又はエトキシ基であることがさらに好ましい。前記アルコキシ基は、置換基を有していてもよい。置換基としては、特に限定されないが、例えば、式(0)において、アルキル基の置換基として例示した置換基、及び式(0)において、アルキル基として例示したアルキル基が挙げられる。置換基の数は、特に限定されず、1つであってもよく、複数であってもよい。
Examples of the alkoxy group is not particularly limited, for example, group (wherein, R a, in formula (0), indicating the exemplified alkyl group as the alkyl group.) Represented by -O-R a, such as Alkoxy groups having 1 to 30 carbon atoms can be mentioned. Among these, from the viewpoint of making the predetermined properties of the present embodiment more effective, methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxo group, tert-butoxy group and the like It is preferably a linear or branched alkoxy group having 1 to 6 carbon atoms, more preferably a linear or branched alkoxy group having 1 to 3 carbon atoms, and is a methoxy group or an ethoxy group. Is even more preferable. The alkoxy group may have a substituent. The substituent is not particularly limited, and examples thereof include a substituent exemplified as a substituent of an alkyl group in the formula (0) and an alkyl group exemplified as an alkyl group in the formula (0). The number of substituents is not particularly limited and may be one or plural.
ハロゲン原子としては、特に限定されないが、例えば、塩素原子、臭素原子、ヨウ素原子が挙げられる。
The halogen atom is not particularly limited, and examples thereof include a chlorine atom, a bromine atom, and an iodine atom.
式(0)において、R0の少なくとも1つは、水酸基、架橋性基又は解離性基である。本実施形態の化合物は、このようなR0を有することにより、所定の特性を有する。
なお、本実施形態の化合物(0)が、式(0’)で表される化合物である場合は、密度が高くなる傾向があるため、単位厚み当たりに含まれる原子数が増加し、特に薄膜形成に有利となる傾向にある。同様の観点から、式(0’)において、縮合環(アントラセン環)内の縮合位置が式(0’)におけるp1、p2、p3、p4である場合、さらに薄膜形成に有利となる傾向にある。 In formula (0), at least one of R 0 is a hydroxyl group, a crosslinkable group or a dissociative group. The compound of the present embodiment has a predetermined property by having such R 0 .
When the compound (0) of the present embodiment is a compound represented by the formula (0'), the density tends to be high, so that the number of atoms contained per unit thickness increases, and particularly a thin film. It tends to be advantageous for formation. From the same viewpoint, in the formula (0'), when the condensation position in the fused ring (anthracene ring) is p1, p2, p3, p4 in the formula (0'), it tends to be more advantageous for thin film formation. ..
なお、本実施形態の化合物(0)が、式(0’)で表される化合物である場合は、密度が高くなる傾向があるため、単位厚み当たりに含まれる原子数が増加し、特に薄膜形成に有利となる傾向にある。同様の観点から、式(0’)において、縮合環(アントラセン環)内の縮合位置が式(0’)におけるp1、p2、p3、p4である場合、さらに薄膜形成に有利となる傾向にある。 In formula (0), at least one of R 0 is a hydroxyl group, a crosslinkable group or a dissociative group. The compound of the present embodiment has a predetermined property by having such R 0 .
When the compound (0) of the present embodiment is a compound represented by the formula (0'), the density tends to be high, so that the number of atoms contained per unit thickness increases, and particularly a thin film. It tends to be advantageous for formation. From the same viewpoint, in the formula (0'), when the condensation position in the fused ring (anthracene ring) is p1, p2, p3, p4 in the formula (0'), it tends to be more advantageous for thin film formation. ..
本実施形態における「架橋性基」とは、触媒存在下又は無触媒下で架橋する基をいう。架橋性基としては、特に限定されないが、例えば、炭素数1~20のアルコキシ基、アリル基を有する基、(メタ)アクリロイル基を有する基、エポキシ(メタ)アクリロイル基を有する基、水酸基を有する基、ウレタン(メタ)アクリロイル基を有する基、グリシジル基を有する基、含ビニルフェニルメチル基を有する基、各種アルキニル基を有する基を有する基、炭素-炭素二重結合を有する基、炭素-炭素三重結合を有する基、及びこれらの基を含む基等のうち、触媒存在下又は無触媒下で架橋する基が挙げられる。上記「これらの基を含む基」としては、-ORx(Rxは、アリル基を有する基、(メタ)アクリロイル基を有する基、エポキシ(メタ)アクリロイル基を有する基、水酸基を有する基、ウレタン(メタ)アクリロイル基を有する基、グリシジル基を有する基、含ビニルフェニルメチル基を有する基、各種アルキニル基を有する基を有する基、炭素-炭素二重結合を有する基、炭素-炭素三重結合を有する基、及びこれらの基を含む基である。)で表されるアルコキシ基が好ましい。なお、本明細書において、本実施形態の化合物を構成するものとして前述した各官能基(架橋性基を除く。)について、架橋性基と重複するものがある場合、架橋性の有無に基づき、架橋性のないものは各官能基に該当するものと扱い、架橋性があるものは架橋性基に該当するものと扱う。
The "crosslinkable group" in the present embodiment means a group that crosslinks in the presence of a catalyst or in the absence of a catalyst. The crosslinkable group is not particularly limited, and has, for example, an alkoxy group having 1 to 20 carbon atoms, a group having an allyl group, a group having a (meth) acryloyl group, a group having an epoxy (meth) acryloyl group, and a hydroxyl group. Group, group having urethane (meth) acryloyl group, group having glycidyl group, group having vinylphenylmethyl group, group having various alkynyl groups, group having carbon-carbon double bond, carbon-carbon Among the groups having a triple bond and the groups containing these groups, a group that is crosslinked in the presence of a catalyst or in the absence of a catalyst can be mentioned. Examples of the above-mentioned "group containing these groups" include -ORx (Rx is a group having an allyl group, a group having a (meth) acryloyl group, a group having an epoxy (meth) acryloyl group, a group having a hydroxyl group, and urethane (Rx). Meta) It has a group having an acryloyl group, a group having a glycidyl group, a group having a vinylphenylmethyl group, a group having various alkynyl groups, a group having a carbon-carbon double bond, and a carbon-carbon triple bond. A group and an alkoxy group represented by (a group containing these groups) are preferable. In the present specification, if each of the above-mentioned functional groups (excluding the crosslinkable group) constitutes the compound of the present embodiment and there is an overlap with the crosslinkable group, it is based on the presence or absence of the crosslinkable property. Those without crosslinkability are treated as corresponding to each functional group, and those with crosslinkability are treated as corresponding to a crosslinkable group.
アリル基を有する基としては、特に限定されないが、例えば、下記式(X-1)で表される基が挙げられる。
The group having an allyl group is not particularly limited, and examples thereof include a group represented by the following formula (X-1).
(メタ)アクリロイル基を有する基としては、特に限定されないが、例えば、下記式(X-2)で表される基が挙げられる。
The group having a (meth) acryloyl group is not particularly limited, and examples thereof include a group represented by the following formula (X-2).
エポキシ(メタ)アクリロイル基を有する基としては、特に限定されないが、例えば、下記式(X-3)で表される基が挙げられる。ここで、エポキシ(メタ)アクリロイル基とは、エポキシ(メタ)アクリレートと水酸基が反応して生成する基をいう。
The group having an epoxy (meth) acryloyl group is not particularly limited, and examples thereof include a group represented by the following formula (X-3). Here, the epoxy (meth) acryloyl group refers to a group formed by the reaction of an epoxy (meth) acrylate with a hydroxyl group.
ウレタン(メタ)アクリロイル基を有する基としては、特に限定されないが、例えば、下記式(X-4)で表される基が挙げられる。
The group having a urethane (meth) acryloyl group is not particularly limited, and examples thereof include a group represented by the following formula (X-4).
水酸基を有する基としては、特に限定されないが、例えば、下記式(X-5)で表される基が挙げられる。
The group having a hydroxyl group is not particularly limited, and examples thereof include a group represented by the following formula (X-5).
グリシジル基を有する基としては、特に限定されないが、例えば、下記式(X-6)で表される基が挙げられる。
The group having a glycidyl group is not particularly limited, and examples thereof include a group represented by the following formula (X-6).
含ビニルフェニルメチル基を有する基としては、特に限定されないが、例えば、下記式(X-7)で表される基が挙げられる。
The group having a vinyl-containing phenylmethyl group is not particularly limited, and examples thereof include a group represented by the following formula (X-7).
各種アルキニル基を有する基としては、特に限定されないが、例えば、下記式(X-8)で表される基が挙げられる。
The group having various alkynyl groups is not particularly limited, and examples thereof include a group represented by the following formula (X-8).
上記炭素-炭素二重結合含有基としては、例えば、(メタ)アクリロイル基、置換又は非置換のビニルフェニル基、下記式(X-9-1)で表される基等が挙げられる。また、上記炭素-炭素三重結合含有基としては、例えば、置換又は非置換のエチニル基、置換又は非置換のプロパルギル基、下記式(X-9-2)、(X-9-3)で表される基等が挙げられる。
Examples of the carbon-carbon double bond-containing group include a (meth) acryloyl group, a substituted or unsubstituted vinylphenyl group, and a group represented by the following formula (X-9-1). Examples of the carbon-carbon triple bond-containing group include a substituted or unsubstituted ethynyl group and a substituted or unsubstituted propargyl group represented by the following formulas (X-9-2) and (X-9-3). The group to be used is mentioned.
上記式(X-9-1)中、RX9A、RX9B及びRX9Cは、各々独立して、水素原子又は炭素数1~20の1価の炭化水素基である。また、上記式(X-9-2)、(X-9-3)中、RX9D、RX9E及びRX9Fは、各々独立して、水素原子又は炭素数1~20の1価の炭化水素基である。
In the above formula (X-9-1), RX9A , RX9B and RX9C are independently hydrogen atoms or monovalent hydrocarbon groups having 1 to 20 carbon atoms. Further, in the above formulas (X-9-2) and (X-9-3), RX9D , RX9E and RX9F are independently hydrogen atoms or monovalent hydrocarbons having 1 to 20 carbon atoms. It is the basis.
本実施形態における「解離性基」とは、触媒存在下又は無触媒下で解離する基をいう。解離性基の中でも、酸解離性基とは、酸の存在下で開裂して、アルカリ可溶性基等に変化を生じる基をいう。
アルカリ可溶性基としては、特に限定されないが、例えば、フェノール性水酸基、カルボキシル基、スルホン酸基、ヘキサフルオロイソプロパノール基等が挙げられ、中でも、導入試薬の入手容易性の観点から、フェノール性水酸基及びカルボキシル基が好ましく、フェノール性水酸基がより好ましい。
酸解離性基は、高感度且つ高解像度なパターン形成を可能にするために、酸の存在下で連鎖的に開裂反応を起こす性質を有することが好ましい。
酸解離性基としては、特に限定されないが、例えば、KrFやArF用の化学増幅型レジスト組成物に用いられるヒドロキシスチレン樹脂、(メタ)アクリル酸樹脂等において提案されているものの中から適宜選択して用いることができる。
酸解離性基の具体例としては、国際公開第2016/158168号に記載のものを挙げることができる。酸解離性基としては、酸により解離する性質を有する、1-置換エチル基、1-置換-n-プロピル基、1-分岐アルキル基、シリル基、アシル基、1-置換アルコキシメチル基、環状エーテル基、アルコキシカルボニル基(例えば、-C(O)OC(CH3)3等)、及びアルコキシカルボニルアルキル基(例えば、-(CH2)nC(O)OC(CH3)3において、n=1~4であるもの等)等が好適に挙げられる。なお、本明細書において、本実施形態の化合物を構成するものとして前述した各官能基(解離性基を除く。)について、解離性基と重複するものがある場合、解離性の有無に基づき、解離性のないものは各官能基に該当するものと扱い、解離性があるものは解離性基に該当するものと扱う。 The "dissociative group" in the present embodiment means a group that dissociates in the presence or absence of a catalyst. Among the dissociative groups, the acid dissociative group refers to a group that cleaves in the presence of an acid to change the alkali-soluble group or the like.
The alkali-soluble group is not particularly limited, and examples thereof include a phenolic hydroxyl group, a carboxyl group, a sulfonic acid group, a hexafluoroisopropanol group, and the like. Among them, from the viewpoint of easy availability of the introduction reagent, the phenolic hydroxyl group and the carboxyl group can be mentioned. Groups are preferred, phenolic hydroxyl groups are more preferred.
The acid dissociative group preferably has the property of causing a chain cleavage reaction in the presence of an acid in order to enable highly sensitive and high resolution pattern formation.
The acid dissociable group is not particularly limited, but is appropriately selected from those proposed in, for example, hydroxystyrene resins used in chemically amplified resist compositions for KrF and ArF, (meth) acrylic acid resins, and the like. Can be used.
Specific examples of the acid dissociative group include those described in International Publication No. 2016/158168. Examples of the acid dissociable group include a 1-substituted ethyl group, a 1-substituted-n-propyl group, a 1-branched alkyl group, a silyl group, an acyl group, a 1-substituted alkoxymethyl group, and a cyclic group having the property of dissociating with an acid. In an ether group, an alkoxycarbonyl group (eg, -C (O) OC (CH 3 ) 3, etc.), and an alkoxycarbonylalkyl group (eg,-(CH 2 ) n C (O) OC (CH 3 ) 3 ), n = 1 to 4, etc.) and the like are preferably mentioned. In this specification, if each of the above-mentioned functional groups (excluding dissociative groups) constitutes the compound of the present embodiment and there is an overlap with the dissociative group, it is based on the presence or absence of dissociation. Non-dissociative ones are treated as corresponding to each functional group, and dissociative ones are treated as corresponding to dissociative groups.
アルカリ可溶性基としては、特に限定されないが、例えば、フェノール性水酸基、カルボキシル基、スルホン酸基、ヘキサフルオロイソプロパノール基等が挙げられ、中でも、導入試薬の入手容易性の観点から、フェノール性水酸基及びカルボキシル基が好ましく、フェノール性水酸基がより好ましい。
酸解離性基は、高感度且つ高解像度なパターン形成を可能にするために、酸の存在下で連鎖的に開裂反応を起こす性質を有することが好ましい。
酸解離性基としては、特に限定されないが、例えば、KrFやArF用の化学増幅型レジスト組成物に用いられるヒドロキシスチレン樹脂、(メタ)アクリル酸樹脂等において提案されているものの中から適宜選択して用いることができる。
酸解離性基の具体例としては、国際公開第2016/158168号に記載のものを挙げることができる。酸解離性基としては、酸により解離する性質を有する、1-置換エチル基、1-置換-n-プロピル基、1-分岐アルキル基、シリル基、アシル基、1-置換アルコキシメチル基、環状エーテル基、アルコキシカルボニル基(例えば、-C(O)OC(CH3)3等)、及びアルコキシカルボニルアルキル基(例えば、-(CH2)nC(O)OC(CH3)3において、n=1~4であるもの等)等が好適に挙げられる。なお、本明細書において、本実施形態の化合物を構成するものとして前述した各官能基(解離性基を除く。)について、解離性基と重複するものがある場合、解離性の有無に基づき、解離性のないものは各官能基に該当するものと扱い、解離性があるものは解離性基に該当するものと扱う。 The "dissociative group" in the present embodiment means a group that dissociates in the presence or absence of a catalyst. Among the dissociative groups, the acid dissociative group refers to a group that cleaves in the presence of an acid to change the alkali-soluble group or the like.
The alkali-soluble group is not particularly limited, and examples thereof include a phenolic hydroxyl group, a carboxyl group, a sulfonic acid group, a hexafluoroisopropanol group, and the like. Among them, from the viewpoint of easy availability of the introduction reagent, the phenolic hydroxyl group and the carboxyl group can be mentioned. Groups are preferred, phenolic hydroxyl groups are more preferred.
The acid dissociative group preferably has the property of causing a chain cleavage reaction in the presence of an acid in order to enable highly sensitive and high resolution pattern formation.
The acid dissociable group is not particularly limited, but is appropriately selected from those proposed in, for example, hydroxystyrene resins used in chemically amplified resist compositions for KrF and ArF, (meth) acrylic acid resins, and the like. Can be used.
Specific examples of the acid dissociative group include those described in International Publication No. 2016/158168. Examples of the acid dissociable group include a 1-substituted ethyl group, a 1-substituted-n-propyl group, a 1-branched alkyl group, a silyl group, an acyl group, a 1-substituted alkoxymethyl group, and a cyclic group having the property of dissociating with an acid. In an ether group, an alkoxycarbonyl group (eg, -C (O) OC (CH 3 ) 3, etc.), and an alkoxycarbonylalkyl group (eg,-(CH 2 ) n C (O) OC (CH 3 ) 3 ), n = 1 to 4, etc.) and the like are preferably mentioned. In this specification, if each of the above-mentioned functional groups (excluding dissociative groups) constitutes the compound of the present embodiment and there is an overlap with the dissociative group, it is based on the presence or absence of dissociation. Non-dissociative ones are treated as corresponding to each functional group, and dissociative ones are treated as corresponding to dissociative groups.
解離性基に置換する置換基としては、特に限定されないが、例えば、ハロゲン原子、アルキル基、アリール基、アラルキル基、アルケニル基、アシル基、アルコキシカルボニル基、アルキロイルオキシ基、アリーロイルオキシ基、シアノ基、又はニトロ基、ヘテロ原子が挙げられる。
ハロゲン原子としては、特に限定されないが、例えば、塩素原子、臭素原子、ヨウ素原子が挙げられる。
アルキル基は、直鎖状、分岐状又は環状のいずれであってもよい。アルキル基としては、特に限定されないが、例えば、メチル基、tert-ブチル基、シクロへキシル基、アダマンチル基等の炭素数1~10のアルキル基が挙げられる。
アリール基としては、特に限定されないが、例えば、フェニル基、トリル基、ナフチル基等の炭素数6~20のアリール基が挙げられる。なお、アリール基は、ハロゲン原子、炭素数1~5のアルキル基等の置換基をさらに有していてもよい。
アラルキル基としては、特に限定されないが、例えば、ベンジル基、フェネチル基等が挙げられる。なお、アラルキル基は、ハロゲン原子、炭素数1~5のアルキル基等の置換基をさらに有していてもよい。
アルキニル基としては、特に限定されないが、例えば、エチニル基、プロパギル基等が挙げられる。
アシル基としては、特に限定さないが、例えば、ホルミル基、アセチル基等の炭素数1~6の脂肪族アシル基、ベンゾイル基等の芳香族アシル基が挙げられる。
アルコキシカルボニル基としては、特に限定さないが、例えば、メトキシカルボニル基等の炭素数2~5のアルコキシカルボニル基が挙げられる。
アルキロイルオキシ基としては、特に限定さないが、例えば、アセトキシ基が挙げられる。
アリーロイルオキシ基としては、特に限定さないが、例えば、ベンゾイルオキシ基が挙げられる。 The substituent to be substituted with the dissociable group is not particularly limited, but for example, a halogen atom, an alkyl group, an aryl group, an aralkyl group, an alkenyl group, an acyl group, an alkoxycarbonyl group, an alkyloxy group, an aryloyloxy group, and the like. Examples thereof include a cyano group, a nitro group, and a hetero atom.
The halogen atom is not particularly limited, and examples thereof include a chlorine atom, a bromine atom, and an iodine atom.
The alkyl group may be linear, branched or cyclic. The alkyl group is not particularly limited, and examples thereof include an alkyl group having 1 to 10 carbon atoms such as a methyl group, a tert-butyl group, a cyclohexyl group, and an adamantyl group.
The aryl group is not particularly limited, and examples thereof include an aryl group having 6 to 20 carbon atoms such as a phenyl group, a tolyl group, and a naphthyl group. The aryl group may further have a substituent such as a halogen atom or an alkyl group having 1 to 5 carbon atoms.
The aralkyl group is not particularly limited, and examples thereof include a benzyl group and a phenethyl group. The aralkyl group may further have a substituent such as a halogen atom or an alkyl group having 1 to 5 carbon atoms.
The alkynyl group is not particularly limited, and examples thereof include an ethynyl group and a propagyl group.
The acyl group is not particularly limited, and examples thereof include an aliphatic acyl group having 1 to 6 carbon atoms such as a formyl group and an acetyl group, and an aromatic acyl group such as a benzoyl group.
The alkoxycarbonyl group is not particularly limited, and examples thereof include an alkoxycarbonyl group having 2 to 5 carbon atoms such as a methoxycarbonyl group.
The alkyloxy group is not particularly limited, and examples thereof include an acetoxy group.
The allylloyloxy group is not particularly limited, and examples thereof include a benzoyloxy group.
ハロゲン原子としては、特に限定されないが、例えば、塩素原子、臭素原子、ヨウ素原子が挙げられる。
アルキル基は、直鎖状、分岐状又は環状のいずれであってもよい。アルキル基としては、特に限定されないが、例えば、メチル基、tert-ブチル基、シクロへキシル基、アダマンチル基等の炭素数1~10のアルキル基が挙げられる。
アリール基としては、特に限定されないが、例えば、フェニル基、トリル基、ナフチル基等の炭素数6~20のアリール基が挙げられる。なお、アリール基は、ハロゲン原子、炭素数1~5のアルキル基等の置換基をさらに有していてもよい。
アラルキル基としては、特に限定されないが、例えば、ベンジル基、フェネチル基等が挙げられる。なお、アラルキル基は、ハロゲン原子、炭素数1~5のアルキル基等の置換基をさらに有していてもよい。
アルキニル基としては、特に限定されないが、例えば、エチニル基、プロパギル基等が挙げられる。
アシル基としては、特に限定さないが、例えば、ホルミル基、アセチル基等の炭素数1~6の脂肪族アシル基、ベンゾイル基等の芳香族アシル基が挙げられる。
アルコキシカルボニル基としては、特に限定さないが、例えば、メトキシカルボニル基等の炭素数2~5のアルコキシカルボニル基が挙げられる。
アルキロイルオキシ基としては、特に限定さないが、例えば、アセトキシ基が挙げられる。
アリーロイルオキシ基としては、特に限定さないが、例えば、ベンゾイルオキシ基が挙げられる。 The substituent to be substituted with the dissociable group is not particularly limited, but for example, a halogen atom, an alkyl group, an aryl group, an aralkyl group, an alkenyl group, an acyl group, an alkoxycarbonyl group, an alkyloxy group, an aryloyloxy group, and the like. Examples thereof include a cyano group, a nitro group, and a hetero atom.
The halogen atom is not particularly limited, and examples thereof include a chlorine atom, a bromine atom, and an iodine atom.
The alkyl group may be linear, branched or cyclic. The alkyl group is not particularly limited, and examples thereof include an alkyl group having 1 to 10 carbon atoms such as a methyl group, a tert-butyl group, a cyclohexyl group, and an adamantyl group.
The aryl group is not particularly limited, and examples thereof include an aryl group having 6 to 20 carbon atoms such as a phenyl group, a tolyl group, and a naphthyl group. The aryl group may further have a substituent such as a halogen atom or an alkyl group having 1 to 5 carbon atoms.
The aralkyl group is not particularly limited, and examples thereof include a benzyl group and a phenethyl group. The aralkyl group may further have a substituent such as a halogen atom or an alkyl group having 1 to 5 carbon atoms.
The alkynyl group is not particularly limited, and examples thereof include an ethynyl group and a propagyl group.
The acyl group is not particularly limited, and examples thereof include an aliphatic acyl group having 1 to 6 carbon atoms such as a formyl group and an acetyl group, and an aromatic acyl group such as a benzoyl group.
The alkoxycarbonyl group is not particularly limited, and examples thereof include an alkoxycarbonyl group having 2 to 5 carbon atoms such as a methoxycarbonyl group.
The alkyloxy group is not particularly limited, and examples thereof include an acetoxy group.
The allylloyloxy group is not particularly limited, and examples thereof include a benzoyloxy group.
ヘテロ原子としては、特に限定されないが、例えば、酸素原子、硫黄原子、セレン原子、窒素原子、リン原子などが挙げられる。
ヘテロ原子は、各基の炭素原子と置換していてもよい。
なお、本明細書で説明する各基の炭素数は、上記の置換基を含む場合、置換基を含めた合計炭素数である。 The hetero atom is not particularly limited, and examples thereof include an oxygen atom, a sulfur atom, a selenium atom, a nitrogen atom, and a phosphorus atom.
Heteroatoms may be substituted with the carbon atoms of each group.
The carbon number of each group described in the present specification is the total carbon number including the substituent when the above-mentioned substituent is included.
ヘテロ原子は、各基の炭素原子と置換していてもよい。
なお、本明細書で説明する各基の炭素数は、上記の置換基を含む場合、置換基を含めた合計炭素数である。 The hetero atom is not particularly limited, and examples thereof include an oxygen atom, a sulfur atom, a selenium atom, a nitrogen atom, and a phosphorus atom.
Heteroatoms may be substituted with the carbon atoms of each group.
The carbon number of each group described in the present specification is the total carbon number including the substituent when the above-mentioned substituent is included.
化合物(0)におけるXは、酸素原子、硫黄原子又は無架橋であることを表す。本実施形態において、高屈折率化の観点から、Xは酸素原子又は硫黄原子であることが好ましく、酸素原子であることがより好ましい。
X in compound (0) represents an oxygen atom, a sulfur atom or no crosslink. In the present embodiment, from the viewpoint of increasing the refractive index, X is preferably an oxygen atom or a sulfur atom, and more preferably an oxygen atom.
化合物(0)におけるn1は、各々独立して、1~2の整数であり、好ましくは1である。n0は、各々独立して、0~(4+2n1)の整数であり、ここで、n0の少なくとも1つは1~(4+2n1)の整数であり、好ましくは1~2である。n4は0~1の整数であり、好ましくは0である。n5は0~(4+2n4)の整数であり、好ましくは0~2である。本実施形態において、所定の特性をより有効なものとする観点から、n1=1かつn4=0であることが好ましい。
N 1 in compound (0) is an integer of 1 to 2 independently, and is preferably 1. n 0 is independently an integer from 0 to (4 + 2n1), where at least one of n 0 is an integer from 1 to (4 + 2n 1 ), preferably 1 to 2. n 4 is an integer of 0 to 1, preferably 0. n 5 is an integer from 0 to (4 + 2n 4 ), preferably 0 to 2. In the present embodiment, it is preferable that n 1 = 1 and n 4 = 0 from the viewpoint of making a predetermined characteristic more effective.
本実施形態において、所定の特性をより有効なものとする観点から、本実施形態の化合物(0)は、カルド構造を有することが好ましい。
In the present embodiment, the compound (0) of the present embodiment preferably has a cardo structure from the viewpoint of making a predetermined property more effective.
化合物(0)は、比較的低分子量ながらも、その構造の剛直さにより高い耐熱性を有するため、高温ベーク条件でも使用可能である。
Compound (0) has a relatively low molecular weight, but has high heat resistance due to the rigidity of its structure, so that it can be used even under high-temperature baking conditions.
化合物(0)は、有機溶媒(特に安全溶媒)に対する溶解性が高く、比較的低分子量であり、低粘度であるため、化合物(0)を含む本実施形態の光学部品形成用組成物は、平坦性の優れた光学部品形成性を有する。上記有機溶媒としては、後述する[溶媒]に記載の有機溶媒が挙げられる。
Since the compound (0) has high solubility in an organic solvent (particularly a safe solvent), a relatively low molecular weight, and a low viscosity, the composition for forming an optical component of the present embodiment containing the compound (0) may be used. It has excellent flatness and optical component formability. Examples of the organic solvent include the organic solvents described in [Solvent] described later.
化合物(0)は、芳香環密度が高いため屈折率が高く、また低温から高温までの広範囲の熱処理によっても着色が抑制されることから、後述の各種光学部品の形成用として有用である。
Compound (0) has a high refractive index due to its high aromatic ring density, and its coloring is suppressed even by a wide range of heat treatment from low temperature to high temperature, so that it is useful for forming various optical components described later.
本実施形態の光学部品形成用組成物は、光学部品形成に好ましく用いられる。上記光学部品としては、特に限定されないが、例えば、フィルム状、シート状の部品、プリズムレンズ、レンチキュラーレンズ、マイクロレンズ、フレネルレンズ、視野角制御レンズ、コントラスト向上レンズ等のプラスチックレンズ、位相差フィルム、電磁波シールド用フィルム、プリズム、光ファイバー、フレキシブルプリント配線用ソルダーレジスト、メッキレジスト、多層プリント配線板用層間絶縁膜、感光性光導波路、液晶ディスプレイ、有機エレクトロルミネッセンス(EL)ディスプレイ、光半導体(LED)素子、固体撮像素子、有機薄膜太陽電池、色素増感太陽電池、有機薄膜トランジスタ(TFT)が挙げられる。化合物(0)は、特に高屈折率が求められている固体撮像素子の部材であるフォトダイオード上の埋め込み膜及び平坦化膜、カラーフィルター前後の平坦化膜、マイクロレンズ、マイクロレンズ上の平坦化膜及びコンフォーマル膜の形成材料としてとりわけ好適に用いられる。
The composition for forming an optical component of the present embodiment is preferably used for forming an optical component. The optical component is not particularly limited, but for example, a film-shaped component, a sheet-shaped component, a prism lens, a lenticular lens, a microlens, a frennel lens, a viewing angle control lens, a plastic lens such as a contrast improving lens, a retardation film, and the like. Electromagnetic wave shielding film, prism, optical fiber, solder resist for flexible printed wiring, plating resist, interlayer insulating film for multilayer printed wiring board, photosensitive optical waveguide, liquid crystal display, organic electroluminescence (EL) display, optical semiconductor (LED) element , Solid-state imaging elements, organic thin film transistors, dye-sensitized solar cells, and organic thin film transistors (TFTs). The compound (0) is an embedded film and a flattening film on a photodiode, which is a member of a solid-state image sensor for which a particularly high refractive index is required, a flattening film before and after a color filter, a microlens, and a flattening on a microlens. It is particularly preferably used as a material for forming a film and a conformal film.
化合物(0)は、架橋のし易さと有機溶媒への溶解性の観点から、好ましくは、下記式(1)で表される化合物(以下、単に「化合物(1)」ともいう。)である。
The compound (0) is preferably a compound represented by the following formula (1) (hereinafter, also simply referred to as “compound (1)”) from the viewpoint of easy cross-linking and solubility in an organic solvent. ..
X、R2、n1、n4及びn5は、前記式(0)と同義であり、
Rは、各々独立して、水素原子、置換基を有していてもよい炭素数1~30の直鎖状アルキル基、置換基を有していてもよい炭素数3~30の分岐状若しくは環状アルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数2~20のアルキニル基、架橋性基又は解離性基であり、ここで、Rの少なくとも1つは水素原子、架橋性基又は解離性基であり、
R1は、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボキシル基又はチオール基であり、ここで、前記アルキル基、前記アリール基、前記アルケニル基、前記アルキニル基及び前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、
n2は、各々独立して、1~(4+2n1)の整数であり、
n3は、各々独立して、0~(4+2n1-n2)の整数である。)
X, R 2 , n 1 , n 4 and n 5 are synonymous with the above equation (0).
R is independently a hydrogen atom, a linear alkyl group having 1 to 30 carbon atoms which may have a substituent, a branched form having 3 to 30 carbon atoms which may have a substituent, or A cyclic alkyl group, an aryl group having 6 to 30 carbon atoms which may have a substituent, an alkenyl group which may have a substituent and may have 2 to 20 carbon atoms, and a carbon which may have a substituent. The number 2 to 20 is an alkynyl group, a crosslinkable group or a dissociable group, wherein at least one of R is a hydrogen atom, a crosslinkable group or a dissociable group.
Each of R 1 independently has an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, and a substituent. An alkenyl group having 2 to 30 carbon atoms which may be present, an alkynyl group having 2 to 30 carbon atoms which may have a substituent, an alkoxy group having 1 to 30 carbon atoms which may have a substituent, and a halogen. It is an atomic, nitro group, amino group, carboxyl group or thiol group, wherein the alkyl group, the aryl group, the alkenyl group, the alkynyl group and the alkoxy group contain an ether bond, a ketone bond or an ester bond. You can be
n 2 is an integer from 1 to (4 + 2n 1 ) independently of each other.
n 3 is an integer from 0 to (4 + 2n 1 −n 2 ) independently of each other. )
式(1)中、アルキル基、アリール基、アルケニル基、アルコキシ基、ハロゲン原子、架橋性基、解離性基、各基に置換する置換基は、特に限定されないが、例えば、式(0)の説明において例示した各基が挙げられる。
In the formula (1), an alkyl group, an aryl group, an alkenyl group, an alkoxy group, a halogen atom, a crosslinkable group, a dissociable group, and a substituent substituted for each group are not particularly limited, but for example, the formula (0) is used. Each group exemplified in the description is mentioned.
n2は、各々独立して1~(4+2n1)の整数であり、好ましくは1~2である。n3は、各々独立して、0~(4+2n1-n2)の整数であり、好ましくは0~2である。
n 2 is an integer of 1 to (4 + 2n 1 ) independently of each other, and is preferably 1 to 2. n 3 is an integer of 0 to (4 + 2n 1 −n 2 ) independently of each other, and is preferably 0 to 2.
化合物(1)は、原料の供給性の観点から、好ましくは、下記式(2)で表される化合物(以下、単に「化合物(2)」ともいう。)である。
The compound (1) is preferably a compound represented by the following formula (2) (hereinafter, also simply referred to as “compound (2)”) from the viewpoint of raw material supply.
n2は、各々独立して、1~6の整数であり、
n3は、各々独立して、0~(6-n2)の整数である。)
n 2 is an integer of 1 to 6 independently of each other.
n 3 is an integer from 0 to (6-n 2 ) independently of each other. )
化合物(2)は、高屈折率の観点から、好ましくは、下記式(3)で表される化合物(以下、単に「化合物(3)」ともいう。)が好ましい。
From the viewpoint of high refractive index, the compound (2) is preferably a compound represented by the following formula (3) (hereinafter, also simply referred to as “compound (3)”).
n3は、各々独立して、0~5の整数である。)
n 3 is an integer of 0 to 5 independently of each other. )
化合物(1)は、原料供給性の観点から、好ましくは、下記式(4)で表される化合物(以下、単に「化合物(4)」ともいう。)である。
From the viewpoint of raw material supply, the compound (1) is preferably a compound represented by the following formula (4) (hereinafter, also simply referred to as “compound (4)”).
n5は各々独立して0~4の整数である。)
n 5 is an integer of 0 to 4 independently. )
化合物(1)は、原料供給性の観点から、好ましくは、下記式(5)で表される化合物(以下、単に「化合物(5)」ともいう。)である。
From the viewpoint of raw material supply, the compound (1) is preferably a compound represented by the following formula (5) (hereinafter, also simply referred to as “compound (5)”).
n3は各々独立して0~5の整数であり、
n5は各々独立して0~4の整数である。)
n 3 are independently integers from 0 to 5 and
n 5 is an integer of 0 to 4 independently. )
上記式(0)で表される化合物の具体例としては、以下の式で表される化合物が挙げられる。ただし、上記式(0)で表される化合物は、以下の式で表される化合物に限定されない。
Specific examples of the compound represented by the above formula (0) include compounds represented by the following formula. However, the compound represented by the above formula (0) is not limited to the compound represented by the following formula.
[化合物(0)の製造方法]
化合物(0)の製造方法としては、特に限定されないが、例えば、以下の方法が挙げられる。すなわち、常圧下、下記式(0-x)で表される化合物(以下、化合物(0-x))と、下記式(0-y)で表される化合物(以下、化合物(0-y))と、下記式(0-z)で表される化合物(以下、化合物(0-z))とを、酸触媒下又は塩基触媒下にて重縮合反応させることによって、化合物(0)が得られる。上記重縮合反応においては、化合物(0-x)、化合物(0-y)及び化合物(0-y)の前駆体を使用することもできる。上記の反応は、必要に応じて、加圧下で行われてもよい。 [Method for producing compound (0)]
The method for producing the compound (0) is not particularly limited, and examples thereof include the following methods. That is, under normal pressure, a compound represented by the following formula (0-x) (hereinafter, compound (0-x)) and a compound represented by the following formula (0-y) (hereinafter, compound (0-y)). ) And the compound represented by the following formula (0-z) (hereinafter, compound (0-z)) are subjected to a polycondensation reaction under an acid catalyst or a base catalyst to obtain compound (0). Be done. In the polycondensation reaction, compounds (0-x), compounds (0-y) and precursors of compound (0-y) can also be used. The above reaction may be carried out under pressure, if necessary.
化合物(0)の製造方法としては、特に限定されないが、例えば、以下の方法が挙げられる。すなわち、常圧下、下記式(0-x)で表される化合物(以下、化合物(0-x))と、下記式(0-y)で表される化合物(以下、化合物(0-y))と、下記式(0-z)で表される化合物(以下、化合物(0-z))とを、酸触媒下又は塩基触媒下にて重縮合反応させることによって、化合物(0)が得られる。上記重縮合反応においては、化合物(0-x)、化合物(0-y)及び化合物(0-y)の前駆体を使用することもできる。上記の反応は、必要に応じて、加圧下で行われてもよい。 [Method for producing compound (0)]
The method for producing the compound (0) is not particularly limited, and examples thereof include the following methods. That is, under normal pressure, a compound represented by the following formula (0-x) (hereinafter, compound (0-x)) and a compound represented by the following formula (0-y) (hereinafter, compound (0-y)). ) And the compound represented by the following formula (0-z) (hereinafter, compound (0-z)) are subjected to a polycondensation reaction under an acid catalyst or a base catalyst to obtain compound (0). Be done. In the polycondensation reaction, compounds (0-x), compounds (0-y) and precursors of compound (0-y) can also be used. The above reaction may be carried out under pressure, if necessary.
式(0-x)中、R0、n0、n1及びn5は、それぞれ式(0)において定義したとおりである。式(0-x)中、R0、n0、n1及びn5は、それぞれ式(0)において定義したとおりである。式(0-z)中、R2、n4及びn5は、それぞれ式(0)において定義したとおりである。上記化合物(0-x)と化合物(0-y)は同一であってもよい。
In equation (0-x), R 0 , n 0 , n 1 and n 5 are as defined in equation (0), respectively. In equation (0-x), R 0 , n 0 , n 1 and n 5 are as defined in equation (0), respectively. Wherein (0-z), R 2 , n 4 and n 5 are as defined in each formula (0). The compound (0-x) and the compound (0-y) may be the same.
上記の重縮合反応の具体例としては、特に限定されないが、例えば、化合物(0-x)及び化合物(0-y)を、化合物(0-z)、又はこれらの前駆体とを酸触媒下又は塩基触媒下にて重縮合反応させることによって、化合物(0)が得られる。
Specific examples of the above polycondensation reaction are not particularly limited, but for example, compound (0-x) and compound (0-y) are acid-catalyzed with compound (0-z) or a precursor thereof. Alternatively, compound (0) is obtained by polycondensation reaction under a base catalyst.
化合物(0-x)及び化合物(0-y)としては、特に限定されないが、例えば、2,7-ジヒドロキシナフタレン、2,7-ジヒドロキシ-3-ブロモナフタレン、2-ナフトール、2,6-ジヒドロキシアントラセン等が挙げられる。これらの化合物は、1種を単独で、又は2種以上を組み合わせて用いられる。これらの化合物の中でも、2,7-ジヒドロキシナフタレンが好ましい。
The compound (0-x) and the compound (0-y) are not particularly limited, and for example, 2,7-dihydroxynaphthalene, 2,7-dihydroxy-3-bromonaphthalene, 2-naphthol, 2,6-dihydroxy. Anthracene and the like can be mentioned. These compounds may be used alone or in combination of two or more. Among these compounds, 2,7-dihydroxynaphthalene is preferable.
化合物(0-z)としては、特に限定されないが、例えば、9-フルオレノン、11H-ベンゾ[b]フルオレン-11-オン、11H-ベンゾ[a]フルオレン-11-オン、3,6-ジブロモ-9H-フルオレン-9-オン、2-ブロモ-9-フルオレノン、2,7-ジヒドロキシ-9H-フルオレン-9-オン、2-ヒドロキシ-9-フルオレノン等が挙げられる。これらの化合物は、1種を単独で、又は2種以上を組み合わせて用いられる。これらの化合物の中でも、9-フルオレノンが好ましい。
The compound (0-z) is not particularly limited, but for example, 9-fluorenone, 11H-benzo [b] fluorene-11-one, 11H-benzo [a] fluorene-11-one, 3,6-dibromo-. Examples thereof include 9H-fluorene-9-one, 2-bromo-9-fluorenone, 2,7-dihydroxy-9H-fluorene-9-one, 2-hydroxy-9-fluorenone and the like. These compounds may be used alone or in combination of two or more. Among these compounds, 9-fluorenone is preferable.
上記反応に用いる酸触媒としては、特に限定されないが、例えば、塩酸、硫酸、リン酸、臭化水素酸、フッ酸等の無機酸や、シュウ酸、マロン酸、こはく酸、アジピン酸、セバシン酸、クエン酸、フマル酸、マレイン酸、蟻酸、p-トルエンスルホン酸、メタンスルホン酸、トリフルオロ酢酸、ジクロロ酢酸、トリクロロ酢酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、ナフタレンスルホン酸、ナフタレンジスルホン酸等の有機酸や、塩化亜鉛、塩化アルミニウム、塩化鉄、三フッ化ホウ素等のルイス酸、ケイタングステン酸、リンタングステン酸、ケイモリブデン酸又はリンモリブデン酸等の固体酸等が挙げられる。これらの酸触媒は、1種を単独で、又は2種以上を組み合わせて用いられる。これらの中でも、製造上の観点から、有機酸及び固体酸が好ましく、入手の容易さや取り扱い易さ等の製造上の観点から、塩酸又は硫酸を用いることが好ましい。酸触媒の使用量は、使用する原料及び使用する触媒の種類、さらには反応条件などに応じて適宜設定でき、特に限定されないが、反応原料100質量部に対して、0.01~100質量部であることが好ましい。
The acid catalyst used in the above reaction is not particularly limited, but is, for example, an inorganic acid such as hydrochloric acid, sulfuric acid, phosphoric acid, hydrobromic acid, or hydrofluoric acid, oxalic acid, malonic acid, succinic acid, adipic acid, and sebacic acid. , Citric acid, fumaric acid, maleic acid, formic acid, p-toluenesulfonic acid, methanesulfonic acid, trifluoroacetic acid, dichloroacetic acid, trichloroacetic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, naphthalenesulfonic acid, naphthalenedisulfonic acid, etc. Examples thereof include organic acids, Lewis acids such as zinc chloride, aluminum chloride, iron chloride and boron trifluoride, and solid acids such as silicate tung acid, phosphotung acid, silicate molybdic acid and phosphomolybdic acid. These acid catalysts may be used alone or in combination of two or more. Among these, organic acids and solid acids are preferable from the viewpoint of production, and hydrochloric acid or sulfuric acid is preferably used from the viewpoint of production such as easy availability and handling. The amount of the acid catalyst used can be appropriately set according to the raw material used, the type of catalyst used, the reaction conditions, and the like, and is not particularly limited, but is 0.01 to 100 parts by mass with respect to 100 parts by mass of the reaction raw material. Is preferable.
上記反応に用いる塩基触媒については、特に限定されないが、例えば、金属アルコキサイド(ナトリウムメトキサイド、ナトリウムエトキサイド、カリウムメトキサイド、カリウムエトキサイド等のアルカリ金属又はアルカリ土類金属アルコキサイド等)、金属水酸化物(水酸化ナトリウム、水酸化カリウム等のアルカリ金属又はアルカリ土類金属水酸化物等)、炭酸水素ナトリウム、炭酸水素カリウム等のアルカリ金属又はアルカリ土類炭酸水素塩、アミン類(例えば、第3級アミン類(トリエチルアミン等のトリアルキルアミン、N,N-ジメチルアニリン等の芳香族第3級アミン、1-メチルイミダゾール等の複素環式第3級アミン)等、カルボン酸金属塩(酢酸ナトリウム、酢酸カルシウム等の酢酸アルカリ金属又はアルカリ土類金属塩等)の有機塩基等が挙げられる。これらの塩基触媒は、1種を単独で、又は2種以上を組み合わせて用いられる。これらの中でも、製造上の観点から、金属アルコキサイド、金属水酸化物やアミン類が好ましく、入手の容易さや取り扱い易さ等の製造上の観点から、水酸化ナトリウムを用いることが好ましい。塩基触媒の使用量は、使用する原料及び使用する触媒の種類、さらには反応条件などに応じて適宜設定でき、特に限定されないが、反応原料100質量部に対して、0.01~100質量部であることが好ましい。
The base catalyst used in the above reaction is not particularly limited, but is, for example, metal alcoxide (alkali metal such as sodium methoxide, sodium ethoxide, potassium methoxide, potassium ethoxide, or alkaline earth metal alcoxide), metal hydroxide. Substances (alkali metals such as sodium hydroxide and potassium hydroxide or alkaline earth metal hydroxides, etc.), alkali metals such as sodium hydrogen carbonate and potassium hydrogen carbonate or alkaline earth hydrogen carbonates, amines (for example, third Carous acid metal salts (sodium acetate, etc.) such as secondary amines (trialkylamines such as triethylamine, aromatic tertiary amines such as N, N-dimethylaniline, heterocyclic tertiary amines such as 1-methylimidazole), etc. Organic bases such as alkali metals acetate such as calcium acetate or alkaline earth metal salts) can be mentioned. These base catalysts are used alone or in combination of two or more. From the above viewpoint, metal alcoxides, metal hydroxides and amines are preferable, and sodium hydroxide is preferably used from the viewpoint of manufacturing such as easy availability and handling. The amount of the base catalyst used is the amount to be used. It can be appropriately set according to the type of raw material to be used, the type of catalyst used, reaction conditions, etc., and is not particularly limited, but is preferably 0.01 to 100 parts by mass with respect to 100 parts by mass of the reaction raw material.
上記反応の際には、反応溶媒を用いてもよい。反応溶媒としては、特に限定されないが、例えば、水、メタノール、エタノール、プロパノール、ブタノール、テトラヒドロフラン、ジオキサン、1-メトキシ-2-プロパノール、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル等が挙げられる。これらの溶媒は、1種を単独で、又は2種以上を組み合わせて用いられる。
A reaction solvent may be used in the above reaction. The reaction solvent is not particularly limited, and examples thereof include water, methanol, ethanol, propanol, butanol, tetrahydrofuran, dioxane, 1-methoxy-2-propanol, ethylene glycol dimethyl ether, ethylene glycol diethyl ether and the like. These solvents may be used alone or in combination of two or more.
溶媒の使用量は、使用する原料及び使用する触媒の種類、さらには反応条件などに応じて適宜設定でき、特に限定されないが、反応原料100質量部に対して0~2000質量部の範囲であることが好ましい。さらに、上記反応における反応温度は、反応原料の反応性に応じて適宜選択することができ、特に限定されないが、通常、10~200℃の範囲である。
The amount of the solvent used can be appropriately set according to the raw material used, the type of catalyst used, the reaction conditions, and the like, and is not particularly limited, but is in the range of 0 to 2000 parts by mass with respect to 100 parts by mass of the reaction raw material. Is preferable. Further, the reaction temperature in the above reaction can be appropriately selected depending on the reactivity of the reaction raw material, and is not particularly limited, but is usually in the range of 10 to 200 ° C.
化合物(0)を得るためには、反応温度は高い方が好ましく、具体的には60~200℃の範囲が好ましい。なお、反応方法は、特に限定されないが、例えば、原料(反応物)及び触媒を一括で仕込む方法や、原料(反応物)を触媒存在下で逐次滴下していく方法がある。重縮合反応終了後、得られた化合物の単離は、常法にしたがって行うことができ、特に限定されない。例えば、系内に存在する未反応原料や触媒等を除去するために、反応釜の温度を130~230℃ にまで上昇させ、1~50mmHg程度で揮発分を除去する等の一般的手法を採ることにより、目的物である化合物を得ることができる。
In order to obtain compound (0), the reaction temperature is preferably high, specifically in the range of 60 to 200 ° C. The reaction method is not particularly limited, and for example, there are a method of charging the raw material (reactant) and the catalyst in a batch, and a method of sequentially dropping the raw material (reactant) in the presence of the catalyst. After completion of the polycondensation reaction, isolation of the obtained compound can be carried out according to a conventional method and is not particularly limited. For example, in order to remove unreacted raw materials, catalysts, etc. existing in the system, a general method such as raising the temperature of the reaction kettle to 130 to 230 ° C. and removing volatile substances at about 1 to 50 mmHg is adopted. Thereby, the target compound can be obtained.
好ましい反応条件としては、上記式(0-z)で表されるケトン類1モルに対し、上記式(0-x)で表される化合物及び上記式(0-y)で表される化合物を1.0モル~過剰量使用し、さらには酸触媒を0.001~1モル使用し、常圧で、50~150℃で20分~100時間程度反応させる条件が挙げられる。
Preferred reaction conditions include a compound represented by the above formula (0-x) and a compound represented by the above formula (0-y) with respect to 1 mol of the ketones represented by the above formula (0-z). Examples thereof include conditions in which 1.0 mol to an excess amount is used, 0.001 to 1 mol of an acid catalyst is used, and the reaction is carried out at 50 to 150 ° C. for about 20 minutes to 100 hours at normal pressure.
反応終了後、公知の方法により目的物を単離することができる。例えば、反応液を濃縮し、純水を加えて反応生成物を析出させ、室温まで冷却した後、濾過を行って分離させ、得られた固形物を濾過し、乾燥させた後、カラムクロマトグラフィーにより、副生成物と分離精製し、溶媒留去、濾過、乾燥を行って目的物である化合物(0)を得ることができる。
After completion of the reaction, the target product can be isolated by a known method. For example, the reaction solution is concentrated, pure water is added to precipitate the reaction product, the reaction product is cooled to room temperature, filtered to separate the reaction product, and the obtained solid product is filtered and dried, and then column chromatography is performed. The compound (0), which is the target product, can be obtained by separating and purifying from the by-product, distilling off the solvent, filtering, and drying.
[樹脂]
本実施形態における樹脂は、上記式(0)で表される化合物に由来する構成単位を含む。すなわち、本実施形態における樹脂は、上記式(0)で表される化合物をモノマー成分として含む。本実施形態における樹脂としては、下記式(6)で表される構造を有する樹脂(以下、単に「樹脂(6)」ともいう。)が好ましい。 [resin]
The resin in this embodiment contains a structural unit derived from the compound represented by the above formula (0). That is, the resin in the present embodiment contains the compound represented by the above formula (0) as a monomer component. As the resin in the present embodiment, a resin having a structure represented by the following formula (6) (hereinafter, also simply referred to as “resin (6)”) is preferable.
本実施形態における樹脂は、上記式(0)で表される化合物に由来する構成単位を含む。すなわち、本実施形態における樹脂は、上記式(0)で表される化合物をモノマー成分として含む。本実施形態における樹脂としては、下記式(6)で表される構造を有する樹脂(以下、単に「樹脂(6)」ともいう。)が好ましい。 [resin]
The resin in this embodiment contains a structural unit derived from the compound represented by the above formula (0). That is, the resin in the present embodiment contains the compound represented by the above formula (0) as a monomer component. As the resin in the present embodiment, a resin having a structure represented by the following formula (6) (hereinafter, also simply referred to as “resin (6)”) is preferable.
上記連結基としては、例えば、後述する架橋反応性のある化合物由来の残基等が挙げられる。
Lとしては、好ましくは炭素数1~30の2価の炭化水素基が挙げられる。
2価の炭化水素基としては、特に限定されないが、例えば、アルキレン基等の直鎖状若しくは分岐状炭化水素基又は環式炭化水素基が挙げられる。 Examples of the linking group include residues derived from a compound having a cross-linking reaction described later.
As L, a divalent hydrocarbon group having 1 to 30 carbon atoms is preferably used.
The divalent hydrocarbon group is not particularly limited, and examples thereof include a linear or branched hydrocarbon group such as an alkylene group or a cyclic hydrocarbon group.
Lとしては、好ましくは炭素数1~30の2価の炭化水素基が挙げられる。
2価の炭化水素基としては、特に限定されないが、例えば、アルキレン基等の直鎖状若しくは分岐状炭化水素基又は環式炭化水素基が挙げられる。 Examples of the linking group include residues derived from a compound having a cross-linking reaction described later.
As L, a divalent hydrocarbon group having 1 to 30 carbon atoms is preferably used.
The divalent hydrocarbon group is not particularly limited, and examples thereof include a linear or branched hydrocarbon group such as an alkylene group or a cyclic hydrocarbon group.
樹脂(6)は、化合物(0)と、架橋反応性のある化合物とを反応させることにより得られる。
The resin (6) is obtained by reacting the compound (0) with a compound having a cross-linking reactivity.
架橋反応性のある化合物としては、化合物(0)をオリゴマー化又はポリマー化し得るものであればよく、例えば、アルデヒド類、ケトン類、カルボン酸類、カルボン酸ハライド類、ハロゲン含有化合物、アミノ化合物、イミノ化合物、イソシアネート化合物、不飽和炭化水素基含有化合物が挙げられる。
The compound having a cross-linking reactivity may be any compound capable of oligomerizing or polymerizing compound (0), for example, aldehydes, ketones, carboxylic acids, carboxylic acid halides, halogen-containing compounds, amino compounds, iminos. Examples thereof include compounds, isocyanate compounds, and unsaturated hydrocarbon group-containing compounds.
樹脂(6)としては、特に限定されないが、例えば、化合物(0)と架橋反応性のある化合物であるアルデヒド類又はケトン類との縮合反応等により得られるノボラック化した樹脂が挙げられる。
The resin (6) is not particularly limited, and examples thereof include a novolakized resin obtained by a condensation reaction between the compound (0) and aldehydes or ketones which are compounds having a cross-linking reaction.
ここで、化合物(0)をノボラック化する際に用いるアルデヒド類としては、特に限定されないが、例えば、ホルムアルデヒド、トリオキサン、パラホルムアルデヒド、ベンズアルデヒド、アセトアルデヒド、プロピルアルデヒド、フェニルアセトアルデヒド、フェニルプロピオンアルデヒド、ヒドロキシベンズアルデヒド、クロロベンズアルデヒド、ニトロベンズアルデヒド、メチルベンズアルデヒド、ジメチルベンズアルデヒド、トリメチルベンズアルデヒド、ペンタメチルベンズアルデヒド、エチルベンズアルデヒド、プロピルベンズアルデヒド、ブチルベンズアルデヒド、ペンチルベンズアルデヒド、ブチルメチルベンズアルデヒド、ヒドロキシベンズアルデヒド、ジヒドロキシベンズアルデヒド、フルオロメチルベンズアルデヒド、シクロプロパンカルボアルデヒド、シクロブチタンカルボアルデヒド、シクロヘキサンカルボアルデヒド、シクロデカンカルボアルデヒド、シクロウンデカンカルボアルデヒド、シクロプロピルベンズアルデヒド、シクロブチルベンズアルデヒド、シクロヘキシルベンズアルデヒド、シクロデシルベンズアルデヒド、シクロウンデシルベンズアルデヒド、ビフェニルアルデヒド、ナフトアルデヒド、アントラセンカルボアルデヒド、フェナントレンカルボアルデヒド、ピレンカルボアルデヒド、フルフラール等が挙げられる。これらのアルデヒド類は、1種を単独で、又は2種以上を組み合わせて用いられる。またこれらのアルデヒド類に加えて、ケトン類の1種以上を組み合わせて用いることもできる。これらの中でも、高い耐熱性を発現できる観点から、ベンズアルデヒド、フェニルアセトアルデヒド、フェニルプロピルアルデヒド、ヒドロキシベンズアルデヒド、クロロベンズアルデヒド、ニトロベンズアルデヒド、メチルベンズアルデヒド、エチルベンズアルデヒド、ブチルベンズアルデヒド、シクロヘキシルベンズアルデヒド、ビフェニルアルデヒド、ナフトアルデヒド、アントラセンカルボアルデヒド、フェナントレンカルボアルデヒド、ピレンカルボアルデヒド、及びフルフラールからなる群より選ばれる1種以上を用いることが好ましく、エッチング耐性を向上させる観点から、ベンズアルデヒド、ヒドロキシベンズアルデヒド、クロロベンズアルデヒド、ニトロベンズアルデヒド、メチルベンズアルデヒド、エチルベンズアルデヒド、ブチルベンズアルデヒド、シクロヘキシルベンズアルデヒド、ビフェニルアルデヒド、ナフトアルデヒド、アントラセンカルボアルデヒド、フェナントレンカルボアルデヒド、ピレンカルボアルデヒド、及びフルフラールからなる群より選ばれる1種以上を用いることが好ましく、ホルムアルデヒドを用いることがより好ましい。アルデヒド類の使用量は、特に限定されないが、化合物(0)1モルに対して、0.2~5モルが好ましく、より好ましくは0.5~2モルである。
Here, the aldehydes used for novolacizing the compound (0) are not particularly limited, but for example, formaldehyde, trioxane, paraformaldehyde, benzaldehyde, acetaldehyde, propylaldehyde, phenylacetaldehyde, phenylpropionaldehyde, hydroxybenzaldehyde, and the like. Chlorobenzaldehyde, nitrobenzaldehyde, methylbenzaldehyde, dimethylbenzaldehyde, trimethylbenzaldehyde, pentamethylbenzaldehyde, ethylbenzaldehyde, propylbenzaldehyde, butylbenzaldehyde, pentylbenzaldehyde, butylmethylbenzaldehyde, hydroxybenzaldehyde, dihydroxybenzaldehyde, fluoromethylbenzaldehyde, cyclopropanecarbaldehyde, Cyclobutitanium carboxaldehyde, cyclohexanecarbaldehyde, cyclodecanecarbaldehyde, cycloundecancarbaldehyde, cyclopropylbenzaldehyde, cyclobutylbenzaldehyde, cyclohexylbenzaldehyde, cyclodecylbenzaldehyde, cycloundesylbenzaldehyde, biphenylaldehyde, naphthaldehyde, anthracenecarbaldehyde, Examples thereof include phenanthrencarbaldehyde, pyrenecarbaldehyde, and furfural. These aldehydes may be used alone or in combination of two or more. Further, in addition to these aldehydes, one or more kinds of ketones can be used in combination. Among these, from the viewpoint of exhibiting high heat resistance, benzaldehyde, phenylacetaldehyde, phenylpropylaldehyde, hydroxybenzaldehyde, chlorobenzaldehyde, nitrobenzaldehyde, methylbenzaldehyde, ethylbenzaldehyde, butylbenzaldehyde, cyclohexylbenzaldehyde, biphenylaldehyde, naphthaldehyde, anthracene. It is preferable to use one or more selected from the group consisting of carboaldehyde, phenanthrene carboaldehyde, pyrenecarbaldehyde, and furfural, and from the viewpoint of improving etching resistance, benzaldehyde, hydroxybenzaldehyde, chlorobenzaldehyde, nitrobenzaldehyde, methylbenzaldehyde, It is preferable to use one or more selected from the group consisting of ethylbenzaldehyde, butylbenzaldehyde, cyclohexylbenzaldehyde, biphenylaldehyde, naphthaldehyde, anthracenecarbaldehyde, phenanthrencarbaldehyde, pyrenecarbaldehyde, and furfural, and it is more preferable to use formaldehyde. preferable. The amount of the aldehydes used is not particularly limited, but is preferably 0.2 to 5 mol, more preferably 0.5 to 2 mol, based on 1 mol of the compound (0).
化合物(0)をノボラック化する際に用いるケトン類としては、特に限定されないが、例えば、アセトン、メチルエチルケトン、シクロブタノン、シクロペンタノン、シクロヘキサノン、ノルボルナノン、シクロヘキサンジオン、シクロヘキサントリオン、シクロデカントリオン、アダマンタノン、フルオレノン、ベンゾフルオレノン、ジベンゾフルオレノン、アセナフテンキノン、アセナフテノン、アントラキノン、アセトフェノン、ジアセチルベンゼン、トリアセチルベンゼン、アセトナフトン、アセチルメチルベンゼン、アセチルジメチルベンゼン、アセチルトリメチルベンゼン、アセチルエチルベンゼン、アセチルプロピルベンゼン、アセチルブチルベンゼン、アセチルペンタベンゼン、アセチルブチルメチルベンゼン、アセチルヒドロキシベンゼン、アセチルジヒドロキシベンゼン、アセチルフロロメチルベンゼン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニル、ベンゾフェノン、ジフェニルカルボニルベンゼン、トリフェニルカルボニルベンゼン、ベンゾナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニル等が挙げられる。これらのケトン類は、1種を単独で、又は2種以上を組み合わせて用いられる。これらの中でも、高い耐熱性を発現できる観点から、シクロペンタノン、シクロヘキサノン、ノルボルナノン、トリシクロヘキサノン、トリシクロデカノン、アダマンタノン、フルオレノン、ベンゾフルオレノン、アセナフテンキノン、アセナフテノン、アントラキノン、アセトフェノン、ジアセチルベンゼン、トリアセチルベンゼン、アセトナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニル、ベンゾフェノン、ジフェニルカルボニルベンゼン、トリフェニルカルボニルベンゼン、ベンゾナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、及びジフェニルカルボニルビフェニルからなる群より選ばれる1種以上を用いることが好ましく、エッチング耐性を向上させる観点から、アセトフェノン、ジアセチルベンゼン、トリアセチルベンゼン、アセトナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニル、ベンゾフェノン、ジフェニルカルボニルベンゼン、トリフェニルカルボニルベンゼン、ベンゾナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、及びジフェニルカルボニルビフェニルからなる群より選ばれる1種以上を用いることがより好ましい。ケトン類の使用量は、特に限定されないが、化合物(0)1モルに対して、0.2~5モルが好ましく、より好ましくは0.5~2モルである。
The ketones used for novolacizing the compound (0) are not particularly limited, but for example, acetone, methyl ethyl ketone, cyclobutanone, cyclopentanone, cyclohexanone, norbornanone, cyclohexanedione, cyclohexanetrione, cyclodecantrion, adamantanone, Fluolenone, benzofluorenone, dibenzofluorenone, acenaphthenquinone, acenaphthenone, anthraquinone, acetophenone, diacetylbenzene, triacetylbenzene, acetonaphthone, acetylmethylbenzene, acetyldimethylbenzene, acetyltrimethylbenzene, acetylethylbenzene, acetylpropylbenzene, acetylbutylbenzene, Acetylpentabenzene, acetylbutylmethylbenzene, acetylhydroxybenzene, acetyldihydroxybenzene, acetylfluoromethylbenzene, diphenylcarbonylnaphthalene, phenylcarbonylbiphenyl, diphenylcarbonylbiphenyl, benzophenone, diphenylcarbonylbenzene, triphenylcarbonylbenzene, benzonaphthone, diphenylcarbonylnaphthalene , Benzenecarbonylbiphenyl, diphenylcarbonylbiphenyl and the like. These ketones may be used alone or in combination of two or more. Among these, from the viewpoint of exhibiting high heat resistance, cyclopentanone, cyclohexanone, norbornanone, tricyclohexanone, tricyclodecanone, adamantanone, fluorenone, benzofluorenone, acenaphthenquinone, acenaphthenone, anthraquinone, acetophenone, diacetylbenzene, Selected from the group consisting of triacetylbenzene, acetonafton, diphenylcarbonylnaphthalene, phenylcarbonylbiphenyl, diphenylcarbonylbiphenyl, benzophenone, diphenylcarbonylbenzene, triphenylcarbonylbenzene, benzonaphthone, diphenylcarbonylnaphthalene, phenylcarbonylbiphenyl, and diphenylcarbonylbiphenyl1 It is preferable to use more than one species, and from the viewpoint of improving etching resistance, acetophenone, diacetylbenzene, triacetylbenzene, acetonaphthone, diphenylcarbonylnaphthalene, phenylcarbonylbiphenyl, diphenylcarbonylbiphenyl, benzophenone, diphenylcarbonylbenzene, triphenylcarbonylbenzene, It is more preferable to use one or more selected from the group consisting of benzonaphthone, diphenylcarbonylnaphthalene, phenylcarbonylbiphenyl, and diphenylcarbonylbiphenyl. The amount of the ketone used is not particularly limited, but is preferably 0.2 to 5 mol, more preferably 0.5 to 2 mol, based on 1 mol of the compound (0).
化合物(0)と、アルデヒド類又はケトン類との縮合反応において、触媒を用いることもできる。ここで使用する酸触媒又は塩基触媒については、公知のものから適宜選択して用いることができ、特に限定されない。このような酸触媒、塩基触媒としては、上記化合物(0)の製造方法で挙げた例と同様である。これらの触媒は、1種を単独で、又は2種以上を組み合わせて用いられる。これらの中でも、製造上の観点から、有機酸及び固体酸が好ましく、入手の容易さや取り扱い易さ等の製造上の観点から、塩酸又は硫酸が好ましい。酸触媒の使用量は、使用する原料及び使用する触媒の種類、さらには反応条件などに応じて適宜設定でき、特に限定されないが、反応原料100質量部に対して、0.01~100質量部であることが好ましい。
A catalyst can also be used in the condensation reaction between compound (0) and aldehydes or ketones. The acid catalyst or base catalyst used here can be appropriately selected from known ones and is not particularly limited. The acid catalyst and the base catalyst are the same as those given in the method for producing the compound (0). These catalysts may be used alone or in combination of two or more. Among these, organic acids and solid acids are preferable from the viewpoint of production, and hydrochloric acid or sulfuric acid is preferable from the viewpoint of production such as easy availability and handling. The amount of the acid catalyst used can be appropriately set according to the raw material used, the type of catalyst used, the reaction conditions, and the like, and is not particularly limited, but is 0.01 to 100 parts by mass with respect to 100 parts by mass of the reaction raw material. Is preferable.
但し、インデン、ヒドロキシインデン、ベンゾフラン、ヒドロキシアントラセン、アセナフチレン、ビフェニル、ビスフェノール、トリスフェノール、ジシクロペンタジエン、テトラヒドロインデン、4-ビニルシクロヘキセン、ノルボルナジエン、5-ビニルノルボルナ-2-エン、α-ピネン、β-ピネン、リモネン等の非共役二重結合を有する化合物との共重合反応の場合は、必ずしもアルデヒド類又はケトン類は必要ない。
However, indene, hydroxyindene, benzofuran, hydroxyanthracene, acenaphthylene, biphenyl, bisphenol, trisphenol, dicyclopentadiene, tetrahydroindene, 4-vinylcyclohexene, norbornadiene, 5-vinylnorborna-2-ene, α-pinene, β-pinene. In the case of a copolymerization reaction with a compound having a non-conjugated double bond such as limonene, aldehydes or ketones are not always necessary.
上記化合物(0)とアルデヒド類又はケトン類との縮合反応において、反応溶媒を用いることもできる。この重縮合における反応溶媒としては、公知のものの中から適宜選択して用いることができ、特に限定されないが、例えば、水、メタノール、エタノール、プロパノール、ブタノール、1-メトキシ-2-プロパノール、テトラヒドロフラン、ジオキサン又はこれらの混合溶媒が挙られる。これらの溶媒は、1種を単独で、又は2種以上を組み合わせて用いられる。
A reaction solvent can also be used in the condensation reaction between the compound (0) and aldehydes or ketones. The reaction solvent in this polycondensation can be appropriately selected from known ones and used, and is not particularly limited, but for example, water, methanol, ethanol, propanol, butanol, 1-methoxy-2-propanol, tetrahydrofuran, etc. Dioxane or a mixed solvent thereof can be mentioned. These solvents may be used alone or in combination of two or more.
溶媒の使用量は、使用する原料及び使用する触媒の種類、さらには反応条件などに応じて適宜設定でき、特に限定されないが、反応原料100質量部に対して0~2000質量部の範囲であることが好ましい。さらに、反応温度は、反応原料の反応性に応じて適宜選択することができ、特に限定されないが、通常10~200℃の範囲である。なお、反応方法としては、上記化合物(0)、アルデヒド類及び/又はケトン類、並びに触媒を一括で仕込む方法や、上記化合物(0)、アルデヒド類及び/又はケトン類を触媒存在下で逐次的に滴下していく方法が挙げられる。
The amount of the solvent used can be appropriately set according to the raw material used, the type of catalyst used, the reaction conditions, and the like, and is not particularly limited, but is in the range of 0 to 2000 parts by mass with respect to 100 parts by mass of the reaction raw material. Is preferable. Further, the reaction temperature can be appropriately selected depending on the reactivity of the reaction raw material, and is not particularly limited, but is usually in the range of 10 to 200 ° C. As the reaction method, the above compound (0), aldehydes and / or ketones and a catalyst are collectively charged, and the above compound (0), aldehydes and / or ketones are sequentially added in the presence of a catalyst. There is a method of dropping the compound into the water.
重縮合反応終了後、得られた樹脂の単離は、常法にしたがって行うことができ、特に限定されない。例えば、系内に存在する未反応原料や触媒等を除去するために、反応釜の温度を130~230℃にまで上昇させ、1~50mmHg程度で揮発分を除去する等の一般的手法を採ることにより、目的物(例えば、ノボラック化した樹脂)を得ることができる。
After completion of the polycondensation reaction, the obtained resin can be isolated according to a conventional method and is not particularly limited. For example, in order to remove unreacted raw materials, catalysts, etc. existing in the system, a general method such as raising the temperature of the reaction kettle to 130 to 230 ° C. and removing volatile substances at about 1 to 50 mmHg is adopted. Thereby, the target product (for example, a novolakized resin) can be obtained.
なお、樹脂(6)は、化合物(0)の合成反応時に併せて得られるものであってもよい。すなわち、樹脂(6)は、化合物(0)の合成に用いた原料由来のアルデヒド類又はケトン類と化合物(0)との重合物であってもよい。
The resin (6) may be obtained together with the synthetic reaction of the compound (0). That is, the resin (6) may be a polymer of aldehydes or ketones derived from the raw materials used in the synthesis of the compound (0) and the compound (0).
ここで、樹脂(6)は、化合物(0)の単独重合体であってもよいが、他のフェノール類等との共重合体であってもよい。ここで共重合可能なフェノール類としては、特に限定されないが、例えば、フェノール、クレゾール、ジメチルフェノール、トリメチルフェノール、ブチルフェノール、フェニルフェノール、ジフェニルフェノール、ナフチルフェノール、レゾルシノール、メチルレゾルシノール、カテコール、ブチルカテコール、メトキシフェノール、メトキシフェノール、プロピルフェノール、ピロガロール、チモール等が挙げられる。
Here, the resin (6) may be a homopolymer of the compound (0), or may be a copolymer with other phenols or the like. The phenols that can be copolymerized here are not particularly limited, but are, for example, phenol, cresol, dimethylphenol, trimethylphenol, butylphenol, phenylphenol, diphenylphenol, naphthylphenol, resorcinol, methylresorcinol, catechol, butylcatechol, methoxy. Examples thereof include phenol, methoxyphenol, propylphenol, pyrogallol, timol and the like.
また、樹脂(6)は、上述した他のフェノール類以外に、重合可能なモノマーと共重合させたものであってもよい。共重合モノマーとしては、特に限定されないが、例えば、ナフトール、メチルナフトール、メトキシナフトール、ジヒドロキシナフタレン、インデン、ヒドロキシインデン、ベンゾフラン、ヒドロキシアントラセン、アセナフチレン、ビフェニル、ビスフェノール、トリスフェノール、ジシクロペンタジエン、テトラヒドロインデン、4-ビニルシクロヘキセン、ノルボルナジエン、ビニルノルボルナエン、ピネン、リモネン等が挙げられる。なお、樹脂(6)は、化合物(0)と上述したフェノール類との2元以上の(例えば、2~4元系)共重合体であっても、化合物(0)と上述した共重合モノマーとの2元以上(例えば、2~4元系)共重合体であっても、上記化合物(1)と上述したフェノール類と上述した共重合モノマーとの3元以上の(例えば、3~4元系)共重合体であってもよい。
Further, the resin (6) may be copolymerized with a polymerizable monomer in addition to the other phenols described above. The copolymerization monomer is not particularly limited, but for example, naphthol, methylnaphthol, methoxynaphthol, dihydroxynaphthalene, indene, hydroxyindene, benzofuran, hydroxyanthracene, acenaphthylene, biphenyl, bisphenol, trisphenol, dicyclopentadiene, tetrahydroindene, etc. 4-Vinylcyclohexene, norbornadiene, vinylnorbornaen, pinen, limonene and the like can be mentioned. Even if the resin (6) is a copolymer of the compound (0) and the above-mentioned phenols in a binary or more (for example, 2 to 4 elements) copolymer, the compound (0) and the above-mentioned copolymerized monomer are used. Even if it is a copolymer of two or more elements (for example, 2 to 4 elements), the compound (1), the above-mentioned phenols, and the above-mentioned copolymerized monomer are three or more elements (for example, 3 to 4). It may be a (primary) copolymer.
なお、樹脂(6)の重量平均分子量(Mw)は、特に限定されないが、GPC測定によるポリスチレン換算で、300~100,000であることが好ましく、500~30,000であることがより好ましく、750~20,000であることがさらに好ましい。また、架橋効率を高めるとともにベーク中の揮発成分を抑制する観点から、樹脂(6)は、分散度(重量平均分子量Mw/数平均分子量Mn)が1~7の範囲内のものが好ましい。
The weight average molecular weight (Mw) of the resin (6) is not particularly limited, but is preferably 300 to 100,000, more preferably 500 to 30,000, in terms of polystyrene as measured by GPC. It is more preferably 750 to 20,000. Further, from the viewpoint of increasing the crosslinking efficiency and suppressing the volatile components in the bake, the resin (6) preferably has a dispersity (weight average molecular weight Mw / number average molecular weight Mn) in the range of 1 to 7.
上述した化合物(0)、及び/又は樹脂(6)は、湿式プロセスの適用がより容易になる等の観点から、溶媒に対する溶解性が高いものであることが好ましい。より具体的には、これら化合物(0)及び/又は樹脂(6)は、プロピレングリコールモノメチルエーテル(以下、「PGME」ともいう。)及び/又はプロピレングリコールモノメチルエーテルアセテート(以下「PGMEA」ともいう。)を溶媒とする場合、当該溶媒に対する溶解度が10質量%以上であることが好ましい。ここで、PGME及び/又はPGMEAに対する溶解度は、「化合物(0)及び/又は樹脂(6)の質量÷(化合物(0)及び/又は樹脂(6)の質量+溶媒の質量)×100(質量%)」と定義される。例えば、上記化合物(0)及び/又は樹脂(6)10gがPGMEA90gに対して溶解性が高いと評価されるのは、化合物(0)及び/又は樹脂(6)のPGMEAに対する溶解度が「10質量%以上」となる場合であり、溶解性が高くないと評価されるのは、当該溶解度が「10質量%未満」となる場合である。
The above-mentioned compound (0) and / or resin (6) are preferably highly soluble in a solvent from the viewpoint of facilitating the application of a wet process. More specifically, these compounds (0) and / or the resin (6) are also referred to as propylene glycol monomethyl ether (hereinafter, also referred to as “PGME”) and / or propylene glycol monomethyl ether acetate (hereinafter, also referred to as “PGMEA”). ) Is used as a solvent, the solubility in the solvent is preferably 10% by mass or more. Here, the solubility in PGME and / or PGMEA is "mass of compound (0) and / or resin (6) ÷ (mass of compound (0) and / or resin (6) + mass of solvent) x 100 (mass). %) ”Is defined. For example, 10 g of the compound (0) and / or the resin (6) is evaluated to have high solubility in 90 g of PGMEA because the solubility of the compound (0) and / or the resin (6) in PGMEA is "10 mass by mass". % Or more, and it is evaluated that the solubility is not high when the solubility is "less than 10% by mass".
[光学部品形成用組成物中の成分]
本実施形態の光学部品形成用組成物は、化合物(0)及び/又は樹脂(6)を含有する。そのため、湿式プロセスが適用可能であり、耐熱性及び平坦化特性に優れる。さらに、本実施形態の光学部品形成用組成物は、化合物(0)及び/又は樹脂(6)を含有することから、芳香環密度が高いため、屈折率が高く、また低温から高温までの広範囲の熱処理によっても着色が抑制される。このため、本実施形態の光学部品形成用組成物は、光学部品の形成に好適である。なお、化合物(0)及び/又は樹脂(6)以外に、必要に応じて、溶媒、架橋剤、架橋促進剤、酸発生剤、塩基性化合物、その他の成分を含んでいてもよい。以下、これらの任意成分について説明する。 [Components in Composition for Forming Optical Components]
The composition for forming an optical component of the present embodiment contains a compound (0) and / or a resin (6). Therefore, a wet process can be applied, and it is excellent in heat resistance and flattening characteristics. Further, since the composition for forming an optical component of the present embodiment contains the compound (0) and / or the resin (6), the aromatic ring density is high, so that the refractive index is high and the range from low temperature to high temperature is wide. Coloring is also suppressed by the heat treatment of. Therefore, the composition for forming an optical component of the present embodiment is suitable for forming an optical component. In addition to the compound (0) and / or the resin (6), a solvent, a cross-linking agent, a cross-linking accelerator, an acid generator, a basic compound, and other components may be contained, if necessary. Hereinafter, these optional components will be described.
本実施形態の光学部品形成用組成物は、化合物(0)及び/又は樹脂(6)を含有する。そのため、湿式プロセスが適用可能であり、耐熱性及び平坦化特性に優れる。さらに、本実施形態の光学部品形成用組成物は、化合物(0)及び/又は樹脂(6)を含有することから、芳香環密度が高いため、屈折率が高く、また低温から高温までの広範囲の熱処理によっても着色が抑制される。このため、本実施形態の光学部品形成用組成物は、光学部品の形成に好適である。なお、化合物(0)及び/又は樹脂(6)以外に、必要に応じて、溶媒、架橋剤、架橋促進剤、酸発生剤、塩基性化合物、その他の成分を含んでいてもよい。以下、これらの任意成分について説明する。 [Components in Composition for Forming Optical Components]
The composition for forming an optical component of the present embodiment contains a compound (0) and / or a resin (6). Therefore, a wet process can be applied, and it is excellent in heat resistance and flattening characteristics. Further, since the composition for forming an optical component of the present embodiment contains the compound (0) and / or the resin (6), the aromatic ring density is high, so that the refractive index is high and the range from low temperature to high temperature is wide. Coloring is also suppressed by the heat treatment of. Therefore, the composition for forming an optical component of the present embodiment is suitable for forming an optical component. In addition to the compound (0) and / or the resin (6), a solvent, a cross-linking agent, a cross-linking accelerator, an acid generator, a basic compound, and other components may be contained, if necessary. Hereinafter, these optional components will be described.
[溶媒]
本実施形態の光学部品形成用組成物は、溶媒を含有してもよい。溶媒としては、化合物(0)及び/又は樹脂(6)を溶解可能な溶媒であれば特に限定されない。ここで、化合物(0)及び/又は樹脂(6)は、上述したとおり、有機溶媒に対する溶解性に優れるため、種々の有機溶媒が好適に用いられる。 [solvent]
The composition for forming an optical component of the present embodiment may contain a solvent. The solvent is not particularly limited as long as it is a solvent capable of dissolving the compound (0) and / or the resin (6). Here, as described above, the compound (0) and / or the resin (6) are excellent in solubility in an organic solvent, and therefore various organic solvents are preferably used.
本実施形態の光学部品形成用組成物は、溶媒を含有してもよい。溶媒としては、化合物(0)及び/又は樹脂(6)を溶解可能な溶媒であれば特に限定されない。ここで、化合物(0)及び/又は樹脂(6)は、上述したとおり、有機溶媒に対する溶解性に優れるため、種々の有機溶媒が好適に用いられる。 [solvent]
The composition for forming an optical component of the present embodiment may contain a solvent. The solvent is not particularly limited as long as it is a solvent capable of dissolving the compound (0) and / or the resin (6). Here, as described above, the compound (0) and / or the resin (6) are excellent in solubility in an organic solvent, and therefore various organic solvents are preferably used.
溶媒としては、特に限定されないが、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒;PGME、PGMEA等のセロソルブ系溶媒;乳酸エチル、酢酸メチル、酢酸エチル、酢酸ブチル、酢酸イソアミル、乳酸エチル、メトキシプロピオン酸メチル、ヒドロキシイソ酪酸メチル等のエステル系溶媒;メタノール、エタノール、イソプロパノール、1-エトキシ-2-プロパノール等のアルコール系溶媒;トルエン、キシレン、アニソール等の芳香族系炭化水素等が挙げられる。これらの溶媒は、1種を単独で、又は2種以上を組み合わせて用いられる。
The solvent is not particularly limited, but for example, a ketone solvent such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; a cellosolve solvent such as PGME and PGMEA; ethyl lactate, methyl acetate, ethyl acetate, butyl acetate and isoamyl acetate, Ester solvents such as ethyl lactate, methyl methoxypropionate, methyl hydroxyisobutyrate; alcohol solvents such as methanol, ethanol, isopropanol and 1-ethoxy-2-propanol; aromatic hydrocarbons such as toluene, xylene and anisole. Can be mentioned. These solvents may be used alone or in combination of two or more.
上記溶媒の中でも、安全性の観点から、シクロヘキサノン、PGME、PGMEA、乳酸エチル、ヒドロキシイソ酪酸メチル、及びアニソールからなる群より選ばれる1種以上であることが好ましい。
本実施形態の光学部品形成用組成物において、固形成分の量は、特に限定されないが、固形成分及び溶媒の合計質量100質量%に対して、1~80質量%であることが好ましく、1~50質量%であることがより好ましく、2~40質量%であることがさらに好ましく、2~10質量%及び溶媒90~98質量%であることがよりさらに好ましい。
本実施形態の光学部品形成用組成物において、溶媒の量は、特に限定されないが、固形成分及び溶媒の合計質量100質量%に対して、20~99質量%であることが好ましく、50~99質量%であることがより好ましく、60~98質量%であることがさらに好ましく、90~98質量%であることがよりさらに好ましい。なお、本明細書において「固形成分」とは溶媒以外の成分をいう。 Among the above solvents, from the viewpoint of safety, one or more selected from the group consisting of cyclohexanone, PGME, PGMEA, ethyl lactate, methyl hydroxyisobutyrate, and anisole is preferable.
In the composition for forming an optical component of the present embodiment, the amount of the solid component is not particularly limited, but is preferably 1 to 80% by mass with respect to 100% by mass of the total mass of the solid component and the solvent. It is more preferably 50% by mass, further preferably 2 to 40% by mass, still more preferably 2 to 10% by mass and 90 to 98% by mass of the solvent.
In the composition for forming an optical component of the present embodiment, the amount of the solvent is not particularly limited, but is preferably 20 to 99% by mass, preferably 50 to 99% by mass, based on 100% by mass of the total mass of the solid component and the solvent. It is more preferably by mass, more preferably 60 to 98% by mass, and even more preferably 90 to 98% by mass. In addition, in this specification, a "solid component" means a component other than a solvent.
本実施形態の光学部品形成用組成物において、固形成分の量は、特に限定されないが、固形成分及び溶媒の合計質量100質量%に対して、1~80質量%であることが好ましく、1~50質量%であることがより好ましく、2~40質量%であることがさらに好ましく、2~10質量%及び溶媒90~98質量%であることがよりさらに好ましい。
本実施形態の光学部品形成用組成物において、溶媒の量は、特に限定されないが、固形成分及び溶媒の合計質量100質量%に対して、20~99質量%であることが好ましく、50~99質量%であることがより好ましく、60~98質量%であることがさらに好ましく、90~98質量%であることがよりさらに好ましい。なお、本明細書において「固形成分」とは溶媒以外の成分をいう。 Among the above solvents, from the viewpoint of safety, one or more selected from the group consisting of cyclohexanone, PGME, PGMEA, ethyl lactate, methyl hydroxyisobutyrate, and anisole is preferable.
In the composition for forming an optical component of the present embodiment, the amount of the solid component is not particularly limited, but is preferably 1 to 80% by mass with respect to 100% by mass of the total mass of the solid component and the solvent. It is more preferably 50% by mass, further preferably 2 to 40% by mass, still more preferably 2 to 10% by mass and 90 to 98% by mass of the solvent.
In the composition for forming an optical component of the present embodiment, the amount of the solvent is not particularly limited, but is preferably 20 to 99% by mass, preferably 50 to 99% by mass, based on 100% by mass of the total mass of the solid component and the solvent. It is more preferably by mass, more preferably 60 to 98% by mass, and even more preferably 90 to 98% by mass. In addition, in this specification, a "solid component" means a component other than a solvent.
溶媒の含有量は、特に限定されないが、溶解性及び製膜上の観点から、化合物(0)及び/又は樹脂(6)100質量部に対して、100~10,000質量部であることが好ましく、200~5,000質量部であることがより好ましく、200~1,000質量部であることがさらに好ましい。
The content of the solvent is not particularly limited, but may be 100 to 10,000 parts by mass with respect to 100 parts by mass of the compound (0) and / or the resin (6) from the viewpoint of solubility and film formation. It is preferably 200 to 5,000 parts by mass, and even more preferably 200 to 1,000 parts by mass.
[架橋剤]
本実施形態の光学部品形成用組成物は、光学部品形成後の耐溶剤性を向上する等の観点から、架橋剤を含有していてもよい。架橋剤としては、特に限定されないが、例えば、国際公開第2013/024779号や国際公開第2018/016614号に記載されたものを用いることができる。 [Crosslinking agent]
The composition for forming an optical component of the present embodiment may contain a cross-linking agent from the viewpoint of improving the solvent resistance after forming the optical component. The cross-linking agent is not particularly limited, and for example, those described in International Publication No. 2013/024779 and International Publication No. 2018/016614 can be used.
本実施形態の光学部品形成用組成物は、光学部品形成後の耐溶剤性を向上する等の観点から、架橋剤を含有していてもよい。架橋剤としては、特に限定されないが、例えば、国際公開第2013/024779号や国際公開第2018/016614号に記載されたものを用いることができる。 [Crosslinking agent]
The composition for forming an optical component of the present embodiment may contain a cross-linking agent from the viewpoint of improving the solvent resistance after forming the optical component. The cross-linking agent is not particularly limited, and for example, those described in International Publication No. 2013/024779 and International Publication No. 2018/016614 can be used.
架橋剤としては、特に限定されないが、例えば、フェノール化合物、エポキシ化合物、シアネート化合物、アミノ化合物、ベンゾオキサジン化合物、アクリレート化合物、メラミン化合物、グアナミン化合物、グリコールウリル化合物、ウレア化合物、イソシアネート化合物、アジド化合物等が挙げられる。これらの架橋剤は、1種を単独で、又は2種以上を組み合わせて用いられる。これらの中でも、ベンゾオキサジン化合物、エポキシ化合物及びシアネート化合物からなる群より選ばれる1種以上であることが好ましく、エッチング耐性向上の観点から、ベンゾオキサジン化合物がより好ましい。
The cross-linking agent is not particularly limited, but for example, a phenol compound, an epoxy compound, a cyanate compound, an amino compound, a benzoxazine compound, an acrylate compound, a melamine compound, a guanamine compound, a glycoluril compound, a urea compound, an isocyanate compound, an azide compound and the like. Can be mentioned. These cross-linking agents may be used alone or in combination of two or more. Among these, one or more selected from the group consisting of benzoxazine compounds, epoxy compounds and cyanate compounds is preferable, and benzoxazine compounds are more preferable from the viewpoint of improving etching resistance.
本実施形態において、架橋剤の含有量は、特に限定されないが、化合物(0)及び/又は樹脂(6)100質量部に対して、0.1~100質量部であることが好ましく、5~50質量部であることがより好ましく、10~40質量部であることがさらに好ましい。架橋剤の含有量が上記範囲内にあることにより、光学部品形成後の耐溶剤性を向上できる傾向にあり、架橋後の膜形成性が高められる傾向にある。
In the present embodiment, the content of the cross-linking agent is not particularly limited, but is preferably 0.1 to 100 parts by mass with respect to 100 parts by mass of the compound (0) and / or the resin (6). It is more preferably 50 parts by mass, and even more preferably 10 to 40 parts by mass. When the content of the cross-linking agent is within the above range, the solvent resistance after forming the optical component tends to be improved, and the film-forming property after cross-linking tends to be improved.
[架橋促進剤]
本実施形態の光学部品形成用組成物は、必要に応じて架橋反応(硬化反応)を促進させるために架橋促進剤を含有してもよい。架橋促進剤としては、ラジカル重合開始剤が挙げられる。 [Crosslink accelerator]
The composition for forming an optical component of the present embodiment may contain a cross-linking accelerator in order to promote a cross-linking reaction (curing reaction), if necessary. Examples of the cross-linking accelerator include a radical polymerization initiator.
本実施形態の光学部品形成用組成物は、必要に応じて架橋反応(硬化反応)を促進させるために架橋促進剤を含有してもよい。架橋促進剤としては、ラジカル重合開始剤が挙げられる。 [Crosslink accelerator]
The composition for forming an optical component of the present embodiment may contain a cross-linking accelerator in order to promote a cross-linking reaction (curing reaction), if necessary. Examples of the cross-linking accelerator include a radical polymerization initiator.
ラジカル重合開始剤としては、光によりラジカル重合を開始させる光重合開始剤であってもよく、熱によりラジカル重合を開始させる熱重合開始剤であってもよい。ラジカル重合開始剤としては、特に限定されないが、例えば、ケトン系光重合開始剤、有機過酸化物系重合開始剤、アゾ系重合開始剤が挙げられる。
The radical polymerization initiator may be a photopolymerization initiator that initiates radical polymerization by light, or a thermal polymerization initiator that initiates radical polymerization by heat. The radical polymerization initiator is not particularly limited, and examples thereof include a ketone-based photopolymerization initiator, an organic peroxide-based polymerization initiator, and an azo-based polymerization initiator.
このようなラジカル重合開始剤としては、特に限定されないが、例えば、国際公開第2018/016614号に記載されたものを用いることができる。
The radical polymerization initiator is not particularly limited, but for example, the one described in International Publication No. 2018/016614 can be used.
これらのラジカル重合開始剤は、1種を単独で、又は2種以上を組み合わせて用いられる。
These radical polymerization initiators are used alone or in combination of two or more.
本実施形態におけるラジカル重合開始剤の含有量としては、特に限定されないが、化合物(0)又は樹脂(6)を100質量部とした場合に0.05~25質量部であることが好ましく、0.1~10質量部であることがより好ましい。ラジカル重合開始剤の含有量が0.05質量部以上である場合には、硬化が不十分となるのを防ぐことができる傾向にあり、他方、ラジカル重合開始剤の含有量が25質量部以下である場合には、室温での長期保存安定性が損なわれるのを防ぐことができる傾向にある。
The content of the radical polymerization initiator in the present embodiment is not particularly limited, but is preferably 0.05 to 25 parts by mass when the compound (0) or the resin (6) is 100 parts by mass, and is 0. .1 to 10 parts by mass is more preferable. When the content of the radical polymerization initiator is 0.05 parts by mass or more, it tends to be possible to prevent insufficient curing, while the content of the radical polymerization initiator is 25 parts by mass or less. In this case, it tends to be possible to prevent the long-term storage stability at room temperature from being impaired.
[酸発生剤]
本実施形態の光学部品形成用組成物は、熱による架橋反応をさらに促進させる等の観点から、酸発生剤を含有していてもよい。酸発生剤としては、熱分解によって酸を発生するもの、光照射によって酸を発生するものなどが知られているが、いずれも使用することができる。酸発生剤としては、特に限定されないが、例えば、国際公開第2013/024779号に記載されたものを用いることができる。 [Acid generator]
The composition for forming an optical component of the present embodiment may contain an acid generator from the viewpoint of further promoting the cross-linking reaction by heat. As the acid generator, those that generate acid by thermal decomposition, those that generate acid by light irradiation, and the like are known, and any of them can be used. The acid generator is not particularly limited, but for example, the acid generator described in International Publication No. 2013/024779 can be used.
本実施形態の光学部品形成用組成物は、熱による架橋反応をさらに促進させる等の観点から、酸発生剤を含有していてもよい。酸発生剤としては、熱分解によって酸を発生するもの、光照射によって酸を発生するものなどが知られているが、いずれも使用することができる。酸発生剤としては、特に限定されないが、例えば、国際公開第2013/024779号に記載されたものを用いることができる。 [Acid generator]
The composition for forming an optical component of the present embodiment may contain an acid generator from the viewpoint of further promoting the cross-linking reaction by heat. As the acid generator, those that generate acid by thermal decomposition, those that generate acid by light irradiation, and the like are known, and any of them can be used. The acid generator is not particularly limited, but for example, the acid generator described in International Publication No. 2013/024779 can be used.
光学部品形成用組成物中の酸発生剤の含有量は、特に限定されないが、化合物(0)及び/又は樹脂(6)100質量部に対して、0.1~50質量部であることが好ましく、0.5~40質量部であることがより好ましい。酸発生剤の含有量が上記範囲内にあることにより、架橋反応が高められる傾向にあり、光学部品形成後の耐溶剤性を向上できる傾向にある。
The content of the acid generator in the composition for forming an optical component is not particularly limited, but may be 0.1 to 50 parts by mass with respect to 100 parts by mass of the compound (0) and / or the resin (6). It is preferably 0.5 to 40 parts by mass, more preferably 0.5 to 40 parts by mass. When the content of the acid generator is within the above range, the cross-linking reaction tends to be enhanced, and the solvent resistance after forming the optical component tends to be improved.
[塩基性化合物]
本実施形態の光学部品形成用組成物は、保存安定性を向上させる等の観点から、塩基性合物を含有していてもよい。
塩基性化合物は、酸発生剤から微量に発生した酸が架橋反応を進行させるのを防ぐ役割、すなわち酸に対するクエンチャーの役割を果たす。このような塩基性化合物としては、特に限定されないが、例えば、国際公開第2013/024779号に記載されたものが挙げられる。 [Basic compound]
The composition for forming an optical component of the present embodiment may contain a basic mixture from the viewpoint of improving storage stability and the like.
The basic compound plays a role of preventing the acid generated in a small amount from the acid generator from advancing the cross-linking reaction, that is, a role of quenching against the acid. Such basic compounds are not particularly limited, and examples thereof include those described in International Publication No. 2013/024779.
本実施形態の光学部品形成用組成物は、保存安定性を向上させる等の観点から、塩基性合物を含有していてもよい。
塩基性化合物は、酸発生剤から微量に発生した酸が架橋反応を進行させるのを防ぐ役割、すなわち酸に対するクエンチャーの役割を果たす。このような塩基性化合物としては、特に限定されないが、例えば、国際公開第2013/024779号に記載されたものが挙げられる。 [Basic compound]
The composition for forming an optical component of the present embodiment may contain a basic mixture from the viewpoint of improving storage stability and the like.
The basic compound plays a role of preventing the acid generated in a small amount from the acid generator from advancing the cross-linking reaction, that is, a role of quenching against the acid. Such basic compounds are not particularly limited, and examples thereof include those described in International Publication No. 2013/024779.
本実施形態の光学部品形成用組成物中の塩基性化合物の含有量は、特に限定されないが、化合物(0)及び/又は樹脂(6)100質量部に対して、0.001~2質量部であることが好ましく、0.01~1質量部であることが好ましい。塩基性化合物の含有量が上記範囲内にあることにより、架橋反応を過度に損なうことなく保存安定性が高められる傾向にある。
The content of the basic compound in the composition for forming an optical component of the present embodiment is not particularly limited, but is 0.001 to 2 parts by mass with respect to 100 parts by mass of the compound (0) and / or the resin (6). It is preferable that the amount is 0.01 to 1 part by mass. When the content of the basic compound is within the above range, the storage stability tends to be enhanced without excessively impairing the cross-linking reaction.
[その他の添加剤]
本実施形態の光学部品形成用組成物は、熱や光による硬化性の付与や吸光度をコントロールする目的で、他の樹脂及び/又は化合物を含有していてもよい。このような他の樹脂及び/又は化合物としては、特に限定されないが、例えば、ナフトール樹脂、キシレン樹脂ナフトール変性樹脂、ナフタレン樹脂のフェノール変性樹脂;ポリヒドロキシスチレン、ジシクロペンタジエン樹脂、(メタ)アクリレート、ジメタクリレート、トリメタクリレート、テトラメタクリレート、ビニルナフタレン、ポリアセナフチレン等のナフタレン環、フェナントレンキノン、フルオレン等のビフェニル環、チオフェン、インデン等のヘテロ原子を有する複素環を含む樹脂や芳香族環を含まない樹脂;ロジン系樹脂、シクロデキストリン、アダマンタン(ポリ)オール、トリシクロデカン(ポリ)オール及びそれらの誘導体等の脂環構造を含む樹脂又は化合物等が挙げられる。本実施形態のリソグラフィー用膜形成組成物は、上記述べた以外の公知の添加剤を含有していてもよい。公知の添加剤としては、以下に限定されないが、例えば、熱及び/又は光硬化触媒、重合禁止剤、難燃剤、充填剤、カップリング剤、熱硬化性樹脂、光硬化性樹脂、染料、顔料、増粘剤、滑剤、消泡剤、レベリング剤、紫外線吸収剤、界面活性剤、着色剤、ノニオン系界面活性剤等が挙げられる。 [Other additives]
The composition for forming an optical component of the present embodiment may contain other resins and / or compounds for the purpose of imparting curability by heat or light and controlling the absorbance. Such other resins and / or compounds are not particularly limited, and for example, naphthalene resin, xylene resin, naphthalene-modified resin, phenol-modified resin of naphthalene resin; polyhydroxystyrene, dicyclopentadiene resin, (meth) acrylate, and the like. Includes resins and aromatic rings containing naphthalene rings such as dimethacrylate, trimethacrylate, tetramethacrylate, vinylnaphthalene, polyacenaphthalene, biphenyl rings such as phenanthrenquinone and fluorene, and heterocycles having heteroatoms such as thiophene and inden. Non-resin; Examples thereof include resins or compounds containing an alicyclic structure such as rosin-based resins, cyclodextrines, adamantan (poly) all, tricyclodecane (poly) all and derivatives thereof. The lithographic film-forming composition of the present embodiment may contain known additives other than those described above. Known additives include, but are not limited to, heat and / or photocurable catalysts, polymerization inhibitors, flame retardants, fillers, coupling agents, thermosetting resins, photocurable resins, dyes, pigments. , Thickeners, lubricants, defoaming agents, leveling agents, ultraviolet absorbers, surfactants, colorants, nonionic surfactants and the like.
本実施形態の光学部品形成用組成物は、熱や光による硬化性の付与や吸光度をコントロールする目的で、他の樹脂及び/又は化合物を含有していてもよい。このような他の樹脂及び/又は化合物としては、特に限定されないが、例えば、ナフトール樹脂、キシレン樹脂ナフトール変性樹脂、ナフタレン樹脂のフェノール変性樹脂;ポリヒドロキシスチレン、ジシクロペンタジエン樹脂、(メタ)アクリレート、ジメタクリレート、トリメタクリレート、テトラメタクリレート、ビニルナフタレン、ポリアセナフチレン等のナフタレン環、フェナントレンキノン、フルオレン等のビフェニル環、チオフェン、インデン等のヘテロ原子を有する複素環を含む樹脂や芳香族環を含まない樹脂;ロジン系樹脂、シクロデキストリン、アダマンタン(ポリ)オール、トリシクロデカン(ポリ)オール及びそれらの誘導体等の脂環構造を含む樹脂又は化合物等が挙げられる。本実施形態のリソグラフィー用膜形成組成物は、上記述べた以外の公知の添加剤を含有していてもよい。公知の添加剤としては、以下に限定されないが、例えば、熱及び/又は光硬化触媒、重合禁止剤、難燃剤、充填剤、カップリング剤、熱硬化性樹脂、光硬化性樹脂、染料、顔料、増粘剤、滑剤、消泡剤、レベリング剤、紫外線吸収剤、界面活性剤、着色剤、ノニオン系界面活性剤等が挙げられる。 [Other additives]
The composition for forming an optical component of the present embodiment may contain other resins and / or compounds for the purpose of imparting curability by heat or light and controlling the absorbance. Such other resins and / or compounds are not particularly limited, and for example, naphthalene resin, xylene resin, naphthalene-modified resin, phenol-modified resin of naphthalene resin; polyhydroxystyrene, dicyclopentadiene resin, (meth) acrylate, and the like. Includes resins and aromatic rings containing naphthalene rings such as dimethacrylate, trimethacrylate, tetramethacrylate, vinylnaphthalene, polyacenaphthalene, biphenyl rings such as phenanthrenquinone and fluorene, and heterocycles having heteroatoms such as thiophene and inden. Non-resin; Examples thereof include resins or compounds containing an alicyclic structure such as rosin-based resins, cyclodextrines, adamantan (poly) all, tricyclodecane (poly) all and derivatives thereof. The lithographic film-forming composition of the present embodiment may contain known additives other than those described above. Known additives include, but are not limited to, heat and / or photocurable catalysts, polymerization inhibitors, flame retardants, fillers, coupling agents, thermosetting resins, photocurable resins, dyes, pigments. , Thickeners, lubricants, defoaming agents, leveling agents, ultraviolet absorbers, surfactants, colorants, nonionic surfactants and the like.
[光学部品]
本実施形態の光学部品形成用組成物は、光学部品の形成に用いられる。すなわち、本実施形態の光学部品は、本実施形態の光学部品形成用組成物を含む。
上記光学部品としては、特に限定されないが、例えば、フィルム状、シート状の部品、プリズムレンズ、レンチキュラーレンズ、マイクロレンズ、フレネルレンズ、視野角制御レンズ、コントラスト向上レンズ等のプラスチックレンズ、位相差フィルム、電磁波シールド用フィルム、プリズム、光ファイバー、フレキシブルプリント配線用ソルダーレジスト、メッキレジスト、多層プリント配線板用層間絶縁膜、感光性光導波路、液晶ディスプレイ、有機エレクトロルミネッセンス(EL)ディスプレイ、光半導体(LED)素子、固体撮像素子、有機薄膜太陽電池、色素増感太陽電池、有機薄膜トランジスタ(TFT)が挙げられる。化合物(0)は、特に高屈折率が求められている固体撮像素子の部材であるフォトダイオード上の埋め込み膜及び平坦化膜、カラーフィルター前後の平坦化膜、マイクロレンズ、マイクロレンズ上の平坦化膜及びコンフォーマル膜の形成材料として好適に用いられる。 [Optical parts]
The composition for forming an optical component of the present embodiment is used for forming an optical component. That is, the optical component of the present embodiment includes the composition for forming an optical component of the present embodiment.
The optical component is not particularly limited, but for example, a film-shaped component, a sheet-shaped component, a prism lens, a lenticular lens, a micro lens, a frennel lens, a viewing angle control lens, a plastic lens such as a contrast improving lens, a retardation film, and the like. Electromagnetic wave shielding film, prism, optical fiber, solder resist for flexible printed wiring, plating resist, interlayer insulating film for multilayer printed wiring board, photosensitive optical waveguide, liquid crystal display, organic electroluminescence (EL) display, optical semiconductor (LED) element , Solid-state imaging elements, organic thin film transistors, dye-sensitized solar cells, and organic thin film transistors (TFTs). The compound (0) is an embedded film and a flattening film on a photodiode, which is a member of a solid-state image sensor for which a particularly high refractive index is required, a flattening film before and after a color filter, a microlens, and a flattening on a microlens. It is suitably used as a material for forming a film and a conformal film.
本実施形態の光学部品形成用組成物は、光学部品の形成に用いられる。すなわち、本実施形態の光学部品は、本実施形態の光学部品形成用組成物を含む。
上記光学部品としては、特に限定されないが、例えば、フィルム状、シート状の部品、プリズムレンズ、レンチキュラーレンズ、マイクロレンズ、フレネルレンズ、視野角制御レンズ、コントラスト向上レンズ等のプラスチックレンズ、位相差フィルム、電磁波シールド用フィルム、プリズム、光ファイバー、フレキシブルプリント配線用ソルダーレジスト、メッキレジスト、多層プリント配線板用層間絶縁膜、感光性光導波路、液晶ディスプレイ、有機エレクトロルミネッセンス(EL)ディスプレイ、光半導体(LED)素子、固体撮像素子、有機薄膜太陽電池、色素増感太陽電池、有機薄膜トランジスタ(TFT)が挙げられる。化合物(0)は、特に高屈折率が求められている固体撮像素子の部材であるフォトダイオード上の埋め込み膜及び平坦化膜、カラーフィルター前後の平坦化膜、マイクロレンズ、マイクロレンズ上の平坦化膜及びコンフォーマル膜の形成材料として好適に用いられる。 [Optical parts]
The composition for forming an optical component of the present embodiment is used for forming an optical component. That is, the optical component of the present embodiment includes the composition for forming an optical component of the present embodiment.
The optical component is not particularly limited, but for example, a film-shaped component, a sheet-shaped component, a prism lens, a lenticular lens, a micro lens, a frennel lens, a viewing angle control lens, a plastic lens such as a contrast improving lens, a retardation film, and the like. Electromagnetic wave shielding film, prism, optical fiber, solder resist for flexible printed wiring, plating resist, interlayer insulating film for multilayer printed wiring board, photosensitive optical waveguide, liquid crystal display, organic electroluminescence (EL) display, optical semiconductor (LED) element , Solid-state imaging elements, organic thin film transistors, dye-sensitized solar cells, and organic thin film transistors (TFTs). The compound (0) is an embedded film and a flattening film on a photodiode, which is a member of a solid-state image sensor for which a particularly high refractive index is required, a flattening film before and after a color filter, a microlens, and a flattening on a microlens. It is suitably used as a material for forming a film and a conformal film.
上記光学部品は、フィルム状、シート状の部品として用いられる他、フィルム上に形成した光学部品形成用組成物から形成される層上に所望とする光学部品のパターンを形成したのち、必要に応じて加熱により前記パターンをリフローさせて形成される光学部品であってもよい。
The optical component is used as a film-like or sheet-like component, and after forming a desired optical component pattern on a layer formed from an optical component-forming composition formed on the film, if necessary. It may be an optical component formed by reflowing the pattern by heating.
本実施形態の光学部品は、デバイス関連に適用する場合の具体例としては、マイクロレンズ材料、LEDやPD等の封止材料、薄型ディスプレイ関連では、薄膜トランジスタ保護膜、液晶カラーフィルター保護膜、ブラックマトリクス、スペーサーなどが挙げられる。特に、本実施形態の光学部品形成用組成物を含む光学部品は、耐熱性や耐湿性に優れている上に昇華成分による汚染性が少ないという非常に優れた利点も有する傾向にあり、特に表示材料において、重要な汚染による画質劣化の少ない高感度、高耐熱、吸湿信頼性を兼ね備えた材料となる傾向にある。
Specific examples of the optical component of this embodiment when applied to devices are microlens materials, sealing materials such as LEDs and PDs, and thin display-related materials such as thin film transistor protective films, liquid crystal color filter protective films, and black matrices. , Spacers and the like. In particular, the optical component containing the composition for forming an optical component of the present embodiment tends to have an extremely excellent advantage that it is excellent in heat resistance and moisture resistance and is less contaminated by sublimation components. The material tends to be a material having high sensitivity, high heat resistance, and moisture absorption reliability with little deterioration of image quality due to important contamination.
上述した用途に用いる場合、本実施形態の光学部品形成用組成物は、硬化剤や、さらに必要に応じてその他の樹脂、界面活性剤や染料、充填剤、架橋剤、溶解促進剤などの各種添加剤を加え、有機溶剤に溶解することで調製してもよい。
When used in the above-mentioned applications, the composition for forming an optical component of the present embodiment may contain various kinds of curing agents and, if necessary, other resins, surfactants and dyes, fillers, cross-linking agents, dissolution accelerators and the like. It may be prepared by adding an additive and dissolving it in an organic solvent.
本実施形態の光学部品形成用組成物は前記各成分を配合し、攪拌機等を用いて混合することにより調製できる。また、本実施形態の光学部品形成用組成物が充填剤や顔料を含有する場合には、ディゾルバー、ホモジナイザー、3本ロールミル等の分散装置を用いて分散又は混合して調製することができる。
The composition for forming an optical component of the present embodiment can be prepared by blending each of the above components and mixing them using a stirrer or the like. When the composition for forming an optical component of the present embodiment contains a filler or a pigment, it can be prepared by dispersing or mixing using a disperser such as a dissolver, a homogenizer, or a three-roll mill.
[化合物(0)及び/又は樹脂(6)の精製方法]
化合物(0)及び/又は樹脂(6)を、本実施形態の光学部品形成用組成物として用いる前に、精製により不純物を十分に低減することができる。ここで、化合物(0)及び/又は樹脂(6)の精製方法は、水と任意に混和しない有機溶媒並びに化合物(0)及び/又は樹脂(6)を含む溶液(以下、単に、「溶液(A)」ともいう)と、酸性の水溶液とを接触させて抽出する抽出工程を含むことが好ましい。より詳細には、本実施形態の精製方法は、化合物(0)及び/又は樹脂(6)を水と任意に混和しない有機溶媒に溶解させ、その溶液を酸性水溶液と接触させ抽出処理を行うことにより、溶液(A)に含まれる金属分を水相に移行させたのち、有機相と水相を分離して精製することが好ましい。本実施形態の精製方法により、本実施形態の化合物又は樹脂中の種々の金属の含有量を著しく低減させることができる。 [Method for purifying compound (0) and / or resin (6)]
Before using the compound (0) and / or the resin (6) as the composition for forming an optical component of the present embodiment, impurities can be sufficiently reduced by purification. Here, the method for purifying the compound (0) and / or the resin (6) is a solution containing an organic solvent that is arbitrarily immiscible with water and the compound (0) and / or the resin (6) (hereinafter, simply, "solution (hereinafter, simply" solution (hereinafter, "solution"). It is preferable to include an extraction step of contacting A) with an acidic aqueous solution for extraction. More specifically, in the purification method of the present embodiment, the compound (0) and / or the resin (6) is dissolved in an organic solvent that is not arbitrarily mixed with water, and the solution is brought into contact with an acidic aqueous solution to perform an extraction treatment. It is preferable that the metal component contained in the solution (A) is transferred to the aqueous phase, and then the organic phase and the aqueous phase are separated and purified. The purification method of the present embodiment can significantly reduce the content of various metals in the compound or resin of the present embodiment.
化合物(0)及び/又は樹脂(6)を、本実施形態の光学部品形成用組成物として用いる前に、精製により不純物を十分に低減することができる。ここで、化合物(0)及び/又は樹脂(6)の精製方法は、水と任意に混和しない有機溶媒並びに化合物(0)及び/又は樹脂(6)を含む溶液(以下、単に、「溶液(A)」ともいう)と、酸性の水溶液とを接触させて抽出する抽出工程を含むことが好ましい。より詳細には、本実施形態の精製方法は、化合物(0)及び/又は樹脂(6)を水と任意に混和しない有機溶媒に溶解させ、その溶液を酸性水溶液と接触させ抽出処理を行うことにより、溶液(A)に含まれる金属分を水相に移行させたのち、有機相と水相を分離して精製することが好ましい。本実施形態の精製方法により、本実施形態の化合物又は樹脂中の種々の金属の含有量を著しく低減させることができる。 [Method for purifying compound (0) and / or resin (6)]
Before using the compound (0) and / or the resin (6) as the composition for forming an optical component of the present embodiment, impurities can be sufficiently reduced by purification. Here, the method for purifying the compound (0) and / or the resin (6) is a solution containing an organic solvent that is arbitrarily immiscible with water and the compound (0) and / or the resin (6) (hereinafter, simply, "solution (hereinafter, simply" solution (hereinafter, "solution"). It is preferable to include an extraction step of contacting A) with an acidic aqueous solution for extraction. More specifically, in the purification method of the present embodiment, the compound (0) and / or the resin (6) is dissolved in an organic solvent that is not arbitrarily mixed with water, and the solution is brought into contact with an acidic aqueous solution to perform an extraction treatment. It is preferable that the metal component contained in the solution (A) is transferred to the aqueous phase, and then the organic phase and the aqueous phase are separated and purified. The purification method of the present embodiment can significantly reduce the content of various metals in the compound or resin of the present embodiment.
本実施形態において、「水と任意に混和しない有機溶媒」とは、20℃において水に対する溶解度が50質量%未満であることをいい、生産性の観点から、25質量%未満であることが好ましい。水と任意に混和しない有機溶媒としては、特に限定されないが、半導体製造プロセスに安全に適用できる有機溶媒が好ましい。使用する有機溶媒の量は、化合物(0)及び/又は樹脂(6)に対して、通常1~100質量倍程度使用される。
In the present embodiment, the "organic solvent immiscible with water" means that the solubility in water at 20 ° C. is less than 50% by mass, and from the viewpoint of productivity, it is preferably less than 25% by mass. .. The organic solvent that is not arbitrarily miscible with water is not particularly limited, but an organic solvent that can be safely applied to the semiconductor manufacturing process is preferable. The amount of the organic solvent used is usually about 1 to 100 times by mass with respect to the compound (0) and / or the resin (6).
有機溶媒の具体例としては、特に限定されないが、例えば、国際公開WO2015/080240号公報に記載されているものが挙げられる。これらの溶媒は、1種を単独で、又は2種以上を組み合わせて用いられる。これらの中でも、トルエン、2-ヘプタノン、シクロヘキサノン、シクロペンタノン、メチルイソブチルケトン、PGMEA、酢酸エチル等が好ましく、シクロヘキサノン、PGMEAがより好ましい。
Specific examples of the organic solvent are not particularly limited, but examples thereof include those described in International Publication WO2015 / 080240. These solvents may be used alone or in combination of two or more. Among these, toluene, 2-heptanone, cyclohexanone, cyclopentanone, methyl isobutyl ketone, PGMEA, ethyl acetate and the like are preferable, and cyclohexanone and PGMEA are more preferable.
使用される酸性の水溶液としては、一般に知られる有機系化合物、又は無機系化合物を水に溶解させた水溶液の中から適宜選択される。例えば、国際公開WO2015/080240号公報に記載されているものが挙げられる。これらの酸性の水溶液は、1種を単独で、又は2種以上を組み合わせて用いられる。これらの中でも、硫酸、硝酸、及び酢酸、蓚酸、酒石酸、クエン酸等のカルボン酸の水溶液が好ましく、硫酸、蓚酸、酒石酸、クエン酸の水溶液がより好ましく、蓚酸の水溶液がさらに好ましい。蓚酸、酒石酸、クエン酸等の多価カルボン酸は金属イオンに配位し、キレート効果が生じるために、より金属を除去できると考えられる。また、ここで用いる水は、本実施形態の目的に沿って、金属含有量の少ないもの、例えばイオン交換水等が好適に用いられる。
The acidic aqueous solution to be used is appropriately selected from generally known organic compounds or aqueous solutions in which an inorganic compound is dissolved in water. For example, those described in International Publication WO2015 / 080240 can be mentioned. These acidic aqueous solutions may be used alone or in combination of two or more. Among these, aqueous solutions of sulfuric acid, nitric acid, and carboxylic acids such as acetic acid, oxalic acid, tartaric acid, and citric acid are preferable, aqueous solutions of sulfuric acid, oxalic acid, tartaric acid, and citric acid are more preferable, and aqueous solutions of oxalic acid are even more preferable. It is considered that polyvalent carboxylic acids such as oxalic acid, tartaric acid, and citric acid can remove more metals because they coordinate with metal ions and produce a chelating effect. Further, as the water used here, water having a low metal content, for example, ion-exchanged water or the like is preferably used according to the purpose of the present embodiment.
本実施形態で使用する酸性の水溶液のpHは、特に限定されないが、通常、pH範囲は0~5程度であることが好ましく、pH0~3程度であることがより好ましい。
The pH of the acidic aqueous solution used in the present embodiment is not particularly limited, but usually, the pH range is preferably about 0 to 5, and more preferably about 0 to 3.
本実施形態で使用する酸性の水溶液の使用量は、特に限定されないが、その量があまりに少ないと、金属除去のための抽出回数多くする必要があり、逆に水溶液の量があまりに多いと全体の液量が多くなり操作上の問題を生ずることがある。酸性の水溶液の使用量は、通常、溶液(A)に対して10~200質量%であることが好ましく、20~100質量%であることが好ましい。
The amount of the acidic aqueous solution used in the present embodiment is not particularly limited, but if the amount is too small, it is necessary to increase the number of extractions for removing the metal, and conversely, if the amount of the aqueous solution is too large, the whole The amount of liquid may increase, causing operational problems. The amount of the acidic aqueous solution used is usually preferably 10 to 200% by mass, preferably 20 to 100% by mass, based on the solution (A).
本実施形態の精製方法では、例えば、上記の酸性の水溶液と、溶液(A)とを接触させることにより金属分を抽出する。
In the purification method of the present embodiment, for example, the metal component is extracted by bringing the above acidic aqueous solution into contact with the solution (A).
抽出処理を行う際の温度は通常、20~90℃であることが好ましく、30~80℃であることがより好ましい。抽出操作は、例えば、撹拌等により、よく混合させたあと、静置することにより行われる。これにより、溶液(A)に含まれていた金属分が水相に移行する。また本操作により、溶液の酸性度が低下し、化合物(0)及び/又は樹脂(6)の変質を抑制することができる。
The temperature at which the extraction process is performed is usually preferably 20 to 90 ° C, more preferably 30 to 80 ° C. The extraction operation is performed by, for example, stirring well and then allowing the mixture to stand. As a result, the metal content contained in the solution (A) shifts to the aqueous phase. Further, by this operation, the acidity of the solution is lowered, and the alteration of the compound (0) and / or the resin (6) can be suppressed.
得られる混合物は、化合物(0)及び/又は樹脂(6)と有機溶媒を含む有機相と水相に分離するのでデカンテーション等により、化合物(0)及び/又は樹脂(6)と有機溶媒を含む有機相を回収する。静置する時間は、特に限定されないが、例えば、1分以上であることが好ましく、10分以上であることがより好ましく、30分以上であることがさらに好ましい。また、抽出処理は1回だけでもかまわないが、混合、静置、分離という操作を複数回繰り返して行うのも有効である。
Since the obtained mixture is separated into an organic phase containing the compound (0) and / or the resin (6) and an organic solvent and an aqueous phase, the compound (0) and / or the resin (6) and the organic solvent are separated by decantation or the like. Recover the containing organic phase. The standing time is not particularly limited, but for example, it is preferably 1 minute or longer, more preferably 10 minutes or longer, and even more preferably 30 minutes or longer. Further, although the extraction process may be performed only once, it is also effective to repeat the operations of mixing, standing, and separating a plurality of times.
酸性の水溶液を用いてこのような抽出処理を行った場合は、処理を行ったあとに、該酸性の水溶液から抽出し、回収した化合物(0)及び/又は樹脂(6)と有機溶媒を含む有機相は、さらに水との抽出処理を行うことが好ましい。抽出処理は、撹拌等により、有機相と水とをよく混合させたあと、静置することにより行われる。そして得られる溶液は、化合物(0)及び/又は樹脂(6)と有機溶媒を含む溶液相と水相に分離するのでデカンテーション等により化合物(0)及び/又は樹脂(6)と有機溶媒を含む溶液相を回収する。また、ここで用いる水は、本実施形態の目的に沿って、金属含有量の少ないもの、例えばイオン交換水等が好ましい。抽出処理は1回だけでもかまわないが、混合、静置、分離という操作を複数回繰り返して行うのも有効である。また、抽出処理における両者の使用割合や、温度、時間等の条件は特に制限されないが、先の酸性の水溶液との接触処理の場合と同様で構わない。
When such an extraction treatment is carried out using an acidic aqueous solution, the compound (0) and / or the resin (6) extracted and recovered from the acidic aqueous solution after the treatment and an organic solvent are contained. The organic phase is preferably further extracted with water. The extraction treatment is carried out by mixing the organic phase and water well by stirring or the like, and then allowing the mixture to stand. Then, the obtained solution is separated into a solution phase containing the compound (0) and / or the resin (6) and an organic solvent and an aqueous phase, so that the compound (0) and / or the resin (6) and the organic solvent are separated by decantation or the like. Recover the containing solution phase. Further, the water used here is preferably one having a low metal content, for example, ion-exchanged water, etc., in line with the purpose of the present embodiment. The extraction process may be performed only once, but it is also effective to repeat the operations of mixing, standing, and separating a plurality of times. Further, the conditions such as the ratio of use of both in the extraction treatment, temperature, and time are not particularly limited, but the same as in the case of the contact treatment with the acidic aqueous solution may be used.
こうして得られた化合物(0)及び/又は樹脂(6)と有機溶媒を含む溶液に混入する水分は減圧蒸留等の操作を施すことにより容易に除去できる。また、必要により有機溶媒を加え、化合物(0)及び/又は樹脂(6)の濃度を任意の濃度に調整することができる。
The water mixed in the solution containing the compound (0) and / or the resin (6) and the organic solvent thus obtained can be easily removed by performing an operation such as vacuum distillation. Further, if necessary, an organic solvent can be added to adjust the concentration of the compound (0) and / or the resin (6) to an arbitrary concentration.
得られた化合物(0)及び/又は樹脂(6)と有機溶媒を含む溶液から、化合物(0)及び/又は樹脂(6)のみ得る方法は、減圧除去、再沈殿による分離、及びそれらの組み合わせ等、公知の方法で行うことができる。必要に応じて、濃縮操作、ろ過操作、遠心分離操作、乾燥操作等の公知の処理を行うことができる。
The method for obtaining only the compound (0) and / or the resin (6) from the obtained solution containing the compound (0) and / or the resin (6) and the organic solvent is as follows: removal under reduced pressure, separation by reprecipitation, and a combination thereof. Etc., it can be carried out by a known method. If necessary, known treatments such as concentration operation, filtration operation, centrifugation operation, and drying operation can be performed.
本実施形態の精製方法を経た後、すなわち精製後の化合物(0)及び/又は樹脂(6)化合物(0)及び/又は樹脂(6)中の不純物量の評価方法としては、特に限定されないが、後述の実施例に記載のICP-MSによって測定される各種金属量で評価することができる。
The method for evaluating the amount of impurities in the compound (0) and / or the resin (6) compound (0) and / or the resin (6) after the purification method of the present embodiment, that is, after purification, is not particularly limited. , The amount of various metals measured by ICP-MS described in Examples described later can be evaluated.
以下、本実施形態を実施例によりさらに詳細に説明するが、本実施形態は、これらの例によって何ら限定されるものではない。
Hereinafter, the present embodiment will be described in more detail by way of examples, but the present embodiment is not limited to these examples.
(LC-MS分析:分子量の測定)
液体クロマトグラフ質量分析(以下、単に「LC-MS分析」ともいう)により、分析装置「Acquity UPLC/MALDI-Synapt HDMS」(製品名、Waters Coporation社製品)を用いて化合物又は樹脂の分子量を測定した。 (LC-MS analysis: measurement of molecular weight)
Measure the molecular weight of a compound or resin by liquid chromatograph mass spectrometry (hereinafter, also simply referred to as "LC-MS analysis") using an analyzer "Acquitty UPLC / MALDI-Snap HDMS" (product name, Waters Corporation product). did.
液体クロマトグラフ質量分析(以下、単に「LC-MS分析」ともいう)により、分析装置「Acquity UPLC/MALDI-Synapt HDMS」(製品名、Waters Coporation社製品)を用いて化合物又は樹脂の分子量を測定した。 (LC-MS analysis: measurement of molecular weight)
Measure the molecular weight of a compound or resin by liquid chromatograph mass spectrometry (hereinafter, also simply referred to as "LC-MS analysis") using an analyzer "Acquitty UPLC / MALDI-Snap HDMS" (product name, Waters Corporation product). did.
(Mn、Mw及びMw/Mn)
Mn、Mw及びMw/Mnは、ゲル浸透クロマトグラフィー(GPC)分析により、以下の測定条件にてポリスチレン換算にて求めた。
装置:「Shodex GPC-101型」(製品名、昭和電工株式会社製)
カラム:「KF-80M」×3(製品名、昭和電工株式会社製)
溶離液:テトラヒドロフラン(以下「THF」ともいう)
流速:1mL/min
温度:40℃ (Mn, Mw and Mw / Mn)
Mn, Mw and Mw / Mn were determined by gel permeation chromatography (GPC) analysis in terms of polystyrene under the following measurement conditions.
Equipment: "Shodex GPC-101 type" (product name, manufactured by Showa Denko KK)
Column: "KF-80M" x 3 (Product name, manufactured by Showa Denko KK)
Eluent: tetrahydrofuran (hereinafter also referred to as "THF")
Flow velocity: 1 mL / min
Temperature: 40 ° C
Mn、Mw及びMw/Mnは、ゲル浸透クロマトグラフィー(GPC)分析により、以下の測定条件にてポリスチレン換算にて求めた。
装置:「Shodex GPC-101型」(製品名、昭和電工株式会社製)
カラム:「KF-80M」×3(製品名、昭和電工株式会社製)
溶離液:テトラヒドロフラン(以下「THF」ともいう)
流速:1mL/min
温度:40℃ (Mn, Mw and Mw / Mn)
Mn, Mw and Mw / Mn were determined by gel permeation chromatography (GPC) analysis in terms of polystyrene under the following measurement conditions.
Equipment: "Shodex GPC-101 type" (product name, manufactured by Showa Denko KK)
Column: "KF-80M" x 3 (Product name, manufactured by Showa Denko KK)
Eluent: tetrahydrofuran (hereinafter also referred to as "THF")
Flow velocity: 1 mL / min
Temperature: 40 ° C
(ICP-MS)
誘導結合プラズマ質量分析計(以下、「ICP-MS」ともいう)「ELAN DRCII」(製品名、PerkinElmer社製)を用いて測定した。 (ICP-MS)
Measurement was performed using an inductively coupled plasma mass spectrometer (hereinafter, also referred to as “ICP-MS”) “ELAN DRCII” (product name, manufactured by PerkinElmer).
誘導結合プラズマ質量分析計(以下、「ICP-MS」ともいう)「ELAN DRCII」(製品名、PerkinElmer社製)を用いて測定した。 (ICP-MS)
Measurement was performed using an inductively coupled plasma mass spectrometer (hereinafter, also referred to as “ICP-MS”) “ELAN DRCII” (product name, manufactured by PerkinElmer).
[化合物(0)及び樹脂(6)の合成]
(合成実施例1)化合物(XBisN-F1)の合成
攪拌機、冷却管及びビュレットを備えた内容積1000mLの容器において、2,7-ジヒドロキシナフタレン89.2g(0.56mol)、フルオレノン44.6g(0.25mol)、硫酸4.86g(0.05mol)、γ-ブチロラクトン500mLを加えて、内容物を150℃で7時間攪拌して反応を行って反応液を得た。反応液を冷却し、酢酸エチル1Lで抽出を2回行い、濃縮し、カラムクロマトグラフィーによる分離後、イソプロピルアルコールで再結晶を3回行い、下記式(XBisN-F1)で表される目的化合物(XBisN-F1)を1.3g得た。
得られた化合物(XBisN-F1)について、上記「LC-MS分析」の方法により分子量を測定した結果、464であった。
得られた化合物(XBisN-F1)について、1H-NMR(500MHz、DMSO-d6)測定を行ったところ、以下のピークが見出され、化合物(XBisN-F1)は、下記式(XBisN-F1)の化学構造を有することを確認した。
δ(ppm)6.7~8.1(18H、Ph-H、ナフチル-H)、9.76(2H、-OH)。
[Synthesis of compound (0) and resin (6)]
(Synthesis Example 1) Synthesis of compound (XBizN-F1) 89.2 g (0.56 mol) of 2,7-dihydroxynaphthalene and 44.6 g of fluorenone (44.6 g) in a container having an internal volume of 1000 mL equipped with a stirrer, a cooling tube and a burette. 0.25 mol), 4.86 g (0.05 mol) of sulfuric acid, and 500 mL of γ-butyrolactone were added, and the contents were stirred at 150 ° C. for 7 hours to carry out a reaction to obtain a reaction solution. The reaction mixture is cooled, extracted twice with 1 L of ethyl acetate, concentrated, separated by column chromatography, and recrystallized with isopropyl alcohol three times. The target compound represented by the following formula (XBisN-F1) (XBisN-F1) 1.3 g of XBisN-F1) was obtained.
The molecular weight of the obtained compound (XBisN-F1) was measured by the above-mentioned "LC-MS analysis" method and found to be 464.
When 1 H-NMR (500 MHz, DMSO-d 6 ) measurement was performed on the obtained compound (XBisN-F1), the following peaks were found, and the compound (XBisN-F1) was expressed by the following formula (XBisN-F1). It was confirmed that it had the chemical structure of F1).
δ (ppm) 6.7 to 8.1 (18H, Ph-H, naphthyl-H), 9.76 (2H, -OH).
(合成実施例1)化合物(XBisN-F1)の合成
攪拌機、冷却管及びビュレットを備えた内容積1000mLの容器において、2,7-ジヒドロキシナフタレン89.2g(0.56mol)、フルオレノン44.6g(0.25mol)、硫酸4.86g(0.05mol)、γ-ブチロラクトン500mLを加えて、内容物を150℃で7時間攪拌して反応を行って反応液を得た。反応液を冷却し、酢酸エチル1Lで抽出を2回行い、濃縮し、カラムクロマトグラフィーによる分離後、イソプロピルアルコールで再結晶を3回行い、下記式(XBisN-F1)で表される目的化合物(XBisN-F1)を1.3g得た。
得られた化合物(XBisN-F1)について、上記「LC-MS分析」の方法により分子量を測定した結果、464であった。
得られた化合物(XBisN-F1)について、1H-NMR(500MHz、DMSO-d6)測定を行ったところ、以下のピークが見出され、化合物(XBisN-F1)は、下記式(XBisN-F1)の化学構造を有することを確認した。
δ(ppm)6.7~8.1(18H、Ph-H、ナフチル-H)、9.76(2H、-OH)。
(Synthesis Example 1) Synthesis of compound (XBizN-F1) 89.2 g (0.56 mol) of 2,7-dihydroxynaphthalene and 44.6 g of fluorenone (44.6 g) in a container having an internal volume of 1000 mL equipped with a stirrer, a cooling tube and a burette. 0.25 mol), 4.86 g (0.05 mol) of sulfuric acid, and 500 mL of γ-butyrolactone were added, and the contents were stirred at 150 ° C. for 7 hours to carry out a reaction to obtain a reaction solution. The reaction mixture is cooled, extracted twice with 1 L of ethyl acetate, concentrated, separated by column chromatography, and recrystallized with isopropyl alcohol three times. The target compound represented by the following formula (XBisN-F1) (XBisN-F1) 1.3 g of XBisN-F1) was obtained.
The molecular weight of the obtained compound (XBisN-F1) was measured by the above-mentioned "LC-MS analysis" method and found to be 464.
When 1 H-NMR (500 MHz, DMSO-d 6 ) measurement was performed on the obtained compound (XBisN-F1), the following peaks were found, and the compound (XBisN-F1) was expressed by the following formula (XBisN-F1). It was confirmed that it had the chemical structure of F1).
δ (ppm) 6.7 to 8.1 (18H, Ph-H, naphthyl-H), 9.76 (2H, -OH).
(合成実施例2)化合物(XBisN-F1-MeBOC)の合成
攪拌機、冷却管、及びビュレットを備えた内容積200mLの容器に、上記で得られた化合物(XBisN-F1)5.5g(11.8mmol)とブロモ酢酸t-ブチル(アルドリッチ社製)5.4g(27mmol)、アセトン100mLを仕込み、炭酸カリウム(アルドリッチ社製)3.8g(27mmol)、及び18-クラウン-6 0.8gを加えて、内容物を還流下で3時間攪拌して反応を行った。次に、反応終了後の反応液を濃縮し、濃縮液に純水100gを加えて反応生成物を析出させ、室温まで冷却した後、ろ過を行って固形物を分離した。
得られた固形物を乾燥させて後、カラムクロマトによる分離精製を行って、下記式(XBisN-F1-MeBOC)を1.0g得た。
得られた化合物(XBisN-F1-MeBOC)について、前記測定条件でNMR測定を行ったところ、以下のピークが見いだされ、下記式XBisN-F1-MeBOC)の化学構造を有することを確認した。
1H-NMR(d6-DMSO):δ(ppm)1.4(18H、O-C-CH3)、4.9(4H、O-CH2-C)、6.7~8.1(18H、Ph-H、ナフチル-H)。
(Synthesis Example 2) Synthesis of compound (XBisN-F1-MeBOC) 5.5 g (11.) of the compound (XBisN-F1) obtained above was placed in a container having an internal volume of 200 mL equipped with a stirrer, a cooling tube, and a burette. 8 mmol), 5.4 g (27 mmol) of t-butyl bromoacetate (manufactured by Aldrich), 100 mL of acetone are charged, and 3.8 g (27 mmol) of potassium carbonate (manufactured by Aldrich) and 0.8 g of 18-crown-6 are added. The contents were stirred under reflux for 3 hours to carry out the reaction. Next, the reaction solution after completion of the reaction was concentrated, 100 g of pure water was added to the concentrated solution to precipitate a reaction product, the reaction product was cooled to room temperature, and then filtration was performed to separate the solid substance.
The obtained solid was dried and then separated and purified by column chromatography to obtain 1.0 g of the following formula (XBisN-F1-MeBOC).
When the obtained compound (XBisN-F1-MeBOC) was subjected to NMR measurement under the above measurement conditions, the following peaks were found, and it was confirmed that it had the chemical structure of the following formula XBisN-F1-MeBOC).
1H-NMR (d6-DMSO): δ (ppm) 1.4 (18H, OC-CH3), 4.9 (4H, O-CH2-C), 6.7 to 8.1 (18H, Ph) -H, naphthyl-H).
攪拌機、冷却管、及びビュレットを備えた内容積200mLの容器に、上記で得られた化合物(XBisN-F1)5.5g(11.8mmol)とブロモ酢酸t-ブチル(アルドリッチ社製)5.4g(27mmol)、アセトン100mLを仕込み、炭酸カリウム(アルドリッチ社製)3.8g(27mmol)、及び18-クラウン-6 0.8gを加えて、内容物を還流下で3時間攪拌して反応を行った。次に、反応終了後の反応液を濃縮し、濃縮液に純水100gを加えて反応生成物を析出させ、室温まで冷却した後、ろ過を行って固形物を分離した。
得られた固形物を乾燥させて後、カラムクロマトによる分離精製を行って、下記式(XBisN-F1-MeBOC)を1.0g得た。
得られた化合物(XBisN-F1-MeBOC)について、前記測定条件でNMR測定を行ったところ、以下のピークが見いだされ、下記式XBisN-F1-MeBOC)の化学構造を有することを確認した。
1H-NMR(d6-DMSO):δ(ppm)1.4(18H、O-C-CH3)、4.9(4H、O-CH2-C)、6.7~8.1(18H、Ph-H、ナフチル-H)。
The obtained solid was dried and then separated and purified by column chromatography to obtain 1.0 g of the following formula (XBisN-F1-MeBOC).
When the obtained compound (XBisN-F1-MeBOC) was subjected to NMR measurement under the above measurement conditions, the following peaks were found, and it was confirmed that it had the chemical structure of the following formula XBisN-F1-MeBOC).
1H-NMR (d6-DMSO): δ (ppm) 1.4 (18H, OC-CH3), 4.9 (4H, O-CH2-C), 6.7 to 8.1 (18H, Ph) -H, naphthyl-H).
(合成実施例3)樹脂(R1-XBisN-F1)の合成
ジムロート冷却管、温度計及び攪拌翼を備えた、底抜きが可能な内容積1Lの四つ口フラスコを準備した。この四つ口フラスコに、窒素気流中、合成例1で得られた化合物(XBisN-F1)を28g(60mmol)、40質量%ホルマリン水溶液21.0g(ホルムアルデヒドとして280mmol、三菱ガス化学(株)製)及び98質量%硫酸(関東化学(株)製)0.97mLを仕込み、常圧下、100℃で還流させながら7時間反応させた。その後、希釈溶媒としてオルソキシレン(和光純薬工業(株)製試薬特級)180.0gを反応液に加え、静置後、下相の水相を除去した。さらに、中和及び水洗を行い、オルソキシレンを減圧下で留去することにより、褐色固体の樹脂(R1-XBisN-F1)23gを得た。 (Synthesis Example 3) Synthesis of resin (R1-XBisN-F1) A four-necked flask having a bottom-removable internal volume of 1 L equipped with a Dimroth condenser, a thermometer and a stirring blade was prepared. 28 g (60 mmol) of the compound (XBisN-F1) obtained in Synthesis Example 1 and 21.0 g of a 40 mass% formalin aqueous solution (280 mmol as formaldehyde, manufactured by Mitsubishi Gas Chemical Company, Inc.) in this four-necked flask in a nitrogen stream. ) And 0.97 mL of 98 mass% formaldehyde (manufactured by Kanto Chemical Co., Inc.) were charged and reacted under normal pressure at 100 ° C. for 7 hours. Then, 180.0 g of orthoxylen (special grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) was added to the reaction solution as a diluting solvent, and after standing, the aqueous phase of the lower phase was removed. Further, the mixture was neutralized and washed with water, and orthoxylene was distilled off under reduced pressure to obtain 23 g of a brown solid resin (R1-XBisN-F1).
ジムロート冷却管、温度計及び攪拌翼を備えた、底抜きが可能な内容積1Lの四つ口フラスコを準備した。この四つ口フラスコに、窒素気流中、合成例1で得られた化合物(XBisN-F1)を28g(60mmol)、40質量%ホルマリン水溶液21.0g(ホルムアルデヒドとして280mmol、三菱ガス化学(株)製)及び98質量%硫酸(関東化学(株)製)0.97mLを仕込み、常圧下、100℃で還流させながら7時間反応させた。その後、希釈溶媒としてオルソキシレン(和光純薬工業(株)製試薬特級)180.0gを反応液に加え、静置後、下相の水相を除去した。さらに、中和及び水洗を行い、オルソキシレンを減圧下で留去することにより、褐色固体の樹脂(R1-XBisN-F1)23gを得た。 (Synthesis Example 3) Synthesis of resin (R1-XBisN-F1) A four-necked flask having a bottom-removable internal volume of 1 L equipped with a Dimroth condenser, a thermometer and a stirring blade was prepared. 28 g (60 mmol) of the compound (XBisN-F1) obtained in Synthesis Example 1 and 21.0 g of a 40 mass% formalin aqueous solution (280 mmol as formaldehyde, manufactured by Mitsubishi Gas Chemical Company, Inc.) in this four-necked flask in a nitrogen stream. ) And 0.97 mL of 98 mass% formaldehyde (manufactured by Kanto Chemical Co., Inc.) were charged and reacted under normal pressure at 100 ° C. for 7 hours. Then, 180.0 g of orthoxylen (special grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) was added to the reaction solution as a diluting solvent, and after standing, the aqueous phase of the lower phase was removed. Further, the mixture was neutralized and washed with water, and orthoxylene was distilled off under reduced pressure to obtain 23 g of a brown solid resin (R1-XBisN-F1).
得られた樹脂(R1-XBisN-1)は、Mn:3650、Mw:6950、Mw/Mn:1.90であった。
The obtained resin (R1-XBisN-1) was Mn: 3650, Mw: 6950, and Mw / Mn: 1.90.
(合成実施例4)化合物(XBisN-F1-BOC)の合成
攪拌機、冷却管、及びビュレットを備えた内容積200mLの容器に、合成実施例1で得られた化合物(XBisN-F1)5.5g(11.8mmol)とジ-t-ブチルジカーボネート(アルドリッチ社製)5.2g(23.8mmol)とをアセトン100mLに仕込み、炭酸カリウム(アルドリッチ社製)3.29g(23.8mmol)を加えて、内容物を20℃で6時間撹拌して反応を行って反応液を得た。次に反応液を濃縮し、濃縮液に純水100gを加えて反応生成物を析出させ、室温まで冷却した後、濾過を行って固形物を分離した。
得られた固形物を濾過し、乾燥させた後、カラムクロマトによる分離精製を行うことで、下記式で示される目的化合物(XBisN-F1-BOC)を0.9g得た。
得られた化合物について、前記測定条件で、NMR測定を行ったところ、以下のピークが見出され、下記式(XBisN-F1-BOC)の化学構造を有することを確認した。
1H-NMR(d6-DMSO):δ(ppm)1.4(27H、O-C-CH3)、5.3(1H、C-H)、6.9~7.9(12H、Ph-H) (Synthesis Example 4) Synthesis of compound (XBisN-F1-BOC) 5.5 g of the compound (XBisN-F1) obtained in Synthesis Example 1 in a container having an internal volume of 200 mL equipped with a stirrer, a cooling tube, and a burette. Add 5.2 g (23.8 mmol) of (11.8 mmol) and dit-butyl dicarbonate (manufactured by Aldrich) to 100 mL of acetone, and add 3.29 g (23.8 mmol) of potassium carbonate (manufactured by Aldrich). The contents were stirred at 20 ° C. for 6 hours to carry out a reaction to obtain a reaction solution. Next, the reaction solution was concentrated, and 100 g of pure water was added to the concentrated solution to precipitate a reaction product, which was cooled to room temperature and then filtered to separate the solid substance.
The obtained solid was filtered, dried, and then separated and purified by column chromatography to obtain 0.9 g of the target compound (XBisN-F1-BOC) represented by the following formula.
When the obtained compound was subjected to NMR measurement under the above-mentioned measurement conditions, the following peaks were found, and it was confirmed that the compound had a chemical structure of the following formula (XBisN-F1-BOC).
1H-NMR (d6-DMSO): δ (ppm) 1.4 (27H, OC-CH3), 5.3 (1H, CH), 6.9-7.9 (12H, Ph-H) )
攪拌機、冷却管、及びビュレットを備えた内容積200mLの容器に、合成実施例1で得られた化合物(XBisN-F1)5.5g(11.8mmol)とジ-t-ブチルジカーボネート(アルドリッチ社製)5.2g(23.8mmol)とをアセトン100mLに仕込み、炭酸カリウム(アルドリッチ社製)3.29g(23.8mmol)を加えて、内容物を20℃で6時間撹拌して反応を行って反応液を得た。次に反応液を濃縮し、濃縮液に純水100gを加えて反応生成物を析出させ、室温まで冷却した後、濾過を行って固形物を分離した。
得られた固形物を濾過し、乾燥させた後、カラムクロマトによる分離精製を行うことで、下記式で示される目的化合物(XBisN-F1-BOC)を0.9g得た。
得られた化合物について、前記測定条件で、NMR測定を行ったところ、以下のピークが見出され、下記式(XBisN-F1-BOC)の化学構造を有することを確認した。
1H-NMR(d6-DMSO):δ(ppm)1.4(27H、O-C-CH3)、5.3(1H、C-H)、6.9~7.9(12H、Ph-H) (Synthesis Example 4) Synthesis of compound (XBisN-F1-BOC) 5.5 g of the compound (XBisN-F1) obtained in Synthesis Example 1 in a container having an internal volume of 200 mL equipped with a stirrer, a cooling tube, and a burette. Add 5.2 g (23.8 mmol) of (11.8 mmol) and dit-butyl dicarbonate (manufactured by Aldrich) to 100 mL of acetone, and add 3.29 g (23.8 mmol) of potassium carbonate (manufactured by Aldrich). The contents were stirred at 20 ° C. for 6 hours to carry out a reaction to obtain a reaction solution. Next, the reaction solution was concentrated, and 100 g of pure water was added to the concentrated solution to precipitate a reaction product, which was cooled to room temperature and then filtered to separate the solid substance.
The obtained solid was filtered, dried, and then separated and purified by column chromatography to obtain 0.9 g of the target compound (XBisN-F1-BOC) represented by the following formula.
When the obtained compound was subjected to NMR measurement under the above-mentioned measurement conditions, the following peaks were found, and it was confirmed that the compound had a chemical structure of the following formula (XBisN-F1-BOC).
1H-NMR (d6-DMSO): δ (ppm) 1.4 (27H, OC-CH3), 5.3 (1H, CH), 6.9-7.9 (12H, Ph-H) )
1H-NMR(d6-DMSO):δ(ppm)1.4(18H、O-C-CH3)、6.7~8.1(18H、Ph-H、ナフチル-H)。
1H-NMR (d6-DMSO): δ (ppm) 1.4 (18H, OC-CH3), 6.7 to 8.1 (18H, Ph-H, naphthyl-H).
(合成実施例5)化合物(XBisN-F1-AL)の合成
攪拌機、冷却管及びビュレットを備えた内容積500mLの容器に、合成実施例1の方法により得られた化合物(XBisN-F1)5.5g(11.8mmol)、炭酸カリウム54g(39mmol)と、ジメチルホルムアミド200mLとを仕込み、アリルブロマイド77.6g(0.64mol)を加えて、反応液を110℃で24時間撹拌して反応を行った。次に、反応液を濃縮し、純水500gを加えて反応生成物を析出させ、室温まで冷却した後、濾過を行って分離した。得られた固形物を濾過し、乾燥させた後、カラムクロマトによる分離精製を行うことにより、下記式で表される目的化合物(XBisN-F1AL)を2.7g得た。
得られた化合物について、前記測定条件でNMR測定を行ったところ、以下のピークが見出され、下記式(XBisN-F1-AL)の化学構造を有することを確認した。
1H-NMR(d6-DMSO):δ(ppm)4.8(4H、O-CH2-C)、5.3~5.4(4H,-C=CH2)、6.1(2H,-CH=C)、6.7~8.1(18H、Ph-H、ナフチル-H)。
(Synthesis Example 5) Synthesis of compound (XBisN-F1-AL) Compound (XBisN-F1) obtained by the method of Synthesis Example 1 was placed in a container having an internal volume of 500 mL equipped with a stirrer, a cooling tube and a burette. 5 g (11.8 mmol), 54 g (39 mmol) of potassium carbonate, and 200 mL of dimethylformamide were charged, 77.6 g (0.64 mol) of allyl bromide was added, and the reaction solution was stirred at 110 ° C. for 24 hours to carry out the reaction. It was. Next, the reaction solution was concentrated, 500 g of pure water was added to precipitate the reaction product, the mixture was cooled to room temperature, and then filtered to separate. The obtained solid was filtered, dried, and then separated and purified by column chromatography to obtain 2.7 g of the target compound (XBisN-F1AL) represented by the following formula.
When the obtained compound was subjected to NMR measurement under the above-mentioned measurement conditions, the following peaks were found, and it was confirmed that the compound had a chemical structure of the following formula (XBisN-F1-AL).
1H-NMR (d6-DMSO): δ (ppm) 4.8 (4H, O-CH2-C), 5.3 to 5.4 (4H, -C = CH2), 6.1 (2H, -CH) = C), 6.7 to 8.1 (18H, Ph-H, naphthyl-H).
攪拌機、冷却管及びビュレットを備えた内容積500mLの容器に、合成実施例1の方法により得られた化合物(XBisN-F1)5.5g(11.8mmol)、炭酸カリウム54g(39mmol)と、ジメチルホルムアミド200mLとを仕込み、アリルブロマイド77.6g(0.64mol)を加えて、反応液を110℃で24時間撹拌して反応を行った。次に、反応液を濃縮し、純水500gを加えて反応生成物を析出させ、室温まで冷却した後、濾過を行って分離した。得られた固形物を濾過し、乾燥させた後、カラムクロマトによる分離精製を行うことにより、下記式で表される目的化合物(XBisN-F1AL)を2.7g得た。
得られた化合物について、前記測定条件でNMR測定を行ったところ、以下のピークが見出され、下記式(XBisN-F1-AL)の化学構造を有することを確認した。
1H-NMR(d6-DMSO):δ(ppm)4.8(4H、O-CH2-C)、5.3~5.4(4H,-C=CH2)、6.1(2H,-CH=C)、6.7~8.1(18H、Ph-H、ナフチル-H)。
When the obtained compound was subjected to NMR measurement under the above-mentioned measurement conditions, the following peaks were found, and it was confirmed that the compound had a chemical structure of the following formula (XBisN-F1-AL).
1H-NMR (d6-DMSO): δ (ppm) 4.8 (4H, O-CH2-C), 5.3 to 5.4 (4H, -C = CH2), 6.1 (2H, -CH) = C), 6.7 to 8.1 (18H, Ph-H, naphthyl-H).
(合成実施例6)化合物(XBisN-F1-Ac)の合成
上述のアリルブロマイド77.6g(0.64mol)の代わりにアクリル酸46.1g(0.64mol)を用いたこと以外は、合成実施例5と同様にして、下記式で表される目的化合物(XBisN-F1-Ac)3.5gを得た。
得られた化合物について、前記測定条件でNMR測定を行ったところ、以下のピークが見出され、下記式(XBisN-F1-Ac)の化学構造を有することを確認した。
1H-NMR(d6-DMSO):δ(ppm)5.8~6.4(4H,-C=CH2)、6.1(2H,-CH=C)、6.7~8.1(18H、Ph-H、ナフチル-H)。
(Synthesis Example 6) Synthesis of compound (XBisN-F1-Ac) Synthesis was carried out except that 46.1 g (0.64 mol) of acrylic acid was used instead of 77.6 g (0.64 mol) of allyl bromide described above. In the same manner as in Example 5, 3.5 g of the target compound (XBisN-F1-Ac) represented by the following formula was obtained.
When the obtained compound was subjected to NMR measurement under the above measurement conditions, the following peaks were found, and it was confirmed that the compound had a chemical structure of the following formula (XBisN-F1-Ac).
1H-NMR (d6-DMSO): δ (ppm) 5.8 to 6.4 (4H, -C = CH2), 6.1 (2H, -CH = C), 6.7 to 8.1 (18H) , Ph-H, Naftil-H).
上述のアリルブロマイド77.6g(0.64mol)の代わりにアクリル酸46.1g(0.64mol)を用いたこと以外は、合成実施例5と同様にして、下記式で表される目的化合物(XBisN-F1-Ac)3.5gを得た。
得られた化合物について、前記測定条件でNMR測定を行ったところ、以下のピークが見出され、下記式(XBisN-F1-Ac)の化学構造を有することを確認した。
1H-NMR(d6-DMSO):δ(ppm)5.8~6.4(4H,-C=CH2)、6.1(2H,-CH=C)、6.7~8.1(18H、Ph-H、ナフチル-H)。
When the obtained compound was subjected to NMR measurement under the above measurement conditions, the following peaks were found, and it was confirmed that the compound had a chemical structure of the following formula (XBisN-F1-Ac).
1H-NMR (d6-DMSO): δ (ppm) 5.8 to 6.4 (4H, -C = CH2), 6.1 (2H, -CH = C), 6.7 to 8.1 (18H) , Ph-H, Naftil-H).
(合成実施例7)化合物(XBisN-F1-Ea)の合成
攪拌機、冷却管及びビュレットを備えた内容積100mlの容器に合成実施例1で得られた化合物(XBisN-F1)7.0g(15.1mmol)と、グリシジルメタクリレート5.5g、トリエチルアミン0.45g、及びp-メトキシフェノール0.08gとを70mlメチルイソブチルケトンに仕込み、80℃に加温して撹拌した状態で、24時間撹拌して反応を行った。
50℃まで冷却し、反応液を純水中に滴下して析出した固形物を濾過し、乾燥させた後、カラムクロマトグラフによる分離精製を行い、下記式で表される目的化合物(XBisN-F1-Ea)を1.4g得た。
得られた化合物について、前記測定条件でNMR測定を行ったところ、以下のピークが見出され、下記式(XBisN-F1-Ea)の化学構造を有することを確認した。
1H-NMR(d6-DMSO):δ(ppm)2.0(6H、-CH3)、3.4~4.4(9H,-CH2-、-CH-)、5.8(2H,-OH)、6.4~6.5(4H,-C=CH2)、6.1(2H,-CH=C)、6.7~8.1(18H、Ph-H、ナフチル-H)。
(Synthesis Example 7) Synthesis of compound (XBisN-F1-Ea) 7.0 g (15) of the compound (XBisN-F1) obtained in Synthesis Example 1 in a container having an internal volume of 100 ml equipped with a stirrer, a cooling tube and a burette. .1 mmol), 5.5 g of glycidyl methacrylate, 0.45 g of triethylamine, and 0.08 g of p-methoxyphenol were charged in 70 ml of methyl isobutyl ketone, heated to 80 ° C., and stirred for 24 hours. The reaction was carried out.
The mixture is cooled to 50 ° C., the reaction solution is dropped in pure water, the precipitated solid is filtered, dried, and then separated and purified by a column chromatograph. The target compound (XBisN-F1) represented by the following formula is obtained. -Ea) was obtained in an amount of 1.4 g.
When the obtained compound was subjected to NMR measurement under the above-mentioned measurement conditions, the following peaks were found, and it was confirmed that the compound had a chemical structure of the following formula (XBisN-F1-Ea).
1H-NMR (d6-DMSO): δ (ppm) 2.0 (6H, -CH3), 3.4 to 4.4 (9H, -CH2-, -CH-), 5.8 (2H, -OH) ), 6.4 to 6.5 (4H, -C = CH2), 6.1 (2H, -CH = C), 6.7 to 8.1 (18H, Ph-H, naphthyl-H).
攪拌機、冷却管及びビュレットを備えた内容積100mlの容器に合成実施例1で得られた化合物(XBisN-F1)7.0g(15.1mmol)と、グリシジルメタクリレート5.5g、トリエチルアミン0.45g、及びp-メトキシフェノール0.08gとを70mlメチルイソブチルケトンに仕込み、80℃に加温して撹拌した状態で、24時間撹拌して反応を行った。
50℃まで冷却し、反応液を純水中に滴下して析出した固形物を濾過し、乾燥させた後、カラムクロマトグラフによる分離精製を行い、下記式で表される目的化合物(XBisN-F1-Ea)を1.4g得た。
得られた化合物について、前記測定条件でNMR測定を行ったところ、以下のピークが見出され、下記式(XBisN-F1-Ea)の化学構造を有することを確認した。
1H-NMR(d6-DMSO):δ(ppm)2.0(6H、-CH3)、3.4~4.4(9H,-CH2-、-CH-)、5.8(2H,-OH)、6.4~6.5(4H,-C=CH2)、6.1(2H,-CH=C)、6.7~8.1(18H、Ph-H、ナフチル-H)。
The mixture is cooled to 50 ° C., the reaction solution is dropped in pure water, the precipitated solid is filtered, dried, and then separated and purified by a column chromatograph. The target compound (XBisN-F1) represented by the following formula is obtained. -Ea) was obtained in an amount of 1.4 g.
When the obtained compound was subjected to NMR measurement under the above-mentioned measurement conditions, the following peaks were found, and it was confirmed that the compound had a chemical structure of the following formula (XBisN-F1-Ea).
1H-NMR (d6-DMSO): δ (ppm) 2.0 (6H, -CH3), 3.4 to 4.4 (9H, -CH2-, -CH-), 5.8 (2H, -OH) ), 6.4 to 6.5 (4H, -C = CH2), 6.1 (2H, -CH = C), 6.7 to 8.1 (18H, Ph-H, naphthyl-H).
(合成実施例8)化合物(XBisN-F1-Ua)の合成
攪拌機、冷却管及びビュレットを備えた内容積100mLの容器に合成実施例1で得られた化合物(XBisN-F1)7.0g(15.1mmol)と、2-イソシアナトエチルメタクリレート5.5g、トリエチルアミン0.45g、及びp-メトキシフェノール0.08gとを70mLメチルイソブチルケトンに仕込み、80℃に加温して撹拌した状態で、24時間撹拌して反応を行った。50℃まで冷却し、反応液を純水中に滴下して析出した固形物を濾過し、乾燥させた後、カラムクロマトによる分離精製を行い、下記式で表される目的化合物(XBisN-F1-Ua)が1.5g得られた。
得られた化合物について、前記測定条件でNMR測定を行ったところ、以下のピークが見出され、下記式(XBisN-F1-Ua)の化学構造を有することを確認した。
1H-NMR(d6-DMSO):δ(ppm)2.0(6H、-CH3)、3.1(4H,-CH2-)、4.6(4H,-CH2-)、6.4~6.5(4H,-C=CH2)、6.7~8.1(20H、Ph-H、ナフチル-H、-NH-)。
(Synthesis Example 8) Synthesis of compound (XBisN-F1-Ua) 7.0 g (15) of the compound (XBisN-F1) obtained in Synthesis Example 1 in a container having an internal volume of 100 mL equipped with a stirrer, a cooling tube and a bullet. .1 mmol), 5.5 g of 2-isocyanatoethyl methacrylate, 0.45 g of triethylamine, and 0.08 g of p-methoxyphenol were charged into 70 mL of methyl isobutyl ketone, heated to 80 ° C., and stirred. The reaction was carried out with stirring for hours. The mixture is cooled to 50 ° C., the reaction solution is dropped in pure water, the precipitated solid is filtered, dried, and then separated and purified by column chromatography. The target compound (XBisN-F1-) represented by the following formula is obtained. Ua) was obtained in an amount of 1.5 g.
When the obtained compound was subjected to NMR measurement under the above measurement conditions, the following peaks were found, and it was confirmed that the compound had a chemical structure of the following formula (XBisN-F1-Ua).
1H-NMR (d6-DMSO): δ (ppm) 2.0 (6H, -CH3), 3.1 (4H, -CH2-), 4.6 (4H, -CH2-), 6.4-6 .5 (4H, -C = CH2), 6.7 to 8.1 (20H, Ph-H, naphthyl-H, -NH-).
攪拌機、冷却管及びビュレットを備えた内容積100mLの容器に合成実施例1で得られた化合物(XBisN-F1)7.0g(15.1mmol)と、2-イソシアナトエチルメタクリレート5.5g、トリエチルアミン0.45g、及びp-メトキシフェノール0.08gとを70mLメチルイソブチルケトンに仕込み、80℃に加温して撹拌した状態で、24時間撹拌して反応を行った。50℃まで冷却し、反応液を純水中に滴下して析出した固形物を濾過し、乾燥させた後、カラムクロマトによる分離精製を行い、下記式で表される目的化合物(XBisN-F1-Ua)が1.5g得られた。
得られた化合物について、前記測定条件でNMR測定を行ったところ、以下のピークが見出され、下記式(XBisN-F1-Ua)の化学構造を有することを確認した。
1H-NMR(d6-DMSO):δ(ppm)2.0(6H、-CH3)、3.1(4H,-CH2-)、4.6(4H,-CH2-)、6.4~6.5(4H,-C=CH2)、6.7~8.1(20H、Ph-H、ナフチル-H、-NH-)。
When the obtained compound was subjected to NMR measurement under the above measurement conditions, the following peaks were found, and it was confirmed that the compound had a chemical structure of the following formula (XBisN-F1-Ua).
1H-NMR (d6-DMSO): δ (ppm) 2.0 (6H, -CH3), 3.1 (4H, -CH2-), 4.6 (4H, -CH2-), 6.4-6 .5 (4H, -C = CH2), 6.7 to 8.1 (20H, Ph-H, naphthyl-H, -NH-).
(合成実施例9)化合物(XBisN-F1-E)の合成
攪拌機、冷却管及びビュレットを備えた内容積200mLの容器に合成実施例1で得られた化合物(XBisN-F1)7.0g(15.1mmol)と炭酸カリウム10g(72mmol)とを60mLジメチルホルムアミドに仕込み、酢酸-2-クロロエチル5.0g(40.6mmol)を加えて、反応液を90℃で12時間撹拌して反応を行った。次に反応液を氷浴で冷却し結晶を析出させ、濾過を行って分離した。続いて攪拌機、冷却管及びビュレットを備えた内容積500mLの容器に上述の結晶30g、メタノール30g、THF100g及び24%水酸化ナトリウム水溶液を仕込み、反応液を還流下で4時間撹拌して反応を行った。その後、氷浴で冷却し、反応液を濃縮し析出した固形物を濾過し、乾燥させた後、カラムクロマトによる分離精製を行い、下記式で示される目的化合物(XBisN-F1-E)が3.0g得られた。
得られた化合物について、前記測定条件でNMR測定を行ったところ、以下のピークが見出され、下記式(XBisN-F1-Ua)の化学構造を有することを確認した。
1H-NMR(d6-DMSO):δ(ppm)3.7(4H,-CH2-)、4.3(4H,-CH2-)、5.4(2H,-OH)、6.7~8.1(18H、Ph-H、ナフチル-H)。
(Synthesis Example 9) Synthesis of compound (XBisN-F1-E) 7.0 g (15) of the compound (XBisN-F1) obtained in Synthesis Example 1 in a container having an internal volume of 200 mL equipped with a stirrer, a cooling tube and a burette. .1 mmol) and 10 g (72 mmol) of potassium carbonate were charged into 60 mL dimethylformamide, 5.0 g (40.6 mmol) of -2-chloroethyl acetate was added, and the reaction solution was stirred at 90 ° C. for 12 hours to carry out the reaction. .. Next, the reaction solution was cooled in an ice bath to precipitate crystals, and the crystals were separated by filtration. Subsequently, 30 g of the above-mentioned crystals, 30 g of methanol, 100 g of THF and a 24% aqueous sodium hydroxide solution were charged in a container having an internal volume of 500 mL equipped with a stirrer, a cooling tube and a burette, and the reaction solution was stirred under reflux for 4 hours to carry out the reaction. It was. Then, the mixture was cooled in an ice bath, the reaction solution was concentrated, the precipitated solid was filtered, dried, and then separated and purified by column chromatography to obtain 3 of the target compound (XBisN-F1-E) represented by the following formula. 0.0 g was obtained.
When the obtained compound was subjected to NMR measurement under the above measurement conditions, the following peaks were found, and it was confirmed that the compound had a chemical structure of the following formula (XBisN-F1-Ua).
1H-NMR (d6-DMSO): δ (ppm) 3.7 (4H, -CH2-), 4.3 (4H, -CH2-), 5.4 (2H, -OH), 6.7-8 .1 (18H, Ph-H, naphthyl-H).
攪拌機、冷却管及びビュレットを備えた内容積200mLの容器に合成実施例1で得られた化合物(XBisN-F1)7.0g(15.1mmol)と炭酸カリウム10g(72mmol)とを60mLジメチルホルムアミドに仕込み、酢酸-2-クロロエチル5.0g(40.6mmol)を加えて、反応液を90℃で12時間撹拌して反応を行った。次に反応液を氷浴で冷却し結晶を析出させ、濾過を行って分離した。続いて攪拌機、冷却管及びビュレットを備えた内容積500mLの容器に上述の結晶30g、メタノール30g、THF100g及び24%水酸化ナトリウム水溶液を仕込み、反応液を還流下で4時間撹拌して反応を行った。その後、氷浴で冷却し、反応液を濃縮し析出した固形物を濾過し、乾燥させた後、カラムクロマトによる分離精製を行い、下記式で示される目的化合物(XBisN-F1-E)が3.0g得られた。
得られた化合物について、前記測定条件でNMR測定を行ったところ、以下のピークが見出され、下記式(XBisN-F1-Ua)の化学構造を有することを確認した。
1H-NMR(d6-DMSO):δ(ppm)3.7(4H,-CH2-)、4.3(4H,-CH2-)、5.4(2H,-OH)、6.7~8.1(18H、Ph-H、ナフチル-H)。
When the obtained compound was subjected to NMR measurement under the above measurement conditions, the following peaks were found, and it was confirmed that the compound had a chemical structure of the following formula (XBisN-F1-Ua).
1H-NMR (d6-DMSO): δ (ppm) 3.7 (4H, -CH2-), 4.3 (4H, -CH2-), 5.4 (2H, -OH), 6.7-8 .1 (18H, Ph-H, naphthyl-H).
(合成実施例10)化合物(XBisN-F1-PX)の合成
攪拌機、冷却管及びビュレットを備えた内容積1000mLの容器に合成実施例1-1で得られた化合物(XBisN-F1)30g(65mmol)と、ヨードアニソール47.2g、炭酸セシウム87.5g、ジメチルグリシム塩酸塩1.4g、及びヨウ化銅0.5gとを400mL、1,4-ジオキサンに仕込み、95℃に加温して22時間撹拌して反応を行った。次に不溶分をろ別し、ろ液を濃縮し純水中に滴下して析出した固形物を濾過し、乾燥させた後、カラムクロマトによる分離精製を行い、下記式で表される中間体化合物(XBisN-F1-M)が16g得られた。
(Synthesis Example 10) Synthesis of compound (XBisN-F1-PX) 30 g (65 mmol) of the compound (XBisN-F1) obtained in Synthesis Example 1-1 in a container having an internal volume of 1000 mL equipped with a stirrer, a cooling tube and a burette. ), 47.2 g of iodoanisole, 87.5 g of cesium carbonate, 1.4 g of dimethylglycim hydrochloride, and 0.5 g of copper iodide were charged in 400 mL of 1,4-dioxane and heated to 95 ° C. The reaction was carried out with stirring for 22 hours. Next, the insoluble matter is filtered off, the filtrate is concentrated, dropped in pure water, the precipitated solid is filtered, dried, and then separated and purified by column chromatography. The intermediate represented by the following formula is obtained. 16 g of the compound (XBisN-F1-M) was obtained.
攪拌機、冷却管及びビュレットを備えた内容積1000mLの容器に合成実施例1-1で得られた化合物(XBisN-F1)30g(65mmol)と、ヨードアニソール47.2g、炭酸セシウム87.5g、ジメチルグリシム塩酸塩1.4g、及びヨウ化銅0.5gとを400mL、1,4-ジオキサンに仕込み、95℃に加温して22時間撹拌して反応を行った。次に不溶分をろ別し、ろ液を濃縮し純水中に滴下して析出した固形物を濾過し、乾燥させた後、カラムクロマトによる分離精製を行い、下記式で表される中間体化合物(XBisN-F1-M)が16g得られた。
次に、攪拌機、冷却管及びビュレットを備えた内容積1000mLの容器に上述の式(XBisN-F1-M)で表される化合物15gとピリジン塩酸塩80gを仕込み、190℃2時間撹拌して反応を行なった。次に温水160mLを追加し撹拌を行い、固体を析出させた。その後、酢酸エチル250mL、水100mLを加え撹拌、静置し、分液させた有機層を濃縮し、乾燥させた後、カラムクロマトによる分離精製を行い、下記式(XBisN-F1-PX)で表される目的化合物が7g得られた。
得られた化合物について、前記測定条件でNMR測定を行ったところ、以下のピークが見出され、下記式(XBisN-F1-PX)の化学構造を有することを確認した。
1H-NMR(d6-DMSO):δ(ppm)6.7~8.1(26H、Ph-H、ナフチル-H)9.1(2H,O-H)。
Next, 15 g of the compound represented by the above formula (XBisN-F1-M) and 80 g of pyridine hydrochloride were placed in a container having an internal volume of 1000 mL equipped with a stirrer, a cooling tube and a burette, and the mixture was stirred at 190 ° C. for 2 hours for reaction. Was done. Next, 160 mL of warm water was added and stirred to precipitate a solid. Then, 250 mL of ethyl acetate and 100 mL of water were added, stirred and allowed to stand, the separated organic layer was concentrated, dried, separated and purified by column chromatography, and represented by the following formula (XBisN-F1-PX). 7 g of the target compound to be used was obtained.
When the obtained compound was subjected to NMR measurement under the above measurement conditions, the following peaks were found, and it was confirmed that the compound had a chemical structure of the following formula (XBisN-F1-PX).
1H-NMR (d6-DMSO): δ (ppm) 6.7 to 8.1 (26H, Ph-H, naphthyl-H) 9.1 (2H, OH).
得られた化合物について、前記測定条件でNMR測定を行ったところ、以下のピークが見出され、下記式(XBisN-F1-PX)の化学構造を有することを確認した。
1H-NMR(d6-DMSO):δ(ppm)6.7~8.1(26H、Ph-H、ナフチル-H)9.1(2H,O-H)。
When the obtained compound was subjected to NMR measurement under the above measurement conditions, the following peaks were found, and it was confirmed that the compound had a chemical structure of the following formula (XBisN-F1-PX).
1H-NMR (d6-DMSO): δ (ppm) 6.7 to 8.1 (26H, Ph-H, naphthyl-H) 9.1 (2H, OH).
(合成実施例11)化合物(XBisN-F1-PE)の合成
上述の式(XBisN-F)で表される化合物の代わりに、上述の式(XBisN-F1-E)で表される化合物を用いたこと以外、合成実施例1-10と同様に反応させ、下記式(XBisN-F1-PE)で表される目的化合物を5g得た。
得られた化合物について、前記測定条件でNMR測定を行ったところ、以下のピークが見出され、下記式(XBisN-F1-PE)の化学構造を有することを確認した。
1H-NMR(d6-DMSO):δ(ppm)3.1(4H,-CH2-)、4.3(4H,-CH2-)、6.7~8.1(26H、Ph-H、ナフチル-H)、9.1(2H,O-H)。
(Synthesis Example 11) Synthesis of compound (XBisN-F1-PE) A compound represented by the above formula (XBisN-F1-E) is used instead of the compound represented by the above formula (XBisN-F). Except for the above, the reaction was carried out in the same manner as in Synthesis Example 1-10 to obtain 5 g of the target compound represented by the following formula (XBisN-F1-PE).
When the obtained compound was subjected to NMR measurement under the above-mentioned measurement conditions, the following peaks were found, and it was confirmed that the compound had a chemical structure of the following formula (XBisN-F1-PE).
1H-NMR (d6-DMSO): δ (ppm) 3.1 (4H, -CH 2- ), 4.3 (4H, -CH 2- ), 6.7 to 8.1 (26H, Ph-H) , Naftil-H), 9.1 (2H, OH).
上述の式(XBisN-F)で表される化合物の代わりに、上述の式(XBisN-F1-E)で表される化合物を用いたこと以外、合成実施例1-10と同様に反応させ、下記式(XBisN-F1-PE)で表される目的化合物を5g得た。
得られた化合物について、前記測定条件でNMR測定を行ったところ、以下のピークが見出され、下記式(XBisN-F1-PE)の化学構造を有することを確認した。
1H-NMR(d6-DMSO):δ(ppm)3.1(4H,-CH2-)、4.3(4H,-CH2-)、6.7~8.1(26H、Ph-H、ナフチル-H)、9.1(2H,O-H)。
When the obtained compound was subjected to NMR measurement under the above-mentioned measurement conditions, the following peaks were found, and it was confirmed that the compound had a chemical structure of the following formula (XBisN-F1-PE).
1H-NMR (d6-DMSO): δ (ppm) 3.1 (4H, -CH 2- ), 4.3 (4H, -CH 2- ), 6.7 to 8.1 (26H, Ph-H) , Naftil-H), 9.1 (2H, OH).
(合成実施例12)化合物(XBisN-F1-G)の合成
攪拌機、冷却管及びビュレットを備えた内容積100mlの容器に合成実施例1で得られた化合物(XBisN-F1)5.5g(11.8mmol)と炭酸カリウム3.7g(27mmol)とを100mlジメチルホルムアミドに加えた液を仕込み、さらにエピクロルヒドリン2.5g(27mmol)を加えて、得られた反応液を90℃で6.5時間撹拌して反応を行なった。次に反応液から固形分をろ過で除去し、氷浴で冷却し、結晶を析出させ、濾過し、乾燥させた後、カラムクロマトによる分離精製を行い、下記式(XBisN-F1-G)で表される目的化合物を1.5g得た。
得られた化合物について、前記測定条件でNMR測定を行ったところ、以下のピークが見出され、下記式(XBisN-F1-G)の化学構造を有することを確認した。
1H-NMR(d6-DMSO):δ(ppm)2.3~2.7(6H,-CH(CH2)O)、3.9~4.1(4H,-CH2-)、6.7~8.1(18H、Ph-H、ナフチル-H)。
(Synthesis Example 12) Synthesis of compound (XBisN-F1-G) 5.5 g (11) of the compound (XBisN-F1) obtained in Synthesis Example 1 in a container having an internal volume of 100 ml equipped with a stirrer, a cooling tube and a burette. .8 mmol) and 3.7 g (27 mmol) of potassium carbonate were added to 100 ml of dimethylformamide, and 2.5 g (27 mmol) of epichlorohydrin was further added, and the obtained reaction solution was stirred at 90 ° C. for 6.5 hours. And reacted. Next, the solid content is removed from the reaction solution by filtration, cooled in an ice bath, crystals are precipitated, filtered, dried, and then separated and purified by column chromatography, using the following formula (XBisN-F1-G). 1.5 g of the target compound represented was obtained.
When the obtained compound was subjected to NMR measurement under the above measurement conditions, the following peaks were found, and it was confirmed that the compound had a chemical structure of the following formula (XBisN-F1-G).
1H-NMR (d6-DMSO): δ (ppm) 2.3 to 2.7 (6H, -CH (CH2) O), 3.9 to 4.1 (4H, -CH2-), 6.7 to 8.1 (18H, Ph-H, naphthyl-H).
攪拌機、冷却管及びビュレットを備えた内容積100mlの容器に合成実施例1で得られた化合物(XBisN-F1)5.5g(11.8mmol)と炭酸カリウム3.7g(27mmol)とを100mlジメチルホルムアミドに加えた液を仕込み、さらにエピクロルヒドリン2.5g(27mmol)を加えて、得られた反応液を90℃で6.5時間撹拌して反応を行なった。次に反応液から固形分をろ過で除去し、氷浴で冷却し、結晶を析出させ、濾過し、乾燥させた後、カラムクロマトによる分離精製を行い、下記式(XBisN-F1-G)で表される目的化合物を1.5g得た。
得られた化合物について、前記測定条件でNMR測定を行ったところ、以下のピークが見出され、下記式(XBisN-F1-G)の化学構造を有することを確認した。
1H-NMR(d6-DMSO):δ(ppm)2.3~2.7(6H,-CH(CH2)O)、3.9~4.1(4H,-CH2-)、6.7~8.1(18H、Ph-H、ナフチル-H)。
When the obtained compound was subjected to NMR measurement under the above measurement conditions, the following peaks were found, and it was confirmed that the compound had a chemical structure of the following formula (XBisN-F1-G).
1H-NMR (d6-DMSO): δ (ppm) 2.3 to 2.7 (6H, -CH (CH2) O), 3.9 to 4.1 (4H, -CH2-), 6.7 to 8.1 (18H, Ph-H, naphthyl-H).
(合成実施例13)化合物(XBisN-F1-GE)の合成
前記式(XBisN-F1)で表される化合物の代わりに、前記式(XBisN-F1-E)で表される化合物を用いたこと以外、合成実施例12と同様に反応させ、下記式(XBisN-F1-GE)で表される目的化合物を1.6g得た。
得られた化合物について、前記測定条件でNMR測定を行ったところ、以下のピークが見出され、下記式(XBisN-F1-GE)の化学構造を有することを確認した。
1H-NMR(d6-DMSO):δ(ppm)2.3~2.7(6H,-CH(CH2)O)、3.9~4.3(12H,-CH2-)、6.7~8.1(18H、Ph-H、ナフチル-H)。
(Synthesis Example 13) Synthesis of compound (XBisN-F1-GE) A compound represented by the above formula (XBisN-F1-E) was used instead of the compound represented by the above formula (XBisN-F1). Except for the above, the reaction was carried out in the same manner as in Synthesis Example 12, and 1.6 g of the target compound represented by the following formula (XBisN-F1-GE) was obtained.
When the obtained compound was subjected to NMR measurement under the above measurement conditions, the following peaks were found, and it was confirmed that the compound had a chemical structure of the following formula (XBisN-F1-GE).
1H-NMR (d6-DMSO): δ (ppm) 2.3 to 2.7 (6H, -CH (CH2) O), 3.9 to 4.3 (12H, -CH2-), 6.7 to 8.1 (18H, Ph-H, naphthyl-H).
前記式(XBisN-F1)で表される化合物の代わりに、前記式(XBisN-F1-E)で表される化合物を用いたこと以外、合成実施例12と同様に反応させ、下記式(XBisN-F1-GE)で表される目的化合物を1.6g得た。
得られた化合物について、前記測定条件でNMR測定を行ったところ、以下のピークが見出され、下記式(XBisN-F1-GE)の化学構造を有することを確認した。
1H-NMR(d6-DMSO):δ(ppm)2.3~2.7(6H,-CH(CH2)O)、3.9~4.3(12H,-CH2-)、6.7~8.1(18H、Ph-H、ナフチル-H)。
When the obtained compound was subjected to NMR measurement under the above measurement conditions, the following peaks were found, and it was confirmed that the compound had a chemical structure of the following formula (XBisN-F1-GE).
1H-NMR (d6-DMSO): δ (ppm) 2.3 to 2.7 (6H, -CH (CH2) O), 3.9 to 4.3 (12H, -CH2-), 6.7 to 8.1 (18H, Ph-H, naphthyl-H).
(合成実施例14)化合物(XBisN-F1-SX)の合成
攪拌機、冷却管及びビュレットを備えた内容積100mlの容器に合成実施例1で得られた化合物(XBisN-F1)5.5g(11.8mmol)とビニルベンジルクロライド(商品名CMS-P;セイミケミカル(株)製)3.8gとを50mlジメチルホルムアミドに仕込み、50℃に加温して撹拌した状態で、28質量%ナトリウムメトキシド(メタノール溶液)5.0gを滴下ロートより20分間かけて加えて、反応液を50℃で1時間撹拌して反応を行った。次に28質量%ナトリウムメトキシド(メタノール溶液)1.0gを加え、反応液を60℃加温して3時間撹拌し、さらに85質量%燐酸1.0gを加え、10分間撹拌した後、40℃まで冷却し、反応液を純水中に滴下して析出した固形物を濾過し、乾燥させた後、カラムクロマトによる分離精製を行い、下記式で表される目的化合物(XBisN-F1-SX)が1.5g得られた。
得られた化合物について、前記測定条件でNMR測定を行ったところ、以下のピークが見出され、下記式(XBisN-F1-SX)の化学構造を有することを確認した。
1H-NMR(d6-DMSO):δ(ppm)5.1~5.3(6H、-CH2-、-C=CH、C-H)、5.8(2H、-C=CH)、6.7~8.1(28H、-CH=C、Ph-H、ナフチル-H)。
(Synthesis Example 14) Synthesis of compound (XBisN-F1-SX) 5.5 g (11) of the compound (XBisN-F1) obtained in Synthesis Example 1 in a container having an internal volume of 100 ml equipped with a stirrer, a cooling tube and a burette. .8 mmol) and 3.8 g of vinylbenzyl chloride (trade name: CMS-P; manufactured by Seimi Chemical Co., Ltd.) were charged in 50 ml of dimethylformamide, heated to 50 ° C. and stirred, and 28% by mass of sodium methoxide. 5.0 g of (methanol solution) was added from the dropping funnel over 20 minutes, and the reaction solution was stirred at 50 ° C. for 1 hour to carry out the reaction. Next, 1.0 g of 28 mass% sodium methoxide (methanol solution) was added, the reaction solution was heated at 60 ° C. and stirred for 3 hours, and then 1.0 g of 85 mass% phosphoric acid was further added and stirred for 10 minutes, and then 40. After cooling to ℃, the reaction solution is dropped in pure water, the precipitated solid is filtered, dried, and then separated and purified by column chromatography, and the target compound (XBisN-F1-SX) represented by the following formula is performed. ) Was obtained in an amount of 1.5 g.
When the obtained compound was subjected to NMR measurement under the above measurement conditions, the following peaks were found, and it was confirmed that the compound had a chemical structure of the following formula (XBisN-F1-SX).
1H-NMR (d6-DMSO): δ (ppm) 5.1 to 5.3 (6H, -CH2-, -C = CH, CH), 5.8 (2H, -C = CH), 6 .7 to 8.1 (28H, -CH = C, Ph-H, naphthyl-H).
攪拌機、冷却管及びビュレットを備えた内容積100mlの容器に合成実施例1で得られた化合物(XBisN-F1)5.5g(11.8mmol)とビニルベンジルクロライド(商品名CMS-P;セイミケミカル(株)製)3.8gとを50mlジメチルホルムアミドに仕込み、50℃に加温して撹拌した状態で、28質量%ナトリウムメトキシド(メタノール溶液)5.0gを滴下ロートより20分間かけて加えて、反応液を50℃で1時間撹拌して反応を行った。次に28質量%ナトリウムメトキシド(メタノール溶液)1.0gを加え、反応液を60℃加温して3時間撹拌し、さらに85質量%燐酸1.0gを加え、10分間撹拌した後、40℃まで冷却し、反応液を純水中に滴下して析出した固形物を濾過し、乾燥させた後、カラムクロマトによる分離精製を行い、下記式で表される目的化合物(XBisN-F1-SX)が1.5g得られた。
得られた化合物について、前記測定条件でNMR測定を行ったところ、以下のピークが見出され、下記式(XBisN-F1-SX)の化学構造を有することを確認した。
1H-NMR(d6-DMSO):δ(ppm)5.1~5.3(6H、-CH2-、-C=CH、C-H)、5.8(2H、-C=CH)、6.7~8.1(28H、-CH=C、Ph-H、ナフチル-H)。
When the obtained compound was subjected to NMR measurement under the above measurement conditions, the following peaks were found, and it was confirmed that the compound had a chemical structure of the following formula (XBisN-F1-SX).
1H-NMR (d6-DMSO): δ (ppm) 5.1 to 5.3 (6H, -CH2-, -C = CH, CH), 5.8 (2H, -C = CH), 6 .7 to 8.1 (28H, -CH = C, Ph-H, naphthyl-H).
(合成実施例15)化合物(XBisN-F1-SE)の合成
前記式(XBisN-F1)で表される化合物の代わりに、前記式(XBisN-F1-E)で表される化合物を用いたこと以外、合成実施例14と同様に反応させ、下記式で表される目的化合物(XBisN-F1-SE)を1.6g得た。
得られた化合物について、前記測定条件でNMR測定を行ったところ、以下のピークが見出され、下記式(XBisN-F1-SE)の化学構造を有することを確認した。
1H-NMR(d6-DMSO):δ(ppm)3.8(4H、-CH2-)、4.3(4H、-CH2-)、4.8(4H、-CH2-)、5.3(2H、-C=CH)、5.8(2H、-C=CH)、6.7~8.1(28H、-CH=C、Ph-H、ナフチル-H)。
(Synthesis Example 15) Synthesis of compound (XBisN-F1-SE) A compound represented by the formula (XBisN-F1-E) was used instead of the compound represented by the formula (XBisN-F1). Except for the above, the reaction was carried out in the same manner as in Synthesis Example 14 to obtain 1.6 g of the target compound (XBisN-F1-SE) represented by the following formula.
When the obtained compound was subjected to NMR measurement under the above-mentioned measurement conditions, the following peaks were found, and it was confirmed that the compound had a chemical structure of the following formula (XBisN-F1-SE).
1H-NMR (d6-DMSO): δ (ppm) 3.8 (4H, -CH2-), 4.3 (4H, -CH2-), 4.8 (4H, -CH2-), 5.3 ( 2H, -C = CH), 5.8 (2H, -C = CH), 6.7 to 8.1 (28H, -CH = C, Ph-H, naphthyl-H).
前記式(XBisN-F1)で表される化合物の代わりに、前記式(XBisN-F1-E)で表される化合物を用いたこと以外、合成実施例14と同様に反応させ、下記式で表される目的化合物(XBisN-F1-SE)を1.6g得た。
得られた化合物について、前記測定条件でNMR測定を行ったところ、以下のピークが見出され、下記式(XBisN-F1-SE)の化学構造を有することを確認した。
1H-NMR(d6-DMSO):δ(ppm)3.8(4H、-CH2-)、4.3(4H、-CH2-)、4.8(4H、-CH2-)、5.3(2H、-C=CH)、5.8(2H、-C=CH)、6.7~8.1(28H、-CH=C、Ph-H、ナフチル-H)。
When the obtained compound was subjected to NMR measurement under the above-mentioned measurement conditions, the following peaks were found, and it was confirmed that the compound had a chemical structure of the following formula (XBisN-F1-SE).
1H-NMR (d6-DMSO): δ (ppm) 3.8 (4H, -CH2-), 4.3 (4H, -CH2-), 4.8 (4H, -CH2-), 5.3 ( 2H, -C = CH), 5.8 (2H, -C = CH), 6.7 to 8.1 (28H, -CH = C, Ph-H, naphthyl-H).
(合成実施例16)化合物(XBisN-F1-Pr)の合成
攪拌機、冷却管及びビュレットを備えた内容積300mLの容器において、合成実施例1-1で得られた化合物(XBisN-F1)5.5g(11.8mmol)とプロパギルブロミド4.8g(40mmol)とを100mLのジメチルホルムアミドに仕込み、室温で3時間撹拌して反応を行って反応液を得た。次に反応液を濃縮し、濃縮液に純水300gを加えて反応生成物を析出させ、室温まで冷却した後、濾過を行って固形物を分離した。
得られた固形物を濾過し、乾燥させた後、カラムクロマトによる分離精製を行うことで、下記式で表される目的化合物(XBisN-F1-Pr)を2.7g得た。
得られた化合物について、前記測定条件でNMR測定を行ったところ、以下のピークが見出され、下記式(XBisN-F1-Pr)の化学構造を有することを確認した。
1H-NMR(d6-DMSO):δ(ppm)3.5(2H,≡CH)、4.7(4H,-CH2-)、6.7~8.1(18H、Ph-H、ナフチル-H)。
(Synthesis Example 16) Synthesis of compound (XBisN-F1-Pr) Compound (XBisN-F1) obtained in Synthesis Example 1-1 in a container having an internal volume of 300 mL equipped with a stirrer, a cooling tube and a burette. 5 g (11.8 mmol) and 4.8 g (40 mmol) of propagil bromide were charged in 100 mL of dimethylformamide, and the mixture was stirred at room temperature for 3 hours to carry out a reaction to obtain a reaction solution. Next, the reaction solution was concentrated, and 300 g of pure water was added to the concentrated solution to precipitate a reaction product, which was cooled to room temperature and then filtered to separate the solid substance.
The obtained solid was filtered, dried, and then separated and purified by column chromatography to obtain 2.7 g of the target compound (XBisN-F1-Pr) represented by the following formula.
When the obtained compound was subjected to NMR measurement under the above-mentioned measurement conditions, the following peaks were found, and it was confirmed that the compound had a chemical structure of the following formula (XBisN-F1-Pr).
1H-NMR (d6-DMSO): δ (ppm) 3.5 (2H, ≡ CH), 4.7 (4H, -CH2-), 6.7 to 8.1 (18H, Ph-H, naphthyl- H).
攪拌機、冷却管及びビュレットを備えた内容積300mLの容器において、合成実施例1-1で得られた化合物(XBisN-F1)5.5g(11.8mmol)とプロパギルブロミド4.8g(40mmol)とを100mLのジメチルホルムアミドに仕込み、室温で3時間撹拌して反応を行って反応液を得た。次に反応液を濃縮し、濃縮液に純水300gを加えて反応生成物を析出させ、室温まで冷却した後、濾過を行って固形物を分離した。
得られた固形物を濾過し、乾燥させた後、カラムクロマトによる分離精製を行うことで、下記式で表される目的化合物(XBisN-F1-Pr)を2.7g得た。
得られた化合物について、前記測定条件でNMR測定を行ったところ、以下のピークが見出され、下記式(XBisN-F1-Pr)の化学構造を有することを確認した。
1H-NMR(d6-DMSO):δ(ppm)3.5(2H,≡CH)、4.7(4H,-CH2-)、6.7~8.1(18H、Ph-H、ナフチル-H)。
The obtained solid was filtered, dried, and then separated and purified by column chromatography to obtain 2.7 g of the target compound (XBisN-F1-Pr) represented by the following formula.
When the obtained compound was subjected to NMR measurement under the above-mentioned measurement conditions, the following peaks were found, and it was confirmed that the compound had a chemical structure of the following formula (XBisN-F1-Pr).
1H-NMR (d6-DMSO): δ (ppm) 3.5 (2H, ≡ CH), 4.7 (4H, -CH2-), 6.7 to 8.1 (18H, Ph-H, naphthyl- H).
(合成比較例1)C-1の合成
ジムロート冷却管、温度計及び攪拌翼を備え、底抜きが可能な内容積10Lの四つ口フラスコを準備した。この四つ口フラスコに、窒素気流中、1,5-ジメチルナフタレン1.09kg(7mol、三菱ガス化学株式会社製)、40質量%ホルマリン水溶液2.1kg(ホルムアルデヒドとして28mol、三菱ガス化学株式会社製)及び98質量%硫酸(関東化学株式会社製)0.97mLを仕込み、常圧下、100℃で還流させながら7時間反応させた。その後、希釈溶媒としてエチルベンゼン(和光純薬工業株式会社製、試薬特級)1.8kgを反応液に加え、静置後、下相の水相を除去した。さらに、中和及び水洗を行い、エチルベンゼン及び未反応の1,5-ジメチルナフタレンを減圧下で留去することにより、淡褐色固体のジメチルナフタレンホルムアルデヒド樹脂1.25kgを得た。得られたジメチルナフタレンホルムアルデヒド樹脂の分子量は、数平均分子量(Mn):562、重量平均分子量(Mw):1168、分散度(Mw/Mn):2.08であった。 (Synthetic Comparative Example 1) Synthesis of C-1 A four-necked flask having an internal volume of 10 L equipped with a Dimroth condenser, a thermometer, and a stirring blade was prepared. In this four-necked flask, 1.09 kg of 1,5-dimethylnaphthalene (7 mol, manufactured by Mitsubishi Gas Chemical Co., Inc.) and 2.1 kg of 40 mass% formalin aqueous solution (28 mol as formaldehyde, manufactured by Mitsubishi Gas Chemical Co., Inc.) in a nitrogen stream. ) And 0.97 mL of 98 mass% formaldehyde (manufactured by Kanto Chemical Co., Inc.) were charged and reacted for 7 hours under normal pressure while refluxing at 100 ° C. Then, 1.8 kg of ethylbenzene (manufactured by Wako Pure Chemical Industries, Ltd., special grade reagent) was added to the reaction solution as a diluting solvent, and after standing, the aqueous phase of the lower phase was removed. Further, the mixture was neutralized and washed with water, and ethylbenzene and unreacted 1,5-dimethylnaphthalene were distilled off under reduced pressure to obtain 1.25 kg of a light brown solid dimethylnaphthalene formaldehyde resin. The molecular weight of the obtained dimethylnaphthalene formaldehyde resin was number average molecular weight (Mn): 562, weight average molecular weight (Mw): 1168, and dispersity (Mw / Mn): 2.08.
ジムロート冷却管、温度計及び攪拌翼を備え、底抜きが可能な内容積10Lの四つ口フラスコを準備した。この四つ口フラスコに、窒素気流中、1,5-ジメチルナフタレン1.09kg(7mol、三菱ガス化学株式会社製)、40質量%ホルマリン水溶液2.1kg(ホルムアルデヒドとして28mol、三菱ガス化学株式会社製)及び98質量%硫酸(関東化学株式会社製)0.97mLを仕込み、常圧下、100℃で還流させながら7時間反応させた。その後、希釈溶媒としてエチルベンゼン(和光純薬工業株式会社製、試薬特級)1.8kgを反応液に加え、静置後、下相の水相を除去した。さらに、中和及び水洗を行い、エチルベンゼン及び未反応の1,5-ジメチルナフタレンを減圧下で留去することにより、淡褐色固体のジメチルナフタレンホルムアルデヒド樹脂1.25kgを得た。得られたジメチルナフタレンホルムアルデヒド樹脂の分子量は、数平均分子量(Mn):562、重量平均分子量(Mw):1168、分散度(Mw/Mn):2.08であった。 (Synthetic Comparative Example 1) Synthesis of C-1 A four-necked flask having an internal volume of 10 L equipped with a Dimroth condenser, a thermometer, and a stirring blade was prepared. In this four-necked flask, 1.09 kg of 1,5-dimethylnaphthalene (7 mol, manufactured by Mitsubishi Gas Chemical Co., Inc.) and 2.1 kg of 40 mass% formalin aqueous solution (28 mol as formaldehyde, manufactured by Mitsubishi Gas Chemical Co., Inc.) in a nitrogen stream. ) And 0.97 mL of 98 mass% formaldehyde (manufactured by Kanto Chemical Co., Inc.) were charged and reacted for 7 hours under normal pressure while refluxing at 100 ° C. Then, 1.8 kg of ethylbenzene (manufactured by Wako Pure Chemical Industries, Ltd., special grade reagent) was added to the reaction solution as a diluting solvent, and after standing, the aqueous phase of the lower phase was removed. Further, the mixture was neutralized and washed with water, and ethylbenzene and unreacted 1,5-dimethylnaphthalene were distilled off under reduced pressure to obtain 1.25 kg of a light brown solid dimethylnaphthalene formaldehyde resin. The molecular weight of the obtained dimethylnaphthalene formaldehyde resin was number average molecular weight (Mn): 562, weight average molecular weight (Mw): 1168, and dispersity (Mw / Mn): 2.08.
続いて、ジムロート冷却管、温度計及び攪拌翼を備えた内容積0.5Lの四つ口フラスコを準備した。この四つ口フラスコに、窒素気流下で、前記のようにして得られたジメチルナフタレンホルムアルデヒド樹脂100g(0.51mol)とp-トルエンスルホン酸0.05gとを仕込み、190℃まで昇温させて2時間加熱した後、攪拌した。その後さらに、1-ナフトール52.0g(0.36mol)を加え、さらに220℃まで昇温させて2時間反応させた。溶剤希釈後、中和及び水洗を行い、溶剤を減圧下で除去することにより、黒褐色固体の樹脂(C-1)126.1gを得た。
得られた樹脂(C-1)は、Mn:885、Mw:2220、Mw/Mn:2.51であった。 Subsequently, a four-necked flask having an internal volume of 0.5 L equipped with a Dimroth condenser, a thermometer and a stirring blade was prepared. In this four-necked flask, 100 g (0.51 mol) of the dimethylnaphthalene formaldehyde resin obtained as described above and 0.05 g of p-toluenesulfonic acid were charged under a nitrogen stream, and the temperature was raised to 190 ° C. After heating for 2 hours, the mixture was stirred. After that, 52.0 g (0.36 mol) of 1-naphthol was further added, the temperature was further raised to 220 ° C., and the reaction was carried out for 2 hours. After diluting the solvent, it was neutralized and washed with water, and the solvent was removed under reduced pressure to obtain 126.1 g of a dark brown solid resin (C-1).
The obtained resin (C-1) was Mn: 885, Mw: 2220, and Mw / Mn: 2.51.
得られた樹脂(C-1)は、Mn:885、Mw:2220、Mw/Mn:2.51であった。 Subsequently, a four-necked flask having an internal volume of 0.5 L equipped with a Dimroth condenser, a thermometer and a stirring blade was prepared. In this four-necked flask, 100 g (0.51 mol) of the dimethylnaphthalene formaldehyde resin obtained as described above and 0.05 g of p-toluenesulfonic acid were charged under a nitrogen stream, and the temperature was raised to 190 ° C. After heating for 2 hours, the mixture was stirred. After that, 52.0 g (0.36 mol) of 1-naphthol was further added, the temperature was further raised to 220 ° C., and the reaction was carried out for 2 hours. After diluting the solvent, it was neutralized and washed with water, and the solvent was removed under reduced pressure to obtain 126.1 g of a dark brown solid resin (C-1).
The obtained resin (C-1) was Mn: 885, Mw: 2220, and Mw / Mn: 2.51.
[実施例1~21、比較例1]
合成実施例1~16と合成比較例1の化合物又は樹脂を使用し、下記表1に示す組成の光学部品形成用組成物を各々調整した。酸発生剤、架橋剤及び有機溶媒については以下のものを用いた。
酸発生剤:ジtert-ブチルジフェニルヨードニウムノナフルオロメタンスルホナート(以下、「DTDPI」ともいう。)(みどり化学株式会社製)
架橋剤:「ニカラックMX270」(以下、「MX270」ともいう。)(製品名、三和ケミカル株式会社製)
有機溶媒:プロピレングリコールモノメチルエーテル(PGME) [Examples 1 to 21, Comparative Example 1]
Using the compounds or resins of Synthesis Examples 1 to 16 and Synthesis Comparative Example 1, the compositions for forming optical components having the compositions shown in Table 1 below were prepared. The following were used as the acid generator, the cross-linking agent and the organic solvent.
Acid generator: Ditert-butyldiphenyliodonium nonafluoromethanesulfonate (hereinafter, also referred to as "DTDPI") (manufactured by Midori Chemical Co., Ltd.)
Crosslinking agent: "Nicarax MX270" (hereinafter, also referred to as "MX270") (Product name, manufactured by Sanwa Chemical Co., Ltd.)
Organic solvent: Propylene glycol monomethyl ether (PGME)
合成実施例1~16と合成比較例1の化合物又は樹脂を使用し、下記表1に示す組成の光学部品形成用組成物を各々調整した。酸発生剤、架橋剤及び有機溶媒については以下のものを用いた。
酸発生剤:ジtert-ブチルジフェニルヨードニウムノナフルオロメタンスルホナート(以下、「DTDPI」ともいう。)(みどり化学株式会社製)
架橋剤:「ニカラックMX270」(以下、「MX270」ともいう。)(製品名、三和ケミカル株式会社製)
有機溶媒:プロピレングリコールモノメチルエーテル(PGME) [Examples 1 to 21, Comparative Example 1]
Using the compounds or resins of Synthesis Examples 1 to 16 and Synthesis Comparative Example 1, the compositions for forming optical components having the compositions shown in Table 1 below were prepared. The following were used as the acid generator, the cross-linking agent and the organic solvent.
Acid generator: Ditert-butyldiphenyliodonium nonafluoromethanesulfonate (hereinafter, also referred to as "DTDPI") (manufactured by Midori Chemical Co., Ltd.)
Crosslinking agent: "Nicarax MX270" (hereinafter, also referred to as "MX270") (Product name, manufactured by Sanwa Chemical Co., Ltd.)
Organic solvent: Propylene glycol monomethyl ether (PGME)
[評価方法]
(1)化合物又は樹脂の安全溶媒溶解度試験
化合物又は樹脂のPGME、PGMEA及びCHNへの溶解性は、各溶媒への溶解量を用いて以下の基準で評価した。なお、溶解量の測定は23℃にて、化合物又は樹脂を単独で試験管に精秤し、対象となる溶媒を所定の濃度となるよう加え、超音波洗浄機にて30分間超音波をかけ、その後の液の状態を目視にて観察することにより測定した。
A:5.0質量% ≦ 溶解量
B:2.0質量%≦ 溶解量 <5.0質量%
C:溶解量 <2.0質量% [Evaluation methods]
(1) Safe solvent solubility test of compound or resin The solubility of the compound or resin in PGME, PGMEA and CHN was evaluated according to the following criteria using the amount of solubility in each solvent. The amount of dissolution was measured at 23 ° C. by precisely weighing the compound or resin alone in a test tube, adding the target solvent to a predetermined concentration, and applying ultrasonic waves for 30 minutes with an ultrasonic cleaner. After that, it was measured by visually observing the state of the liquid.
A: 5.0% by mass ≤ dissolution amount B: 2.0% by mass ≤ dissolution amount <5.0% by mass
C: Soluble amount <2.0% by mass
(1)化合物又は樹脂の安全溶媒溶解度試験
化合物又は樹脂のPGME、PGMEA及びCHNへの溶解性は、各溶媒への溶解量を用いて以下の基準で評価した。なお、溶解量の測定は23℃にて、化合物又は樹脂を単独で試験管に精秤し、対象となる溶媒を所定の濃度となるよう加え、超音波洗浄機にて30分間超音波をかけ、その後の液の状態を目視にて観察することにより測定した。
A:5.0質量% ≦ 溶解量
B:2.0質量%≦ 溶解量 <5.0質量%
C:溶解量 <2.0質量% [Evaluation methods]
(1) Safe solvent solubility test of compound or resin The solubility of the compound or resin in PGME, PGMEA and CHN was evaluated according to the following criteria using the amount of solubility in each solvent. The amount of dissolution was measured at 23 ° C. by precisely weighing the compound or resin alone in a test tube, adding the target solvent to a predetermined concentration, and applying ultrasonic waves for 30 minutes with an ultrasonic cleaner. After that, it was measured by visually observing the state of the liquid.
A: 5.0% by mass ≤ dissolution amount B: 2.0% by mass ≤ dissolution amount <5.0% by mass
C: Soluble amount <2.0% by mass
(2)光学部品形成用組成物の保存安定性及び薄膜形成
化合物を含む光学部品形成用組成物の保存安定性は、光学部品形成用組成物を作製後、23℃にて3日間静置し、析出の有無を目視にて観察することにより評価した。また、光学部品形成用組成物を、清浄なシリコンウェハー上に回転塗布した後、110℃のホットプレート上で露光前ベーク(PB)して、厚さ50nmのレジスト膜を形成した。作製した光学部品形成用組成物について、均一溶液であり薄膜形成が良好な場合には○、均一溶液だが薄膜に欠陥がある場合には△、析出がある場合は×と評価した。 (2) Storage stability of the composition for forming an optical component and the storage stability of the composition for forming an optical component containing a thin film forming compound are maintained at 23 ° C. for 3 days after the composition for forming an optical component is prepared. , The presence or absence of precipitation was evaluated by visually observing. Further, the composition for forming an optical component was rotationally coated on a clean silicon wafer and then baked (PB) before exposure on a hot plate at 110 ° C. to form a resist film having a thickness of 50 nm. The prepared composition for forming optical components was evaluated as ◯ when it was a uniform solution and the thin film formation was good, Δ when it was a uniform solution but the thin film had defects, and × when there was precipitation.
化合物を含む光学部品形成用組成物の保存安定性は、光学部品形成用組成物を作製後、23℃にて3日間静置し、析出の有無を目視にて観察することにより評価した。また、光学部品形成用組成物を、清浄なシリコンウェハー上に回転塗布した後、110℃のホットプレート上で露光前ベーク(PB)して、厚さ50nmのレジスト膜を形成した。作製した光学部品形成用組成物について、均一溶液であり薄膜形成が良好な場合には○、均一溶液だが薄膜に欠陥がある場合には△、析出がある場合は×と評価した。 (2) Storage stability of the composition for forming an optical component and the storage stability of the composition for forming an optical component containing a thin film forming compound are maintained at 23 ° C. for 3 days after the composition for forming an optical component is prepared. , The presence or absence of precipitation was evaluated by visually observing. Further, the composition for forming an optical component was rotationally coated on a clean silicon wafer and then baked (PB) before exposure on a hot plate at 110 ° C. to form a resist film having a thickness of 50 nm. The prepared composition for forming optical components was evaluated as ◯ when it was a uniform solution and the thin film formation was good, Δ when it was a uniform solution but the thin film had defects, and × when there was precipitation.
(3)屈折率及び透明性試験
[屈折率及び透明性試験]
光学部品形成用組成物を、膜厚300nmのSiO2基板上に塗布して、260℃で300秒間ベークすることにより、膜厚100nmの光学部品用膜を形成した。かかる光学部品用膜に対し、以下の方法で屈折率及び透明性を評価した。すなわち、真空紫外域多入射角分光エリプソメーター(製品名「M-2000DI-YK」、ジェー・エー・ウーラム・ジャパン株式会社製)を用いて、633nmの波長における屈折率及び透明性試験を行い、以下の基準に従って屈折率及び透明性を評価した。
(屈折率の評価基準)
S:屈折率が1.70以上
A:屈折率が1.60以上、1.70未満
C:屈折率が1.60未満
(透明性の評価基準)
A:消衰係数が0.03未満
C:消衰係数が0.03以上 (3) Refractive index and transparency test [Refractive index and transparency test]
The composition for forming an optical component was applied onto a SiO 2 substrate having a film thickness of 300 nm and baked at 260 ° C. for 300 seconds to form a film for an optical component having a film thickness of 100 nm. The refractive index and transparency of the film for optical components were evaluated by the following methods. That is, using a vacuum ultraviolet multi-incident angle spectroscopic ellipsometer (product name "M-2000DI-YK", manufactured by JA Woolam Japan Co., Ltd.), a refractive index and transparency test at a wavelength of 633 nm were performed. The refractive index and transparency were evaluated according to the following criteria.
(Evaluation criteria for refractive index)
S: Refractive index is 1.70 or more A: Refractive index is 1.60 or more and less than 1.70 C: Refractive index is less than 1.60 (transparency evaluation standard)
A: Extinction coefficient is less than 0.03 C: Extinction coefficient is 0.03 or more
[屈折率及び透明性試験]
光学部品形成用組成物を、膜厚300nmのSiO2基板上に塗布して、260℃で300秒間ベークすることにより、膜厚100nmの光学部品用膜を形成した。かかる光学部品用膜に対し、以下の方法で屈折率及び透明性を評価した。すなわち、真空紫外域多入射角分光エリプソメーター(製品名「M-2000DI-YK」、ジェー・エー・ウーラム・ジャパン株式会社製)を用いて、633nmの波長における屈折率及び透明性試験を行い、以下の基準に従って屈折率及び透明性を評価した。
(屈折率の評価基準)
S:屈折率が1.70以上
A:屈折率が1.60以上、1.70未満
C:屈折率が1.60未満
(透明性の評価基準)
A:消衰係数が0.03未満
C:消衰係数が0.03以上 (3) Refractive index and transparency test [Refractive index and transparency test]
The composition for forming an optical component was applied onto a SiO 2 substrate having a film thickness of 300 nm and baked at 260 ° C. for 300 seconds to form a film for an optical component having a film thickness of 100 nm. The refractive index and transparency of the film for optical components were evaluated by the following methods. That is, using a vacuum ultraviolet multi-incident angle spectroscopic ellipsometer (product name "M-2000DI-YK", manufactured by JA Woolam Japan Co., Ltd.), a refractive index and transparency test at a wavelength of 633 nm were performed. The refractive index and transparency were evaluated according to the following criteria.
(Evaluation criteria for refractive index)
S: Refractive index is 1.70 or more A: Refractive index is 1.60 or more and less than 1.70 C: Refractive index is less than 1.60 (transparency evaluation standard)
A: Extinction coefficient is less than 0.03 C: Extinction coefficient is 0.03 or more
上記の評価結果を表2に併せて示す。
The above evaluation results are also shown in Table 2.
以上より明らかなように、化合物(0)及び樹脂(6)は、光学部品形成材料として、有機溶媒に対する溶解性、保存安定性、膜形成に問題がなく、屈折率、及び透明性を高い次元で両立するものといえる。すなわち、本実施形態の光学部品形成用組成物は、光学部品膜形成材料として有用である。
As is clear from the above, the compound (0) and the resin (6) have no problems in solubility in an organic solvent, storage stability, and film formation as optical component forming materials, and have a high refractive index and transparency. It can be said that they are compatible with each other. That is, the optical component forming composition of the present embodiment is useful as an optical component film forming material.
本出願は、2019年4月26日に日本国特許庁へ出願された日本特許出願(特願2019-085938)に基づくものであり、それらの内容はここに参照として取り込まれる。
This application is based on a Japanese patent application (Japanese Patent Application No. 2019-085938) filed with the Japan Patent Office on April 26, 2019, and the contents thereof are incorporated herein by reference.
本発明の化合物及び/又は樹脂を含む光学部品形成用組成物は、光学部品の形成用途において、広く且つ有効に利用可能である。したがって、本発明は、例えば、フィルム状、シート状の部品、プリズムレンズ、レンチキュラーレンズ、マイクロレンズ、フレネルレンズ、視野角制御レンズ、コントラスト向上レンズ等のプラスチックレンズ、位相差フィルム、電磁波シールド用フィルム、プリズム、光ファイバー、フレキシブルプリント配線用ソルダーレジスト、メッキレジスト、多層プリント配線板用層間絶縁膜、感光性光導波路、液晶ディスプレイ、有機エレクトロルミネッセンス(EL)ディスプレイ、光半導体(LED)素子、固体撮像素子、有機薄膜太陽電池、色素増感太陽電池、有機薄膜トランジスタ(TFT)が挙げられる。化合物(1)は、特に高屈折率が求められている固体撮像素子の部材であるフォトダイオード上の埋め込み膜及び平坦化膜、カラーフィルター前後の平坦化膜、マイクロレンズ、マイクロレンズ上の平坦化膜及びコンフォーマル膜の形成材料等において、広く且つ有効に利用可能である。
The composition for forming an optical component containing the compound and / or resin of the present invention can be widely and effectively used in the application for forming an optical component. Therefore, according to the present invention, for example, a film-shaped or sheet-shaped component, a prism lens, a lenticular lens, a microlens, a Fresnel lens, a viewing angle control lens, a plastic lens such as a contrast improving lens, a retardation film, an electromagnetic wave shielding film, Prism, optical fiber, solder resist for flexible printed wiring, plating resist, interlayer insulating film for multilayer printed wiring board, photosensitive optical waveguide, liquid crystal display, organic electroluminescence (EL) display, optical semiconductor (LED) element, solid-state imaging element, Examples include organic thin film transistors, dye-sensitized solar cells, and organic thin film transistors (TFTs). The compound (1) is an embedded film and a flattening film on a photodiode, which is a member of a solid-state image sensor for which a particularly high refractive index is required, a flattening film before and after a color filter, a microlens, and a flattening on a microlens. It can be widely and effectively used in films and materials for forming conformal films.
Claims (12)
- 下記式(0)で表される化合物を含む、光学部品形成用組成物。
Xは、酸素原子、硫黄原子又は無架橋であることを表し、
R0は、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボキシル基、架橋性基、解離性基、チオール基、又は水酸基であり、ここで、R0の少なくとも1つは、水酸基、架橋性基又は解離性基であり、さらに、R0における前記アルキル基、前記アリール基、前記アルケニル基、前記アルキニル基及び前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、
R2は、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボキシル基、架橋性基、解離性基、チオール基又は水酸基であり、ここで、R2における前記アルキル基、前記アリール基、前記アルケニル基、前記アルキニル基及び前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、
n1は、各々独立して、1~2の整数であり、
n0は、各々独立して、0~(4+2n1)の整数であり、ここで、n0の少なくとも1つは1~(4+2n1)であり、
n4は、各々独立して、0~1の整数であり、
n5は、各々独立して、0~(4+2n4)の整数である。) A composition for forming an optical component, which comprises a compound represented by the following formula (0).
X represents an oxygen atom, a sulfur atom or no crosslink.
Each of R 0 independently has an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, and a substituent. An alkenyl group having 2 to 30 carbon atoms which may be present, an alkynyl group having 2 to 30 carbon atoms which may have a substituent, an alkoxy group having 1 to 30 carbon atoms which may have a substituent, and a halogen. It is an atom, a nitro group, an amino group, a carboxyl group, a crosslinkable group, a dissociable group, a thiol group, or a hydroxyl group, wherein at least one of R 0 is a hydroxyl group, a crosslinkable group, or a dissociable group. Further, the alkyl group, the aryl group, the alkenyl group, the alkynyl group and the alkoxy group at R0 may contain an ether bond, a ketone bond or an ester bond.
Each of R 2 independently has an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, and a substituent. An alkenyl group having 2 to 30 carbon atoms which may be present, an alkynyl group having 2 to 30 carbon atoms which may have a substituent, an alkoxy group having 1 to 30 carbon atoms which may have a substituent, and a halogen. atom, a nitro group, an amino group, a carboxyl group, a crosslinkable group, dissociative group, a thiol group or a hydroxyl group, wherein said at R 2 alkyl group, the aryl group, the alkenyl group, the alkynyl group and the alkoxy The group may contain an ether bond, a ketone bond or an ester bond.
n 1 is an integer of 1 to 2 independently of each other.
n 0 is independently an integer from 0 to (4 + 2n 1 ), where at least one of n 0 is 1 to (4 + 2n 1 ).
n 4 is an integer of 0 to 1 independently of each other.
n 5 is an integer from 0 to (4 + 2n 4 ) independently of each other. ) - 前記式(0)で表される化合物が、下記式(1)で表される、請求項1に記載の光学部品形成用組成物。
X、R2、n1、n4及びn5は、前記式(0)と同義であり、
Rは、各々独立して、水素原子、置換基を有していてもよい炭素数1~30の直鎖状アルキル基、置換基を有していてもよい炭素数3~30の分岐状若しくは環状アルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数2~20のアルキニル基、架橋性基又は解離性基であり、ここで、Rの少なくとも1つは水素原子、架橋性基又は解離性基であり、
R1は、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボキシル基又はチオール基であり、ここで、前記アルキル基、前記アリール基、前記アルケニル基、前記アルキニル基及び前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、
n2は、各々独立して、1~(4+2n1)の整数であり、
n3は、各々独立して、0~(4+2n1-n2)の整数である。) The composition for forming an optical component according to claim 1, wherein the compound represented by the formula (0) is represented by the following formula (1).
X, R 2 , n 1 , n 4 and n 5 are synonymous with the above equation (0).
R is independently a hydrogen atom, a linear alkyl group having 1 to 30 carbon atoms which may have a substituent, a branched form having 3 to 30 carbon atoms which may have a substituent, or A cyclic alkyl group, an aryl group having 6 to 30 carbon atoms which may have a substituent, an alkenyl group which may have a substituent and may have 2 to 20 carbon atoms, and a carbon which may have a substituent. The number 2 to 20 is an alkynyl group, a crosslinkable group or a dissociable group, wherein at least one of R is a hydrogen atom, a crosslinkable group or a dissociable group.
Each of R 1 independently has an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, and a substituent. An alkenyl group having 2 to 30 carbon atoms which may be present, an alkynyl group having 2 to 30 carbon atoms which may have a substituent, an alkoxy group having 1 to 30 carbon atoms which may have a substituent, and a halogen. It is an atomic, nitro group, amino group, carboxyl group or thiol group, wherein the alkyl group, the aryl group, the alkenyl group, the alkynyl group and the alkoxy group contain an ether bond, a ketone bond or an ester bond. You can be
n 2 is an integer from 1 to (4 + 2n 1 ) independently of each other.
n 3 is an integer from 0 to (4 + 2n 1 −n 2 ) independently of each other. ) - 前記式(1)で表される化合物が、下記式(2)で表される、請求項2に記載の光学部品形成用組成物。
n2は、各々独立して、1~6の整数であり、
n3は、各々独立して、0~(6-n2)の整数である。) The composition for forming an optical component according to claim 2, wherein the compound represented by the formula (1) is represented by the following formula (2).
n 2 is an integer of 1 to 6 independently of each other.
n 3 is an integer from 0 to (6-n 2 ) independently of each other. ) - 前記式(1)で表される化合物が、下記式(3)で表される、請求項2に記載の光学部品形成用組成物。
n3は、各々独立して、0~5の整数である。) The composition for forming an optical component according to claim 2, wherein the compound represented by the formula (1) is represented by the following formula (3).
n 3 is an integer of 0 to 5 independently of each other. ) - 前記式(1)で表される化合物が、下記式(4)で表される、請求項2に記載の光学部品形成用組成物。
n5は各々独立して0~4の整数である。) The composition for forming an optical component according to claim 2, wherein the compound represented by the formula (1) is represented by the following formula (4).
n 5 is an integer of 0 to 4 independently. ) - 前記式(1)で表される化合物が、下記式(5)で表される、請求項2に記載の光学部品形成用組成物。
n3は各々独立して0~5の整数であり、
n5は各々独立して0~4の整数である。) The composition for forming an optical component according to claim 2, wherein the compound represented by the formula (1) is represented by the following formula (5).
n 3 are independently integers from 0 to 5 and
n 5 is an integer of 0 to 4 independently. ) - 下記式(0)で表される化合物に由来する構成単位を有する樹脂を含む、光学部品形成用組成物。
Xは、酸素原子、硫黄原子又は無架橋であることを表し、
R0は、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボキシル基、架橋性基、解離性基、チオール基、又は水酸基であり、ここで、R0の少なくとも1つは、水酸基、架橋性基又は解離性基であり、さらに、R0における前記アルキル基、前記アリール基、前記アルケニル基、前記アルキニル基及び前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、
R2は、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボキシル基、架橋性基、解離性基、チオール基又は水酸基であり、ここで、R2における前記アルキル基、前記アリール基、前記アルケニル基、前記アルキニル基及び前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、
n1は、各々独立して、1~2の整数であり、
n0は、各々独立して、0~(4+2n1)の整数であり、ここで、n0の少なくとも1つは1~(4+2n1)であり、
n4は、各々独立して、0~1の整数であり、
n5は、各々独立して、0~(4+2n4)の整数である。) A composition for forming an optical component, which comprises a resin having a structural unit derived from a compound represented by the following formula (0).
X represents an oxygen atom, a sulfur atom or no crosslink.
Each of R 0 independently has an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, and a substituent. An alkenyl group having 2 to 30 carbon atoms which may be present, an alkynyl group having 2 to 30 carbon atoms which may have a substituent, an alkoxy group having 1 to 30 carbon atoms which may have a substituent, and a halogen. It is an atom, a nitro group, an amino group, a carboxyl group, a crosslinkable group, a dissociable group, a thiol group, or a hydroxyl group, wherein at least one of R 0 is a hydroxyl group, a crosslinkable group, or a dissociable group. Further, the alkyl group, the aryl group, the alkenyl group, the alkynyl group and the alkoxy group at R0 may contain an ether bond, a ketone bond or an ester bond.
Each of R 2 independently has an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, and a substituent. An alkenyl group having 2 to 30 carbon atoms which may be present, an alkynyl group having 2 to 30 carbon atoms which may have a substituent, an alkoxy group having 1 to 30 carbon atoms which may have a substituent, and a halogen. atom, a nitro group, an amino group, a carboxyl group, a crosslinkable group, dissociative group, a thiol group or a hydroxyl group, wherein said at R 2 alkyl group, the aryl group, the alkenyl group, the alkynyl group and the alkoxy The group may contain an ether bond, a ketone bond or an ester bond.
n 1 is an integer of 1 to 2 independently of each other.
n 0 is independently an integer from 0 to (4 + 2n 1 ), where at least one of n 0 is 1 to (4 + 2n 1 ).
n 4 is an integer of 0 to 1 independently of each other.
n 5 is an integer from 0 to (4 + 2n 4 ) independently of each other. ) - 前記樹脂が、下記式(6)で表される構造を有する、請求項7に記載の光学部品形成用組成物。
- 前記Xが酸素原子又は硫黄原子である、請求項1~8のいずれか一項に記載の光学部品形成用組成物。 The composition for forming an optical component according to any one of claims 1 to 8, wherein X is an oxygen atom or a sulfur atom.
- 溶媒をさらに含有する、請求項1~9のいずれか一項に記載の光学部品形成用組成物。 The composition for forming an optical component according to any one of claims 1 to 9, further containing a solvent.
- 酸発生剤をさらに含有する、請求項1~10のいずれか一項に記載の光学部品形成用組成物。 The composition for forming an optical component according to any one of claims 1 to 10, further containing an acid generator.
- 架橋剤をさらに含有する、請求項1~11のいずれか一項に記載の光学部品形成用組成物。 The composition for forming an optical component according to any one of claims 1 to 11, further containing a cross-linking agent.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021516320A JPWO2020218600A1 (en) | 2019-04-26 | 2020-04-27 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019085938 | 2019-04-26 | ||
JP2019-085938 | 2019-04-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020218600A1 true WO2020218600A1 (en) | 2020-10-29 |
Family
ID=72942645
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/017901 WO2020218600A1 (en) | 2019-04-26 | 2020-04-27 | Composition for forming optical component |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2020218600A1 (en) |
TW (1) | TW202104202A (en) |
WO (1) | WO2020218600A1 (en) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012077295A (en) * | 2010-09-10 | 2012-04-19 | Shin-Etsu Chemical Co Ltd | Naphthalene derivative and method for preparing the same, resist bottom layer material, method for forming resist bottom layer, and patterning process |
WO2013024778A1 (en) * | 2011-08-12 | 2013-02-21 | 三菱瓦斯化学株式会社 | Resist composition, resist pattern formation method, polyphenol compound used therein, and alcohol compound capable of being derived therefrom |
WO2013024779A1 (en) * | 2011-08-12 | 2013-02-21 | 三菱瓦斯化学株式会社 | Underlayer film-forming material for lithography, underlayer film for lithography, and pattern formation method |
WO2013047106A1 (en) * | 2011-09-30 | 2013-04-04 | 三菱瓦斯化学株式会社 | Resin having fluorene structure and underlayer film-forming material for lithography |
KR20130039864A (en) * | 2011-10-13 | 2013-04-23 | 주식회사 동진쎄미켐 | Polymer having aromatic ring and under-layer composition of resist including the same |
US20140319097A1 (en) * | 2011-11-02 | 2014-10-30 | Dongjin Semichem Co., Ltd | Phenol monomer, polymer for forming a resist underlayer film including same, and composition for a resist underlayer film including same |
WO2015194273A1 (en) * | 2014-06-16 | 2015-12-23 | 日産化学工業株式会社 | Resist underlayer film-forming composition |
JP2016524171A (en) * | 2013-03-26 | 2016-08-12 | ドンジン セミケム カンパニー リミテッドDongjin Semichem Co., Ltd. | Resist underlayer film composition and pattern forming method using the same |
JP2016206676A (en) * | 2015-04-24 | 2016-12-08 | Jsr株式会社 | Method for forming resist underlay film and pattern forming method |
JP2017516137A (en) * | 2014-04-29 | 2017-06-15 | アーゼッド・エレクトロニック・マテリアルズ(ルクセンブルグ)ソシエテ・ア・レスポンサビリテ・リミテ | Antireflection coating composition and method for producing the same |
-
2020
- 2020-04-27 WO PCT/JP2020/017901 patent/WO2020218600A1/en active Application Filing
- 2020-04-27 JP JP2021516320A patent/JPWO2020218600A1/ja active Pending
- 2020-04-27 TW TW109114025A patent/TW202104202A/en unknown
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012077295A (en) * | 2010-09-10 | 2012-04-19 | Shin-Etsu Chemical Co Ltd | Naphthalene derivative and method for preparing the same, resist bottom layer material, method for forming resist bottom layer, and patterning process |
WO2013024778A1 (en) * | 2011-08-12 | 2013-02-21 | 三菱瓦斯化学株式会社 | Resist composition, resist pattern formation method, polyphenol compound used therein, and alcohol compound capable of being derived therefrom |
WO2013024779A1 (en) * | 2011-08-12 | 2013-02-21 | 三菱瓦斯化学株式会社 | Underlayer film-forming material for lithography, underlayer film for lithography, and pattern formation method |
WO2013047106A1 (en) * | 2011-09-30 | 2013-04-04 | 三菱瓦斯化学株式会社 | Resin having fluorene structure and underlayer film-forming material for lithography |
KR20130039864A (en) * | 2011-10-13 | 2013-04-23 | 주식회사 동진쎄미켐 | Polymer having aromatic ring and under-layer composition of resist including the same |
US20140319097A1 (en) * | 2011-11-02 | 2014-10-30 | Dongjin Semichem Co., Ltd | Phenol monomer, polymer for forming a resist underlayer film including same, and composition for a resist underlayer film including same |
JP2016524171A (en) * | 2013-03-26 | 2016-08-12 | ドンジン セミケム カンパニー リミテッドDongjin Semichem Co., Ltd. | Resist underlayer film composition and pattern forming method using the same |
JP2017516137A (en) * | 2014-04-29 | 2017-06-15 | アーゼッド・エレクトロニック・マテリアルズ(ルクセンブルグ)ソシエテ・ア・レスポンサビリテ・リミテ | Antireflection coating composition and method for producing the same |
WO2015194273A1 (en) * | 2014-06-16 | 2015-12-23 | 日産化学工業株式会社 | Resist underlayer film-forming composition |
JP2016206676A (en) * | 2015-04-24 | 2016-12-08 | Jsr株式会社 | Method for forming resist underlay film and pattern forming method |
Also Published As
Publication number | Publication date |
---|---|
JPWO2020218600A1 (en) | 2020-10-29 |
TW202104202A (en) | 2021-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7069529B2 (en) | Compounds, resins, compositions, resist pattern forming methods and circuit pattern forming methods | |
JP2022033731A (en) | Compound, resin and composition, and method for forming resist pattern and method for forming circuit pattern | |
JP7069530B2 (en) | Compounds, resins, compositions and pattern forming methods | |
JP7360630B2 (en) | Compounds, resins, compositions, and film-forming materials for lithography using the same | |
KR20190034213A (en) | COMPOSITIONS, RESINS, COMPOSITIONS | |
KR20190034149A (en) | COMPOSITIONS, RESINS AND COMPOSITIONS, AND RESIST PATTERN FORMING METHOD | |
JPWO2019142897A1 (en) | Compounds, resins, compositions and pattern forming methods | |
WO2020027206A1 (en) | Optical component-forming composition, optical component, compound, and resin | |
KR20190049731A (en) | COMPOUND, RESIN, COMPOSITION, AND RESIST PATTERN FORMING METHOD | |
KR20190086014A (en) | COMPOSITION, RESIN, COMPOSITION, RESIST PATTERN FORMING METHOD, | |
JPWO2020138147A1 (en) | Compounds, resins, compositions, resist pattern forming methods, circuit pattern forming methods, and purification methods | |
JP7061271B2 (en) | Compounds, resins, compositions, resist pattern forming methods and circuit pattern forming methods | |
JP7083455B2 (en) | Compounds, resins, compositions and pattern forming methods | |
JP7205715B2 (en) | Compound, resin, composition, resist pattern forming method and circuit pattern forming method | |
JP7445382B2 (en) | Compounds, resins, compositions and pattern forming methods | |
JP7068661B2 (en) | Compounds, resins, compositions, resist pattern forming methods and pattern forming methods | |
TW201718450A (en) | Novolac-type phenolic hydroxy group-containing resin, and resist film | |
CN111655662B (en) | Compound, resin, composition, resist pattern forming method, circuit pattern forming method, and resin purifying method | |
WO2020218600A1 (en) | Composition for forming optical component | |
CN112218844B (en) | Compound, resin, composition, resist pattern forming method, circuit pattern forming method, and resin purifying method | |
WO2020218599A1 (en) | Compound, resin, composition, method for forming resist pattern, method for forming circuit pattern and purification method | |
JP2025020180A (en) | Compound, resin, composition, method for forming resist pattern, method for forming circuit pattern, and purification method | |
CN114303096A (en) | Film-forming composition for lithography, resist pattern formation method, circuit pattern formation method, and purification method | |
JP2022018485A (en) | Method for forming resist underlayer film and pattern forming method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20795337 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021516320 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20795337 Country of ref document: EP Kind code of ref document: A1 |