[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020218129A1 - Determination system, separating device, determination method, and program - Google Patents

Determination system, separating device, determination method, and program Download PDF

Info

Publication number
WO2020218129A1
WO2020218129A1 PCT/JP2020/016643 JP2020016643W WO2020218129A1 WO 2020218129 A1 WO2020218129 A1 WO 2020218129A1 JP 2020016643 W JP2020016643 W JP 2020016643W WO 2020218129 A1 WO2020218129 A1 WO 2020218129A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound
data
sound data
determination
fitting
Prior art date
Application number
PCT/JP2020/016643
Other languages
French (fr)
Japanese (ja)
Inventor
拓司 池田
伸和 長嶋
悠介 杉浦
継 河合
Original Assignee
トヨタ紡織株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ紡織株式会社 filed Critical トヨタ紡織株式会社
Publication of WO2020218129A1 publication Critical patent/WO2020218129A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/12Analysing solids by measuring frequency or resonance of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/32Arrangements for suppressing undesired influences, e.g. temperature or pressure variations, compensating for signal noise
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/46Processing the detected response signal, e.g. electronic circuits specially adapted therefor by spectral analysis, e.g. Fourier analysis or wavelet analysis
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the present invention relates to a determination system or the like that makes a determination based on the sound generated in the manufacturing process of a product.
  • Patent Document 1 discloses a system for determining whether or not there is an abnormality in a structure based on tapping sound data generated when the structure is hit.
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2018-13348 (published on January 25, 2018)
  • the determination accuracy is lowered when the difference between the normal tapping sound data and the abnormal tapping sound data is small, so that the applicable range of the technique is limited. For example, in the manufacturing process of a certain product, when an operator connects a harness, he / she hears a fitting sound of the harness, and if the sound is quiet, it is determined that the connection is not performed normally. Since the difference between the normal one and the abnormal one is small in such a fitting sound except for the loudness of the sound, whether or not the connection is normally performed even when the technique of Patent Document 1 is used. Is difficult to judge with high accuracy.
  • One aspect of the present invention has been made in view of the above problems, and an object of the present invention is to provide a determination system or the like capable of making a determination based on sound in a manufacturing process with high accuracy.
  • the determination system includes a sound acquisition device that acquires a sound including a predetermined sound and background noise generated in a product manufacturing process and generates sound data.
  • the predetermined sound component is separated from the sound data generated by the sound acquisition device by using a trained model constructed by machine learning based on the teacher data generated from the sound data including the predetermined sound. It includes a separation device that generates sound data, and a determination device that determines predetermined determination items related to the manufacturing process using the predetermined sound data.
  • the separation device acquires sound data generated from a sound including a predetermined sound and background noise generated in a product manufacturing process in order to solve the above problems.
  • the component of the predetermined sound is obtained from the sound data acquired by the sound data acquisition unit. It is provided with a separation unit that separates and generates predetermined sound data.
  • the determination method is a determination method executed by one or a plurality of devices in order to solve the above-mentioned problems, and is a predetermined sound and background noise generated in the manufacturing process of the product.
  • the sound data generation step of acquiring the sound including and and generating the sound data, and the trained model constructed by machine learning with the teacher data generated from the sound data including the predetermined sound, the above sound data.
  • FIG. 1 is a block diagram showing an outline of the determination system 100.
  • FIG. 2 is a diagram showing an example of a manufacturing process to be determined by the determination system 100.
  • the sheet A1 in which the connector A2 is not connected is sequentially conveyed on the manufacturing line L in the direction of the white arrow in the figure.
  • the seat A1 is, for example, a seat (seat) for a vehicle.
  • the operator manually connects the connector A2 of the sheet A1 transported to the vicinity of the operator.
  • the sheet A1 to which the connector A2 is connected is conveyed to the next process along the production line L.
  • Connector A2 is an electrical component for connecting electric wires to each other.
  • This electric wire may be a bundle of a plurality of electric wires and cables such as a harness. Since the fitting sound is generated when the connector A2 is correctly connected, the operator can recognize from the fitting sound whether or not the connector A2 is correctly connected. However, when the connector A2 is connected but not completely connected in a semi-fitted state, no fitting sound is generated. However, even when the fitting sound is not generated, the operator mistakenly recognizes that the connector is connected correctly due to the influence of ambient noise or the like, and the connector A2 passes through the sheet A1 in the semi-fitted state. There is also. If the connector A2 is not correctly connected, the sheet A1 may be shipped as a product with a problem of poor energization.
  • the determination system 100 it is possible to determine whether or not the connector A2 is correctly fitted based on the fitting sound of the connector A2 of the sheet A1. Therefore, the determination system 100 can prevent the above-mentioned problem from occurring, or at least reduce the probability that the problem will occur.
  • the determination system 100 includes a system control device 1, a storage device 2, a sound acquisition device 3, a separation device 4, a determination device 5, an output device 6, an image pickup device 7, and a reading device 8. ing.
  • the system control device 1 is a device that controls the operation of each device included in the determination system 100. Specifically, the system control device 1 stores various data in the storage device 2. Further, the system control device 1 instructs the sound acquisition device 3 to start and end sound acquisition. Further, the system control device 1 instructs the separation device 4 to execute the separation process.
  • the storage device 2 is a device that stores various information generated by the determination system 100.
  • the input sound data, the fitting sound data, and the background noise data are stored in the storage device 2 in association with the product information. These sound data will be described below.
  • the product information is information about the product to be determined, and may include, for example, the identification information of the sheet A1 and the identification information of the production line L of the product.
  • the sound acquisition device 3 is a device that acquires the sound generated in the manufacturing process and generates input sound data to be input to the separation device 4.
  • the sound acquisition device 3 is typically a microphone.
  • the sound acquisition device 3 transmits the generated input sound data to the separation device 4.
  • the input sound data may be transmitted by connecting a transmission device (not shown) to the sound acquisition device 3 by wire or wirelessly and via the transmission device, or by providing the sound acquisition device 3 with a communication unit and connecting the communication unit. You may go through.
  • the sound acquired by the sound acquisition device 3 includes not only fitting sound but also background noise.
  • the distance or position between the position where the sound is generated (the position where the operator is working) and the sound acquisition device If the relationship fluctuates, it becomes difficult to obtain a sound with stable volume and sound quality.
  • the determination accuracy of the determination system 100 may decrease accordingly.
  • the sound acquisition device 3 is a device worn by the operator during work, as shown in the example of FIG. As a result, it is possible to prevent the distance and positional relationship between the position where the sound is generated and the sound acquisition device from fluctuating significantly, so that sound with stable volume and sound quality can be acquired, and the determination accuracy is maintained. can do.
  • the sound acquisition device 3 is attached to the cuffs of the operator, which is the optimum attachment position for acquiring the fitting sound generated at the operator's hand.
  • the mounting position of the sound acquisition device 3 may be any position as long as it can acquire the fitting sound, and is not limited to the cuffs.
  • the separation device 4 is a device that separates the fitting sound component from the input sound data generated by the sound acquisition device 3 and generates the fitting sound data. Although the details will be described later, a trained model constructed by machine learning using teacher data generated from sound data including the fitting sound is used to generate the fitting sound data.
  • the determination device 5 is a device that determines whether or not the connector has been fitted correctly by using the fitting sound data generated by the separation device 4. For example, when the loudness of the generated sound is different between when the connector A2 is completely fitted and when the connector A2 is half-fitted, the determination device 5 determines the fitting sound data generated by the separation device 4. It may be determined whether or not the fitting is performed correctly based on the loudness of the fitting sound specified from. For example, the determination device 5 may determine that the fitting is performed correctly when the loudness of the fitting sound is equal to or more than the threshold value, and may determine that the fitting is not performed correctly when the loudness is less than the threshold value. The determination result by the determination device 5 is output by the output device 6.
  • the output device 6 may be any device as long as it can output the determination result, and may be, for example, a display device that displays an image showing the determination result.
  • FIG. 2 shows an example in which the output device 6 is a display device integrally configured with the determination device 5.
  • the output device 6 displays a character or symbol (for example, "OK") indicating that, and it is determined that the fitting is not performed correctly.
  • characters or symbols for example, "NG" indicating that may be displayed.
  • the output device 6 may be an audio output device that outputs a voice indicating a determination result, or a light emitting device or the like that indicates the determination result in a lit state.
  • the image pickup device 7 is a device for capturing an image. As shown in FIG. 2, the image pickup apparatus 7 is installed toward an operator who performs a connector fitting operation. As a result, the imaging device 7 can capture a moving image of the operator performing the fitting operation. Although the details will be described later, this moving image is input to the system control device 1, and the system control device 1 determines the timing at which the sound acquisition device 3 starts acquiring sound based on the moving image.
  • the reading device 8 is a device that acquires product information of the product to be determined. For example, when the product information is recorded as a two-dimensional code or a three-dimensional code attached to the sheet A1, the reading device 8 may be a reading device for the code. The reading device 8 transmits the acquired product information to the system control device 1.
  • the determination system 100 is based on the sound acquisition device 3 that acquires the sound including the fitting sound and the background noise and generates the input sound data, and the teacher data generated from the sound data including the fitting sound.
  • the separation device 4 that separates the components of the fitting sound from the input sound data generated by the sound acquisition device 3 to generate predetermined sound data, and the fitting sound data are used.
  • a determination device 5 for determining whether or not the fitting of the connector A2 is correctly performed is included. According to this configuration, since the judgment is performed using the fitting sound data generated by separating the fitting sound component from the input sound data, it is possible to reduce the influence of background noise and perform a highly accurate judgment. become.
  • FIG. 3 is a diagram showing an example of a method of generating fitting sound data.
  • a fitting sound is generated when the operator connects the connector A2, and the sound including the fitting sound and the background noise is acquired by the sound acquisition device 3. .. Then, the sound acquisition device 3 converts the acquired sound to generate input sound data, and transmits the input sound data to the separation device 4.
  • the separator 4 that has received the input sound data first converts the received input sound data into frequency data to generate a spectrogram.
  • a Fourier transform may be used for the conversion to frequency data.
  • the separation device 4 inputs the generated spectrogram into the trained model and outputs the spectrogram of the mating sound.
  • This trained model is constructed by machine learning so that the fitting sound data can be separated from the sound data including the fitting sound.
  • the above trained model is preferably constructed by supervised learning.
  • the spectrogram generated from the sound data including the fitting sound may be used as the teacher data. Then, the components of the fitting sound included in this spectrogram are labeled.
  • By performing machine learning using a large number of such teacher data it is possible to construct a trained model that separates the mating sound spectrogram from the spectrogram containing the mating sound spectrogram and the background noise spectrogram. ..
  • the spectrogram used as the teacher data may include a background noise component in addition to the fitting sound component.
  • a background noise component in addition to the fitting sound component.
  • Such a spectrogram can be generated, for example, from sounds collected in an actual manufacturing process.
  • the separation device 4 converts the spectrogram of the fitting sound output from the trained model into the fitting sound data which is the sound data instead of the frequency data, and thus the generation of the fitting sound data is completed.
  • the inverse Fourier transform may be used for the conversion to the fitting sound data.
  • the separation device 4 may generate a background noise spectrogram by removing the components of the mating sound spectrogram from the spectrogram generated from the input sound data, and may also generate background noise data from the background noise spectrogram. ..
  • the separation device 4 may output the spectrogram of the fitting sound output from the learned model as the fitting sound data.
  • the determination device 5 can determine whether the fitting is correct or semi-fitting by using the fitting sound data generated by the separation device 4.
  • the separation device 4 generates a spectrogram which is frequency data from the input sound data generated by the sound acquisition device 3, inputs the spectrogram into the trained model, and outputs a spectrogram of the fitting sound. Then, the separation device 4 restores the spectrogram of the fitting sound into the sound data and generates the fitting sound data.
  • the fitting sound can be separated based on the feature points of the frequency data. Further, according to the above configuration, since the frequency data is restored to the sound data to generate the fitting sound data, the determination device 5 can perform the determination using the sound data (data that is not the frequency data).
  • This configuration is suitable for a determination system that makes a determination using an apparatus such as the determination device 5 that makes a determination based on the loudness of the sound.
  • FIG. 4 is a flowchart showing an example of a determination method executed by the determination system 100. Note that in FIG. 4, the processing of the storage device 2, the output device 6, the image pickup device 7, and the reading device 8 is omitted.
  • the system control device 1 determines whether or not the sound acquisition device 3 starts sound collection. For example, the system control device 1 analyzes the moving image captured by the imaging device 7 to determine the direction of the operator's line of sight reflected in the moving image, and the direction is set to a predetermined direction (for example, the direction of the connector A2). When facing, it may be determined that the sound acquisition device 3 starts collecting sound. Further, for example, when the system control device 1 analyzes the moving image, detects the worker's hand reflected in the moving image, and the worker's hand makes a predetermined movement (for example, a movement of grasping the connector A2). In addition, it may be determined that the sound acquisition device 3 starts collecting sound.
  • a predetermined direction for example, the direction of the connector A2
  • the timing at which the sound acquisition device 3 starts collecting sound is determined from the posture of the worker and the orientation of the body (facing the seat A1, tilting the body forward toward the connector A2, etc.). May be good.
  • the processing of S1 is continuously performed until it is determined to start sound collection (YES in S1), and when it is determined to be YES in S1, the processing proceeds to S2.
  • the system control device 1 instructs the sound acquisition device 3 to start sound collection.
  • the system control device 1 causes the sound acquisition device 3 to start acquiring the sound when the work of generating the fitting sound is started. This is because the sound acquisition is started when the work of generating the fitting sound is started, so that the useless sound (the sound that cannot include the fitting sound) occupying the sound acquired by the sound acquisition device 3 is started. This is because the fitting sound can be efficiently separated by keeping the ratio low.
  • the system control device 1 instructs the sound acquisition device 3 to end the sound collection.
  • the process of S3 may be executed, for example, when a predetermined time elapses after the sound collection is started in S2.
  • the predetermined time is combined with the time of the sound data that is the source of the teacher data used for constructing the trained model used by the separation device 4. For example, when a trained model constructed by using a spectrogram generated from sound data for 3 seconds as teacher data is used, the predetermined time is also set to 3 seconds.
  • the above-mentioned predetermined time satisfies the condition that the sound acquisition device 3 continues to collect sound when the connector A2 is fitted by the operator.
  • the predetermined time may be set to about several seconds to about ten and several seconds. In this case, a trained model corresponding to this predetermined time may be used.
  • the system control device 1 instructs the separation device 4 to separate the fitting sound data.
  • the processing of the system control device 1 is completed.
  • the system control device 1 may acquire product information from the reading device 8. Then, after the separation of the fitting sound data is completed, the system control device 1 acquires the fitting sound data, the background noise data, and the input sound data from the separating device 4, and corresponds the sound data with the product information. It may be attached and stored in the storage device 2.
  • the sound acquisition device 3 starts acquiring the sound around the sound acquisition device 3 and generating the input sound data according to the instruction from the system control device 1 in S2.
  • the sound acquisition device 3 ends the acquisition of the surrounding sound of the sound acquisition device 3 and the generation of the input sound data according to the instruction from the system control device 1 of the S3. Then, the sound acquisition device 3 transmits the input sound data generated in the processes of S11 to S12 to the separation device 4.
  • the separation device 4 receives the input sound data transmitted by the sound acquisition device 3 in S13.
  • the separation device 4 separates the fitting sound data from the input sound data received in S21 according to the instruction from the system control device 1 transmitted in S4. The method of separating the fitting sound data is as described with reference to FIG.
  • the separation device 4 transmits the fitting sound data separated in S22 to the determination device 5.
  • the separation device 4 may transmit the fitting sound data to the system control device 1 and store it in the storage device 2. The same applies to the input sound data and the background noise data.
  • the determination device 5 receives the fitting sound data transmitted by the separation device 4 in S23. In the following S32, the determination device 5 determines whether or not the fitting is performed correctly using the fitting sound data received in S31. Then, in S33, the determination device 5 causes the output device 6 to output the determination result of S32.
  • the determination device 5 immediately outputs the determination result in order to prevent the product that has not been fitted correctly from being conveyed to the next process.
  • the determination device 5 may output the determination result only when it is determined that the fitting is not performed correctly.
  • the output device 6 may be a buzzer that emits a warning sound, a warning light, or the like.
  • the determination device 5 controls the product transfer device to stop the transfer so that the product that is not fitted correctly is not transferred to the next process. It may be.
  • the position on the transport line L at which the product is stopped is arbitrary, but it may be stopped at a predetermined position in consideration of workability.
  • the determination system 100 may also determine whether or not the fitting has been performed correctly in the refitting work by the operator. Then, the determination device 5 may restart the transportation of the product when it is determined that the fitting has been performed correctly.
  • the determination method of FIG. 4 includes a sound data generation step (S11 to S12) for acquiring a sound including a fitting sound and a background noise and generating sound data, and a sound generated in the sound data generation step.
  • a separation step (S22) for separating the components of the fitting sound from the data to generate the fitting sound data, and a determination step (S32) for determining the correctness of the fitting using the fitting sound data are included.
  • the execution subject of each step is a different device, but one device may execute two or more steps of each of the above steps.
  • the sound data generation step is executed by the sound acquisition device 3 as in the present embodiment, but the separation step and the determination step are executed by the separation device 4A. It will be.
  • FIG. 5 is a block diagram showing an example of the main configuration of the separation device 4A according to the present embodiment.
  • the separation device 4A is a device having the functions of the system control device 1, the storage device 2, the separation device 4, the determination device 5, and the output device 6 in the determination system 100 of the first embodiment. Therefore, when the separation device 4A is used, for example, the determination system can be constructed by four devices, the separation device 4A, the sound acquisition device 3, the image pickup device 7, and the reading device 8. As described above, the function of the determination system 100 can be realized by various device configurations.
  • the separation device 4A includes a control unit 41 that controls and controls each part of the separation device 4A, a storage unit 42 that stores various data used by the separation device 4A, and the separation device 4A with other devices. It includes a communication unit 43 for communication and a display unit 44 for displaying an image. Further, the control unit 41 includes a start determination unit 411, a sound data acquisition unit 412, a separation unit 413, a fitting correctness determination unit 414, and a determination result notification control unit 415. Further, the separation unit 413 includes a spectrogram generation unit 413A, a spectrum separation unit 413B, and a sound data conversion unit 413C. Then, the input sound data 421, the background noise data 422, and the fitting sound data 423 are stored in the storage unit 42.
  • the start determination unit 411 determines whether or not the sound acquisition device 3 starts acquiring the sound. For example, the start determination unit 411 analyzes the moving image captured by the imaging device 7 as in the system control device 1 of the first embodiment, determines the direction of the operator's line of sight in the moving image, and determines the direction of the operator's line of sight. May determine that the sound acquisition device 3 starts collecting sound when is oriented in a predetermined direction.
  • the sound data acquisition unit 412 acquires input sound data generated from a sound including a fitting sound and background noise. Specifically, when the start determination unit 411 determines that the sound acquisition is to be started, the sound data acquisition unit 412 instructs the sound acquisition device 3 to start the sound acquisition. Further, the sound data acquisition unit 412 instructs the sound acquisition device 3 to end the sound acquisition when a predetermined time elapses after starting the sound acquisition. Then, the sound data acquisition unit 412 acquires the sound data acquired in response to the above instruction from the sound acquisition device 3 and stores it in the storage unit 42 as the input sound data 421.
  • the system control device 1 of the first embodiment can also be realized by providing the system control device 1 with a control unit (for example, a processor) including a start determination unit 411 and a sound data acquisition unit 412.
  • a control unit for example, a processor
  • the separation unit 413 separates the fitting sound component from the input sound data and generates the fitting sound data. As will be described below, this function is realized by the spectrogram generation unit 413A, the spectrum separation unit 413B, and the sound data conversion unit 413C.
  • the spectrogram generation unit 413A converts the input sound data acquired by the sound data acquisition unit 412 into frequency data to generate a spectrogram. Further, the spectrum separation unit 413B inputs the spectrogram generated by the spectrogram generation unit 413A into the trained model, and outputs a spectrogram of the fitting sound.
  • the trained model is the same as that described in the first embodiment. Then, the sound data conversion unit 413C converts the spectrogram of the fitting sound output from the learned model into the fitting sound data, and stores it in the storage unit 42 as the fitting sound data 423.
  • the spectrum separation unit 413B may generate a background noise spectrogram from the spectrogram generated by the spectrogram generation unit 413A by removing the spectrogram component of the fitting sound.
  • the sound data conversion unit 413C may generate background noise data from the background noise spectrogram and store it in the storage unit 42 as background noise data 422.
  • each part included in the separation part 413 are the same as the functions of the separation device 4 of the first embodiment. Therefore, the separation device 4 of the first embodiment can also be realized by providing the separation device 4 with a control unit (for example, a processor) including a spectrogram generation unit 413A, a spectrum separation unit 413B, and a sound data conversion unit 413C.
  • a control unit for example, a processor
  • the fitting correctness determination unit 414 determines whether or not the fitting has been performed correctly using the fitting sound data generated by the sound data conversion unit 413C. Then, the determination result notification control unit 415 causes the display unit 44 to display the determination result of the fitting correctness determination unit 414.
  • a control unit for example, a processor
  • the separation device 4A is fitted from the input sound data by using the sound data acquisition unit 412 that acquires the input sound data generated from the sound including the fitting sound and the background noise and the trained model. It includes a separation unit 413 that separates sound components and generates fitting sound data.
  • the fitting correctness determination unit 414 can make a determination based on the fitting sound with high accuracy.
  • the determination device 5 may be used for determination.
  • the separation device 4A transmits the fitting sound data generated by the sound data conversion unit 413C to the determination device 5.
  • the separation device 4A can make the determination device 5 perform the determination based on the fitting sound with high accuracy, as in the separation device of the first embodiment.
  • the separation device 4 of the first embodiment also acquires the input sound data generated from the sound including the fitting sound and the background noise, and separates the fitting sound component from the input sound data by using the trained model. To generate fitting sound data. Therefore, it can be said that the separation device 4 of the first embodiment also includes the sound data acquisition unit 412 and the separation unit 413. Therefore, the same effect as that of the separation device 4A can be obtained by the separation device 4.
  • FIG. 6 is a diagram showing a configuration example of the determination system 100 according to the present embodiment and an example of a determination method executed by the determination system 100.
  • the determination system 100 of the present embodiment does not include the determination device 5 and the output device 6 as compared with the determination system 100 of the first embodiment (see FIG. 1), and the separation device 4 is the separation device 4B. It differs in that it has changed to.
  • the separation device 4B is a device having the functions of the determination device 5 and the output device 6 in addition to the functions of the separation device 4 of the first embodiment.
  • the separation device 4B includes a control unit similar to the separation device 4A, and the control unit includes a sound data acquisition unit 412, a separation unit 413, a fitting correctness determination unit 414, and a determination unit shown in FIG.
  • the result notification control unit 415 is included.
  • the separation device 4B includes a storage unit 42, a communication unit 43, and a display unit 44, similarly to the separation device 4A of FIG.
  • the fitting correctness determination unit 414 of the separation device 4B uses the fitting sound data separated from the input sound data by the separation unit 413 in S22 to determine whether or not the fitting is performed correctly. judge. Then, in S24', the determination result notification control unit 415 outputs the determination result of S23'to the display unit 44.
  • the determination result notification control unit 415 transmits the input sound data acquired by the sound data acquisition unit 412 in S21 and the fitting sound data separated in S22 to the system control device 1 together with the determination result of S23'. It may be stored in the storage device 2.
  • the determination system 100 may perform determination based on the sound generated in the manufacturing process of the product, and the sound serving as the determination standard is not limited to the fitting sound. Further, the determination items of the determination system 100 are also arbitrary. For example, when the seat A1 is an electric power seat, the determination system 100 may determine whether or not there is an abnormality in the seat A1 based on the operating sound. Further, in this case, the determination system 100 may determine the presence or absence of an abnormality in the motor based on the operating noise of the motor for driving the seat frame.
  • the target product is not limited to vehicle seats and their parts, but may be a product that has technical significance in making a judgment based on the sound generated in the manufacturing process.
  • the determination system 100 may determine the presence or absence of an abnormality in the manufacturing equipment based on the sound generated from the manufacturing equipment of the product. In this way, the determination system 100 can also be used for maintenance of manufacturing equipment.
  • the sound generated from the manufacturing equipment of the product may be generated at the time of manufacturing, or may be generated (or artificially generated) at the time of non-manufacturing such as maintenance of the manufacturing equipment. Good.
  • the trained model used by the separation devices 4, 4A, or 4B may be set according to the sound that serves as the judgment standard.
  • the sound component that serves as the judgment criterion can be separated as sound data from the input sound data that includes the sound that serves as the judgment criterion and the background noise, so that the influence of background noise can be suppressed and a highly accurate judgment can be made. be able to.
  • the timing for starting the sound acquisition has been determined.
  • the method is not limited to this example. For example, when a specific sound (for example, a contact sound or a joining sound of the connector A2) is generated immediately before fitting the connector A2, the generation of input sound data including the fitting sound is started with the detection of the sound as a trigger. You may. Further, for example, if the worker is asked to utter at the start of the fitting operation, the generation of the input sound data including the fitting sound can be started with the detection of the utterance as a trigger.
  • a specific sound for example, a contact sound or a joining sound of the connector A2
  • the generation of input sound data including the fitting sound is started with the detection of the sound as a trigger.
  • the sheet A1 to be the target of the work of connecting the connector A2 next reaches a predetermined position on the production line L, and the detection triggers an input sound including a fitting sound. You can also start generating data.
  • the separators 4, 4A, and 4B generate a frequency mask that allows the frequency component of the fitting sound of the connector to pass through and does not allow the frequency component of the background noise to pass through, and uses this frequency mask to fit from the input sound data.
  • Fitting sound data may be generated by separating the sound components.
  • the separators 4, 4A, and 4B input a spectrogram including connector fitting noise and background noise into a trained model pre-built by machine learning. As a result, the trained model is made to output a frequency mask that allows the frequency component of the fitting sound of the connector to pass through and does not pass the frequency component of the background noise.
  • the separators 4, 4A, and 4B pass the spectrogram through the frequency mask to obtain a spectrogram containing the frequency component of the fitting sound of the connector and removing the frequency component of the background noise. After that, the spectrogram may be converted into the fitting sound data in the same manner as in the above-described embodiment.
  • the above trained model may be constructed by supervised learning using teacher data.
  • the above teacher data uses a spectrogram including the fitting sound of the connector as input data, and outputs a frequency mask that passes the frequency component of the fitting sound of the connector and does not pass the frequency component of background noise (correct answer). It may be the teacher data as (data).
  • each device particularly the system control device 1, the separation device 4, and the judgment device 5 included in the determination system 100, and the control blocks (particularly each unit included in the control unit 41) of the separation devices 4A and 4B are integrated. It may be realized by a logic circuit (hardware) formed in a circuit (IC chip) or the like, or may be realized by software.
  • the system control device 1, the separation device 4, the separation devices 4A, 4B, and the determination device 5 include a computer that executes a program instruction that is software that realizes each function.
  • the computer includes, for example, one or more processors and a computer-readable recording medium that stores the program. Then, in the computer, the processor reads the program from the recording medium and executes it, thereby achieving the object of the present invention.
  • the processor for example, a CPU (Central Processing Unit) can be used.
  • the recording medium in addition to a “non-temporary tangible medium” such as a ROM (Read Only Memory), a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used.
  • a RAM RandomAccessMemory
  • the program may be supplied to the computer via an arbitrary transmission medium (communication network, broadcast wave, etc.) capable of transmitting the program.
  • a transmission medium communication network, broadcast wave, etc.
  • one aspect of the present invention can also be realized in the form of a data signal embedded in a carrier wave, in which the above program is embodied by electronic transmission.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Signal Processing (AREA)
  • Acoustics & Sound (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Mathematical Physics (AREA)
  • Quality & Reliability (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

The present invention enables highly accurate sound-based determination in a manufacturing process. A determination system (100) includes: a sound acquisition device (3) that acquires sound including a mating sound and dark noise and that generates sound data; a separating device (4) that separates the component of the mating sound from the sound data by using a learned mating model, thereby generating mating sound data; and a determination device (5) that determines whether or not mating is successful by using the mating sound data.

Description

判定システム、分離装置、判定方法、およびプログラムJudgment system, separator, judgment method, and program
 本発明は、製品の製造工程で発生する音に基づく判定を行う判定システム等に関する。 The present invention relates to a determination system or the like that makes a determination based on the sound generated in the manufacturing process of a product.
 従来から、音を利用して異常を検知する技術が知られている。例えば、下記の特許文献1には、構造物を叩いた際に発生した打音データに基づいて、当該構造物に異常があるか否かを判定するシステムが開示されている。 Conventionally, a technique for detecting an abnormality using sound has been known. For example, Patent Document 1 below discloses a system for determining whether or not there is an abnormality in a structure based on tapping sound data generated when the structure is hit.
日本国公開特許公報「特開2018-13348号」公報(2018年1月25日公開)Japanese Patent Publication "Japanese Patent Laid-Open No. 2018-13348" (published on January 25, 2018)
 上記特許文献1の技術では、正常な打音データと異常な打音データとの差異が小さい場合に判定精度が低下してしまうため、当該技術の適用範囲は限られたものとなってしまう。例えば、ある製品の製造工程では、作業者がハーネスを接続する際にハーネスの嵌合音を聴き、その音が小さかった場合に接続が正常に行われていないと判断している。このような嵌合音は、音の大小以外の点において、正常なものと異常なものとの差異が小さいため、上記特許文献1の技術を用いても、接続が正常に行われたか否かを高精度に判定することは難しい。 In the technique of Patent Document 1, the determination accuracy is lowered when the difference between the normal tapping sound data and the abnormal tapping sound data is small, so that the applicable range of the technique is limited. For example, in the manufacturing process of a certain product, when an operator connects a harness, he / she hears a fitting sound of the harness, and if the sound is quiet, it is determined that the connection is not performed normally. Since the difference between the normal one and the abnormal one is small in such a fitting sound except for the loudness of the sound, whether or not the connection is normally performed even when the technique of Patent Document 1 is used. Is difficult to judge with high accuracy.
 また、製品の製造工程において、上記の嵌合音のような、所定の判定事項の判定基準となる音を検出しようとした場合、集音した音に含まれる暗騒音(環境音ともいう)が判定の妨げとなることもある。 Further, in the manufacturing process of a product, when an attempt is made to detect a sound that serves as a judgment criterion for a predetermined judgment item such as the above-mentioned fitting sound, background noise (also referred to as environmental sound) included in the collected sound is generated. It may interfere with the judgment.
 本発明の一態様は、上記の問題点に鑑みてなされたものであり、その目的は、製造工程における音に基づく判定を高精度に行うことが可能な判定システム等を提供することにある。 One aspect of the present invention has been made in view of the above problems, and an object of the present invention is to provide a determination system or the like capable of making a determination based on sound in a manufacturing process with high accuracy.
 上記の課題を解決するために、本発明の一態様に係る判定システムは、製品の製造工程で発生する所定の音と暗騒音とを含む音を取得して音データを生成する音取得装置と、上記所定の音を含む音データから生成された教師データによる機械学習で構築された学習済みモデルを用いて、上記音取得装置が生成した音データから上記所定の音の成分を分離して所定音データを生成する分離装置と、上記所定音データを用いて上記製造工程に関する所定の判定事項を判定する判定装置と、を含む。 In order to solve the above problems, the determination system according to one aspect of the present invention includes a sound acquisition device that acquires a sound including a predetermined sound and background noise generated in a product manufacturing process and generates sound data. , The predetermined sound component is separated from the sound data generated by the sound acquisition device by using a trained model constructed by machine learning based on the teacher data generated from the sound data including the predetermined sound. It includes a separation device that generates sound data, and a determination device that determines predetermined determination items related to the manufacturing process using the predetermined sound data.
 また、本発明の一態様に係る分離装置は、上記の課題を解決するために、製品の製造工程で発生する所定の音と暗騒音とを含む音から生成された音データを取得する音データ取得部と、上記所定の音を含む音データから生成された教師データによる機械学習で構築された学習済みモデルを用いて、上記音データ取得部が取得した音データから上記所定の音の成分を分離して所定音データを生成する分離部と、を備えている。 In addition, the separation device according to one aspect of the present invention acquires sound data generated from a sound including a predetermined sound and background noise generated in a product manufacturing process in order to solve the above problems. Using the acquisition unit and a trained model constructed by machine learning using the teacher data generated from the sound data including the predetermined sound, the component of the predetermined sound is obtained from the sound data acquired by the sound data acquisition unit. It is provided with a separation unit that separates and generates predetermined sound data.
 また、本発明の一態様に係る判定方法は、上記の課題を解決するために、1または複数の装置によって実行される判定方法であって、製品の製造工程で発生する所定の音と暗騒音とを含む音を取得して音データを生成する音データ生成ステップと、上記所定の音を含む音データから生成された教師データによる機械学習で構築された学習済みモデルを用いて、上記音データ生成ステップで生成した音データから上記所定の音の成分を分離して所定音データを生成する分離ステップと、上記所定音データを用いて上記製造工程に関する所定の判定事項を判定する判定ステップと、を含む。 Further, the determination method according to one aspect of the present invention is a determination method executed by one or a plurality of devices in order to solve the above-mentioned problems, and is a predetermined sound and background noise generated in the manufacturing process of the product. Using the sound data generation step of acquiring the sound including and and generating the sound data, and the trained model constructed by machine learning with the teacher data generated from the sound data including the predetermined sound, the above sound data. A separation step of separating the predetermined sound component from the sound data generated in the generation step to generate the predetermined sound data, and a determination step of determining a predetermined determination item related to the manufacturing process using the predetermined sound data. including.
 本発明の一態様によれば、製造工程における音に基づく判定を高精度に行うことが可能になるという効果を奏する。 According to one aspect of the present invention, it is possible to perform a sound-based determination in the manufacturing process with high accuracy.
本発明の実施形態1に係る判定システムの概要を示すブロック図である。It is a block diagram which shows the outline of the determination system which concerns on Embodiment 1 of this invention. 上記判定システムの判定の対象となる製造工程の例を示す図である。It is a figure which shows the example of the manufacturing process which is the object of determination of the said determination system. 嵌合音データの生成方法の一例を示す図である。It is a figure which shows an example of the generation method of the fitting sound data. 上記判定システムで実行される判定方法の一例を示すフローチャートである。It is a flowchart which shows an example of the determination method executed by the said determination system. 本発明の実施形態2に係る分離装置の要部構成の一例を示すブロック図である。It is a block diagram which shows an example of the main part structure of the separation apparatus which concerns on Embodiment 2 of this invention. 本発明の実施形態3に係る判定システムの構成例と、該判定システムで実行される判定方法の例とを示す図である。It is a figure which shows the configuration example of the determination system which concerns on Embodiment 3 of this invention, and the example of the determination method executed by the determination system.
 〔実施形態1〕
 〔判定システムの概要〕
 本実施形態に係る判定システム100の概要を図1および図2に基づいて説明する。判定システム100は、製品の製造工程において音に基づく判定を行うシステムである。図1は、判定システム100の概要を示すブロック図である。図2は、判定システム100の判定の対象となる製造工程の例を示す図である。
[Embodiment 1]
[Overview of judgment system]
The outline of the determination system 100 according to the present embodiment will be described with reference to FIGS. 1 and 2. The determination system 100 is a system that performs determination based on sound in the manufacturing process of a product. FIG. 1 is a block diagram showing an outline of the determination system 100. FIG. 2 is a diagram showing an example of a manufacturing process to be determined by the determination system 100.
 図2に示す製造工程では、製造ラインL上を同図の白抜き矢印の方向に、コネクタA2が未接続の状態のシートA1が順次搬送される。シートA1は例えば車両用のシート(座席)である。作業者は、自身の付近まで搬送されたシートA1のコネクタA2を手作業で接続する。コネクタA2が接続された状態のシートA1は、製造ラインLに沿って次工程に搬送される。 In the manufacturing process shown in FIG. 2, the sheet A1 in which the connector A2 is not connected is sequentially conveyed on the manufacturing line L in the direction of the white arrow in the figure. The seat A1 is, for example, a seat (seat) for a vehicle. The operator manually connects the connector A2 of the sheet A1 transported to the vicinity of the operator. The sheet A1 to which the connector A2 is connected is conveyed to the next process along the production line L.
 コネクタA2は、電線相互を接続するための電気部品である。この電線は、ハーネスのように複数の電線やケーブルを束ねたものであってもよい。コネクタA2が正しく接続されたときには、嵌合音が発生するようになっているため、作業者は、嵌合音からコネクタA2が正しく接続されたか否かを認識することができる。ただし、コネクタA2が接続されてはいるが、完全には接続されていない半嵌合の状態となったときには、嵌合音は発生しない。しかし、嵌合音が発生していない場合にも、周囲の騒音等の影響により、正しく接続されたと作業者が誤認して、コネクタA2が半嵌合の状態のシートA1を通過させてしまうこともある。そして、コネクタA2が正しく接続されなかった場合には、シートA1が通電不良という問題を抱えた状態で製品として出荷されるおそれもある。 Connector A2 is an electrical component for connecting electric wires to each other. This electric wire may be a bundle of a plurality of electric wires and cables such as a harness. Since the fitting sound is generated when the connector A2 is correctly connected, the operator can recognize from the fitting sound whether or not the connector A2 is correctly connected. However, when the connector A2 is connected but not completely connected in a semi-fitted state, no fitting sound is generated. However, even when the fitting sound is not generated, the operator mistakenly recognizes that the connector is connected correctly due to the influence of ambient noise or the like, and the connector A2 passes through the sheet A1 in the semi-fitted state. There is also. If the connector A2 is not correctly connected, the sheet A1 may be shipped as a product with a problem of poor energization.
 判定システム100によれば、シートA1のコネクタA2の嵌合音に基づいて、コネクタA2の嵌合が正しく行われたか否かを判定することができる。よって、判定システム100により、上述の問題を発生させないか、あるいは少なくとも当該問題が発生する確率を低下させることができる。 According to the determination system 100, it is possible to determine whether or not the connector A2 is correctly fitted based on the fitting sound of the connector A2 of the sheet A1. Therefore, the determination system 100 can prevent the above-mentioned problem from occurring, or at least reduce the probability that the problem will occur.
 図1に示すように、判定システム100には、システム制御装置1、記憶装置2、音取得装置3、分離装置4、判定装置5、出力装置6、撮像装置7、および読取装置8が含まれている。 As shown in FIG. 1, the determination system 100 includes a system control device 1, a storage device 2, a sound acquisition device 3, a separation device 4, a determination device 5, an output device 6, an image pickup device 7, and a reading device 8. ing.
 システム制御装置1は、判定システム100に含まれる各装置の動作を制御する装置である。具体的には、システム制御装置1は、記憶装置2に各種データを記憶させる。また、システム制御装置1は、音取得装置3に音の取得開始と終了を指示する。さらに、システム制御装置1は、分離装置4に分離処理の実行を指示する。 The system control device 1 is a device that controls the operation of each device included in the determination system 100. Specifically, the system control device 1 stores various data in the storage device 2. Further, the system control device 1 instructs the sound acquisition device 3 to start and end sound acquisition. Further, the system control device 1 instructs the separation device 4 to execute the separation process.
 記憶装置2は、判定システム100で生成された各種情報を記憶する装置である。例えば、図1の例では、入力音データと嵌合音データと暗騒音データとが製品情報と対応付けられて記憶装置2に記憶されている。これらの音データについては以下説明する。製品情報は、判定の対象となる製品に関する情報であり、例えばシートA1の識別情報と、該製品の製造ラインLの識別情報とを含んでいてもよい。 The storage device 2 is a device that stores various information generated by the determination system 100. For example, in the example of FIG. 1, the input sound data, the fitting sound data, and the background noise data are stored in the storage device 2 in association with the product information. These sound data will be described below. The product information is information about the product to be determined, and may include, for example, the identification information of the sheet A1 and the identification information of the production line L of the product.
 音取得装置3は、上記製造工程で発生する音を取得して、分離装置4に入力する入力音データを生成する装置である。音取得装置3は、典型的にはマイクロフォンである。音取得装置3は、生成した入力音データを分離装置4に送信する。入力音データの送信は、図示しない送信装置を音取得装置3に有線または無線で接続し、該送信装置を介して行ってもよいし、音取得装置3に通信部を設け、該通信部を介して行ってもよい。音取得装置3が取得する音には、嵌合音が含まれる他、暗騒音も含まれる。 The sound acquisition device 3 is a device that acquires the sound generated in the manufacturing process and generates input sound data to be input to the separation device 4. The sound acquisition device 3 is typically a microphone. The sound acquisition device 3 transmits the generated input sound data to the separation device 4. The input sound data may be transmitted by connecting a transmission device (not shown) to the sound acquisition device 3 by wire or wirelessly and via the transmission device, or by providing the sound acquisition device 3 with a communication unit and connecting the communication unit. You may go through. The sound acquired by the sound acquisition device 3 includes not only fitting sound but also background noise.
 ここで、作業者の作業によって発生する嵌合音のような音を用いて判定を行う場合、音が発生する位置(作業者が作業している位置)と、音取得装置との距離や位置関係が変動すると、音量や音質等が安定した音を取得することが困難になる。また、それに伴って判定システム100の判定精度が低下するおそれがある。 Here, when making a judgment using a sound such as a fitting sound generated by the work of the operator, the distance or position between the position where the sound is generated (the position where the operator is working) and the sound acquisition device If the relationship fluctuates, it becomes difficult to obtain a sound with stable volume and sound quality. In addition, the determination accuracy of the determination system 100 may decrease accordingly.
 このため、嵌合音を用いて判定を行う場合、音取得装置3は、図2の例のように、作業者が作業中に装着する装置とすることが好ましい。これにより、音が発生する位置と、音取得装置との距離や位置関係が大きく変動することを防ぐことができるので、音量や音質等が安定した音を取得することができ、判定精度も維持することができる。図2の例では、作業者の袖口に音取得装置3を装着しており、これは作業者の手元で発生する嵌合音の取得には最適な装着位置である。無論、音取得装置3の装着位置は、嵌合音を取得できるような位置であればよく、袖口に限られない。 Therefore, when making a determination using the fitting sound, it is preferable that the sound acquisition device 3 is a device worn by the operator during work, as shown in the example of FIG. As a result, it is possible to prevent the distance and positional relationship between the position where the sound is generated and the sound acquisition device from fluctuating significantly, so that sound with stable volume and sound quality can be acquired, and the determination accuracy is maintained. can do. In the example of FIG. 2, the sound acquisition device 3 is attached to the cuffs of the operator, which is the optimum attachment position for acquiring the fitting sound generated at the operator's hand. Of course, the mounting position of the sound acquisition device 3 may be any position as long as it can acquire the fitting sound, and is not limited to the cuffs.
 分離装置4は、音取得装置3が生成した入力音データから嵌合音の成分を分離して嵌合音データを生成する装置である。詳細は後述するが、嵌合音データの生成には、嵌合音を含む音データから生成された教師データによる機械学習で構築された学習済みモデルを用いる。 The separation device 4 is a device that separates the fitting sound component from the input sound data generated by the sound acquisition device 3 and generates the fitting sound data. Although the details will be described later, a trained model constructed by machine learning using teacher data generated from sound data including the fitting sound is used to generate the fitting sound data.
 判定装置5は、分離装置4が生成した嵌合音データを用いて、コネクタの嵌合が正しく行われたか否かを判定する装置である。例えば、コネクタA2が完全に嵌合したときと、半嵌合となったときとで、発生する音の大きさが異なっている場合、判定装置5は、分離装置4が生成した嵌合音データから特定される嵌合音の大きさに基づいて嵌合が正しく行われたか否かを判定してもよい。例えば、判定装置5は、嵌合音の大きさが閾値以上である場合に嵌合が正しく行われたと判定し、閾値未満である場合に嵌合が正しく行われなかったと判定してもよい。判定装置5による判定結果は、出力装置6によって出力される。 The determination device 5 is a device that determines whether or not the connector has been fitted correctly by using the fitting sound data generated by the separation device 4. For example, when the loudness of the generated sound is different between when the connector A2 is completely fitted and when the connector A2 is half-fitted, the determination device 5 determines the fitting sound data generated by the separation device 4. It may be determined whether or not the fitting is performed correctly based on the loudness of the fitting sound specified from. For example, the determination device 5 may determine that the fitting is performed correctly when the loudness of the fitting sound is equal to or more than the threshold value, and may determine that the fitting is not performed correctly when the loudness is less than the threshold value. The determination result by the determination device 5 is output by the output device 6.
 出力装置6は、判定結果を出力できるものであればよく、例えば判定結果を示す画像を表示する表示装置であってもよい。図2には、出力装置6が判定装置5と一体に構成された表示装置である例を示している。この場合、出力装置6は、嵌合が正しく行われたと判定された場合には、そのことを示す文字や記号(例えば「OK」等)を表示し、嵌合が正しく行われなかったと判定された場合には、そのことを示す文字や記号(例えば「NG」等)を表示してもよい。また、出力装置6は、判定結果を示す音声を出力する音声出力装置であってもよいし、判定結果を点灯状態で示す発光装置等であってもよい。 The output device 6 may be any device as long as it can output the determination result, and may be, for example, a display device that displays an image showing the determination result. FIG. 2 shows an example in which the output device 6 is a display device integrally configured with the determination device 5. In this case, when it is determined that the fitting is performed correctly, the output device 6 displays a character or symbol (for example, "OK") indicating that, and it is determined that the fitting is not performed correctly. In that case, characters or symbols (for example, "NG") indicating that may be displayed. Further, the output device 6 may be an audio output device that outputs a voice indicating a determination result, or a light emitting device or the like that indicates the determination result in a lit state.
 撮像装置7は、画像を撮像する装置である。図2に示すように、撮像装置7は、コネクタの嵌合作業を行う作業者に向けて設置される。これにより、撮像装置7は、嵌合作業を行う作業者が写った動画像を撮像することができる。詳細は後述するが、この動画像はシステム制御装置1に入力され、システム制御装置1はこの動画像に基づいて音取得装置3に音の取得を開始させるタイミングを決定する。 The image pickup device 7 is a device for capturing an image. As shown in FIG. 2, the image pickup apparatus 7 is installed toward an operator who performs a connector fitting operation. As a result, the imaging device 7 can capture a moving image of the operator performing the fitting operation. Although the details will be described later, this moving image is input to the system control device 1, and the system control device 1 determines the timing at which the sound acquisition device 3 starts acquiring sound based on the moving image.
 読取装置8は、判定の対象となる製品の製品情報を取得する装置である。例えば、製品情報がシートA1に取り付けられた二次元コードや三次元コードとして記録されている場合、読取装置8は、当該コードの読み取り装置であってもよい。読取装置8は、取得した製品情報をシステム制御装置1に送信する。 The reading device 8 is a device that acquires product information of the product to be determined. For example, when the product information is recorded as a two-dimensional code or a three-dimensional code attached to the sheet A1, the reading device 8 may be a reading device for the code. The reading device 8 transmits the acquired product information to the system control device 1.
 以上のように、判定システム100は、嵌合音と暗騒音とを含む音を取得して入力音データを生成する音取得装置3と、嵌合音を含む音データから生成された教師データによる機械学習で構築された学習済みモデルを用いて、音取得装置3が生成した入力音データから嵌合音の成分を分離して所定音データを生成する分離装置4と、嵌合音データを用いてコネクタA2の嵌合が正しく行われたか否かを判定する判定装置5と、を含む。この構成によれば、入力音データから嵌合音の成分を分離して生成した嵌合音データを用いて判定を行うので、暗騒音の影響を軽減して高精度な判定を行うことが可能になる。 As described above, the determination system 100 is based on the sound acquisition device 3 that acquires the sound including the fitting sound and the background noise and generates the input sound data, and the teacher data generated from the sound data including the fitting sound. Using the learned model constructed by machine learning, the separation device 4 that separates the components of the fitting sound from the input sound data generated by the sound acquisition device 3 to generate predetermined sound data, and the fitting sound data are used. A determination device 5 for determining whether or not the fitting of the connector A2 is correctly performed is included. According to this configuration, since the judgment is performed using the fitting sound data generated by separating the fitting sound component from the input sound data, it is possible to reduce the influence of background noise and perform a highly accurate judgment. become.
 〔嵌合音データの生成方法〕
 分離装置4による嵌合音データの生成方法について図3に基づいて説明する。図3は、嵌合音データの生成方法の一例を示す図である。上述のように、シートA1の製造工程においては、作業者がコネクタA2を接続する際に嵌合音が発生し、この嵌合音と暗騒音とを含む音が音取得装置3によって取得される。そして、音取得装置3は、取得した音を変換して入力音データを生成し、分離装置4に送信する。
[Method of generating mating sound data]
A method of generating fitting sound data by the separation device 4 will be described with reference to FIG. FIG. 3 is a diagram showing an example of a method of generating fitting sound data. As described above, in the manufacturing process of the sheet A1, a fitting sound is generated when the operator connects the connector A2, and the sound including the fitting sound and the background noise is acquired by the sound acquisition device 3. .. Then, the sound acquisition device 3 converts the acquired sound to generate input sound data, and transmits the input sound data to the separation device 4.
 入力音データを受信した分離装置4は、まず、受信した入力音データを周波数データに変換してスペクトログラムを生成する。周波数データへの変換には、フーリエ変換を用いればよい。 The separator 4 that has received the input sound data first converts the received input sound data into frequency data to generate a spectrogram. A Fourier transform may be used for the conversion to frequency data.
 次に、分離装置4は、生成したスペクトログラムを学習済みモデルに入力して、嵌合音のスペクトログラムを出力させる。この学習済みモデルは、嵌合音を含む音データから嵌合音データを分離できるように機械学習することにより構築されたものである。 Next, the separation device 4 inputs the generated spectrogram into the trained model and outputs the spectrogram of the mating sound. This trained model is constructed by machine learning so that the fitting sound data can be separated from the sound data including the fitting sound.
 上記学習済みモデルは、教師あり学習で構築することが好ましい。この場合、教師データとして、嵌合音を含む音データから生成されたスペクトログラムを用いてもよい。そして、このスペクトログラムに含まれる嵌合音の成分に対してラベル付けを行っておく。このような教師データを多数用いて機械学習を行うことにより、嵌合音のスペクトログラムと暗騒音のスペクトログラムが含まれたスペクトログラムから、嵌合音のスペクトログラムを分離する学習済みモデルを構築することができる。 The above trained model is preferably constructed by supervised learning. In this case, the spectrogram generated from the sound data including the fitting sound may be used as the teacher data. Then, the components of the fitting sound included in this spectrogram are labeled. By performing machine learning using a large number of such teacher data, it is possible to construct a trained model that separates the mating sound spectrogram from the spectrogram containing the mating sound spectrogram and the background noise spectrogram. ..
 なお、教師データとして用いるスペクトログラムには、嵌合音の成分の他、暗騒音の成分が含まれていてもよい。このようなスペクトログラムは、例えば実際の製造工程で集音した音から生成することができる。 Note that the spectrogram used as the teacher data may include a background noise component in addition to the fitting sound component. Such a spectrogram can be generated, for example, from sounds collected in an actual manufacturing process.
 最後に、分離装置4は、学習済みモデルから出力された嵌合音のスペクトログラムを周波数データではなく音データである嵌合音データに変換し、これにより嵌合音データの生成は終了となる。嵌合音データへの変換には、逆フーリエ変換を用いればよい。また、分離装置4は、入力音データから生成したスペクトログラムから、嵌合音のスペクトログラムの成分を除いて、暗騒音のスペクトログラムを生成すると共に、暗騒音のスペクトログラムから暗騒音データを生成してもよい。なお、スペクトログラムに基づいて嵌合の正否を判定する判定装置を用いる場合、分離装置4は、学習済みモデルから出力された嵌合音のスペクトログラムを、嵌合音データとして出力すればよい。 Finally, the separation device 4 converts the spectrogram of the fitting sound output from the trained model into the fitting sound data which is the sound data instead of the frequency data, and thus the generation of the fitting sound data is completed. The inverse Fourier transform may be used for the conversion to the fitting sound data. Further, the separation device 4 may generate a background noise spectrogram by removing the components of the mating sound spectrogram from the spectrogram generated from the input sound data, and may also generate background noise data from the background noise spectrogram. .. When a determination device for determining the correctness of fitting is used based on the spectrogram, the separation device 4 may output the spectrogram of the fitting sound output from the learned model as the fitting sound data.
 上述のようにして生成した嵌合音データから音を再生した場合、その音は入力音データに含まれる嵌合音の大きさに比例した大きさの音となる。よって、判定装置5は、分離装置4が生成した嵌合音データを用いて、正しく嵌合されたか半嵌合であるかを判定することができる。 When a sound is reproduced from the fitting sound data generated as described above, the sound becomes a sound having a loudness proportional to the loudness of the fitting sound included in the input sound data. Therefore, the determination device 5 can determine whether the fitting is correct or semi-fitting by using the fitting sound data generated by the separation device 4.
 以上のように、分離装置4は、音取得装置3が生成した入力音データから周波数データであるスペクトログラムを生成し、該スペクトログラムを学習済みモデルに入力して嵌合音のスペクトログラムを出力させる。そして、分離装置4は、嵌合音のスペクトログラムを音データに復元して嵌合音データを生成する。 As described above, the separation device 4 generates a spectrogram which is frequency data from the input sound data generated by the sound acquisition device 3, inputs the spectrogram into the trained model, and outputs a spectrogram of the fitting sound. Then, the separation device 4 restores the spectrogram of the fitting sound into the sound data and generates the fitting sound data.
 上記の構成によれば、嵌合音をその周波数データの特徴点に基づいて分離することができる。また、上記の構成によれば、周波数データを音データに復元して嵌合音データを生成するので、判定装置5は音データ(周波数データではないデータ)を用いて判定を行うことができる。この構成は、判定装置5のような音の大きさに基づいて判定する装置を用いて判定を行う判定システムに好適である。 According to the above configuration, the fitting sound can be separated based on the feature points of the frequency data. Further, according to the above configuration, since the frequency data is restored to the sound data to generate the fitting sound data, the determination device 5 can perform the determination using the sound data (data that is not the frequency data). This configuration is suitable for a determination system that makes a determination using an apparatus such as the determination device 5 that makes a determination based on the loudness of the sound.
 〔処理の流れ〕
 判定システム100において実行される処理、すなわち判定方法について図4に基づいて説明する。図4は、判定システム100で実行される判定方法の一例を示すフローチャートである。なお、図4では、記憶装置2、出力装置6、撮像装置7、および読取装置8の処理については記載を省略している。
[Processing flow]
The process executed in the determination system 100, that is, the determination method will be described with reference to FIG. FIG. 4 is a flowchart showing an example of a determination method executed by the determination system 100. Note that in FIG. 4, the processing of the storage device 2, the output device 6, the image pickup device 7, and the reading device 8 is omitted.
 ≪システム制御装置が実行する処理≫
 S1では、システム制御装置1が、音取得装置3に集音を開始させるか否かを判定する。例えば、システム制御装置1は、撮像装置7が撮像した動画像を解析して、該動画像に写る作業者の目線の方向を判定し、その方向が所定の方向(例えばコネクタA2の方向)に向いたときに、音取得装置3に集音を開始させると判定してもよい。また、例えば、システム制御装置1は、上記動画像を解析して、該動画像に写る作業者の手を検出し、作業者の手が所定の動き(例えばコネクタA2を掴む動き)をしたときに、音取得装置3に集音を開始させると判定してもよい。この他にも、例えば作業者の姿勢や体の向き(シートA1の方を向く、コネクタA2に向かって体を前傾させる等)から音取得装置3に集音を開始させるタイミングを決定してもよい。S1の処理は、集音を開始させる(S1でYES)と判定されるまで継続して行われ、S1でYESと判定されると処理はS2に進む。
<< Processing executed by the system control unit >>
In S1, the system control device 1 determines whether or not the sound acquisition device 3 starts sound collection. For example, the system control device 1 analyzes the moving image captured by the imaging device 7 to determine the direction of the operator's line of sight reflected in the moving image, and the direction is set to a predetermined direction (for example, the direction of the connector A2). When facing, it may be determined that the sound acquisition device 3 starts collecting sound. Further, for example, when the system control device 1 analyzes the moving image, detects the worker's hand reflected in the moving image, and the worker's hand makes a predetermined movement (for example, a movement of grasping the connector A2). In addition, it may be determined that the sound acquisition device 3 starts collecting sound. In addition to this, for example, the timing at which the sound acquisition device 3 starts collecting sound is determined from the posture of the worker and the orientation of the body (facing the seat A1, tilting the body forward toward the connector A2, etc.). May be good. The processing of S1 is continuously performed until it is determined to start sound collection (YES in S1), and when it is determined to be YES in S1, the processing proceeds to S2.
 S2では、システム制御装置1は、音取得装置3に指示して集音を開始させる。このように、システム制御装置1は、嵌合音が発生する作業が開始される際に、音取得装置3に音の取得を開始させることが好ましい。これは、嵌合音が発生する作業が開始される際に音の取得を開始させることにより、音取得装置3が取得する音に占める無駄な音(嵌合音が含まれ得ない音)の割合を低く抑えて、嵌合音を効率的に分離することが可能になるためである。 In S2, the system control device 1 instructs the sound acquisition device 3 to start sound collection. As described above, it is preferable that the system control device 1 causes the sound acquisition device 3 to start acquiring the sound when the work of generating the fitting sound is started. This is because the sound acquisition is started when the work of generating the fitting sound is started, so that the useless sound (the sound that cannot include the fitting sound) occupying the sound acquired by the sound acquisition device 3 is started. This is because the fitting sound can be efficiently separated by keeping the ratio low.
 そして、S3では、システム制御装置1は、音取得装置3に指示して集音を終了させる。S3の処理は、例えば、S2で集音を開始させた後、所定時間が経過したことを契機として実行してもよい。上記所定時間は、分離装置4が使用する学習済みモデルの構築に用いた教師データの元になる音データの時間と合せておく。例えば、3秒間の音データから生成したスペクトログラムを教師データとして構築した学習済みモデルが使用される場合、上記所定時間も3秒とする。 Then, in S3, the system control device 1 instructs the sound acquisition device 3 to end the sound collection. The process of S3 may be executed, for example, when a predetermined time elapses after the sound collection is started in S2. The predetermined time is combined with the time of the sound data that is the source of the teacher data used for constructing the trained model used by the separation device 4. For example, when a trained model constructed by using a spectrogram generated from sound data for 3 seconds as teacher data is used, the predetermined time is also set to 3 seconds.
 なお、判定結果を早期に出力するという観点からは、上記所定時間は、作業者によるコネクタA2の嵌合が行われるときには音取得装置3による集音が継続しているという条件を満たした上で、できるだけ短い時間であることが好ましい。例えば、作業者がコネクタA2を見た後、そのコネクタA2の接続を完了するまでの時間が数秒程度であれば、上記所定時間を数秒から十数秒程度に設定してもよい。この場合、この所定時間に応じた学習済みモデルを使用すればよい。 From the viewpoint of outputting the determination result at an early stage, the above-mentioned predetermined time satisfies the condition that the sound acquisition device 3 continues to collect sound when the connector A2 is fitted by the operator. , Preferably as short a time as possible. For example, if the time from the operator looking at the connector A2 to completing the connection of the connector A2 is about several seconds, the predetermined time may be set to about several seconds to about ten and several seconds. In this case, a trained model corresponding to this predetermined time may be used.
 S4では、システム制御装置1は、分離装置4に指示して嵌合音データの分離を実行させる。これにより、システム制御装置1の処理は終了する。なお、図示していないが、システム制御装置1は、読取装置8から製品情報を取得してもよい。そして、システム制御装置1は、嵌合音データの分離が終了した後、分離装置4から嵌合音データと暗騒音データ、および入力音データを取得し、それらの音データと製品情報とを対応付けて記憶装置2に記憶させてもよい。 In S4, the system control device 1 instructs the separation device 4 to separate the fitting sound data. As a result, the processing of the system control device 1 is completed. Although not shown, the system control device 1 may acquire product information from the reading device 8. Then, after the separation of the fitting sound data is completed, the system control device 1 acquires the fitting sound data, the background noise data, and the input sound data from the separating device 4, and corresponds the sound data with the product information. It may be attached and stored in the storage device 2.
 ≪音取得装置が実行する処理≫
 S11では、音取得装置3は、S2のシステム制御装置1からの指示に従って、音取得装置3の周囲の音の取得と、入力音データの生成とを開始する。続くS12では、音取得装置3は、S3のシステム制御装置1からの指示に従って、音取得装置3の周囲の音の取得と、入力音データの生成とを終了する。そして、音取得装置3は、S11~S12の処理で生成した入力音データを分離装置4に送信する。
<< Processing executed by the sound acquisition device >>
In S11, the sound acquisition device 3 starts acquiring the sound around the sound acquisition device 3 and generating the input sound data according to the instruction from the system control device 1 in S2. In the following S12, the sound acquisition device 3 ends the acquisition of the surrounding sound of the sound acquisition device 3 and the generation of the input sound data according to the instruction from the system control device 1 of the S3. Then, the sound acquisition device 3 transmits the input sound data generated in the processes of S11 to S12 to the separation device 4.
 ≪分離装置が実行する処理≫
 S21では、分離装置4は、S13で音取得装置3が送信した入力音データを受信する。続くS22では、分離装置4は、S4で送信されたシステム制御装置1からの指示に従い、S21で受信した入力音データから嵌合音データを分離する。嵌合音データを分離する方法は、図3に基づいて説明したとおりである。そして、S23では、分離装置4は、S22で分離した嵌合音データを判定装置5に送信する。なお、図示していないが、分離装置4は、嵌合音データをシステム制御装置1に送信して、記憶装置2に記憶させてもよい。入力音データと暗騒音データも同様である。
<< Processing executed by the separator >>
In S21, the separation device 4 receives the input sound data transmitted by the sound acquisition device 3 in S13. In the following S22, the separation device 4 separates the fitting sound data from the input sound data received in S21 according to the instruction from the system control device 1 transmitted in S4. The method of separating the fitting sound data is as described with reference to FIG. Then, in S23, the separation device 4 transmits the fitting sound data separated in S22 to the determination device 5. Although not shown, the separation device 4 may transmit the fitting sound data to the system control device 1 and store it in the storage device 2. The same applies to the input sound data and the background noise data.
 ≪判定装置が実行する処理≫
 S31では、判定装置5は、S23で分離装置4が送信した嵌合音データを受信する。続くS32では、判定装置5は、S31で受信した嵌合音データを用いて嵌合が正しく行われたか否かを判定する。そして、S33では、判定装置5は、S32の判定結果を出力装置6に出力させる。
<< Processing executed by the judgment device >>
In S31, the determination device 5 receives the fitting sound data transmitted by the separation device 4 in S23. In the following S32, the determination device 5 determines whether or not the fitting is performed correctly using the fitting sound data received in S31. Then, in S33, the determination device 5 causes the output device 6 to output the determination result of S32.
 なお、嵌合が正しく行われなかった製品が次の工程に搬送されないようにするため、判定装置5は、判定結果を直ちに出力させることが好ましい。なお、判定装置5は、嵌合が正しく行われなかったと判定した場合にのみ、判定結果を出力させてもよい。この場合、出力装置6は、警告音を発するブザーや、警告灯等としてもよい。 It is preferable that the determination device 5 immediately outputs the determination result in order to prevent the product that has not been fitted correctly from being conveyed to the next process. The determination device 5 may output the determination result only when it is determined that the fitting is not performed correctly. In this case, the output device 6 may be a buzzer that emits a warning sound, a warning light, or the like.
 また、判定装置5は、嵌合が正しく行われなかったと判定した場合に、製品の搬送装置を制御して搬送を停止させ、嵌合が正しく行われなかった製品が次の工程に搬送されないようにしてもよい。搬送ラインL上の何れの位置で製品を停止させるかは任意であるが、作業性を考慮して、予め定められた位置で停止させてもよい。さらに、この場合、判定システム100は、作業者による再度の嵌合作業についても、嵌合が正しく行われたか否かを判定してもよい。そして、判定装置5は、嵌合が正しく行われたと判定した場合に、製品の搬送を再開させてもよい。 Further, when the determination device 5 determines that the fitting is not performed correctly, the determination device 5 controls the product transfer device to stop the transfer so that the product that is not fitted correctly is not transferred to the next process. It may be. The position on the transport line L at which the product is stopped is arbitrary, but it may be stopped at a predetermined position in consideration of workability. Further, in this case, the determination system 100 may also determine whether or not the fitting has been performed correctly in the refitting work by the operator. Then, the determination device 5 may restart the transportation of the product when it is determined that the fitting has been performed correctly.
  ≪まとめ≫
 以上のように、図4の判定方法は、嵌合音と暗騒音とを含む音を取得して音データを生成する音データ生成ステップ(S11~S12)と、音データ生成ステップで生成した音データから嵌合音の成分を分離して嵌合音データを生成する分離ステップ(S22)と、嵌合音データを用いて嵌合の正否を判定する判定ステップ(S32)と、を含む。
≪Summary≫
As described above, the determination method of FIG. 4 includes a sound data generation step (S11 to S12) for acquiring a sound including a fitting sound and a background noise and generating sound data, and a sound generated in the sound data generation step. A separation step (S22) for separating the components of the fitting sound from the data to generate the fitting sound data, and a determination step (S32) for determining the correctness of the fitting using the fitting sound data are included.
 よって、嵌合音に基づく判定を高精度に行うことができる。なお、上記の例では、各ステップの実行主体がそれぞれ別の装置であるが、1つの装置によって上記各ステップのうち2以上のステップを実行する構成としてもよい。例えば、後述の実施形態2の分離装置4Aを用いる場合、音データ生成ステップは、本実施形態と同様に音取得装置3が実行するが、上記分離ステップと上記判定ステップは分離装置4Aが実行することになる。 Therefore, the judgment based on the fitting sound can be performed with high accuracy. In the above example, the execution subject of each step is a different device, but one device may execute two or more steps of each of the above steps. For example, when the separation device 4A of the second embodiment described later is used, the sound data generation step is executed by the sound acquisition device 3 as in the present embodiment, but the separation step and the determination step are executed by the separation device 4A. It will be.
 〔実施形態2〕
 本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
[Embodiment 2]
Other embodiments of the present invention will be described below. For convenience of explanation, the same reference numerals will be added to the members having the same functions as the members described in the above embodiment, and the description will not be repeated.
 図5は、本実施形態に係る分離装置4Aの要部構成の一例を示すブロック図である。分離装置4Aは、実施形態1の判定システム100における、システム制御装置1、記憶装置2、分離装置4、判定装置5、および出力装置6の機能を備えた装置である。よって、分離装置4Aを用いる場合、例えば、分離装置4A、音取得装置3、撮像装置7、および読取装置8という4台の装置で判定システムを構築することもできる。このように、判定システム100の機能は、様々な装置構成によって実現することができる。 FIG. 5 is a block diagram showing an example of the main configuration of the separation device 4A according to the present embodiment. The separation device 4A is a device having the functions of the system control device 1, the storage device 2, the separation device 4, the determination device 5, and the output device 6 in the determination system 100 of the first embodiment. Therefore, when the separation device 4A is used, for example, the determination system can be constructed by four devices, the separation device 4A, the sound acquisition device 3, the image pickup device 7, and the reading device 8. As described above, the function of the determination system 100 can be realized by various device configurations.
 図5に示すように、分離装置4Aは、分離装置4Aの各部を統括して制御する制御部41、分離装置4Aが使用する各種データを記憶する記憶部42、分離装置4Aが他の装置と通信するための通信部43、および画像を表示する表示部44を備えている。また、制御部41には、開始判定部411、音データ取得部412、分離部413、嵌合正否判定部414、および判定結果通知制御部415が含まれている。また、分離部413には、スペクトログラム生成部413A、スペクトル分離部413B、および音データ変換部413Cが含まれている。そして、記憶部42には入力音データ421、暗騒音データ422、および嵌合音データ423が記憶されている。 As shown in FIG. 5, the separation device 4A includes a control unit 41 that controls and controls each part of the separation device 4A, a storage unit 42 that stores various data used by the separation device 4A, and the separation device 4A with other devices. It includes a communication unit 43 for communication and a display unit 44 for displaying an image. Further, the control unit 41 includes a start determination unit 411, a sound data acquisition unit 412, a separation unit 413, a fitting correctness determination unit 414, and a determination result notification control unit 415. Further, the separation unit 413 includes a spectrogram generation unit 413A, a spectrum separation unit 413B, and a sound data conversion unit 413C. Then, the input sound data 421, the background noise data 422, and the fitting sound data 423 are stored in the storage unit 42.
 開始判定部411は、音取得装置3に音の取得を開始させるか否かを判定する。例えば、開始判定部411は、実施形態1のシステム制御装置1と同様に、撮像装置7が撮像した動画像を解析して、該動画像に写る作業者の目線の方向を判定し、その方向が所定の方向に向いたときに、音取得装置3に集音を開始させると判定してもよい。 The start determination unit 411 determines whether or not the sound acquisition device 3 starts acquiring the sound. For example, the start determination unit 411 analyzes the moving image captured by the imaging device 7 as in the system control device 1 of the first embodiment, determines the direction of the operator's line of sight in the moving image, and determines the direction of the operator's line of sight. May determine that the sound acquisition device 3 starts collecting sound when is oriented in a predetermined direction.
 音データ取得部412は、嵌合音と暗騒音とを含む音から生成された入力音データを取得する。具体的には、音データ取得部412は、開始判定部411が音の取得を開始させると判定したときに、音取得装置3に指示して音の取得を開始させる。また、音データ取得部412は、音の取得を開始させた後、所定時間が経過したときに、音取得装置3に指示して音の取得を終了させる。そして、音データ取得部412は、上記指示に応じて取得された音データを音取得装置3から取得し、入力音データ421として記憶部42に記憶する。 The sound data acquisition unit 412 acquires input sound data generated from a sound including a fitting sound and background noise. Specifically, when the start determination unit 411 determines that the sound acquisition is to be started, the sound data acquisition unit 412 instructs the sound acquisition device 3 to start the sound acquisition. Further, the sound data acquisition unit 412 instructs the sound acquisition device 3 to end the sound acquisition when a predetermined time elapses after starting the sound acquisition. Then, the sound data acquisition unit 412 acquires the sound data acquired in response to the above instruction from the sound acquisition device 3 and stores it in the storage unit 42 as the input sound data 421.
 開始判定部411と音データ取得部412が有する各機能は、実施形態1のシステム制御装置1が有する機能と同様である。よって、実施形態1のシステム制御装置1は、システム制御装置1に開始判定部411および音データ取得部412を含む制御部(例えばプロセッサ)を設けることによって実現することもできる。 Each function of the start determination unit 411 and the sound data acquisition unit 412 is the same as the function of the system control device 1 of the first embodiment. Therefore, the system control device 1 of the first embodiment can also be realized by providing the system control device 1 with a control unit (for example, a processor) including a start determination unit 411 and a sound data acquisition unit 412.
 分離部413は、入力音データから嵌合音の成分を分離して嵌合音データを生成する。以下説明するように、この機能は、スペクトログラム生成部413A、スペクトル分離部413B、および音データ変換部413Cにより実現される。 The separation unit 413 separates the fitting sound component from the input sound data and generates the fitting sound data. As will be described below, this function is realized by the spectrogram generation unit 413A, the spectrum separation unit 413B, and the sound data conversion unit 413C.
 スペクトログラム生成部413Aは、音データ取得部412が取得した入力音データを周波数データに変換してスペクトログラムを生成する。また、スペクトル分離部413Bは、スペクトログラム生成部413Aが生成したスペクトログラムを学習済みモデルに入力して、嵌合音のスペクトログラムを出力させる。なお、この学習済みモデルは実施形態1で説明したものと同様である。そして、音データ変換部413Cは、学習済みモデルから出力された嵌合音のスペクトログラムを嵌合音データに変換し、嵌合音データ423として記憶部42に記憶する。 The spectrogram generation unit 413A converts the input sound data acquired by the sound data acquisition unit 412 into frequency data to generate a spectrogram. Further, the spectrum separation unit 413B inputs the spectrogram generated by the spectrogram generation unit 413A into the trained model, and outputs a spectrogram of the fitting sound. The trained model is the same as that described in the first embodiment. Then, the sound data conversion unit 413C converts the spectrogram of the fitting sound output from the learned model into the fitting sound data, and stores it in the storage unit 42 as the fitting sound data 423.
 なお、スペクトル分離部413Bは、スペクトログラム生成部413Aが生成したスペクトログラムから、嵌合音のスペクトログラムの成分を除いて、暗騒音のスペクトログラムを生成してもよい。この場合、音データ変換部413Cは、暗騒音のスペクトログラムから暗騒音データを生成し、暗騒音データ422として記憶部42に記憶してもよい。 Note that the spectrum separation unit 413B may generate a background noise spectrogram from the spectrogram generated by the spectrogram generation unit 413A by removing the spectrogram component of the fitting sound. In this case, the sound data conversion unit 413C may generate background noise data from the background noise spectrogram and store it in the storage unit 42 as background noise data 422.
 分離部413に含まれる各部の機能は、実施形態1の分離装置4が有する機能と同様である。よって、実施形態1の分離装置4は、分離装置4にスペクトログラム生成部413A、スペクトル分離部413B、および音データ変換部413Cを含む制御部(例えばプロセッサ)を設けることによって実現することもできる。 The functions of each part included in the separation part 413 are the same as the functions of the separation device 4 of the first embodiment. Therefore, the separation device 4 of the first embodiment can also be realized by providing the separation device 4 with a control unit (for example, a processor) including a spectrogram generation unit 413A, a spectrum separation unit 413B, and a sound data conversion unit 413C.
 嵌合正否判定部414は、音データ変換部413Cが生成する嵌合音データを用いて、嵌合が正しく行われたか否かを判定する。そして、判定結果通知制御部415は、嵌合正否判定部414の判定結果を表示部44に表示させる。これらの各機能は、実施形態1の判定装置5が有する機能と同様である。よって、実施形態1の判定装置5は、判定装置5に嵌合正否判定部414および判定結果通知制御部415を含む制御部(例えばプロセッサ)を設けることによって実現することもできる。 The fitting correctness determination unit 414 determines whether or not the fitting has been performed correctly using the fitting sound data generated by the sound data conversion unit 413C. Then, the determination result notification control unit 415 causes the display unit 44 to display the determination result of the fitting correctness determination unit 414. Each of these functions is the same as the function of the determination device 5 of the first embodiment. Therefore, the determination device 5 of the first embodiment can also be realized by providing the determination device 5 with a control unit (for example, a processor) including a fitting correctness determination unit 414 and a determination result notification control unit 415.
 以上のように、分離装置4Aは、嵌合音と暗騒音とを含む音から生成された入力音データを取得する音データ取得部412と、学習済みモデルを用いて上記入力音データから嵌合音の成分を分離して嵌合音データを生成する分離部413と、を備えている。 As described above, the separation device 4A is fitted from the input sound data by using the sound data acquisition unit 412 that acquires the input sound data generated from the sound including the fitting sound and the background noise and the trained model. It includes a separation unit 413 that separates sound components and generates fitting sound data.
 分離装置4Aによれば、嵌合正否判定部414に、嵌合音に基づく判定を高精度に行わせることができる。なお、実施形態1と同様に、判定装置5を用いて判定を行ってもよく、この場合、分離装置4Aは、音データ変換部413Cが生成する嵌合音データを判定装置5に送信する。これにより、分離装置4Aは、実施形態1の分離装置と同様に、嵌合音に基づく判定を判定装置5に高精度に行わせることができる。 According to the separation device 4A, the fitting correctness determination unit 414 can make a determination based on the fitting sound with high accuracy. As in the first embodiment, the determination device 5 may be used for determination. In this case, the separation device 4A transmits the fitting sound data generated by the sound data conversion unit 413C to the determination device 5. As a result, the separation device 4A can make the determination device 5 perform the determination based on the fitting sound with high accuracy, as in the separation device of the first embodiment.
 また、実施形態1の分離装置4も、嵌合音と暗騒音とを含む音から生成された入力音データを取得し、学習済みモデルを用いて上記入力音データから嵌合音の成分を分離して嵌合音データを生成する。よって、実施形態1の分離装置4も、音データ取得部412と分離部413を備えているといえる。したがって、分離装置4によっても分離装置4Aと同様の効果を得ることができる。 Further, the separation device 4 of the first embodiment also acquires the input sound data generated from the sound including the fitting sound and the background noise, and separates the fitting sound component from the input sound data by using the trained model. To generate fitting sound data. Therefore, it can be said that the separation device 4 of the first embodiment also includes the sound data acquisition unit 412 and the separation unit 413. Therefore, the same effect as that of the separation device 4A can be obtained by the separation device 4.
 〔実施形態3〕
 本発明の他の実施形態について、図6に基づいて以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
[Embodiment 3]
Other embodiments of the present invention will be described below with reference to FIG. For convenience of explanation, the same reference numerals will be added to the members having the same functions as the members described in the above embodiment, and the description will not be repeated.
 図6は、本実施形態に係る判定システム100の構成例と、該判定システム100で実行される判定方法の例とを示す図である。図示のように、本実施形態の判定システム100は、実施形態1の判定システム100(図1参照)と比べて、判定装置5と出力装置6を含まない点、および分離装置4が分離装置4Bに変わっている点で相違している。 FIG. 6 is a diagram showing a configuration example of the determination system 100 according to the present embodiment and an example of a determination method executed by the determination system 100. As shown in the figure, the determination system 100 of the present embodiment does not include the determination device 5 and the output device 6 as compared with the determination system 100 of the first embodiment (see FIG. 1), and the separation device 4 is the separation device 4B. It differs in that it has changed to.
 分離装置4Bは、実施形態1の分離装置4の機能に加えて、判定装置5と出力装置6の機能を備えた装置である。図示していないが、分離装置4Bは、分離装置4Aと同様に制御部を備え、この制御部には図5に示す音データ取得部412、分離部413、嵌合正否判定部414、および判定結果通知制御部415が含まれている。また、図示していないが、分離装置4Bは、図5の分離装置4Aと同様に、記憶部42、通信部43、および表示部44を備えている。 The separation device 4B is a device having the functions of the determination device 5 and the output device 6 in addition to the functions of the separation device 4 of the first embodiment. Although not shown, the separation device 4B includes a control unit similar to the separation device 4A, and the control unit includes a sound data acquisition unit 412, a separation unit 413, a fitting correctness determination unit 414, and a determination unit shown in FIG. The result notification control unit 415 is included. Although not shown, the separation device 4B includes a storage unit 42, a communication unit 43, and a display unit 44, similarly to the separation device 4A of FIG.
 〔処理の流れ〕
 実施形態3の判定システム100において実行される処理について説明する。なお、システム制御装置1および音取得装置3が実行する処理、並びにS21~S22の処理は図4に基づいて説明した処理と同様であるから、ここでは説明を繰り返さない。
[Processing flow]
The process executed in the determination system 100 of the third embodiment will be described. Since the processes executed by the system control device 1 and the sound acquisition device 3 and the processes of S21 to S22 are the same as the processes described with reference to FIG. 4, the description will not be repeated here.
 S23’(判定ステップ)では、分離装置4Bの嵌合正否判定部414が、S22で分離部413が入力音データから分離した嵌合音データを用いて、嵌合が正しく行われたか否かを判定する。そして、S24’では、判定結果通知制御部415は、S23’の判定結果を表示部44に出力させる。なお、判定結果通知制御部415は、S23’の判定結果と共に、S21で音データ取得部412が取得した入力音データおよびS22で分離された嵌合音データをシステム制御装置1に送信して、記憶装置2に記憶させてもよい。 In S23'(determination step), the fitting correctness determination unit 414 of the separation device 4B uses the fitting sound data separated from the input sound data by the separation unit 413 in S22 to determine whether or not the fitting is performed correctly. judge. Then, in S24', the determination result notification control unit 415 outputs the determination result of S23'to the display unit 44. The determination result notification control unit 415 transmits the input sound data acquired by the sound data acquisition unit 412 in S21 and the fitting sound data separated in S22 to the system control device 1 together with the determination result of S23'. It may be stored in the storage device 2.
 〔変形例〕
 判定システム100は、製品の製造工程で発生する音に基づいて判定を行うものであればよく、判定基準となる音は嵌合音に限られない。また、判定システム100の判定事項も任意である。例えば、シートA1が、電動のパワーシートである場合、判定システム100は、その作動音に基づいてシートA1に異常がないか判定してもよい。また、この場合、判定システム100は、シートフレーム駆動用のモータの作動音に基づいてモータの異常の有無を判定してもよい。
[Modification example]
The determination system 100 may perform determination based on the sound generated in the manufacturing process of the product, and the sound serving as the determination standard is not limited to the fitting sound. Further, the determination items of the determination system 100 are also arbitrary. For example, when the seat A1 is an electric power seat, the determination system 100 may determine whether or not there is an abnormality in the seat A1 based on the operating sound. Further, in this case, the determination system 100 may determine the presence or absence of an abnormality in the motor based on the operating noise of the motor for driving the seat frame.
 無論、対象となる製品は、車両用のシートやその部品に限られず、その製造工程で発生する音に基づく判定を行うことに技術的な意義のある製品であればよい。例えば、判定システム100は、製品の製造設備から発生する音に基づいて、製造設備の異常の有無を判定してもよい。このように、判定システム100は、製造設備の保全にも利用することができる。なお、製品の製造設備から発生する音は、製造時に発生するものであってもよいし、例えば製造設備のメンテナンス時などの非製造時に発生する(あるいは人為的に発生させる)ものであってもよい。 Of course, the target product is not limited to vehicle seats and their parts, but may be a product that has technical significance in making a judgment based on the sound generated in the manufacturing process. For example, the determination system 100 may determine the presence or absence of an abnormality in the manufacturing equipment based on the sound generated from the manufacturing equipment of the product. In this way, the determination system 100 can also be used for maintenance of manufacturing equipment. The sound generated from the manufacturing equipment of the product may be generated at the time of manufacturing, or may be generated (or artificially generated) at the time of non-manufacturing such as maintenance of the manufacturing equipment. Good.
 判定基準となる音を変更する場合、分離装置4、4A、または4Bが使用する学習済みモデルを、判定基準となる音に応じたものとしておけばよい。これにより、判定基準となる音と暗騒音とを含む入力音データから、判定基準となる音の成分を音データとして分離することができるので、暗騒音の影響を抑えて高精度な判定を行うことができる。 When changing the sound that serves as the judgment standard, the trained model used by the separation devices 4, 4A, or 4B may be set according to the sound that serves as the judgment standard. As a result, the sound component that serves as the judgment criterion can be separated as sound data from the input sound data that includes the sound that serves as the judgment criterion and the background noise, so that the influence of background noise can be suppressed and a highly accurate judgment can be made. be able to.
 また、上記実施形態では、撮像装置7によって撮像した作業者の画像に基づいて音取得装置3に音の取得を開始させるタイミングを決定する例を説明したが、音の取得を開始させるタイミングの決定方法はこの例に限られない。例えば、コネクタA2を嵌合させる直前に特定の音(例えばコネクタA2の接触音や接合音)が発生する場合、その音の検出を契機として、嵌合音を含む入力音データの生成を開始させてもよい。また、例えば、嵌合作業の開始時に、作業者に発声してもらうようにすれば、その発声の検出を契機として、嵌合音を含む入力音データの生成を開始させることもできる。この他にも、例えば、製造ラインLの所定位置に、次にコネクタA2を接続する作業の対象となるシートA1が到達したことを検出し、その検出を契機として、嵌合音を含む入力音データの生成を開始させることもできる。 Further, in the above embodiment, an example of determining the timing for starting the sound acquisition by the sound acquisition device 3 based on the image of the operator captured by the image pickup device 7 has been described, but the timing for starting the sound acquisition has been determined. The method is not limited to this example. For example, when a specific sound (for example, a contact sound or a joining sound of the connector A2) is generated immediately before fitting the connector A2, the generation of input sound data including the fitting sound is started with the detection of the sound as a trigger. You may. Further, for example, if the worker is asked to utter at the start of the fitting operation, the generation of the input sound data including the fitting sound can be started with the detection of the utterance as a trigger. In addition to this, for example, it is detected that the sheet A1 to be the target of the work of connecting the connector A2 next reaches a predetermined position on the production line L, and the detection triggers an input sound including a fitting sound. You can also start generating data.
 また、分離装置4、4A、および4Bは、コネクタの嵌合音の周波数成分を通過させ、暗騒音の周波数成分は通過させない周波数マスクを生成し、この周波数マスクを用いて入力音データから嵌合音の成分を分離することにより、嵌合音データを生成してもよい。この場合、分離装置4、4A、および4Bは、コネクタの嵌合音と暗騒音を含むスペクトログラムを、機械学習によって予め構築された学習済みモデルに入力する。これにより、当該学習済みモデルに、コネクタの嵌合音の周波数成分を通過させ、暗騒音の周波数成分は通過させない周波数マスクを出力させる。 Further, the separators 4, 4A, and 4B generate a frequency mask that allows the frequency component of the fitting sound of the connector to pass through and does not allow the frequency component of the background noise to pass through, and uses this frequency mask to fit from the input sound data. Fitting sound data may be generated by separating the sound components. In this case, the separators 4, 4A, and 4B input a spectrogram including connector fitting noise and background noise into a trained model pre-built by machine learning. As a result, the trained model is made to output a frequency mask that allows the frequency component of the fitting sound of the connector to pass through and does not pass the frequency component of the background noise.
 そして、分離装置4、4A、および4Bは、上記スペクトログラムを上記周波数マスクに通し、コネクタの嵌合音の周波数成分を含み、暗騒音の周波数成分が除去されたスペクトログラムを得る。この後は、上述の実施形態と同様に、スペクトログラムを嵌合音データに変換すればよい。 Then, the separators 4, 4A, and 4B pass the spectrogram through the frequency mask to obtain a spectrogram containing the frequency component of the fitting sound of the connector and removing the frequency component of the background noise. After that, the spectrogram may be converted into the fitting sound data in the same manner as in the above-described embodiment.
 なお、上記学習済みモデルは、教師データを用いた教師あり学習で構築しておけばよい。具体的には、上記教師データは、コネクタの嵌合音を含むスペクトログラムを入力データとし、コネクタの嵌合音の周波数成分を通過させ、暗騒音の周波数成分は通過させない周波数マスクを出力データ(正解データ)とした教師データとすればよい。 The above trained model may be constructed by supervised learning using teacher data. Specifically, the above teacher data uses a spectrogram including the fitting sound of the connector as input data, and outputs a frequency mask that passes the frequency component of the fitting sound of the connector and does not pass the frequency component of background noise (correct answer). It may be the teacher data as (data).
 〔ソフトウェアによる実現例〕
 判定システム100に含まれる各装置(特にシステム制御装置1、分離装置4、および判定装置5)の各機能、および分離装置4A、4Bの制御ブロック(特に制御部41に含まれる各部)は、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、ソフトウェアによって実現してもよい。
[Example of realization by software]
The functions of each device (particularly the system control device 1, the separation device 4, and the judgment device 5) included in the determination system 100, and the control blocks (particularly each unit included in the control unit 41) of the separation devices 4A and 4B are integrated. It may be realized by a logic circuit (hardware) formed in a circuit (IC chip) or the like, or may be realized by software.
 後者の場合、システム制御装置1、分離装置4、分離装置4A、4B、および判定装置5は、各機能を実現するソフトウェアであるプログラムの命令を実行するコンピュータを備えている。このコンピュータは、例えば1つ以上のプロセッサを備えていると共に、上記プログラムを記憶したコンピュータ読み取り可能な記録媒体を備えている。そして、上記コンピュータにおいて、上記プロセッサが上記プログラムを上記記録媒体から読み取って実行することにより、本発明の目的が達成される。上記プロセッサとしては、例えばCPU(Central Processing Unit)を用いることができる。上記記録媒体としては、「一時的でない有形の媒体」、例えば、ROM(Read Only Memory)等の他、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、上記プログラムを展開するRAM(Random Access Memory)などをさらに備えていてもよい。また、上記プログラムは、該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して上記コンピュータに供給されてもよい。なお、本発明の一態様は、上記プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。 In the latter case, the system control device 1, the separation device 4, the separation devices 4A, 4B, and the determination device 5 include a computer that executes a program instruction that is software that realizes each function. The computer includes, for example, one or more processors and a computer-readable recording medium that stores the program. Then, in the computer, the processor reads the program from the recording medium and executes it, thereby achieving the object of the present invention. As the processor, for example, a CPU (Central Processing Unit) can be used. As the recording medium, in addition to a “non-temporary tangible medium” such as a ROM (Read Only Memory), a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used. Further, a RAM (RandomAccessMemory) for expanding the above program may be further provided. Further, the program may be supplied to the computer via an arbitrary transmission medium (communication network, broadcast wave, etc.) capable of transmitting the program. It should be noted that one aspect of the present invention can also be realized in the form of a data signal embedded in a carrier wave, in which the above program is embodied by electronic transmission.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims, and the embodiments obtained by appropriately combining the technical means disclosed in the different embodiments. Is also included in the technical scope of the present invention.
   1 システム制御装置
   3 音取得装置
4、4A、4B 分離装置
   5 判定装置
100 判定システム
412 音データ取得部
413 分離部
1 System control device 3 Sound acquisition device 4, 4A, 4B Separator 5 Judgment device 100 Judgment system 412 Sound data acquisition unit 413 Separation unit

Claims (7)

  1.  製品の製造工程で発生する所定の音と暗騒音とを含む音を取得して音データを生成する音取得装置と、
     上記所定の音を含む音データから生成された教師データによる機械学習で構築された学習済みモデルを用いて、上記音取得装置が生成した音データから上記所定の音の成分を分離して所定音データを生成する分離装置と、
     上記所定音データを用いて上記製造工程に関する所定の判定事項を判定する判定装置と、を含むことを特徴とする判定システム。
    A sound acquisition device that acquires sound including a predetermined sound and background noise generated in the manufacturing process of a product and generates sound data,
    Using a trained model constructed by machine learning based on teacher data generated from sound data including the predetermined sound, the predetermined sound component is separated from the sound data generated by the sound acquisition device to obtain the predetermined sound. A separator that generates data and
    A determination system including a determination device for determining a predetermined determination item related to the manufacturing process using the predetermined sound data.
  2.  上記音取得装置は、上記製造工程の作業者が作業中に装着する装置であり、
     上記所定の音は、上記作業者の作業によって発生する音であることを特徴とする請求項1に記載の判定システム。
    The sound acquisition device is a device worn by a worker in the manufacturing process during work.
    The determination system according to claim 1, wherein the predetermined sound is a sound generated by the work of the worker.
  3.  上記製造工程にて上記所定の音が発生する作業が開始される際に、上記音取得装置に音の取得を開始させるシステム制御装置をさらに含むことを特徴とする請求項1または2に記載の判定システム。 The first or second claim, wherein the sound acquisition device further includes a system control device that starts the sound acquisition when the work of generating the predetermined sound is started in the manufacturing process. Judgment system.
  4.  上記分離装置は、上記音取得装置が生成した音データから周波数データを生成し、該周波数データを上記学習済みモデルに入力して上記所定の音の周波数データを出力させ、該周波数データを音データに復元して上記所定音データを生成することを特徴とする請求項1から3の何れか1項に記載の判定システム。 The separation device generates frequency data from the sound data generated by the sound acquisition device, inputs the frequency data to the trained model to output the frequency data of the predetermined sound, and outputs the frequency data to the sound data. The determination system according to any one of claims 1 to 3, wherein the predetermined sound data is generated by restoring the data.
  5.  製品の製造工程で発生する所定の音と暗騒音とを含む音から生成された音データを取得する音データ取得部と、
     上記所定の音を含む音データから生成された教師データによる機械学習で構築された学習済みモデルを用いて、上記音データ取得部が取得した音データから上記所定の音の成分を分離して所定音データを生成する分離部と、を備えていることを特徴とする分離装置。
    A sound data acquisition unit that acquires sound data generated from sounds that include a predetermined sound and background noise generated in the manufacturing process of a product, and a sound data acquisition unit.
    Using a trained model constructed by machine learning based on teacher data generated from sound data including the predetermined sound, the predetermined sound component is separated from the sound data acquired by the sound data acquisition unit. A separation device including a separation unit that generates sound data.
  6.  請求項5に記載の分離装置としてコンピュータを機能させるプログラムであって、上記音データ取得部および上記分離部としてコンピュータを機能させるためのプログラム。 A program for operating a computer as the separation device according to claim 5, wherein the computer functions as the sound data acquisition unit and the separation unit.
  7.  1または複数の装置によって実行される判定方法であって、
     製品の製造工程で発生する所定の音と暗騒音とを含む音を取得して音データを生成する音データ生成ステップと、
     上記所定の音を含む音データから生成された教師データによる機械学習で構築された学習済みモデルを用いて、上記音データ生成ステップで生成した音データから上記所定の音の成分を分離して所定音データを生成する分離ステップと、
     上記所定音データを用いて上記製造工程に関する所定の判定事項を判定する判定ステップと、を含むことを特徴とする判定方法。
    A determination method performed by one or more devices.
    A sound data generation step that acquires sound including a predetermined sound and background noise generated in the manufacturing process of a product and generates sound data,
    Using a trained model constructed by machine learning with teacher data generated from sound data including the predetermined sound, the predetermined sound component is separated from the sound data generated in the sound data generation step. Separation steps to generate sound data and
    A determination method including a determination step of determining a predetermined determination item related to the manufacturing process using the predetermined sound data.
PCT/JP2020/016643 2019-04-22 2020-04-16 Determination system, separating device, determination method, and program WO2020218129A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-080943 2019-04-22
JP2019080943 2019-04-22
JP2020072503A JP2020177021A (en) 2019-04-22 2020-04-14 Determination system, separation device, determination method, and program
JP2020-072503 2020-04-14

Publications (1)

Publication Number Publication Date
WO2020218129A1 true WO2020218129A1 (en) 2020-10-29

Family

ID=72935562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/016643 WO2020218129A1 (en) 2019-04-22 2020-04-16 Determination system, separating device, determination method, and program

Country Status (2)

Country Link
JP (1) JP2020177021A (en)
WO (1) WO2020218129A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022158065A1 (en) * 2021-01-20 2022-07-28 パナソニックIpマネジメント株式会社 Fitting detection method, fitting detection device, and fitting detection system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10235490A (en) * 1996-12-24 1998-09-08 Kawasaki Steel Corp Method for evaluating weld state of electric welding machine and device therefor
JPH11241945A (en) * 1998-02-25 1999-09-07 Mitsubishi Electric Corp Foreign sound inspecting device
JP2953740B2 (en) * 1990-04-17 1999-09-27 ザ ウィタカー コーポレーション Connector mating confirmation method and device
JP2004273195A (en) * 2003-03-06 2004-09-30 Toyota Motor Corp Engagement assurance system, working position indication system, engagement assurance method, and working position indication method
JP2016536773A (en) * 2013-10-07 2016-11-24 タイコ・エレクトロニクス・コーポレイションTyco Electronics Corporation Connector fitting guarantee system and method
JP2017188370A (en) * 2016-04-08 2017-10-12 住友電気工業株式会社 Assembly quality discrimination device, assembly quality discrimination method and assembly quality discrimination program
JP2018013348A (en) * 2016-07-19 2018-01-25 日本電信電話株式会社 Hammering testing system and hammering testing method
JP2018506157A (en) * 2015-02-23 2018-03-01 ティーイー・コネクティビティ・コーポレイションTE Connectivity Corporation Mating guarantee system and method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2953740B2 (en) * 1990-04-17 1999-09-27 ザ ウィタカー コーポレーション Connector mating confirmation method and device
JPH10235490A (en) * 1996-12-24 1998-09-08 Kawasaki Steel Corp Method for evaluating weld state of electric welding machine and device therefor
JPH11241945A (en) * 1998-02-25 1999-09-07 Mitsubishi Electric Corp Foreign sound inspecting device
JP2004273195A (en) * 2003-03-06 2004-09-30 Toyota Motor Corp Engagement assurance system, working position indication system, engagement assurance method, and working position indication method
JP2016536773A (en) * 2013-10-07 2016-11-24 タイコ・エレクトロニクス・コーポレイションTyco Electronics Corporation Connector fitting guarantee system and method
JP2018506157A (en) * 2015-02-23 2018-03-01 ティーイー・コネクティビティ・コーポレイションTE Connectivity Corporation Mating guarantee system and method
JP2017188370A (en) * 2016-04-08 2017-10-12 住友電気工業株式会社 Assembly quality discrimination device, assembly quality discrimination method and assembly quality discrimination program
JP2018013348A (en) * 2016-07-19 2018-01-25 日本電信電話株式会社 Hammering testing system and hammering testing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022158065A1 (en) * 2021-01-20 2022-07-28 パナソニックIpマネジメント株式会社 Fitting detection method, fitting detection device, and fitting detection system
JP7457908B2 (en) 2021-01-20 2024-03-29 パナソニックIpマネジメント株式会社 Mating detection method, mating detection device, and mating detection system

Also Published As

Publication number Publication date
JP2020177021A (en) 2020-10-29

Similar Documents

Publication Publication Date Title
US11184383B2 (en) Security test system, security test method, function evaluation device, and program
EP3584779B1 (en) Alert fault detection system and method
JP2005324267A (en) Vehicle diagnosing robot
CN111063054A (en) Fault information sending method and device and vehicle fault processing method and device
CN113748389B (en) Method and device for monitoring industrial process steps
WO2020218129A1 (en) Determination system, separating device, determination method, and program
US20240046443A1 (en) Analysis apparatus, analysis system, analysis program, and analysis method
CN110473533B (en) Voice conversation system, voice conversation method, and program
US9812153B2 (en) Image and audio reproduction device and method
US11954252B2 (en) Component connection verification device and method
US7908050B2 (en) In-vehicle emergency communicator
JP2015025730A (en) Stereo camera apparatus, mobile object control system, mobile object, and program
JP6626549B1 (en) Judgment device and judgment method
US20180126561A1 (en) Generation device, control method, robot device, call system, and computer-readable recording medium
US11763561B2 (en) Information processing apparatus, information processing method, and program
CN114020157B (en) Method and device for checking vehicles, vehicles and storage medium
US11184475B2 (en) Mobile apparatus, terminal apparatus, information processing system, information processing method, program for mobile apparatus, and program for terminal apparatus
JP2018002402A (en) Recorded video reproduction system of elevator and method thereof
JP2013175032A (en) Drive recorder
CN116522283A (en) Fusion diagnosis method, device, equipment and medium based on vibration and video data
JP6249874B2 (en) Wireless communication device
CN108667683B (en) Method and apparatus for monitoring data related to broadcasting and/or streaming
CN115947181B (en) Yarn mixing processing method, processing device and processing system of packer
JP2008072344A (en) Abnormality detecting method and device
CN112356774B (en) Vehicle-mounted entertainment system for sounding warning sound and function diagnosis method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20793965

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20793965

Country of ref document: EP

Kind code of ref document: A1