[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020213095A1 - 電界発光素子、表示装置、及び電界発光素子の製造方法 - Google Patents

電界発光素子、表示装置、及び電界発光素子の製造方法 Download PDF

Info

Publication number
WO2020213095A1
WO2020213095A1 PCT/JP2019/016509 JP2019016509W WO2020213095A1 WO 2020213095 A1 WO2020213095 A1 WO 2020213095A1 JP 2019016509 W JP2019016509 W JP 2019016509W WO 2020213095 A1 WO2020213095 A1 WO 2020213095A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light emitting
green
red
electroluminescent element
Prior art date
Application number
PCT/JP2019/016509
Other languages
English (en)
French (fr)
Inventor
正 小橋
山本 真樹
佑子 小椋
由香 高三潴
雅典 田中
惣一朗 荷方
哲二 伊藤
真由子 渡邊
Original Assignee
シャープ株式会社
Nsマテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社, Nsマテリアルズ株式会社 filed Critical シャープ株式会社
Priority to PCT/JP2019/016509 priority Critical patent/WO2020213095A1/ja
Priority to US17/603,557 priority patent/US20220199924A1/en
Publication of WO2020213095A1 publication Critical patent/WO2020213095A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/002Compounds containing, besides selenium or tellurium, more than one other element, with -O- and -OH not being considered as anions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • H10K50/131OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit with spacer layers between the electroluminescent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/352Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels the areas of the RGB subpixels being different
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/20Delayed fluorescence emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/331Nanoparticles used in non-emissive layers, e.g. in packaging layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/115Polyfluorene; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers

Definitions

  • the following disclosure relates to an electroluminescent device or the like containing QD (Quantum Dot) phosphor particles.
  • QD phosphor particles also referred to as semiconductor nanoparticle phosphors
  • An example of the electroluminescent device is a QLED (Quantum dot Light Emitting Diode).
  • Non-Patent Document 1 discloses an example of a method for producing blue QD phosphor particles used for QLED.
  • One object of the production method of Non-Patent Document 1 is to facilitate adjustment of the peak wavelength and half-width wavelength of fluorescence (blue light) emitted from blue QD phosphor particles.
  • One aspect of the present disclosure is aimed at improving the performance of the electroluminescent device as compared with the conventional case.
  • the electric field light emitting element includes a quantum dot light emitting layer containing quantum dots, a hole transporting layer for transporting holes to the quantum dot light emitting layer, and the like.
  • the quantum dot has a nanocrystal containing zinc and selenium or zinc, selenium and sulfur, and the half-value width of the fluorescence of the quantum dot is 25 nm or less, and the quantum dot has the above.
  • the fluorescence peak wavelength of the quantum dots is 410 nm or more and 470 nm or less
  • the hole transport layer is made of poly [(9,9-dioctylfluorenyl-2,7-diyl) -co- (4,4'-( N- (4-sec-butylphenyl) diphenylamine)], and the thickness of the hole transport layer is 10 nm or more and 57 nm or less.
  • the method for manufacturing an electric field light emitting element is an electric field including a quantum dot light emitting layer containing quantum dots and a hole transporting layer for transporting holes to the quantum dot light emitting layer.
  • a method for producing a light emitting element wherein copper chalcogenide as a precursor is synthesized from an organic copper compound or an inorganic copper compound and an organic chalcogen compound, and quantum dots are generated using the copper chalcogenide.
  • the quantum dot generation step (i) having nanocrystals containing zinc and selenium or zinc, selenium and sulfur, (ii) the half-width of fluorescence is 25 nm or less, and (i) iii) The quantum dots having a fluorescence peak wavelength of 410 nm or more and 470 nm or less are generated, and in the hole transport layer forming step, (i) poly [(9,9-dioctylfluorenyl-2,7-diyl)).
  • the performance of the electroluminescent device can be improved as compared with the conventional case.
  • the electroluminescent device 1 according to the first embodiment will be described.
  • the direction from the anode 12 to the cathode 17 in FIG. 1 is referred to as an upward direction, and the opposite direction is referred to as a downward direction.
  • the horizontal direction is a direction perpendicular to the vertical direction (the main surface direction of each part included in the electroluminescent element 1).
  • the vertical direction can also be said to be the normal direction of each of the above parts.
  • FIG. 1 is a diagram showing a schematic configuration of an electroluminescent device 1 according to the first embodiment.
  • the electroluminescent element 1 is an element that emits light by applying a voltage to QD phosphor particles (QD), and is, for example, a QLED.
  • QD QD phosphor particles
  • the QD phosphor particles contained in the electroluminescent device 1 are blue QD phosphor particles.
  • the electric field light emitting element 1 has a substrate 11, an anode (anode, a first electrode) 12, a hole injection layer (HIL) 13, and a hole transport layer (Hole Transport Layer: HIL) in the upward direction of FIG. HTL) 14, QD layer 15 (quantum dot light emitting layer, blue quantum dot light emitting layer), electron transport layer (Electron Transport Layer, ETL) 16, and cathode (cathode, second electrode) 17 are provided in this order.
  • QD layer 15 quantum dot light emitting layer, blue quantum dot light emitting layer
  • ETL electron transport layer
  • cathode cathode, second electrode
  • the QD layer 15 is interposed between the anode 12 and the cathode 17.
  • the anode 12 and the cathode 17 are provided so as to sandwich the QD layer 15.
  • the electroluminescent device 1 may further include an electron injection layer at any position between the QD layer 15 and the cathode 17.
  • the electroluminescent element 1 will be described as being a bottom emission (BE) type electroluminescent element in which the blue light LB emitted from the QD layer 15 is emitted downward. ..
  • blue light LB is also simply abbreviated as "LB”.
  • Other members will be abbreviated in the same manner as appropriate.
  • the electroluminescent element 1 blue electroluminescent element using blue quantum dots (blue QD phosphor particles) is merely exemplified.
  • the QD layer 15 containing red quantum dots (red QD phosphor particles) an electroluminescent element (red electroluminescent element) that emits red light can be realized.
  • the QD layer 15 containing green quantum dots (green QD phosphor particles) an electroluminescent element (green electroluminescent element) that emits green light can be realized.
  • Such a red electroluminescent device and a green electroluminescent device are also included in the technical scope of the electroluminescent device according to one aspect of the present disclosure.
  • the substrate 11 is composed of, for example, a highly translucent substrate (eg, a glass substrate). Further, a bank may be formed on the substrate 11 so that the red pixel (R pixel), the green pixel (G pixel), and the blue pixel (B pixel) can be patterned.
  • a highly translucent substrate eg, a glass substrate.
  • a bank may be formed on the substrate 11 so that the red pixel (R pixel), the green pixel (G pixel), and the blue pixel (B pixel) can be patterned.
  • the anode 12 is an electrode that supplies holes to the QD layer 15 when a voltage is applied.
  • the anode 12 is made of, for example, a material having a relatively large work function. Examples of the material include tin-doped indium oxide (ITO), zinc-doped indium oxide (IZO), aluminum-doped zinc oxide (AZO), gallium-doped zinc oxide (GZO), and antimony-doped tin oxide (ATO).
  • ITO tin-doped indium oxide
  • IZO zinc-doped indium oxide
  • AZO aluminum-doped zinc oxide
  • GZO gallium-doped zinc oxide
  • ATO antimony-doped tin oxide
  • the anode 12 has a translucent property so that the LB emitted from the QD layer 15 can be transmitted.
  • the film formation of the anode 12 for example, sputtering, film vapor deposition, vacuum vapor deposition, and physical vapor deposition (PVD) are used.
  • PVD physical vapor deposition
  • the hole injection layer 13 is a layer that transports the holes supplied from the anode 12 to the hole transport layer 14.
  • the hole injection layer 13 may be formed of an organic material or an inorganic material. Examples of the organic material include a conductive polymer material.
  • the polymer material for example, a composite of poly (3,4-ethylenedioxythiophene): polystyrene sulfonic acid (PEDOT: PSS) can be used.
  • the hole transport layer 14 is a layer that transports the holes supplied from the hole injection layer 13 to the QD layer 15.
  • the hole transport layer 14 may be formed of an organic material or an inorganic material.
  • the organic material include a conductive polymer material.
  • the polymer material include poly [(9,9-dioctylfluorenyl-2,7-diyl) -co- (4,4'-(N- (4-sec-butylphenyl) diphenylamine)). ] (TFB) can be used.
  • TFB is used as the material of the hole transport layer 14 is illustrated.
  • the hole transport layer 14 is formed so that its film thickness is 10 nm to 57 nm.
  • the hole injection layer 13 and the hole transport layer 14 for example, sputtering, vacuum deposition, PVD, spin coating, or an inkjet is used. If the hole transport layer 14 alone can sufficiently supply holes to the QD layer 15, the hole injection layer 13 may not be provided.
  • the QD layer 15 is a light emitting layer (QD phosphor particle layer) containing QD phosphor particles provided between the anode 12 and the cathode 17.
  • the QD phosphor particles emit LB as the holes supplied from the anode 12 and the electrons (free electrons) supplied from the cathode 17 are recombined. That is, the QD layer 15 emits light by EL (Electro-Luminescence) (more specifically, injection type EL).
  • EL Electro-Luminescence
  • the QD phosphor particles have a core / shell structure having a core and a shell coated on the surface of the core.
  • the shell may be formed in a solution state on the surface of the core.
  • the QD phosphor particles may be only the core. Even in this case, the QD phosphor particles emit LB with the recombination of holes and electrons.
  • QD phosphor particles ZnSe (zinc selenide) -based or ZnSeS-based QD phosphor particles that do not contain cadmium (Cd) are used.
  • the core of the QD phosphor particles has a particle size of nanocrystals (several nm to several tens of nm) containing zinc (Zn) and selenium (Se), or Zn, Se and sulfur (S). Nanoparticles). That is, the core of the QD phosphor particles is composed of ZnSe or ZnSeS.
  • the shell of the QD phosphor particles like the core, does not contain Cd and is composed of, for example, zinc sulfide (ZnS). However, the shell material may be any material as long as it does not contain Cd.
  • the QD phosphor particles themselves are also nanocrystals.
  • a large number of surface modifiers are coordinated on the surface of the QD phosphor particles.
  • aggregation of the QD phosphor particles can be suppressed, so that the desired optical characteristics can be easily exhibited.
  • the surface modifier is, for example, a compound containing a functional group having a hetero atom.
  • examples of the surface modifier include phosphine-based, amine-based, thiol-based, and fatty acids. In this case, at least one of these is selected as the surface modifier.
  • Examples of the phosphine system include trioctylphosphine and trioctylphosphine oxide.
  • Examples of amine-based amines include octylamine, hexadecylamine, oleylamine, octadecylamine, dioctylamine, and trioctylamine.
  • Examples of the thiol system include dodecane thiol and hexadecane thiol.
  • Examples of fatty acids include lauric acid, myristic acid, palmitic acid, and stearic acid.
  • the QD phosphor particles are synthesized by using copper chalcogenide as a precursor synthesized from an organic copper compound or an inorganic copper compound and an organic chalcogen compound. Specifically, in the QD phosphor particles, metal exchange between copper (Cu) of copper chalcogenide and Zn is performed. Safe synthesis can be performed by synthesizing QD phosphor particles based on an indirect synthetic reaction using such a material having relatively high stability (material having relatively low reactivity).
  • the fluorescence half width of the QD phosphor particles is 25 nm or less. As described above, when QD phosphor particles are synthesized (generated) by indirect synthesis using copper chalcogenide as a precursor, a fluorescence half width of 25 nm or less can be achieved, so that a high color gamut can be achieved. ..
  • the full width at half maximum of fluorescence is the full width at half maximum (FWHM) indicating the spread of the fluorescence wavelength at half the intensity of the peak value of the fluorescence intensity in the fluorescence spectrum.
  • FWHM full width at half maximum
  • the fluorescence half width is also abbreviated as simply "half width”.
  • the fluorescence peak wavelength of the QD phosphor particles is 410 nm or more and 470 nm or less. Since the QD phosphor particles are a ZnSe-based or ZnSeS-based solid solution using a chalcogen element in addition to Zn, the particle size and composition of the QD phosphor particles can be adjusted. Therefore, the range of the fluorescence peak wavelength can be adjusted by adjusting the particle size and composition.
  • the fluorescence peak wavelength is preferably 430 nm or more, and more preferably 440 nm or more. Further, the fluorescence peak wavelength is more preferably 460 nm or less.
  • the quantum yield (Quantum Yield: QY) of the QD phosphor particles is 10% or more. Further, the QY is preferably 30% or more, and more preferably 50% or more.
  • spin coating inkjet, or photolithography is used to form the QD layer 15.
  • the electron transport layer 16 is a layer that transports electrons supplied from the cathode 17 to the QD layer 15.
  • the electron transport layer 16 may be formed of an organic material or an inorganic material.
  • inorganic materials for example, Zn, magnesium (Mg), titanium (Ti), silicon (Si), tin (Sn), tungsten (W), tantalum (Ta), barium (Ba), zirconium (Zr), aluminum.
  • spin coating or an inkjet is used for forming the electron transport layer 16.
  • the organic materials include (i) 1,3,5-tris (1-phenyl-1H-benzimidazol-2-yl) benzene (TPBi), (ii) 3- (biphenyl-4-yl) -5. -(4-tert-Butylphenyl) -4-phenyl-4H-1,2,4-triazole (TAZ), (iii) vasophenantroline (Benzene), and (iv) tris (2,4,6-trimethyl) It preferably contains at least one of -3- (pyridin-3-yl) phenyl) borane (3TPYMB).
  • vacuum deposition may be used to form the electron transport layer 16. Further, as in the case of an inorganic material, spin coating or an inkjet may be used.
  • the cathode 17 is an electrode that supplies electrons to the QD layer 15 when a voltage is applied.
  • the cathode 17 is a reflective electrode that reflects the LB emitted from the QD layer 15.
  • the cathode 17 is made of, for example, a material having a relatively small work function.
  • the material include Al, silver (Ag), Ba, itterbium (Yb), calcium (Ca), lithium (Li) -Al alloy, Mg-Al alloy, Mg-Ag alloy, Mg-indium (In).
  • Examples include alloys and Al-aluminum oxide (Al 2 O 3 ) alloys.
  • the cathode 17 for example, sputtering, film deposition, vacuum deposition, or PVD is used.
  • the electric field light emitting element 1 by applying a forward voltage between the anode 12 and the cathode 17 (making the anode 12 a higher potential than the cathode 17), (i) electrons are transferred from the cathode 17 to the QD layer 15. At the same time, holes can be supplied from the anode 12 (ii) to the QD layer 15. As a result, in the QD layer 15, LB can be generated by the recombination of holes and electrons.
  • the application of the above voltage may be controlled by a thin film transistor (TFT) (not shown).
  • TFT thin film transistor
  • a TFT layer containing a plurality of TFTs may be formed in the substrate 11.
  • the electroluminescent device 1 may include a hole blocking layer (Hole Blocking Layer: HBL) that suppresses the transport of holes.
  • HBL Hol Blocking Layer
  • the hole blocking layer is provided between the anode 12 and the QD layer 15. By providing the hole blocking layer, the balance of carriers (that is, holes and electrons) supplied to the QD layer 15 can be adjusted.
  • the electroluminescent element 1 may be provided with an electron blocking layer (Electron Blocking Layer: EBL) that suppresses the transport of electrons.
  • EBL Electron Blocking Layer
  • the electron blocking layer is provided between the QD layer 15 and the cathode 17.
  • the balance of carriers (that is, holes and electrons) supplied to the QD layer 15 can also be adjusted by providing the electron blocking layer.
  • the electroluminescent element 1 may be sealed after the film formation up to the cathode 17 is completed.
  • the sealing member for example, glass or plastic can be used.
  • the sealing member has, for example, a concave shape so that the laminated body from the substrate 11 to the cathode 17 can be sealed.
  • the electroluminescent element 1 is formed by applying a sealing adhesive (eg, an epoxy-based adhesive) between the sealing member and the substrate 11 and then sealing in a nitrogen (N 2 ) atmosphere. Manufactured.
  • a sealing adhesive eg, an epoxy-based adhesive
  • the electroluminescent element 1 is applied, for example, as a blue light source of a display device.
  • the light source including the electroluminescent element 1 may include an electroluminescent element as a red light source and an electroluminescent element as a green light source.
  • the light source functions as a light source for lighting the R (Red) pixel, the G (Green) pixel, and the B (Blue) pixel (see also the second embodiment described later).
  • a display device provided with this light source can express an image by a plurality of pixels including R pixel, G pixel, and B pixel.
  • the R pixel, the G pixel, and the B pixel are formed by separately painting the substrate 11 provided with the bank by using an inkjet or the like.
  • the red QD phosphor particles and the green QD phosphor particles used for the R pixel and the G pixel for example, indium phosphide (InP) is preferably used if it is limited to non-Cd materials.
  • InP indium phosphide
  • the half width of fluorescence can be relatively narrowed, and high luminous efficiency can be obtained.
  • the electron transport layer 16 may be formed in units of a plurality of pixels, or The film may be formed in common for a plurality of pixels.
  • the electroluminescent element 1 for example, the anode 12, the hole injection layer 13, the hole transport layer 14, the QD layer 15, the electron transport layer 16, and the cathode 17 are formed on the substrate 11 in this order. Manufactured in.
  • the anode 12 is formed on the substrate 11 by sputtering (anode forming step).
  • a solution containing, for example, PED: PSS is applied onto the anode 12 by spin coating, and then the solvent is volatilized by baking to form the hole injection layer 13 (hole injection layer forming step).
  • a solution containing TFB is applied onto the hole injection layer 13 by spin coating, and then the solvent is volatilized by baking to form the hole transport layer 14 (hole transport layer forming step).
  • a solution in which QD phosphor particles are dispersed is applied onto the hole transport layer 14 by spin coating, and then the solvent is volatilized by baking to form the QD layer 15 (light emitting layer forming step).
  • a solution containing, for example, ZnO nanoparticles is applied onto the QD layer 15 by spin coating, and then the solvent is volatilized by baking to form the electron transport layer 16.
  • the cathode 17 is formed on the electron transport layer 16 by vacuum vapor deposition (electron transport layer forming step).
  • the QD phosphor particles contained in the QD layer 15 are synthesized by synthesizing copper chalcogenide as a precursor from an organic copper compound or an inorganic copper compound and an organic chalcogen compound, and using the copper chalcogenide (quantum). Dot synthesis process). That is, in the light emitting layer forming step, the QD layer 15 including the QD phosphor particles synthesized in this way is formed.
  • the quantum dot synthesis step also referred to as a QD phosphor particle synthesis step
  • the hole transport layer 14 is formed so that the film thickness is 10 nm to 57 nm.
  • the laminate formed on the substrate 11 and the (anode 12 to the cathode 17) may be sealed with a sealing member.
  • copper chalcogenide (precursor) is synthesized from an organic copper compound, an inorganic copper compound, and an organic chalcogen compound.
  • copper selenide Cu 2 Se
  • selenide sulfide copper Cu 2 SeS
  • the Cu raw material of Cu 2 Se is not particularly limited, but for example, the following organic copper reagent or inorganic copper reagent can be used. That is, as the acetate, for example, copper (I) acetate: Cu (OAc) or copper (II) acetate: Cu (OAc) 2 can be used.
  • halide both monovalent or divalent compounds can be used.
  • copper (II) chloride: CuCl 2 copper bromide (I): CuBr
  • copper (II) iodide: CuI 2 copper (II) iodide: CuI 2 can be used.
  • Se uses an organic selenium compound (organic chalcogenide) as a raw material.
  • organic selenium compound organic chalcogenide
  • a solution (Se-ODE) in which Se is dissolved in a high boiling point solvent which is a long-chain hydrocarbon such as octadecene at a high temperature or a solution in which Se is dissolved in a mixture of oleylamine and dodecanethiol (Se-DDT /).
  • OLAm oleylamine and dodecanethiol
  • the organic copper compound or the inorganic copper compound and the organic interchalcogen compound are mixed and dissolved.
  • the solvent octadecene can be used as a saturated hydrocarbon having a high boiling point or an unsaturated hydrocarbon.
  • t-butylbenzene t-butylbene
  • butylbutyrate C 4 H 9 COOC 4 H 9
  • benzyl butyrate C 6 It is possible to use H 5 CH 2 COOC 4 H 9 or the like.
  • an aliphatic amine-based compound, a fatty acid-based compound, an aliphatic phosphorus-based compound, or a mixture thereof can also be used as a solvent.
  • the reaction temperature is set to 140 ° C to 250 ° C, and copper chalcogenide (precursor) is synthesized.
  • the reaction temperature is preferably a lower temperature of 140 ° C. to 220 ° C., and more preferably a lower temperature of 140 ° C. to 200 ° C.
  • the copper chalcogenide can be synthesized at a low temperature, so that the copper chalcogenide can be safely synthesized.
  • the reaction during synthesis is gentle, it becomes easy to control the reaction.
  • the reaction method is not particularly limited, but it is important to synthesize Cu 2 Se and Cu 2 Se S having the same particle size in order to obtain QD phosphor particles having a narrow half width.
  • the first embodiment it is important to dissolve S in the core in order to obtain ZnSe having a narrower half-value width. Therefore, in the synthesis of Cu 2 Se, which is a precursor, it is preferable to add thiol, and in order to obtain QD phosphor particles having a narrower half width, it is more preferable to use Se-DDT / OLAm as a Se raw material. preferable.
  • the thiol is not particularly limited, but examples of the thiol include octadecane thiol: C 18 H 37 SH, hexane decane thiol: C 16 H 33 SH, tetradecane thiol: C 14 H 29 SH, and dodecane thiol: C 12 H 25. SH, decanethiol: C 10 H 21 SH, or octane thiol: C 8 H 17 SH can be used.
  • Organozinc compounds or inorganic zinc compounds are raw materials that are stable and easy to handle even in air.
  • the structure of the organozinc compound or the inorganic zinc compound is not particularly limited, but in order to efficiently carry out the metal exchange reaction (metal exchange reaction), it is preferable to use a zinc compound having high ionicity.
  • the following organic zinc compounds and inorganic zinc compounds can be used. That is, as the acetate, for example, zinc acetate: Zn (OAc) 2 or zinc nitrate: Zn (NO 3 ) 2 can be used.
  • halide for example, zinc chloride: ZnCl 2 , zinc bromide: ZnBr 2 , or zinc iodide: ZnI 2 can be used.
  • the above-mentioned organozinc compound or inorganic zinc compound is added to the reaction solution in which the precursor of copper chalcogenide is synthesized.
  • a metal exchange reaction between Cu of copper chalcogenide and Zn occurs.
  • the metal exchange reaction occurs at 180 ° C. to 280 ° C.
  • the metal exchange reaction can be carried out at a low temperature, so that the safety of the metal exchange reaction can be enhanced. It also makes it easier to control the metal exchange reaction.
  • the metal exchange reaction between Cu and Zn proceeds quantitatively, and the nanocrystal does not contain the precursor Cu. This is because if the precursor Cu remains, the Cu acts as a dopant and emits light by another light emitting mechanism to widen the half width.
  • the residual amount of this Cu is preferably 100 ppm or less, more preferably 50 ppm or less, and ideally 10 ppm or less.
  • a compound having an auxiliary role of releasing the precursor metal into the reaction solution by coordination, chelation, or the like is required when performing metal exchange.
  • Examples of the compound having the above-mentioned role include a ligand (surface modifier) capable of forming a complex with Cu.
  • a ligand surface modifier
  • phosphorus-based (phosphine-based) ligands, amine-based ligands, and sulfur-based (thiol-based) ligands can be mentioned.
  • a phosphorus-based ligand is more preferable in consideration of its high reaction efficiency.
  • metal exchange between Cu and Zn is appropriately performed, and QD phosphor particles having a narrow half-value width based on Zn and Se can be produced.
  • copper chalcogenide is synthesized as a precursor from the organic copper compound or the inorganic copper compound and the organic chalcogen compound.
  • QD phosphor particles are synthesized by performing metal exchange using the precursor.
  • the QD phosphor particles are synthesized through the synthesis of the precursor (first the precursor is synthesized). That is, in the first embodiment, unlike the conventional method (eg, the method of Non-Patent Document 1), the QD phosphor particles are indirectly synthesized (not directly synthesized). Such indirect synthesis eliminates the need for reagents that are dangerous to handle due to their high reactivity. That is, it is possible to safely and stably synthesize ZnSe-based QD phosphor particles having a narrow half-value width.
  • the precursor copper chalcogenide may be isolated and purified before the synthesis of the QD phosphor particles.
  • the QD phosphor particles synthesized by the above method can exhibit predetermined fluorescent characteristics without performing various treatments such as washing, isolation and purification, coating treatment, and ligand exchange.
  • the core / shell structure can be formed at the stage of synthesizing the precursor.
  • a precursor copper chalcogenide
  • a precursor copper chalcogenide having a core / shell structure of Cu 2 Se / Cu 2 S can be synthesized.
  • QD phosphor particles having a ZnSe / ZnS core / shell structure can be synthesized.
  • the S-based material used for the shell structure is not particularly limited.
  • a thiol material can be used as the S-based material.
  • Specific examples of the thiol material include the above-mentioned materials, or benzenethiol: C 6 H 5 SH can also be used.
  • S-ODE or S-DDT / OLAm may be used as the S-based material.
  • QD phosphor particles containing (i) the above-mentioned nanocrystals, (ii) having a half width of 25 nm or less, and (ii) having a fluorescence peak wavelength of 410 nm or more and 470 nm or less are synthesized. ..
  • safe synthesis can be performed by synthesizing QD phosphor particles using copper chalcogenide as a precursor.
  • reaction during synthesis is gentle, it is easy to control the growth of QD phosphor particles.
  • the growth of individual QD phosphor particles will differ due to a slight deviation in reaction time or temperature.
  • the band gap also differs due to variations in the size of the individual QD phosphor particles, the fluorescence wavelength tends to be relatively broad when the QD phosphor particles are made to emit light.
  • the variation can be suppressed, so that the half width can be narrowed to 25 nm or less, and the fluorescence peak wavelength can be set in the above range. Can be adjusted to.
  • copper chalcogenide as a precursor is synthesized from an organic copper compound or an inorganic copper compound and an organic chalcogen compound. Then, using this copper chalcogenide (specifically, by exchanging metal between Cu and Zn of the copper chalcogenide), QD phosphor particles are synthesized.
  • safe synthesis can be performed.
  • QD phosphor particles are synthesized by a direct synthesis method using an organozinc compound and a material having relatively high reactivity (eg, diphenylphosphine serenide disclosed in Non-Patent Document 1).
  • Safe synthesis can be performed.
  • the reactivity of the raw material for synthesizing the QD phosphor particles is relatively low, it can be safely stored. Therefore, the above method for synthesizing QD phosphor particles is also suitable for mass production of QD phosphor particles.
  • ZnSeS-based QD phosphor particles also referred to as ZnSeS-based QD phosphor particles
  • ZnSeS-based QD phosphor particles that do not contain Cd are synthesized (produced) as follows.
  • QD phosphor particles quantum dots
  • the following measuring devices were used for the synthesis and evaluation of the QD phosphor particles and the evaluation of the electroluminescent device.
  • Spectral fluorometer F-2700 manufactured by Hitachi High-Tech Science Corporation ⁇ Ultraviolet visible near infrared spectrophotometer: V-770 manufactured by JASCO Corporation ⁇ QY measuring device: QE-1100 manufactured by Otsuka Electronics Co., Ltd. -X-ray Diffraction (XRD) device: Bruker D2 PHASER -Scanning Transmission Electron Microscope (STEM): SU9000 manufactured by Hitachi High-Technologies Corporation -LED measuring device: manufactured by Spectra Corp. (2D CCD compact high-sensitivity spectroscope: SolidLambda CCD manufactured by Carl Zeiss) (Example of synthesis of QD phosphor particles) First, an example of synthesizing QD phosphor particles is shown.
  • Zinc chloride ZnCl 2 4092 mg, trioctylphosphine: TOP 60 mL, and oleylamine: OLAm 2.4 mL are added to this solution, and the mixture is stirred at 220 ° C. for 30 minutes under an inert gas (N 2 ) atmosphere. It was heated while heating. The obtained reaction solution (ZnSeS) was cooled to room temperature.
  • Ethanol was added to the ZnSeS reaction solution to generate a precipitate, which was centrifuged to recover the precipitate, and ODE was added to the precipitate to disperse it.
  • the half width of the QD phosphor particles was 15 nm, and the fluorescence peak wavelength was 436 nm.
  • the particle size of the QD phosphor particles was 6.9 nm in diameter. This particle size was calculated from the average value of the observed samples in the particle observation using the STEM image of the QD phosphor particles.
  • an anode 12 was formed by sputtering an ITO film having a film thickness of 100 nm on a substrate 11 which is a glass substrate.
  • a solution containing PEDT: PSS was applied by spin coating, and then the solvent was volatilized by baking to form a hole injection layer 13 (PEDOT: PSS film) having a film thickness of 40 nm.
  • a solution containing TFB was applied by spin coating, and then the solvent was volatilized by baking to form a hole transport layer 14 (TFB film) having a predetermined film thickness.
  • a dispersion solution in which ZnSeS-based QD phosphor particles synthesized as described above is dispersed is applied by spin coating, and then the solvent is volatilized by baking to form a QD layer 15 (ZnSeS-based QD) having a film thickness of 26 nm. A phosphor particle film) was formed.
  • a solution containing ZnO nanoparticles was applied by spin coating, and then the solvent was volatilized by baking to form an electron transport layer 16 (ZnO nanoparticles film) having a film thickness of 50 nm.
  • a cathode 17 was formed by vacuum-depositing an Al film having a film thickness of 100 nm. Then, under N 2 atmosphere, a substrate 11, and a laminate formed on the substrate 11 and sealed with a sealing member.
  • the inventors of the present application in order to verify the relationship between the film thickness of the hole transport layer 14 (Thtl in FIG. 2) and the performance of the electroluminescent element 1.
  • a plurality of electroluminescent devices 1 having different Thtl were manufactured.
  • five types of electroluminescent elements 1 were manufactured.
  • FIG. 2 is a graph showing the relationship between the film thickness (Thtl) of the hole transport layer 14 and the external quantum efficiency (EQE).
  • th1 (first threshold value) is set for EQE.
  • th1 in FIG. 2 is an example of the EQE value required for an electroluminescent device having good light emitting characteristics.
  • the electroluminescent element is designed so that each component of the electroluminescent element functions optimally (hereinafter referred to as an optimum state).
  • th1 in the example of FIG. 2 is set to 0.5.
  • th2 second threshold value (described later) in the example of FIG. 2 is set to 0.8.
  • sample E is a high drive voltage sample described later (see also FIG. 3).
  • the inventors excluded the data of sample E from the examination target of the numerical range of Thtl in the example of FIG. That is, in the example of FIG. 2, the inventors examined a suitable numerical range of Thtl based on th1 using only the data of the non-high drive voltage samples (samples A to D). This point is the same for th2, which will be described later.
  • the inventors linearly interpolated each adjacent sample data. For example, by connecting the points corresponding to EQE (A) and the points corresponding to EQE (B) with a straight line, the data between samples A and B (more strictly, each Thtl between samples A and B and each). A function that shows the relationship with EQE) was interpolated. As a result of the interpolation, it was confirmed that the lower limit of Thtl having an EQE of th1 or more is 10 nm.
  • Thtl having an EQE of th1 or more is 10 nm to 57 nm. That is, by setting Thtl to 10 nm to 57 nm, it is possible to improve the light emitting characteristics of the non-high drive voltage electroluminescent element 1 (electroluminescent element suitable for reducing power consumption). Newly found by. As described above, according to the electroluminescent element 1, it is possible to realize an electroluminescent element having better performance than the conventional one.
  • th2 is set to a higher value than th1.
  • th2 in FIG. 2 is an example of the EQE value required for an electroluminescent device having further good light emitting characteristics.
  • Thtl having an EQE of th2 or more is 30 nm to 57 nm. That is, it has been newly discovered by the inventors that the emission characteristics of the non-high drive voltage electroluminescent element 1 can be further enhanced by setting Thtl to 30 nm to 57 nm.
  • FIG. 3 is a graph showing the relationship between the current density (J) applied to each sample and the voltage (V).
  • the graph of FIG. 3 is obtained by variously changing J in the range of 0.03 mA / cm 2 to 75 mA / cm 2 and measuring V (voltage between the anode 12 and the cathode 17) at each J. It was.
  • V when the electroluminescent element 1 emits light (drives) is not so high.
  • the voltage (V) applied to the electroluminescent element 1 is preferably set to 7 V or less.
  • the current density (J) applied to the electroluminescent element 1 is larger than (i) 0 mA / cm 2 .
  • a sample in which V J20 > Vth is referred to as a high drive voltage sample.
  • a sample in which V J20 ⁇ Vth is referred to as a non-high drive voltage sample.
  • the sample E was a high drive voltage sample.
  • the samples A to D were non-high drive voltage samples. Therefore, it can be said that the samples A to D are more efficient samples in terms of power consumption than the samples E.
  • the inventors examined a suitable numerical range of Thtl without using the data of sample E (using only the data of samples A to D).
  • the present invention is not limited to this, and the electroluminescent element 1 may be a top emission (TE) type electroluminescent element (the embodiment described later). See also 3).
  • TE top emission
  • the electroluminescent element 1 is TE type
  • the LB is emitted from the QD layer 15 in the upward direction of FIG. Therefore, a reflective electrode is used for the anode 12, and a translucent electrode is used for the cathode 17.
  • a substrate having low translucency eg, a plastic substrate
  • a substrate having low translucency eg, a plastic substrate
  • the TE-type electroluminescent element 1 there are fewer members (example: TFT) that block the path of the LB on the light emitting surface side (emission direction) of the LB than in the BE-type electroluminescent element 1. Therefore, since the aperture ratio becomes large, EQE can be further improved.
  • FIG. 4 is a diagram for explaining the display device 2000 of the second embodiment.
  • the display device 2000 includes a light emitting device 200.
  • the light emitting device 200 includes an electroluminescent element 2, a wavelength conversion sheet 250 (wavelength conversion member), and a CF (Color Filter) sheet 260 (CF member).
  • the light emitting device 200 may be used as a backlight of the display device 2000.
  • the light emitting device 200 constitutes one RGB pixel of the display device 2000.
  • the display device 2000 has an R pixel (PIXR), a G pixel (PIXG), and a B pixel (PIXB).
  • the R pixel may be referred to as an R sub-pixel. The same applies to the G pixel and the B pixel in this respect.
  • the electroluminescent element 2 is a BE type electroluminescent element similar to the electroluminescent element 1. Therefore, in the example of FIG. 4, it is assumed that a display unit (not shown) (example: display panel) of the display device 2000 is provided under the electroluminescent element 2.
  • the QD layer 15 (and the corresponding layers) is divided into three partial regions (SEC1 to SEC3) in the horizontal direction. More specifically, in the electroluminescent element 2, a plurality of TFTs (not shown) are provided in each of SEC1 to SEC3 so that individual voltages can be applied to the QD layer 15. Thereby, in each of SEC1 to SEC3, the light emitting state of the QD layer 15 can be individually controlled.
  • LB1 to LB3 the LBs emitted from SEC1 to SEC3 are also referred to as LB1 to LB3, respectively.
  • SEC1 is set to PIXR
  • SEC2 is set to PIXG
  • SEC3 is set to PIXB as corresponding subregions.
  • the wavelength conversion sheet 250 is provided at a position corresponding to SEC1 to SEC3 below the electroluminescent element 2.
  • the wavelength conversion sheet 250 converts the wavelength of a part of LB (LB1 and LB2) emitted from the QD layer 15.
  • the wavelength conversion sheet 250 includes a red wavelength conversion layer 251R (red wavelength conversion member) and a green wavelength conversion layer 251G (green wavelength conversion member). Further, the wavelength conversion sheet 250 further includes a blue light transmitting layer 251B.
  • the red wavelength conversion layer 251R is provided at a position corresponding to SEC1. That is, PIXR has a red wavelength conversion layer 251R.
  • the red wavelength conversion layer 251R contains red QD phosphor particles (not shown) that emit red light (LR) as fluorescence by receiving LB1 as excitation light. That is, the red wavelength conversion layer 251R converts LB1 into LR.
  • the red wavelength conversion layer 251R may be referred to as a red quantum dot light emitting layer.
  • the red wavelength conversion layer 251R emits light by PL (Photo-Luminescence). Further, the amount of light of LR can be changed by adjusting the amount of light of LB1 which is the excitation light. The same applies to the green wavelength conversion layer 251G described below with respect to these points.
  • the LR that has passed through the red CF261R is emitted toward the display unit.
  • the green wavelength conversion layer 251G is provided at a position corresponding to SEC2. That is, PIXG has a green wavelength conversion layer 251G.
  • the green wavelength conversion layer 251G contains green QD phosphor particles (not shown) that emit green light (LG) as fluorescence by receiving LB2 as excitation light. That is, the green wavelength conversion layer 251G converts LB2 into LG.
  • the green wavelength conversion layer 251G may be referred to as a green quantum dot light emitting layer. In SEC2, LG that has passed through the green CF261G is emitted toward the display unit.
  • the blue light transmitting layer 251B is provided at a position corresponding to SEC3. Further, the blue light transmitting layer 251B transmits LB3.
  • the material of the blue light transmitting layer 251B is not particularly limited. The material is preferably a material having a particularly high light transmittance (eg, glass or resin having light transmittance) at least in the blue wavelength band. With this configuration, in the SEC3, the LB3 transmitted through the blue light transmitting layer 251B is emitted toward the display unit.
  • the CF sheet 260 is also provided with a blue light transmitting layer (hereinafter, blue light transmitting layer 261B) similar to the blue light transmitting layer 251B.
  • the blue light transmitting layer 261B is also provided at a position corresponding to SEC3.
  • the material of the blue light transmitting layer 261B may be the same as or different from the material of the blue light transmitting layer 251B.
  • the LB3 that has passed through the blue light transmitting layer 251B further passes through the blue light transmitting layer 261B and heads toward the display unit.
  • a blue CF may be provided on the blue light transmitting layer 261B of the CF sheet 260.
  • the blue CF may be provided on the blue light transmitting layer 251B of the wavelength conversion sheet 250.
  • the light (mixed light) in which LR, LG, and LB3 are mixed can be supplied to the display unit. Therefore, by appropriately adjusting the respective light amounts of LR, LG, and LB3, a desired hue can be expressed by the mixed light.
  • the material of the red QD phosphor particles and the green QD phosphor particles is arbitrary. As described above, as an example, InP is preferably used as the non-Cd-based material. When InP is used, the half width of fluorescence can be relatively narrowed, and high luminous efficiency can be obtained.
  • the QD layer 15 as a blue light source, the half width of blue light and the fluorescence peak wavelength can be controlled more precisely than before. That is, the monochromaticity of blue light (LB3) in PIXB can be improved.
  • the light emitting device 200 is provided with a wavelength conversion sheet 250 (more specifically, a red wavelength conversion layer 251R and a green wavelength conversion layer 251G) as a red light source and a green light source.
  • the monochromaticity of red light (LR) in PIXR can be improved.
  • the monochromaticity of green light (LG) in PIXG can be improved. Therefore, according to the light emitting device 200, it is possible to realize a display device 2000 having excellent display quality (particularly color reproducibility).
  • the wavelength conversion sheet 250 cannot necessarily convert all the LBs (LB1 and LB2) received in SEC1 and SEC2 into light having different wavelengths.
  • the red wavelength conversion layer 251R cannot necessarily convert all of LB1 into LR. That is, a part of LB1 is not absorbed by the red wavelength conversion layer 251R and passes through the red wavelength conversion layer 251R.
  • a part of LB2 is not absorbed by the green wavelength conversion layer 251G and passes through the green wavelength conversion layer 251G.
  • LB1 that has passed through the red wavelength conversion layer 251R is referred to as first residual blue light.
  • LB2 that has passed through the green wavelength conversion layer 251G is referred to as second residual blue light.
  • the CF sheet 260 is provided at a position corresponding to the wavelength conversion sheet 250. Has been done.
  • the CF sheet 260 is provided below the wavelength conversion sheet 250. That is, the CF sheet 260 is provided so as to cover the wavelength conversion sheet 250 when viewed from the display surface.
  • the CF sheet 260 includes a red CF261R and a green CF261G. Further, as described above, the CF sheet 260 further includes a blue light transmitting layer 261B.
  • the red CF261R is provided at a position corresponding to SEC1 (a position corresponding to the red wavelength conversion layer 251R) in order to reduce the influence of the first residual blue light on PIXR.
  • the green CF261G is provided at a position corresponding to SEC2 (a position corresponding to the green wavelength conversion layer 251G) in order to reduce the influence of the second residual blue light on the PIXG.
  • the red CF261R and the green CF261G selectively transmit red light and green light, respectively.
  • the red CF261R has a high light transmittance in the red wavelength band and a relatively low light transmittance in the other wavelength bands.
  • the green CF261G has a high light transmittance in the green wavelength band and a relatively low light transmittance in other wavelength bands.
  • the red CF261R can block the first residual blue light that is going toward the display unit.
  • the green CF261G can block the second residual blue light heading toward the display unit.
  • the display quality of the display device 2000 can be further improved.
  • the CF sheet 260 may be omitted depending on the display quality required for the display device 2000.
  • the wavelength conversion sheet 250 and the CF sheet 260 may be integrally formed.
  • an integrated sheet hereinafter referred to as "wavelength conversion / CF sheet”
  • the wavelength conversion / CF sheet may be arranged below the electroluminescent element 2 so that the CF sheet 260 side of the wavelength conversion / CF sheet faces the display surface.
  • the wavelength conversion / CF sheet may be manufactured by forming the wavelength conversion sheet 250 on the upper surface of the CF sheet 260 at the positions corresponding to SEC1 to SEC3.
  • a wavelength conversion / CF sheet may be manufactured by forming a red wavelength conversion layer 251R and a green wavelength conversion layer 251G on the upper surface of the CF sheet 260 at positions corresponding to SEC1 and SEC2, respectively. Good. In this way, the wavelength conversion sheet can be provided only at the positions corresponding to SEC1 and SEC2. In this case, the formation of the blue light transmitting layer 251B can be omitted.
  • the Dt is preferably 0.1 ⁇ m to 100 ⁇ m. Further, in order to further improve the efficiency, the Dt is particularly preferably 5 ⁇ m to 50 ⁇ m. As an example, Dt can be set to a desired value by forming the wavelength conversion sheet 250 using a binder.
  • the material of the binder is arbitrary, but an acrylic resin is preferably used as the material. This is because the acrylic resin has high transparency and can effectively disperse QD.
  • FIG. 5 is a diagram for explaining a modification of the display device 2000 (hereinafter, display device 2000U).
  • the light emitting device and the electroluminescent element of the display device 2000U are referred to as a light emitting device 200U and an electroluminescent element 2U, respectively.
  • FIG. 5 for the sake of simplification of the illustration, the illustration of some of the members shown in FIG. 4 is omitted.
  • the first electrode (example: anode) is individually provided on PIXR, PIXG, and PIXB.
  • the first electrode provided on (i) PIXR is the red first electrode 12R
  • the first electrode provided on (ii) PIXG is the green first electrode 12G
  • the first electrode provided on (iii) PIXB is the first electrode. It is referred to as a blue first electrode 12B, respectively.
  • an edge cover 121 is provided at each end of the red first electrode 12R, the green first electrode 12G, and the blue first electrode 12B.
  • the QD layer 15 is interposed between (i) the red first electrode 12R, the green first electrode 12G, and the blue first electrode 12B, and (ii) the cathode 17 (second electrode). are doing.
  • the QD layer 15 is shared by PIXR, PIXG and PIXB.
  • the cathode 17 (second electrode) is also shared by PIXR, PIXG, and PIXB.
  • the display device 2000U can be said to be a specific example of the configuration of the display device 2000.
  • the configuration of FIG. 5 is also applicable to the configurations of FIGS. 6 to 8 described below.
  • FIG. 6 is a diagram for explaining another modification of the display device 2000 (hereinafter, display device 2000V).
  • the light emitting device and the electroluminescent element of the display device 2000V are referred to as a light emitting device 200V and an electroluminescent element 2V, respectively.
  • the electroluminescent element 2V is a tandem type electroluminescent element configured based on the electroluminescent element 2.
  • the electroluminescent element 2V includes a lower light emitting unit (SECL) and an upper light emitting unit (SECU) as a pair of light emitting units.
  • SECL is formed on the upper surface of the anode 12.
  • SECU is formed on the lower surface of the cathode 17.
  • Each of the SECL and the SECU has the same layers as the hole injection layer 13 to the electron transport layer 16 of the electroluminescent element 2.
  • each layer of SECL and SECU is referred to as a hole injection layer 13L to an electron transport layer 16L and a hole injection layer 13U to an electron transport layer 16U, respectively.
  • a charge generation layer 25 is further provided between the SECL and the SECU.
  • An example of a method for manufacturing the electroluminescent element 2V is as follows. First, after the film formation of the anode 12, SECL (hole injection layer 13L to electron transport layer 16L) is formed on the upper surface of the anode 12 by the same method as in the first embodiment. Then, the charge generation layer 25 is formed on the upper surface of the electron transport layer 16L. After that, an SECU (hole injection layer 13U to electron transport layer 16U) is formed on the upper surface of the charge generation layer 25. Finally, the cathode 17 is formed on the upper surface of the electron transport layer 16U.
  • the electroluminescent element 2V is provided with two QD layers (QD layers 15L and 15U) as blue light sources. Therefore, according to the electroluminescent element 2V, the amount of light of the LB can be increased as compared with the electroluminescent element 2. Therefore, it is possible to increase the amount of light of LR / LG as compared with the electroluminescent element 2.
  • the emission intensity of the light emitting device 200V can be increased as compared with the light emitting device 200. Therefore, the visibility of the image displayed on the display device 2000V can be improved as compared with the display device 2000. That is, it is possible to realize a display device 2000V having better display quality.
  • the charge generation layer 25 in the electroluminescent element 2V is provided as a buffer layer between the electron transport layer 16L and the hole injection layer 13U.
  • the efficiency of recombination of holes and electrons in the QD layers 15L and 15U can be improved. That is, the amount of light in the LB can be increased more effectively.
  • the charge generation layer 25 may be omitted depending on the display quality required for the display device 2000V.
  • FIG. 7 is a diagram for explaining the display device 3000 of the third embodiment.
  • the light emitting device and the electroluminescent element of the display device 3000 are referred to as a light emitting device 300 and the electroluminescent element 3, respectively.
  • the electroluminescent element 3 has substantially the same configuration as the electroluminescent element 2. However, unlike the electroluminescent element 2, the electroluminescent element 3 is a TE-type electroluminescent element.
  • a display unit (not shown) of the display device 3000 is provided on the upper side of the electroluminescent element 3.
  • the anode of the electroluminescent element 3 (hereinafter referred to as the anode 32) (first electrode) is formed as a reflective electrode (the same electrode as the cathode 17), unlike the anode 12.
  • the cathode of the electroluminescent element 3 (hereinafter referred to as the cathode 37) (second electrode) is formed as a translucent electrode (electrode similar to the anode 12) unlike the cathode 17.
  • the wavelength conversion sheet 350 and CF sheet 360 of FIG. 7 are the wavelength conversion sheet and CF sheet of the light emitting device 300, respectively.
  • the red wavelength conversion layer 351R and the green wavelength conversion layer 351G are the red wavelength conversion layer and the green wavelength conversion layer of the wavelength conversion sheet 350, respectively.
  • the blue light transmitting layer 351B is a blue light transmitting layer of the wavelength conversion sheet 350.
  • the red CF361R and the green CF361G are the red CF and the green CF of the CF sheet 360, respectively.
  • the blue light transmitting layer 361B is a blue light transmitting layer of the CF sheet 360.
  • the electroluminescent element 3 is an TE type, the wavelength conversion sheet 350 and the CF sheet 360 are arranged above the electroluminescent element 3.
  • the third embodiment also has the same effect as that of the second embodiment.
  • the EQE can be improved as compared with the electroluminescent element 2 (BE type electroluminescent element).
  • FIG. 8 is a diagram for explaining a modification of the display device 3000 (hereinafter, display device 3000V).
  • the light emitting device and the electroluminescent element of the display device 3000V are referred to as a light emitting device 300V and the electroluminescent element 3V, respectively.
  • the electroluminescent element 3V is a tandem type electroluminescent element configured based on the electroluminescent element 3.
  • the TE-type electroluminescent device can also adopt the tandem structure as in the example of FIG. 6 (electroluminescent device 2V).
  • non-Cd materials are used for the red QD phosphor particles (red quantum dots), the green QD phosphor particles (green quantum dots), and the blue QD phosphor particles (quantum dots). This has the effect of making it possible to provide an environment-friendly display device.
  • electroluminescent device and the display device according to one aspect of the present disclosure can also be expressed as follows.
  • the electric field light emitting element is an electric field light emitting element having at least a quantum dot light emitting layer, and the quantum dots of the quantum dot light emitting layer are Zn and Se, or Zn and Se and S.
  • the hole transport layer for transporting holes to the quantum dot light emitting layer is poly, which is composed of nanocrystals containing and, has a fluorescence half-value width of 25 nm or less and a fluorescence wavelength of 410 nm or more and 470 nm or less.
  • the film of the hole transport layer The thickness is 10 nm or more and 57 nm or less.
  • the quantum dot light emitting layer synthesizes copper chalcogenide as a precursor from an organic copper compound or an inorganic copper compound and an organic chalcogen compound, and is a copper chalcogenide precursor. It may be synthesized using a body.
  • the display device includes a wavelength conversion layer that emits red light emission using the electroluminescent device using the quantum dots described in (1) or (2) as excitation light, and green. Each includes a wavelength conversion layer that emits light emission.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Luminescent Compositions (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

電界発光素子(1)は、QD層(15)および正孔輸送層(14)を備える。QD層(15)に含まれるQD蛍光体粒子は、亜鉛及びセレン、又は、亜鉛、セレン及び硫黄を含むナノクリスタルである。QD蛍光体粒子の蛍光半値幅は25nm以下であり、かつ、QD蛍光体粒子の蛍光ピーク波長は410nm以上かつ470nm以下である。正孔輸送層(14)は、ポリ[(9,9-ジオクチルフルオレニル-2,7-ジイル)-co-(4,4'-(N-(4-sec-ブチルフェニル)ジフェニルアミン)]を含む。正孔輸送層(14)の膜厚は、10nm以上かつ57nm以下である。

Description

電界発光素子、表示装置、及び電界発光素子の製造方法
 以下の開示は、QD(Quantum Dot,量子ドット)蛍光体粒子を含む電界発光素子等に関する。
 近年、QD蛍光体粒子(半導体ナノ粒子蛍光体とも称される)を含む電界発光素子に関する様々な技術が開発されている。当該電界発光素子の一例としては、QLED(Quantum dot Light Emitting Diode,量子ドット発光ダイオード)が挙げられる。
 非特許文献1には、QLEDに用いられる青色QD蛍光体粒子の製造方法の一例が開示されている。非特許文献1の製造方法は、青色QD蛍光体粒子から発せられる蛍光(青色光)のピーク波長及び波長半値幅の調整を容易化することを一目的としている。
"ZnSe/ZnS quantum dots as emitting material in blue QD-LEDs with narrow emission peak and wavelength tunability", Christian Ippen, Tonino Greco, Yohan Kim, Jiwan Kim, Min Suk Ohb, Chul Jong Han, Armin Wedel a, Organic Electronics 15 (2014), pp. 126-131
 本開示の一態様は、電界発光素子の性能を従来よりも向上させることを目的とする。
 上記の課題を解決するために、本開示の一態様に係る電界発光素子は、量子ドットを含む量子ドット発光層と、前記量子ドット発光層に正孔を輸送するための正孔輸送層と、を備えた電界発光素子であって、前記量子ドットは、亜鉛及びセレン、又は、亜鉛、セレン及び硫黄を含むナノクリスタルを有し、前記量子ドットの蛍光半値幅は25nm以下であり、かつ、前記量子ドットの蛍光ピーク波長は410nm以上かつ470nm以下であり、前記正孔輸送層は、ポリ[(9,9-ジオクチルフルオレニル-2,7-ジイル)-co-(4,4‘-(N-(4-sec-ブチルフェニル)ジフェニルアミン)]を含み、前記正孔輸送層の膜厚は、10nm以上かつ57nm以下である。
 また、本開示の一態様に係る電界発光素子の製造方法は、量子ドットを含む量子ドット発光層と、前記量子ドット発光層に正孔を輸送するための正孔輸送層と、を備えた電界発光素子の製造方法であって、前記製造方法は、有機銅化合物又は無機銅化合物と、有機カルコゲン化合物とから、前駆体としての銅カルコゲニドを合成し、前記銅カルコゲニドを用いて、量子ドットを生成する量子ドット生成工程と、前記量子ドット生成工程で生成された前記量子ドットを含む前記量子ドット発光層を形成する発光層形成工程と、前記正孔輸送層を形成する正孔輸送層形成工程と、を含んでおり、前記量子ドット生成工程では、(i)亜鉛及びセレン、又は、亜鉛、セレン及び硫黄を含むナノクリスタルを有し、(ii)蛍光半値幅が25nm以下であり、かつ、(iii)蛍光ピーク波長が410nm以上かつ470nm以下である前記量子ドットを生成し、前記正孔輸送層形成工程では、(i)ポリ[(9,9-ジオクチルフルオレニル-2,7-ジイル)-co-(4,4‘-(N-(4-sec-ブチルフェニル)ジフェニルアミン)]を含み、かつ、(ii)膜厚が10nm以上かつ57nm以下である、前記正孔輸送層を形成する。
 本開示の一態様に係る電界発光素子及びその製造方法によれば、電界発光素子の性能を従来よりも向上させることができる。
実施形態1に係る電界発光素子の概略的な構成を示す図である。 正孔輸送層の膜厚と外部量子効率との関係を示すグラフである。 図2の各サンプルにおける電流密度と電圧との関係を示すグラフである。 実施形態2の表示装置について説明するための図である。 実施形態2の表示装置の一変形例について説明するための図である。 実施形態2の表示装置の別の変形例について説明するための図である。 実施形態3の表示装置について説明するための図である。 実施形態3の表示装置の一変形例について説明するための図である。
 〔実施形態1〕
 実施形態1に係る電界発光素子1について説明する。なお、本明細書では、図1の陽極12から陰極17に向かう方向を上方向と称し、その反対方向を下方向と称する。また、本明細書において、水平方向とは、上下方向に垂直な方向(電界発光素子1が備える各部の主面方向)である。上下方向は、上記各部の法線方向とも言える。
 また、本明細書では、2つの数A及びBについての「A~B」という記載は、特に明示されない限り、「A以上かつB以下」を意味するものとする。
 <電界発光素子の構造例>
 図1は、実施形態1に係る電界発光素子1の概略的な構成を示す図である。
 電界発光素子1は、QD蛍光体粒子(QD)に電圧を印加することにより発光する素子であり、例えばQLEDである。実施形態1では、電界発光素子1に含まれるQD蛍光体粒子は、青色QD蛍光体粒子である。
 電界発光素子1は、図1の上方向に向かって、基板11、陽極(アノード,第1電極)12、正孔注入層(Hole Injection Layer:HIL)13、正孔輸送層(Hole Transport Layer:HTL)14、QD層15(量子ドット発光層,青色量子ドット発光層)、電子輸送層(Electron Transport Layer,ETL)16、及び陰極(カソード,第2電極)17を、この順に備えている。
 このように、QD層15は、陽極12と陰極17との間に介在している。換言すれば、陽極12と陰極17とは、QD層15を挟むように設けられている。なお、電界発光素子1は、QD層15から陰極17までの間のいずれかの位置に、電子注入層をさらに備えていてもよい。
 なお、実施形態1では、電界発光素子1は、QD層15から発せられた青色光LBが下方に向けて出射されるボトムエミッション(Bottom Emission:BE)型の電界発光素子であるものとして説明する。以下の記載では、「青色光LB」を、単に「LB」とも略記する。その他の部材についても、適宜同様に略記する。
 但し、図1では、説明の簡単化のために、青色量子ドット(青色QD蛍光体粒子)を用いた電界発光素子1(青色電界発光素子)が例示されているに過ぎない。後述するように、赤色量子ドット(赤色QD蛍光体粒子)を含むQD層15を設けることで、赤色光を発する電界発光素子(赤色電界発光素子)を実現できる。同様に、緑色量子ドット(緑色QD蛍光体粒子)を含むQD層15を設けることで、緑色光を発する電界発光素子(緑色電界発光素子)を実現することもできる。このような赤色電界発光素子および緑色電界発光素子についても、本開示の一態様に係る電界発光素子の技術的範囲に含まれる。
 基板11は、その上方において、陽極12、正孔注入層13、正孔輸送層14、QD層15、電子輸送層16、及び陰極17を支持する。基板11は、例えば、透光性の高い基板(例:ガラス基板)で構成される。また、赤色画素(R画素)、緑色画素(G画素)及び青色画素(B画素)のパターンニングを行うことが可能なように、基板11にはバンクが形成されていても構わない。
 陽極12は、電圧が印加されることにより、正孔(ホール)をQD層15に供給する電極である。陽極12は、例えば、仕事関数が比較的大きな材料によって構成される。当該材料としては、例えば、スズドープ酸化インジウム(ITO)、亜鉛ドープ酸化インジウム(IZO)、アルミニウムドープ酸化亜鉛(AZO)、ガリウムドープ酸化亜鉛(GZO)、アンチモンドープ酸化スズ(ATO)が挙げられる。また、陽極12は、QD層15から発せられたLBを透過できるように透光性を有している。
 陽極12の成膜には、例えば、スパッタリング、フィルム蒸着、真空蒸着、物理的気相法(Physical Vapor Deposition:PVD)が用いられる。
 正孔注入層13は、陽極12から供給された正孔を正孔輸送層14に輸送する層である。正孔注入層13は、有機材料により形成されても構わないし、無機材料により形成されても構わない。当該有機材料としては、例えば、導電性の高分子材料が挙げられる。当該高分子材料としては、例えば、ポリ(3,4-エチレンジオキシチオフェン):ポリスチレンスルホン酸の複合物(PEDOT:PSS)を用いることができる。
 正孔輸送層14は、正孔注入層13から供給された正孔をQD層15に輸送する層である。正孔輸送層14は、有機材料により形成されても構わないし、無機材料により形成されても構わない。当該有機材料としては、例えば、導電性の高分子材料が挙げられる。当該高分子材料としては、例えば、ポリ[(9,9-ジオクチルフルオレニル-2,7-ジイル)-co-(4,4’-(N-(4-sec-ブチルフェニル)ジフェニルアミン))](TFB)を用いることができる。実施形態1では、正孔輸送層14の材料として、TFBを用いる場合を例示する。また、正孔輸送層14は、その膜厚が10nm~57nmとなるように形成される。
 正孔注入層13及び正孔輸送層14の成膜には、例えば、スパッタリング、真空蒸着、PVD、スピンコート、又はインクジェットが用いられる。なお、正孔輸送層14のみで正孔をQD層15に十分供給できる場合には、正孔注入層13を設けなくても構わない。
 QD層15は、陽極12と陰極17との間に設けられた、QD蛍光体粒子を含む発光層(QD蛍光体粒子層)である。
 QD蛍光体粒子は、陽極12から供給された正孔と、陰極17から供給された電子(自由電子)との再結合に伴って、LBを発する。つまり、QD層15は、EL(Electro-Luminescence)(より具体的には、注入型EL)によって発光する。
 実施形態1では、QD蛍光体粒子は、コアと、コアの表面に被覆されたシェルとを有するコア/シェル構造である。シェルは、コアの表面に固溶化した状態で形成されていても構わない。なお、QD蛍光体粒子は、コアのみであっても構わない。この場合であっても、QD蛍光体粒子は、正孔と電子との再結合に伴ってLBを発する。
 また、QD蛍光体粒子としては、カドミウム(Cd)を含まず、ZnSe(セレン化亜鉛)系又はZnSeS系のQD蛍光体粒子が用いられる。
 具体的には、QD蛍光体粒子のコアは、亜鉛(Zn)及びセレン(Se)、又は、Zn、Se及び硫黄(S)を含むナノクリスタル(数nm~数十nm程度の粒径を有するナノ粒子)である。つまり、QD蛍光体粒子のコアは、ZnSe又はZnSeSで構成される。QD蛍光体粒子のシェルは、コアと同様にCdを含まず、例えば硫化亜鉛(ZnS)で構成される。但し、シェルの材料としては、Cdを含まなければどのような材料であっても構わない。なお、QD蛍光体粒子自体もナノクリスタルである。
 また、QD蛍光体粒子の表面には、多数の表面修飾剤(有機配位子)が配位している。表面修飾剤を配位することで、QD蛍光体粒子同士の凝集を抑制できるので、目的とする光学特性を発現させやすい。
 表面修飾剤は、例えば、ヘテロ原子を有する官能基を含む化合物である。表面修飾剤としては、例えば、ホスフィン系、アミン系、チオール系、及び脂肪酸が挙げられる。この場合、表面修飾剤として、これらのうちの少なくとも1種が選択される。
 ホスフィン系としては、例えば、トリオクチルホスフィン及びトリオクチルホスフィンオキシドが挙げられる。アミン系としては、例えば、オクチルアミン、ヘキサデシルアミン、オレイルアミン、オクタデシルアミン、ジオクチルアミン、及びトリオクチルアミンが挙げられる。チオール系としては、例えば、ドデカンチオール及びヘキサデカンチオールが挙げられる。脂肪酸としては、例えば、ラウリン酸、ミスチリン酸、パルミチン酸、及びステアリン酸が挙げられる。
 QD蛍光体粒子は、有機銅化合物又は無機銅化合物と、有機カルコゲン化合物とから合成された前駆体としての銅カルコゲニドを用いて、合成されたものである。具体的には、QD蛍光体粒子では、銅カルコゲニドの銅(Cu)と、Znとの金属交換が行われている。このような比較的安定性が高い材料(比較的反応性が低い材料)を用いた間接的な合成反応に基づいて、QD蛍光体粒子を合成することにより、安全な合成を行うことができる。
 また、QD蛍光体粒子の蛍光半値幅は、25nm以下である。上記のように、銅カルコゲニドを前駆体として間接的な合成を行うことでQD蛍光体粒子を合成(生成)した場合、25nm以下の蛍光半値幅を達成できるため、高色域化が可能となる。
 なお、蛍光半値幅とは、蛍光スペクトルにおける蛍光強度のピーク値の半分の強度での蛍光波長の広がりを示す半値全幅(Full Width at Half Maximum:FWHM)である。以下の説明では、蛍光半値幅を、単に「半値幅」とも略記する。
 また、QD蛍光体粒子の蛍光ピーク波長は、410nm以上かつ470nm以下である。QD蛍光体粒子は、Zn以外にカルコゲン元素を用いたZnSe系又はZnSeS系の固溶体であるため、QD蛍光体粒子の粒径及び組成を調整できる。そのため、当該粒径及び組成を調整することで、蛍光ピーク波長の範囲を調整できる。なお、蛍光ピーク波長は、430nm以上であることが好ましく、440nm以上であることが更に好ましい。また、蛍光ピーク波長は、460nm以下であることが更に好ましい。
 また、QD蛍光体粒子の量子収率(Quantum Yield:QY)(本明細書では「蛍光量子収率」を指す)は、10%以上である。また、QYは30%以上であることが好ましく、50%以上であることが更に好ましい。
 QD層15の成膜には、例えば、スピンコート、インクジェット、又はフォトリソグラフィが用いられる。
 電子輸送層16は、陰極17から供給された電子をQD層15に輸送する層である。電子輸送層16は、有機材料により形成されても構わないし、無機材料により形成されても構わない。無機材料の場合、例えば、Zn、マグネシウム(Mg)、チタン(Ti)、ケイ素(Si)、スズ(Sn)、タングステン(W)、タンタル(Ta)、バリウム(Ba)、ジルコニウム(Zr)、アルミニウム(Al)、イットリウム(Y)、又は、ハフニウム(Hf)の少なくとも1つ含む金属酸化物からなるナノ粒子である。電子移動度の観点からいえば、無機材料として、例えば酸化亜鉛(ZnO)が選択される。無機材料の場合、電子輸送層16の成膜には、例えば、スピンコート又はインクジェットが用いられる。
 また、有機材料には、(i)1,3,5-トリス(1-フェニル-1H-ベンゾイミダゾール-2-イル)ベンゼン(TPBi)、(ii)3-(ビフェニル-4-イル)-5-(4-tert-ブチルフェニル)-4-フェニル-4H-1,2,4-トリアゾール(TAZ)、(iii)バソフェナントロリン(Bphen)、及び、(iv)トリス(2,4,6-トリメチル-3-(ピリジン-3-イル)フェニル)ボラン(3TPYMB)の少なくとも1つが含まれていることが好ましい。有機材料の場合、電子輸送層16の成膜には、真空蒸着が用いられてよい。また、無機材料の場合と同様に、スピンコート又はインクジェットが用いられてもよい。
 陰極17は、電圧が印加されることにより、電子をQD層15に供給する電極である。陰極17は、QD層15から発せられたLBを反射する反射性電極である。
 陰極17は、例えば、仕事関数が比較的小さな材料によって構成される。当該材料としては、例えば、Al、銀(Ag)、Ba、イッテルビウム(Yb)、カルシウム(Ca)、リチウム(Li)-Al合金、Mg-Al合金、Mg-Ag合金、Mg-インジウム(In)合金、及びAl-酸化アルミニウム(Al)合金が挙げられる。
 陰極17の成膜には、例えば、スパッタリング、フィルム蒸着、真空蒸着、又はPVDが用いられる。
 電界発光素子1では、陽極12と陰極17との間に順方向の電圧を印加する(陽極12を陰極17よりも高電位にする)ことにより、(i)陰極17からQD層15へ電子を供給するとともに、(ii)陽極12からQD層15へ正孔を供給できる。その結果、QD層15において、正孔と電子との再結合に伴ってLBを発生させることができる。上記電圧の印加は、薄膜トランジスタ(Thin Film Transistor:TFT)(不図示)によって制御されても構わない。一例として、複数のTFTを含むTFT層が、基板11内に形成されてよい。
 なお、電界発光素子1は、正孔の輸送を抑制する正孔ブロッキング層(Hole Blocking Layer:HBL)を備えていても構わない。正孔ブロッキング層は、陽極12とQD層15との間に設けられる。正孔ブロッキング層を設けることで、QD層15へ供給されるキャリア(すなわち、正孔及び電子)のバランスを調整できる。
 また、電界発光素子1は、電子の輸送を抑制する電子ブロッキング層(Electron Blocking Layer:EBL)を備えていても構わない。電子ブロッキング層は、QD層15と陰極17との間に設けられる。電子ブロッキング層を設けることでも、QD層15へ供給されるキャリア(すなわち、正孔及び電子)のバランスを調整できる。
 また、電界発光素子1は、陰極17までの成膜が完了した後に封止されても構わない。封止部材としては、例えば、ガラス又はプラスチックを用いることができる。封止部材は、基板11から陰極17までの積層体を封止できるよう、例えば凹形状を有する。例えば、封止部材と基板11との間に封止接着剤(例:エポキシ系の接着剤)を塗布した後、窒素(N)雰囲気下で封止されることで、電界発光素子1が製造される。
 <表示装置への適用>
 電界発光素子1は、例えば、表示装置の青色光源として適用される。また、電界発光素子1を含む光源が、赤色光源としての電界発光素子と、緑色光源としての電界発光素子とを備えるものであっても構わない。この場合、上記光源は、R(Red)画素、G(Green)画素及びB(Blue)画素を点灯させる光源として機能する(後述の実施形態2も参照)。この光源を備えた表示装置は、R画素、G画素及びB画素を含む複数の画素によって画像を表現できる。
 例えば、R画素、G画素及びB画素はそれぞれ、バンクが設けられた基板11に、インクジェット等を用いて塗り分けることで形成される。R画素及びG画素にそれぞれ用いられる赤色QD蛍光体粒子及び緑色QD蛍光体粒子としては、非Cd系の材料に限定するのであれば、例えばリン化インジウム(InP)が好適に用いられる。InPを用いた場合、蛍光の半値幅を比較的狭くすることができ、かつ、高い発光効率が得られる。
 また、上記表示装置が、R画素、G画素、及びB画素のそれぞれの画素を個別に点灯できる構成であれば、電子輸送層16が複数の画素単位で成膜されていても構わないし、或いは複数の画素に対して共通に成膜されていても構わない。
 <電界発光素子の製造方法>
 次に、電界発光素子1の製造方法の一例を示す。電界発光素子1は、例えば、基板11上に、陽極12、正孔注入層13、正孔輸送層14、QD層15、電子輸送層16、及び陰極17が、この順で成膜されることで製造される。
 具体的には、例えば、基板11上に、陽極12をスパッタリングによって形成する(陽極形成工程)。次いで、陽極12上に、例えばPEDT:PSSを含む溶液をスピンコートで塗布した後、ベークで溶媒を揮発することによって、正孔注入層13を形成する(正孔注入層形成工程)。次いで、正孔注入層13上に、TFBを含む溶液をスピンコートで塗布した後、ベークで溶媒を揮発することによって、正孔輸送層14を形成する(正孔輸送層形成工程)。次いで、正孔輸送層14上に、QD蛍光体粒子が分散している溶液をスピンコートで塗布した後、ベークで溶媒を揮発することによって、QD層15を形成する(発光層形成工程)。次いで、QD層15上に、例えばZnOのナノ粒子を含む溶液をスピンコートによって塗布した後、ベークで溶媒を揮発することによって、電子輸送層16を形成する。次いで、電子輸送層16上に、陰極17を真空蒸着によって形成する(電子輸送層形成工程)。
 なお、QD層15に含まれるQD蛍光体粒子は、有機銅化合物又は無機銅化合物と、有機カルコゲン化合物とから、前駆体としての銅カルコゲニドを合成し、当該銅カルコゲニドを用いて合成される(量子ドット合成工程)。つまり、発光層形成工程では、このように合成されたQD蛍光体粒子を含むQD層15が形成される。量子ドット合成工程(QD蛍光体粒子合成工程とも称する)については後述する。
 また、上述したように、正孔輸送層形成工程では、膜厚が10nm~57nmとなるように、正孔輸送層14が形成される。
 なお、陰極17の成膜後に、N雰囲気下において、基板11と、基板11上に形成された積層体(陽極12~陰極17)とを、封止部材で封止しても構わない。
 <QD蛍光体粒子の合成方法>
 次に、QD蛍光体粒子の合成方法(QD蛍光体粒子合成工程)の一例について説明する。
 まず、実施形態1では、有機銅化合物、或いは、無機銅化合物と、有機カルコゲン化合物と、から銅カルコゲニド(前駆体)を合成する。具体的には、前駆体としては、セレン化銅:CuSe、或いは、セレン化硫化銅:CuSeSが例示できる。
 ここで、実施形態1では、CuSeのCu原料を、特に限定はしないが、例えば、下記の有機銅試薬又は無機銅試薬を用いることができる。すなわち、酢酸塩として、例えば、酢酸銅(I):Cu(OAc)、又は酢酸銅(II):Cu(OAc)を用いることができる。また、脂肪酸塩として、例えば、ステアリン酸銅:Cu(OC(=O)C1735、オレイン酸銅:Cu(OC(=O)C1733、ミリスチン酸銅:Cu(OC(=O)C1327、ドデカン酸銅:Cu(OC(=O)C1123、銅アセチルアセトネート:Cu(acac)を用いることができる。また、ハロゲン化物として、1価、又は2価の両方の化合物が使用可能であり、例えば、塩化銅(I):CuCl、塩化銅(II):CuCl、臭化銅(I):CuBr、臭化銅(II):CuBr、ヨウ化銅(I):CuI、ヨウ化銅(II):CuIを用いることができる。
 実施形態1では、Seは、有機セレン化合物(有機カルコゲニド)を原料として用いる。特に化合物の構造を限定するものではないが、例えば、トリオクチルホスフィンにSeを溶解させたトリオクチルホスフィンセレニド:(C17P=Se、或いは、トリブチルホスフィンにSeを溶解させたトリブチルホスフィンセレニド:(CP=Seを用いることができる。又は、オクタデセンのような長鎖の炭化水素である高沸点溶媒にSeを高温で溶解させた溶液(Se-ODE)、又はオレイルアミンとドデカンチオールの混合物にSeを溶解させた溶液(Se-DDT/OLAm)等を用いることができる。
 実施形態1では、有機銅化合物、或いは、無機銅化合物と、有機カルコゲン化合物と、を混合し、溶解させる。溶媒としては、高沸点の飽和炭化水素又は不飽和炭化水素として、オクタデセンを用いることができる。これ以外にも芳香族系の高沸点溶媒として、t-ブチルベンゼン:t-butylbenzene、高沸点のエステル系の溶媒として、ブチルブチレート:CCOOC、ベンジルブチレート:CCHCOOC等を用いることが可能である。但し、脂肪族アミン系、脂肪酸系の化合物、脂肪族リン系の化合物、又はこれらの混合物を、溶媒として用いることも可能である。
 このとき、反応温度を140℃~250℃に設定し、銅カルコゲニド(前駆体)を合成する。なお、反応温度は、より低温の、140℃~220℃であることが好ましく、更に低温の、140℃~200℃であることがより好ましい。このように、実施形態1では、銅カルコゲニドを低温で合成できるので、当該銅カルコゲニドを安全に合成できる。また、合成時の反応が穏やかであるため、当該反応を制御しやすくなる。
 また、実施形態1では、反応法に特に限定はないが、半値幅の狭いQD蛍光体粒子を得るために、粒径の揃ったCuSe、CuSeSを合成することが重要である。
 また、実施形態1では、より半値幅の狭いZnSeを得るためには、Sをコアに固溶させることが重要である。このため前駆体であるCuSeの合成において、チオールを添加することが好ましく、より半値幅の狭いQD蛍光体粒子を得るためには、Se原料としてSe-DDT/OLAmを使用することがより好ましい。特にチオールを限定するものでないが、チオールとしては、例えば、オクタデカンチオール:C1837SH、ヘキサンデカンチオール:C1633SH、テトラデカンチオール:C1429SH、ドデカンチオール:C1225SH、デカンチオール:C1021SH、又はオクタンチオール:C17SHを用いることができる。
 次に、ZnSe、又は、ZnSeSの原料として、有機亜鉛化合物又は無機亜鉛化合物を用意する。有機亜鉛化合物又は無機亜鉛化合物は、空気中でも安定で取り扱い容易な原料である。有機亜鉛化合物又は無機亜鉛化合物の構造を特に限定するものではないが、金属交換の反応(金属交換反応)を効率よく行うためには、イオン性の高い亜鉛化合物を使用することが好ましい。例えば、以下に示す有機亜鉛化合物及び無機亜鉛化合物を用いることができる。すなわち、酢酸塩として、例えば、酢酸亜鉛:Zn(OAc)、又は硝酸亜鉛:Zn(NOを用いることができる。また、脂肪酸塩として、例えば、ステアリン酸亜鉛:Zn(OC(=O)C1735、オレイン酸亜鉛:Zn(OC(=O)C1733、パルミチン酸亜鉛:Zn(OC(=O)C1531、ミリスチン酸亜鉛:Zn(OC(=O)C1327、ドデカン酸亜鉛:Zn(OC(=O)C1123、又は亜鉛アセチルアセトネート:Zn(acac)を用いることができる。また、ハロゲン化物として、例えば、塩化亜鉛:ZnCl、臭化亜鉛:ZnBr、又はヨウ化亜鉛:ZnIを用いることができる。また、カルバミン酸亜鉛として、例えば、ジエチルジチオカルバミン酸亜鉛:Zn(SC(=S)N(C、ジメチルジチオカルバミン酸亜鉛:Zn(SC(=S)N(CH、又はジブチルジチオカルバミン酸亜鉛:Zn(SC(=S)N(Cを用いることができる。
 続いて、上記の有機亜鉛化合物又は無機亜鉛化合物を、銅カルコゲニドの前駆体が合成された反応溶液に添加する。これにより、銅カルコゲニドのCuと、Znとの金属交換反応が生じる。金属交換反応を、180℃~280℃で生じさせることが好ましい。また、金属交換反応を、より低温の、180℃~250℃で生じさせることがより好ましい。このように、実施形態1では、金属交換反応を低温で行うことができるので、当該金属交換反応の安全性を高めることができる。また、金属交換反応を制御しやすくなる。
 実施形態1では、CuとZnの金属交換反応は、定量的に進行し、ナノクリスタルには前駆体のCuが含有されないことが好ましい。前駆体のCuが残留すると、Cuがドーパントとして働き、別の発光機構で発光して半値幅が広がってしまうためである。このCuの残存量は100ppm以下が好ましく、50ppm以下がより好ましく、10ppm以下が理想的である。
 また、実施形態1では、金属交換を行う際に、前駆体の金属を配位又はキレート等により反応溶液中に遊離させる補助的な役割をもつ化合物が必要である。
 上述の役割を有する化合物としては、Cuと錯形成可能なリガンド(表面修飾剤)が挙げられる。例えば、リン系(ホスフィン系)リガンド、アミン系リガンド、硫黄系(チオール系)リガンドが挙げられる。その中でも、その反応効率の高さを考慮すれば、リン系リガンドが更に好ましい。これにより、CuとZnとの金属交換が適切に行われ、ZnとSeとをベースとする半値幅の狭いQD蛍光体粒子を製造することができる。
 上述の通り、実施形態1では、有機銅化合物、或いは、無機銅化合物と、有機カルコゲン化合物とから、銅カルコゲニドを前駆体として合成している。そして、当該前駆体を用いて金属交換を行うことによって、QD蛍光体粒子を合成している。このように、実施形態1では、前駆体の合成を経て(まず前駆体を合成してから)、QD蛍光体粒子が合成されている。すなわち、実施形態1では、従来の手法(例:非特許文献1の手法)とは異なり、QD蛍光体粒子は間接的に合成されている(直接的に合成されていない)。このような間接的な合成により、反応性が高いゆえに取り扱いが危険な試薬を使うことが不要となる。すなわち、半値幅の狭いZnSe系のQD蛍光体粒子を、安全かつ安定的に合成することが可能となる。
 また、実施形態1では、前駆体を単離及び精製することも不要となる。このため、例えば、ワンポットでCuとZnとの金属交換を行って、所望のQD蛍光体粒子を得ることが可能である。但し、実施形態1において、前駆体である銅カルコゲニドを、QD蛍光体粒子の合成前に、単離及び精製してもよい。
 上記手法によって合成されたQD蛍光体粒子は、洗浄、単離精製、被覆処理、及びリガンド交換等の各種処理を行わずとも、所定の蛍光特性を発現できる。但し、QYを更に向上させるためには、QD蛍光体粒子のコア(ナノクリスタル)を、シェルによって被覆することが好ましい。
 また、実施形態1では、コア/シェル構造を、前駆体を合成する段階で形成することが可能である。例えば、ZnSeを材料としてシェル構造を形成する場合、CuSe/CuSのコア/シェル構造を有する前駆体(銅カルコゲニド)を合成できる。その後、CuとZnとの金属交換を行うことにより、ZnSe/ZnSのコア/シェル構造を有するQD蛍光体粒子を合成できる。
 実施形態1において、シェル構造に用いられるS系の材料は、特に限定されない。例えば、S系の材料としては、チオール類の材料を用いることができる。チオール類の材料の具体例としては、上述の各材料を挙げることができる、あるいは、ベンゼンチオール:CSHを用いることもできる。また、S系の材料として、S-ODE又はS-DDT/OLAmが用いられてもよい。
 以上のように、(i)上述したナノクリスタルを含み、(ii)半値幅が25nm以下であり、かつ、(iii)蛍光ピーク波長が410nm以上かつ470nm以下であるQD蛍光体粒子が合成される。
 また、上述のように、前駆体としての銅カルコゲニドを用いてQD蛍光体粒子を合成することで、安全な合成を行うことができる。また、合成時の反応が穏やかであるため、QD蛍光体粒子の成長を制御しやすい。
 上記反応が激しい場合には、反応時間又は温度等の少しのずれで、個々のQD蛍光体粒子の成長が異なってしまう。この場合、個々のQD蛍光体粒子の大きさにばらつきが生じることによりバンドギャップも異なってくるため、QD蛍光体粒子を発光させた場合に、その蛍光波長は比較的ブロードになりやすい。上記のように、QD蛍光体粒子の成長を制御しやすいと、上記ばらつきが生じることを抑制できるため、半値幅を25nm以下と、狭くすることが可能となると共に、蛍光ピーク波長を上述した範囲に調整できる。
 また、上記QD蛍光体粒子の合成方法では、有機銅化合物又は無機銅化合物と、有機カルコゲン化合物とから、前駆体としての銅カルコゲニドを合成する。そして、この銅カルコゲニドを用いて(具体的には、銅カルコゲニドのCuとZnとを金属交換することで)、QD蛍光体粒子を合成する。
 そのため、上述のように、安全な合成を行うことができる。例えば、有機亜鉛化合物と、比較的反応性が高い材料(例:非特許文献1に開示されたジフェニルホスフィンセレニド)とを用いた直接的な合成方法によりQD蛍光体粒子を合成した場合に比べ、安全な合成を行うことができる。また、QD蛍光体粒子を合成する原料の反応性が比較的低いので、安全に保管できる。そのため、上記QD蛍光体粒子の合成方法は、QD蛍光体粒子の量産にも適している。
 <実施例>
 次に、実施例について説明する。本実施例では、Cdを含まない、ZnSeS系のQD蛍光体粒子(ZnSeS系QD蛍光体粒子とも称する)は、以下のように合成(作製)される。Cdを含まない、つまり非Cd系の材料からなるQD蛍光体粒子(量子ドット)を用いることで、環境に優しいQD蛍光体粒子が提供可能になるという効果を奏する。なお、QD蛍光体粒子の合成および評価、ならびに、電界発光素子の評価には、以下の測定装置を用いた。
・分光蛍光光度計:株式会社日立ハイテクサイエンス製 F-2700
・紫外可視近赤外分光光度計:日本分光株式会社製 V-770
・QY測定装置:大塚電子株式会社製 QE-1100 
・X線回析(X-ray Diffraction:XRD)装置:Bruker社製 D2 PHASER
・走査透過電子顕微鏡(Scanning Transmission Electron Microscope:STEM):株式会社日立ハイテクノロジーズ製 SU9000
・LED測定装置:スペクトラ・コープ社製(2次元CCD小型高感度分光装置:Carl Zeiss社製 SolidLambda CCD)
 (QD蛍光体粒子の合成例)
 まず、QD蛍光体粒子の合成例を示す。
 300mL反応容器に、無水酢酸銅:Cu(OAc) 543mgと、ドデカンチオール:DDT 9mLと、オレイルアミン:OLAm 9mLと、オクタデセン:ODE 57mLとを入れた。そして、不活性ガス(N)雰囲気下で撹拌しながら加熱し、原料を溶解させた。
 この溶液に、Se-DDT/OLAm溶液(0.3M) 10.5mLを添加し、220℃で10分間、撹拌しつつ加熱した。得られた反応溶液(CuSeS)を、室温まで冷却した。
 この溶液に、塩化亜鉛:ZnCl 4092mgと、トリオクチルホスフィン:TOP 60mLと、オレイルアミン:OLAm 2.4mLとを入れ、不活性ガス(N)雰囲気下にて、220℃で30分間、攪拌しつつ加熱した。得られた反応溶液(ZnSeS)を、室温まで冷却した。
 ZnSeS反応液にエタノールを加え沈殿を発生させ、遠心分離を施して沈殿を回収し、その沈殿にODEを加えて分散させた。
 その後、ZnSeS-ODE溶液に、塩化亜鉛:ZnCl 6150mgと、トリオクチルホスフィン:TOP 30mLと、オレイルアミン:OLAm 3mLとを入れ、不活性ガス(N)雰囲気下にて、280℃で60分間、撹拌しつつ加熱した。得られた反応溶液(ZnSeS)を、室温まで冷却した。
 この溶液に、S-DDT/OLAm溶液(0.1M) 15mLを添加し、220℃で30分間、撹拌しつつ加熱した。得られた反応溶液(ZnSeS)を、室温まで冷却した。
 その後、この溶液に、塩化亜鉛:ZnCl 2052mgと、トリオクチルホスフィン:TOP 36mLと、オレイルアミン:OLAm 1.2mLとを入れ、不活性ガス(N)雰囲気下にて、230℃で60分間、撹拌しつつ加熱した。得られた反応溶液(ZnSeS)を、室温まで冷却した。
 この反応溶液に、ドデシルアミン:DDA 0.6mLを入れ、不活性ガス(N)雰囲気下にて、220℃で5分間、撹拌しつつ加熱した。
 この溶液に、S-ODE溶液(0.1M) 6mLを添加し、220℃で10分間、撹拌しつつ加熱し、更に、オクタン酸亜鉛溶液(0.1M) 12mLを添加し、220℃で10分間、撹拌しつつ加熱した。S-ODE溶液、オクタン酸亜鉛溶液の加熱撹拌の操作を計2回行った。その後、200℃で30分間、撹拌しつつ加熱した。得られた反応溶液(ZnSeS-ZnS)を、室温まで冷却した。
 (QD蛍光体粒子の検証)
 上記のように合成した反応溶液を、XRD装置を用いて測定したところ、ZnSeSのXRDスペクトルのピーク値より、QD蛍光体粒子としてZnSeS固溶体が合成されていることが証明された。
 また、上記反応溶液を蛍光分光計で測定したところ、QD蛍光体粒子の半値幅は15nm、蛍光ピーク波長は436nmであった。また、上記反応溶液をSTEMで測定したところ、QD蛍光体粒子の粒径は直径6.9nmであった。なお、この粒径は、QD蛍光体粒子のSTEM像による粒子観察において、観察サンプルの平均値より算出した。
 (電界発光素子の製造例)
 次に、上記QD蛍光体粒子を用いた電界発光素子1の製造例を示す。
 まず、ガラス基板である基板11上に、膜厚100nmのITO膜をスパッタリングによって、陽極12を形成した。次いで、PEDT:PSSを含む溶液をスピンコートで塗布した後、ベークで溶媒を揮発することによって、膜厚40nmの正孔注入層13(PEDOT:PSS膜)を形成した。次いで、TFBを含む溶液をスピンコートで塗布した後、ベークで溶媒を揮発することによって、所定の膜厚の正孔輸送層14(TFB膜)を形成した。次いで、上記のように合成した、ZnSeS系QD蛍光体粒子が分散している分散溶液をスピンコートで塗布した後、ベークで溶媒を揮発することによって、膜厚26nmのQD層15(ZnSeS系QD蛍光体粒子膜)を形成した。次いで、ZnOナノ粒子を含む溶液をスピンコートによって塗布した後、ベークで溶媒を揮発することによって、膜厚50nmの電子輸送層16(ZnOナノ粒子膜)を形成した。次いで、膜厚100nmのAl膜を真空蒸着によって、陰極17を形成した。次いで、N雰囲気下において、基板11と、基板11上に形成された積層体とを、封止部材で封止した。
 本実施例において、本願の発明者ら(以下、発明者ら)は、正孔輸送層14の膜厚(図2のThtl)と電界発光素子1の性能との間の関係を検証するために、異なるThtlを有する複数の電界発光素子1を製造した。本実施例では、5種類の電界発光素子1を製造した。具体的には、以下のサンプルA~E、
  ・サンプルA:Thtl=6nmのサンプル;
  ・サンプルB:Thtl=12nmのサンプル;
  ・サンプルC:Thtl=33nmのサンプル;
  ・サンプルD:Thtl=57nmのサンプル;
  ・サンプルE:Thtl=102nmのサンプル;
を製造した。
 (電界発光素子の検証)
 図2は、正孔輸送層14の膜厚(Thtl)と外部量子効率(External Quantum Efficiency:EQE)との関係を示すグラフである。
 本検証では、5種類のサンプルのそれぞれに対して、0.03mA/cm~75mA/cmの電流(より厳密には、電流密度)を印加した。そして、この電流の印加により、各サンプルから発せられたLBの輝度値を、LED測定装置(分光装置)を用いて測定した。その後、測定した輝度に基づき、各サンプルのEQEを算出した。
 なお、各サンプルには、上記範囲内のうちから選択された複数の電流値で電流が印加された。そのため、各サンプルについて複数の輝度値が測定された。図2の例では、あるサンプルについて複数の輝度値に基づき算出したEQEのうち、最も高い数値を示すEQEを、同サンプルのEQEとして採用した。
 更に、図2の例では、実測値としてのEQEを、最大値(本検証では、サンプルDにおけるEQE)を元に規格化した値を採用した。具体的には、本検証では、サンプルDのEQEを、基準値(すなわち、EQE=1)とした。このように、図2のグラフの縦軸における任意単位(a.u.)は設定されている。
 ここで、EQEに対し、ある閾値th1(第1閾値)を設定する場合を考える。図2の例では、th1は、規格化後の最大EQEの50%に設定されている。すなわち、th1=0.5に設定されている。以下に述べるように、図2のth1は、発光特性が良好な電界発光素子に要求されるEQEの値の一例である。
 電界発光素子(または、電界発光素子を用いた表示装置)を製品として、素子構成を設計する場合を考える。この場合、理想的には、電界発光素子の各構成要素が最適に機能する状態(以下、最適状態)となるように、当該電界発光素子が設計される。最適状態とは、EQE=1となる状態と表現することもできる。
 但し、実際には、EQEが最適状態の50%以上(すなわち0.5以上)であれば、製品の十分な性能が実現できると考えられる。このことから、上述の通り、図2の例におけるth1は、0.5に設定されている。
 また、EQEが最適状態の80%以上(すなわち0.8以上)であれば、製品の性能をさらに高めることができるため、より好ましい。このことから、図2の例におけるth2(第2閾値)(後述)は、0.8に設定されている。
 図2の例における各サンプルのEQE(規格化後の値)を算出したところ、
  ・サンプルAのEQE=0.368;
  ・サンプルBのEQE=0.611;
  ・サンプルCのEQE=0.844;
  ・サンプルDのEQE=1;
  ・サンプルEのEQE=0.818;
であった。以下、図2の例におけるサンプルAのEQEを、「EQE(A)」とも表記する。その他のサンプルのEQEについても、同様に表記する。
 このように、サンプルB~Dにおいて、EQEがth1以上となることが確認された。換言すれば、サンプルAでは、EQEがth1未満となることが確認された。なお、サンプルEにおいても、EQEはth1以上となる。但し、サンプルEは、後述する高駆動電圧サンプルである(図3も参照)。
 このため、発明者らは、サンプルEのデータについては、図2の例におけるThtlの数値範囲の検討対象からは除外した。すなわち、発明者らは、図2の例において、非高駆動電圧サンプル(サンプルA~D)のデータのみを用いて、th1に基づき、Thtlの好適な数値範囲を検討した。この点は、後述するth2についても同様である。
 続いて、図2に示されるように、発明者らは、隣接する各サンプルデータを線形補間した。例えば、EQE(A)に対応する点とEQE(B)に対応する点とを直線で結ぶことにより、サンプルA・B間のデータ(より厳密には、サンプルA・B間における各Thtlと各EQEとの間の関係を示す関数)を補間した。当該補間の結果、EQEがth1以上となるThtlの下限値は、10nmであることが確認された。
 また、サンプルB・C間およびサンプルC・D間のそれぞれにおいてデータを線形補間した結果、サンプルB~D間の全てのThtlにおいて、EQEがth1以上となることが確認された。このことから、発明者らは、図2の例において、EQEがth1以上となるThtlの上限値を、57nm(サンプルDのThtl)として決定した。
 このように、図2の例に対する発明者らによる検討の結果、EQEがth1以上となるThtlは、10nm~57nmであることが確認された。すなわち、Thtlを10nm~57nmとすることにより、非高駆動電圧の電界発光素子1(消費電力の低減に適した電界発光素子)の発光特性を向上させることが可能となることが、発明者らによって新たに見出された。以上のように、電界発光素子1によれば、従来よりも性能に優れた電界発光素子を実現できる。
 更に、EQEに対し、th1とは別の閾値th2を設定する場合を考える。th2は、th1よりも高い値に設定されている。図2の例では、th2は、規格化後の最大EQEの80%に設定されている。すなわち、th2=0.8に設定されている。上述の通り、図2のth2は、更に発光特性が良好な電界発光素子に要求されるEQEの値の一例である。
 図2に示されるように、サンプルB・C間のデータを線形補間した結果、EQEがth2以上となるThtlの下限値は、30nmであることが確認された。また、図2に示されるように、線形補間の結果、サンプルC・D間の全てのThtlにおいて、EQEがth2以上となることが確認された。このため、発明者らは、EQEがth2以上となるThtlの上限値を、th1の場合と同じ上限値(57nm)として決定した。
 このように、図2の例に対する発明者らによる更なる検討の結果、EQEがth2以上となるThtlは、30nm~57nmであることが確認された。つまり、Thtlを30nm~57nmとすることにより、非高駆動電圧の電界発光素子1の発光特性をより一層高めることができることが、発明者らによって新たに見出された。
 図3は、各サンプルに印加される電流密度(J)と電圧(V)との関係を示すグラフである。図3のグラフは、0.03mA/cm~75mA/cmの範囲でJを様々に変化させ、各JにおけるV(陽極12と陰極17との間の電圧)を測定することで得られた。
 図3に示されるように、各サンプルにおいて、Jの増加に伴い、Vが増加する傾向が確認された。さらに、Jが同一である場合、Thtlの増加に伴い、Vが増加する傾向が確認された。
 一般的に、電界発光素子1の消費電力の増大を抑制する観点からは、当該電界発光素子1を発光(駆動)させる場合のVはあまり高くないことが好ましい。一例として、電界発光素子1の消費電力の低減のためには、当該電界発光素子1に印加される電圧(V)は、7V以下に設定されることが好ましいとされている。また、(i)電界発光素子1の十分な発光強度と寿命とを両立させる観点から、当該電界発光素子1に印加される電流密度(J)は、(i)0mA/cmよりも大きく、かつ、(ii)20mA/cm以下に設定されることが好ましいとされている。
 そこで、図3の例では、J=20mA/cmにおけるVを、最大駆動電圧(以下、VJ20)と称する。そして、Vth=7Vとして、VJ20に対する閾値(電圧閾値)を設定した。本明細書では、VJ20>Vthとなるサンプルを、高駆動電圧サンプルと称する。これに対し、VJ20≦Vthとなるサンプルを、非高駆動電圧サンプルと称する。
 図3に示されるように、サンプルEは、高駆動電圧サンプルであることが確認された。他方、サンプルA~Dは、非高駆動電圧サンプルであることが確認された。それゆえ、サンプルA~Dは、サンプルEに比べ、消費電力の観点において高効率なサンプルであると言える。この点を踏まえ、上述の通り、発明者らは、図2の例において、サンプルEのデータを用いず(サンプルA~Dのデータのみを用いて)、Thtlの好適な数値範囲を検討した。
 <変形例>
 上記では、BE型の電界発光素子1について説明したが、これに限らず、電界発光素子1は、トップエミッション(Top Emission:TE)型の電界発光素子であっても構わない(後述の実施形態3も参照)。
 電界発光素子1がTE型である場合、LBは、図1の上方向に向かってQD層15から発せられる。そのため、陽極12には反射性電極が用いられ、陰極17には透光性電極が用いられる。また、基板11としては、透光性の低い基板(例:プラスチック基板)が用いられても構わない。
 TE型の電界発光素子1では、BE型の電界発光素子1に比べ、LBの発光面側(出射方向)に、LBの進路を遮ってしまう部材(例:TFT)が少ない。そのため、開口率が大きくなるため、EQEを更に向上させることができる。
 〔実施形態2〕
 図4は、実施形態2の表示装置2000について説明するための図である。表示装置2000は、発光装置200を備えている。発光装置200は、電界発光素子2と波長変換シート250(波長変換部材)とCF(Color Filter,カラーフィルタ)シート260(CF部材)とを備えている。発光装置200は、表示装置2000のバックライトとして用いられてよい。発光装置200は、表示装置2000の1つのRGB画素を構成する。
 表示装置2000は、R画素(PIXR)とG画素(PIXG)とB画素(PIXB)とを有している。なお、R画素は、Rサブ画素と称されてもよい。この点については、G画素およびB画素も同様である。
 電界発光素子2は、電界発光素子1と同様の、BE型の電界発光素子である。そこで、図4の例では、電界発光素子2の下側に、表示装置2000の表示部(不図示)(例:表示パネル)が設けられているものとする。
 電界発光素子2では、QD層15(及び対応する各層)が、水平方向において、3つの部分領域(SEC1~SEC3)に区分されている。より具体的には、電界発光素子2では、SEC1~SEC3のそれぞれにおいて、個別の電圧をQD層15に印加できるように、複数のTFT(不図示)が設けられている。これにより、SEC1~SEC3のそれぞれにおいて、QD層15の発光状態を個別に制御できる。
 以下、SEC1~SEC3から出射されるLBをそれぞれ、LB1~LB3とも称する。図4の例では、SEC1はPIXRに、SEC2はPIXGに、SEC3はPIXBに、それぞれ対応する部分領域として設定されている。
 波長変換シート250は、電界発光素子2の下方において、SEC1~SEC3に対応する位置に設けられている。波長変換シート250は、QD層15から発せられたLBの一部(LB1及びLB2)の波長を変換する。波長変換シート250は、赤色波長変換層251R(赤色波長変換部材)と、緑色波長変換層251G(緑色波長変換部材)とを備える。また、波長変換シート250は、青色光透過層251Bをさらに備える。
 赤色波長変換層251Rは、SEC1に対応する位置に設けられている。つまり、PIXRは、赤色波長変換層251Rを有している。赤色波長変換層251Rは、LB1を励起光として受けることにより、蛍光としての赤色光(LR)を発する、赤色QD蛍光体粒子(不図示)を含んでいる。すなわち、赤色波長変換層251Rは、LB1をLRに変換する。赤色波長変換層251Rは、赤色量子ドット発光層と称されてもよい。
 このように、赤色波長変換層251Rは、QD層15とは異なり、PL(Photo-Luminescence)によって発光する。また、LRの光量は、励起光であるLB1の光量を調整することにより、変化させることができる。これらの点については、以下に述べる緑色波長変換層251Gについても同様である。SEC1では、赤色CF261Rを通過したLRが、表示部に向けて出射される。
 緑色波長変換層251Gは、SEC2に対応する位置に設けられている。つまり、PIXGは、緑色波長変換層251Gを有している。緑色波長変換層251Gは、LB2を励起光として受けることにより、蛍光としての緑色光(LG)を発する、緑色QD蛍光体粒子(不図示)を含んでいる。すなわち、緑色波長変換層251Gは、LB2をLGに変換する。緑色波長変換層251Gは、緑色量子ドット発光層と称されてもよい。SEC2では、緑色CF261Gを通過したLGが、表示部に向けて出射される。
 青色光透過層251Bは、SEC3に対応する位置に設けられている。また、青色光透過層251Bは、LB3を透過させる。青色光透過層251Bの材料は特に限定されない。当該材料は、少なくとも青色波長帯において特に高い光透過率を有している材料(例:透光性を有するガラスまたは樹脂)であることが好ましい。当該構成により、SEC3では、青色光透過層251Bを透過したLB3が、表示部に向けて出射される。
 また、実施形態2では、CFシート260にも、青色光透過層251Bと同様の青色光透過層(以下、青色光透過層261B)が設けられている。青色光透過層261Bも、SEC3に対応する位置に設けられている。青色光透過層261Bの材料は、青色光透過層251Bの材料と同じであってもよいし、異なっていてもよい。実施形態2では、青色光透過層251Bを透過したLB3は、青色光透過層261Bをさらに通過し、表示部に向かう。
 なお、CFシート260の青色光透過層261Bに、青色CFを設けてもよい。あるいは、CFシート260が設けられない場合、波長変換シート250の青色光透過層251Bに、青色CFを設けてもよい。
 このように、発光装置200によれば、表示部に対し、LR、LG、及びLB3が混合された光(混合光)を供給できる。従って、LR、LG、及びLB3のそれぞれの光量を適切に調整することにより、当該混合光によって所望の色合いを表現できる。
 赤色QD蛍光体粒子及び緑色QD蛍光体粒子の材料は、任意である。上述したように、一例として、非Cd系の材料としては、InPが好適に用いられる。InPを用いた場合、蛍光の半値幅を比較的狭くすることができ、かつ、高い発光効率が得られる。
 実施形態1にて述べた通り、QD層15を青色光源として用いることにより、青色光の半値幅及び蛍光ピーク波長を、従来よりも精密に制御できる。すなわち、PIXBにおける青色光(LB3)の単色性を向上させることができる。この点を踏まえ、発光装置200では、赤色光源及び緑色光源として、波長変換シート250(より具体的には、赤色波長変換層251R及び緑色波長変換層251G)が設けられている。
 赤色波長変換層251Rによれば、PIXRにおける赤色光(LR)の単色性を向上させることができる。同様に、緑色波長変換層251Gによれば、PIXGにおける緑色光(LG)の単色性を向上させることができる。それゆえ、発光装置200によれば、表示品位(特に色再現性)に優れた表示装置2000を実現できる。
 ところで、波長変換シート250は、SEC1・SEC2において受光したLB(LB1及びLB2)の全てを、必ずしも異なる波長の光に変換できるわけではない。具体的には、赤色波長変換層251Rは、LB1の必ずしも全てをLRに変換できるわけではない。すなわち、LB1の一部は、赤色波長変換層251Rにおいて吸収されず、当該赤色波長変換層251Rを通過する。同様に、LB2の一部は、緑色波長変換層251Gにおいて吸収されず、当該緑色波長変換層251Gを通過する。以下、赤色波長変換層251Rを通過したLB1を、第1残余青色光と称する。また、緑色波長変換層251Gを通過したLB2を、第2残余青色光と称する。
 そこで、SEC1・SEC2において波長変換シート250を通過したLB(第1残余青色光及び第2残余青色光)の影響を低減するために、CFシート260が、波長変換シート250に対応する位置に設けられている。CFシート260は、波長変換シート250の下方に設けられている。すなわち、CFシート260は、表示面から見た場合に、波長変換シート250を覆うように設けられている。CFシート260は、赤色CF261Rと、緑色CF261Gとを備える。また、上述の通り、CFシート260は、青色光透過層261Bをさらに備える。
 赤色CF261Rは、PIXRにおける第1残余青色光の影響を低減するために、SEC1に対応する位置(赤色波長変換層251Rに対応する位置)に設けられている。同様に、緑色CF261Gは、PIXGにおける第2残余青色光の影響を低減するために、SEC2に対応する位置(緑色波長変換層251Gに対応する位置)に設けられている。
 赤色CF261R及び緑色CF261Gはそれぞれ、赤色光及び緑色光を選択的に透過させる。具体的には、赤色CF261Rは、赤色波長帯において高い光透過率を有するとともに、その他の波長帯において比較的低い光透過率を有している。緑色CF261Gは、緑色波長帯において高い光透過率を有するとともに、その他の波長帯において比較的低い光透過率を有している。実施形態2では、赤色CF261R及び緑色CF261Gは何れも、青色波長帯において特に低い光透過率を有していることが好ましい。
 CFシート260を設けることにより、赤色CF261Rによって、表示部に向かおうとする第1残余青色光を遮断できる。同様に、緑色CF261Gによって、表示部に向かおうとする第2残余青色光を遮断できる。その結果、表示部におけるLR及びLGのそれぞれの単色性を、更に向上させることが可能となる。それゆえ、表示装置2000の表示品位を、より一層高めることができる。但し、表示装置2000に要求される表示品位次第では、CFシート260を省略することもできる。
 波長変換シート250とCFシート260とは、一体として形成されてもよい。例えば、SEC1~SEC3に対応する位置において、波長変換シート250の上面に、CFシート260を形成することにより、一体型のシート(以下、「波長変換・CFシート」と称する)を製造してもよい。そして、波長変換・CFシートのCFシート260側を表示面に向けるように、当該波長変換・CFシートを電界発光素子2の下方に配置すればよい。
 別の例として、SEC1~SEC3に対応する位置において、CFシート260の上面に、波長変換シート250を形成することにより、波長変換・CFシートを製造してもよい。
 さらに別の例として、SEC1・SEC2に対応する位置において、CFシート260の上面に、赤色波長変換層251R及び緑色波長変換層251Gをそれぞれ形成することにより、波長変換・CFシートを製造してもよい。このように、SEC1・SEC2に対応する位置にのみ、波長変換シートを設けることもできる。この場合、青色光透過層251Bの形成を省略できる。
 (補足)
 波長変換シート250の膜厚(より具体的には、赤色波長変換層251R及び緑色波長変換層251Gのそれぞれの膜厚)(以下、Dt)が小さすぎる場合(例:0.1μm未満の場合)、波長変換シート250におけるLBの吸収が不十分となり、当該波長変換シート250の波長変換効率が低下する。他方、Dtが大きすぎる場合(例:100μmを越える場合)、波長変換シート250における光取り出し効率が低下する。当該光取り出し効率の低下は、例えば、波長変換シート250において発生した蛍光(LR及びLG)が、波長変換シート250自身に散乱されることに起因する。
 以上のことから、発光装置200の効率向上の観点からは、Dtは、0.1μm~100μmであることが好ましい。また、更なる効率向上のためには、Dtは、5μm~50μmであることが、特に好ましい。一例として、バインダを用いて波長変換シート250を形成することにより、Dtを所望の値に設定できる。
 バインダの材料は任意であるが、当該材料としてはアクリル系樹脂が好適に用いられる。アクリル系樹脂は、高い透明性を有しており、かつ、QDを効果的に分散させることができるためである。
 〔変形例〕
 図5は、表示装置2000の一変形例(以下、表示装置2000U)について説明するための図である。表示装置2000Uの発光装置及び電界発光素子を、発光装置200U及び電界発光素子2Uとそれぞれ称する。図5では、図示の簡単化のために、図4において図示されていた一部の部材の図示が省略されている。
 表示装置2000Uでは、PIXRとPIXGとPIXBとに、第1電極(例:陽極)が個別に設けられている。以下、(i)PIXRに設けられた第1電極を赤色第1電極12R、(ii)PIXGに設けられた第1電極を緑色第1電極12G、(iii)PIXBに設けられた第1電極を青色第1電極12Bと、それぞれ称する。図5の例では、赤色第1電極12R、緑色第1電極12G、及び青色第1電極12Bのそれぞれの端部には、エッジカバー121が設けられている。
 表示装置2000Uでは、QD層15は、(i)赤色第1電極12R、緑色第1電極12G、及び、青色第1電極12Bと、(ii)陰極17(第2電極)と、の間に介在している。加えて、QD層15は、PIXRとPIXGとPIXBとに共有されている。また、陰極17(第2電極)も、PIXRとPIXGとPIXBとに共有されている。その他の層についても同様である。表示装置2000Uは、表示装置2000の構成についての一具体例と言える。図5の構成は、以下に述べる図6~図8の構成に対しても適用可能である。
 〔変形例〕
 図6は、表示装置2000の別の変形例(以下、表示装置2000V)について説明するための図である。表示装置2000Vの発光装置及び電界発光素子を、発光装置200V及び電界発光素子2Vとそれぞれ称する。電界発光素子2Vは、電界発光素子2に基づき構成された、タンデム型の電界発光素子である。
 具体的には、電界発光素子2Vは、電界発光素子2とは異なり、1対の発光ユニットとして、下側発光ユニット(SECL)及び上側発光ユニット(SECU)を備える。SECLは、陽極12の上面に形成されている。他方、SECUは、陰極17の下面に形成されている。SECL及びSECUはそれぞれ、電界発光素子2の正孔注入層13~電子輸送層16と同様の各層を有する。図6の例では、SECL及びSECUの各層をそれぞれ、正孔注入層13L~電子輸送層16L及び正孔注入層13U~電子輸送層16Uと称する。また、電界発光素子2Vでは、SECLとSECUとの間に、電荷発生層25が更に設けられている。
 電界発光素子2Vの製造方法の一例は、次の通りである。まず、陽極12の成膜後、当該陽極12の上面に、実施形態1と同様の手法により、SECL(正孔注入層13L~電子輸送層16L)を形成する。そして、電子輸送層16Lの上面に、電荷発生層25を成膜する。その後、電荷発生層25の上面に、SECU(正孔注入層13U~電子輸送層16U)を形成する。最後に、電子輸送層16Uの上面に、陰極17を成膜する。
 電界発光素子2Vでは、青色光源として、2つのQD層(QD層15L・15U)が設けられている。このため、電界発光素子2Vによれば、電界発光素子2に比べ、LBの光量を増加させることができる。それゆえ、電界発光素子2に比べ、LR・LGの光量を増加させることもできる。
 このように、電界発光素子2Vによれば、発光装置200Vの発光強度を、発光装置200に比べて増加させることができる。それゆえ、表示装置2000Vに表示される画像の視認性を、表示装置2000に比べて高めることができる。すなわち、より表示品位に優れた表示装置2000Vを実現できる。
 電界発光素子2Vにおける電荷発生層25は、電子輸送層16Lと正孔注入層13Uとの間のバッファ層として設けられている。電荷発生層25を設けることにより、QD層15L・15Uにおける、正孔と電子との再結合の効率を向上させることができる。すなわち、LBの光量をより効果的に増加させることができる。但し、表示装置2000Vに要求される表示品位次第では、電荷発生層25を省略することもできる。
 〔実施形態3〕
 図7は、実施形態3の表示装置3000について説明するための図である。表示装置3000の発光装置及び電界発光素子を、発光装置300及び電界発光素子3とそれぞれ称する。電界発光素子3は、電界発光素子2と概ね同様の構成を有している。但し、電界発光素子3は、電界発光素子2とは異なり、TE型の電界発光素子である。図7の例では、電界発光素子3の上側に、表示装置3000の表示部(不図示)が設けられている。
 具体的には、電界発光素子3の陽極(以下、陽極32)(第1電極)は、陽極12とは異なり、反射性電極(陰極17と同様の電極)として形成されている。これに対し、電界発光素子3の陰極(以下、陰極37)(第2電極)は、陰極17とは異なり、透光性電極(陽極12と同様の電極)として形成されている。このように陽極32及び陰極37を設けることにより、TE型の電界発光素子3を構成できる。電界発光素子3では、基板11として、低い透光性を有する基板(例:プラスチック基板)を用いることができる。
 図7の波長変換シート350及びCFシート360はそれぞれ、発光装置300の波長変換シート及びCFシートである。赤色波長変換層351R及び緑色波長変換層351Gはそれぞれ、波長変換シート350の赤色波長変換層及び緑色波長変換層である。また、青色光透過層351Bは、波長変換シート350の青色光透過層である。赤色CF361R及び緑色CF361Gはそれぞれ、CFシート360の赤色CF及び緑色CFである。また、青色光透過層361Bは、CFシート360の青色光透過層である。
 発光装置300では、電界発光素子3がTE型であるため、波長変換シート350及びCFシート360は、当該電界発光素子3の上方に配置されている。実施形態3によっても、実施形態2と同様の効果を奏する。加えて、上述の通り、電界発光素子3によれば、電界発光素子2(BE型の電界発光素子)に比べ、EQEを向上させることもできる。
 〔変形例〕
 図8は、表示装置3000の一変形例(以下、表示装置3000V)について説明するための図である。表示装置3000Vの発光装置及び電界発光素子を、発光装置300V及び電界発光素子3Vとそれぞれ称する。電界発光素子3Vは、電界発光素子3に基づき構成された、タンデム型の電界発光素子である。このように、TE型の電界発光素子においても、図6の例(電界発光素子2V)と同様に、タンデム構造を採用することもできる。
 なお、以上に示した表示装置において、赤色QD蛍光体粒子(赤色量子ドット)、緑色QD蛍光体粒子(緑色量子ドット)、青色QD蛍光体粒子(量子ドット)に、非Cd系の材料を用いることで、環境に優しい表示装置が提供可能になるという効果を奏する。
 〔本開示の一態様に係る別表現〕
 本開示の一態様に係る電界発光素子及び表示装置は、以下のようにも表現できる。
 (1)本開示の一態様に係る電界発光素子は、少なくとも量子ドット発光層を有する電界発光素子であって、前記量子ドット発光層の量子ドットは、ZnとSe、あるいは、ZnとSeとSとを含むナノクリスタルからなり、前記量子ドットの蛍光半値幅が25nm以下、かつ、蛍光波長が410nm以上470nm以下であり、前記量子ドット発光層に正孔を輸送するための正孔輸送層がポリ[(9,9-ジオクチルフルオレニル-2,7-ジイル)-co-(4,4‘-(N-(4-sec-ブチルフェニル)ジフェニルアミン)]からなり、前記正孔輸送層の膜厚が10nm以上57nm以下である。
 (2)本開示の一態様に係る電界発光素子では、前記量子ドット発光層は、有機銅化合物あるいは無機銅化合物と、有機カルコゲン化合物とから、前駆体としての銅カルコゲニドを合成し、銅カルコゲニド前駆体を用いて合成しても構わない。
 (3)本開示の一態様に係る表示装置は、上記(1)又は(2)に記載の前記量子ドットを用いた電界発光素子を励起光として、赤色発光を放出する波長変換層と、緑色発光を放出する波長変換層とをそれぞれ備える。
 〔付記事項〕
 本開示の一態様は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本開示の一態様の技術的範囲に含まれる。更に、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成できる。
 1、2、2U、2V、3V  電界発光素子
 12、32        陽極(アノード,第1電極)
 12R          赤色第1電極
 12G          緑色第1電極
 12B          青色第1電極
 14、14L、14U   正孔輸送層
 15、15L、15U   QD層(量子ドット発光層,青色量子ドット発光層)
 17、37        陰極(カソード,第2電極)
 250、350      波長変換層
 251R、351R    赤色波長変換層(赤色波長変換部材)
 251G、351G    緑色波長変換層(緑色波長変換部材)
 2000、2000V   表示装置
 2000U        表示装置
 3000、3000V   表示装置
 Thtl         正孔輸送層の膜厚
 PIXR         R画素(赤色画素)
 PIXG         G画素(緑色画素)
 PIXB         B画素(青色画素)
 LR           赤色光
 LG           緑色光
 LB、LB1~LB3   青色光
 

Claims (14)

  1.  量子ドットを含む量子ドット発光層と、
     前記量子ドット発光層に正孔を輸送するための正孔輸送層と、を備えた電界発光素子であって、
     前記量子ドットは、亜鉛及びセレン、又は、亜鉛、セレン及び硫黄を含むナノクリスタルを有し、
     前記量子ドットの蛍光半値幅は25nm以下であり、かつ、前記量子ドットの蛍光ピーク波長は410nm以上かつ470nm以下であり、
     前記正孔輸送層は、ポリ[(9,9-ジオクチルフルオレニル-2,7-ジイル)-co-(4,4‘-(N-(4-sec-ブチルフェニル)ジフェニルアミン)]を含み、
     前記正孔輸送層の膜厚は、10nm以上かつ57nm以下である、電界発光素子。
  2.  前記正孔輸送層の膜厚は、30nm以上かつ57nm以下である、請求項1に記載の電界発光素子。
  3.  前記量子ドットは、有機銅化合物又は無機銅化合物と、有機カルコゲン化合物と、から合成された前駆体としての銅カルコゲニドを用いて、合成された、請求項1又は2に記載の電界発光素子。
  4.  前記量子ドットでは、前記銅カルコゲニドの銅と、亜鉛との金属交換が行われた、請求項3に記載の電界発光素子。
  5.  前記金属交換の反応は、180℃以上かつ280℃以下で行われた、請求項4に記載の電界発光素子。
  6.  前記銅カルコゲニドは、140℃以上かつ250℃以下の反応温度で合成された、請求項3から5の何れか1項に記載の電界発光素子。
  7.  前記量子ドットは非Cd系の材料からなる、請求項1から6の何れか1項に記載の電界発光素子。
  8.  請求項1から7の何れか1項に記載の電界発光素子を備えた表示装置であって、
     前記表示装置は、
     赤色波長変換部材を含む赤色画素と、
     緑色波長変換部材を含む緑色画素と、
     青色画素と、を備えており、
     前記赤色波長変換部材は、前記量子ドット発光層から発せられた青色光を励起光として受けることにより、赤色光を発する赤色量子ドットを含んでおり、
     前記緑色波長変換部材は、前記青色光を励起光として受けることにより、緑色光を発する緑色量子ドットを含んでいる、表示装置。
  9.  前記赤色画素は、赤色第1電極を備えており、
     前記緑色画素は、緑色第1電極を備えており、
     前記青色画素は、青色第1電極を備えており、
     前記表示装置は、第2電極をさらに備えており、
     前記表示装置において、
      前記量子ドット発光層は、(i)前記赤色第1電極、前記緑色第1電極、及び、前記青色第1電極と、(ii)前記第2電極と、の間に介在しており、
      前記量子ドット発光層および前記第2電極は、前記赤色画素と前記緑色画素と前記青色画素とに共有されている、請求項8に記載の表示装置。
  10.  前記量子ドット、前記赤色量子ドットおよび前記緑色量子ドットはいずれも非Cd系の材料からなる、請求項8又は9に記載の表示装置。
  11.  量子ドットを含む量子ドット発光層と、
     前記量子ドット発光層に正孔を輸送するための正孔輸送層と、を備えた電界発光素子の製造方法であって、
     前記製造方法は、
     有機銅化合物又は無機銅化合物と、有機カルコゲン化合物とから、前駆体としての銅カルコゲニドを合成し、前記銅カルコゲニドを用いて、量子ドットを合成する量子ドット合成工程と、
     前記量子ドット合成工程で合成された前記量子ドットを含む前記量子ドット発光層を形成する発光層形成工程と、
     前記正孔輸送層を形成する正孔輸送層形成工程と、を含んでおり、
     前記量子ドット合成工程では、
      (i)亜鉛及びセレン、又は、亜鉛、セレン及び硫黄を含むナノクリスタルを有し、(ii)蛍光半値幅が25nm以下であり、かつ、(iii)蛍光ピーク波長が410nm以上かつ470nm以下である前記量子ドットを合成し、
     前記正孔輸送層形成工程では、
     (i)ポリ[(9,9-ジオクチルフルオレニル-2,7-ジイル)-co-(4,4‘-(N-(4-sec-ブチルフェニル)ジフェニルアミン)]を含み、かつ、(ii)膜厚が10nm以上かつ57nm以下である、前記正孔輸送層を形成する、電界発光素子の製造方法。
  12.  前記量子ドット合成工程では、
     前記銅カルコゲニドの銅と、亜鉛との金属交換を行うことにより、前記量子ドットを合成する、請求項11に記載の電界発光素子の製造方法。
  13.  前記金属交換の反応を、180℃以上かつ280℃以下で行う、請求項12に記載の電界発光素子の製造方法。
  14.  前記銅カルコゲニドを、140℃以上かつ250℃以下の反応温度で合成する、請求項11から13の何れか1項に記載の電界発光素子の製造方法。
PCT/JP2019/016509 2019-04-17 2019-04-17 電界発光素子、表示装置、及び電界発光素子の製造方法 WO2020213095A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/016509 WO2020213095A1 (ja) 2019-04-17 2019-04-17 電界発光素子、表示装置、及び電界発光素子の製造方法
US17/603,557 US20220199924A1 (en) 2019-04-17 2019-04-17 Electroluminescent element, display device, and method for manufacturing electroluminescent element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/016509 WO2020213095A1 (ja) 2019-04-17 2019-04-17 電界発光素子、表示装置、及び電界発光素子の製造方法

Publications (1)

Publication Number Publication Date
WO2020213095A1 true WO2020213095A1 (ja) 2020-10-22

Family

ID=72838180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/016509 WO2020213095A1 (ja) 2019-04-17 2019-04-17 電界発光素子、表示装置、及び電界発光素子の製造方法

Country Status (2)

Country Link
US (1) US20220199924A1 (ja)
WO (1) WO2020213095A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102718897B1 (ko) * 2019-10-31 2024-10-16 삼성전자주식회사 발광 소자, 그 제조방법 및 이를 포함한 표시 장치
CN112103397A (zh) * 2020-10-16 2020-12-18 京东方科技集团股份有限公司 量子点发光二极管及其制备方法、显示面板和显示装置
JP2023551766A (ja) * 2020-10-22 2023-12-13 ナノシス・インク. ハイブリッド輸送層を有する電界発光デバイス

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170271605A1 (en) * 2016-03-17 2017-09-21 Apple Inc. Quantum dot spacing for high efficiency quantum dot led displays
US20180151817A1 (en) * 2016-11-25 2018-05-31 Samsung Electronics Co., Ltd. Light emitting device and display device including quantum dot
US20180211979A1 (en) * 2017-01-25 2018-07-26 Samsung Display Co., Ltd. Light emitting display device
WO2019022217A1 (ja) * 2017-07-27 2019-01-31 Nsマテリアルズ株式会社 量子ドット及び、量子ドットを用いた波長変換部材、照明部材、バックライト装置、表示装置、並びに、量子ドットの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170271605A1 (en) * 2016-03-17 2017-09-21 Apple Inc. Quantum dot spacing for high efficiency quantum dot led displays
US20180151817A1 (en) * 2016-11-25 2018-05-31 Samsung Electronics Co., Ltd. Light emitting device and display device including quantum dot
US20180211979A1 (en) * 2017-01-25 2018-07-26 Samsung Display Co., Ltd. Light emitting display device
WO2019022217A1 (ja) * 2017-07-27 2019-01-31 Nsマテリアルズ株式会社 量子ドット及び、量子ドットを用いた波長変換部材、照明部材、バックライト装置、表示装置、並びに、量子ドットの製造方法

Also Published As

Publication number Publication date
US20220199924A1 (en) 2022-06-23

Similar Documents

Publication Publication Date Title
WO2020213094A1 (ja) 電界発光素子、表示装置、及び電界発光素子の製造方法
Lee et al. Heterostructural tailoring of blue ZnSeTe quantum dots toward high-color purity and high-efficiency electroluminescence
US8882299B2 (en) Wavelength conversion member, light emitting device and image display device, and method for manufacturing wavelength conversion member
Han et al. Development of colloidal quantum dots for electrically driven light-emitting devices
Talapin et al. Quantum dot light-emitting devices
US11186770B2 (en) II-VI based non-Cd quantum dots, manufacturing method thereof and QLED using the same
Choi et al. Color-tunable Ag-In-Zn-S quantum-dot light-emitting devices realizing green, yellow and amber emissions
KR20210027276A (ko) 양자점, 및, 그 제조 방법
Rhee et al. Recent progress in high-luminance quantum dot light-emitting diodes
WO2020213095A1 (ja) 電界発光素子、表示装置、及び電界発光素子の製造方法
Prodanov et al. Progress toward blue-emitting (460–475 nm) nanomaterials in display applications
Lee et al. All-solution-processed high-brightness hybrid white quantum-dot light-emitting devices utilizing polymer modified quantum dots
JP7469891B2 (ja) 量子ドット発光素子及び表示装置
Yoo et al. Synthesis of narrow blue emission gradient ZnSeS quantum dots and their quantum dot light-emitting diode device performance
WO2021166054A1 (ja) 電界発光素子
WO2020213096A1 (ja) 電界発光素子、表示装置、及び電界発光素子の製造方法
WO2020213097A1 (ja) 電界発光素子、表示装置、電界発光素子の製造方法、及び液体組成物
Heydari et al. Quantum Dot-Based Light Emitting Diodes (QDLEDs): New Progress
KR20230048316A (ko) 개선된 발광 디바이스
Cho et al. Surface coating of gradient alloy quantum dots with oxide layer in white-light-emitting diodes for display backlights
WO2022176088A1 (ja) 電界発光素子
Dayneko et al. A highly efficient white-light-emitting diode based on a two-component polyfluorene/quantum dot composite
WO2022003948A1 (ja) 量子ドット分散液及びそれを用いた電界発光素子の製造方法
WO2022162840A1 (ja) 量子ドット及び電界発光素子
WO2022208704A1 (ja) 電界発光素子及び発光装置並びに電界発光素子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19925435

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19925435

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP