[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020211320A1 - 一种二氧化硅气凝胶柔弹性隔热保温复合材料及其制备方法 - Google Patents

一种二氧化硅气凝胶柔弹性隔热保温复合材料及其制备方法 Download PDF

Info

Publication number
WO2020211320A1
WO2020211320A1 PCT/CN2019/113007 CN2019113007W WO2020211320A1 WO 2020211320 A1 WO2020211320 A1 WO 2020211320A1 CN 2019113007 W CN2019113007 W CN 2019113007W WO 2020211320 A1 WO2020211320 A1 WO 2020211320A1
Authority
WO
WIPO (PCT)
Prior art keywords
silica aerogel
composite material
thermal insulation
insulation composite
preparing
Prior art date
Application number
PCT/CN2019/113007
Other languages
English (en)
French (fr)
Inventor
张云
丁荣华
雷伟
花金旦
李炳健
宋海民
Original Assignee
江苏泛亚微透科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏泛亚微透科技股份有限公司 filed Critical 江苏泛亚微透科技股份有限公司
Publication of WO2020211320A1 publication Critical patent/WO2020211320A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/10Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing nitrogen, the blowing agent being a compound containing a nitrogen-to-nitrogen bond
    • C08J9/102Azo-compounds
    • C08J9/103Azodicarbonamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/10Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing nitrogen, the blowing agent being a compound containing a nitrogen-to-nitrogen bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/04N2 releasing, ex azodicarbonamide or nitroso compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/04Ingredients characterised by their shape and organic or inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • C08K7/26Silicon- containing compounds

Definitions

  • the present invention relates to a silica aerogel flexible and elastic thermal insulation composite material and a preparation method thereof.
  • the most common polymer thermal insulation materials are foamed materials. By introducing foaming agents or pore formers or other methods, bubbles and holes are introduced into the polymer to reduce the overall thermal conductivity of the material. To enhance the insulation effect.
  • the thermal conductivity of the polymer itself is certain and relatively large, and the porosity of foamed materials (the proportion of bubbles in the total volume) has been difficult to reduce breakthroughs under the existing technology.
  • the thermal conductivity of common foaming materials, wool felt, fiber space cotton, down and other materials are generally> 0.033W/ (m ⁇ k) -0.068W/ (mk). The thermal conductivity of these common materials has been stabilized. Shows the general thermal insulation effect.
  • the present invention provides a silica aerogel flexible thermal insulation composite material and a preparation method thereof.
  • the technical problem that the present invention mainly solves is to provide a silica aerogel flexible and elastic thermal insulation composite material and a preparation method thereof, which can solve the problem that silica aerogel is fragile and generates a lot of dust pollution when the material is used , And the problem of poor thermal insulation effect.
  • a technical solution adopted by the present invention is to provide a silica aerogel flexible and elastic thermal insulation composite material, the composite material includes silica aerogel particle powder and polymer The polymer is wrapped and combined by a foaming process to form a material with a completely open, completely closed, or half-open and half-closed structure, wherein the silica aerogel particle powder is embedded on the pore wall formed by the polymer.
  • the present invention also relates to a method for preparing a silica aerogel flexible and elastic thermal insulation composite material.
  • the raw materials containing silica aerogel particles and macromolecule polymers are fully mixed and uniform, and then pressurized and heated to knead evenly, and the kneaded raw materials are extruded into tabs, and the tabs undergo continuous or intermittent foaming The process of making composite materials of roll or block sheets.
  • the high molecular polymer includes polyethylene PE, polypropylene PP, polyethylene terephthalate plastic PET, ethylene, vinyl acetate copolymer, polyurethane PU, polyimide PI , Epoxy resin, melamine, natural rubber NR, styrene butadiene rubber SBR, butadiene rubber BR, isoprene rubber IR, neoprene CR, butyl rubber IIR, nitrile rubber NBR, hydrogenated nitrile rubber HNBR and ethylene propylene A granular powder made by mixing one or more of rubber EPM and EPDM in proportion.
  • the blowing agent in the foaming process is a chemical blowing agent, including 2, 2'-azobisisobutyronitrile and diisopropyl azodicarboxylate , Barium azodicarboxylate, diethyl azodicarboxylate, azoaminobenzene, nitroso compounds, N,N'-dimethyl-N,N'-dinitrosoterephthalamide , Benzenesulfonyl hydrazide, p-toluenesulfonyl hydrazide, 4,4'-oxidized bisphenylsulfonyl hydrazide, 3,3'-disulfonyl hydrazide diphenyl sulfone, 1,3-benzenedisulfonyl hydrazide, p-toluenesulfon Semicarbazide, 4,4'-oxobisbenzenesulf
  • the raw material further includes a vulcanizing agent
  • the vulcanizing agent is an organic vulcanizing agent, including organic peroxides, quinone oxime compounds, polysulfide polymers, urethane and maleic acid.
  • organic peroxides including organic peroxides, quinone oxime compounds, polysulfide polymers, urethane and maleic acid.
  • imide derivatives used to activate the double bonds of high molecular polymers to further polymerize
  • the raw material further includes fillers, and the fillers include talc, calcium carbonate, quartz sand or carborundum to further improve the specified characteristics of the composite material, including density, hardness or gloss degree.
  • the raw material further includes a flame retardant, which is divided into inorganic flame retardants and organic flame retardants, including aluminum hydroxide, magnesium hydroxide, antimony trioxide, One or more combinations of halogen-based flame retardants, nitrogen-phosphorus-based flame retardants, and nitrogen-based flame retardants.
  • a flame retardant which is divided into inorganic flame retardants and organic flame retardants, including aluminum hydroxide, magnesium hydroxide, antimony trioxide, One or more combinations of halogen-based flame retardants, nitrogen-phosphorus-based flame retardants, and nitrogen-based flame retardants.
  • the raw material further includes a colorant for adjusting the color of the composite material, including an organic colorant and an inorganic colorant.
  • the raw material may include 1-20 wt% of glass beads.
  • the raw material includes 1-40wt% of silica aerogel particle powder Body.
  • the thermal conductivity of the silica aerogel flexible thermal insulation composite material of the present invention is in the range of 0.021W/ (mk) -0.029W/ (mk), and its thermal conductivity is the same as
  • the thermal conductivity of air is equal to or lower than that of air, and it has excellent thermal insulation performance; good tensile and compressive strength, light weight, good softness, elastic buffering, sound insulation and noise reduction, shock absorption, etc., in cold areas or high temperature environments It has important applications under conditions.
  • an embodiment of the present invention includes: a silica aerogel flexible and elastic thermal insulation composite material, the composite material includes silica aerogel particle powder and high molecular polymer hair
  • the bubble process is wrapped and combined to form a material with a fully open, fully closed, or semi-open and semi-closed cell structure, in which the silica aerogel particles are embedded on the pore wall formed by the polymer to form a flexible and soft
  • the close combination of nature, the white particles in the wall or on the surface of the bubble in Figure 1 are silica aerogels.
  • the particle powder of silica aerogel is tightly wrapped and bound by the bubble wall of the polymer material, giving the aerogel Good tensile, compression, and bending properties enable the composite material to withstand the impact of external forces and the aerogel does not fall off, and there is no defect of the fiber aerogel mat dust escape.
  • the silica aerogel particles have extremely low thermal conductivity and high specific surface area.
  • the room temperature thermal conductivity of silica aerogel can be as low as 0.013W/ (mk), which greatly reduces the thermal conductivity of the polymer material bubble wall of the composite material and has a lower thermal conductivity.
  • the dioxide of the present invention The silicone aerogel flexible and elastic thermal insulation composite material has been tested for its room temperature thermal conductivity ⁇ 0.029W/ (mk), and the silica aerogel with a higher content of silica aerogel particles is flexible and elastic thermal insulation composite
  • the room temperature thermal conductivity of the material can be as low as 0.021W/ (m « k).
  • the thermal conductivity of the silica aerogel flexible and elastic thermal insulation composite material of the present invention is 0.021W/ (m-k
  • the composite material of the present invention is bonded and placed between the target object and the heat source to achieve thermal insulation protection and protect the target object from the heat source.
  • the present invention also relates to a method for preparing silica aerogel flexible and elastic thermal insulation composite material.
  • the silica aerogel particle powder, high molecular polymer material, foaming agent, plasticizer and lubricating agent Materials such as additives, flame retardants, coupling agents, reinforcing agents, antioxidants, stabilizers, fillers, colorants, etc., are thoroughly mixed in a mixer, and then put into an internal mixer, pressurized, heated, and kneaded evenly.
  • the kneaded raw materials are put into the extruder and extruded into pieces, which are cut into blanks with a certain size and weight, and the blanks are put into the foaming machine, after continuous foaming or intermittent foaming technology process , Take out the foamed composite material, after subsequent die-cutting, slitting, slitting and other processing, the silica aerogel flexible thermal insulation composite material of roll or block sheet is prepared.
  • High molecular polymers include polyethylene PE, polypropylene PP, polyterephthalic acid plastic PET, ethylene, vinyl acetate copolymer, polyurethane PU, polyimide PI, epoxy resin, melamine, natural rubber NR, styrene butadiene rubber SBR, butadiene rubber BR, isoprene rubber IR, chloroprene rubber CR, butyl rubber II R, nitrile rubber NBR, hydrogenated nitrile rubber HNBR, ethylene propylene rubber EPM, EPDM or one of Two or more kinds of granular powder mixed in proportion.
  • Silica aerogel is a lightweight nanoporous amorphous solid material with excellent thermal and thermal insulation properties. Its porosity is as high as 80-99.8%, the typical size of pores is 1-100nm, and the specific surface area is 200- 1000m 2 /g , The room temperature thermal conductivity can be as low as 0.013W/ (mk), which is a new material for thermal insulation.
  • the raw material of the present invention includes 1-40wt% of silica aerogel particle powder.
  • the foaming agent in the foaming process is a chemical foaming agent, including 2,2'-azobisisobutyronitrile, diisopropyl azodicarboxylate, barium azodicarboxylate, and azodicarbonate Diethyl formate, azoaminobenzene, nitroso compounds, -dimethyl- -dinitrosoterephthalamide, benzenesulfonyl hydrazide, p-toluenesulfonyl hydrazide, 4,4-diphenyl oxide Sulfonyl hydrazide, 3, 3'-disulfonyl hydrazide diphenyl sulfone, 1, 3-benzenedisulfonyl hydrazide, p-toluenesulfonyl semicarbazide, 4, 4'-oxobisbenzenesulfonyl semicarbazide, trihydrazine Triazin
  • the continuous foaming technology of polymer materials generally includes twin-screw continuous extrusion molding foaming and spraying foaming.
  • Intermittent foaming technology includes injection molding foaming, molding, blow molding and casting.
  • the raw material further includes a vulcanizing agent
  • the vulcanizing agent is an organic vulcanizing agent, including organic peroxides (such as benzoyl peroxide, dicumyl peroxide), quinone oxime compounds, polysulfide polymers, and ethyl carbamate
  • organic peroxides such as benzoyl peroxide, dicumyl peroxide
  • quinone oxime compounds such as benzoyl peroxide, dicumyl peroxide
  • quinone oxime compounds such as benzoyl peroxide, dicumyl peroxide
  • polysulfide polymers such as benzoyl peroxide, dicumyl peroxide
  • ethyl carbamate One or more combinations of esters and maleimide derivatives are used to activate double bonds of high molecular polymers to further polymerize them.
  • the raw material further includes fillers, the fillers including talc, calcium carbonate, quartz sand or emery, used to further improve the specified characteristics of the composite material, including density, hardness or gloss.
  • the fillers including talc, calcium carbonate, quartz sand or emery, used to further improve the specified characteristics of the composite material, including density, hardness or gloss.
  • the raw materials further include flame retardants, which are divided into inorganic flame retardants and organic flame retardants, including aluminum hydroxide, magnesium hydroxide, antimony trioxide, southern flame retardants (organic chloride and Organic bromide), one or more combinations of nitrogen-phosphorus flame retardants and nitrogen-based flame retardants.
  • flame retardants which are divided into inorganic flame retardants and organic flame retardants, including aluminum hydroxide, magnesium hydroxide, antimony trioxide, southern flame retardants (organic chloride and Organic bromide), one or more combinations of nitrogen-phosphorus flame retardants and nitrogen-based flame retardants.
  • the raw materials further include colorants for adjusting the color of the composite material, including organic colorants and inorganic colorants, including carbon black, titanium dioxide, zinc powder, cadmium red, iron trioxide, chrome yellow, zinc yellow, and the like.
  • colorants for adjusting the color of the composite material including organic colorants and inorganic colorants, including carbon black, titanium dioxide, zinc powder, cadmium red, iron trioxide, chrome yellow, zinc yellow, and the like.
  • Example 1 Polyethylene PE polymer chains are used to tightly wrap and bind a large number of nano-microporous silica aerogel particles.
  • the raw materials include: 100kg low-density polyethylene (LDPE), 15kg azo Diformamide (AC), 0.6 ⁇ 0.8kg dicumyl peroxide (DCP), 3kg zinc oxide (ZnO), 1kg zinc stearate (ZnSt) and 20wt% silica aerogel.
  • the preparation method of the batch molded foam block sheet includes: separately mixing low-density polyethylene (LDPE) and dicumyl peroxide (DCP) into powder one, and then mixing azodicarbonamide (AC ), zinc oxide (ZnO), zinc stearate (ZnSt) and silica aerogel are mixed into powder two, and then powder one Put the powder and powder into an internal mixer under pressure and heating to fully knead evenly. Put the kneaded raw materials into the extruder and extrude them into pull sheets, which are cut into blanks with a certain size and weight. Put it into the in-film foaming machine to foam, inspect after foaming, and finally process it into a block sheet.
  • LDPE low-density polyethylene
  • DCP dicumyl peroxide
  • AC azodicarbonamide
  • ZnO zinc oxide
  • ZnSt zinc stearate
  • silica aerogel silica aerogel
  • Example 2 Polyethylene PE polymer chain tightly wrapped and bound a large number of nano-microporous silica aerogel particles, raw materials include: 100kg low-density polyethylene (LDPE), 15kg azo Diformamide (AC), 0.6 ⁇ 0.8kg dicumyl peroxide (DCP), 3kg zinc oxide (ZnO), 1kg zinc stearate (ZnSt), 40wt% silica aerogel, 15wt% Magnesium hydroxide flame retardant and 5wt% aluminum hydroxide flame retardant.
  • the particle size of magnesium hydroxide flame retardant is 325 mesh to 800 mesh
  • the particle size of aluminum hydroxide flame retardant is 325 mesh to 800 mesh.
  • the preparation method of the batch molded foam block sheet includes: separately mixing low-density polyethylene (LDPE) and dicumyl peroxide (DCP) into powder one, and then mixing azodicarbonamide (AC ), zinc oxide (ZnO), zinc stearate (ZnSt), silica aerogel, magnesium hydroxide flame retardant and aluminum hydroxide flame retardant are mixed into powder two, and then powder one and powder two are put into Pressurize and heat in the internal mixer to fully knead evenly, put the kneaded raw materials into the extruder and extrude them into pull sheets, which are cut into blanks with a certain size and weight. Foam in the foaming machine, inspect after foaming, and finally process it into a block sheet with flame retardant properties.
  • LDPE low-density polyethylene
  • DCP dicumyl peroxide
  • AC azodicarbonamide
  • ZnO zinc oxide
  • ZnSt zinc stearate
  • silica aerogel silica
  • Example 3 Polyethylene PE polymer chain tightly wrapped and bound a large number of nano-microporous silica aerogel particle powder and glass beads, raw materials include: 100kg low-density polyethylene (LDPE) , 15kg azodicarbonamide (AC), 0.6 ⁇ 0.8kg dicumyl peroxide (DCP), 3kg zinc oxide (Zn O), 1kg zinc stearate (ZnSt), 15wt% cinnamon dioxide Gel and 15wt% glass beads.
  • LDPE low-density polyethylene
  • AC azodicarbonamide
  • DCP dicumyl peroxide
  • Zn O zinc oxide
  • ZnSt zinc stearate
  • 15wt% cinnamon dioxide Gel 15wt% glass beads.
  • the preparation method of the continuous foamed roll sheet includes: separately mixing low-density polyethylene (LDPE) and dicumyl peroxide (DCP) into powder one, and then azodicarbonamide (AC) , Zinc oxide (Zn 0), Zinc stearate (ZnSt), silica aerogel and glass beads are mixed into powder two, and then powder one and powder two are put into an internal mixer under pressure and heated to fully knead Evenly, put the kneaded raw materials into the extruder and extrude them into pull sheets, cut them into pellets with a certain size and weight, extrude the billets, calender them, and put them into the foaming machine for cross-linking Foaming, and then cell shaping, and finally washing and drying, and after coiling, a rolled sheet is formed.
  • LDPE low-density polyethylene
  • DCP dicumyl peroxide
  • AC azodicarbonamide
  • Zn 0 Zinc oxide
  • ZnSt
  • Example 4 Polyethylene PE polymer chain tightly wrapped and bound a large number of nano- and microporous silica Aerogel powder and glass beads, raw materials include: 100kg low-density polyethylene (LDPE), 15kg azodicarbonamide (AC), 0.6 ⁇ 0.8kg dicumyl peroxide (DCP), 3kg oxidation Zinc (Zn O), 1kg zinc stearate (ZnSt), 10wt% silica aerogel, 10wt% glass beads, 15wt% magnesium hydroxide flame retardant and 5wt% aluminum hydroxide Burning agent.
  • the particle size of magnesium hydroxide flame retardant is 325 mesh to 800 g
  • the particle size of aluminum hydroxide flame retardant is 325 mesh to 800 mesh.
  • the preparation method of the continuous foamed roll sheet includes: separately mixing low-density polyethylene (LDPE) and dicumyl peroxide (DCP) into powder one, and then mixing azodicarbonamide (AC) , Zinc oxide (Zn 0), zinc stearate (ZnSt), silica aerogel, glass beads, magnesium hydroxide flame retardant and aluminum hydroxide flame retardant are mixed into powder two, and then powder one and The second powder is put into an internal mixer, pressurized, heated, and fully kneaded evenly. The kneaded raw materials are put into the extruder and extruded into pull sheets, which are cut into pellets with a certain size and weight. Extrusion, calendering, cross-linking and foaming in a foaming machine, and then cell shaping, finally washing and drying, and coiling to form a roll-shaped sheet with flame retardant properties
  • LDPE low-density polyethylene
  • DCP dicumyl peroxide
  • AC azodicarbon
  • Example 5 Fixing silica aerogel particle powder with other polymer foam walls, the raw materials include: silica aerogel 35wt%, 100kg molecular weight 3000 polyether, 47kg toluene diisocyanate (80/20 ), 0.2kg triethylenediamine, 0.3kg stannous octoate, 2.3kg silicone oil, 3.5kg distilled water.
  • the preparation method of the intermittent box foamed block sheet is to mix all the above raw materials at a high speed under an environment of 20-25° C. for more than 8 seconds, and then pour them into the box to foam into blocks.
  • Example 6 Fixing of silica aerogel particle powder with polyisocyanurate foam wall, raw materials include: silica aerogel 40wt%, 80.5kg crude MDI, 100kg polyisocyanate, 6. 1kg Hydroxy compound, 10kg phosphorus-containing polyether, 1.43kg propylene oxide (including trimerization catalyst), 0.86kg silicone oil surfactant, 20kg 3003 polyether, 10kg blowing agent Fn 0.5kg alkyl phosphorus compound, 0.58kg triphenol, 0.5kg surfactant, 0.58kg azacyclopropene.
  • Polyisocyanurate foam has a long-term use temperature of 150-180°C, and has better flame retardancy.
  • modified polyisocyanurate also includes: urethane, epoxy resin , Polyimide, carbodiimide, etc.
  • the present invention has good tensile and compressive strength, light weight, good softness, elastic buffering, sound insulation and noise reduction, shock absorption and other functions, and has important applications in cold regions or high temperature environmental conditions, such as cold regions and high temperatures
  • thermal insulation such as clothing, boots, quilts, tents, shelters, power battery packs for new energy vehicles, and bodywork of new energy vehicles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

一种二氧化硅气凝胶柔弹性隔热保温复合材料,包括二氧化硅气凝胶颗粒粉体和高分子聚合物用发泡工艺包裹结合形成具有完全开孔、完全封闭孔或半开半闭孔结构的材料,其中二氧化硅气凝胶颗粒粉体镶嵌在高分子聚合物形成的孔壁上,制备方法是将包含二氧化硅气凝胶颗粒粉体、高分子聚合物的原材料充分混合均匀,然后加压加热充分捏炼均匀,将捏炼好的原料挤出成拉片,拉片经过连续或间隙发泡的工艺,制得卷状或块状片材的复合材料。上述复合材料具有优异的隔热保温性能,抗拉抗压强度好、质量好、柔软度好,具备弹性缓冲、隔音降噪、吸震等功能,在寒区或高温环境条件下具有重要的应用。

Description

说明书
发明名称:一种二氧化硅气凝胶柔弹性隔热保温复合材料及其制备 方法
技术领域
[0001] 本发明涉及一种二氧化硅气凝胶柔弹性隔热保温复合材料及其制备方法。
背景技术
[0002] 5见有的高分子隔热材料多为发泡材料, 通过引入发泡剂或者造孔剂或者其他方 式, 在高分子聚合物当中引入气泡、 孔洞, 通过降低材料整体的热导率来提升 隔热效果。 但是高分子聚合物本身的导热系数是一定的且较大, 5见有发泡材料 的孔隙率 (气泡占总体积的比例) 在现有工艺技术下已很难降低突破。 目前常 见的发泡材料、 羊毛毡、 纤维太空棉、 羽绒等材料的导热系一般都>0.033W/ (m ·k) -0.068W/ (m-k) , 这些常见材料的导热系数多已稳定了, 表现出隔热保温 效果一般。
技术问题
[0003] 为了克服现有的隔热保温复合材料及其制备方法的不足, 本发明提供了一种二 氧化硅气凝胶柔弹性隔热保温复合材料及其制备方法。
问题的解决方案
技术解决方案
[0004] 本发明主要解决的技术问题是提供一种二氧化硅气凝胶柔弹性隔热保温复合材 料及其制备方法, 能够解决二氧化硅气凝胶易碎, 材料使用时产生大量粉尘污 染、 以及保温隔热效果不佳的问题。
[0005] 为解决上述技术问题, 本发明采用的一个技术方案是: 提供一种二氧化硅气凝 胶柔弹性隔热保温复合材料, 复合材料包括二氧化硅气凝胶颗粒粉体和高分子 聚合物用发泡工艺包裹结合形成具有完全开孔、 完全封闭孔或半开半闭孔结构 的材料, 其中二氧化硅气凝胶颗粒粉体镶嵌在高分子聚合物形成的孔壁上。
[0006] 本发明还涉及一种二氧化硅气凝胶柔弹性隔热保温复合材料的制备方法, 将包 含二氧化硅气凝胶颗粒粉体、 高分子聚合物的原材料充分混合均匀, 然后加压 加热充分捏炼均匀, 把捏炼好的原料挤出成拉片, 拉片经过连续或间歇发泡的 工艺, 制得卷状或块状片材的复合材料。
[0007] 在本发明一个较佳实施例中, 高分子聚合物包括聚乙烯 PE、 聚丙烯 PP、 聚对 苯二甲酸类塑料 PET、 乙烯、 醋酸乙烯共聚物、 聚氨酯 PU、 聚酰亚胺 PI、 环氧 树脂、 三聚氰胺 Melamine、 天然橡胶 NR、 丁苯橡胶 SBR、 顺丁橡胶 BR、 异戊橡 胶 IR、 氯丁橡胶 CR、 丁基橡胶 IIR、 丁晴橡胶 NBR、 氢化丁晴橡胶 HNBR和乙丙 橡胶 EPM、 EPDM中的一种或两种以上按比例混合而成的颗粒粉末。
[0008] 在本发明一个较佳实施例中, 所述发泡工艺中的发泡剂为化学发泡剂, 包括 2 , 2’-偶氮二异丁腈、 偶氮二甲酸二异丙酯、 偶氮二甲酸钡、 偶氮二甲酸二乙酯 、 偶氮胺基苯、 亚硝基化合物类、 N,N'-二甲基 -N,N'-二亚硝基对苯二甲酰胺、 苯 磺酰肼、 对甲苯磺酰肼、 4, 4’-氧化双苯磺酰肼、 3 , 3’-二磺酰肼二苯砜、 1, 3- 苯二磺酰肼、 对甲苯磺酰氨基脲、 4, 4’-氧代双苯磺酰氨基脲、 三肼基三嗪、 5- 苯基四唑或聚硅氧烷-聚烷氧基醚共聚物。
[0009] 在本发明一个较佳实施例中, 原材料中进一步包括硫化剂, 硫化剂为有机硫化 齐 1J, 包括有机过氧化物、 醌肟化合物、 多硫聚合物、 氨基甲酸乙酯和马来酰亚 胺衍生物中的一种或多种组合, 用于激活高分子聚合物的双键使其进一步聚合
[0010] 在本发明一个较佳实施例中, 原材料中进一步包括填充料, 填充料包括滑石粉 、 碳酸钙、 石英砂或金刚砂, 用于进一步改善复合材料的指定特性, 包括密度 、 硬度或光泽度。
[0011] 在本发明一个较佳实施例中, 原材料中进一步包括阻燃剂, 阻燃剂分为无机阻 燃剂和有机阻燃剂, 包括氢氧化铝、 氢氧化镁、 三氧化二锑、 卤系阻燃剂、 氮 磷系阻燃剂和氮系阻燃剂中的一种或多种组合。
[0012] 在本发明一个较佳实施例中, 原材料中进一步包括调节复合材料颜色的着色剂 , 包括有机着色剂和无机着色剂。
[0013] 在本发明一个较佳实施例中, 原材料中或包括 l-20wt%的玻璃微珠。
[0014] 在本发明一个较佳实施例中, 原材料中包括 l-40wt%的二氧化硅气凝胶颗粒粉 体。
发明的有益效果
有益效果
[0015] 本发明的有益效果是: 本发明的二氧化硅气凝胶柔弹性隔热保温复合材料导热 系数处在 0.021W/ (m-k) -0.029W/ (m-k) 的区间, 其导热系数与空气相当或低 于空气的导热系数, 具有优异的隔热保温性能; 抗拉抗压强度好, 质量轻、 柔 软度好、 具备弹性缓冲、 隔音降噪、 吸震等功能, 在寒区或高温环境条件下具 有重要的应用。
对附图的简要说明
附图说明
[0016] 为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例描述中所需要 使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一 些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还 可以根据这些附图获得其它的附图, 其中: 图 1是本发明二氧化硅气凝胶柔弹性 隔热保温复合材料电镜照片图。
发明实施例
本发明的实施方式
[0017] 下面将对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的 实施例仅是本发明的一部分实施例, 而不是全部的实施例。 基于本发明中的实 施例, 本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实 施例, 都属于本发明保护的范围。
[0018] 如图 1所示, 本发明实施例包括: 一种二氧化硅气凝胶柔弹性隔热保温复合材 料, 复合材料包括二氧化硅气凝胶颗粒粉体和高分子聚合物用发泡工艺包裹结 合形成具有完全开孔、 完全封闭孔或半开半闭孔结构的材料, 其中二氧化硅气 凝胶颗粒粉体镶嵌在高分子聚合物形成的孔壁上, 形成富有弹性和柔软性的紧 密的结合, 图 1中泡壁内或表面白色颗粒粉末是二氧化硅气凝胶。
[0019] 二氧化硅气凝胶的颗粒粉末被高分子材料的泡壁紧密包裹束缚, 赋予了气凝胶 良好的拉伸、 压缩、 弯曲性能, 使复合材料耐受外力冲击且气凝胶无脱落现象 , 无纤维气凝胶毡粉尘逸散的缺陷。
[0020] 由于高分子材料的泡壁紧密包裹束缚了大量的纳微孔结构的二氧化硅气凝胶的 颗粒粉末, 二氧化硅气凝胶的颗粒粉末的导热系数极低, 高比表面积的二氧化 硅气凝胶的室温导热系数可低达 0.013W/ (m-k) , 这就大大降低了该复合材料 的高分子材料泡壁的导热能力且具有较低的导热系数, 本发明的二氧化硅气凝 胶柔弹性隔热保温复合材料经检测其室温导热系数<0.029W/ (m-k) , 其中二氧 化硅气凝胶颗粒粉末含量较高的二氧化硅气凝胶柔弹性隔热保温复合材料的室 温导热系数可低达 0.021W/ (m«k) 。
[0021] 本发明的二氧化硅气凝胶柔弹性隔热保温复合材料导热系数处在 0.021W/ (m-k
) -0.029W/ (m-k) 的区间, 其导热系数与空气相当或低于空气的导热系数, 具 有优异的隔热保温性能。 本发明的复合材料贴合、 放置在目标物体和热源之间 , 即可实现热隔断保温保护, 保护目标物体不受热源的影响。
[0022] 本发明还涉及二氧化硅气凝胶柔弹性隔热保温复合材料的制备方法, 将二氧化 硅气凝胶颗粒粉体、 高分子聚合物材料、 发泡剂、 增塑剂、 润滑剂、 阻燃剂、 偶联剂、 增强剂、 抗氧剂、 稳定剂、 填充剂、 着色剂等材料在搅拌机中充分混 合均匀, 然后放入密炼机中加压加热充分捏炼均匀, 把捏炼好的原料放入挤出 机中挤出成片, 经过切割成为具有一定尺寸与重量的胚料, 把胚料放入发泡机 中, 连续发泡或间歇的发泡工艺技术过程后, 取出发泡成型好的复合材料, 经 过后续的模切、 纵切、 剖切等加工, 制得卷状或块体片材的二氧化硅气凝胶柔 弹性隔热保温复合材料。
[0023] 高分子聚合物包括聚乙烯 PE、 聚丙烯 PP、 聚对苯二甲酸类塑料 PET、 乙烯、 醋 酸乙烯共聚物、 聚氨酯 PU、 聚酰亚胺 PI、 环氧树脂、 三聚氰胺 Melamine、 天然 橡胶 NR、 丁苯橡胶 SBR、 顺丁橡胶 BR、 异戊橡胶 IR、 氯丁橡胶 CR、 丁基橡胶 II R、 丁晴橡胶 NBR、 氢化丁晴橡胶 HNBR和乙丙橡胶 EPM、 EPDM中的一种或两 种以上按比例混合而成的颗粒粉末。
[0024] 二氧化硅气凝胶是一种防热隔热性能非常优秀的轻质纳米多孔非晶固体材料, 其孔隙率高达 80-99.8%, 孔洞的典型尺寸为 l-100nm, 比表面积为 200- 1000m 2/g , 室温导热系数可低达 0.013W/ (m-k) , 是绝热保温的新材料。 本发明的原材 料中包括 l-40wt%的二氧化硅气凝胶颗粒粉体。
[0025] 所述发泡工艺中的发泡剂为化学发泡剂, 包括 2, 2’-偶氮二异丁腈、 偶氮二甲 酸二异丙酯、 偶氮二甲酸钡、 偶氮二甲酸二乙酯、 偶氮胺基苯、 亚硝基化合物 类、 -二甲基- -二亚硝基对苯二甲酰胺、 苯磺酰肼、 对甲苯磺酰肼、 4, 4 氧化双苯磺酰肼、 3 , 3’-二磺酰肼二苯砜、 1, 3 -苯二磺酰肼、 对甲苯磺酰氨基 脲、 4, 4’-氧代双苯磺酰氨基脲、 三肼基三嗪、 5 -苯基四唑或聚硅氧烷-聚烷氧基 醚共聚物。
[0026] 高分子材料的连续发泡技术一般有双螺杆连续挤出成型发泡、 喷涂发泡。 间歇 发泡的技术有注射成型发泡、 模压、 吹塑和浇铸等成型方法。
[0027] 原材料中进一步包括硫化剂, 硫化剂为有机硫化剂, 包括有机过氧化物 (如过 氧化苯甲酰、 过氧化二异丙苯) 、 醌肟化合物、 多硫聚合物、 氨基甲酸乙酯和 马来酰亚胺衍生物中的一种或多种组合, 用于激活高分子聚合物的双键使其进 一步聚合。
[0028] 原材料中进一步包括填充料, 填充料包括滑石粉、 碳酸钙、 石英砂或金刚砂, 用于进一步改善复合材料的指定特性, 包括密度、 硬度或光泽度。
[0029] 原材料中进一步包括阻燃剂, 阻燃剂分为无机阻燃剂和有机阻燃剂, 包括氢氧 化铝、 氢氧化镁、 三氧化二锑、 南系阻燃剂 (有机氯化物和有机溴化物) 、 氮 磷系阻燃剂和氮系阻燃剂中的一种或多种组合。
[0030] 原材料中进一步包括调节复合材料颜色的着色剂, 包括有机着色剂和无机着色 齐 1J, 包括炭黑、 钛白粉、 锌粉、 镉红、 三氧化二铁、 铬黄、 锌黄等。
[0031] 实施例 1 : 用聚乙烯 PE高分子链紧密包裹束缚了大量的纳微孔结构的二氧化硅 气凝胶的颗粒粉末, 原材料包括: 100kg低密度聚乙烯 (LDPE) 、 15kg偶氮二 甲酰胺 (AC) 、 0.6~0.8kg过氧化二异丙苯 (DCP) 、 3kg氧化锌 (ZnO) 、 1kg 硬脂酸锌 (ZnSt) 和 20wt%的二氧化硅气凝胶。
[0032] 间歇模压发泡块体片材的制备方法包括: 将低密度聚乙烯 (LDPE) 和过氧化 二异丙苯 (DCP) 进行单独混合成粉末一, 再将偶氮二甲酰胺 (AC) 、 氧化锌 (ZnO) 、 硬脂酸锌 (ZnSt) 和二氧化硅气凝胶进行混合成粉末二, 然后粉末一 和粉末二放入密炼机中加压加热充分捏炼均匀, 把捏炼好的原料放入挤出机中 挤出成拉片, 经过切割成为具有一定尺寸与重量的胚料, 把胚料放入膜内发泡 机内发泡, 发泡完成后进行检验, 最后加工成块体片材。
[0033] 实施例 2: 用聚乙烯 PE高分子链紧密包裹束缚了大量的纳微孔结构的二氧化硅 气凝胶的颗粒粉末, 原材料包括: 100kg低密度聚乙烯 (LDPE) 、 15kg偶氮二 甲酰胺 (AC) 、 0.6~0.8kg过氧化二异丙苯 (DCP) 、 3kg氧化锌 (ZnO) 、 1kg 硬脂酸锌 (ZnSt) 、 40wt%的二氧化硅气凝胶、 15wt%的氢氧化镁阻燃剂和 5wt% 的氢氧化铝阻燃剂。 氢氧化镁阻燃剂的颗粒尺寸 325目~800目, 氢氧化铝阻燃剂 的颗粒尺寸为 325目 ~800目。
[0034] 间歇模压发泡块体片材的制备方法包括: 将低密度聚乙烯 (LDPE) 和过氧化 二异丙苯 (DCP) 进行单独混合成粉末一, 再将偶氮二甲酰胺 (AC) 、 氧化锌 (ZnO) 、 硬脂酸锌 (ZnSt) 、 二氧化硅气凝胶、 氢氧化镁阻燃剂和氢氧化铝阻 燃剂进行混合成粉末二, 然后粉末一和粉末二放入密炼机中加压加热充分捏炼 均匀, 把捏炼好的原料放入挤出机中挤出成拉片, 经过切割成为具有一定尺寸 与重量的胚料, 把胚料放入膜内发泡机内发泡, 发泡完成后进行检验, 最后加 工成具有阻燃性能的块体片材。
[0035] 实施例 3: 用聚乙烯 PE高分子链紧密包裹束缚了大量的纳微孔结构的二氧化硅 气凝胶的颗粒粉末和玻璃微珠, 原材料包括: 100kg低密度聚乙烯 (LDPE) 、 1 5kg偶氮二甲酰胺 (AC) 、 0.6~0.8kg过氧化二异丙苯 (DCP) 、 3kg氧化锌 (Zn O) 、 1kg硬脂酸锌 (ZnSt) 、 15wt%的二氧化桂气凝胶和 15wt%的玻璃微珠。
[0036] 连续发泡卷状片材的制备方法包括: 将低密度聚乙烯 (LDPE) 和过氧化二异 丙苯 (DCP) 进行单独混合成粉末一, 再将偶氮二甲酰胺 (AC) 、 氧化锌 (Zn 0) 、 硬脂酸锌 (ZnSt) 、 二氧化硅气凝胶和玻璃微珠进行混合成粉末二, 然后 粉末一和粉末二放入密炼机中加压加热充分捏炼均匀, 把捏炼好的原料放入挤 出机中挤出成拉片, 经过切割成为具有一定尺寸与重量的粒装坯料, 把胚料挤 片、 压光, 放入发泡机内交联发泡, 然后再进行泡孔定型, 最后进行水洗、 烘 干, 卷取后形成卷状片材。
[0037] 实施例 4: 用聚乙烯 PE高分子链紧密包裹束缚了大量的纳微孔结构的二氧化硅 气凝胶的颗粒粉末和玻璃微珠, 原材料包括: 100kg低密度聚乙烯 (LDPE) 、 1 5kg偶氮二甲酰胺 (AC) 、 0.6~0.8kg过氧化二异丙苯 (DCP) 、 3kg氧化锌 (Zn O) 、 1kg硬脂酸锌 (ZnSt) 、 10wt%的二氧化硅气凝胶、 10wt%的玻璃微珠、 15 wt%的氢氧化镁阻燃剂和 5wt%的氢氧化铝阻燃剂。 氢氧化镁阻燃剂的颗粒尺寸 3 25目 -800 g , 氢氧化铝阻燃剂的颗粒尺寸为 325目 ~800目。
[0038] 连续发泡卷状片材的制备方法包括: 将低密度聚乙烯 (LDPE) 和过氧化二异 丙苯 (DCP) 进行单独混合成粉末一, 再将偶氮二甲酰胺 (AC) 、 氧化锌 (Zn 0) 、 硬脂酸锌 (ZnSt) 、 二氧化硅气凝胶、 玻璃微珠、 氢氧化镁阻燃剂和氢氧 化铝阻燃剂进行混合成粉末二, 然后粉末一和粉末二放入密炼机中加压加热充 分捏炼均匀, 把捏炼好的原料放入挤出机中挤出成拉片, 经过切割成为具有一 定尺寸与重量的粒装坯料, 把胚料挤片、 压光, 放入发泡机内交联发泡, 然后 再进行泡孔定型, 最后进行水洗、 烘干, 卷取后形成具有阻燃性能的卷状片材
[0039] 实施例 5: 用其它高分子泡壁固定二氧化硅气凝胶颗粒粉末, 原材料包括: 二 氧化硅气凝胶 35wt%, 100kg分子量 3000的聚醚, 47kg甲苯二异氰酸酯(80/20), 0 ·2kg三乙烯二胺, 0.3kg辛酸亚锡, 2.3kg硅油, 3.5kg蒸馏水。
[0040] 间歇式箱体发泡块状片材的制备方法, 是将上述所有原材料在 20-25°C的环境 下高速混合搅拌时间 8秒钟以上, 然后倒入箱体内发泡成块。
[0041] 实施例 6: 用聚异氰脲酸酯泡壁固定二氧化硅气凝胶颗粒粉末, 原材料包括: 二氧化硅气凝胶 40wt%, 80.5kg粗 MDI, 100kg聚异氰酸酯, 6. lkg含羟基化合物 , 10kg含磷聚醚, 1.43kg丙烯氧化物(其中含三聚催化剂), 0.86kg硅油表面活性 剂 20kg3003聚醚, 10kg发泡剂 F-n 0.5kg烷基磷化合物, 0.58kg三苯酚, 0.5kg 表面活性剂, 0.58kg氮杂环丙烯。
[0042] 连续发泡块状片材的制备方法中需要将上述所有原材料充分混合的过程中, 至 少进行 18秒时间的乳化, 和 45秒时间的固化, 然后再进行拉片、 切粒和发泡。
[0043] 聚异氰脲酸酯泡沫塑料(PIR)长期使用温度为 150-180°C, 阻燃性更优异, 此外 改性聚异氰脲酸酯还包括: 氨基甲酸酯、 环氧树脂、 聚酰亚胺、 碳二亚胺等。
[0044] 综合实施例 1-6, 本发明具有工艺简单, 材料成本低, 设备投入小的优点, 产 出的复合材料具有大尺寸、 可连续生产的优势。
[0045] 本发明具有抗拉抗压强度好, 质量轻、 柔软度好、 具备弹性缓冲、 隔音降噪、 吸震等功能, 在寒区或高温环境条件下具有重要的应用, 如寒区和高温环境中 的日常穿戴的服装、 靴子、 被装、 帐篷、 方舱、 新能源汽汽车的动力电池包、 新能源汽车的车身等保温隔热有着巨大的市场需求。 该材料工程技术应用的衍 生广品和应用方向。
[0046] 以上所述仅为本发明的实施例, 并非因此限制本发明的专利范围, 凡是利用本 发明说明书内容所作的等效结构或等效流程变换, 或直接或间接运用在其它相 关的技术领域, 均同理包括在本发明的专利保护范围内。

Claims

权利要求书
[权利要求 1] 一种二氧化硅气凝胶柔弹性隔热保温复合材料, 其特征在于, 复合材 料包括二氧化硅气凝胶颗粒粉体和高分子聚合物用发泡工艺包裹结合 形成具有完全开孔、 完全封闭孔或半开半闭孔结构的材料, 其中二氧 化硅气凝胶颗粒粉体镶嵌在高分子聚合物形成的孔壁上。
[权利要求 2] 根据权利要求 1所述的二氧化硅气凝胶柔弹性隔热保温复合材料的制 备方法, 其特征在于, 将包含二氧化硅气凝胶颗粒粉体、 高分子聚合 物的原材料充分混合均匀, 然后加压加热充分捏炼均匀, 把捏炼好的 原料挤出成拉片, 拉片经过连续或间歇发泡的工艺, 制得卷状或块状 片材的复合材料。
[权利要求 3] 根据权利要求 2所述的二氧化硅气凝胶柔弹性隔热保温复合材料的制 备方法, 其特征在于, 高分子聚合物包括聚乙烯 PE、 聚丙烯 PP、 聚 对苯二甲酸类塑料 PET、 乙烯、 醋酸乙烯共聚物、 聚氨酯 PU、 聚酰亚 胺 PI、 环氧树脂、 三聚氰胺 Melamine、 天然橡胶 NR、 丁苯橡胶 SBR 、 顺丁橡胶 BR、 异戊橡胶 IR、 氯丁橡胶 CR、 丁基橡胶 IIR、 丁晴橡胶 NBR、 氢化丁晴橡胶 HNBR和乙丙橡胶 EPM、 EPDM中的一种或两种 以上按比例混合而成的颗粒粉末。
[权利要求 4] 根据权利要求 2所述的二氧化硅气凝胶柔弹性隔热保温复合材料的制 备方法, 其特征在于, 所述发泡工艺中的发泡剂为化学发泡剂, 包括 2, 2’-偶氮二异丁腈、 偶氮二甲酸二异丙酯、 偶氮二甲酸钡、 偶氮二 甲酸二乙醋、 偶氮胺基苯、 亚硝基化合物类、 N,N'-二甲基 -N,N'-二亚 硝基对苯二甲酰胺、 苯磺酰肼、 对甲苯磺酰肼、 4, 4’-氧化双苯磺酰 肼、 3 , 3’-二磺酰肼二苯砜、 1, 3 -苯二磺酰肼、 对甲苯磺酰氨基脲、 4, 4’-氧代双苯磺酰氨基脲、 三肼基三嗪、 5 -苯基四唑或聚硅氧烷-聚 烷氧基醚共聚物。
[权利要求 5] 根据权利要求 2所述的二氧化硅气凝胶柔弹性隔热保温复合材料的制 备方法, 其特征在于, 原材料中进一步包括硫化剂, 硫化剂为有机 硫化剂, 包括有机过氧化物、 醌肟化合物、 多硫聚合物、 氨基甲酸乙 酯和马来酰亚胺衍生物中的一种或多种组合, 用于激活高分子聚合物 的双键使其进一步聚合。
[权利要求 6] 根据权利要求 2所述的二氧化硅气凝胶柔弹性隔热保温复合材料的制 备方法, 其特征在于, 原材料中进一步包括填充料, 填充料包括滑石 粉、 碳酸钙、 石英砂或金刚砂, 用于进一步改善复合材料的指定特性 , 包括密度、 硬度或光泽度。
[权利要求 7] 根据权利要求 2所述的二氧化硅气凝胶柔弹性隔热保温复合材料的制 备方法, 其特征在于, 原材料中进一步包括阻燃剂, 阻燃剂分为无机 阻燃剂和有机阻燃剂, 包括氢氧化铝、 氢氧化镁、 三氧化二锑、 卤系 阻燃剂、 氮磷系阻燃剂和氮系阻燃剂中的一种或多种组合。
[权利要求 8] 根据权利要求 2所述的二氧化硅气凝胶柔弹性隔热保温复合材料的制 备方法, 其特征在于, 原材料中进一步包括调节复合材料颜色的着色 剂, 包括有机着色剂和无机着色剂。
[权利要求 9] 根据权利要求 2所述的二氧化硅气凝胶柔弹性隔热保温复合材料的制 备方法, 其特征在于, 原材料中或包括 l-20wt%的玻璃微珠。
[权利要求 10] 根据权利要求 2所述的二氧化硅气凝胶柔弹性隔热保温复合材料的制 备方法, 其特征在于, 原材料中包括 l-40wt%的二氧化硅气凝胶颗粒 粉体。
PCT/CN2019/113007 2019-04-15 2019-10-24 一种二氧化硅气凝胶柔弹性隔热保温复合材料及其制备方法 WO2020211320A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910300790.8A CN111825901A (zh) 2019-04-15 2019-04-15 一种二氧化硅气凝胶柔弹性隔热保温复合材料及其制备方法
CN201910300790.8 2019-04-15

Publications (1)

Publication Number Publication Date
WO2020211320A1 true WO2020211320A1 (zh) 2020-10-22

Family

ID=72838001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/113007 WO2020211320A1 (zh) 2019-04-15 2019-10-24 一种二氧化硅气凝胶柔弹性隔热保温复合材料及其制备方法

Country Status (2)

Country Link
CN (1) CN111825901A (zh)
WO (1) WO2020211320A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023230251A1 (en) 2022-05-27 2023-11-30 Cabot Corporation Aerogel composition for thermal insulation
WO2024059682A1 (en) 2022-09-16 2024-03-21 Cabot Corporation Aerogel composition for thermal insulation
US11949085B2 (en) 2022-01-14 2024-04-02 Ford Global Technologies, Llc High temperature insulating foam for high voltage battery protection in electric vehicles

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112321948B (zh) * 2020-11-25 2022-12-02 江苏金发科技新材料有限公司 一种二氧化硅气凝胶-聚丙烯轻质隔热材料及其制备方法
CN113024938A (zh) * 2021-04-01 2021-06-25 石家庄启宏新材料制品有限公司 一种阻燃发泡材料及其制备方法
CN113185780B (zh) * 2021-04-25 2022-11-08 中国电力科学研究院有限公司 一种热失控防护材料及制备方法和锂离子储能电池
CN113321875B (zh) * 2021-05-27 2022-02-08 北京理工大学 一种有机无机复合的热防护隔热材料及其制备方法
CN113462078A (zh) * 2021-07-14 2021-10-01 湖北祥源新材科技股份有限公司 一种气凝胶复合发泡片材、制备方法以及应用
CN113635619A (zh) * 2021-07-27 2021-11-12 杨清华 一种二氧化硅气凝胶保温隔热复合膜及其制备工艺
CN113736173A (zh) * 2021-07-28 2021-12-03 上海乐纯生物技术有限公司 一种细胞治疗储液袋及其制造方法
CN113717459B (zh) * 2021-09-15 2023-10-13 智筑汇创(上海)新材料科技有限公司 一种保温材料及其制备方法
CN114250046B (zh) * 2022-01-07 2022-08-16 科顺防水科技股份有限公司 一种丁基压敏胶及其制备方法和应用
CN115926480B (zh) * 2023-01-09 2023-09-29 江苏众成羽绒科技有限公司 一种羽绒复合保暖材料及其制备方法
CN116330771B (zh) * 2023-05-25 2023-11-07 北京中科海势科技有限公司 一种基于气凝胶纳米颗粒和高分子弹性体的绝热材料

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2610287A1 (en) * 2010-08-24 2013-07-03 Cheil Industries Inc. Highly insulating polyurethane foam and method for manufacturing same
US20170174859A1 (en) * 2015-12-17 2017-06-22 Panasonic Intellectual Property Management Co., Ltd. Silica aerogel, heat-insulation material, and method for producing silica aerogel
EP3272516A1 (en) * 2016-07-22 2018-01-24 Panasonic Intellectual Property Management Co., Ltd. Heat-insulation material and production method thereof
CN109130405A (zh) * 2018-08-30 2019-01-04 疏博(上海)纳米科技有限公司 一种隔热覆盖物及其制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103608391B (zh) * 2011-06-29 2016-03-23 陶氏环球技术有限责任公司 包含气凝胶颗粒的有机泡沫体复合材料的制备方法
JP2015007145A (ja) * 2013-06-24 2015-01-15 大日本印刷株式会社 断熱材の製造方法、断熱材用樹脂組成物および断熱材
CN104478394B (zh) * 2014-11-24 2016-09-21 天津大学 一种纤维毡增强二氧化硅气凝胶复合板的制备方法
RU2017128112A (ru) * 2015-07-15 2019-08-15 Интернэшнл Эдвансд Рисёрч Сентр Фо Паудер Металлурджи Энд Нью Материалс (Арси) Усовершенствованный способ получения термоизоляционного продукта из аэрогеля диоксида кремния с повышенной эффективностью
CN105273314B (zh) * 2015-11-12 2017-08-29 安徽大学 一种聚丙烯发泡隔热材料及其制备方法
CN107266774B (zh) * 2016-04-08 2021-04-30 南京唯才新能源科技有限公司 一种气凝胶复合材料及其制备方法
CN106397952A (zh) * 2016-08-31 2017-02-15 上海婵婵户外用品有限公司 一种保温材料及其制备方法
CN106397956A (zh) * 2016-08-31 2017-02-15 上海婵婵户外用品有限公司 一种保温材料及其制备方法
CN106567474B (zh) * 2016-10-28 2019-05-10 王贵然 一种二氧化硅纳米气凝胶空芯玻璃微珠复合防火保温板材料及其制备方法
CN108239309B (zh) * 2016-12-26 2020-07-31 蔡晨灿 一种御寒保暖复合材料及其制备方法和应用
CN109337216A (zh) * 2018-09-17 2019-02-15 诺弗斯绝热材料有限公司 一种用于空调保温系统的橡塑绝热材料

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2610287A1 (en) * 2010-08-24 2013-07-03 Cheil Industries Inc. Highly insulating polyurethane foam and method for manufacturing same
US20170174859A1 (en) * 2015-12-17 2017-06-22 Panasonic Intellectual Property Management Co., Ltd. Silica aerogel, heat-insulation material, and method for producing silica aerogel
EP3272516A1 (en) * 2016-07-22 2018-01-24 Panasonic Intellectual Property Management Co., Ltd. Heat-insulation material and production method thereof
CN109130405A (zh) * 2018-08-30 2019-01-04 疏博(上海)纳米科技有限公司 一种隔热覆盖物及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11949085B2 (en) 2022-01-14 2024-04-02 Ford Global Technologies, Llc High temperature insulating foam for high voltage battery protection in electric vehicles
WO2023230251A1 (en) 2022-05-27 2023-11-30 Cabot Corporation Aerogel composition for thermal insulation
WO2024059682A1 (en) 2022-09-16 2024-03-21 Cabot Corporation Aerogel composition for thermal insulation

Also Published As

Publication number Publication date
CN111825901A (zh) 2020-10-27

Similar Documents

Publication Publication Date Title
WO2020211320A1 (zh) 一种二氧化硅气凝胶柔弹性隔热保温复合材料及其制备方法
WO2015101242A1 (zh) 一种高填充高回弹软质发泡聚乙烯材料及其制备方法
CN110181741B (zh) 发泡聚烯烃珠粒的制备方法、发泡聚烯烃板材及其应用
CN1884378A (zh) 一种开孔型硅橡胶泡沫材料及其制备方法和用途
CN104017369A (zh) 一种具有高拉伸强度的硅橡胶泡沫材料的制备方法
CN108003405B (zh) 柔性吸声材料及其制备方法和应用
KR20080005255A (ko) 고밀도 폴리스티렌 발포 입자의 제조 방법
WO2009001473A1 (ja) メタロセン-エチレンプロピレンジエン共重合体ゴム系連続気泡体及びその製造方法
CN106630837A (zh) 一种复合聚多巴胺膜改性再生eps粒子‑硅酸盐水泥复合发泡保温板及其制备方法
JP5981116B2 (ja) クロロプレンゴム連続気泡体及びその製造方法
CN111823655A (zh) 二氧化硅气凝胶柔弹性隔热保温材料与ePTFE膜贴合层压的复合材料及制备方法和用途
CN108117700B (zh) 阻燃柔性吸声材料及其制备方法和应用
CN114874594B (zh) 一种高回弹吸波发泡材料及其制备方法
KR102226816B1 (ko) 고 기밀성 고무발포 폼 테이프 및 이의 제조방법
CN110655695A (zh) 一种阻燃橡塑保温发泡材料及制备方法
KR101851412B1 (ko) 발포 pvc의 생산을 위한 향상된 공정 및 그에 의해 얻어진 발포 pvc에 기초한 플라스틱 재료
CN210362724U (zh) 一种二氧化硅气凝胶柔弹性隔热保温材料与ePTFE膜贴合层压的复合材料
CN108976543A (zh) 一种难燃型改性聚乙烯保温隔声卷材及其制备方法
CN109366839B (zh) 模压物理发泡制备闭孔结构橡胶泡沫材料的方法
CN106630836A (zh) 一种乳化植物沥青改性再生eps粒子‑硅酸盐水泥复合发泡保温板及其制备方法
CN104119671A (zh) 一种轻量化汽车内饰用高性能聚氨酯泡沫的配方及工艺
KR20190045728A (ko) 고강도 및 고신장률의 고무 발포체 조성물 및 이를 이용한 고무 발포체의 제조방법
CN106800394A (zh) 一种杂化硅溶胶改性再生eps粒子‑硅酸盐水泥复合发泡保温板及其制备方法
CN114197665A (zh) 一种幕墙保温岩棉板
CN106588078A (zh) 一种屋面用的具有净化空气功能的泡沫混凝土保温板及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19924706

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19924706

Country of ref document: EP

Kind code of ref document: A1