WO2020209188A1 - Touch sensor - Google Patents
Touch sensor Download PDFInfo
- Publication number
- WO2020209188A1 WO2020209188A1 PCT/JP2020/015278 JP2020015278W WO2020209188A1 WO 2020209188 A1 WO2020209188 A1 WO 2020209188A1 JP 2020015278 W JP2020015278 W JP 2020015278W WO 2020209188 A1 WO2020209188 A1 WO 2020209188A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- touch sensor
- electrode
- wiring
- transmitter
- receiver
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/044—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
Definitions
- This disclosure relates to a narrow-edged touch sensor.
- a touch sensor for detecting the touch of a fingertip has been used as a fingerprint sensor for security.
- the fingerprint sensor is configured as a capacitive touch sensor that detects peak and valley patterns on the skin of the user's finger. That is, the change in capacitance induced by the "peak” or “valley” of the finger placed on the plate of the capacitive sensing element consisting of the transmitter electrodes arranged in parallel and the receiver electrodes intersecting them is detected as a received signal. To do.
- FIG. 7 shows an example of the conventional touch sensor 200.
- the touch sensor 200 is composed of a plurality of transmitter electrodes Tx arranged in parallel in the sensing region 202, and a plurality of receiver electrodes Rx arranged in parallel so as to intersect with each other with an insulating layer interposed therebetween. At least two sides of the peripheral edge of the sensing region 202, which are the ends of the transmitter electrode Tx and the receiver electrode Rx, need to be provided with a peripheral region 204 in which the wiring L connected to the transmitter electrode Tx and the receiver electrode Rx is arranged. Further, as shown in FIG. 8, in the case where the driver element DR for controlling the potential of the transmitter electrode Tx is arranged around the sensing region 202 or the multiplexer MP for selecting the receiver electrode Rx is arranged. There is also.
- the transmitter electrode Tx and the receiver electrode Rx are arranged at intervals of 50 ⁇ m each, if the sensing area 202 of the touch sensor 200 is 1 cm ⁇ 1 cm, it is necessary to wire 200 transmitter electrodes Tx and 200 receiver electrodes Rx each. is there.
- the wiring L with respect to the transmitter electrode Tx has a line width of 20 ⁇ m and an interval of 20 ⁇ m
- the width of the peripheral region 204 required for arranging the wiring L is about 0.8 cm.
- the receiver electrode Rx it was not possible to increase the ratio of the area of the sensing region 202 where sensing is effective to the area of the entire touch sensor 200.
- One aspect of the present disclosure is a touch sensor, wherein a plurality of transmitter electrodes arranged in parallel and a plurality of transmitter electrodes arranged in parallel so as to intersect the transmitter electrodes via a first insulating layer. At least one of the transmitter electrode and the receiver electrode is arranged with respect to the receiver electrode and the transmitter electrode and the receiver electrode via a second insulating layer, and through a contact hole provided in the second insulating layer. It is configured by stacking the wiring connected to.
- the peripheral region from which the wiring is pulled out is provided only on one side of the sensing region where the transmitter electrode and the receiver electrode are arranged and where sensing is effective.
- peripheral region is bent or folded back with respect to the sensing region.
- a shield layer composed of the second insulating layer, the conductive layer, and the third insulating layer is provided between the wiring and the transmitter electrode and the receiver electrode.
- a multiplexer for selecting the receiver electrode is formed in the same layer as the wiring.
- the selector for selecting the transmitter electrode is formed in the same layer as the wiring.
- a driver for applying a voltage to the transmitter electrode is formed in the same layer as the wiring.
- Another aspect of the present disclosure is a touch sensor, wherein a plurality of transmitter electrodes arranged in parallel and a plurality of transmitter electrodes arranged in parallel so as to intersect the transmitter electrodes via a first insulating layer.
- a first peripheral region in which the receiver electrode is laminated and the wiring connected to the transmitter electrode is drawn out only on one side of the sensing region in which the transmitter electrode and the receiver electrode are arranged and effective for sensing. Is provided, and only one side different from the one side of the sensing region is provided with a second peripheral region from which the wiring connected to the receiver electrode is pulled out, and the first peripheral region and the first peripheral region are provided.
- the peripheral region of 2 is bent or folded back with respect to the sensing region.
- the proportion of the sensing region in which sensing is effective in the touch sensor can be increased.
- the touch sensor 100 includes a transmitter electrode Tx, an insulating layer 10, a receiver electrode Rx, a shield layer 12, wiring L, and a substrate 14. And a protective layer 16 are included.
- FIG. 1 shows a structure in which the touch sensor 100 is divided into a plurality of layers. That is, the touch sensor 100 has a structure in which the layers separately displayed in FIG. 1 are overlapped. Further, in order to clearly illustrate the structure, FIG. 1 shows a configuration excluding the protective layer 16.
- the touch sensor 100 senses the fingertip when the user's fingertip touches it and outputs it as a signal.
- Signal detection by the touch sensor 100 is based on voltage amplitude, signal phase shift, and other methods. For example, when the touch sensor 100 is used as a fingerprint sensor, it detects changes in signals due to peaks and valleys of the skin in the fingerprint of the fingertip.
- the region excluding the peripheral region 104 on the end side of the line AA of the substrate 14 is the sensing region 102 effective for detecting the fingertip.
- the transmitter electrode Tx and the receiver electrode Rx are arranged so as to face each other via the insulating layer 10.
- a plurality of transmitter electrodes Tx are arranged in parallel along one direction (X direction) in the sensing region 102 of the touch sensor 100.
- a plurality of receiver electrodes Rx are arranged in parallel in the sensing region 102 of the touch sensor 100 along the direction intersecting the transmitter electrode Tx.
- the transmitter electrode Tx is arranged along a direction (Y direction) orthogonal to the receiver electrode Rx.
- the transmitter electrode Tx and the receiver electrode Rx are made of a conductive material.
- the transmitter electrode Tx and the receiver electrode Rx can be made of a metal such as aluminum or a transparent conductive material such as ITO.
- the transmitter electrode Tx and the receiver electrode Rx can be, for example, aluminum (Al) having a thickness of several tens of nm or more and several hundreds of nm or less.
- the insulating layer 10 is made of an electrically insulating material.
- the insulating layer 10 can be made of a resin material such as acrylic, polyimide, or polyethylene.
- the insulating layer 10 can be made of, for example, an acrylic resin having a film thickness of about 1000 nm or more and 1 ⁇ m or less.
- An electrical capacitance is formed at the intersection of the transmitter electrode Tx and the receiver electrode Rx, and each intersection forms one pixel in the touch sensor 100.
- a voltage is applied to the transmitter electrode Tx
- an electric charge is generated in the receiver electrode Rx due to capacitive coupling.
- the capacitance between the transmitter electrode Tx and the receiver electrode Rx changes according to the unevenness of the skin of the user's fingertip, so that the potential of the transmitter electrode Tx is changed.
- the amount of charge generated in the receiver electrode Rx at that time also changes. Therefore, the fingerprint pattern of the fingertip can be detected by sequentially applying a voltage to the transmitter electrode Tx and detecting a change in the amount of electric charge generated in the receiver electrode Rx at that time.
- the transmitter electrodes Tx may be arranged at intervals of several tens of ⁇ m. Further, the receiver electrodes Rx may also be arranged at intervals of several tens of ⁇ m. For example, the transmitter electrode Tx and the receiver electrode Rx are arranged at intervals of 50 ⁇ m, respectively.
- the touch sensor 100 is configured to have a fingerprint detection effective area of 1 cm ⁇ 1 cm, it is necessary to wire 200 transmitter electrodes Tx and 200 receiver electrodes Rx each.
- the wiring L for the transmitter electrode Tx, the insulating layer 10 and the receiver electrode Rx has a three-dimensional wiring structure via the shield layer 12. That is, the wiring L is arranged in the lower layer portion of the transmitter electrode Tx and the receiver electrode Rx in the sensing region 102 with the shield layer 12 interposed therebetween.
- the shield layer 12 is provided to block the electrical coupling between the wiring L and the transmitter electrode Tx and the receiver electrode Rx.
- the shield layer 12 has a laminated structure in which both sides of the conductive layer 12b are sandwiched between the insulating layers 12a and 12c.
- the insulating layers 12a and 12c are not particularly limited as long as they are electrically insulating materials, but can be formed of, for example, a silicon oxide film (SiO 2 ), a silicon nitride film (SiNx), or the like.
- the film thickness of the insulating layers 12a and 12c is not particularly limited, but may be 100 nm or more and 1000 nm or less.
- the conductive layer 12b is not particularly limited as long as it is a conductive material, but can be made of a transparent conductive material such as ITO.
- the film thickness of the conductive layer 12b is not particularly limited, but may be several tens of nm or more and several hundreds of nm or less.
- the conductive layer 12b is maintained at a predetermined potential by the wiring L.
- the substrate 14 is a member for forming the wiring L connected to the transmitter electrode Tx, the receiver electrode Rx, and the conductive layer 12b of the shield layer 12 on the surface.
- the substrate 14 is not particularly limited as long as it is an electrically insulating material, but can be made of, for example, a resin material such as glass, ceramic, acrylic, polyimide, or polyethylene.
- Wiring L is provided for each of the transmitter electrode Tx, the receiver electrode Rx, and the conductive layer 12b.
- the wiring L is not particularly limited as long as it is a conductive material, but can be made of, for example, a metal such as aluminum, a transparent conductive material such as ITO, or the like.
- the wiring L is electrically connected to the transmitter electrode Tx and the conductive layer 12b via the contact hole C provided in the shield layer 12. Further, the wiring L is electrically connected to the receiver electrode Rx via the contact holes C provided in the shield layer 12 and the insulating layer 10.
- a predetermined voltage is applied to the wiring L connected to the transmitter electrode Tx from an external control circuit. Further, the wiring L connected to the receiver electrode Rx is sequentially selected by an external selection circuit, and the fingerprint pattern of the fingertip can be detected by detecting the change in the amount of charge generated in the selected receiver electrode Rx. ..
- the wiring L is configured to protrude from the sensing region 102 in the peripheral region 104 of the substrate 14 provided only on one side on the end side of the lines AA.
- the area of the peripheral region 104 that corresponds to the edge of the touch sensor 100 that is not the sensing region 102 can be reduced. Therefore, the ratio of the area of the sensing region 102 to the area of the entire touch sensor 100 can be increased.
- the touch sensor 100 may have a configuration in which the substrate 14 and the wiring L are bent or folded back at the line AA which is the boundary between the sensing area 102 and the peripheral area 104. At this time, the peripheral region 104 is bent or folded back in the direction opposite to the sensing detection surface of the touch sensor 100. As a result, only the sensing area 102 can be left on the surface side as a detection surface, and the peripheral area 104 corresponding to the frame portion can be bent or folded back, and the ratio of the area of the sensing area 102 to the area of the entire touch sensor 100 can be obtained. Can be made even larger.
- the protective layer 16 is made of an electrically insulating material.
- the insulating layer 10 is not particularly limited, but can be formed of, for example, a silicon oxide film (SiO 2 ), a silicon nitride film (SiNx), or the like. Specifically, the insulating layer 10 may have a film thickness of about several hundred nm.
- the protective layer 16 can protect and flatten the surface of the touch sensor 100.
- the touch sensor 100 in which the peripheral area corresponding to the frame portion is reduced, it is possible to detect fingerprints and the like in the defined sensing area 102. As a result, the fingerprint detection accuracy can be improved and the security can be improved. Further, since the sensing area 102 can be made large, fingerprint authentication can be performed without applying complicated control, and control can be performed by a control device having low performance, so that low cost and low power consumption can be realized.
- the wiring L is formed on the surface of the substrate 14.
- a glass substrate is used as the substrate 14.
- a conductive material is formed on the surface of the substrate 14 as a wiring L having a thickness of several tens of nm or more and several hundreds of nm or less.
- the wiring L is formed by forming aluminum with a thickness of 100 nm and processing it into a desired pattern by applying a technique such as etching.
- an insulating layer is formed on the substrate 14 and the wiring L for insulation and flattening.
- the insulating layer is used as the insulating layer 12a of the shield layer 12.
- the insulating layer 12a has a film thickness of 100 nm or more and 1000 nm or less.
- a silicon oxide film (SiO 2 ) is formed as an insulating layer 12a with a thickness of 500 nm.
- a contact hole C for connecting the wiring L to the receiver electrode Rx, the transmitter electrode Tx, and the conductive layer 12b is formed at a predetermined position of the insulating layer 12a.
- a conductive layer for shielding is formed on the insulating layer 12a.
- the conductive layer is used as the conductive layer 12b of the shield layer 12.
- the conductive layer 12b has a thickness of several tens of nm or more and several hundred nm or less.
- a transparent conductive material ITO is formed as a conductive layer 12b with a thickness of 100 nm.
- the conductive layer 12b is not formed around the contact hole C for connecting the receiver electrode Rx and the transmitter electrode Tx and the wiring L.
- an insulating layer is formed on the conductive layer 12b.
- the insulating layer is used as the insulating layer 12c of the shield layer 12.
- the insulating layer 12c has a film thickness of 100 nm or more and 1000 nm or less.
- a silicon oxide film (SiO 2 ) is formed as an insulating layer 12c with a thickness of 500 nm.
- a contact hole C for connecting the wiring L to the receiver electrode Rx and the transmitter electrode Tx is formed at a predetermined position of the insulating layer 12c.
- the transmitter electrode Tx is formed on the shield layer 12.
- a conductive material having a thickness of several tens of nm or more and several hundred nm or less is formed as the transmitter electrode Tx.
- aluminum is formed to a thickness of 100 nm to form a transmitter electrode Tx.
- a plurality of transmitter electrodes Tx are processed so as to be extended in parallel along a predetermined direction (X direction) as shown in FIG. 1 by applying a technique such as etching. Further, the transmitter electrode Tx is electrically connected to a desired wiring L via a contact hole C formed in the insulating layers 12a and 12c.
- the insulating layer 10 is formed on the shield layer 12 and the transmitter electrode Tx.
- a layer made of an insulating material having a film thickness of about 1000 nm or more and 1 ⁇ m or less is formed as the insulating layer 10.
- an acrylic resin is formed to a thickness of 2000 nm to form an insulating layer 10.
- a contact hole C for connecting the wiring L to the receiver electrode Rx is formed at a predetermined position.
- the receiver electrode Rx is formed on the insulating layer 10.
- a conductive material having a thickness of several tens of nm or more and several hundred nm or less is formed as the receiver electrode Rx.
- aluminum is formed to a thickness of 100 nm to obtain a receiver electrode Rx.
- the receiver electrode Rx is processed by applying a technique such as etching so that a plurality of receiver electrodes Rx are extended in parallel along a direction (Y direction) intersecting with the transmitter electrode Tx as shown in FIG. Further, the receiver electrode Rx is electrically connected to the desired wiring L via the contact holes C formed in the insulating layers 12a and 12c and the insulating layer 10.
- the protective layer 16 is formed so as to cover the receiver electrode Rx.
- a layer made of an insulating material having a film thickness of about several hundred nm is formed as the protective layer 16.
- a silicon oxide film (SiO 2 ) is formed to have a thickness of 500 nm to form a protective layer 16.
- step S26 the periphery of the substrate 14 is bent at the line AA which is the boundary between the sensing region 102 and the peripheral region 104.
- the touch sensor 100 according to the present embodiment can be formed.
- FIG. 4 is a perspective view showing the configuration of the touch sensor 110 in the first modification.
- FIG. 4 shows an exploded perspective view of the touch sensor 110. Further, FIG. 4 shows a configuration in which the protective layer 16 is removed in order to clearly show the structure.
- a multiplexer MP connected to the receiver electrode Rx is provided on the substrate 14.
- the multiplexer MP is provided to sequentially select any one of the wires L connected to the receiver electrode Rx.
- the multiplexer MP can be formed by applying an existing thin film transistor forming technique to the substrate 14.
- a selector SR and a driver DR are provided on the substrate 14 for each wiring L connected to the transmitter electrode Tx.
- the selector SR is provided to sequentially select any one of the wirings L connected to the transmitter electrode Tx.
- the driver DR is provided to apply a predetermined voltage to the transmitter electrode Tx selected by the selector SR.
- the selector SR and the driver DR can be formed by applying the existing thin film transistor forming technique to the substrate 14.
- the substrate 14 on which the wiring L, the multiplexer MP, the selector SR, and the driver DR are formed is located in the peripheral region 104 provided only on one side on the end side of the lines AA.
- the configuration is such that it extends beyond the sensing area 102.
- the area of the peripheral region 104 that corresponds to the frame portion other than the sensing region 102 can be reduced. Therefore, the ratio of the area of the sensing region 102 to the area of the entire touch sensor 110 can be increased.
- the touch sensor 110 may also have a configuration in which the periphery of the substrate 14 is bent or folded back at the line AA which is the boundary between the sensing region 102 and the peripheral region 104. At this time, the peripheral region 104 is bent or folded back in the direction opposite to the sensing detection surface of the touch sensor 110. As a result, only the sensing area of the touch sensor 110 can be left on the surface side, and the peripheral area 104 corresponding to the frame portion can be bent or folded back, and the sensing area in which sensing is effective for the entire area of the touch sensor 110 can be obtained. The ratio of the area of can be increased.
- the touch sensor 110 is configured to arrange the multiplexer MP in the peripheral region 104, it may be configured to be arranged in the sensing region 102. In this case, a part of the multiplexer MP formed on the substrate 14 is superimposed on the receiver electrode Rx and the transmitter electrode Tx, but the three-dimensional laminated structure makes the sensing area 102 in the touch sensor 110 effective. It does not reduce the area.
- the selector SR and the driver DR are arranged in the sensing area 102, but at least a part of the selector SR and the driver DR may be arranged in the peripheral area 104. In this case, even if the selector SR and the driver DR are arranged in the peripheral area 104 provided only on one side on the end side of the lines AA, the effective area of the sensing area 102 in the touch sensor 110 is not narrowed.
- the multiplexer MP By integrating at least one of the multiplexer MP, the selector SR, and the driver DR in the same layer as the wiring L in this way, the number of connection points between these peripheral elements and the transmitter electrode Tx and the receiver electrode Rx can be significantly reduced. It is possible to improve the reliability and reduce the manufacturing cost.
- FIG. 5 is a perspective view showing the configuration of the touch sensor 120 in the second modification.
- FIG. 5 shows an exploded perspective view of the touch sensor 120.
- FIG. 4 shows a configuration in which the protective layer 16 is removed in order to clearly show the structure.
- a contact hole C for connecting the transmitter electrode Tx and the wiring L is provided at the end of the sensing region 102 for all the transmitter electrodes Tx.
- the wiring L connected to the transmitter electrode Tx extends to the peripheral region 104 provided on one side of the substrate 14.
- the touch sensor 120 can be applied even if a coarse alignment technique such as a metal mask is applied. Has the advantage of being able to manufacture.
- the touch sensor 120 may also have a configuration in which the periphery of the substrate 14 is bent or folded back at the line AA which is the boundary between the sensing region 102 and the peripheral region 104. At this time, the peripheral region 104 is bent or folded back in the direction opposite to the sensing detection surface of the touch sensor 120. As a result, only the sensing area of the touch sensor 120 can be left on the surface side, and the peripheral area 104 corresponding to the frame portion can be bent or folded back, and the sensing area in which sensing is effective for the entire area of the touch sensor 120 can be obtained. The ratio of the area of can be increased.
- the shield layer 12 provided with the conductive layer 12b is provided, but the shield layer 12 may not be provided. That is, without providing the conductive layer 12b and the insulating layer 12c of the shield layer 12, the insulating layer 12a maintains the insulation between the wiring L and the receiver electrode Rx and the transmitter electrode Tx, and at a predetermined position of the insulating layer 12a.
- Each wiring L may be connected to the receiver electrode Rx and the transmitter electrode Tx via the provided contact hole C.
- the conductive layer 12b may be formed in the same layer as the transmitter electrode Tx. That is, a conductive layer 12b may be formed between adjacent transmitter electrodes Tx, and the conductive layer 12b may be connected to the wiring L to maintain a predetermined potential. Even with such a configuration, noise from the wiring L and the like can be partially blocked by the conductive layer 12b.
- FIG. 6 is a perspective view showing the configuration of the touch sensor 130 in the modified example 3.
- the touch sensor 130 has a structure in which a substrate 20 having a receiver electrode Rx formed on one surface and a substrate 22 having a transmitter electrode Tx formed on one surface are bonded together by an adhesive layer 24.
- the receiver electrode Rx is formed on one surface of the substrate 20.
- the substrate 20 is not particularly limited as long as it is an electrically insulating material, but can be made of, for example, a resin material such as glass, ceramic, acrylic, polyimide, or polyethylene. Similar to the touch sensor 100, a plurality of receiver electrodes Rx are arranged in parallel along a predetermined direction (Y direction) in the sensing region 102 of the touch sensor 130. A wiring L connected to the end of the receiver electrode Rx is also formed on one surface of the substrate 20.
- the transmitter electrode Tx is formed on one surface of the substrate 22.
- the substrate 22 is not particularly limited as long as it is an electrically insulating material, but can be made of, for example, a resin material such as glass, ceramic, acrylic, polyimide, or polyethylene. Similar to the touch sensor 100, a plurality of transmitter electrodes Tx are arranged in parallel along the direction (X direction) intersecting the receiver electrode Rx in the sensing region 102 of the touch sensor 130. Wiring L connected to the end of the transmitter electrode Tx is also formed on one surface of the substrate 22.
- the substrate 20 and the substrate 22 are bonded together by the adhesive layer 24 so that the receiver electrode Rx formed on the substrate 20 and the transmitter electrode Tx formed on the substrate 22 face each other.
- the adhesive layer 24 is not particularly limited, but can be formed by an adhesive containing an insulating resin material such as acrylic, polyimide, or polyethylene.
- the laminated structure of the substrate 20 on which the receiver electrode Rx is formed and the substrate 22 on which the transmitter electrode Tx is formed is not particularly limited, and the receiver electrode Rx and the transmitter electrode Tx are laminated via an insulating layer. It may be configured as such.
- the touch sensor 130 in which the transmitter electrode Tx and the receiver electrode Rx are opposed to each other via the insulating adhesive layer 24 can be formed.
- the substrate 20 has a configuration that protrudes from the sensing region in a peripheral region provided only on one side on the end side of the line AA. Further, the substrate 22 has a configuration that protrudes from the sensing region in a peripheral region provided only on one side on the end side of the line BB.
- the area of the peripheral region corresponding to the edge portion of the touch sensor 130 that is not the sensing region can be reduced. Therefore, the ratio of the area of the sensing region to the area of the entire touch sensor 130 can be increased.
- the touch sensor 130 may have a configuration in which the substrate 20 or the substrate 22 is bent or folded back at at least one of the lines AA and BB which are the boundaries between the sensing region and the peripheral region. At this time, the touch sensor 130 is bent or folded back in the direction opposite to the sensing detection surface of the touch sensor 130. As a result, only the sensing region can be left on the surface side as the detection surface, and the peripheral region corresponding to the frame portion can be bent or folded back, and the ratio of the area of the sensing region to the total area of the touch sensor 130 can be further increased. can do.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
Abstract
A touch sensor configured by stacking a plurality of transmitter electrodes Tx arranged in parallel, a plurality of receiver electrodes arranged in parallel so as to intersect the transmitter electrodes, with an insulation layer therebetween, and wiring that is arranged with respect to the transmitter electrodes and the receiver electrodes with an insulation layer therebetween, and that is connected either to the transmitter electrodes or the receiver electrodes via contact holes provided in the insulation layer.
Description
本開示は、狭縁のタッチセンサに関する。
This disclosure relates to a narrow-edged touch sensor.
近年、セキュリティ用の指紋センサ等として指先が触れることを検出するためのタッチセンサが利用されている。指紋センサは、ユーザの指の皮膚にある山と谷のパターンを検出する容量性タッチセンサとして構成される。すなわち、並列に配置されたトランスミッタ電極とそれらに交差するレシーバ電極とからなる容量性感知素子のプレート上に置かれる指の“山”や“谷”により誘発されるキャパシタンスの変化を受信信号として検出する。
In recent years, a touch sensor for detecting the touch of a fingertip has been used as a fingerprint sensor for security. The fingerprint sensor is configured as a capacitive touch sensor that detects peak and valley patterns on the skin of the user's finger. That is, the change in capacitance induced by the "peak" or "valley" of the finger placed on the plate of the capacitive sensing element consisting of the transmitter electrodes arranged in parallel and the receiver electrodes intersecting them is detected as a received signal. To do.
図7は、従来のタッチセンサ200の例を示す。タッチセンサ200は、センシング領域202において並行に配置した複数のトランスミッタ電極Txと、それらに対して絶縁層を挟んで交差するように並行に配置した複数のレシーバ電極Rxから構成される。センシング領域202の周縁においてトランスミッタ電極Tx及びレシーバ電極Rxの端部となる少なくとも2辺にはトランスミッタ電極Tx及びレシーバ電極Rxに接続される配線Lが配置される周辺領域204を設ける必要がある。また、図8に示すように、センシング領域202の周囲にトランスミッタ電極Txの電位制御のためのドライバ素子DRを配置した構成やレシーバ電極Rxを選択するためのマルチプレクサMPを配置した構成とされる場合もある。
FIG. 7 shows an example of the conventional touch sensor 200. The touch sensor 200 is composed of a plurality of transmitter electrodes Tx arranged in parallel in the sensing region 202, and a plurality of receiver electrodes Rx arranged in parallel so as to intersect with each other with an insulating layer interposed therebetween. At least two sides of the peripheral edge of the sensing region 202, which are the ends of the transmitter electrode Tx and the receiver electrode Rx, need to be provided with a peripheral region 204 in which the wiring L connected to the transmitter electrode Tx and the receiver electrode Rx is arranged. Further, as shown in FIG. 8, in the case where the driver element DR for controlling the potential of the transmitter electrode Tx is arranged around the sensing region 202 or the multiplexer MP for selecting the receiver electrode Rx is arranged. There is also.
上記のように、従来のタッチセンサ200では、センシング領域202の周縁の少なくとも2辺に配線や周辺素子を配置する周辺領域204を設ける必要があり、これら周辺領域204はセンサの不感となっていた。例えば、トランスミッタ電極Tx及びレシーバ電極Rxをそれぞれ50μm間隔で配置した場合、タッチセンサ200のセンシング領域202が1cm×1cmであるとトランスミッタ電極Tx及びレシーバ電極Rxをそれぞれ200本ずつ配線することが必要である。ここで、トランスミッタ電極Txに対する配線Lがライン幅20μm及び間隔20μmである場合、配線Lの配置に必要な周辺領域204の幅は0.8cm程度となる。レシーバ電極Rxについても同様である。したがって、タッチセンサ200全体の面積に対してセンシングが有効になるセンシング領域202の面積の割合を大きくすることができなかった。
As described above, in the conventional touch sensor 200, it is necessary to provide peripheral regions 204 for arranging wiring and peripheral elements on at least two sides of the peripheral edge of the sensing region 202, and these peripheral regions 204 are insensitive to the sensor. .. For example, when the transmitter electrode Tx and the receiver electrode Rx are arranged at intervals of 50 μm each, if the sensing area 202 of the touch sensor 200 is 1 cm × 1 cm, it is necessary to wire 200 transmitter electrodes Tx and 200 receiver electrodes Rx each. is there. Here, when the wiring L with respect to the transmitter electrode Tx has a line width of 20 μm and an interval of 20 μm, the width of the peripheral region 204 required for arranging the wiring L is about 0.8 cm. The same applies to the receiver electrode Rx. Therefore, it was not possible to increase the ratio of the area of the sensing region 202 where sensing is effective to the area of the entire touch sensor 200.
本開示の1つの態様は、タッチセンサであって、並列に配置された複数のトランスミッタ電極と、第1の絶縁層を介して前記トランスミッタ電極に対して交差するように並列に配置された複数のレシーバ電極と、前記トランスミッタ電極及び前記レシーバ電極に対して第2の絶縁層を介して配置され、前記第2の絶縁層に設けられたコンタクトホールを介して前記トランスミッタ電極及び前記レシーバ電極の少なくとも一方に接続された配線と、を積層して構成される。
One aspect of the present disclosure is a touch sensor, wherein a plurality of transmitter electrodes arranged in parallel and a plurality of transmitter electrodes arranged in parallel so as to intersect the transmitter electrodes via a first insulating layer. At least one of the transmitter electrode and the receiver electrode is arranged with respect to the receiver electrode and the transmitter electrode and the receiver electrode via a second insulating layer, and through a contact hole provided in the second insulating layer. It is configured by stacking the wiring connected to.
ここで、前記トランスミッタ電極と前記レシーバ電極とが配置されたセンシングが有効なセンシング領域の一辺のみに前記配線が引き出された周辺領域が設けられている。
Here, the peripheral region from which the wiring is pulled out is provided only on one side of the sensing region where the transmitter electrode and the receiver electrode are arranged and where sensing is effective.
また、前記周辺領域が、前記センシング領域に対して折り曲げ又は折り返されている。
Further, the peripheral region is bent or folded back with respect to the sensing region.
また、前記配線と前記トランスミッタ電極及び前記レシーバ電極との間に、前記第2の絶縁層、導電層及び第3の絶縁層からなるシールド層が設けられている。
Further, a shield layer composed of the second insulating layer, the conductive layer, and the third insulating layer is provided between the wiring and the transmitter electrode and the receiver electrode.
また、前記レシーバ電極を選択するためのマルチプレクサが前記配線と同じ層に形成されている。
Further, a multiplexer for selecting the receiver electrode is formed in the same layer as the wiring.
また、前記トランスミッタ電極を選択するためのセレクタが前記配線と同じ層に形成されている。
Further, the selector for selecting the transmitter electrode is formed in the same layer as the wiring.
また、前記トランスミッタ電極に電圧を印加するためのドライバが前記配線と同じ層に形成されている。
Further, a driver for applying a voltage to the transmitter electrode is formed in the same layer as the wiring.
本開示の別の態様は、タッチセンサであって、並列に配置された複数のトランスミッタ電極と、第1の絶縁層を介して前記トランスミッタ電極に対して交差するように並列に配置された複数のレシーバ電極と、を積層して構成され、前記トランスミッタ電極と前記レシーバ電極とが配置されたセンシングが有効なセンシング領域の一辺のみに前記トランスミッタ電極に接続された配線が引き出された第1の周辺領域が設けられ、前記センシング領域の前記一辺とは異なる他の一辺のみに前記レシーバ電極に接続された配線が引き出された第2の周辺領域が設けられており、前記第1の周辺領域及び前記第2の周辺領域が、前記センシング領域に対して折り曲げ又は折り返されている。
Another aspect of the present disclosure is a touch sensor, wherein a plurality of transmitter electrodes arranged in parallel and a plurality of transmitter electrodes arranged in parallel so as to intersect the transmitter electrodes via a first insulating layer. A first peripheral region in which the receiver electrode is laminated and the wiring connected to the transmitter electrode is drawn out only on one side of the sensing region in which the transmitter electrode and the receiver electrode are arranged and effective for sensing. Is provided, and only one side different from the one side of the sensing region is provided with a second peripheral region from which the wiring connected to the receiver electrode is pulled out, and the first peripheral region and the first peripheral region are provided. The peripheral region of 2 is bent or folded back with respect to the sensing region.
本開示によれば、タッチセンサにおいてセンシングが有効なセンシング領域の割合をより大きくすることができる。
According to the present disclosure, the proportion of the sensing region in which sensing is effective in the touch sensor can be increased.
本開示の実施の形態におけるタッチセンサ100は、図1の分解斜視図及び図2の断面図に示すように、トランスミッタ電極Tx、絶縁層10、レシーバ電極Rx、シールド層12、配線L、基板14及び保護層16を含んで構成される。
As shown in the exploded perspective view of FIG. 1 and the cross-sectional view of FIG. 2, the touch sensor 100 according to the embodiment of the present disclosure includes a transmitter electrode Tx, an insulating layer 10, a receiver electrode Rx, a shield layer 12, wiring L, and a substrate 14. And a protective layer 16 are included.
なお、構造を明確に図示するために、図1は、タッチセンサ100を複数の層として分割した構造を示している。すなわち、タッチセンサ100は、図1で分割表示されている層を重ね合わせた構造となる。また、構造を明確に図示するために、図1は、保護層16を除いた構成を示している。
Note that, in order to clearly illustrate the structure, FIG. 1 shows a structure in which the touch sensor 100 is divided into a plurality of layers. That is, the touch sensor 100 has a structure in which the layers separately displayed in FIG. 1 are overlapped. Further, in order to clearly illustrate the structure, FIG. 1 shows a configuration excluding the protective layer 16.
タッチセンサ100は、ユーザの指先が触れることによって当該指先を感知して信号として出力する。タッチセンサ100による信号検出は、電圧振幅、信号位相シフト、他の方法に基づいて行われる。例えば、タッチセンサ100を指紋センサとして利用する場合、指先の指紋における皮膚の山と谷による信号の変化を検出する。
The touch sensor 100 senses the fingertip when the user's fingertip touches it and outputs it as a signal. Signal detection by the touch sensor 100 is based on voltage amplitude, signal phase shift, and other methods. For example, when the touch sensor 100 is used as a fingerprint sensor, it detects changes in signals due to peaks and valleys of the skin in the fingerprint of the fingertip.
タッチセンサ100では、基板14のラインA-Aより端部側の周辺領域104を除いた領域が指先の検出に有効なセンシング領域102である。
In the touch sensor 100, the region excluding the peripheral region 104 on the end side of the line AA of the substrate 14 is the sensing region 102 effective for detecting the fingertip.
トランスミッタ電極Tx及びレシーバ電極Rxは、絶縁層10を介して対向配置される。トランスミッタ電極Txは、タッチセンサ100のセンシング領域102において一方向(X方向)に沿って複数並行に配置される。レシーバ電極Rxは、タッチセンサ100のセンシング領域102において、トランスミッタ電極Txに交差する方向に沿って複数並行に配置される。例えば、トランスミッタ電極Txは、レシーバ電極Rxに対して直交する方向(Y方向)に沿って配置される。
The transmitter electrode Tx and the receiver electrode Rx are arranged so as to face each other via the insulating layer 10. A plurality of transmitter electrodes Tx are arranged in parallel along one direction (X direction) in the sensing region 102 of the touch sensor 100. A plurality of receiver electrodes Rx are arranged in parallel in the sensing region 102 of the touch sensor 100 along the direction intersecting the transmitter electrode Tx. For example, the transmitter electrode Tx is arranged along a direction (Y direction) orthogonal to the receiver electrode Rx.
トランスミッタ電極Tx及びレシーバ電極Rxは、導電性の材料によって構成される。例えば、トランスミッタ電極Tx及びレシーバ電極Rxは、アルミニウム等の金属、ITO等の透明導電材料によって構成することができる。具体的には、トランスミッタ電極Tx及びレシーバ電極Rxは、例えば数10nm以上数100nm以下の厚さのアルミニウム(Al)とすることができる。絶縁層10は、電気的絶縁性の材料によって構成される。例えば、絶縁層10は、アクリル、ポリイミド、ポリエチレン等の樹脂材料によって構成することができる。具体的には、絶縁層10は、例えば1000nm以上1μm以下程度の膜厚のアクリル樹脂によって構成することができる。
The transmitter electrode Tx and the receiver electrode Rx are made of a conductive material. For example, the transmitter electrode Tx and the receiver electrode Rx can be made of a metal such as aluminum or a transparent conductive material such as ITO. Specifically, the transmitter electrode Tx and the receiver electrode Rx can be, for example, aluminum (Al) having a thickness of several tens of nm or more and several hundreds of nm or less. The insulating layer 10 is made of an electrically insulating material. For example, the insulating layer 10 can be made of a resin material such as acrylic, polyimide, or polyethylene. Specifically, the insulating layer 10 can be made of, for example, an acrylic resin having a film thickness of about 1000 nm or more and 1 μm or less.
トランスミッタ電極Txとレシーバ電極Rxとの交差点には電気的容量が形成されており、各交差点がタッチセンサ100における1つの画素を形成する。トランスミッタ電極Txに電圧を印加すると、容量結合によりレシーバ電極Rxには電荷が発生する。タッチセンサ100にユーザの指先が触れている状態では、ユーザの指先の皮膚の凹凸に応じてトランスミッタ電極Txとレシーバ電極Rxとの間の容量が変化するので、トランスミッタ電極Txの電位を変化させたときのレシーバ電極Rxに生ずる電荷量も変化する。そこで、トランスミッタ電極Txに対して順々に電圧を印加し、その際のレシーバ電極Rxに生じる電荷量の変化を検出することによって指先の指紋のパターンを検出することができる。
An electrical capacitance is formed at the intersection of the transmitter electrode Tx and the receiver electrode Rx, and each intersection forms one pixel in the touch sensor 100. When a voltage is applied to the transmitter electrode Tx, an electric charge is generated in the receiver electrode Rx due to capacitive coupling. When the user's fingertip is touching the touch sensor 100, the capacitance between the transmitter electrode Tx and the receiver electrode Rx changes according to the unevenness of the skin of the user's fingertip, so that the potential of the transmitter electrode Tx is changed. The amount of charge generated in the receiver electrode Rx at that time also changes. Therefore, the fingerprint pattern of the fingertip can be detected by sequentially applying a voltage to the transmitter electrode Tx and detecting a change in the amount of electric charge generated in the receiver electrode Rx at that time.
タッチセンサ100を指紋センサとして利用する場合、トランスミッタ電極Txは、数10μm間隔で配置してもよい。また、レシーバ電極Rxも、数10μm間隔で配置してもよい。例えば、トランスミッタ電極Tx及びレシーバ電極Rxはそれぞれ50μm間隔で配置される。タッチセンサ100を1cm×1cmの指紋検出有効エリアを持つように構成した場合、トランスミッタ電極Tx及びレシーバ電極Rxをそれぞれ200本ずつ配線することが必要である。
When the touch sensor 100 is used as a fingerprint sensor, the transmitter electrodes Tx may be arranged at intervals of several tens of μm. Further, the receiver electrodes Rx may also be arranged at intervals of several tens of μm. For example, the transmitter electrode Tx and the receiver electrode Rx are arranged at intervals of 50 μm, respectively. When the touch sensor 100 is configured to have a fingerprint detection effective area of 1 cm × 1 cm, it is necessary to wire 200 transmitter electrodes Tx and 200 receiver electrodes Rx each.
タッチセンサ100では、トランスミッタ電極Tx、絶縁層10及びレシーバ電極Rxに対する配線Lは、シールド層12を介した三次元の配線構造とされる。すなわち、配線Lは、シールド層12を挟んでセンシング領域102におけるトランスミッタ電極Tx及びレシーバ電極Rxの下層部に配置される。シールド層12は、配線Lとトランスミッタ電極Tx,レシーバ電極Rxとの間の電気的結合を遮断するために設けられる。
In the touch sensor 100, the wiring L for the transmitter electrode Tx, the insulating layer 10 and the receiver electrode Rx has a three-dimensional wiring structure via the shield layer 12. That is, the wiring L is arranged in the lower layer portion of the transmitter electrode Tx and the receiver electrode Rx in the sensing region 102 with the shield layer 12 interposed therebetween. The shield layer 12 is provided to block the electrical coupling between the wiring L and the transmitter electrode Tx and the receiver electrode Rx.
シールド層12は、図2に示すように、導電層12bの両面を絶縁層12a,12cで挟み込んだ積層構造とされる。絶縁層12a,12cは、電気的絶縁性の材料であれば特に限定されるものではないが、例えばシリコン酸化膜(SiO2)、シリコン窒化膜(SiNx)等によって構成することができる。絶縁層12a,12cの膜厚は、特に限定されるものではないが、100nm以上1000nm以下の膜厚としてもよい。導電層12bは、導電性の材料であれば特に限定されるものではないが、例えばITO等の透明導電材料によって構成することができる。導電層12bの膜厚は、特に限定されるものではないが、数10nm以上数100nm以下としてもよい。導電層12bは、配線Lによって所定の電位に維持される。
As shown in FIG. 2, the shield layer 12 has a laminated structure in which both sides of the conductive layer 12b are sandwiched between the insulating layers 12a and 12c. The insulating layers 12a and 12c are not particularly limited as long as they are electrically insulating materials, but can be formed of, for example, a silicon oxide film (SiO 2 ), a silicon nitride film (SiNx), or the like. The film thickness of the insulating layers 12a and 12c is not particularly limited, but may be 100 nm or more and 1000 nm or less. The conductive layer 12b is not particularly limited as long as it is a conductive material, but can be made of a transparent conductive material such as ITO. The film thickness of the conductive layer 12b is not particularly limited, but may be several tens of nm or more and several hundreds of nm or less. The conductive layer 12b is maintained at a predetermined potential by the wiring L.
基板14は、トランスミッタ電極Tx、レシーバ電極Rx及びシールド層12の導電層12bに接続される配線Lを表面上に形成するための部材である。基板14は、電気的絶縁性の材料であれば特に限定されるものではないが、例えばガラス、セラミックやアクリル、ポリイミド、ポリエチレン等の樹脂材料等によって構成することができる。
The substrate 14 is a member for forming the wiring L connected to the transmitter electrode Tx, the receiver electrode Rx, and the conductive layer 12b of the shield layer 12 on the surface. The substrate 14 is not particularly limited as long as it is an electrically insulating material, but can be made of, for example, a resin material such as glass, ceramic, acrylic, polyimide, or polyethylene.
配線Lは、トランスミッタ電極Tx、レシーバ電極Rx及び導電層12bに対してそれぞれ設けられる。配線Lは、導電性材料であれば特に限定されるものではないが、例えばアルミニウム等の金属、ITO等の透明導電材料等によって構成することができる。配線Lは、シールド層12に設けられたコンタクトホールCを介してトランスミッタ電極Tx及び導電層12bに電気的に接続される。また、配線Lは、シールド層12及び絶縁層10に設けられたコンタクトホールCを介してレシーバ電極Rxに電気的に接続される。
Wiring L is provided for each of the transmitter electrode Tx, the receiver electrode Rx, and the conductive layer 12b. The wiring L is not particularly limited as long as it is a conductive material, but can be made of, for example, a metal such as aluminum, a transparent conductive material such as ITO, or the like. The wiring L is electrically connected to the transmitter electrode Tx and the conductive layer 12b via the contact hole C provided in the shield layer 12. Further, the wiring L is electrically connected to the receiver electrode Rx via the contact holes C provided in the shield layer 12 and the insulating layer 10.
トランスミッタ電極Txに接続された配線Lには外部の制御回路から所定の電圧が印加される。また、レシーバ電極Rxに接続された配線Lは、外部の選択回路によって順次選択され、選択されたレシーバ電極Rxに生じる電荷量の変化を検出することによって指先の指紋のパターンを検出することができる。
A predetermined voltage is applied to the wiring L connected to the transmitter electrode Tx from an external control circuit. Further, the wiring L connected to the receiver electrode Rx is sequentially selected by an external selection circuit, and the fingerprint pattern of the fingertip can be detected by detecting the change in the amount of charge generated in the selected receiver electrode Rx. ..
タッチセンサ100では、図1に示すように、配線Lは、ラインA-Aより端部側の一辺のみに設けられた基板14の周辺領域104においてセンシング領域102からはみ出した構成とされる。これによって、タッチセンサ100のセンシング領域102でない縁部に当たる周辺領域104の面積を小さくすることができる。したがって、タッチセンサ100全体の面積に対してセンシング領域102の面積の割合を大きくすることができる。
In the touch sensor 100, as shown in FIG. 1, the wiring L is configured to protrude from the sensing region 102 in the peripheral region 104 of the substrate 14 provided only on one side on the end side of the lines AA. As a result, the area of the peripheral region 104 that corresponds to the edge of the touch sensor 100 that is not the sensing region 102 can be reduced. Therefore, the ratio of the area of the sensing region 102 to the area of the entire touch sensor 100 can be increased.
さらに、タッチセンサ100は、センシング領域102と周辺領域104の境界であるラインA-Aにおいて基板14及び配線Lを折り曲げ又は折り返した構成としてもよい。このとき、タッチセンサ100のセンシングの検出面とは逆の方向に向けて周辺領域104を折り曲げ又は折り返しする。これによって、センシング領域102のみを検出面として表面側に残して額縁部分に当たる周辺領域104を折り曲げ又は折り返した構成とすることができ、タッチセンサ100全体の面積に対してセンシング領域102の面積の割合をさらに大きくすることができる。
Further, the touch sensor 100 may have a configuration in which the substrate 14 and the wiring L are bent or folded back at the line AA which is the boundary between the sensing area 102 and the peripheral area 104. At this time, the peripheral region 104 is bent or folded back in the direction opposite to the sensing detection surface of the touch sensor 100. As a result, only the sensing area 102 can be left on the surface side as a detection surface, and the peripheral area 104 corresponding to the frame portion can be bent or folded back, and the ratio of the area of the sensing area 102 to the area of the entire touch sensor 100 can be obtained. Can be made even larger.
保護層16は、電気的絶縁性の材料によって構成される。絶縁層10は、特に限定されるものではないが、例えばシリコン酸化膜(SiO2)、シリコン窒化膜(SiNx)等によって構成することができる。具体的には、絶縁層10は、数100nm程度の膜厚にしてもよい。保護層16によって、タッチセンサ100の表面を保護及び平坦化することができる。
The protective layer 16 is made of an electrically insulating material. The insulating layer 10 is not particularly limited, but can be formed of, for example, a silicon oxide film (SiO 2 ), a silicon nitride film (SiNx), or the like. Specifically, the insulating layer 10 may have a film thickness of about several hundred nm. The protective layer 16 can protect and flatten the surface of the touch sensor 100.
以上のように、額縁部分に当たる周辺領域を小さくしたタッチセンサ100とすることで、定められたセンシング領域102で指紋等を検出することが可能となる。これによって、指紋の検出精度を高め、セキュリティを向上させることができる。また、センシング領域102が大きくできるので、複雑な制御を適用することなく指紋認証が可能になり、低い性能の制御装置により制御が可能になって低コスト及び低消費電力を実現することができる。
As described above, by using the touch sensor 100 in which the peripheral area corresponding to the frame portion is reduced, it is possible to detect fingerprints and the like in the defined sensing area 102. As a result, the fingerprint detection accuracy can be improved and the security can be improved. Further, since the sensing area 102 can be made large, fingerprint authentication can be performed without applying complicated control, and control can be performed by a control device having low performance, so that low cost and low power consumption can be realized.
[製造方法]
以下、図3のフローチャートを参照しつつ、タッチセンサ100の製造方法について説明する。 [Production method]
Hereinafter, a method of manufacturing thetouch sensor 100 will be described with reference to the flowchart of FIG.
以下、図3のフローチャートを参照しつつ、タッチセンサ100の製造方法について説明する。 [Production method]
Hereinafter, a method of manufacturing the
ステップS10では、基板14の表面上に配線Lを形成する。例えば、基板14としてガラス基板を採用する。基板14の表面上に導電性材料を数10nm以上数100nm以下の厚さで配線Lとして形成する。例えば、アルミニウムを厚さ100nmで形成して、エッチング等の技術を適用して所望のパターンに加工することで配線Lを形成する。
In step S10, the wiring L is formed on the surface of the substrate 14. For example, a glass substrate is used as the substrate 14. A conductive material is formed on the surface of the substrate 14 as a wiring L having a thickness of several tens of nm or more and several hundreds of nm or less. For example, the wiring L is formed by forming aluminum with a thickness of 100 nm and processing it into a desired pattern by applying a technique such as etching.
ステップS12では、絶縁及び平坦化のために基板14及び配線L上に絶縁層を形成する。当該絶縁層がシールド層12の絶縁層12aとして利用される。絶縁層12aは、100nm以上1000nm以下の膜厚とする。例えば、シリコン酸化膜(SiO2)を500nmの厚さで絶縁層12aとして形成する。また、リソグラフィ等の既存のマスク技術を適用して、レシーバ電極Rx、トランスミッタ電極Tx及び導電層12bに対して配線Lを接続するためのコンタクトホールCを絶縁層12aの所定の位置に形成する。
In step S12, an insulating layer is formed on the substrate 14 and the wiring L for insulation and flattening. The insulating layer is used as the insulating layer 12a of the shield layer 12. The insulating layer 12a has a film thickness of 100 nm or more and 1000 nm or less. For example, a silicon oxide film (SiO 2 ) is formed as an insulating layer 12a with a thickness of 500 nm. Further, by applying an existing mask technique such as lithography, a contact hole C for connecting the wiring L to the receiver electrode Rx, the transmitter electrode Tx, and the conductive layer 12b is formed at a predetermined position of the insulating layer 12a.
ステップS14では、絶縁層12a上にシールド用の導電性の層を形成する。当該導電性層がシールド層12の導電層12bとして利用される。導電層12bは、数10nm以上数100nm以下の厚さとする。例えば、透明導電材料(ITO)を100nmの厚さで導電層12bとして形成する。なお、レシーバ電極Rx及びトランスミッタ電極Txと配線Lを接続するためのコンタクトホールCの周辺には導電層12bを形成しない。
In step S14, a conductive layer for shielding is formed on the insulating layer 12a. The conductive layer is used as the conductive layer 12b of the shield layer 12. The conductive layer 12b has a thickness of several tens of nm or more and several hundred nm or less. For example, a transparent conductive material (ITO) is formed as a conductive layer 12b with a thickness of 100 nm. The conductive layer 12b is not formed around the contact hole C for connecting the receiver electrode Rx and the transmitter electrode Tx and the wiring L.
ステップS16では、導電層12b上に絶縁層を形成する。当該絶縁層がシールド層12の絶縁層12cとして利用される。絶縁層12cは、100nm以上1000nm以下の膜厚とする。例えば、シリコン酸化膜(SiO2)を500nmの厚さで絶縁層12cとして形成する。また、リソグラフィ等の既存のマスク技術を適用して、レシーバ電極Rx及びトランスミッタ電極Txに対して配線Lを接続するためのコンタクトホールCを絶縁層12cの所定の位置に形成する。
In step S16, an insulating layer is formed on the conductive layer 12b. The insulating layer is used as the insulating layer 12c of the shield layer 12. The insulating layer 12c has a film thickness of 100 nm or more and 1000 nm or less. For example, a silicon oxide film (SiO 2 ) is formed as an insulating layer 12c with a thickness of 500 nm. Further, by applying an existing mask technique such as lithography, a contact hole C for connecting the wiring L to the receiver electrode Rx and the transmitter electrode Tx is formed at a predetermined position of the insulating layer 12c.
ステップS18では、シールド層12上にトランスミッタ電極Txを形成する。数10nm以上数100nm以下の厚さの導電性材料をトランスミッタ電極Txとして形成する。例えば、アルミニウムを厚さ100nmで形成してトランスミッタ電極Txとする。トランスミッタ電極Txは、エッチング等の技術を適用して、図1に示したように所定の方向(X方向)に沿って複数並行して延設されるように加工する。また、トランスミッタ電極Txは、絶縁層12a,12cに形成されたコンタクトホールCを介して所望の配線Lに電気的に接続される。
In step S18, the transmitter electrode Tx is formed on the shield layer 12. A conductive material having a thickness of several tens of nm or more and several hundred nm or less is formed as the transmitter electrode Tx. For example, aluminum is formed to a thickness of 100 nm to form a transmitter electrode Tx. A plurality of transmitter electrodes Tx are processed so as to be extended in parallel along a predetermined direction (X direction) as shown in FIG. 1 by applying a technique such as etching. Further, the transmitter electrode Tx is electrically connected to a desired wiring L via a contact hole C formed in the insulating layers 12a and 12c.
ステップS20では、シールド層12及びトランスミッタ電極Tx上に絶縁層10を形成する。1000nm以上1μm以下程度の膜厚の絶縁材料からなる層を絶縁層10として形成する。例えば、アクリル樹脂を厚さ2000nmで形成して絶縁層10とする。また、リソグラフィ等の既存のマスク技術を適用して、レシーバ電極Rxに対して配線Lを接続するためのコンタクトホールCを所定の位置に形成する。
In step S20, the insulating layer 10 is formed on the shield layer 12 and the transmitter electrode Tx. A layer made of an insulating material having a film thickness of about 1000 nm or more and 1 μm or less is formed as the insulating layer 10. For example, an acrylic resin is formed to a thickness of 2000 nm to form an insulating layer 10. Further, by applying an existing mask technique such as lithography, a contact hole C for connecting the wiring L to the receiver electrode Rx is formed at a predetermined position.
ステップS22では、絶縁層10上にレシーバ電極Rxを形成する。数10nm以上数100nm以下の厚さの導電性材料をレシーバ電極Rxとして形成する。例えば、アルミニウムを厚さ100nmで形成してレシーバ電極Rxとする。レシーバ電極Rxは、エッチング等の技術を適用して、図1に示したようにトランスミッタ電極Txと交差する方向(Y方向)に沿って複数並行して延設されるように加工する。また、レシーバ電極Rxは、絶縁層12a,12c及び絶縁層10に形成されたコンタクトホールCを介して所望の配線Lに電気的に接続される。
In step S22, the receiver electrode Rx is formed on the insulating layer 10. A conductive material having a thickness of several tens of nm or more and several hundred nm or less is formed as the receiver electrode Rx. For example, aluminum is formed to a thickness of 100 nm to obtain a receiver electrode Rx. The receiver electrode Rx is processed by applying a technique such as etching so that a plurality of receiver electrodes Rx are extended in parallel along a direction (Y direction) intersecting with the transmitter electrode Tx as shown in FIG. Further, the receiver electrode Rx is electrically connected to the desired wiring L via the contact holes C formed in the insulating layers 12a and 12c and the insulating layer 10.
ステップS24では、レシーバ電極Rxを覆うように保護層16を形成する。数100nm程度の膜厚の絶縁材料からなる層を保護層16として形成する。例えば、シリコン酸化膜(SiO2)を厚さ500nmで形成して保護層16とする。
In step S24, the protective layer 16 is formed so as to cover the receiver electrode Rx. A layer made of an insulating material having a film thickness of about several hundred nm is formed as the protective layer 16. For example, a silicon oxide film (SiO 2 ) is formed to have a thickness of 500 nm to form a protective layer 16.
ステップS26では、センシング領域102と周辺領域104との境界であるラインA-Aにおいて基板14の周辺を折り曲げる。
In step S26, the periphery of the substrate 14 is bent at the line AA which is the boundary between the sensing region 102 and the peripheral region 104.
以上のように、本実施の形態におけるタッチセンサ100を形成することができる。
As described above, the touch sensor 100 according to the present embodiment can be formed.
[変形例1]
図4は、変形例1におけるタッチセンサ110の構成を示す斜視図である。図4は、タッチセンサ110の分解斜視図を示す。また、図4では、構造を明確に図示するために保護層16を除いた構成を示している。 [Modification 1]
FIG. 4 is a perspective view showing the configuration of thetouch sensor 110 in the first modification. FIG. 4 shows an exploded perspective view of the touch sensor 110. Further, FIG. 4 shows a configuration in which the protective layer 16 is removed in order to clearly show the structure.
図4は、変形例1におけるタッチセンサ110の構成を示す斜視図である。図4は、タッチセンサ110の分解斜視図を示す。また、図4では、構造を明確に図示するために保護層16を除いた構成を示している。 [Modification 1]
FIG. 4 is a perspective view showing the configuration of the
タッチセンサ110では、レシーバ電極Rxに接続されるマルチプレクサMPが基板14上に設けられる。マルチプレクサMPは、レシーバ電極Rxに接続されている配線Lのいずれか1つを順に選択するために設けられる。マルチプレクサMPは、基板14に対して既存の薄膜トランジスタ形成技術を適用することによって形成することができる。
In the touch sensor 110, a multiplexer MP connected to the receiver electrode Rx is provided on the substrate 14. The multiplexer MP is provided to sequentially select any one of the wires L connected to the receiver electrode Rx. The multiplexer MP can be formed by applying an existing thin film transistor forming technique to the substrate 14.
また、タッチセンサ110では、トランスミッタ電極Txに接続される配線L毎にセレクタSR及びドライバDRが基板14上に設けられる。セレクタSRは、トランスミッタ電極Txに接続されている配線Lのいずれか1つを順に選択するために設けられる。ドライバDRは、セレクタSRによって選択されたトランスミッタ電極Txに所定の電圧を印加するために設けられる。セレクタSR及びドライバDRは、基板14に対して既存の薄膜トランジスタ形成技術を適用することによって形成することができる。
Further, in the touch sensor 110, a selector SR and a driver DR are provided on the substrate 14 for each wiring L connected to the transmitter electrode Tx. The selector SR is provided to sequentially select any one of the wirings L connected to the transmitter electrode Tx. The driver DR is provided to apply a predetermined voltage to the transmitter electrode Tx selected by the selector SR. The selector SR and the driver DR can be formed by applying the existing thin film transistor forming technique to the substrate 14.
タッチセンサ110では、図4に示すように、配線L、マルチプレクサMP、セレクタSR及びドライバDRが形成された基板14は、ラインA-Aより端部側の一辺のみに設けられた周辺領域104においてセンシング領域102からはみ出した構成とされる。タッチセンサ110では、センシング領域102でない額縁部分に当たる周辺領域104の面積を小さくすることができる。したがって、タッチセンサ110全体の面積に対してセンシング領域102の面積の割合を大きくすることができる。
In the touch sensor 110, as shown in FIG. 4, the substrate 14 on which the wiring L, the multiplexer MP, the selector SR, and the driver DR are formed is located in the peripheral region 104 provided only on one side on the end side of the lines AA. The configuration is such that it extends beyond the sensing area 102. In the touch sensor 110, the area of the peripheral region 104 that corresponds to the frame portion other than the sensing region 102 can be reduced. Therefore, the ratio of the area of the sensing region 102 to the area of the entire touch sensor 110 can be increased.
さらに、タッチセンサ110においてもセンシング領域102と周辺領域104との境界であるラインA-Aにおいて基板14の周辺を折り曲げ又は折り返した構成としてもよい。このとき、タッチセンサ110のセンシングの検出面とは逆の方向に向けて周辺領域104を折り曲げ又は折り返しする。これによって、タッチセンサ110のセンシング領域のみを表面側に残して額縁部分に当たる周辺領域104を折り曲げ又は折り返した構成とすることができ、タッチセンサ110全体の面積に対してセンシングが有効になるセンシング領域の面積の割合を大きくすることができる。
Further, the touch sensor 110 may also have a configuration in which the periphery of the substrate 14 is bent or folded back at the line AA which is the boundary between the sensing region 102 and the peripheral region 104. At this time, the peripheral region 104 is bent or folded back in the direction opposite to the sensing detection surface of the touch sensor 110. As a result, only the sensing area of the touch sensor 110 can be left on the surface side, and the peripheral area 104 corresponding to the frame portion can be bent or folded back, and the sensing area in which sensing is effective for the entire area of the touch sensor 110 can be obtained. The ratio of the area of can be increased.
なお、タッチセンサ110では、マルチプレクサMPを周辺領域104に配置する構成としたが、センシング領域102に配置する構成としてもよい。この場合、基板14上に形成されたマルチプレクサMPの一部がレシーバ電極Rxやトランスミッタ電極Txと重畳することになるが、3次元的な積層構造としていることでタッチセンサ110におけるセンシング領域102の有効面積を狭めることはない。
Although the touch sensor 110 is configured to arrange the multiplexer MP in the peripheral region 104, it may be configured to be arranged in the sensing region 102. In this case, a part of the multiplexer MP formed on the substrate 14 is superimposed on the receiver electrode Rx and the transmitter electrode Tx, but the three-dimensional laminated structure makes the sensing area 102 in the touch sensor 110 effective. It does not reduce the area.
また、タッチセンサ110では、セレクタSR及びドライバDRをセンシング領域102に配置する構成としたが、セレクタSR及びドライバDRの少なくとも一部を周辺領域104に配置する構成としてもよい。この場合、ラインA-Aより端部側の一辺のみに設けられた周辺領域104にセレクタSR及びドライバDRを配置したとしてもタッチセンサ110におけるセンシング領域102の有効面積を狭めることはない。
Further, in the touch sensor 110, the selector SR and the driver DR are arranged in the sensing area 102, but at least a part of the selector SR and the driver DR may be arranged in the peripheral area 104. In this case, even if the selector SR and the driver DR are arranged in the peripheral area 104 provided only on one side on the end side of the lines AA, the effective area of the sensing area 102 in the touch sensor 110 is not narrowed.
このように、マルチプレクサMP、セレクタSR及びドライバDRの少なくとも1つを配線Lと同じ層に集積することで、これらの周辺素子とトランスミッタ電極Tx及びレシーバ電極Rxとの接続点数を大幅に削減することができ、信頼性を向上させ、製造のコストを低減することができる。
By integrating at least one of the multiplexer MP, the selector SR, and the driver DR in the same layer as the wiring L in this way, the number of connection points between these peripheral elements and the transmitter electrode Tx and the receiver electrode Rx can be significantly reduced. It is possible to improve the reliability and reduce the manufacturing cost.
[変形例2]
図5は、変形例2におけるタッチセンサ120の構成を示す斜視図である。図5は、タッチセンサ120の分解斜視図を示す。また、図4では、構造を明確に図示するために保護層16を除いた構成を示している。 [Modification 2]
FIG. 5 is a perspective view showing the configuration of thetouch sensor 120 in the second modification. FIG. 5 shows an exploded perspective view of the touch sensor 120. Further, FIG. 4 shows a configuration in which the protective layer 16 is removed in order to clearly show the structure.
図5は、変形例2におけるタッチセンサ120の構成を示す斜視図である。図5は、タッチセンサ120の分解斜視図を示す。また、図4では、構造を明確に図示するために保護層16を除いた構成を示している。 [Modification 2]
FIG. 5 is a perspective view showing the configuration of the
タッチセンサ120では、すべてのトランスミッタ電極Txに対してトランスミッタ電極Txと配線Lとを接続するためのコンタクトホールCがセンシング領域102の端部に設けられる。トランスミッタ電極Txに接続される配線Lは、基板14の一辺に設けられた周辺領域104まで延設される。
In the touch sensor 120, a contact hole C for connecting the transmitter electrode Tx and the wiring L is provided at the end of the sensing region 102 for all the transmitter electrodes Tx. The wiring L connected to the transmitter electrode Tx extends to the peripheral region 104 provided on one side of the substrate 14.
このように、トランスミッタ電極Txと配線Lとを接続するためのコンタクトホールCをセンシング領域102の端部に配置することによって、メタルマスクのような精度の粗いアライメント技術を適用してもタッチセンサ120を製造できるという利点がある。
By arranging the contact hole C for connecting the transmitter electrode Tx and the wiring L at the end of the sensing region 102 in this way, the touch sensor 120 can be applied even if a coarse alignment technique such as a metal mask is applied. Has the advantage of being able to manufacture.
さらに、タッチセンサ120においてもセンシング領域102と周辺領域104との境界であるラインA-Aにおいて基板14の周辺を折り曲げ又は折り返した構成としてもよい。このとき、タッチセンサ120のセンシングの検出面とは逆の方向に向けて周辺領域104を折り曲げ又は折り返しする。これによって、タッチセンサ120のセンシング領域のみを表面側に残して額縁部分に当たる周辺領域104を折り曲げ又は折り返した構成とすることができ、タッチセンサ120全体の面積に対してセンシングが有効になるセンシング領域の面積の割合を大きくすることができる。
Further, the touch sensor 120 may also have a configuration in which the periphery of the substrate 14 is bent or folded back at the line AA which is the boundary between the sensing region 102 and the peripheral region 104. At this time, the peripheral region 104 is bent or folded back in the direction opposite to the sensing detection surface of the touch sensor 120. As a result, only the sensing area of the touch sensor 120 can be left on the surface side, and the peripheral area 104 corresponding to the frame portion can be bent or folded back, and the sensing area in which sensing is effective for the entire area of the touch sensor 120 can be obtained. The ratio of the area of can be increased.
また、上記実施の形態、変形例1及び変形例2では、導電層12bを備えたシールド層12を設けた構成としたが、シールド層12を設けない構成としてもよい。すなわち、シールド層12の導電層12b及び絶縁層12cを設けることなく、絶縁層12aによって配線Lとレシーバ電極Rx及びトランスミッタ電極Txとの層間の絶縁を保持しつつ、絶縁層12aの所定の位置に設けたコンタクトホールCを介して各配線Lとレシーバ電極Rx及びトランスミッタ電極Txとを接続した構成としてもよい。
Further, in the above-described embodiment, the first modification and the second modification, the shield layer 12 provided with the conductive layer 12b is provided, but the shield layer 12 may not be provided. That is, without providing the conductive layer 12b and the insulating layer 12c of the shield layer 12, the insulating layer 12a maintains the insulation between the wiring L and the receiver electrode Rx and the transmitter electrode Tx, and at a predetermined position of the insulating layer 12a. Each wiring L may be connected to the receiver electrode Rx and the transmitter electrode Tx via the provided contact hole C.
なお、シールド層12において導電層12bを設けない構成において、トランスミッタ電極Txと同じ層に導電層12bを形成する構成としてもよい。すなわち、隣り合うトランスミッタ電極Txの間に導電層12bを形成し、当該導電層12bを配線Lに接続して、所定の電位に維持するようにしてもよい。このような構成によっても、配線L等からのノイズを導電層12bによって部分的に遮断することができる。
In the configuration in which the conductive layer 12b is not provided in the shield layer 12, the conductive layer 12b may be formed in the same layer as the transmitter electrode Tx. That is, a conductive layer 12b may be formed between adjacent transmitter electrodes Tx, and the conductive layer 12b may be connected to the wiring L to maintain a predetermined potential. Even with such a configuration, noise from the wiring L and the like can be partially blocked by the conductive layer 12b.
[変形例3]
図6は、変形例3におけるタッチセンサ130の構成を示す斜視図である。タッチセンサ130は、一面にレシーバ電極Rxが形成された基板20と一面にトランスミッタ電極Txが形成された基板22を接着層24によって貼り合わせた構造である。 [Modification 3]
FIG. 6 is a perspective view showing the configuration of the touch sensor 130 in the modified example 3. The touch sensor 130 has a structure in which asubstrate 20 having a receiver electrode Rx formed on one surface and a substrate 22 having a transmitter electrode Tx formed on one surface are bonded together by an adhesive layer 24.
図6は、変形例3におけるタッチセンサ130の構成を示す斜視図である。タッチセンサ130は、一面にレシーバ電極Rxが形成された基板20と一面にトランスミッタ電極Txが形成された基板22を接着層24によって貼り合わせた構造である。 [Modification 3]
FIG. 6 is a perspective view showing the configuration of the touch sensor 130 in the modified example 3. The touch sensor 130 has a structure in which a
レシーバ電極Rxは、基板20の一表面に形成される。基板20は、電気的絶縁性の材料であれば特に限定されるものではないが、例えばガラス、セラミックやアクリル、ポリイミド、ポリエチレン等の樹脂材料等によって構成することができる。レシーバ電極Rxは、タッチセンサ100と同様に、タッチセンサ130のセンシング領域102において所定の方向(Y方向)に沿って複数並行に配置される。基板20の一表面には、さらにレシーバ電極Rxの端部に接続される配線Lも形成される。
The receiver electrode Rx is formed on one surface of the substrate 20. The substrate 20 is not particularly limited as long as it is an electrically insulating material, but can be made of, for example, a resin material such as glass, ceramic, acrylic, polyimide, or polyethylene. Similar to the touch sensor 100, a plurality of receiver electrodes Rx are arranged in parallel along a predetermined direction (Y direction) in the sensing region 102 of the touch sensor 130. A wiring L connected to the end of the receiver electrode Rx is also formed on one surface of the substrate 20.
トランスミッタ電極Txは、基板22の一表面に形成される。基板22は、電気的絶縁性の材料であれば特に限定されるものではないが、例えばガラス、セラミックやアクリル、ポリイミド、ポリエチレン等の樹脂材料等によって構成することができる。トランスミッタ電極Txは、タッチセンサ100と同様に、タッチセンサ130のセンシング領域102においてレシーバ電極Rxに交差する方向(X方向)に沿って複数並行に配置される。基板22の一表面には、さらにトランスミッタ電極Txの端部に接続される配線Lも形成される。
The transmitter electrode Tx is formed on one surface of the substrate 22. The substrate 22 is not particularly limited as long as it is an electrically insulating material, but can be made of, for example, a resin material such as glass, ceramic, acrylic, polyimide, or polyethylene. Similar to the touch sensor 100, a plurality of transmitter electrodes Tx are arranged in parallel along the direction (X direction) intersecting the receiver electrode Rx in the sensing region 102 of the touch sensor 130. Wiring L connected to the end of the transmitter electrode Tx is also formed on one surface of the substrate 22.
基板20に形成されたレシーバ電極Rxと基板22に形成されたトランスミッタ電極Txを互いに向かい合わせるようにして、接着層24によって基板20と基板22とを貼り合わせる。接着層24は、特に限定されるものではないが、アクリル、ポリイミド、ポリエチレン等の絶縁性の樹脂材料を含む接着剤によって形成することができる。
The substrate 20 and the substrate 22 are bonded together by the adhesive layer 24 so that the receiver electrode Rx formed on the substrate 20 and the transmitter electrode Tx formed on the substrate 22 face each other. The adhesive layer 24 is not particularly limited, but can be formed by an adhesive containing an insulating resin material such as acrylic, polyimide, or polyethylene.
なお、レシーバ電極Rxを形成した基板20及びトランスミッタ電極Txを形成した基板22の積層構造は、特に限定されるものではなく、絶縁性を有する層を介してレシーバ電極Rxとトランスミッタ電極Txとが積層されている構成とすればよい。
The laminated structure of the substrate 20 on which the receiver electrode Rx is formed and the substrate 22 on which the transmitter electrode Tx is formed is not particularly limited, and the receiver electrode Rx and the transmitter electrode Tx are laminated via an insulating layer. It may be configured as such.
このようにして、トランスミッタ電極Txとレシーバ電極Rxとが絶縁性の接着層24を介して対向配置されたタッチセンサ130を形成することができる。
In this way, the touch sensor 130 in which the transmitter electrode Tx and the receiver electrode Rx are opposed to each other via the insulating adhesive layer 24 can be formed.
タッチセンサ130では、図6に示すように、基板20は、ラインA-Aより端部側の一辺のみに設けられた周辺領域においてセンシング領域からはみ出した構成とされる。また、基板22は、ラインB-Bより端部側の一辺のみに設けられた周辺領域においてセンシング領域からはみ出した構成とされる。これによって、タッチセンサ130のセンシング領域でない縁部に当たる周辺領域の面積を小さくすることができる。したがって、タッチセンサ130全体の面積に対してセンシング領域の面積の割合を大きくすることができる。
In the touch sensor 130, as shown in FIG. 6, the substrate 20 has a configuration that protrudes from the sensing region in a peripheral region provided only on one side on the end side of the line AA. Further, the substrate 22 has a configuration that protrudes from the sensing region in a peripheral region provided only on one side on the end side of the line BB. As a result, the area of the peripheral region corresponding to the edge portion of the touch sensor 130 that is not the sensing region can be reduced. Therefore, the ratio of the area of the sensing region to the area of the entire touch sensor 130 can be increased.
さらに、タッチセンサ130は、センシング領域と周辺領域の境界であるラインA-A及びラインB-Bの少なくとも1つにおいて基板20又は基板22を折り曲げ又は折り返した構成としてもよい。このとき、タッチセンサ130のセンシングの検出面とは逆の方向に向けて折り曲げ又は折り返しする。これによって、センシング領域のみを検出面として表面側に残して額縁部分に当たる周辺領域を折り曲げ又は折り返した構成とすることができ、タッチセンサ130全体の面積に対してセンシング領域の面積の割合をさらに大きくすることができる。
Further, the touch sensor 130 may have a configuration in which the substrate 20 or the substrate 22 is bent or folded back at at least one of the lines AA and BB which are the boundaries between the sensing region and the peripheral region. At this time, the touch sensor 130 is bent or folded back in the direction opposite to the sensing detection surface of the touch sensor 130. As a result, only the sensing region can be left on the surface side as the detection surface, and the peripheral region corresponding to the frame portion can be bent or folded back, and the ratio of the area of the sensing region to the total area of the touch sensor 130 can be further increased. can do.
Claims (8)
- タッチセンサであって
並列に配置された複数のトランスミッタ電極と、
第1の絶縁層を介して前記トランスミッタ電極に対して交差するように並列に配置された複数のレシーバ電極と、
前記トランスミッタ電極及び前記レシーバ電極に対して第2の絶縁層を介して配置され、前記第2の絶縁層に設けられたコンタクトホールを介して前記トランスミッタ電極及び前記レシーバ電極の少なくとも一方に接続された配線と、
を積層して構成される。 A touch sensor with multiple transmitter electrodes arranged in parallel,
A plurality of receiver electrodes arranged in parallel so as to intersect the transmitter electrode via the first insulating layer,
It is arranged with respect to the transmitter electrode and the receiver electrode via a second insulating layer, and is connected to at least one of the transmitter electrode and the receiver electrode via a contact hole provided in the second insulating layer. Wiring and
Is laminated. - 請求項1に記載のタッチセンサであって、
前記トランスミッタ電極と前記レシーバ電極とが配置されたセンシングが有効なセンシング領域の一辺のみに前記配線が引き出された周辺領域が設けられている。 The touch sensor according to claim 1.
A peripheral region from which the wiring is drawn out is provided only on one side of a sensing region in which the transmitter electrode and the receiver electrode are arranged and where sensing is effective. - 請求項2に記載のタッチセンサであって、
前記周辺領域が、前記センシング領域に対して折り曲げ又は折り返されている。 The touch sensor according to claim 2.
The peripheral region is bent or folded back with respect to the sensing region. - 請求項1~3のいずれか1項に記載のタッチセンサであって、
前記配線と前記トランスミッタ電極及び前記レシーバ電極との間に、前記第2の絶縁層、導電層及び第3の絶縁層からなるシールド層が設けられている。 The touch sensor according to any one of claims 1 to 3.
A shield layer composed of the second insulating layer, the conductive layer, and the third insulating layer is provided between the wiring and the transmitter electrode and the receiver electrode. - 請求項1~4のいずれか1項に記載のタッチセンサであって、
前記レシーバ電極を選択するためのマルチプレクサが前記配線と同じ層に形成されている。 The touch sensor according to any one of claims 1 to 4.
A multiplexer for selecting the receiver electrode is formed in the same layer as the wiring. - 請求項1~5のいずれか1項に記載のタッチセンサであって、
前記トランスミッタ電極を選択するためのセレクタが前記配線と同じ層に形成されている。 The touch sensor according to any one of claims 1 to 5.
A selector for selecting the transmitter electrode is formed in the same layer as the wiring. - 請求項1~6のいずれか1項に記載のタッチセンサであって、
前記トランスミッタ電極に電圧を印加するためのドライバが前記配線と同じ層に形成されている。 The touch sensor according to any one of claims 1 to 6.
A driver for applying a voltage to the transmitter electrode is formed in the same layer as the wiring. - タッチセンサであって、
並列に配置された複数のトランスミッタ電極と、
第1の絶縁層を介して前記トランスミッタ電極に対して交差するように並列に配置された複数のレシーバ電極と、
を積層して構成され、
前記トランスミッタ電極と前記レシーバ電極とが配置されたセンシングが有効なセンシング領域の一辺のみに前記トランスミッタ電極に接続された配線が引き出された第1の周辺領域が設けられ、前記センシング領域の前記一辺とは異なる他の一辺のみに前記レシーバ電極に接続された配線が引き出された第2の周辺領域が設けられており、
前記第1の周辺領域及び前記第2の周辺領域が、前記センシング領域に対して折り曲げ又は折り返されている。 It ’s a touch sensor,
With multiple transmitter electrodes arranged in parallel,
A plurality of receiver electrodes arranged in parallel so as to intersect the transmitter electrode via the first insulating layer,
Is constructed by stacking
A first peripheral region from which the wiring connected to the transmitter electrode is pulled out is provided only on one side of the sensing region in which the transmitter electrode and the receiver electrode are arranged and where sensing is effective, and the side of the sensing region Is provided with a second peripheral region from which the wiring connected to the receiver electrode is drawn out only on one different side.
The first peripheral region and the second peripheral region are bent or folded with respect to the sensing region.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019076175A JP2020173693A (en) | 2019-04-12 | 2019-04-12 | Touch sensor |
JP2019-076175 | 2019-04-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020209188A1 true WO2020209188A1 (en) | 2020-10-15 |
Family
ID=72751647
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/015278 WO2020209188A1 (en) | 2019-04-12 | 2020-04-03 | Touch sensor |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2020173693A (en) |
WO (1) | WO2020209188A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114327134A (en) * | 2021-12-22 | 2022-04-12 | 深圳市华星光电半导体显示技术有限公司 | Display device and manufacturing method thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022080316A1 (en) | 2020-10-15 | 2022-04-21 | キヤノン株式会社 | Photocurable resin composition for three-dimensional shaping, and method for manufacturing three-dimensional object |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010044453A (en) * | 2008-08-08 | 2010-02-25 | Hitachi Displays Ltd | Display device |
JP2012150782A (en) * | 2011-01-18 | 2012-08-09 | Samsung Mobile Display Co Ltd | Touch screen panel |
WO2015056484A1 (en) * | 2013-10-15 | 2015-04-23 | シャープ株式会社 | Touch panel |
JP2016045684A (en) * | 2014-08-22 | 2016-04-04 | 日本航空電子工業株式会社 | Capacitive touch panel |
JP2018005484A (en) * | 2016-06-30 | 2018-01-11 | 株式会社ジャパンディスプレイ | Display device with input function |
JP2018116742A (en) * | 2018-04-16 | 2018-07-26 | 株式会社ワコム | Position detector |
-
2019
- 2019-04-12 JP JP2019076175A patent/JP2020173693A/en active Pending
-
2020
- 2020-04-03 WO PCT/JP2020/015278 patent/WO2020209188A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010044453A (en) * | 2008-08-08 | 2010-02-25 | Hitachi Displays Ltd | Display device |
JP2012150782A (en) * | 2011-01-18 | 2012-08-09 | Samsung Mobile Display Co Ltd | Touch screen panel |
WO2015056484A1 (en) * | 2013-10-15 | 2015-04-23 | シャープ株式会社 | Touch panel |
JP2016045684A (en) * | 2014-08-22 | 2016-04-04 | 日本航空電子工業株式会社 | Capacitive touch panel |
JP2018005484A (en) * | 2016-06-30 | 2018-01-11 | 株式会社ジャパンディスプレイ | Display device with input function |
JP2018116742A (en) * | 2018-04-16 | 2018-07-26 | 株式会社ワコム | Position detector |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114327134A (en) * | 2021-12-22 | 2022-04-12 | 深圳市华星光电半导体显示技术有限公司 | Display device and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2020173693A (en) | 2020-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2096526B1 (en) | Display panel | |
US8610689B2 (en) | Conductor pattern structure of capacitive touch panel | |
US9329737B2 (en) | Touch panel comprising sensing electrodes with protrusions | |
TWI490758B (en) | Display devices with touch screen | |
US10613689B2 (en) | Touch screen, method of manufacturing touch screen, and display device including touch screen | |
JP5089806B2 (en) | High-sensitivity digital capacitive touch panel device | |
CN105138988B (en) | Mutual-capacitance type fingerprint identification device, preparation method, display panel and display equipment | |
CN106249973B (en) | A kind of In-cell touch panel, its driving method and display device | |
EP2650765B1 (en) | Conductor pattern structure of capacitive touch panel | |
CN205880425U (en) | Display panel and display apparatus | |
JP7481813B2 (en) | Touch/fingerprint combination sensor and electronic device including same | |
JP7302965B2 (en) | Combined touch/fingerprint sensor and electronic device including combined touch/fingerprint sensor | |
KR101448102B1 (en) | Touch sensing apparatus using touch pattern without insulation and method for manufacturing the same | |
KR20200045844A (en) | Deformable fingerprint recognition device, fingerprint authentication method using the same and electronic apparatus | |
WO2020209188A1 (en) | Touch sensor | |
US8809717B2 (en) | Touch panel | |
JPWO2019065967A1 (en) | Fingerprint detection device and display device | |
TWM352088U (en) | Sensory structure of capacitive touch panel with predetermined sensing areas | |
KR20150002326A (en) | Touch sensing device and manufacturing method of the same | |
US20140247400A1 (en) | Touch screen panel | |
KR20160079222A (en) | Finger sensor and touch window having the same | |
KR20170135118A (en) | Touch force sensing apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20787759 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20787759 Country of ref document: EP Kind code of ref document: A1 |