[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020208803A1 - Scroll compressor - Google Patents

Scroll compressor Download PDF

Info

Publication number
WO2020208803A1
WO2020208803A1 PCT/JP2019/015943 JP2019015943W WO2020208803A1 WO 2020208803 A1 WO2020208803 A1 WO 2020208803A1 JP 2019015943 W JP2019015943 W JP 2019015943W WO 2020208803 A1 WO2020208803 A1 WO 2020208803A1
Authority
WO
WIPO (PCT)
Prior art keywords
spiral body
curve
rad
scroll
swing
Prior art date
Application number
PCT/JP2019/015943
Other languages
French (fr)
Japanese (ja)
Inventor
雷人 河村
関屋 慎
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2019546937A priority Critical patent/JP6625297B1/en
Priority to PCT/JP2019/015943 priority patent/WO2020208803A1/en
Priority to CN201980094862.6A priority patent/CN113677892B/en
Publication of WO2020208803A1 publication Critical patent/WO2020208803A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents

Definitions

  • the present invention relates to a scroll compressor used in an air conditioner, a refrigerator, or the like.
  • a scroll compressor used in an air conditioner, a refrigerator, or the like includes a compression mechanism unit that compresses a refrigerant in a compression chamber formed by combining a fixed scroll and a swing scroll, and a container that houses the compression mechanism unit.
  • a compression mechanism unit that compresses a refrigerant in a compression chamber formed by combining a fixed scroll and a swing scroll
  • a container that houses the compression mechanism unit.
  • Each of the fixed scroll and the swing scroll has a structure in which spiral bodies are erected on a base plate, and the spiral bodies are meshed with each other to form a compression chamber. Then, by swinging the swing scroll, the compression chamber moves while reducing the volume, and the refrigerant is sucked and compressed in the compression chamber.
  • the technology aims to increase the compression function by increasing the suction volume of the compression chamber as much as possible while keeping the diameter of the container the same. Development is important. In order to increase the suction volume of the compression chamber while keeping the diameter of the container the same, it is necessary to devise the spiral shape of the spiral body.
  • Patent Document 1 describes that the outline and the spiral shape of the spiral body are flat, the specific definition of the spiral shape is not described.
  • the spiral shape of the spiral body is defined by an involute curve based on a perfect circle with a predetermined radius. However, even when the spiral shape is a flat shape, the spiral body can be manufactured. It is necessary to specifically define the spiral shape in.
  • an introduction flow path for introducing the refrigerant into the suction space through which the refrigerant before being compressed in the compression chamber flows is installed. It is desirable that the introduction flow path is not blocked by the spirals and base plate of the fixed scroll and the swing scroll, regardless of the rotation phase.
  • the present invention has been made in view of these points, and provides a scroll compressor capable of defining a spiral shape of a spiral body having a contour combining a plurality of flat shapes having different flatnesses by an equation. The purpose.
  • the scroll compressor according to the present invention includes a fixed scroll in which a fixed spiral body is erected on a fixed base plate and a swing scroll in which a swing spiral body is erected on a rocking base plate.
  • a scroll compressor that compresses a refrigerant in a compression chamber formed by meshing with a swinging spiral
  • one of the outer curve and the inner curve of the fixed spiral and the swinging spiral is an involute of the base circle.
  • the radius a ( ⁇ ) of is expressed by "a function that changes in a spiral or cosine wave shape with ⁇ [rad] as one cycle with respect to the involute angle ⁇ " and "a step function with ⁇ [rad] as one cycle". It has a term of product with "coefficient to be”.
  • x a ( ⁇ ) (cs ⁇ + ⁇ ⁇ sin ⁇ ) ⁇ ⁇ ⁇ (1)
  • y a ( ⁇ ) (sin ⁇ ⁇ c technicallys ⁇ ) ⁇ ⁇ ⁇ (2)
  • the spiral shape of the spiral body is defined by the equations (1) and (2) using the extension angle ⁇ in the x and y coordinate systems, and the equations (1) and (2) are also defined.
  • the fundamental pi a ( ⁇ ) in is "a function that changes into a sinusoidal or cosine wave shape with ⁇ [rad] as one cycle with respect to the extension angle ⁇ " and "a step function with ⁇ [rad] as one cycle". It is assumed that it has a term of product with "coefficient represented by”.
  • the spiral shape of the spiral body having a contour combining a plurality of flat shapes having different flatness can be defined by the equation.
  • FIG. 5 is a schematic vertical sectional view of the overall configuration of the scroll compressor according to the first embodiment. It is sectional drawing of the compression mechanism part of the scroll compressor which concerns on Embodiment 1.
  • FIG. It is a top view which showed the fixed spiral body and the rocking spiral body of the compression mechanism part of the scroll compressor which concerns on Embodiment 1.
  • FIG. It is a compression process diagram which shows the operation during one rotation of the swing scroll in the scroll compressor which concerns on Embodiment 1.
  • FIG. It is explanatory drawing of the drawing method of the spiral shape which constitutes the compression mechanism part of the scroll compressor which concerns on Embodiment 1.
  • FIG. 8B It is a figure which shows an example of the characteristic about the base circular radius a ( ⁇ ) used for drawing the spiral shape of the spiral body in the scroll compressor which concerns on Embodiment 1.
  • FIG. 8B It is a figure which shows the characteristic about the base circular radius a ( ⁇ ) of the spiral body in the scroll compressor which concerns on Embodiment 4.
  • FIG. 1 is a schematic vertical sectional view of the overall configuration of the scroll compressor according to the first embodiment.
  • the scroll compressor of the first embodiment includes a compression mechanism unit 8, an electric mechanism unit 110 that drives the compression mechanism unit 8 via a rotating shaft 6, and other components, which form an outer shell. It has a structure housed inside the closed container 100. In the closed container 100, the compression mechanism portion 8 is arranged above, and the electric mechanism portion 110 is arranged below the compression mechanism portion 8.
  • the frame 7 and the subframe 9 are housed in the closed container 100 so as to face each other with the electric mechanism portion 110 interposed therebetween.
  • the frame 7 is arranged above the electric mechanism portion 110 and is located between the electric mechanism portion 110 and the compression mechanism portion 8, and the subframe 9 is located below the electric mechanism portion 110.
  • the frame 7 is fixed to the inner peripheral surface of the closed container 100 by shrink fitting, welding, or the like.
  • the subframe 9 is fixed to the inner peripheral surface of the closed container 100 by shrink fitting or welding via the subframe holder 9a.
  • a pump element 112 including a positive displacement pump is attached below the subframe 9.
  • the pump element 112 supplies the refrigerating machine oil stored in the oil reservoir 100a at the bottom of the closed container 100 to a sliding portion such as a main bearing 7a described later of the compression mechanism 8.
  • the pump element 112 supports the rotating shaft 6 in the axial direction on the upper end surface.
  • the closed container 100 is provided with a suction pipe 101 for sucking the refrigerant and a discharge pipe 102 for discharging the refrigerant.
  • the compression mechanism unit 8 has a function of compressing the refrigerant sucked from the suction pipe 101 and discharging the compressed refrigerant to the high-pressure part formed above the closed container 100.
  • the compression mechanism unit 8 includes a fixed scroll 1 and a swing scroll 2.
  • the fixed scroll 1 is fixed to the closed container 100 via the frame 7.
  • the swing scroll 2 is arranged below the fixed scroll 1 and is swingably supported by an eccentric shaft portion 6a described later of the rotation shaft 6.
  • the fixed scroll 1 includes a fixed base plate 1a and a fixed spiral body 1b which is a spiral protrusion erected on one surface of the fixed base plate 1a.
  • the oscillating scroll 2 includes a oscillating base plate 2a and a oscillating spiral body 2b which is a spiral projection erected on one surface of the oscillating base plate 2a.
  • the fixed scroll 1 and the swing scroll 2 are arranged in the closed container 100 in a symmetrical spiral shape in which the fixed spiral body 1b and the swing spiral body 2b are meshed with each other in opposite phases.
  • a compression chamber 71 is formed between the fixed spiral body 1b and the rocking spiral body 2b whose volume decreases from the outer side to the inner side in the radial direction as the rotation shaft 6 rotates.
  • the baffle 4 is fixed to the surface of the fixed base plate 1a of the fixed scroll 1 opposite to the swing scroll 2.
  • the baffle 4 is formed with a through hole 4a communicating with the discharge port 1c of the fixed scroll 1, and the through hole 4a is provided with a discharge valve 11. Further, a discharge muffler 12 is attached to the baffle 4 so as to cover the discharge port 1c.
  • the frame 7 has a fixed scroll 1 arranged in a fixed manner and has a thrust surface that supports the thrust force acting on the swing scroll 2 in the axial direction. Further, the frame 7 is formed through an introduction flow path 7c that guides the refrigerant sucked from the suction pipe 101 into the compression mechanism portion 8.
  • an old dam ring 14 is arranged to prevent the swing scroll 2 from rotating during the turning motion.
  • the key portion 14a of the old dam ring 14 is arranged below the rocking base plate 2a of the rocking scroll 2.
  • the electric mechanism unit 110 supplies a rotational driving force to the rotating shaft 6, and includes an electric motor stator 110a and an electric motor rotor 110b.
  • the electric motor stator 110a is connected to a glass terminal (not shown) existing between the frame 7 and the electric motor stator 110a by a lead wire (not shown) in order to obtain electric power from the outside. Further, the motor stator 110a is fixed to the rotating shaft 6 by shrink fitting or the like. Further, in order to balance the entire rotating system of the scroll compressor, the first balance weight 60 is fixed to the rotating shaft 6, and the second balance weight 61 is fixed to the motor stator 110a.
  • the rotating shaft 6 is composed of an upper eccentric shaft portion 6a, an intermediate main shaft portion 6b, and a lower sub-shaft portion 6c.
  • the eccentric shaft portion 6a is eccentric with respect to the axial center of the rotating shaft 6.
  • the eccentric shaft portion 6a is fitted to the swing scroll 2 via a slider 5 with a balance weight and a swing bearing 2c, and the swing scroll 2 swings due to the rotation of the rotation shaft 6.
  • the spindle portion 6b is fitted to the main bearing 7a arranged on the inner circumference of the cylindrical boss portion 7b provided on the frame 7 via the sleeve 13, and is fitted to the main bearing 7a via an oil film of refrigerating machine oil. Sliding.
  • the main bearing 7a is fixed in the boss portion 7b by press-fitting a bearing material used for a slide bearing such as a copper-lead alloy.
  • An auxiliary bearing 10 made of a ball bearing is provided on the upper part of the subframe 9, and the auxiliary bearing 10 pivotally supports the rotating shaft 6 in the radial direction at the lower part of the electric mechanism portion 110.
  • the auxiliary bearing 10 may be pivotally supported by a bearing configuration other than the ball bearing.
  • the auxiliary shaft portion 6c is fitted with the auxiliary bearing 10 and slides with the auxiliary bearing 10 via an oil film formed by refrigerating machine oil.
  • the axes of the spindle 6b and the sub-axis 6c coincide with the axes of the rotating shaft 6.
  • the space inside the closed container 100 is defined as follows. Of the internal space of the closed container 100, the space on the motor rotor 110b side of the frame 7 is designated as the first space 72. Further, the space surrounded by the inner wall of the frame 7 and the fixed base plate 1a is referred to as the second space 73. Further, the space on the discharge pipe 102 side of the fixed base plate 1a is designated as the third space 74. Of the second space 73, the outside of the structure portion in which the fixed spiral body 1b and the rocking spiral body 2b are combined is referred to as a suction space 73a. The refrigerant before being compressed in the compression chamber 71 is introduced into the suction space 73a from the introduction flow path 7c.
  • FIG. 2 is a cross-sectional view of the compression mechanism portion of the scroll compressor according to the first embodiment.
  • FIG. 3 is a plan view showing a fixed spiral body and a swinging spiral body of the compression mechanism portion of the scroll compressor according to the first embodiment.
  • dots are added to the rocking spiral body 2b of the rocking scroll 2. It has been given. The same applies to the figures described later.
  • the closed container 100 has a perfect circular shape when viewed in a plane, and is fixed to the inside of the closed container 100 in a state where the outer peripheral surface of the frame 7 is in contact with the inner peripheral surface of the closed container 100. Therefore, the outer peripheral surface of the frame 7 also has a perfect circular shape.
  • the outer shape of the rocking base plate 2a is a flat shape. Therefore, by making the spiral shape of the swinging spiral body 2b erected on the rocking base plate 2a also a flat shape, the space on the rocking base plate 2a can be effectively used and the space efficiency can be improved. it can.
  • the first embodiment is characterized in that the spiral shape of the spiral body has a shape obtained by combining two flat shapes having different flatnesses. Specifically, as shown in FIG. 3, the spiral shape of the first embodiment has a flat shape having a different flatness between the region A and the region B.
  • the flat shape of one region side that is, the region side B in this example, is the flattening of the region A. It has a crushed shape compared to the shape. With such a shape, an empty space can be formed between the flat shape on the region side of B and the inner peripheral surface of the closed container 100, and the introduction flow path 7c is installed in this empty space.
  • the flat shape also includes an oval shape and an elliptical shape, and in short, refers to all shapes that are flatter than a perfect circle. The details of the spiral shape configured as described above will be described again.
  • FIG. 4 is a compression process diagram showing the operation of the swing scroll during one rotation in the scroll compressor according to the first embodiment.
  • FIG. 4A shows the position of the spiral body when the rotation phase is 0 [rad] (2 ⁇ [rad]).
  • FIG. 4B shows the position of the spiral body when the rotation phase is ⁇ / 2 [rad].
  • FIG. 4C shows the position of the spiral body when the rotation phase is ⁇ [rad].
  • FIG. 4D shows the position of the spiral body when the rotation phase is 3 ⁇ / 2 [rad].
  • the electric motor stator 110a of the electric mechanism unit 110 When the electric motor stator 110a of the electric mechanism unit 110 is energized, the electric motor rotor 110b receives rotational force and rotates. Along with this, the rotating shaft 6 fixed to the electric motor rotor 110b is rotationally driven. The rotational motion of the rotating shaft 6 is transmitted to the swing scroll 2 via the eccentric shaft portion 6a.
  • the oscillating spiral body 2b of the oscillating scroll 2 oscillates with an oscillating radius while its rotation is regulated by the old dam ring 14.
  • the swing radius means the amount of eccentricity of the eccentric shaft portion 6a with respect to the spindle portion 6b.
  • the refrigerant flows from the external refrigeration cycle into the first space 72 in the closed container 100 via the suction pipe 101.
  • the low-pressure refrigerant that has flowed into the first space 72 flows into the suction space 73a through the introduction flow path 7c installed in the frame 7.
  • the low-pressure refrigerant that has flowed into the suction space 73a is sucked into the compression chamber 71 along with the relative swinging motion of the swinging spiral body 2b and the fixed spiral body 1b of the compression mechanism unit 8. As shown in FIG.
  • the refrigerant sucked into the compression chamber 71 is boosted from low pressure to high pressure due to the geometric volume change of the compression chamber 71 accompanying the relative operation of the swinging spiral body 2b and the fixed spiral body 1b. Will be done.
  • the high-pressure refrigerant passes through the discharge port 1c of the fixed scroll 1 and the through hole 4a of the baffle 4, pushes the discharge valve 11 open, and is discharged into the discharge muffler 12.
  • the refrigerant discharged into the discharge muffler 12 is discharged into the third space 74, and is discharged from the discharge pipe 102 to the outside of the compressor as a high-pressure refrigerant.
  • the arrow in FIG. 1 indicates the flow of this refrigerant.
  • the contours of the swinging spiral body 2b and the fixed spiral body 1b are flat, and the spiral shape is also flat.
  • the swing spiral body 2b Operates while contacting the inward and outward surfaces of the fixed spiral body 1b whose outward and inward surfaces face each other.
  • the first embodiment is characterized in that the spiral shape of the spiral body having a contour combining a plurality of flat shapes having different flatness is defined by an equation.
  • the shape of the spiral is determined by an outer curve that identifies the outward surface of the spiral and an inner curve that identifies the inward surface of the spiral.
  • either the outer curve or the inner curve of the spiral body is a curve that is an involute of the base circle, and is in the x, y coordinate system.
  • the curve defined by the following equations (1) and (2) is obtained by using the involute angle ⁇ .
  • a ( ⁇ ) in equations (1) and (2) is the radius of the base circle.
  • a ( ⁇ ) is a “function that changes in a sinusoidal or cosine wave shape with ⁇ [rad] as one cycle with respect to the extension angle ⁇ ” and “ ⁇ [rad]. Is given by a functional expression having a term of product with a coefficient ⁇ "represented by a step function ⁇ ( ⁇ ) with one cycle.
  • the coefficient ⁇ is a coefficient indicating the degree of flatness.
  • the spiral shape of the spiral body having a contour combining a plurality of flat shapes having different flatness can be defined by the equation.
  • the basic circular radius a ( ⁇ ) is changed as shown in the equation (3) as an example.
  • a 0 is serving as a reference base radius (hereinafter, criterion of radius) is.
  • the step function ⁇ ( ⁇ ) with ⁇ [rad] as one cycle is a real function in which the graph becomes stepped with respect to the extension angle ⁇ , and ⁇ [rad].
  • the step function ⁇ ( ⁇ ) is a function in which the value changes alternately every ⁇ / 2 with ⁇ [rad] as one cycle.
  • ⁇ ( ⁇ ) alternates between ⁇ 1 and ⁇ 2 every ⁇ / 2.
  • ⁇ ( ⁇ ) ⁇ 1 when the involute angle ⁇ is from 0 to ⁇ / 2
  • ⁇ ( ⁇ ) ⁇ 2 when the involute angle ⁇ is from ⁇ / 2 to ⁇ .
  • ⁇ ( ⁇ ) ⁇ 1 from ⁇ to 3 ⁇ / 2
  • ⁇ ( ⁇ ) ⁇ 2 from the involute angle ⁇ from 3 ⁇ / 2 to 2 ⁇ .
  • N is a natural number of 1 or more.
  • is a constant [rad]
  • is a constant [rad]
  • ⁇ 1 hereinafter referred to as the flat shape by ⁇ 1
  • ⁇ ( ⁇ ) in equation (3) are ⁇ 2.
  • the flatness of the contour of the spiral body can be set arbitrarily. Specifically, as the value of ⁇ increases, the flatness of the contour of the spiral body increases and the shape becomes flat.
  • the spiral shape of the spiral body of the first embodiment is a combination of a flat shape formed by ⁇ 1 and a flat shape formed by ⁇ 2.
  • the flat shape of the region A shows the case where ⁇ 1 is 0.3.
  • the flat shape of the region B shows the case where ⁇ 2 is ⁇ 0.2.
  • the value of N is 1 and the value of ⁇ is 0.
  • the change in the shape of the spiral body when ⁇ is changed will be described in the third embodiment described later.
  • the spiral shape of the swinging spiral body 2b is a shape in which two flat shapes having different flatnesses are combined as described above, but the drawing method itself of each flat shape is the same.
  • the shape of the spiral is determined by the outer curve that specifies the outward surface of the spiral body and the inner curve that specifies the inward surface of the spiral body as described above.
  • a method of drawing a spiral shape when the outer curve is a curve defined by the equations (1) and (2) will be described with reference to FIG.
  • FIG. 5 is an explanatory diagram of a spiral-shaped drawing method constituting the compression mechanism portion of the scroll compressor according to the first embodiment.
  • drawings are drawn according to the procedures (a), (b), (c), and (d).
  • FIG. 5A draw an involute 30 of the base circle.
  • a ( ⁇ ) increases in a sinusoidal shape with ⁇ [rad] as one cycle according to the involute angle ⁇ as described above.
  • the involute 30 drawn here is the outer curve. Let a ( ⁇ ) be ⁇ 1.
  • FIGS. 5 (b) to 5 (d) draw an inner curve according to the procedure shown in FIGS. 5 (b) to 5 (d). That is, first, as shown in FIG. 5 (b), a curve 31 is drawn by rotating the involute 30 drawn in the procedure (a) by ⁇ [rad] with respect to the center of the base circle O.
  • the inner curve since the inner curve is created, the curved portion (dotted line portion in FIG. 5B) located outside the curve 30 of the curve 31 is not used in the subsequent drafting procedure.
  • the curve 30 drawn in the procedure (a) becomes the outer curve of the swinging spiral body 2b
  • the curve 33 drawn in the procedure (d) becomes the inner curve of the swinging spiral body 2b.
  • one region divided to the left and right about the center of the basic circle O of the dot region in the procedure (d) becomes one cross section of the two spiral shapes constituting the swinging spiral body 2b.
  • the spiral shape when a ( ⁇ ) is ⁇ 2 is drawn by the procedure of FIGS. 5 (a) to 5 (d), centering on the base circle center O of the dot region of the procedure (d).
  • the other region divided into left and right is the other cross section of the two spiral shapes constituting the swinging spiral body 2b. From the above, the spiral shape of the swinging spiral body 2b can be drawn.
  • the same procedure as that of the swinging spiral body 2b described above was adopted, and the shape of the rocking spiral body 2b was rotated by ⁇ [rad] in the specification having the same wall thickness as the rocking spiral body 2b. It becomes a shape.
  • the method of drawing the spiral shape when the outer curve is the curve defined by the equations (1) and (2) has been described, but the inner curve is defined by the equations (1) and (2).
  • the method of drawing a spiral shape in the case of a curved line is basically the same.
  • the outer curve may be drawn as follows. First, the procedure shown in FIG. 5A is performed, and then the curved portion of the curve 30 located outside the curve 31 in FIG. 5B is not used in the subsequent drawing procedure. Then, a plurality of circles 32 having a center on the curve 31 and having a radius equal to the swing radius of the swing scroll 2 are drawn. The inner envelope of this circle group becomes the outer curve.
  • FIG. 6 is a diagram showing an example of characteristics related to the basic circular radius a ( ⁇ ) used for drawing the spiral shape of the spiral body in the scroll compressor according to the first embodiment.
  • the vertical axis of FIG. 6 shows the ratio of base circle with respect to a reference radius a 0 radius a (theta).
  • the horizontal axis of FIG. 6 indicates the extension angle ⁇ [rad].
  • the periodic change of the base circle radius a ( ⁇ ) with respect to the involute angle ⁇ is shown.
  • the waveform of the basic circular radius a ( ⁇ ) shown in FIG. 6 it is shown that the larger the value of a ( ⁇ ) / a 0 , the thicker the wall thickness of the spiral body. Therefore, the wall thickness of the spiral body becomes thicker at ⁇ / 4, 5 ⁇ / 4, and 9 ⁇ / 4.
  • the spiral body is stretched in the direction of the involute angle where the peak exceeding 1.0 is present. Therefore, in the example of FIG. 6, when the involute angles are ⁇ / 4, 5 ⁇ / 4, and 9 ⁇ / 4, the peak exceeding 1.0 comes, so that the involute is stretched in the lateral direction as shown in FIG. Shape.
  • the spiral shape of the spiral body is defined by the above equations (1) and (2) using the extension angle ⁇ . Then, the fundamental pi a ( ⁇ ) in the equations (1) and (2) is changed to "a function that changes in a sinusoidal shape or a cosine wave shape with ⁇ [rad] as one cycle with respect to the extension angle ⁇ " and ". It is assumed that it has a term of product with the coefficient ⁇ "represented by the step function ⁇ ( ⁇ ) with ⁇ [rad] as one cycle. Thereby, the spiral shape of the spiral body having a contour combining a plurality of flat shapes having different flatness can be defined by the equation.
  • the contours of the fixed spiral body 1b and the swinging spiral body 2b can be arbitrarily set by setting the basic circular radius a ( ⁇ ) to the equation (3).
  • ⁇ ( ⁇ ) is a function in which the value changes alternately every ⁇ / 2, with the change period as ⁇ [rad].
  • Embodiment 2 the change in the flatness of the contour of the spiral body according to the value of ⁇ in the above formula (3) will be described.
  • the configuration in which the second embodiment is different from the first embodiment will be mainly described, and the configurations not described in the second embodiment are the same as those in the first embodiment.
  • FIG. 7 is a diagram showing a change in the flatness of the outer curve of the spiral body in the scroll compressor according to the second embodiment.
  • the flatness is the ratio (D11 + D12) / D2 of the major axis D11 + D12 to the minor axis D2 as shown in FIG. 7A.
  • the flattening ratio of the region A in the figure, that is, the region forming the spiral at ⁇ 1 is (D11 ⁇ 2) / D2.
  • the flatness of the region B in the figure, that is, the region forming the spiral with ⁇ 2 is (D12 ⁇ 2) / D2.
  • the flattening rate increases as the value of ⁇ increases.
  • the flattening ratio of (b) having a large value of ⁇ 1 is larger than that of (a). ..
  • the flattening ratio of (b) having a large ⁇ 2 value is larger than that of (c). ..
  • the flatness of each of the flat shapes of the region A and the region B in FIG. 7 can be set independently by the values of ⁇ 1 and ⁇ 2.
  • the same effect as that of the first embodiment can be obtained, and the flattening ratio of each flat shape can be arbitrarily set by the values of ⁇ 1 and ⁇ 2. Therefore, by setting ⁇ 1 and ⁇ 2 according to the installation space of the introduction flow path 7c, the flow path area of the introduction flow path 7c can be set large even when the introduction flow path 7c is unified.
  • Embodiment 3 In the third embodiment, the case where the extension angle ⁇ is changed will be described.
  • the configuration in which the third embodiment is different from the first embodiment will be mainly described, and the configurations not described in the third embodiment are the same as those in the first embodiment.
  • FIG. 8 is a diagram showing a spiral body in the scroll compressor according to the third embodiment.
  • is an involute angle that combines the flat shape of ⁇ 1 and the flat shape of ⁇ 2 as described above.
  • the region A in FIG. 8 shows a flat shape due to ⁇ 1
  • the region B shows a flat shape due to ⁇ 2.
  • FIG. 9 is a compression process diagram showing the operation of the swing scroll in one rotation in the scroll compressor according to FIG. 8 (b).
  • FIG. 9A shows the position of the spiral body when the rotation phase is 0 [rad] (2 ⁇ [rad]).
  • FIG. 9B shows the position of the spiral body when the rotation phase is ⁇ / 2 [rad].
  • FIG. 9C shows the position of the spiral body when the rotation phase is ⁇ [rad].
  • FIG. 9D shows the position of the spiral body when the rotation phase is 3 ⁇ / 2 [rad].
  • the compression operation can be realized in the same manner as in the case of FIG. 4 of the first embodiment.
  • the same effect as that of the first embodiment and the second embodiment can be obtained, and by changing the value of ⁇ , the spiral shape as a whole is adjusted to the position where the introduction flow path 7c is arranged. You can change the orientation of.
  • Embodiment 4 In the fourth embodiment, another functional expression of the basic circular radius a ( ⁇ ) will be described.
  • the configuration in which the fourth embodiment is different from the first embodiment will be mainly described, and the configurations not described in the fourth embodiment are the same as those in the first embodiment.
  • FIG. 10 is a diagram showing the characteristics of the basic circular radius a ( ⁇ ) of the spiral body in the scroll compressor according to the fourth embodiment.
  • 10 (a) to 10 (d) show, in order, the functional equations of the basic circular radius a ( ⁇ ), the equation (3) shown in the first embodiment, and the following equations (4) to (2). It corresponds to the case of 6).
  • the vertical axis of FIG. 10 shows the ratio of base circle with respect to a reference radius a 0 radius a (theta).
  • equations (4) to (6) can be used in addition to the equation (3) shown in the first embodiment.
  • the contours of the fixed spiral body 1b and the swinging spiral body 2b can be arbitrarily set.
  • the low-pressure shell type scroll compressor in which the inside of the closed container 100 is filled with the low-pressure refrigerant is shown, but the inside of the closed container 100 is filled with the high-pressure refrigerant. The same effect can be obtained even when a scroll compressor is used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)

Abstract

Either one of an outside curve and an inside curve of a fixed spiral body and an orbiting spiral body respectively is a curve that is an involute of a base circle, and that is defined by formula (1) and formula (2) using an involute angle θ in an x, y coordinate system. A radius a(θ) of the base circle in formula (1) and formula (2) is a term obtained as the product of "a coefficient which varies in the shape of a sine wave or a cosine wave, with π [rad] as one cycle, with respect to the involute angle θ", and "a coefficient represented as a step function, with π [rad] as one cycle". (1) x=a(θ)(cosθ+θ∙sinθ) (2) y=a(θ)(sinθ-θ∙cosθ)

Description

スクロール圧縮機Scroll compressor
 本発明は、空気調和機および冷凍機等に用いられるスクロール圧縮機に関するものである。 The present invention relates to a scroll compressor used in an air conditioner, a refrigerator, or the like.
 空気調和機および冷凍機等に用いられるスクロール圧縮機は、固定スクロールと揺動スクロールとを組み合わせて形成した圧縮室にて冷媒を圧縮する圧縮機構部と、圧縮機構部を収容する容器とを備えた構成を有する。固定スクロールおよび揺動スクロールはそれぞれ、台板上に渦巻体が立設された構成を有し、渦巻体同士が噛み合わされて圧縮室を形成している。そして、揺動スクロールを揺動運動させることで、圧縮室が容積を縮小しながら移動し、圧縮室にて冷媒の吸入および圧縮が行われるようになっている。この種のスクロール圧縮機では、小型および低コスト化を図るため、容器の径を同じとしつつ、可能な限り圧縮室の吸入容積を大きくして、圧縮機能力を大きくすることを目的とした技術開発が重要となっている。容器の径を同じとしつつ圧縮室の吸入容積を大きくするには、渦巻体の渦巻形状を工夫することが必要である。 A scroll compressor used in an air conditioner, a refrigerator, or the like includes a compression mechanism unit that compresses a refrigerant in a compression chamber formed by combining a fixed scroll and a swing scroll, and a container that houses the compression mechanism unit. Has a structure. Each of the fixed scroll and the swing scroll has a structure in which spiral bodies are erected on a base plate, and the spiral bodies are meshed with each other to form a compression chamber. Then, by swinging the swing scroll, the compression chamber moves while reducing the volume, and the refrigerant is sucked and compressed in the compression chamber. In this type of scroll compressor, in order to reduce the size and cost, the technology aims to increase the compression function by increasing the suction volume of the compression chamber as much as possible while keeping the diameter of the container the same. Development is important. In order to increase the suction volume of the compression chamber while keeping the diameter of the container the same, it is necessary to devise the spiral shape of the spiral body.
 従来、スクロール圧縮機の渦巻形状を、所定の半径の真円を基礎円とするインボリュート曲線とし、渦巻体全体の輪郭を円形とした技術がある。これに対し、近年では渦巻体全体の輪郭を円形ではなく扁平形状とし、更に渦巻体の渦巻形状も扁平形状とした技術がある(例えば、特許文献1参照)。 Conventionally, there is a technique in which the spiral shape of the scroll compressor is an involute curve based on a perfect circle with a predetermined radius, and the outline of the entire spiral body is circular. On the other hand, in recent years, there is a technique in which the outline of the entire spiral body is not circular but flat, and the spiral shape of the spiral body is also flat (see, for example, Patent Document 1).
特開平10-54380号公報JP-A-10-54380
 特許文献1では渦巻体の輪郭および渦巻形状を扁平形状とすることが記載されているものの、渦巻形状の具体的な定義については記載されていない。渦巻体の渦巻形状については、上述したように所定の半径の真円を基礎円とするインボリュート曲線で定義した技術があるが、渦巻形状を扁平形状とする場合においても、渦巻体を製造する上で渦巻形状を具体的に定義することが必要である。 Although Patent Document 1 describes that the outline and the spiral shape of the spiral body are flat, the specific definition of the spiral shape is not described. As described above, the spiral shape of the spiral body is defined by an involute curve based on a perfect circle with a predetermined radius. However, even when the spiral shape is a flat shape, the spiral body can be manufactured. It is necessary to specifically define the spiral shape in.
 ところで、スクロール圧縮機の圧縮機構部の近傍には、圧縮室で圧縮される前の冷媒が流れる吸入空間に冷媒を導入するための導入流路が設置される。導入流路は、回転位相に係わらず、固定スクロールおよび揺動スクロールのそれぞれの渦巻体および台板によって閉塞されないことが望ましい。 By the way, in the vicinity of the compression mechanism of the scroll compressor, an introduction flow path for introducing the refrigerant into the suction space through which the refrigerant before being compressed in the compression chamber flows is installed. It is desirable that the introduction flow path is not blocked by the spirals and base plate of the fixed scroll and the swing scroll, regardless of the rotation phase.
 特許文献1のように、渦巻体の輪郭および渦巻形状を、長軸および短軸を有する扁平形状とする構造では、短軸方向に対向する一対の辺と容器の内周面との間に、180°対向した2か所の空きスペースが形成される。このように2か所の空きスペースが形成される構造において、できるだけ導入流路の流路面積を確保するためには、各空きスペースに導入流路を設置することになる。つまり、導入流路が複数となる。しかし、導入流路が複数となると、製造時の加工工程が増えるため、製造コストが増大する。 In a structure in which the contour and spiral shape of the spiral body are flat with a major axis and a minor axis as in Patent Document 1, a pair of sides facing each other in the minor axis direction and an inner peripheral surface of the container are separated from each other. Two empty spaces facing each other by 180 ° are formed. In the structure in which two empty spaces are formed in this way, in order to secure the flow path area of the introduction flow path as much as possible, the introduction flow path is installed in each empty space. That is, there are a plurality of introduction flow paths. However, if there are a plurality of introduction channels, the number of processing steps at the time of manufacturing increases, so that the manufacturing cost increases.
 このような製造コストの増大を避けるには、導入流路を設けるための空きスペースを1箇所に集約し、その空きスペースに、流路面積を確保した導入流路を設置することが有効である。渦巻体の渦巻形状を扁平形状としつつ、導入流路を設けるための空きスペースを1箇所に集約するには、渦巻形状を、扁平率の異なる複数の扁平形状を組み合わせた形状とすることが考えられる。つまり、空きスペースを設ける側の扁平形状を、空きスペースを設けない側の扁平形状よりも潰れた形状とするなどして空きスペースを確保することが考えられる。しかし、このような形状を式で定義できる先行技術は見当たらない。 In order to avoid such an increase in manufacturing cost, it is effective to consolidate the empty space for providing the introduction flow path in one place and to install the introduction flow path with a secured flow path area in the empty space. .. In order to consolidate the empty space for providing the introduction flow path in one place while making the spiral shape of the spiral body flat, it is conceivable to make the spiral shape a combination of multiple flat shapes with different flatness. Be done. That is, it is conceivable to secure an empty space by making the flat shape on the side where the empty space is provided more crushed than the flat shape on the side where the empty space is not provided. However, there is no prior art that can define such a shape by an equation.
 本発明はこのような点を鑑みなされたもので、扁平率の異なる複数の扁平形状を組み合わせた輪郭を有する渦巻体の渦巻形状を式で定義することが可能なスクロール圧縮機を提供することを目的とする。 The present invention has been made in view of these points, and provides a scroll compressor capable of defining a spiral shape of a spiral body having a contour combining a plurality of flat shapes having different flatnesses by an equation. The purpose.
 本発明に係るスクロール圧縮機は、固定台板に固定渦巻体が立設された固定スクロールと、揺動台板に揺動渦巻体が立設された揺動スクロールとを備え、固定渦巻体と揺動渦巻体とが噛み合うことで形成される圧縮室内で冷媒を圧縮するスクロール圧縮機において、固定渦巻体および揺動渦巻体のそれぞれの外側曲線および内側曲線のいずれか一方を、基礎円の伸開線である曲線であって、x、y座標系において伸開角θを用いて式(1)および式(2)で定義される曲線とし、式(1)および式(2)における基礎円の半径a(θ)が、「伸開角θに対してπ[rad]を1周期とした正弦波状または余弦波状に変化する関数」と「π[rad]を1周期とした階段関数で表される係数」との積の項を有する。
 x=a(θ)(cоsθ+θ・sinθ) ・・・(1)
 y=a(θ)(sinθ-θ・cоsθ)  ・・・(2)
The scroll compressor according to the present invention includes a fixed scroll in which a fixed spiral body is erected on a fixed base plate and a swing scroll in which a swing spiral body is erected on a rocking base plate. In a scroll compressor that compresses a refrigerant in a compression chamber formed by meshing with a swinging spiral, one of the outer curve and the inner curve of the fixed spiral and the swinging spiral is an involute of the base circle. A curve that is an open line and is defined by equations (1) and (2) using the involute angle θ in the x and y coordinate systems, and is the basic circle in equations (1) and (2). The radius a (θ) of is expressed by "a function that changes in a spiral or cosine wave shape with π [rad] as one cycle with respect to the involute angle θ" and "a step function with π [rad] as one cycle". It has a term of product with "coefficient to be".
x = a (θ) (csθ + θ ・ sinθ) ・ ・ ・ (1)
y = a (θ) (sinθ−θ ・ cоsθ) ・ ・ ・ (2)
 本発明によれば、渦巻体の渦巻形状を、x、y座標系において伸開角θを用いて式(1)および式(2)で定義し、また、式(1)および式(2)における基礎円半径a(θ)を、「伸開角θに対してπ[rad]を1周期とした正弦波状または余弦波状に変化する関数」と「π[rad]を1周期とした階段関数で表される係数」との積の項を有するものとした。これにより、扁平率の異なる複数の扁平形状を組み合わせた輪郭を有する渦巻体の渦巻形状を、式で定義できる。
 x=a(θ)(cоsθ+θsinθ) ・・・(1)
 y=a(θ)(sinθ-θcоsθ) ・・・(2)
According to the present invention, the spiral shape of the spiral body is defined by the equations (1) and (2) using the extension angle θ in the x and y coordinate systems, and the equations (1) and (2) are also defined. The fundamental pi a (θ) in is "a function that changes into a sinusoidal or cosine wave shape with π [rad] as one cycle with respect to the extension angle θ" and "a step function with π [rad] as one cycle". It is assumed that it has a term of product with "coefficient represented by". Thereby, the spiral shape of the spiral body having a contour combining a plurality of flat shapes having different flatness can be defined by the equation.
x = a (θ) (cоsθ + θsinθ) ... (1)
y = a (θ) (sinθ-θcоsθ) ... (2)
実施の形態1に係るスクロール圧縮機の全体構成の概略縦断面図である。FIG. 5 is a schematic vertical sectional view of the overall configuration of the scroll compressor according to the first embodiment. 実施の形態1に係るスクロール圧縮機の圧縮機構部の横断面図である。It is sectional drawing of the compression mechanism part of the scroll compressor which concerns on Embodiment 1. FIG. 実施の形態1に係るスクロール圧縮機の圧縮機構部の固定渦巻体と揺動渦巻体とを示した平面図である。It is a top view which showed the fixed spiral body and the rocking spiral body of the compression mechanism part of the scroll compressor which concerns on Embodiment 1. FIG. 実施の形態1に係るスクロール圧縮機における揺動スクロールの1回転中の動作を示す圧縮工程図である。It is a compression process diagram which shows the operation during one rotation of the swing scroll in the scroll compressor which concerns on Embodiment 1. FIG. 実施の形態1に係るスクロール圧縮機の圧縮機構部を構成する渦巻形状の製図方法の説明図である。It is explanatory drawing of the drawing method of the spiral shape which constitutes the compression mechanism part of the scroll compressor which concerns on Embodiment 1. FIG. 実施の形態1に係るスクロール圧縮機における渦巻体の渦巻形状の製図に用いる基礎円半径a(θ)に関する特性の一例を示す図である。It is a figure which shows an example of the characteristic about the base circular radius a (θ) used for drawing the spiral shape of the spiral body in the scroll compressor which concerns on Embodiment 1. FIG. 実施の形態2に係るスクロール圧縮機における渦巻体の外側曲線の扁平率の変化を示す図である。It is a figure which shows the change of the flatness of the outer curve of the spiral body in the scroll compressor which concerns on Embodiment 2. FIG. 実施の形態3に係るスクロール圧縮機における渦巻体を示す図である。It is a figure which shows the spiral body in the scroll compressor which concerns on Embodiment 3. 図8(b)に係るスクロール圧縮機における揺動スクロールの1回転中の動作を示す圧縮工程図である。It is a compression process diagram which shows the operation during one rotation of the swing scroll in the scroll compressor which concerns on FIG. 8B. 実施の形態4に係るスクロール圧縮機における渦巻体の基礎円半径a(θ)に関する特性を示す図である。It is a figure which shows the characteristic about the base circular radius a (θ) of the spiral body in the scroll compressor which concerns on Embodiment 4. FIG.
 以下、実施の形態に係るスクロール圧縮機について図面等を参照しながら説明する。ここで、図1を含め、以下の図面において、同一の符号を付したものは、同一またはこれに相当するものであり、以下に記載する実施の形態の全文において共通することとする。そして、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、明細書に記載された形態に限定するものではない。 Hereinafter, the scroll compressor according to the embodiment will be described with reference to drawings and the like. Here, in the following drawings including FIG. 1, those having the same reference numerals are the same or equivalent thereto, and are common to the whole texts of the embodiments described below. The form of the component represented in the full text of the specification is merely an example, and is not limited to the form described in the specification.
実施の形態1.
 図1は、実施の形態1に係るスクロール圧縮機の全体構成の概略縦断面図である。
 実施の形態1のスクロール圧縮機は、圧縮機構部8と、回転軸6を介して圧縮機構部8を駆動する電動機構部110と、その他の構成部品とを有し、これらが外郭を構成する密閉容器100の内部に収納された構成を有している。密閉容器100内において、圧縮機構部8は上方に配置されており、電動機構部110は圧縮機構部8よりも下方に配置されている。
Embodiment 1.
FIG. 1 is a schematic vertical sectional view of the overall configuration of the scroll compressor according to the first embodiment.
The scroll compressor of the first embodiment includes a compression mechanism unit 8, an electric mechanism unit 110 that drives the compression mechanism unit 8 via a rotating shaft 6, and other components, which form an outer shell. It has a structure housed inside the closed container 100. In the closed container 100, the compression mechanism portion 8 is arranged above, and the electric mechanism portion 110 is arranged below the compression mechanism portion 8.
 密閉容器100内には更に、電動機構部110を挟んで対向するようにフレーム7とサブフレーム9とが収納されている。フレーム7は、電動機構部110の上側に配置されて電動機構部110と圧縮機構部8との間に位置しており、サブフレーム9は、電動機構部110の下側に位置している。フレーム7は、焼嵌めまたは溶接等によって密閉容器100の内周面に固着されている。また、サブフレーム9はサブフレームホルダ9aを介して焼嵌めまたは溶接等によって密閉容器100の内周面に固着されている。 Further, the frame 7 and the subframe 9 are housed in the closed container 100 so as to face each other with the electric mechanism portion 110 interposed therebetween. The frame 7 is arranged above the electric mechanism portion 110 and is located between the electric mechanism portion 110 and the compression mechanism portion 8, and the subframe 9 is located below the electric mechanism portion 110. The frame 7 is fixed to the inner peripheral surface of the closed container 100 by shrink fitting, welding, or the like. Further, the subframe 9 is fixed to the inner peripheral surface of the closed container 100 by shrink fitting or welding via the subframe holder 9a.
 サブフレーム9の下方には容積型ポンプを含むポンプ要素112が取り付けられている。ポンプ要素112は、密閉容器100の底部の油溜め部100aに溜められた冷凍機油を圧縮機構部8の後述の主軸受7a等の摺動部に供給する。ポンプ要素112は、上端面で回転軸6を軸方向に支承している。 A pump element 112 including a positive displacement pump is attached below the subframe 9. The pump element 112 supplies the refrigerating machine oil stored in the oil reservoir 100a at the bottom of the closed container 100 to a sliding portion such as a main bearing 7a described later of the compression mechanism 8. The pump element 112 supports the rotating shaft 6 in the axial direction on the upper end surface.
 密閉容器100には、冷媒を吸入するための吸入管101と、冷媒を吐出するための吐出管102とが設けられている。 The closed container 100 is provided with a suction pipe 101 for sucking the refrigerant and a discharge pipe 102 for discharging the refrigerant.
 圧縮機構部8は、吸入管101から吸入した冷媒を圧縮し、圧縮した冷媒を密閉容器100内の上方に形成されている高圧部に排出する機能を有している。圧縮機構部8は、固定スクロール1と揺動スクロール2とを備えている。 The compression mechanism unit 8 has a function of compressing the refrigerant sucked from the suction pipe 101 and discharging the compressed refrigerant to the high-pressure part formed above the closed container 100. The compression mechanism unit 8 includes a fixed scroll 1 and a swing scroll 2.
 固定スクロール1はフレーム7を介して密閉容器100に固定されている。揺動スクロール2は固定スクロール1の下側に配置されて回転軸6の後述の偏心軸部6aに揺動自在に支持されている。 The fixed scroll 1 is fixed to the closed container 100 via the frame 7. The swing scroll 2 is arranged below the fixed scroll 1 and is swingably supported by an eccentric shaft portion 6a described later of the rotation shaft 6.
 固定スクロール1は、固定台板1aと、固定台板1aの一方の面に立設された渦巻状突起である固定渦巻体1bとを備えている。揺動スクロール2は、揺動台板2aと、揺動台板2aの一方の面に立設された渦巻状突起である揺動渦巻体2bとを備えている。固定スクロール1および揺動スクロール2は、固定渦巻体1bと揺動渦巻体2bとを逆位相で噛み合わせた対称渦巻形状の状態で密閉容器100内に配置されている。そして、固定渦巻体1bと揺動渦巻体2bとの間には、回転軸6の回転に伴い、半径方向外側から内側へ向かうにしたがって容積が縮小する圧縮室71が形成されている。 The fixed scroll 1 includes a fixed base plate 1a and a fixed spiral body 1b which is a spiral protrusion erected on one surface of the fixed base plate 1a. The oscillating scroll 2 includes a oscillating base plate 2a and a oscillating spiral body 2b which is a spiral projection erected on one surface of the oscillating base plate 2a. The fixed scroll 1 and the swing scroll 2 are arranged in the closed container 100 in a symmetrical spiral shape in which the fixed spiral body 1b and the swing spiral body 2b are meshed with each other in opposite phases. A compression chamber 71 is formed between the fixed spiral body 1b and the rocking spiral body 2b whose volume decreases from the outer side to the inner side in the radial direction as the rotation shaft 6 rotates.
 固定スクロール1の固定台板1aにおいて揺動スクロール2とは反対側の面には、バッフル4が固定されている。バッフル4には、固定スクロール1の吐出口1cに連通する貫通孔4aが形成され、その貫通孔4aには吐出バルブ11が設けられている。また、バッフル4には、吐出口1cを覆うように吐出マフラ12が取り付けられている。 The baffle 4 is fixed to the surface of the fixed base plate 1a of the fixed scroll 1 opposite to the swing scroll 2. The baffle 4 is formed with a through hole 4a communicating with the discharge port 1c of the fixed scroll 1, and the through hole 4a is provided with a discharge valve 11. Further, a discharge muffler 12 is attached to the baffle 4 so as to cover the discharge port 1c.
 フレーム7は固定スクロール1を固定配置し、揺動スクロール2に作用するスラスト力を軸方向に支持するスラスト面を有する。また、フレーム7には、吸入管101から吸入された冷媒を圧縮機構部8内に導く導入流路7cが貫通形成されている。 The frame 7 has a fixed scroll 1 arranged in a fixed manner and has a thrust surface that supports the thrust force acting on the swing scroll 2 in the axial direction. Further, the frame 7 is formed through an introduction flow path 7c that guides the refrigerant sucked from the suction pipe 101 into the compression mechanism portion 8.
 また、フレーム7上には、揺動スクロール2の旋回運動中の自転を防止するためのオルダムリング14が配置されている。オルダムリング14のキー部14aは、揺動スクロール2の揺動台板2aの下側に配置されている。 Further, on the frame 7, an old dam ring 14 is arranged to prevent the swing scroll 2 from rotating during the turning motion. The key portion 14a of the old dam ring 14 is arranged below the rocking base plate 2a of the rocking scroll 2.
 電動機構部110は回転軸6に回転駆動力を供給するものであり、電動機固定子110aと電動機回転子110bとを備えている。電動機固定子110aは、外部から電力を得るために、フレーム7と電動機固定子110aとの間に存在するガラス端子(図示せず)にリード線(図示せず)で接続されている。また、電動機固定子110aは回転軸6に焼嵌め等によって固定されている。また、スクロール圧縮機の回転系全体のバランシングを行うため、回転軸6には第1バランスウェイト60が固定され、電動機固定子110aには第2バランスウェイト61が固定されている。 The electric mechanism unit 110 supplies a rotational driving force to the rotating shaft 6, and includes an electric motor stator 110a and an electric motor rotor 110b. The electric motor stator 110a is connected to a glass terminal (not shown) existing between the frame 7 and the electric motor stator 110a by a lead wire (not shown) in order to obtain electric power from the outside. Further, the motor stator 110a is fixed to the rotating shaft 6 by shrink fitting or the like. Further, in order to balance the entire rotating system of the scroll compressor, the first balance weight 60 is fixed to the rotating shaft 6, and the second balance weight 61 is fixed to the motor stator 110a.
 回転軸6は、上部の偏心軸部6aと、中間部の主軸部6bと、下部の副軸部6cとで構成されている。偏心軸部6aは、回転軸6の軸心に対して偏心している。偏心軸部6aは、バランスウェイト付スライダー5と揺動軸受2cとを介して揺動スクロール2に嵌合しており、回転軸6の回転により揺動スクロール2が揺動運動するようになっている。主軸部6bは、フレーム7に設けられた円筒状のボス部7bの内周に配置された主軸受7aにスリーブ13を介して嵌合しており、冷凍機油による油膜を介して主軸受7aと摺動する。主軸受7aは、銅鉛合金等の滑り軸受に使用される軸受材料を圧入する等してボス部7b内に固定されている。 The rotating shaft 6 is composed of an upper eccentric shaft portion 6a, an intermediate main shaft portion 6b, and a lower sub-shaft portion 6c. The eccentric shaft portion 6a is eccentric with respect to the axial center of the rotating shaft 6. The eccentric shaft portion 6a is fitted to the swing scroll 2 via a slider 5 with a balance weight and a swing bearing 2c, and the swing scroll 2 swings due to the rotation of the rotation shaft 6. There is. The spindle portion 6b is fitted to the main bearing 7a arranged on the inner circumference of the cylindrical boss portion 7b provided on the frame 7 via the sleeve 13, and is fitted to the main bearing 7a via an oil film of refrigerating machine oil. Sliding. The main bearing 7a is fixed in the boss portion 7b by press-fitting a bearing material used for a slide bearing such as a copper-lead alloy.
 サブフレーム9の上部には玉軸受からなる副軸受10を備え、副軸受10は、電動機構部110の下部で回転軸6を半径方向に軸支する。なお、副軸受10は玉軸受以外の別の軸受構成によって軸支しても良い。副軸部6cは副軸受10と嵌合され、冷凍機油による油膜を介して副軸受10と摺動する。主軸部6bおよび副軸部6cの軸心は、回転軸6の軸心と一致している。 An auxiliary bearing 10 made of a ball bearing is provided on the upper part of the subframe 9, and the auxiliary bearing 10 pivotally supports the rotating shaft 6 in the radial direction at the lower part of the electric mechanism portion 110. The auxiliary bearing 10 may be pivotally supported by a bearing configuration other than the ball bearing. The auxiliary shaft portion 6c is fitted with the auxiliary bearing 10 and slides with the auxiliary bearing 10 via an oil film formed by refrigerating machine oil. The axes of the spindle 6b and the sub-axis 6c coincide with the axes of the rotating shaft 6.
 ここで、密閉容器100内の空間を以下の様に定義する。密閉容器100の内部空間のうち、フレーム7より電動機回転子110b側の空間を第1空間72とする。また、フレーム7の内壁と固定台板1aとにより囲まれた空間を第2空間73とする。また、固定台板1aより吐出管102側の空間を第3空間74とする。第2空間73のうち、固定渦巻体1bと揺動渦巻体2bとが組み合わされた構造体部分の外側を、吸入空間73aという。吸入空間73aには、圧縮室71で圧縮される前の冷媒が導入流路7cから導入される。 Here, the space inside the closed container 100 is defined as follows. Of the internal space of the closed container 100, the space on the motor rotor 110b side of the frame 7 is designated as the first space 72. Further, the space surrounded by the inner wall of the frame 7 and the fixed base plate 1a is referred to as the second space 73. Further, the space on the discharge pipe 102 side of the fixed base plate 1a is designated as the third space 74. Of the second space 73, the outside of the structure portion in which the fixed spiral body 1b and the rocking spiral body 2b are combined is referred to as a suction space 73a. The refrigerant before being compressed in the compression chamber 71 is introduced into the suction space 73a from the introduction flow path 7c.
 次に、密閉容器100の内部における圧縮機構部8の部品配置について説明する。
 図2は、実施の形態1に係るスクロール圧縮機の圧縮機構部の横断面図である。図3は、実施の形態1に係るスクロール圧縮機の圧縮機構部の固定渦巻体と揺動渦巻体とを示した平面図である。なお、図2および図3では、固定スクロール1の固定渦巻体1bと揺動スクロール2の揺動渦巻体2bとの区別を容易にするため、揺動スクロール2の揺動渦巻体2bにドットを施してある。後述の図においても同様である。
Next, the arrangement of the parts of the compression mechanism portion 8 inside the closed container 100 will be described.
FIG. 2 is a cross-sectional view of the compression mechanism portion of the scroll compressor according to the first embodiment. FIG. 3 is a plan view showing a fixed spiral body and a swinging spiral body of the compression mechanism portion of the scroll compressor according to the first embodiment. In addition, in FIGS. 2 and 3, in order to facilitate the distinction between the fixed spiral body 1b of the fixed scroll 1 and the rocking spiral body 2b of the rocking scroll 2, dots are added to the rocking spiral body 2b of the rocking scroll 2. It has been given. The same applies to the figures described later.
 密閉容器100は、平面的に見て真円形状であり、密閉容器100の内部に、フレーム7の外周面が密閉容器100の内周面に接触した状態で固着されている。よって、フレーム7の外周面も真円形状となっている。 The closed container 100 has a perfect circular shape when viewed in a plane, and is fixed to the inside of the closed container 100 in a state where the outer peripheral surface of the frame 7 is in contact with the inner peripheral surface of the closed container 100. Therefore, the outer peripheral surface of the frame 7 also has a perfect circular shape.
 そして、本実施の形態1において揺動台板2aの外形形状は扁平形状である。よって、揺動台板2a上に立設される揺動渦巻体2bの渦巻形状もまた扁平形状とすることで、揺動台板2a上のスペースを有効に使用でき、スペース効率を高めることができる。固定台板1aについても同様であり、固定台板1aの外形形状と固定渦巻体1bの渦巻形状とを扁平形状とする。このようにスペース効率を高めることで、密閉容器100の大きさを同じとしたままで圧縮室71の容積の拡大を図ることができ、圧縮機能力を向上することが可能となる。逆に見れば、同じ圧縮機能力を確保するにあたり、密閉容器100の小型化が可能となる。なお、以下において、固定渦巻体1bと揺動渦巻体2bとを区別せず、両方を指すときは、「渦巻体」と総称する。台板についても同様で、固定台板1aと揺動台板2aとを区別せず、両方を指すときは、「台板」と総称する。 Then, in the first embodiment, the outer shape of the rocking base plate 2a is a flat shape. Therefore, by making the spiral shape of the swinging spiral body 2b erected on the rocking base plate 2a also a flat shape, the space on the rocking base plate 2a can be effectively used and the space efficiency can be improved. it can. The same applies to the fixed base plate 1a, and the outer shape of the fixed base plate 1a and the spiral shape of the fixed spiral body 1b are made flat. By increasing the space efficiency in this way, it is possible to increase the volume of the compression chamber 71 while keeping the size of the closed container 100 the same, and it is possible to improve the compression function force. On the contrary, in order to secure the same compression function force, the size of the closed container 100 can be reduced. In the following, when the fixed spiral body 1b and the rocking spiral body 2b are not distinguished and both are referred to, they are collectively referred to as "spiral body". The same applies to the base plate, and when the fixed base plate 1a and the swing base plate 2a are not distinguished and both are referred to, they are collectively referred to as "base plate".
 また、本実施の形態1は、渦巻体の渦巻形状を、扁平率の異なる2つの扁平形状を組み合わせた形状を有することを特徴としている。具体的には、本実施の形態1の渦巻形状は、図3に示すようにAの領域とBの領域とで扁平率の異なる扁平形状を有している。このように、本実施の形態1では、Aの領域とBの領域とで扁平率を変えることにより、一方の領域側、この例ではBの領域側、の扁平形状が、Aの領域の扁平形状に比べて潰れたような形状となっている。そのような形状とすることで、Bの領域側の扁平形状と密閉容器100の内周面との間に空きスペースを形成でき、この空きスペースに導入流路7cが設置される。なお、扁平形状とは、長円形状および楕円形状も含むものであり、要するに真円よりも平べったい形状全般を指すものとする。以上のように構成される渦巻形状の詳細については、また改めて説明する。 Further, the first embodiment is characterized in that the spiral shape of the spiral body has a shape obtained by combining two flat shapes having different flatnesses. Specifically, as shown in FIG. 3, the spiral shape of the first embodiment has a flat shape having a different flatness between the region A and the region B. As described above, in the first embodiment, by changing the flattening ratio between the region A and the region B, the flat shape of one region side, that is, the region side B in this example, is the flattening of the region A. It has a crushed shape compared to the shape. With such a shape, an empty space can be formed between the flat shape on the region side of B and the inner peripheral surface of the closed container 100, and the introduction flow path 7c is installed in this empty space. The flat shape also includes an oval shape and an elliptical shape, and in short, refers to all shapes that are flatter than a perfect circle. The details of the spiral shape configured as described above will be described again.
 次に、スクロール圧縮機の動作について説明する。 Next, the operation of the scroll compressor will be described.
 図4は、実施の形態1に係るスクロール圧縮機における揺動スクロールの1回転中の動作を示す圧縮工程図である。図4(a)は回転位相が0[rad](2π[rad])の場合の渦巻体の位置を示している。図4(b)は回転位相がπ/2[rad]の場合の渦巻体の位置を示している。図4(c)は回転位相がπ[rad]の場合の渦巻体の位置を示している。図4(d)は回転位相が3π/2[rad]の場合の渦巻体の位置を示している。 FIG. 4 is a compression process diagram showing the operation of the swing scroll during one rotation in the scroll compressor according to the first embodiment. FIG. 4A shows the position of the spiral body when the rotation phase is 0 [rad] (2π [rad]). FIG. 4B shows the position of the spiral body when the rotation phase is π / 2 [rad]. FIG. 4C shows the position of the spiral body when the rotation phase is π [rad]. FIG. 4D shows the position of the spiral body when the rotation phase is 3π / 2 [rad].
 電動機構部110の電動機固定子110aに通電されると、電動機回転子110bが回転力を受けて回転する。それに伴い、電動機回転子110bに固定された回転軸6が回転駆動される。回転軸6の回転運動は、偏心軸部6aを介して揺動スクロール2に伝達される。揺動スクロール2の揺動渦巻体2bは、オルダムリング14によって自転が規制されながら揺動半径で揺動運動する。なお、揺動半径とは、主軸部6bに対する偏心軸部6aの偏心量を意味している。 When the electric motor stator 110a of the electric mechanism unit 110 is energized, the electric motor rotor 110b receives rotational force and rotates. Along with this, the rotating shaft 6 fixed to the electric motor rotor 110b is rotationally driven. The rotational motion of the rotating shaft 6 is transmitted to the swing scroll 2 via the eccentric shaft portion 6a. The oscillating spiral body 2b of the oscillating scroll 2 oscillates with an oscillating radius while its rotation is regulated by the old dam ring 14. The swing radius means the amount of eccentricity of the eccentric shaft portion 6a with respect to the spindle portion 6b.
 電動機構部110の駆動に伴い、冷媒が外部の冷凍サイクルから吸入管101を介して密閉容器100内の第1空間72に流入する。第1空間72に流入した低圧冷媒は、フレーム7内に設置された導入流路7cを通って吸入空間73aに流入する。吸入空間73aに流入した低圧冷媒は、圧縮機構部8の揺動渦巻体2bおよび固定渦巻体1bの相対的な揺動動作に伴って圧縮室71へと吸い込まれる。圧縮室71に吸い込まれた冷媒は、図4に示すように揺動渦巻体2bおよび固定渦巻体1bの相対的な動作に伴う圧縮室71の幾何学的な容積変化によって低圧から高圧へと昇圧される。そして、高圧となった冷媒は、固定スクロール1の吐出口1cおよびバッフル4の貫通孔4aを通過し、吐出バルブ11を押し開けて吐出マフラ12内に吐出される。吐出マフラ12内に吐出された冷媒は、第3空間74に吐出され、吐出管102から高圧冷媒として圧縮機外部へと吐出される。図1の矢印がこの冷媒の流れを示している。 As the electric mechanism unit 110 is driven, the refrigerant flows from the external refrigeration cycle into the first space 72 in the closed container 100 via the suction pipe 101. The low-pressure refrigerant that has flowed into the first space 72 flows into the suction space 73a through the introduction flow path 7c installed in the frame 7. The low-pressure refrigerant that has flowed into the suction space 73a is sucked into the compression chamber 71 along with the relative swinging motion of the swinging spiral body 2b and the fixed spiral body 1b of the compression mechanism unit 8. As shown in FIG. 4, the refrigerant sucked into the compression chamber 71 is boosted from low pressure to high pressure due to the geometric volume change of the compression chamber 71 accompanying the relative operation of the swinging spiral body 2b and the fixed spiral body 1b. Will be done. Then, the high-pressure refrigerant passes through the discharge port 1c of the fixed scroll 1 and the through hole 4a of the baffle 4, pushes the discharge valve 11 open, and is discharged into the discharge muffler 12. The refrigerant discharged into the discharge muffler 12 is discharged into the third space 74, and is discharged from the discharge pipe 102 to the outside of the compressor as a high-pressure refrigerant. The arrow in FIG. 1 indicates the flow of this refrigerant.
 本実施の形態1では、上述したように揺動渦巻体2bおよび固定渦巻体1bの輪郭を扁平形状としており、渦巻形状も扁平形状としている。このように、渦巻体の渦巻形状を扁平形状とした圧縮機構部8において、図4に示すように一定の揺動半径で揺動渦巻体2bを動作させた場合においても、揺動渦巻体2bの外向面と内向面が互いに相対する固定渦巻体1bの内向面と外向面に接触しながら動作する。 In the first embodiment, as described above, the contours of the swinging spiral body 2b and the fixed spiral body 1b are flat, and the spiral shape is also flat. As described above, in the compression mechanism unit 8 in which the spiral shape of the spiral body is flat, even when the swing spiral body 2b is operated with a constant swing radius as shown in FIG. 4, the swing spiral body 2b Operates while contacting the inward and outward surfaces of the fixed spiral body 1b whose outward and inward surfaces face each other.
 そして、本実施の形態1は、扁平率の異なる複数の扁平形状を組み合わせた輪郭を有する渦巻体の渦巻形状を式で定義することを特徴とする。渦巻形状は、渦巻体の外向面を特定する外側曲線と渦巻体の内向面を特定する内側曲線とによって決まる。渦巻体の渦巻形状を式で定義するにあたり、具体的には、渦巻体の外側曲線および内側曲線のいずれか一方を、基礎円の伸開線である曲線であって、x、y座標系において伸開角θを用いて以下の式(1)および式(2)で定義される曲線とする。 Then, the first embodiment is characterized in that the spiral shape of the spiral body having a contour combining a plurality of flat shapes having different flatness is defined by an equation. The shape of the spiral is determined by an outer curve that identifies the outward surface of the spiral and an inner curve that identifies the inward surface of the spiral. In defining the spiral shape of the spiral body by the equation, specifically, either the outer curve or the inner curve of the spiral body is a curve that is an involute of the base circle, and is in the x, y coordinate system. The curve defined by the following equations (1) and (2) is obtained by using the involute angle θ.
 式(1)および(2)におけるa(θ)は基礎円の半径である。a(θ)は、以下の式(3)に示すように、「伸開角θに対してπ[rad]を1周期とした正弦波状または余弦波状に変化する関数」と「π[rad]を1周期とした階段関数α(θ)で表される係数α」との積の項を有する関数式で与えられる。係数αは、扁平の度合いを示す係数である。これにより、扁平率の異なる複数の扁平形状を組み合わせた輪郭を有する渦巻体の渦巻形状を式で定義できる。なお、本実施の形態1において、基礎円半径a(θ)は、一例として、式(3)の通りに変化させたものとする。 A (θ) in equations (1) and (2) is the radius of the base circle. As shown in the following equation (3), a (θ) is a “function that changes in a sinusoidal or cosine wave shape with π [rad] as one cycle with respect to the extension angle θ” and “π [rad]. Is given by a functional expression having a term of product with a coefficient α "represented by a step function α (θ) with one cycle. The coefficient α is a coefficient indicating the degree of flatness. Thereby, the spiral shape of the spiral body having a contour combining a plurality of flat shapes having different flatness can be defined by the equation. In the first embodiment, the basic circular radius a (θ) is changed as shown in the equation (3) as an example.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 式(3)において、aは基準となる基礎円半径(以下、基準半径という)である。また、式(3)において、π[rad]を1周期とした階段関数α(θ)とは、伸開角θに対してグラフが階段状になる実関数のことであり、π[rad]を1周期とした指示関数が存在し、それらの線型結合で表される関数である。階段関数α(θ)は、具体的には、π[rad]を1周期として、π/2毎に値が交互に変化する関数である。ここでは、α(θ)は、π/2毎にα1とα2とに交互に変化する。つまり、伸開角θが0からπ/2まではα(θ)=α1となり、伸開角θがπ/2からπまではα(θ)=α2となる。そして、次の1周期でも同様に、πから3π/2まではα(θ)=α1となり、伸開角θが3π/2から2πまではα(θ)=α2となる。 In the formula (3), a 0 is serving as a reference base radius (hereinafter, criterion of radius) is. Further, in the equation (3), the step function α (θ) with π [rad] as one cycle is a real function in which the graph becomes stepped with respect to the extension angle θ, and π [rad]. There is an indicator function with 1 cycle, and it is a function represented by their linear connection. Specifically, the step function α (θ) is a function in which the value changes alternately every π / 2 with π [rad] as one cycle. Here, α (θ) alternates between α1 and α2 every π / 2. That is, α (θ) = α1 when the involute angle θ is from 0 to π / 2, and α (θ) = α2 when the involute angle θ is from π / 2 to π. Similarly, in the next one cycle, α (θ) = α1 from π to 3π / 2, and α (θ) = α2 from the involute angle θ from 3π / 2 to 2π.
 また、式(3)において、Nは1以上の自然数である。ξは定数[rad]であって、式(3)のα(θ)がα1である場合の扁平形状(以下、α1による扁平形状という)と、式(3)のα(θ)がα2である場合の扁平形状(以下、α2による扁平形状という)と、を組み合わせる伸開角である。 Also, in equation (3), N is a natural number of 1 or more. ξ is a constant [rad], and the flat shape when α (θ) in equation (3) is α1 (hereinafter referred to as the flat shape by α1) and α (θ) in equation (3) are α2. It is an involute angle that combines the flat shape in a certain case (hereinafter referred to as the flat shape by α2).
 式(3)において、係数αを変更することで、渦巻体の輪郭の扁平率を任意に設定することが可能になる。具体的には、αの値が大きくなるに連れ、渦巻体の輪郭の扁平率が大きくなり平べったい形状となる。本実施の形態1の渦巻体の渦巻形状は、α1による扁平形状と、α2による扁平形状との2つを組み合わせた形状となる。図3において、Aの領域の扁平形状は、α1を0.3とした場合を示している。Bの領域の扁平形状は、α2を-0.2とした場合を示している。また、図3では、Nの値を1、ξの値を0としている。ξを変更した場合の渦巻体の形状の変化については後述の実施の形態3で説明する。 In equation (3), by changing the coefficient α, the flatness of the contour of the spiral body can be set arbitrarily. Specifically, as the value of α increases, the flatness of the contour of the spiral body increases and the shape becomes flat. The spiral shape of the spiral body of the first embodiment is a combination of a flat shape formed by α1 and a flat shape formed by α2. In FIG. 3, the flat shape of the region A shows the case where α1 is 0.3. The flat shape of the region B shows the case where α2 is −0.2. Further, in FIG. 3, the value of N is 1 and the value of ξ is 0. The change in the shape of the spiral body when ξ is changed will be described in the third embodiment described later.
 次に、固定渦巻体1bおよび揺動渦巻体2bのそれぞれの渦巻形状の製図方法について説明する。固定渦巻体1bと揺動渦巻体2bの製図方法は同じであるため、以下、揺動渦巻体2bを代表して説明する。また、揺動渦巻体2bの渦巻形状は、上述したように扁平率の異なる2つの扁平形状を組み合わせた形状であるが、各扁平形状の製図方法自体は同じである。 Next, a method for drawing the spiral shapes of the fixed spiral body 1b and the swinging spiral body 2b will be described. Since the drawing method of the fixed spiral body 1b and the swinging spiral body 2b is the same, the swinging spiral body 2b will be described below as a representative. Further, the spiral shape of the swinging spiral body 2b is a shape in which two flat shapes having different flatnesses are combined as described above, but the drawing method itself of each flat shape is the same.
 渦巻形状は、上述したように渦巻体の外向面を特定する外側曲線と渦巻体の内向面を特定する内側曲線とによって決まる。ここでは、外側曲線を式(1)および式(2)で定義される曲線とした場合の渦巻形状の製図方法について図5を用いて説明する。 The shape of the spiral is determined by the outer curve that specifies the outward surface of the spiral body and the inner curve that specifies the inward surface of the spiral body as described above. Here, a method of drawing a spiral shape when the outer curve is a curve defined by the equations (1) and (2) will be described with reference to FIG.
 図5は、実施の形態1に係るスクロール圧縮機の圧縮機構部を構成する渦巻形状の製図方法の説明図である。図5において、(a)、(b)、(c)、(d)の手順に製図をする。 FIG. 5 is an explanatory diagram of a spiral-shaped drawing method constituting the compression mechanism portion of the scroll compressor according to the first embodiment. In FIG. 5, drawings are drawn according to the procedures (a), (b), (c), and (d).
 まず、図5(a)に示す通り、基礎円の伸開線30を描く。ここで、a(θ)は、上述したように伸開角θに応じて、π[rad]を1周期とした正弦波状に増加する。ここで描かれた伸開線30が外側曲線となる。a(θ)はα1とする。 First, as shown in FIG. 5A, draw an involute 30 of the base circle. Here, a (θ) increases in a sinusoidal shape with π [rad] as one cycle according to the involute angle θ as described above. The involute 30 drawn here is the outer curve. Let a (θ) be α1.
 次に、図5(b)~図5(d)の手順で内側曲線を描く。すなわち、まず図5(b)に示す通り、手順(a)で描いた伸開線30を基礎円中心Oに対してπ[rad]回転させた曲線31を描く。ここでは内側曲線を作成するため、曲線31のうち曲線30よりも外側に位置する曲線部分(図5(b)において点線部分)は、これ以降の製図手順では使用されない。 Next, draw an inner curve according to the procedure shown in FIGS. 5 (b) to 5 (d). That is, first, as shown in FIG. 5 (b), a curve 31 is drawn by rotating the involute 30 drawn in the procedure (a) by π [rad] with respect to the center of the base circle O. Here, since the inner curve is created, the curved portion (dotted line portion in FIG. 5B) located outside the curve 30 of the curve 31 is not used in the subsequent drafting procedure.
 次に、図5(c)に示す通り、手順(b)で描いた曲線31上に中心を有する、半径が揺動スクロール2の揺動半径と等しい円32、を複数描く。 Next, as shown in FIG. 5 (c), a plurality of circles 32 having a center on the curve 31 drawn in the procedure (b) and having a radius equal to the swing radius of the swing scroll 2 are drawn.
 次に、図5(d)に示す通り、手順(c)で描いた円群の外側包絡線33を描く。この手順(d)で描いた曲線33が内側曲線となる。 Next, as shown in FIG. 5 (d), the outer envelope 33 of the circle group drawn in the procedure (c) is drawn. The curve 33 drawn in this procedure (d) becomes the inner curve.
 以上により、手順(a)で描いた曲線30が揺動渦巻体2bの外側曲線となり、手順(d)で描いた曲線33が揺動渦巻体2bの内側曲線となる。そして、手順(d)のドット領域の基礎円中心Oを中心として左右に分割した一方の領域が、揺動渦巻体2bを構成する2つの渦巻形状の一方の断面となる。 From the above, the curve 30 drawn in the procedure (a) becomes the outer curve of the swinging spiral body 2b, and the curve 33 drawn in the procedure (d) becomes the inner curve of the swinging spiral body 2b. Then, one region divided to the left and right about the center of the basic circle O of the dot region in the procedure (d) becomes one cross section of the two spiral shapes constituting the swinging spiral body 2b.
 同様にして、a(θ)をα2とした場合の渦巻形状を、図5(a)~図5(d)の手順で製図し、手順(d)のドット領域の基礎円中心Oを中心として左右に分割した他方の領域が、揺動渦巻体2bを構成する2つの渦巻形状の他方の断面となる。以上により、揺動渦巻体2bの渦巻形状を製図できる。 Similarly, the spiral shape when a (θ) is α2 is drawn by the procedure of FIGS. 5 (a) to 5 (d), centering on the base circle center O of the dot region of the procedure (d). The other region divided into left and right is the other cross section of the two spiral shapes constituting the swinging spiral body 2b. From the above, the spiral shape of the swinging spiral body 2b can be drawn.
 固定渦巻体1bに関しては、前述の揺動渦巻体2bと同様の手順を踏むものとし、揺動渦巻体2bと肉厚が等しい仕様においては揺動渦巻体2bの形状をπ[rad]回転させた形状となる。 Regarding the fixed spiral body 1b, the same procedure as that of the swinging spiral body 2b described above was adopted, and the shape of the rocking spiral body 2b was rotated by π [rad] in the specification having the same wall thickness as the rocking spiral body 2b. It becomes a shape.
 なお、ここでは、外側曲線を式(1)および式(2)で定義される曲線とした場合の渦巻形状の製図方法について説明したが、内側曲線を式(1)および式(2)で定義される曲線とした場合の渦巻形状の製図方法も基本的に同様である。内側曲線を式(1)および式(2)で定義される曲線とした場合は、外側曲線を以下のようにして描けばよい。まず、図5(a)の手順を行い、次に、図5(b)において曲線30のうち曲線31よりも外側に位置する曲線部分を、これ以降の製図手順で使用しない。そして、曲線31上に中心を有する、半径が揺動スクロール2の揺動半径と等しい円32、を複数描く。この円群の内側包絡線が外側曲線となる。 Here, the method of drawing the spiral shape when the outer curve is the curve defined by the equations (1) and (2) has been described, but the inner curve is defined by the equations (1) and (2). The method of drawing a spiral shape in the case of a curved line is basically the same. When the inner curve is the curve defined by the equations (1) and (2), the outer curve may be drawn as follows. First, the procedure shown in FIG. 5A is performed, and then the curved portion of the curve 30 located outside the curve 31 in FIG. 5B is not used in the subsequent drawing procedure. Then, a plurality of circles 32 having a center on the curve 31 and having a radius equal to the swing radius of the swing scroll 2 are drawn. The inner envelope of this circle group becomes the outer curve.
 図6は、実施の形態1に係るスクロール圧縮機における渦巻体の渦巻形状の製図に用いる基礎円半径a(θ)に関する特性の一例を示す図である。図6の縦軸は、基準半径aに対する基礎円半径a(θ)の比率を示している。図6の横軸は、伸開角θ[rad]を示している。 FIG. 6 is a diagram showing an example of characteristics related to the basic circular radius a (θ) used for drawing the spiral shape of the spiral body in the scroll compressor according to the first embodiment. The vertical axis of FIG. 6 shows the ratio of base circle with respect to a reference radius a 0 radius a (theta). The horizontal axis of FIG. 6 indicates the extension angle θ [rad].
 図6には、図3と同様に式(3)のα(θ)の値をα1=0.3およびα2=-0.2とし、Nの値を1、ξの値を0とした場合の、伸開角θに対する基礎円半径a(θ)の周期的な変化を示している。図6に示す基礎円半径a(θ)の波形において、a(θ)/aの値が大きい程、渦巻体の肉厚が厚くなることを示す。よって、π/4、5π/4、9π/4において、渦巻体の肉厚が厚くなる。また、基礎円半径a(θ)の波形において、1.0を超える方のピークがある伸開角の方向に、渦巻体が引き延ばされた形状となる。よって、図6の例では、伸開角がπ/4、5π/4、9π/4において、1.0を超える方のピークがくるため、図3に示すように横方向に引き延ばされた形状となる。 FIG. 6 shows the case where the value of α (θ) in the equation (3) is α1 = 0.3 and α2 = −0.2, the value of N is 1, and the value of ξ is 0, as in FIG. The periodic change of the base circle radius a (θ) with respect to the involute angle θ is shown. In the waveform of the basic circular radius a (θ) shown in FIG. 6, it is shown that the larger the value of a (θ) / a 0 , the thicker the wall thickness of the spiral body. Therefore, the wall thickness of the spiral body becomes thicker at π / 4, 5π / 4, and 9π / 4. Further, in the waveform of the basic circular radius a (θ), the spiral body is stretched in the direction of the involute angle where the peak exceeding 1.0 is present. Therefore, in the example of FIG. 6, when the involute angles are π / 4, 5π / 4, and 9π / 4, the peak exceeding 1.0 comes, so that the involute is stretched in the lateral direction as shown in FIG. Shape.
 以上説明したように、実施の形態1では、伸開角θを用いて渦巻体の渦巻形状を上記式(1)および式(2)で定義した。そして、式(1)および式(2)における基礎円半径a(θ)を、「伸開角θに対してπ[rad]を1周期とした正弦波状または余弦波状に変化する関数」と「π[rad]を1周期とした階段関数α(θ)で表される係数α」との積の項を有するものとした。これにより、扁平率の異なる複数の扁平形状を組み合わせた輪郭を有する渦巻体の渦巻形状を、式で定義できる。 As described above, in the first embodiment, the spiral shape of the spiral body is defined by the above equations (1) and (2) using the extension angle θ. Then, the fundamental pi a (θ) in the equations (1) and (2) is changed to "a function that changes in a sinusoidal shape or a cosine wave shape with π [rad] as one cycle with respect to the extension angle θ" and ". It is assumed that it has a term of product with the coefficient α "represented by the step function α (θ) with π [rad] as one cycle. Thereby, the spiral shape of the spiral body having a contour combining a plurality of flat shapes having different flatness can be defined by the equation.
 実施の形態1では、基礎円半径a(θ)を式(3)とすることで、固定渦巻体1bおよび揺動渦巻体2bの輪郭を任意に設定することができる。 In the first embodiment, the contours of the fixed spiral body 1b and the swinging spiral body 2b can be arbitrarily set by setting the basic circular radius a (θ) to the equation (3).
 実施の形態1では、α(θ)が、変化周期をπ[rad]として、π/2毎に値が交互に変化する関数である。このようにαが2つの値を取ることで、空きスペースを一箇所に集約できる渦巻体の渦巻形状を式で定義できる。具体的には、一方のαの値が他方のαの値よりも小さい値とすることで、一方のαを用いた扁平形状側に空きスペースを形成できる。この空きスペースに導入流路7cを形成でき、導入流路7cを1つにした場合において、導入流路7cの流路面積を大きく設定することが可能となる。 In the first embodiment, α (θ) is a function in which the value changes alternately every π / 2, with the change period as π [rad]. By taking two values of α in this way, the spiral shape of the spiral body that can consolidate the empty space in one place can be defined by the equation. Specifically, by setting the value of one α to a value smaller than the value of the other α, an empty space can be formed on the flat shape side using one α. The introduction flow path 7c can be formed in this empty space, and when the introduction flow path 7c is unified, the flow path area of the introduction flow path 7c can be set large.
実施の形態2.
 実施の形態2では、上記式(3)におけるαの値に応じた、渦巻体の輪郭の扁平率の変化について説明する。以下、実施の形態2が実施の形態1と異なる構成を中心に説明するものとし、実施の形態2で説明されない構成は実施の形態1と同様である。
Embodiment 2.
In the second embodiment, the change in the flatness of the contour of the spiral body according to the value of α in the above formula (3) will be described. Hereinafter, the configuration in which the second embodiment is different from the first embodiment will be mainly described, and the configurations not described in the second embodiment are the same as those in the first embodiment.
 上記式(3)において、αの値を変更した場合の渦巻体の形状について次の図7に記す。 In the above equation (3), the shape of the spiral body when the value of α is changed is shown in FIG. 7 below.
 図7は、実施の形態2に係るスクロール圧縮機における渦巻体の外側曲線の扁平率の変化を示す図である。図7において(a)はα1=0、α2=0の場合、(b)はα1=0.3、α2=0の場合、(c)はα1=0.3、α2=-0.2の場合を示している。 FIG. 7 is a diagram showing a change in the flatness of the outer curve of the spiral body in the scroll compressor according to the second embodiment. In FIG. 7, (a) is when α1 = 0 and α2 = 0, (b) is when α1 = 0.3 and α2 = 0, and (c) is when α1 = 0.3 and α2 = −0.2. Shows the case.
 図7に示すように、αの値を変更することで、渦巻体の輪郭の扁平率を任意に設定することが可能となる。なお、扁平率とは、図7(a)に示すように長径D11+D12と短径D2との比(D11+D12)/D2である。このうち、図中のAの領域、つまりα1で渦巻を形成している領域の扁平率は(D11×2)/D2となる。また、図中のBの領域、つまりα2で渦巻を形成している領域の扁平率は(D12×2)/D2となる。 As shown in FIG. 7, by changing the value of α, it is possible to arbitrarily set the flatness of the contour of the spiral body. The flatness is the ratio (D11 + D12) / D2 of the major axis D11 + D12 to the minor axis D2 as shown in FIG. 7A. Of these, the flattening ratio of the region A in the figure, that is, the region forming the spiral at α1, is (D11 × 2) / D2. Further, the flatness of the region B in the figure, that is, the region forming the spiral with α2 is (D12 × 2) / D2.
 具体的には、αの値を大きくするに連れ、扁平率が大きくなる。図7では、(a)と(b)におけるAの領域の扁平形状を比較して明らかなように、α1の値が大きい(b)の方が(a)よりも扁平率が大きくなっている。図7の(b)と(c)では、Bの領域の扁平形状を比較して明らかなように、α2の値が大きい(b)の方が(c)よりも扁平率が大きくなっている。 Specifically, the flattening rate increases as the value of α increases. In FIG. 7, as is clear by comparing the flat shapes of the regions A in (a) and (b), the flattening ratio of (b) having a large value of α1 is larger than that of (a). .. In FIGS. 7 (b) and 7 (c), as is clear by comparing the flat shapes of the region B, the flattening ratio of (b) having a large α2 value is larger than that of (c). ..
 また、図7から明らかなように、α1とα2の値によって、図7中のAの領域およびBの領域のそれぞれの扁平形状の扁平率を、それぞれ独立して設定することができる。 Further, as is clear from FIG. 7, the flatness of each of the flat shapes of the region A and the region B in FIG. 7 can be set independently by the values of α1 and α2.
 実施の形態2によれば、実施の形態1と同様の効果が得られると共に、α1およびα2の値によって、各扁平形状のそれぞれの扁平率を任意に設定することが可能となる。よって、導入流路7cの設置スペースに合わせてα1およびα2を設定することで、導入流路7cを1つにした場合でも、導入流路7cの流路面積を大きく設定することができる。 According to the second embodiment, the same effect as that of the first embodiment can be obtained, and the flattening ratio of each flat shape can be arbitrarily set by the values of α1 and α2. Therefore, by setting α1 and α2 according to the installation space of the introduction flow path 7c, the flow path area of the introduction flow path 7c can be set large even when the introduction flow path 7c is unified.
実施の形態3.
 実施の形態3では、伸開角ξを変化させた場合について説明する。以下、実施の形態3が実施の形態1と異なる構成を中心に説明するものとし、実施の形態3で説明されない構成は実施の形態1と同様である。
Embodiment 3.
In the third embodiment, the case where the extension angle ξ is changed will be described. Hereinafter, the configuration in which the third embodiment is different from the first embodiment will be mainly described, and the configurations not described in the third embodiment are the same as those in the first embodiment.
 図8は、実施の形態3に係るスクロール圧縮機における渦巻体を示す図である。図8において(a)はα1=0.3、α2=-0.2、ξ=0[rad]の場合、(b)はα1=0.3、α2=-0.2、ξ=π/4[rad]の場合を示している。ξは、上述したようにα1による扁平形状と、α2による扁平形状とを組み合わせる伸開角である。図8(a)および図8(b)のいずれの渦巻においても、図8中の領域Aはα1による扁平形状を示し、領域Bはα2による扁平形状を示している。図8から明らかなように、ξの値を変更することで渦巻形状全体としての向きが変化する。 FIG. 8 is a diagram showing a spiral body in the scroll compressor according to the third embodiment. In FIG. 8, when (a) is α1 = 0.3, α2 = −0.2, ξ = 0 [rad], (b) is α1 = 0.3, α2 = −0.2, ξ = π / The case of 4 [rad] is shown. ξ is an involute angle that combines the flat shape of α1 and the flat shape of α2 as described above. In both the spirals of FIGS. 8 (a) and 8 (b), the region A in FIG. 8 shows a flat shape due to α1, and the region B shows a flat shape due to α2. As is clear from FIG. 8, changing the value of ξ changes the direction of the spiral shape as a whole.
 図9は、図8(b)に係るスクロール圧縮機における揺動スクロールの1回転中の動作を示す圧縮工程図である。図9(a)は回転位相が0[rad](2π[rad])の場合の渦巻体の位置を示している。図9(b)は回転位相がπ/2[rad]の場合の渦巻体の位置を示している。図9(c)は回転位相がπ[rad]の場合の渦巻体の位置を示している。図9(d)は回転位相が3π/2[rad]の場合の渦巻体の位置を示している。図9に示すように、ξの値を0[rad]以外の位相に設定した場合でも、実施の形態1の図4の場合と同様にして圧縮動作を実現することができる。 FIG. 9 is a compression process diagram showing the operation of the swing scroll in one rotation in the scroll compressor according to FIG. 8 (b). FIG. 9A shows the position of the spiral body when the rotation phase is 0 [rad] (2π [rad]). FIG. 9B shows the position of the spiral body when the rotation phase is π / 2 [rad]. FIG. 9C shows the position of the spiral body when the rotation phase is π [rad]. FIG. 9D shows the position of the spiral body when the rotation phase is 3π / 2 [rad]. As shown in FIG. 9, even when the value of ξ is set to a phase other than 0 [rad], the compression operation can be realized in the same manner as in the case of FIG. 4 of the first embodiment.
 実施の形態3によれば、実施の形態1および実施の形態2と同様の効果が得られると共に、ξの値を変更することで、導入流路7cを配置する位置に合わせて渦巻形状全体としての向きを変更できる。 According to the third embodiment, the same effect as that of the first embodiment and the second embodiment can be obtained, and by changing the value of ξ, the spiral shape as a whole is adjusted to the position where the introduction flow path 7c is arranged. You can change the orientation of.
実施の形態4.
 実施の形態4では、基礎円半径a(θ)の他の関数式について説明する。以下、実施の形態4が実施の形態1と異なる構成を中心に説明するものとし、実施の形態4で説明されない構成は実施の形態1と同様である。
Embodiment 4.
In the fourth embodiment, another functional expression of the basic circular radius a (θ) will be described. Hereinafter, the configuration in which the fourth embodiment is different from the first embodiment will be mainly described, and the configurations not described in the fourth embodiment are the same as those in the first embodiment.
 図10は、実施の形態4に係るスクロール圧縮機における渦巻体の基礎円半径a(θ)に関する特性を示す図である。図10(a)~図10(d)は、順に、基礎円半径a(θ)の関数式を、上記実施の形態1で示した式(3)と、以下の式(4)~式(6)とした場合に対応している。図10の縦軸は、基準半径aに対する基礎円半径a(θ)の比率を示している。図10の横軸は、伸開角θ[rad]を示している。また、図10の(a)~(d)のいずれも、α1=0.3、α2=-0.2、N=1、ξ=0としている。 FIG. 10 is a diagram showing the characteristics of the basic circular radius a (θ) of the spiral body in the scroll compressor according to the fourth embodiment. 10 (a) to 10 (d) show, in order, the functional equations of the basic circular radius a (θ), the equation (3) shown in the first embodiment, and the following equations (4) to (2). It corresponds to the case of 6). The vertical axis of FIG. 10 shows the ratio of base circle with respect to a reference radius a 0 radius a (theta). The horizontal axis of FIG. 10 indicates the extension angle θ [rad]. Further, in all of FIGS. 10A to 10D, α1 = 0.3, α2 = −0.2, N = 1, and ξ = 0.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 基礎円半径a(θ)には、実施の形態1示した式(3)の他に、式(4)~式(6)を用いることができる。基礎円半径a(θ)を式(3)~式(6)のように変更することで、固定渦巻体1bおよび揺動渦巻体2bの輪郭を任意に設定することが可能となる。 For the basic circular radius a (θ), equations (4) to (6) can be used in addition to the equation (3) shown in the first embodiment. By changing the basic circular radius a (θ) as in equations (3) to (6), the contours of the fixed spiral body 1b and the swinging spiral body 2b can be arbitrarily set.
 実施の形態1~実施の形態4においては、密閉容器100の内部が低圧冷媒で満たされる低圧シェル型のスクロール圧縮機について示したが、密閉容器100の内部が高圧冷媒で満たされる高圧シェル型のスクロール圧縮機とした場合でも、同様の効果が得られる。 In the first to fourth embodiments, the low-pressure shell type scroll compressor in which the inside of the closed container 100 is filled with the low-pressure refrigerant is shown, but the inside of the closed container 100 is filled with the high-pressure refrigerant. The same effect can be obtained even when a scroll compressor is used.
 1 固定スクロール、1a 固定台板、1b 固定渦巻体、1c 吐出口、2 揺動スクロール、2a 揺動台板、2b 揺動渦巻体、2c 揺動軸受、4 バッフル、4a 貫通孔、5 バランスウェイト付スライダー、6 回転軸、6a 偏心軸部、6b 主軸部、6c 副軸部、7 フレーム、7a 主軸受、7b ボス部、7c 導入流路、8 圧縮機構部、9 サブフレーム、9a サブフレームホルダ、10 副軸受、11 吐出バルブ、12 吐出マフラ、13 スリーブ、14 オルダムリング、14a キー部、30 伸開線、32 円、33 外側包絡線、60 第1バランスウェイト、61 第2バランスウェイト、71 圧縮室、72 第1空間、73 第2空間、73a 吸入空間、74 第3空間、100 密閉容器、100a 油溜め部、101 吸入管、102 吐出管、110 電動機構部、110a 電動機固定子、110b 電動機回転子、112 ポンプ要素。 1 fixed scroll, 1a fixed base plate, 1b fixed spiral body, 1c discharge port, 2 rocking scroll, 2a rocking base plate, 2b rocking spiral body, 2c rocking bearing, 4 baffle, 4a through hole, 5 balance weight Attached slider, 6 rotary shaft, 6a eccentric shaft part, 6b main shaft part, 6c sub-shaft part, 7 frame, 7a main bearing, 7b boss part, 7c introduction flow path, 8 compression mechanism part, 9 subframe, 9a subframe holder 10, Auxiliary bearing, 11 Discharge valve, 12 Discharge muffler, 13 Sleeve, 14 Oldam ring, 14a Key part, 30 Extension wire, 32 yen, 33 Outer wrapping wire, 60 1st balance weight, 61 2nd balance weight, 71 Compression chamber, 72 1st space, 73 2nd space, 73a suction space, 74 3rd space, 100 closed container, 100a oil reservoir, 101 suction pipe, 102 discharge pipe, 110 electric mechanism part, 110a electric motor stator, 110b Motor rotor, 112 pump element.

Claims (5)

  1.  固定台板に固定渦巻体が立設された固定スクロールと、揺動台板に揺動渦巻体が立設された揺動スクロールとを備え、前記固定渦巻体と前記揺動渦巻体とが噛み合うことで形成される圧縮室内で冷媒を圧縮するスクロール圧縮機において、
     前記固定渦巻体および前記揺動渦巻体のそれぞれの外側曲線および内側曲線のいずれか一方を、基礎円の伸開線である曲線であって、x、y座標系において伸開角θを用いて式(1)および式(2)で定義される曲線とし、前記式(1)および前記式(2)における前記基礎円の半径a(θ)が、「伸開角θに対してπ[rad]を1周期とした正弦波状または余弦波状に変化する関数」と「π[rad]を1周期とした階段関数で表される係数」との積の項を有するスクロール圧縮機。
    Figure JPOXMLDOC01-appb-M000001
    Figure JPOXMLDOC01-appb-M000002
    A fixed scroll in which a fixed spiral body is erected on a fixed base plate and a swing scroll in which a swing spiral body is erected on a swing base plate are provided, and the fixed spiral body and the swing spiral body mesh with each other. In a scroll compressor that compresses the refrigerant in the compression chamber formed by
    One of the outer curve and the inner curve of the fixed spiral body and the rocking spiral body is a curve that is an involute of the base circle, and the extension angle θ is used in the x and y coordinate systems. The curve is defined by the equations (1) and (2), and the radius a (θ) of the base circle in the equations (1) and (2) is “π [rad” with respect to the involute angle θ. ] Is a function that changes in a sinusoidal or cosine wave shape with one cycle ”and“ a coefficient represented by a step function with π [rad] as one cycle ”is a scroll compressor having a term.
    Figure JPOXMLDOC01-appb-M000001
    Figure JPOXMLDOC01-appb-M000002
  2.  前記基礎円半径a(θ)が、式(3)~式(6)のいずれかの式で与えられる請求項1記載のスクロール圧縮機。
     ここで、aは、基準となる基礎円半径であり、α(θ)は前記階段関数であり、Nは1以上の自然数であり、ξは定数[rad]である。
    Figure JPOXMLDOC01-appb-M000003
    Figure JPOXMLDOC01-appb-M000004
    Figure JPOXMLDOC01-appb-M000005
    Figure JPOXMLDOC01-appb-M000006
    The scroll compressor according to claim 1, wherein the basic circular radius a (θ) is given by any of the equations (3) to (6).
    Here, a 0 is a reference basic circular radius, α (θ) is the step function, N is a natural number of 1 or more, and ξ is a constant [rad].
    Figure JPOXMLDOC01-appb-M000003
    Figure JPOXMLDOC01-appb-M000004
    Figure JPOXMLDOC01-appb-M000005
    Figure JPOXMLDOC01-appb-M000006
  3.  前記α(θ)は、変化周期をπ[rad]として、π/2毎に値が交互に変化する関数である請求項2記載のスクロール圧縮機。 The scroll compressor according to claim 2, wherein α (θ) is a function in which the value changes alternately every π / 2, with the change period as π [rad].
  4.  前記式(1)および前記式(2)で定義された曲線が前記外側曲線であるとき、前記固定渦巻体および前記揺動渦巻体のそれぞれの前記内側曲線は、前記外側曲線を前記基礎円の中心を基準としてπ[rad]回転させた曲線上に中心を有する、半径が前記揺動スクロールの揺動半径と等しい円群の外側包絡線であり、
     前記式(1)および前記式(2)で定義された曲線が前記内側曲線であるとき、前記固定渦巻体および前記揺動渦巻体のそれぞれの前記外側曲線は、前記内側曲線を前記基礎円の中心を基準としてπ[rad]回転させた曲線上に中心を有する、半径が前記揺動スクロールの前記揺動半径と等しい円群の内側包絡線とする請求項1~請求項3のいずれか一項に記載のスクロール圧縮機。
    When the curves defined by the equation (1) and the equation (2) are the outer curves, the inner curves of the fixed spiral body and the swinging spiral body each have the outer curve of the base circle. An outer wrapping line of a group of circles having a center on a curve rotated by π [rad] with respect to the center and having a radius equal to the swing radius of the swing scroll.
    When the curves defined by the equations (1) and (2) are the inner curves, the outer curves of the fixed spiral body and the swinging spiral body each have the inner curve of the base circle. Any one of claims 1 to 3, wherein the inner wrapping line of a circle group having a center on a curve rotated by π [rad] with respect to the center and having a radius equal to the swing radius of the swing scroll. The scroll compressor described in the section.
  5.  前記揺動台板は、外形形状が扁平形状である請求項1~請求項4のいずれか一項に記載のスクロール圧縮機。 The scroll compressor according to any one of claims 1 to 4, wherein the rocking base plate has a flat outer shape.
PCT/JP2019/015943 2019-04-12 2019-04-12 Scroll compressor WO2020208803A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019546937A JP6625297B1 (en) 2019-04-12 2019-04-12 Scroll compressor
PCT/JP2019/015943 WO2020208803A1 (en) 2019-04-12 2019-04-12 Scroll compressor
CN201980094862.6A CN113677892B (en) 2019-04-12 2019-04-12 Scroll compressor having a plurality of scroll members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/015943 WO2020208803A1 (en) 2019-04-12 2019-04-12 Scroll compressor

Publications (1)

Publication Number Publication Date
WO2020208803A1 true WO2020208803A1 (en) 2020-10-15

Family

ID=69101002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/015943 WO2020208803A1 (en) 2019-04-12 2019-04-12 Scroll compressor

Country Status (3)

Country Link
JP (1) JP6625297B1 (en)
CN (1) CN113677892B (en)
WO (1) WO2020208803A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114729636B (en) * 2019-11-22 2024-04-02 三菱电机株式会社 Scroll compressor having a rotor with a rotor shaft having a rotor shaft with a
JP7364523B2 (en) * 2020-03-31 2023-10-18 株式会社豊田自動織機 scroll compressor
JP7387032B2 (en) * 2021-01-06 2023-11-27 三菱電機株式会社 scroll compressor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05223071A (en) * 1991-12-20 1993-08-31 Hitachi Ltd Scroll type fluid machine, scroll member and method for working the same
JPH0849670A (en) * 1994-08-05 1996-02-20 Toyota Autom Loom Works Ltd Scroll type compressor
US20020071780A1 (en) * 2000-12-07 2002-06-13 Chang Young Il Scroll compressor
JP2017089491A (en) * 2015-11-10 2017-05-25 三菱重工オートモーティブサーマルシステムズ株式会社 Scroll Type Fluid Machine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3044976B2 (en) * 1993-07-06 2000-05-22 三菱電機株式会社 Scroll compressor
US6146118A (en) * 1998-06-22 2000-11-14 Tecumseh Products Company Oldham coupling for a scroll compressor
CN1743674A (en) * 2005-09-29 2006-03-08 重庆大学 Efficient high compression ratio vortex compressor
JP2010174732A (en) * 2009-01-29 2010-08-12 Mitsubishi Electric Corp Scroll fluid-machinery
CN105431634B (en) * 2013-09-19 2017-03-08 三菱电机株式会社 Scroll compressor
CN106593865B (en) * 2016-12-22 2019-04-26 浙江高领新能源科技有限公司 A kind of bidentate scroll air compressor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05223071A (en) * 1991-12-20 1993-08-31 Hitachi Ltd Scroll type fluid machine, scroll member and method for working the same
JPH0849670A (en) * 1994-08-05 1996-02-20 Toyota Autom Loom Works Ltd Scroll type compressor
US20020071780A1 (en) * 2000-12-07 2002-06-13 Chang Young Il Scroll compressor
JP2017089491A (en) * 2015-11-10 2017-05-25 三菱重工オートモーティブサーマルシステムズ株式会社 Scroll Type Fluid Machine

Also Published As

Publication number Publication date
CN113677892A (en) 2021-11-19
JPWO2020208803A1 (en) 2021-04-30
CN113677892B (en) 2022-12-16
JP6625297B1 (en) 2019-12-25

Similar Documents

Publication Publication Date Title
JP4310960B2 (en) Scroll type fluid machinery
JP5879532B2 (en) Scroll compressor
WO2014178188A1 (en) Scroll compressor
WO2020208803A1 (en) Scroll compressor
JP4973237B2 (en) Rotary fluid machine
KR20190025246A (en) Scroll compressor
JP6615425B1 (en) Scroll compressor
WO2020188738A1 (en) Scroll compressor
JP6340964B2 (en) Rotary compressor
JP6991111B2 (en) Scroll compressor
JPH09195959A (en) Scroll compressor
JP7308970B2 (en) scroll compressor
JPWO2020165967A1 (en) Scroll compressor
WO2022149198A1 (en) Scroll compressor
WO2022172356A1 (en) Scroll compressor
JP4007271B2 (en) Scroll type fluid machinery
JP3913072B2 (en) Scroll compressor
JP7138807B2 (en) scroll compressor
JP2008248823A (en) Scroll fluid machine
JP2008082267A (en) Compressor
JP2001003878A (en) Displacement type fluid machine

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019546937

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19924418

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19924418

Country of ref document: EP

Kind code of ref document: A1