WO2020202939A1 - 5g通信用アンテナアレイ、アンテナ構造、ノイズ抑制熱伝導シート及び熱伝導シート - Google Patents
5g通信用アンテナアレイ、アンテナ構造、ノイズ抑制熱伝導シート及び熱伝導シート Download PDFInfo
- Publication number
- WO2020202939A1 WO2020202939A1 PCT/JP2020/008178 JP2020008178W WO2020202939A1 WO 2020202939 A1 WO2020202939 A1 WO 2020202939A1 JP 2020008178 W JP2020008178 W JP 2020008178W WO 2020202939 A1 WO2020202939 A1 WO 2020202939A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat
- antenna array
- conductive sheet
- heat conductive
- noise
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/02—Arrangements for de-icing; Arrangements for drying-out ; Arrangements for cooling; Arrangements for preventing corrosion
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/2283—Supports; Mounting means by structural association with other equipment or articles mounted in or on the surface of a semiconductor substrate as a chip-type antenna or integrated with other components into an IC package
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/42—Housings not intimately mechanically associated with radiating elements, e.g. radome
- H01Q1/422—Housings not intimately mechanically associated with radiating elements, e.g. radome comprising two or more layers of dielectric material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/52—Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
- H01Q1/526—Electromagnetic shields
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q17/00—Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
- H01Q17/004—Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems using non-directional dissipative particles, e.g. ferrite powders
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/06—Arrays of individually energised antenna units similarly polarised and spaced apart
- H01Q21/061—Two dimensional planar arrays
- H01Q21/065—Patch antenna array
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q23/00—Antennas with active circuits or circuit elements integrated within them or attached to them
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
- H01Q3/26—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
- H01Q3/30—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
- H01Q3/34—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/0407—Substantially flat resonant element parallel to ground plane, e.g. patch antenna
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K9/00—Screening of apparatus or components against electric or magnetic fields
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
Definitions
- the present invention provides a noise-suppressing heat-conducting sheet and heat suitable for use in a 5G communication antenna array and antenna structure having excellent heat dissipation and cross-talk suppression effect, and the 5G communication antenna array and antenna structure. It is about a conduction sheet.
- Massive MIMO is an elemental technology that employs “ultra-multi-element antennas", which are expected to have as many antennas as tens or 100 or more on the base station side. It is said that by increasing the number of antenna elements horizontally and vertically as in the Massive MIMO structure, the beam of the communication propagation tends to become thinner. It is thinner and longer, and as an image, by drawing a straight line like a laser light and controlling it, it is possible to pinpoint radio waves with high directivity to a communication device such as a specific smartphone. .. Therefore, by adopting this Massive MIMO, it is expected to be more effective in terms of large-capacity communication and utilization efficiency than ever before.
- Patent Document 1 describes a rectangular dielectric and input / output formed on the outer surface of the dielectric for the purpose of suppressing loss due to reflection or radiation of an electromagnetic field in the input / output portion of the dielectric waveguide.
- a derivative waveguide composed of an electrode and a conductor film, in which an input / output electrode extends inward of the bottom surface from the first end near the apex of the dielectric on the bottom surface of the dielectric, and a conductor non-forming portion is provided.
- Massive MIMO systems with filters are disclosed.
- the technique disclosed in Patent Document 1 can obtain a certain noise suppression effect in the input / output portion of the dielectric waveguide, the heat dissipation is not sufficient, and there is a problem that heat is generated by long-term use. was there. Further, further improvement in the crosstalk suppression effect when the number of antennas is increased has been desired.
- the present inventors have repeatedly studied to solve the above problems, and by providing a noise suppression heat conductive sheet on a high frequency semiconductor device (RFIC) formed on one surface of a substrate, a high electromagnetic wave suppression effect can be obtained. It was found that the crosstalk generated between each RFIC can be suppressed. Further, since the noise suppression heat conduction sheet is provided between the high frequency semiconductor device and the heat radiating member, the heat generated from the high frequency semiconductor device can be efficiently transferred to the heat radiating member (first heat radiating member). It has also been found that the heat generated from the antenna can be diffused by the heat radiating member (second heat radiating member), so that the heat radiating property can be improved.
- RFIC high frequency semiconductor device
- the present invention has been made based on the above findings, and the gist thereof is as follows.
- An antenna array for 5G communication which comprises. With the above configuration, excellent heat dissipation and crosstalk suppression effect can be realized.
- the noise suppression heat conductive sheet contains carbon fibers.
- the 5G communication antenna array according to any one of (1) to (7) above, wherein the 5G communication antenna array is used for Massive MIMO.
- An antenna and a second heat radiating member sequentially formed on the other surface of the substrate.
- a noise suppressing heat conductive sheet suitable for a semiconductor device having excellent heat dissipation and crosstalk suppressing effect can be obtained.
- a heat conductive sheet suitable for a semiconductor device having excellent heat dissipation and crosstalk suppressing effect can be obtained.
- an antenna array and an antenna structure for 5G communication having excellent heat dissipation and crosstalk suppression effect.
- a noise-suppressing heat-conducting sheet and a heat-conducting sheet suitable for use in a 5G communication antenna array and an antenna structure having excellent heat dissipation and cross-talk suppressing effect Become.
- Example 3 it is a graph which showed the amount of near-end crosstalk (S31) when the dielectric constant of the noise suppression heat conduction sheet of the antenna array for 5G communication was changed, and (a) is the near-end crosstalk at 10GHz.
- Example 4 it is a graph which showed the amount of near-end crosstalk (S31) at 28GHz when the magnetic permeability of the noise suppression heat conduction sheet of the antenna array for 5G communication was changed.
- FIGS. 1 and 2 are diagrams schematically showing cross sections of an example of an embodiment of the antenna array for 5G communication of the present invention.
- each drawing is shown in a state in which the shape and scale of each member are different from the actual ones.
- the shape and scale of each member can be appropriately changed for each semiconductor device, except as specified in this specification.
- the antenna array 1 for 5G communication is Board 10 and At least one high-frequency semiconductor device 20, a noise-suppressing heat conductive sheet 30, and a first heat-dissipating member 41 sequentially formed on one surface 10a of the substrate 10. It includes at least one antenna 50, a second heat radiating member 42, and 60 sequentially formed on the other surface 10b of the substrate 10.
- the noise suppression heat conductive sheet 30 in the antenna array 1 for 5G communication according to the embodiment of the present invention, by providing the noise suppression heat conductive sheet 30, it is possible to absorb and / or block electromagnetic waves that become noise generated from the high frequency semiconductor device 20. Therefore, it is possible to suppress an increase in crosstalk without hindering the transmission and reception of radio waves.
- the noise suppression heat conduction sheet 30 since the noise suppression heat conduction sheet 30 is provided between the high frequency semiconductor device 20 and the first heat dissipation member 41, the high frequency semiconductor The heat generated from the device 20 can be efficiently transferred to the first heat radiating member 41, and excellent heat radiating property can be realized.
- the heat generated from the antenna can be efficiently radiated by the second heat radiating member 42 formed on the other surface 10b side of the substrate 20.
- the heat dissipation of the entire 5G communication antenna array 1 can be further improved.
- the noise suppression heat conduction sheet 30 is not provided in the state of being in contact with the high frequency semiconductor device 20 as in the present invention, a sufficient crosstalk suppression effect cannot be obtained. .. Further, since the noise suppressing heat conductive sheet 30 is not provided between the high frequency semiconductor device 20 and the first heat radiating member 41, it is considered that sufficient heat radiating property cannot be obtained.
- the “antenna array for 5G communication” in the present invention means an “antenna array used in a fifth generation (5G) mobile communication system". Further, the “antenna array” means an aggregate of antennas composed of at least one antenna. Therefore, the 5G communication antenna array 1 according to the embodiment of the present invention is preferably used in a technique such as Massive MIMO from the viewpoint of being able to transmit and receive high frequency radio waves with low power consumption.
- the 5G communication antenna array 1 according to the embodiment of the present invention includes a substrate 10.
- the substrate 10 is a so-called double-sided substrate having circuits on both sides (one surface 10a and the other surface 10b).
- the other detailed conditions of the substrate 10 are not particularly limited, and a known substrate can be appropriately selected and used according to the required performance.
- the 5G communication antenna array 1 includes a high-frequency semiconductor device 20 formed on one surface 10a of the substrate 10.
- the high frequency semiconductor device is a semiconductor device that processes a high frequency (RF) signal.
- RF radio frequency
- electronic components made of semiconductors those that can process high-frequency signals are not particularly limited.
- integrated circuits such as RFICs and LSIs, CPUs, MPUs, graphic arithmetic elements, and the like can be mentioned.
- the number of antennas 50 in the 5G communication antenna array 1 is the same as that of the antenna 50.
- the high frequency semiconductor device 20 is provided.
- the number of the high-frequency semiconductor devices 20 and the number of the antennas 50 do not necessarily have to be the same, and one high-frequency semiconductor device 20 may operate a plurality of antennas depending on the design. ..
- a land is laid all around or partially on one surface 10a of the substrate 10 so as to surround the high frequency semiconductor device 20. (Not shown) can also be provided.
- the semiconductor device 1 of the present invention includes a noise suppressing heat conductive sheet 30 between the high frequency semiconductor device 20 and the first heat radiating member 41 described later. Since the noise suppression heat conduction sheet 30 can absorb and / or block electromagnetic waves that become noise, it is possible to suppress an increase in crosstalk without hindering the transmission and reception of radio waves by the antenna, and the high frequency. Since the heat generated from the semiconductor device 20 can be efficiently transferred to the first heat dissipation member 41, excellent heat dissipation can be realized.
- the noise suppression heat conductive sheet is, as its name suggests, a sheet-like member having an electromagnetic wave noise suppression effect and heat conductivity.
- the noise suppression effect and the thermal conductivity performance are not particularly limited, and basically, they can be appropriately changed according to the performance required for the antenna array for 5G communication of the present invention. ..
- the noise suppression effect of the noise suppression heat conductive sheet may be any as long as it can suppress noise generated from the high frequency semiconductor device 20 and the antenna 50 described later, and has, for example, an effect of blocking electromagnetic wave noise. It may have an effect of absorbing electromagnetic noise.
- the size of the noise suppression heat conductive sheet 30 (the size along the extending direction of the sheet) is not particularly limited.
- it can be composed of a plurality of sheets having a size corresponding to the size of the high-frequency semiconductor device 20.
- the pattern design of the substrate 10 can be facilitated.
- the size of the noise suppression heat conduction sheet 30 is increased so that a plurality of the high frequency semiconductor devices 20 are formed on one noise suppression heat conduction sheet 30. You can also. In the case of the embodiment shown in FIG. 2, a better noise suppression effect and heat dissipation may be obtained.
- the thickness of the noise suppression heat conductive sheet 30 is not particularly limited, and the high frequency semiconductor device 20 and the first heat radiation member 41 It can be appropriately changed according to the distance between the antenna array 1 and the size of the antenna array 1 for 5G communication.
- the thickness of the noise suppressing heat conductive sheet 30 is preferably 10 to 3000 ⁇ m, more preferably 200 to 500 ⁇ m, from the viewpoint that heat dissipation and crosstalk suppressing effect can be realized at a higher level.
- the thickness of the noise suppression heat conductive sheet 30 exceeds 3000 ⁇ m, the distance between the semiconductor element 30 and the first heat radiating member 41 becomes long, so that the heat conductivity may decrease, while the noise suppression If the thickness of the heat conductive sheet 30 is less than 10 ⁇ m, the crosstalk suppressing effect may be reduced.
- the noise suppressing heat conductive sheet 30 preferably has a high dielectric constant (relative permittivity) from the viewpoint of realizing an excellent crosstalk suppressing effect.
- the dielectric constant of the noise suppressing heat conductive sheet 30 is preferably 20 or more, more preferably 25 or more, and even more preferably 30 or more. This is because a more excellent crosstalk suppressing effect can be obtained by setting the dielectric constant of the noise suppressing heat conductive sheet 30 to 20 or more.
- the method for adjusting the dielectric constant of the noise-suppressing heat conductive sheet 30 is not particularly limited, but the type of binder resin, the material of the heat conductive filler, the blending amount, the orientation direction, and the like, which will be described later, may be changed. It is possible to adjust as appropriate.
- the noise suppressing heat conductive sheet 30 preferably has a high magnetic permeability (specific magnetic permeability) from the viewpoint of realizing an excellent crosstalk suppressing effect.
- the magnetic permeability of the noise suppression heat conductive sheet 30 is preferably more than 1, more preferably 2 or more, and even more preferably 5 or more. This is because when the magnetic permeability of the noise suppressing heat conductive sheet 30 exceeds 1, a more excellent crosstalk suppressing effect can be obtained.
- the method for adjusting the magnetic permeability of the noise-suppressing heat conductive sheet 30 is not particularly limited, but the type of binder resin, the material of the heat conductive filler, the blending amount, the orientation direction, and the like, which will be described later, may be changed. It is possible to adjust as appropriate.
- the noise suppression thermal conductive sheet 30 is preferably thermal resistance is less than 300Kmm 2 / W, more preferably 35Kmm 2 / W or less, even more preferably at most 30Kmm 2 / W. This is because the heat generated from the high-frequency semiconductor device 20 can be more efficiently transferred to the first heat radiating member 41, and the heat radiating property can be further improved.
- the heat resistance of the noise suppressing thermal conductive sheet 30 is preferably at 1Kmm 2 / W or more, more preferably 10Kmm 2 / W or more.
- the noise suppression heat conductive sheet 30 preferably has magnetic characteristics. This is because the noise suppression heat conductive sheet 30 can be provided with electromagnetic wave absorption performance, so that a more excellent crosstalk suppression effect can be obtained.
- the method for adjusting the magnetic characteristics of the noise suppressing heat conductive sheet 30 is not particularly limited, but by incorporating magnetic powder or the like in the noise suppressing heat conductive sheet 30 and changing the blending amount or the like, the noise suppressing heat conductive sheet 30 is contained. It is possible to adjust.
- the noise suppression heat conductive sheet 30 preferably has adhesiveness or adhesiveness on the surface. This is because the adhesiveness between the noise suppressing heat conductive sheet 30 and other members (high frequency semiconductor device 20, first heat radiating member 41) can be improved.
- the method of imparting tackiness to the surface of the noise suppression heat conductive sheet 30 is not particularly limited.
- the binder resin constituting the noise-suppressing heat-conducting sheet 30 described later can be optimized to have tackiness, and a tacky adhesive layer is separately provided on the surface of the noise-suppressing heat-conducting sheet 30. It is also possible.
- the noise suppression heat conductive sheet 30 has flexibility. Since the shape of the noise suppression heat conductive sheet 30 can be easily changed, the ease of assembling the antenna array 1 for 5G communication is improved, and the surface shape of the high frequency semiconductor device 20 can be followed, so that the high frequency semiconductor device can be followed. It is also possible to increase the bonding force with 20.
- the flexibility of the noise suppression heat conductive sheet 30 is not particularly limited, but for example, the storage elastic modulus at 25 ° C. measured by dynamic elastic modulus measurement is preferably in the range of 50 kPa to 50 MPa.
- the material constituting the noise suppressing heat conductive sheet 30 is not particularly limited as long as it has a noise suppressing effect and heat conductivity.
- the noise suppression heat conductive sheet 30 can be made of a material containing a binder resin, a heat conductive filler, and other components.
- the binder resin constituting the noise-suppressing heat-conducting sheet is a resin component that is a base material of the noise-suppressing heat-conducting sheet.
- the type is not particularly limited, and a known binder resin can be appropriately selected.
- one of the binder resins is a thermosetting resin.
- thermosetting resin examples include crosslinkable rubber, epoxy resin, polyimide resin, bismaleimide resin, benzocyclobutene resin, phenol resin, unsaturated polyester, diallyl phthalate resin, silicone, polyurethane, polyimide silicone, and thermosetting type.
- thermosetting resin examples include polyphenylene ether and thermosetting modified polyphenylene ether. These may be used alone or in combination of two or more.
- crosslinkable rubber examples include natural rubber, butadiene rubber, isoprene rubber, nitrile rubber, hydrogenated nitrile rubber, chloroprene rubber, ethylene propylene rubber, chlorinated polyethylene, chlorosulfonated polyethylene, butyl rubber, and halogenated butyl rubber.
- Fluorine rubber, urethane rubber, acrylic rubber, polyisobutylene rubber, silicone rubber and the like can be mentioned. These may be used alone or in combination of two or more.
- the silicone is not particularly limited, and the type of silicone can be appropriately selected depending on the intended purpose.
- the silicone is preferably a silicone composed of a main agent of a liquid silicone gel and a curing agent. Examples of such silicones include addition reaction type liquid silicones, heat vulcanization type mirable type silicones using peroxides for vulcanization, and the like.
- the addition reaction type liquid silicone it is preferable to use a two-component addition reaction type silicone or the like using a polyorganosiloxane having a vinyl group as a main agent and a polyorganosiloxane having a Si—H group as a curing agent.
- the content of the binder resin in the noise suppressing heat conductive sheet is not particularly limited and can be appropriately selected depending on the intended purpose.
- it is preferably about 20% by volume to 50% by volume of the noise-suppressing heat conductive sheet, and 30% by volume to 40% by volume. More preferably.
- the noise-suppressing thermal conductive sheet 30 can contain the thermal conductive filler in the binder resin.
- the heat conductive filler is a component for improving the heat conductivity of the sheet.
- the shape, material, average particle size, etc. of the heat conductive filler are not particularly limited as long as they can improve the heat conductivity of the sheet.
- the shape may be spherical, elliptical spherical, lumpy, granular flat, needle-like, fibrous, coil-like, or the like.
- a fibrous heat conductive filler from the viewpoint of achieving higher heat conductivity.
- the "fibrous" of the fibrous thermally conductive filler means a shape having a high aspect ratio (about 6 or more). Therefore, in the present invention, not only fibrous or rod-shaped thermally conductive fillers, but also granular fillers having a high aspect ratio, flake-shaped thermally conductive fillers, and the like can be used as fibrous thermally conductive fillers. included.
- the material of the heat conductive filler is not particularly limited as long as it is a material having high heat conductivity, and for example, metals such as silver, copper and aluminum, alumina, aluminum nitride, silicon carbide, graphite and the like. Ceramics, carbon fiber and the like.
- the heat conductive filler may be used alone or in combination of two or more. Further, when two or more kinds of heat conductive fillers are used, they may have the same shape, or may be used by mixing heat conductive fillers having different shapes.
- fibrous thermally conductive fillers fibrous metal powder or carbon fiber is preferably used, and carbon fiber is more preferable, from the viewpoint of obtaining higher thermal conductivity.
- carbon fibers there are no particular restrictions on the type of carbon fiber, and it can be appropriately selected according to the purpose.
- pitch-based, PAN-based, graphitized PBO fibers arc discharge method, laser evaporation method, CVD method (chemical vapor deposition method), CCVD method (catalytic chemical vapor deposition method), etc.
- CVD method chemical vapor deposition method
- CCVD method catalytic chemical vapor deposition method
- carbon fibers obtained by graphitizing PBO fibers and pitch-based carbon fibers are more preferable from the viewpoint of obtaining high thermal conductivity and conductivity.
- the carbon fiber can be used by surface-treating a part or all of the carbon fiber, if necessary.
- the surface treatment includes, for example, oxidation treatment, nitriding treatment, nitration, sulfonate treatment, or attachment of a metal, metal compound, organic compound, or the like to the surface of a functional group or carbon fiber introduced into the surface by these treatments. Examples include the process of combining. Examples of the functional group include a hydroxyl group, a carboxyl group, a carbonyl group, a nitro group, an amino group and the like.
- the average length (average major axis length) of the major axis of the prethermally conductive filler can be appropriately selected without any particular limitation, but from the viewpoint of surely obtaining high thermal conductivity, it is 50 ⁇ m or more. It is preferably in the range of 300 ⁇ m, more preferably in the range of 75 ⁇ m to 275 ⁇ m, and particularly preferably in the range of 90 ⁇ m to 250 ⁇ m. Furthermore, the average minor axis length of the thermally conductive filler is not particularly limited and can be appropriately selected. For example, the average uniaxial length is preferably in the range of 4 ⁇ m to 20 ⁇ m, and more preferably in the range of 5 ⁇ m to 14 ⁇ m from the viewpoint of surely obtaining high thermal conductivity.
- the aspect ratio (average major axis length / average minor axis length) of the thermally conductive filler is preferably 6 or more, and more preferably 7 to 30 from the viewpoint of obtaining high thermal conductivity. preferable. Even when the aspect ratio is small, the effect of improving the thermal conductivity and the like can be seen, but since a large effect of improving the characteristics cannot be obtained due to a decrease in orientation and the like, the aspect ratio is set to 6 or more. On the other hand, if it exceeds 30, the dispersibility in the noise suppression heat conductive sheet is lowered, so that sufficient thermal conductivity may not be obtained.
- the average major axis length and the average minor axis length of the thermally conductive filler can be measured by, for example, a microscope, a scanning electron microscope (SEM), or the like, and the average can be calculated from a plurality of samples. ..
- the content of the heat conductive filler in the noise suppressing heat conductive sheet 30 is not particularly limited and may be appropriately selected depending on the intended purpose, but is 4% by volume to 40% by volume. Is preferable, 5% by volume to 30% by volume is more preferable, and 6% by volume to 20% by volume is particularly preferable. If the content is less than 4% by volume, it may be difficult to obtain a sufficiently low thermal resistance, and if it exceeds 40% by volume, the moldability of the noise-suppressing heat conductive sheet and the fibrous heat It may affect the orientation of the conductive filler.
- the heat conductive filler is oriented in one direction or a plurality of directions. This is because higher thermal conductivity and electromagnetic wave absorption can be realized by orienting the thermally conductive filler.
- the thermal conductive filler is substantially perpendicular to the sheet surface. Can be oriented to.
- the heat conductive filler may be oriented substantially parallel to the sheet surface or in another direction. it can.
- a direction substantially perpendicular to or substantially parallel to the sheet surface means a direction substantially perpendicular to or substantially parallel to the sheet surface direction.
- the orientation direction of the heat conductive filler varies slightly during manufacturing, in the present invention, it is about ⁇ 20 ° from the direction perpendicular to or parallel to the extending direction of the sheet surface described above. Misalignment is acceptable.
- the method of adjusting the orientation angle of the heat conductive filler is not particularly limited.
- the orientation angle can be adjusted by producing a sheet molded body that is the basis of the noise suppression heat conductive sheet and adjusting the cutting angle in a state where the fibrous heat conductive filler is oriented. Become.
- the noise suppressing heat conductive sheet 30 can further contain an inorganic filler in addition to the binder resin and the heat conductive fiber described above. This is because the thermal conductivity of the noise-suppressed thermal conductive sheet can be further enhanced and the strength of the sheet can be improved.
- the shape, material, average particle size and the like of the inorganic filler are not particularly limited and may be appropriately selected depending on the intended purpose. Examples of the shape include a spherical shape, an elliptical spherical shape, a lump shape, a granular shape, a flat shape, and a needle shape. Among these, a spherical shape and an elliptical shape are preferable from the viewpoint of filling property, and a spherical shape is particularly preferable.
- Examples of the material of the inorganic filler include aluminum nitride (aluminum nitride: AlN), silica, alumina (aluminum oxide), boron nitride, titania, glass, zinc oxide, silicon carbide, silicon (silicon), silicon oxide, and aluminum oxide. , Metal particles and the like. These may be used alone or in combination of two or more. Among these, alumina, boron nitride, aluminum nitride, zinc oxide, and silica are preferable, and alumina and aluminum nitride are particularly preferable from the viewpoint of thermal conductivity.
- the inorganic filler a surface-treated one can be used.
- the inorganic filler is treated with a coupling agent as the surface treatment, the dispersibility of the inorganic filler is improved and the flexibility of the noise suppressing heat conductive sheet is improved.
- the average particle size of the inorganic filler can be appropriately selected depending on the type of the inorganic substance and the like.
- the average particle size is preferably 1 ⁇ m to 10 ⁇ m, more preferably 1 ⁇ m to 5 ⁇ m, and particularly preferably 4 ⁇ m to 5 ⁇ m. If the average particle size is less than 1 ⁇ m, the viscosity may increase and it may be difficult to mix. On the other hand, if the average particle size exceeds 10 ⁇ m, the thermal resistance of the noise suppressing heat conductive sheet may increase.
- the average particle size thereof is preferably 0.3 ⁇ m to 6.0 ⁇ m, more preferably 0.3 ⁇ m to 2.0 ⁇ m, and particularly preferably 0.5 ⁇ m to 1.5 ⁇ m. preferable. If the average particle size is less than 0.3 ⁇ m, the viscosity may increase and it may be difficult to mix, and if it exceeds 6.0 ⁇ m, the thermal resistance of the noise suppressing heat conductive sheet may increase.
- the average particle size of the inorganic filler can be measured by, for example, a particle size distribution meter or a scanning electron microscope (SEM).
- the noise suppressing heat conductive sheet 30 further contains magnetic metal powder in addition to the above-mentioned binder resin, fibrous heat conductive fiber and inorganic filler.
- the noise absorption performance of the noise suppression heat conductive sheet can be enhanced, and the crosstalk suppression effect of the antenna array for 5G communication of the present invention can be further improved.
- the type of the magnetic metal powder is not particularly limited except that the magnetic characteristics of the noise suppressing heat conductive sheet 30 can be enhanced and the electromagnetic wave absorption can be improved, and a known magnetic metal powder is appropriately selected. Can be done.
- amorphous metal powder or crystalline metal powder can be used.
- the amorphous metal powder include Fe-Si-B-Cr type, Fe-Si-B type, Co-Si-B type, Co-Zr type, Co-Nb type, Co-Ta type and the like.
- Examples of crystalline metal powder include pure iron, Fe-based, Co-based, Ni-based, Fe-Ni-based, Fe-Co-based, Fe-Al-based, Fe-Si-based, and Fe-Si-Al-based.
- the crystalline metal powder a fine crystalline metal obtained by adding a small amount of N (nitrogen), C (carbon), O (oxygen), B (boron), etc. to the crystalline metal powder to make it finer. You may use powder.
- the magnetic metal powder those having different materials or those having different average particle diameters may be mixed in two or more kinds.
- the shape of the magnetic metal powder such as spherical or flat.
- a magnetic metal powder having a particle size of several ⁇ m to several tens of ⁇ m and a spherical shape.
- Such a magnetic metal powder can be produced, for example, by an atomizing method or a method of thermally decomposing a metal carbonyl.
- the atomizing method has the advantage that spherical powder can be easily formed, and the molten metal is discharged from a nozzle, and a jet stream of air, water, an inert gas, etc. is blown onto the discharged molten metal to solidify it as droplets. This is a method of making powder.
- the surface of the amorphous alloy powder can be made smooth.
- the filling property with respect to the binder resin can be improved. Further, the filling property can be further improved by performing the coupling treatment.
- the noise suppressing heat conductive sheet may appropriately contain other components depending on the purpose.
- other components include thixotropy-imparting agents, dispersants, curing accelerators, retarders, slight tackifiers, plasticizers, flame retardants, antioxidants, stabilizers, colorants and the like.
- the semiconductor device 1 of the present invention includes a first heat radiating member 41 on one surface 10a side of the substrate 10 at a position in contact with the noise suppressing heat conductive sheet 30.
- the first heat radiating member 41 is a member that absorbs heat generated from the heat source (high frequency semiconductor device 20) and dissipates it to the outside.
- the heat generated by the high-frequency semiconductor device 20 can be diffused to the outside, and high heat dissipation of the antenna array 1 for 5G communication can be realized.
- the type of the first heat radiating member 41 is not particularly limited, and can be appropriately selected according to the heat radiating property required for the antenna array for 5G communication of the present invention.
- Examples thereof include radiators, coolers, heat sinks, heat spreaders, die pads, cooling fans, heat pipes, metal covers, housings and the like.
- heat radiating members it is preferable to use a radiator, a cooler, or a heat sink from the viewpoint of obtaining more excellent heat radiating property.
- the material constituting the first heat radiating member 41 described above may contain metals such as aluminum, copper and stainless steel, graphite and the like from the viewpoint of increasing the thermal conductivity.
- the 5G communication antenna array 1 includes at least one antenna 50 formed on the other surface 10b of the substrate 10.
- the antenna is a device for transmitting and receiving radio waves in a wireless communication environment.
- an antenna used for a normal antenna array can be used, and an antenna can be appropriately selected according to the performance required for the 5G communication antenna array.
- the arrangement pitch P of the antenna 50 is preferably 1/4 or more and 1/4 or less with respect to the communication wavelength. It is preferably more than 1/2 and less than 1/2.
- the arrangement pitch P of the antenna 50 is preferably 2.5 to 10 mm, more preferably 2.5 to 5 mm.
- the communication wavelength used is 24 Ghz, it is preferably 18 to 75 mm, more preferably 18 to 37 mm. This is because the radio wave radiation characteristics of the antenna array can be improved.
- the number of the antennas 50 in the 5G communication antenna array 1 according to the embodiment of the present invention is not particularly limited as long as it is at least one, depending on the specifications of the 5G communication antenna array and the required performance. Can be determined as appropriate. Further, the number of the antennas 50 is preferably a plurality (two or more) from the viewpoint of improving the communication speed and the utilization efficiency. For example, when the 5G communication antenna array 1 according to the embodiment of the present invention is Massive MIMO, the number of the antennas 50 can be 128.
- the 5G communication antenna array 1 includes the second heat radiating member 42 on the other surface 10b side of the substrate 10.
- the second heat radiating member 42 is a member that absorbs heat generated from a heat source (antenna 50) and dissipates it to the outside.
- the type of the second heat radiating member 42 is not particularly limited, and can be appropriately selected according to the heat radiating property required for the half 5G communication antenna array of the present invention.
- a radiator, a cooler, a heat sink, a heat spreader, a die pad, a cooling fan, a heat pipe, a metal cover, a housing, and the like can be used similarly to the first heat dissipation member 41 described above.
- a heat spreader it is preferable to use a heat spreader from the viewpoint that excellent heat radiating property can be obtained and excellent space saving property can be realized.
- an antenna 50 is provided under the second heat radiating member 42, and a heat conductive sheet 60, which will be described later, is placed between the second heat radiating member 42 and the antenna 50.
- a heat conductive sheet 60 which will be described later, is placed between the second heat radiating member 42 and the antenna 50.
- the distance between the second heat radiating member 42 and the antenna 50 at that time is not particularly limited, but is preferably about 500 to 2000 ⁇ m.
- the 5G communication antenna array 1 further includes a heat conductive sheet 60 between the at least one antenna 50 and the second heat radiating member 42. Is preferable. By connecting the antenna 50 and the second heat radiating member 42 via the heat conductive sheet 60, the heat generated from the antenna 50 is diffused to the outside, and high heat dissipation of the antenna array 1 for 5G communication is realized. it can.
- the heat conductive sheet 60 is a sheet-like member having heat conductivity.
- the performance of the thermal conductivity is not particularly limited, and basically, it can be appropriately changed according to the performance required for the antenna array for 5G communication of the present invention.
- the heat conductive sheet 60 does not have a noise suppressing effect, unlike the noise suppressing heat conductive sheet 30 described above. This is because if the heat conductive sheet 60 has a noise suppressing effect, the radio wave transmission / reception performance of the antenna 50 may be deteriorated.
- the size of the heat conductive sheet 60 is not particularly limited.
- it can be composed of a plurality of sheets having a size similar to the size of the antenna 50.
- the size of the heat conductive sheet 60 can be increased so that a plurality of the antennas 50 are formed on one heat conductive sheet 30.
- the thickness of the heat conductive sheet 60 is not particularly limited, and the distance between the antenna 50 and the second heat radiating member 42 and the like. It can be appropriately changed according to the size of the antenna array 1 for 5G communication and the like.
- the thickness of the heat conductive sheet 60 is preferably 500 ⁇ m or less, and more preferably 300 ⁇ m or less, from the viewpoint that heat dissipation can be realized at a higher level. If the thickness of the heat conductive sheet 60 exceeds 500 ⁇ m, the distance between the antenna 50 and the second heat radiating member 42 becomes long, so that the heat conductivity may decrease.
- the heat conductive sheet 60 is preferably thermal resistance is less than 300Kmm 2 / W, more preferably 35Kmm 2 / W or less, even more preferably at most 30Kmm 2 / W. This is because the heat generated from the antenna 50 can be transferred to the second heat radiating member 42 more efficiently, and the heat radiating property can be further improved.
- the heat resistance of the heat conduction sheet 60 is preferably at 1Kmm 2 / W or more, more preferably 10Kmm 2 / W or more.
- the heat conductive sheet 60 preferably has adhesiveness or adhesiveness on the surface. This is because the adhesiveness between the heat conductive sheet 60 and other members (the antenna 50, the second heat radiating member 42) can be improved.
- the method of imparting tackiness to the surface of the heat conductive sheet 60 is not particularly limited.
- the binder resin constituting the heat conductive sheet 60 which will be described later, can be optimized to have tackiness, or an adhesive layer having tackiness can be separately provided on the surface of the heat conductive sheet 60. is there.
- the heat conductive sheet 60 has flexibility. Since the shape of the heat conductive sheet 60 can be easily changed, the ease of assembling the antenna array 1 for 5G communication is improved, and the surface shape of the antenna 50 can be followed, so that the bonding force with the antenna 50 can be increased. It can also be increased.
- the flexibility of the heat conductive sheet 60 is not particularly limited, but it is preferable that the storage elastic modulus at 25 ° C. measured by dynamic elastic modulus measurement is in the range of 50 kPa to 50 MPa.
- the material constituting the heat conductive sheet 60 is not particularly limited as long as it has high heat conductivity.
- the heat conductive sheet 30 can be made of a material containing a binder resin, a heat conductive filler, and other components.
- the binder resin constituting the heat conductive sheet 60 is a resin component that serves as a base material for the heat conductive sheet.
- the type and content thereof are the same as those of the binder resin of the noise suppression heat conductive sheet 30 described above.
- the heat conductive filler contained in the heat conductive sheet 60 is a component for improving the heat conductivity of the sheet.
- the shape, material, average particle size, content, etc. are the same as those of the binder resin of the noise suppression heat conductive sheet 30 described above.
- the heat conductive sheet 60 may appropriately contain other components depending on the purpose, in addition to the binder resin and the heat conductive filler described above.
- other components include the inorganic filler described in the noise suppression heat conductive sheet 30 described above, a thixotropy imparting agent, a dispersant, a curing accelerator, a retarding agent, a slight tackifier, a plasticizer, and a flame retardant.
- examples include antioxidants, stabilizers, colorants and the like. Since the heat conductive sheet 60 is not required to have a high noise suppressing effect, it is preferable that the heat conductive sheet 60 does not contain magnetic powder, or even if it contains a small amount of magnetic powder.
- the antenna array 1 for 5G communication includes the substrate 10, the high frequency semiconductor device 20, the noise suppression heat conductive sheet 30, the first heat radiating member 41, the second heat radiating member 42, the antenna 50, and the above-mentioned antenna array 1.
- the heat conductive sheet 60 as a suitable member, a member usually used for an antenna array can be appropriately provided.
- the 5G communication antenna array 1 can further include a case member 70.
- an adhesive layer or the like for adhering each member can be formed as needed.
- the method for manufacturing the antenna array for 5G communication of the present invention is not particularly limited except that the noise suppression heat conductive sheet 30 is formed above or below the at least one high frequency semiconductor device 20.
- the noise suppression heat conduction sheet 30 is composed of a plurality of sheets having a size similar to the size of the high frequency semiconductor device 20
- the noise suppression heat conduction sheet 30 is prepared in advance.
- a step of cutting 30 and adjusting the size, laminating them on each high-frequency semiconductor device 20 and crimping them is provided. Further, as shown in FIG.
- one noise suppression heat conduction sheet 30 is formed.
- a step of laminating and crimping the sheets 30 is provided. The other steps can be performed according to the conventional antenna array manufacturing process.
- the antenna 50 is formed in the same manner as in the step of forming the noise suppressing heat conductive sheet 30.
- a step of laminating the heat conductive sheet 60 on the antenna 50 and crimping the heat conductive sheet 60 is further provided.
- the antenna structure according to an embodiment of the present invention includes a substrate, a high-frequency semiconductor device, a noise-suppressing heat conductive sheet and a first heat-dissipating member sequentially formed on one surface of the substrate, and the other surface of the substrate.
- the antenna and the second heat radiating member, which are sequentially formed, are provided.
- the noise suppression heat conductive sheet by providing the noise suppression heat conductive sheet on one surface side of the substrate, it is possible to absorb and / or block the electromagnetic waves that become noise. It is possible to suppress an increase in crosstalk without hindering the transmission and reception of radio waves.
- the noise suppressing heat conduction sheet is provided between the high frequency semiconductor device and the first heat radiating member, the heat generated from the high frequency semiconductor device is efficiently generated. It can be transmitted to the first heat dissipation member, and excellent heat dissipation can be realized.
- the antenna structure in the present invention means a structure having an antenna function, including an antenna device composed of one antenna, an antenna array composed of a plurality of antennas, and the like. Further, each member constituting the antenna structure according to the embodiment of the present invention is the same as the member described in the above-described 5G communication antenna array according to the embodiment of the present invention.
- the noise suppression heat conduction sheet according to the embodiment of the present invention is a noise suppression heat conduction sheet used for a 5G communication antenna array. Then, in the present invention, as shown in FIG. 1, at least one high-frequency semiconductor device 20 formed on the substrate 10 of the antenna array 1 for 5G communication and a heat radiating member (first heat radiating member 41 in FIG. 1) It is provided between.
- the noise-suppressing heat conductive sheet 30 according to the embodiment of the present invention can absorb and / or block electromagnetic waves that become noise, and is excellent in heat conductivity. Therefore, in the 5G communication antenna array 1, by using it between the high frequency semiconductor device 20 and the heat radiating member, it is possible to suppress an increase in crosstalk and improve heat radiating property. Therefore, the noise suppression heat conductive sheet 30 according to the embodiment of the present invention is suitable for use in a 5G communication antenna array.
- the configuration of the noise suppression heat conduction sheet 30 according to the embodiment of the present invention is the same as the noise suppression heat conduction sheet described in the 5G communication antenna array according to the embodiment of the present invention described above. ..
- the heat conductive sheet according to the embodiment of the present invention is a heat conductive sheet used for a 5G communication antenna array. Then, in the present invention, as shown in FIG. 1, between at least one antenna 50 formed on the substrate 10 of the 5G communication antenna array 1 and the heat radiating member (second heat radiating member 42 in FIG. 1). It is provided in.
- the heat conductive sheet 60 according to the embodiment of the present invention is excellent in heat conductivity, heat dissipation can be improved by using it between the antenna 50 and the heat radiating member in the antenna array 1 for 5G communication. .. Therefore, the heat conductive sheet 60 according to the embodiment of the present invention is suitable for use in an antenna array for 5G communication.
- the configuration of the heat conductive sheet 60 according to the embodiment of the present invention is the same as the heat conductive sheet described in the antenna array for 5G communication according to the embodiment of the present invention described above.
- Example 1 a three-dimensional electromagnetic field simulator ANSYS HFSS (manufactured by Ansys) was used to create an analysis model of the antenna array as shown in FIG. 1, and crosstalk when the conditions of the noise suppression heat conduction sheet were changed. The suppression effect and heat dissipation were evaluated.
- ANSYS HFSS manufactured by Ansys
- the same conditions were set except for the noise suppression heat conduction sheet.
- the conditions of each member constituting the antenna array are shown below.
- a model of the antenna array was created by cutting out only the two antenna parts of the antenna array, and repeated boundary conditions were applied.
- the size of the cut-out antenna part model is 10 mm in width, 10 mm in depth, and 5 mm in height.
- two microstrip lines are simulated by arranging them in parallel or in a straight line, and the size is assumed to be an antenna array with 128 antennas.
- the substrate material was a FR4 double-sided glass epoxy substrate.
- the high-frequency semiconductor device 20 was simulated with a microstrip line having a width of 55 ⁇ m, a thickness of 20 ⁇ m, and a length of 2000 ⁇ m.
- the output of the high frequency semiconductor device 20 in each sample is 5 W.
- the first heat radiating member 41 is a heat sink made of an aluminum plate having the same size (width 20 mm, depth 10 mm) as the antenna array model.
- the antenna 50 is a patch antenna having 28 GHz as a resonance frequency.
- a two-component addition reaction type liquid silicone was used as the resin binder, and 15% by mass of pitch-based carbon fibers having an average fiber length of 150 ⁇ m was contained as the fibrous heat conductive filler.
- the size of the heat conductive sheet 60 is 5 mm in width, 5 mm in depth and 0.5 mm in thickness, and the thermal resistance is 40 Kmm 2 / W.
- the second heat radiating member 42 is a heat spreader made of aluminum nitride having the same size as the antenna array model.
- As the case member 70 a resin case was used.
- Comparative Example 1-1 Air was used as a noise-suppressing heat conductive sheet. That is, the noise suppression heat conductive sheet 30 was not used, and a distance of 500 ⁇ m was provided between the high frequency semiconductor device 20 and the first heat radiating member 41.
- Comparative Example 1-2 An insulating sheet containing 85% by mass of magnetic powder was used as the noise suppression heat conductive sheet 30. The thickness of the sheet is 500 ⁇ m and the thermal resistance is 300 Kmm 2 / W.
- Comparative Example 1-3 A sheet made of a dielectric (relative permittivity 4) was used as the noise suppression heat conductive sheet 30.
- the thickness of the sheet is 500 ⁇ m and the thermal resistance is 200 Kmm 2 / W.
- Example 1-1 A sheet containing 6% by mass of a fibrous heat conductive filler (pitch-based carbon fiber having an average fiber length of 200 ⁇ m) and 85% by mass of magnetic powder was used as the noise suppressing heat conductive sheet 30. The thickness of the sheet is 500 ⁇ m and the thermal resistance is 40 Kmm 2 / W.
- the crosstalk suppression effect of each analysis model of the antenna array was evaluated by measuring the transmission characteristics between the two microstrip lines.
- the terminals at both ends of the microstrip line, which are likened to one high-frequency semiconductor device, are port 1 and port 2, respectively, along the longitudinal direction of the model, and the other is also port 3 and port 4, which are predicted in each analysis model.
- the amount of near-end crosstalk (S31) to be performed was calculated. The calculated S31 is shown in FIG.
- Example 2 Under the same conditions as in the first embodiment, the analysis model of the antenna array as shown in FIG. 1 was produced by using the three-dimensional electromagnetic field simulator, and the dielectric constant of the noise suppression heat conductive sheet was changed. The crosstalk suppression effect was evaluated.
- the conditions for each analysis model of the antenna array are the same except for the conditions of the noise suppression heat conduction sheet, and the conditions are as described in Example 1.
- the dielectric constant and magnetic permeability of the noise suppression heat conductive sheet used in each analysis model of the antenna array are as follows. In Samples 1 and 2, all the conditions other than the dielectric constant of the noise suppression heat conductive sheet were the same. Sample 2-1: A sheet having a dielectric constant of 10 and a magnetic permeability of 5 was used as the noise-suppressing heat conductive sheet 30. Sample 2-2: A sheet having a dielectric constant of 20 and a magnetic permeability of 5 was used as the noise-suppressing heat conductive sheet 30.
- the sample 2-2 having a dielectric constant of 20 for the noise suppression heat conductive sheet 30 can obtain a higher crosstalk suppression effect in any frequency band. I understood.
- Example 3 Under the same conditions as in Example 1, an analysis model of the antenna array as shown in FIG. 1 was produced using the three-dimensional electromagnetic field simulator, and the dielectric constant of the noise suppression heat conduction sheet was changed. The crosstalk suppression effect was evaluated.
- the dielectric constant and magnetic permeability of the noise suppression heat conductive sheet used in each analysis model of the antenna array are as follows. In Samples 1 and 2, all the conditions other than the dielectric constant of the noise suppression heat conductive sheet were the same. Sample 3-1: A sheet having a dielectric constant of 10 and a magnetic permeability of 5 was used as the noise-suppressing heat conductive sheet 30. Sample 3-2: A sheet having a dielectric constant of 10 and a magnetic permeability of 1 was used as the noise-suppressing heat conductive sheet 30.
- the amount of near-end crosstalk (S31) expected in each analysis model at 28 GHz was calculated by electromagnetic field analysis software (ANSYS, HFSS). The calculated S31 is shown in FIG.
- an antenna array and an antenna structure for 5G communication having excellent heat dissipation and crosstalk suppression effect.
- a noise-suppressing heat-conducting sheet and a heat-conducting sheet suitable for use in a 5G communication antenna array and an antenna structure having excellent heat dissipation and cross-talk suppressing effect Become.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Electromagnetism (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Thermal Sciences (AREA)
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
優れた放熱性及びクロストーク抑制効果を有する、5G通信用アンテナアレイを提供することを目的とする。 上記課題を解決するべく、本発明の5G通信用アンテナアレイ1は、基板10と、前記基板10の一方の面10aに順次形成された、少なくとも1つの高周波半導体装置20、ノイズ抑制熱伝導シート20及び第1放熱部材41と、前記基板10の他方の面10bに順次形成された、少なくとも1つのアンテナ50及び第2放熱部材42と、を備える。
Description
本発明は、優れた放熱性及びクロストーク抑制効果を有する、5G通信用アンテナアレイ及びアンテナ構造、並びに、該5G通信用アンテナアレイ及びアンテナ構造へ用いるのに適した、ノイズ抑制熱伝導シート及び熱伝導シートに関するものである。
次世代の高速大容量通信の5Gへ向けて、超高速・大容量通信へ対応する種々の通信技術が開発されている。その中の一つとして、「Massive MIMO」が知られている。Massive MIMOとは、基地局側のアンテナ数が数十若しくは100以上と多く搭載することが想定される、「超多素子アンテナ」を採用した要素技術である。
Massive MIMO構造のように、アンテナ素子を水平垂直に増やすことで、その通信伝搬のビームが細くなる傾向があるとされている。より細く長く、イメージとしては、レーザーライトのように直線的な線を描いて制御することで、指向性の高い電波を特定のスマートフォン等の通信機器へ向かってピンポイントで届けることが可能となる。そのため、このMassive MIMOを採用することで、これまで以上の大容量通信、利用効率の面での効果が期待されている。
Massive MIMO構造のように、アンテナ素子を水平垂直に増やすことで、その通信伝搬のビームが細くなる傾向があるとされている。より細く長く、イメージとしては、レーザーライトのように直線的な線を描いて制御することで、指向性の高い電波を特定のスマートフォン等の通信機器へ向かってピンポイントで届けることが可能となる。そのため、このMassive MIMOを採用することで、これまで以上の大容量通信、利用効率の面での効果が期待されている。
上述したMassive MIMO等のアンテナアレイ(アンテナ構造の集合体) において、使用される高周波半導体装置(以下、「RFIC」ということもある。)によって熱が多く発生するため、ヒートシンク等の放熱部材を用いて外部へ放熱することが一般的である。
ただし、アンテナアレイでは、多くのRFICが存在するが1つの装置の中に存在するため、発熱量が大きくなり、従来の技術では十分に放熱性を確保できないおそれがあった。
ただし、アンテナアレイでは、多くのRFICが存在するが1つの装置の中に存在するため、発熱量が大きくなり、従来の技術では十分に放熱性を確保できないおそれがあった。
また、アンテナアレイのように、複数のアンテナ及びRFICが整列している場合には、各RFIC間のクロストークが発生するという問題もあった。このクロストークが大きくなると、通信阻害や誤通信の要因となるとなることから、上述した放熱性に加えて、クロストークを有効に抑制できる技術の開発が望まれていた。
例えば特許文献1には、誘電体導波管の入出力部における電磁界の反射や放射による損失を抑えることを目的として、直方体形状の誘電体と、当該誘電体の外面に形成された入出力電極及び導体膜とで構成され、入出力電極が、誘電体の底面に、誘電体の頂点付近である第1端から底面の内方へ延出し、導体非形成部が設けられた誘導体導波フィルタを備えた、Massive MIMOシステムが開示されている。
しかしながら、特許文献1に開示された技術では、誘電体導波管の入出力部において一定のノイズ抑制効果が得られるものの、放熱性については十分ではなく、長時間の使用によって、発熱するという問題があった。さらに、アンテナ数が多くなった際のクロストーク抑制効果についても、さらなる改善が望まれていた。
しかしながら、特許文献1に開示された技術では、誘電体導波管の入出力部において一定のノイズ抑制効果が得られるものの、放熱性については十分ではなく、長時間の使用によって、発熱するという問題があった。さらに、アンテナ数が多くなった際のクロストーク抑制効果についても、さらなる改善が望まれていた。
本発明は、かかる事情に鑑みてなされたものであって、優れた放熱性及びクロストーク抑制効果を有する5G通信用アンテナアレイ及びアンテナ構造を提供することを目的とする。また、本発明は、優れた放熱性及びクロストーク抑制効果を有する5G通信用アンテナアレイ及びアンテナ構造へ用いるのに適した、ノイズ抑制熱伝導シート及び熱伝導シートを提供することを目的とする。
本発明者らは、上記の課題を解決するべく検討を重ね、基板の一方の面に形成された高周波半導体装置(RFIC)上にノイズ抑制熱伝導シートを設けることによって、高い電磁波抑制効果が得られ、各RFIC間で発生するクロストークを抑制できることを見出した。さらに、前記ノイズ抑制熱伝導シートは、高周波半導体装置と放熱部材との間に設けられているため、高周波半導体装置から発生した熱を効率的に放熱部材(第1放熱部材)へと伝えることが可能となり、アンテナから発生した熱も放熱部材(第2放熱部材)によって拡散させることができることから、放熱性を向上させることができることも見出した。
本発明は、上記知見に基づきなされたものであり、その要旨は以下の通りである。
(1)基板と、
前記基板の一方の面に順次形成された、少なくとも1つの高周波半導体装置、ノイズ抑制熱伝導シート及び第1放熱部材と、
前記基板の他方の面に順次形成された、少なくとも1つのアンテナ及び第2放熱部材と、
を備えることを特徴とする、5G通信用アンテナアレイ。
上記構成によって、優れた放熱性及びクロストーク抑制効果を実現できる。
(2)前記少なくとも1つのアンテナと前記第2放熱部材との間に、熱伝導シートをさらに備えることを特徴とする、上記(1)に記載の5G通信用アンテナアレイ。
(3)前記ノイズ抑制熱伝導シートが、磁性粉を含むことを特徴とする、上記(1)又は(2)に記載の5G通信用アンテナアレイ。
(4)前記ノイズ抑制熱伝導シートが、炭素繊維を含むことを特徴とする、上記(1)~(3)のいずれか1項に記載の5G通信用アンテナアレイ。
(5)前記ノイズ抑制熱伝導シートは、誘電率が20以上であることを特徴とする、上記(1)~(4)のいずれか1項に記載の5G通信用アンテナアレイ。
(6)前記ノイズ抑制熱伝導シートは、透磁率が1を超えることを特徴とする、上記(1)~(5)のいずれか1項に記載の5G通信用アンテナアレイ。
(7)前記ノイズ抑制熱伝導シートは、熱抵抗が300Kmm2/W以下であることを特徴とする、上記(1)~(6)のいずれか1項に記載の5G通信用アンテナアレイ。
(8)前記5G通信用アンテナアレイは、Massive MIMOに用いられることを特徴とする、上記(1)~(7)のいずれか1項に記載の5G通信用アンテナアレイ。
(9)基板と、
前記基板の一方の面に順次形成された、高周波半導体装置、ノイズ抑制熱伝導シート及び第1放熱部材と、
前記基板の他方の面に順次形成された、アンテナ及び第2放熱部材と、
を備えることを特徴とする、アンテナ構造。
上記構成によって、優れた放熱性及びクロストーク抑制効果を実現できる。
(10)5G通信用アンテナアレイ用いられるノイズ抑制熱伝導シートであって、
基板上に形成された少なくとも1つの高周波半導体装置と、放熱部材との間に設けられることを特徴とする、ノイズ抑制熱伝導シート。
上記構成によって、優れた放熱性及びクロストーク抑制効果を有する半導体装置に適したノイズ抑制熱伝導シートが得られる。
(11)5G通信用アンテナアレイ用いられる熱伝導シートであって、
基板上に形成された少なくとも1つのアンテナと、放熱部材との間に設けられることを特徴とする、熱伝導シート。
上記構成によって、優れた放熱性及びクロストーク抑制効果を有する半導体装置に適した熱伝導シートが得られる。
(1)基板と、
前記基板の一方の面に順次形成された、少なくとも1つの高周波半導体装置、ノイズ抑制熱伝導シート及び第1放熱部材と、
前記基板の他方の面に順次形成された、少なくとも1つのアンテナ及び第2放熱部材と、
を備えることを特徴とする、5G通信用アンテナアレイ。
上記構成によって、優れた放熱性及びクロストーク抑制効果を実現できる。
(2)前記少なくとも1つのアンテナと前記第2放熱部材との間に、熱伝導シートをさらに備えることを特徴とする、上記(1)に記載の5G通信用アンテナアレイ。
(3)前記ノイズ抑制熱伝導シートが、磁性粉を含むことを特徴とする、上記(1)又は(2)に記載の5G通信用アンテナアレイ。
(4)前記ノイズ抑制熱伝導シートが、炭素繊維を含むことを特徴とする、上記(1)~(3)のいずれか1項に記載の5G通信用アンテナアレイ。
(5)前記ノイズ抑制熱伝導シートは、誘電率が20以上であることを特徴とする、上記(1)~(4)のいずれか1項に記載の5G通信用アンテナアレイ。
(6)前記ノイズ抑制熱伝導シートは、透磁率が1を超えることを特徴とする、上記(1)~(5)のいずれか1項に記載の5G通信用アンテナアレイ。
(7)前記ノイズ抑制熱伝導シートは、熱抵抗が300Kmm2/W以下であることを特徴とする、上記(1)~(6)のいずれか1項に記載の5G通信用アンテナアレイ。
(8)前記5G通信用アンテナアレイは、Massive MIMOに用いられることを特徴とする、上記(1)~(7)のいずれか1項に記載の5G通信用アンテナアレイ。
(9)基板と、
前記基板の一方の面に順次形成された、高周波半導体装置、ノイズ抑制熱伝導シート及び第1放熱部材と、
前記基板の他方の面に順次形成された、アンテナ及び第2放熱部材と、
を備えることを特徴とする、アンテナ構造。
上記構成によって、優れた放熱性及びクロストーク抑制効果を実現できる。
(10)5G通信用アンテナアレイ用いられるノイズ抑制熱伝導シートであって、
基板上に形成された少なくとも1つの高周波半導体装置と、放熱部材との間に設けられることを特徴とする、ノイズ抑制熱伝導シート。
上記構成によって、優れた放熱性及びクロストーク抑制効果を有する半導体装置に適したノイズ抑制熱伝導シートが得られる。
(11)5G通信用アンテナアレイ用いられる熱伝導シートであって、
基板上に形成された少なくとも1つのアンテナと、放熱部材との間に設けられることを特徴とする、熱伝導シート。
上記構成によって、優れた放熱性及びクロストーク抑制効果を有する半導体装置に適した熱伝導シートが得られる。
本発明によれば、優れた放熱性及びクロストーク抑制効果を有する5G通信用アンテナアレイ及びアンテナ構造を提供することが可能となる。また、本発明によれば、優れた放熱性及びクロストーク抑制効果を有する5G通信用アンテナアレイ及びアンテナ構造へ用いるのに適した、ノイズ抑制熱伝導シート及び熱伝導シートを提供することが可能となる。
以下、本発明の実施形態の一例を、図面を用いて具体的に説明する。
ここで、図1及び2は、本発明の5G通信用アンテナアレイの実施形態の一例について、それぞれ断面を模式的に示した図である。なお、各図面については、説明の便宜のため、各部材の形状やスケールが実際のものとは異なる状態で示されている。各部材の形状やスケールについては、本明細書の中で規定されていること以外は、半導体装置ごとに適宜変更することが可能である。
ここで、図1及び2は、本発明の5G通信用アンテナアレイの実施形態の一例について、それぞれ断面を模式的に示した図である。なお、各図面については、説明の便宜のため、各部材の形状やスケールが実際のものとは異なる状態で示されている。各部材の形状やスケールについては、本明細書の中で規定されていること以外は、半導体装置ごとに適宜変更することが可能である。
<5G通信用アンテナアレイ>
本発明の一実施形態に係る5G通信用アンテナアレイ1は、図1に示すように、
基板10と、
前記基板10の一方の面10aに順次形成された、少なくとも1つの高周波半導体装置20、ノイズ抑制熱伝導シート30及び第1放熱部材41と、
前記基板10の他方の面10bに順次形成された、少なくとも1つのアンテナ50及び第2放熱部材42と、60を備える。
本発明の一実施形態に係る5G通信用アンテナアレイ1は、図1に示すように、
基板10と、
前記基板10の一方の面10aに順次形成された、少なくとも1つの高周波半導体装置20、ノイズ抑制熱伝導シート30及び第1放熱部材41と、
前記基板10の他方の面10bに順次形成された、少なくとも1つのアンテナ50及び第2放熱部材42と、60を備える。
本発明の一実施形態に係る5G通信用アンテナアレイ1では、前記ノイズ抑制熱伝導シート30を設けることによって、高周波半導体装置20から発生したノイズとなる電磁波を吸収及び/又は遮断することが可能となるため、電波の送受信を阻害することなく、クロストークの増大を抑制できる。加えて、本発明の一実施形態に係る5G通信用アンテナアレイ1では、前記ノイズ抑制熱伝導シート30が、高周波半導体装置20と第1放熱部材41との間に設けられているため、高周波半導体装置20から発生した熱を効率的に第1放熱部材41へと伝えることができ、優れた放熱性を実現できる。
さらに、本発明の一実施形態に係る5G通信用アンテナアレイ1では、基板20の他方の面10b側に形成された、第2放熱部材42によって、アンテナから発生した熱を効率的に放熱できるため、5G通信用アンテナアレイ1全体での放熱性をより高めることができる。
さらに、本発明の一実施形態に係る5G通信用アンテナアレイ1では、基板20の他方の面10b側に形成された、第2放熱部材42によって、アンテナから発生した熱を効率的に放熱できるため、5G通信用アンテナアレイ1全体での放熱性をより高めることができる。
一方、従来技術による5G通信用アンテナアレイでは、本発明のように高周波半導体装置20と接した状態でノイズ抑制熱伝導シート30が設けられていないため、十分なクロストーク抑制効果を得ることができない。さらに、前記ノイズ抑制熱伝導シート30が、高周波半導体装置20と第1放熱部材41との間に設けられていないため、放熱性についても十分に得られないと考えられる。
なお、本発明における「5G通信用アンテナアレイ」とは、「第五世代(5G)移動通信システムに用いられるアンテナアレイ」のことを意味している。また、「アンテナアレイ」とは、少なくとも1つのアンテナから構成されるアンテナの集合体のことを意味している。
そのため、本発明の一実施形態に係る5G通信用アンテナアレイ1は、高周波数の電波を低消費電力で送受信できる観点から、例えばMassive MIMO等の技術に用いられることが好ましい。
そのため、本発明の一実施形態に係る5G通信用アンテナアレイ1は、高周波数の電波を低消費電力で送受信できる観点から、例えばMassive MIMO等の技術に用いられることが好ましい。
次に、本発明の一実施形態に係る5G通信用アンテナアレイ1を構成する各部材について説明する。
(基板)
本発明の一実施形態に係る5G通信用アンテナアレイ1は、図1に示すように、基板10を備える。
ここで、前記基板10は、その両面(一方の面10a及び他方の面10b)に回路を有する、いわゆる両面基板である。前記基板10のその他の詳細な条件については、特に限定されず、要求される性能に応じて、公知の基板を適宜選択し、用いることができる。
(基板)
本発明の一実施形態に係る5G通信用アンテナアレイ1は、図1に示すように、基板10を備える。
ここで、前記基板10は、その両面(一方の面10a及び他方の面10b)に回路を有する、いわゆる両面基板である。前記基板10のその他の詳細な条件については、特に限定されず、要求される性能に応じて、公知の基板を適宜選択し、用いることができる。
(高周波半導体装置)
本発明の一実施形態に係る5G通信用アンテナアレイ1は、図1に示すように、前記基板10の一方の面10a上に形成された高周波半導体装置20を備える。
ここで、前記高周波半導体装置については、高周波(RF)の信号を処理する半導体装置である。半導体による電子部品のうち、高周波の信号を処理できるものであれば特に限定されるものではない。例えば、RFICやLSI等の集積回路、CPU、MPU、グラフィック演算素子等が挙げられる。
本発明の一実施形態に係る5G通信用アンテナアレイ1は、図1に示すように、前記基板10の一方の面10a上に形成された高周波半導体装置20を備える。
ここで、前記高周波半導体装置については、高周波(RF)の信号を処理する半導体装置である。半導体による電子部品のうち、高周波の信号を処理できるものであれば特に限定されるものではない。例えば、RFICやLSI等の集積回路、CPU、MPU、グラフィック演算素子等が挙げられる。
なお、本発明の一実施形態に係る5G通信用アンテナアレイ1では、後述するアンテナ50を作動させるため、例えば図1に示すように、5G通信用アンテナアレイ1中に前記アンテナ50と同じ数の前記高周波半導体装置20が設けられている。ただし、前記高周波半導体装置20の数と前記アンテナ50の数が必ずしも同じである必要はなく、設計に応じて、1つの前記高周波半導体装置20が複数個のアンテナを作動させる構造とすることもできる。
また、本発明の一実施形態に係る5G通信用アンテナアレイ1では、前記基板10の一方の面10a上に、前記高周波半導体装置20の周りを囲むように、全周あるいは部分的にランド(図示せず)を設けることもできる。
(ノイズ抑制熱伝導シート)
本発明の半導体装置1は、図1に示すように、前記高周波半導体装置20と後述する第1放熱部材41との間に、ノイズ抑制熱伝導シート30を備える。
前記ノイズ抑制熱伝導シート30によって、ノイズとなる電磁波を吸収及び/又は遮断することが可能となるため、アンテナによる電波の送受信を阻害することなく、クロストークの増大を抑制できることに加え、前記高周波半導体装置20から発生した熱を効率的に第1放熱部材41へと伝えることができるため、優れた放熱性も実現できる。
本発明の半導体装置1は、図1に示すように、前記高周波半導体装置20と後述する第1放熱部材41との間に、ノイズ抑制熱伝導シート30を備える。
前記ノイズ抑制熱伝導シート30によって、ノイズとなる電磁波を吸収及び/又は遮断することが可能となるため、アンテナによる電波の送受信を阻害することなく、クロストークの増大を抑制できることに加え、前記高周波半導体装置20から発生した熱を効率的に第1放熱部材41へと伝えることができるため、優れた放熱性も実現できる。
ここで、ノイズ抑制熱伝導シートとは、その名の通り、電磁波ノイズの抑制効果及び熱伝導性を有するシート状部材のことである。なお、前記ノイズ抑制効果及び前記熱伝導性の性能については、特に限定はされず、基本的には本発明の5G通信用アンテナアレイに要求される性能に応じて適宜変更することが可能である。
また、前記ノイズ抑制熱伝導シートのノイズ抑制効果は、前記高周波半導体装置20や、後述するアンテナ50から発生したノイズを抑制できるものであればよく、例えば、電磁波ノイズを遮断する効果を有していてもよいし、電磁波ノイズを吸収する効果を有していてもよい。
また、前記ノイズ抑制熱伝導シートのノイズ抑制効果は、前記高周波半導体装置20や、後述するアンテナ50から発生したノイズを抑制できるものであればよく、例えば、電磁波ノイズを遮断する効果を有していてもよいし、電磁波ノイズを吸収する効果を有していてもよい。
前記ノイズ抑制熱伝導シート30のサイズ(シートの延在方向に沿った大きさ)については、特に限定はされない。
例えば、図1に示すように、前記高周波半導体装置20のサイズに対応したサイズを有する複数のシートから構成することができる。図1に示す態様とすることで、前記基板10のパターン設計を容易にすることができる。
また、図2に示すように、前記ノイズ抑制熱伝導シート30のサイズを大きくし、一枚の前記ノイズ抑制熱伝導シート30に対して複数の前記高周波半導体装置20が形成されるようにすることもできる。図2に示す態様の場合、より優れたノイズ抑制効果及び放熱性が得られることがある。
例えば、図1に示すように、前記高周波半導体装置20のサイズに対応したサイズを有する複数のシートから構成することができる。図1に示す態様とすることで、前記基板10のパターン設計を容易にすることができる。
また、図2に示すように、前記ノイズ抑制熱伝導シート30のサイズを大きくし、一枚の前記ノイズ抑制熱伝導シート30に対して複数の前記高周波半導体装置20が形成されるようにすることもできる。図2に示す態様の場合、より優れたノイズ抑制効果及び放熱性が得られることがある。
さらに、前記ノイズ抑制熱伝導シート30の厚さ(5G通信用アンテナアレイの各部材の積層方向に沿った厚さ)については、特に限定はされず、前記高周波半導体装置20と第1放熱部材41との間隔や、5G通信用アンテナアレイ1のサイズ等に応じて適宜変更することができる。
例えば、放熱性及びクロストーク抑制効果をより高いレベルで実現できる点からは、前記ノイズ抑制熱伝導シート30の厚さが10~3000μmであることが好ましく、200~500μmであることがより好ましい。前記ノイズ抑制熱伝導シート30の厚さが3000μmを超えると、前記半導体素子30と前記第1放熱部材41との距離が長くなるため、熱伝導性が低下するおそれがあり、一方、前記ノイズ抑制熱伝導シート30の厚さが10μm未満の場合には、クロストーク抑制効果が小さくなるおそれがある。
例えば、放熱性及びクロストーク抑制効果をより高いレベルで実現できる点からは、前記ノイズ抑制熱伝導シート30の厚さが10~3000μmであることが好ましく、200~500μmであることがより好ましい。前記ノイズ抑制熱伝導シート30の厚さが3000μmを超えると、前記半導体素子30と前記第1放熱部材41との距離が長くなるため、熱伝導性が低下するおそれがあり、一方、前記ノイズ抑制熱伝導シート30の厚さが10μm未満の場合には、クロストーク抑制効果が小さくなるおそれがある。
なお、前記ノイズ抑制熱伝導シート30は、優れたクロストーク抑制効果を実現する点からは、誘電率(比誘電率)が高い方が好ましい。
具体的には、前記ノイズ抑制熱伝導シート30の誘電率が、20以上であることが好ましく、25以上であることがより好ましく、30以上であることがさらに好ましい。前記ノイズ抑制熱伝導シート30の誘電率を20以上とすることで、より優れたクロストーク抑制効果が得られるからである。
なお、前記ノイズ抑制熱伝導シート30の誘電率の調整方法としては、特に限定はされないが、後述する、バインダ樹脂の種類や熱伝導性充填材の材料、配合量及び配向方向等、を変えることによって適宜調整することが可能である。
具体的には、前記ノイズ抑制熱伝導シート30の誘電率が、20以上であることが好ましく、25以上であることがより好ましく、30以上であることがさらに好ましい。前記ノイズ抑制熱伝導シート30の誘電率を20以上とすることで、より優れたクロストーク抑制効果が得られるからである。
なお、前記ノイズ抑制熱伝導シート30の誘電率の調整方法としては、特に限定はされないが、後述する、バインダ樹脂の種類や熱伝導性充填材の材料、配合量及び配向方向等、を変えることによって適宜調整することが可能である。
また、前記ノイズ抑制熱伝導シート30は、優れたクロストーク抑制効果を実現する点からは、透磁率(比透磁率)が高い方が好ましい。
具体的には、前記ノイズ抑制熱伝導シート30の透磁率が、1を超えることが好ましく、2以上であることがより好ましく、5以上であることがさらに好ましい。前記ノイズ抑制熱伝導シート30の透磁率が1を超えることで、より優れたクロストーク抑制効果が得られるからである。
なお、前記ノイズ抑制熱伝導シート30の透磁率の調整方法としては、特に限定はされないが、後述する、バインダ樹脂の種類や熱伝導性充填材の材料、配合量及び配向方向等、を変えることによって適宜調整することが可能である。
具体的には、前記ノイズ抑制熱伝導シート30の透磁率が、1を超えることが好ましく、2以上であることがより好ましく、5以上であることがさらに好ましい。前記ノイズ抑制熱伝導シート30の透磁率が1を超えることで、より優れたクロストーク抑制効果が得られるからである。
なお、前記ノイズ抑制熱伝導シート30の透磁率の調整方法としては、特に限定はされないが、後述する、バインダ樹脂の種類や熱伝導性充填材の材料、配合量及び配向方向等、を変えることによって適宜調整することが可能である。
さらに、前記ノイズ抑制熱伝導シート30は、熱抵抗が300Kmm2/W以下であることが好ましく、35Kmm2/W以下であることがより好ましく、30Kmm2/W以下であることが特に好ましい。前記高周波半導体装置20から発生した熱を前記第1放熱部材41へより効率的に伝えることができ、放熱性をさらに向上できるためである。なお、前記ノイズ抑制熱伝導シート30の熱抵抗は、1Kmm2/W以上であることが好ましく、10Kmm2/W以上であることがより好ましい。前記ノイズ抑制熱伝導シート30の熱抵抗を1Kmm2/W以上とすることで、接触熱抵抗が変化した場合でも熱抵抗の変化割合を小さくすることができる。
さらに、前記ノイズ抑制熱伝導シート30は、磁気特性を有することが好ましい。前記ノイズ抑制熱伝導シート30に、電磁波吸収性能を持たせることができるため、より優れたクロストーク抑制効果が得られるためである。
ここで、前記ノイズ抑制熱伝導シート30の磁気特性の調整方法としては、特に限定はされないが、ノイズ抑制熱伝導シート30中に、磁性粉等を含有させ、その配合量等を変えることによって、調整することが可能である。
ここで、前記ノイズ抑制熱伝導シート30の磁気特性の調整方法としては、特に限定はされないが、ノイズ抑制熱伝導シート30中に、磁性粉等を含有させ、その配合量等を変えることによって、調整することが可能である。
また、前記ノイズ抑制熱伝導シート30は、表面に粘着性又は接着性を有することが好ましい。ノイズ抑制熱伝導シート30と他の部材(高周波半導体装置20、第1放熱部材41)との接着性を向上できるからである。
なお、前記ノイズ抑制熱伝導シート30の表面にタック性を付与する方法については特に限定はされない。例えば、後述するノイズ抑制熱伝導シート30を構成するバインダ樹脂の適正化を図ってタック性を持たせることもできるし、該ノイズ抑制熱伝導シート30の表面にタック性のある接着層を別途設けることも可能である。
なお、前記ノイズ抑制熱伝導シート30の表面にタック性を付与する方法については特に限定はされない。例えば、後述するノイズ抑制熱伝導シート30を構成するバインダ樹脂の適正化を図ってタック性を持たせることもできるし、該ノイズ抑制熱伝導シート30の表面にタック性のある接着層を別途設けることも可能である。
さらにまた、前記ノイズ抑制熱伝導シート30は、柔軟性を有することが好ましい。前記ノイズ抑制熱伝導シート30の形状を変化しやすくできるため、5G通信用アンテナアレイ1を組み立てる際の容易性が向上するとともに、前記高周波半導体装20の表面形状に追従できるため、前記高周波半導体装20との接合力を高めることもできる。前記ノイズ抑制熱伝導シート30の柔軟性については、特に限定はされないが、例えば動的弾性率測定で測定される25℃での貯蔵弾性率を50kPa~50MPaの範囲とすることが好ましい。
なお、前記ノイズ抑制熱伝導シート30を構成する材料については、ノイズ抑制効果及び熱伝導性を有するものであれば特に限定はされない。
例えば、前記ノイズ抑制熱伝導シート30を、バインダ樹脂と、熱伝導性充填剤と、その他成分と、を含む材料から構成することができる。
例えば、前記ノイズ抑制熱伝導シート30を、バインダ樹脂と、熱伝導性充填剤と、その他成分と、を含む材料から構成することができる。
以下、ノイズ抑制熱伝導シート30を構成する材料について記載する。
・バインダ樹脂
前記ノイズ抑制熱伝導シートを構成するバインダ樹脂とは、ノイズ抑制熱伝導シートの基材となる樹脂成分のことである。その種類については、特に限定されず、公知のバインダ樹脂を適宜選択することができる。例えば、バインダ樹脂の一つとして、熱硬化性樹脂が挙げられる。
・バインダ樹脂
前記ノイズ抑制熱伝導シートを構成するバインダ樹脂とは、ノイズ抑制熱伝導シートの基材となる樹脂成分のことである。その種類については、特に限定されず、公知のバインダ樹脂を適宜選択することができる。例えば、バインダ樹脂の一つとして、熱硬化性樹脂が挙げられる。
前記熱硬化性樹脂としては、例えば、架橋性ゴム、エポキシ樹脂、ポリイミド樹脂、ビスマレイミド樹脂、ベンゾシクロブテン樹脂、フェノール樹脂、不飽和ポリエステル、ジアリルフタレート樹脂、シリコーン、ポリウレタン、ポリイミドシリコーン、熱硬化型ポリフェニレンエーテル、熱硬化型変性ポリフェニレンエーテル等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
なお、前記架橋性ゴムとしては、例えば、天然ゴム、ブタジエンゴム、イソプレンゴム、ニトリルゴム、水添ニトリルゴム、クロロプレンゴム、エチレンプロピレンゴム、塩素化ポリエチレン、クロロスルホン化ポリエチレン、ブチルゴム、ハロゲン化ブチルゴム、フッ素ゴム、ウレタンゴム、アクリルゴム、ポリイソブチレンゴム、シリコーンゴム等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
また、上述した熱硬化性樹脂の中でも、成形加工性及び耐候性に優れるとともに、電子部品に対する密着性及び追従性の点から、シリコーンを用いることが好ましい。シリコーンとしては、特に制限はなく、目的に応じてシリコーンの種類を適宜選択することができる。
上述した成形加工性、耐候性、密着性等を得る観点からは、前記シリコーンとして、液状シリコーンゲルの主剤と、硬化剤とから構成されるシリコーンであることが好ましい。そのようなシリコーンとしては、例えば、付加反応型液状シリコーン、過酸化物を加硫に用いる熱加硫型ミラブルタイプのシリコーン等が挙げられる。
上述した成形加工性、耐候性、密着性等を得る観点からは、前記シリコーンとして、液状シリコーンゲルの主剤と、硬化剤とから構成されるシリコーンであることが好ましい。そのようなシリコーンとしては、例えば、付加反応型液状シリコーン、過酸化物を加硫に用いる熱加硫型ミラブルタイプのシリコーン等が挙げられる。
前記付加反応型液状シリコーンとしては、ビニル基を有するポリオルガノシロキサンを主剤、Si-H基を有するポリオルガノシロキサンを硬化剤とした、2液性の付加反応型シリコーン等を用いることが好ましい。
なお、前記液状シリコーンゲルの主剤と、硬化剤との組合せにおいて、前記主剤と前記硬化剤との配合割合としては、質量比で、主剤:硬化剤=35:65~65:35であることが好ましい。
なお、前記液状シリコーンゲルの主剤と、硬化剤との組合せにおいて、前記主剤と前記硬化剤との配合割合としては、質量比で、主剤:硬化剤=35:65~65:35であることが好ましい。
また、前記ノイズ抑制熱伝導シートにおける前記バインダ樹脂の含有量は、特に制限されず、目的に応じて適宜選択することができる。例えば、シートの成形加工性や、シートの密着性等を確保する観点からは、前記ノイズ抑制熱伝導シートの20体積%~50体積%程度であることが好ましく、30体積%~40体積%であることがより好ましい。
・熱伝導性充填剤
前記ノイズ抑制熱伝導シート30は、前記バインダ樹脂内に、熱伝導性充填剤を含むことができる。該熱伝導性充填剤は、シートの熱伝導性を向上させるための成分である。
なお、熱伝導性充填剤の形状、材料、平均粒径等については、シートの熱伝導性を向上させることができるものであれば、特に限定はされない。
前記ノイズ抑制熱伝導シート30は、前記バインダ樹脂内に、熱伝導性充填剤を含むことができる。該熱伝導性充填剤は、シートの熱伝導性を向上させるための成分である。
なお、熱伝導性充填剤の形状、材料、平均粒径等については、シートの熱伝導性を向上させることができるものであれば、特に限定はされない。
例えば、形状については、球状、楕円球状、塊状、粒状扁平状、針状、繊維状、コイル状等とすることができる。それらの中でも、より高い熱伝導性を実現できる点からは、繊維状の熱伝導性充填剤を用いることが好ましい。
なお、前記繊維状の熱伝導性充填剤の「繊維状」とは、アスペクト比の高い(およそ6以上)の形状のことをいう。そのため、本発明では、繊維状や棒状等の熱導電性充填剤だけでなく、アスペクト比の高い粒状の充填材や、フレーク状の熱導電性充填剤等も繊維状の熱導電性充填剤に含まれる。
なお、前記繊維状の熱伝導性充填剤の「繊維状」とは、アスペクト比の高い(およそ6以上)の形状のことをいう。そのため、本発明では、繊維状や棒状等の熱導電性充填剤だけでなく、アスペクト比の高い粒状の充填材や、フレーク状の熱導電性充填剤等も繊維状の熱導電性充填剤に含まれる。
ここで、前記熱伝導性充填剤の材料についても、熱伝導性の高い材料であれば特に限定はされず、例えば、銀、銅、アルミニウム等の金属、アルミナ、窒化アルミニウム、炭化ケイ素、グラファイト等のセラミックス、炭素繊維等が挙げられる。
なお、前記熱伝導性充填剤については、一種単独でもよいし、二種以上を混合して用いてもよい。また、二種以上の熱伝導性充填剤を用いる場合には、いずれも同じ形状であってもよいし、それぞれ別の形状の熱伝導性充填剤を混合して用いてもよい。
これらの繊維状の熱伝導性充填剤の中でも、より高い熱伝導性を得られる点からは、繊維状の金属粉や、炭素繊維を用いることが好ましく、炭素繊維を用いることがより好ましい。
なお、前記熱伝導性充填剤については、一種単独でもよいし、二種以上を混合して用いてもよい。また、二種以上の熱伝導性充填剤を用いる場合には、いずれも同じ形状であってもよいし、それぞれ別の形状の熱伝導性充填剤を混合して用いてもよい。
これらの繊維状の熱伝導性充填剤の中でも、より高い熱伝導性を得られる点からは、繊維状の金属粉や、炭素繊維を用いることが好ましく、炭素繊維を用いることがより好ましい。
前記炭素繊維の種類について特に制限はなく、目的に応じて適宜選択することができる。例えば、ピッチ系、PAN系、PBO繊維を黒鉛化したもの、アーク放電法、レーザー蒸発法、CVD法(化学気相成長法)、CCVD法(触媒化学気相成長法)等で合成されたものを用いることができる。これらの中でも、高い熱伝導性及び導電性が得られる点から、PBO繊維を黒鉛化した炭素繊維、ピッチ系炭素繊維がより好ましい。
また、前記炭素繊維は、必要に応じて、その一部又は全部を表面処理して用いることができる。前記表面処理としては、例えば、酸化処理、窒化処理、ニトロ化、スルホン化、あるいはこれらの処理によって表面に導入された官能基若しくは炭素繊維の表面に、金属、金属化合物、有機化合物等を付着あるいは結合させる処理等が挙げられる。前記官能基としては、例えば、水酸基、カルボキシル基、カルボニル基、ニトロ基、アミノ基等が挙げられる。
さらに、前熱伝導性充填剤の長軸の平均長さ(平均長軸長さ)についても、特に制限はなく適宜選択することができるが、確実に高い熱伝導性を得る点から、50μm~300μmの範囲であることが好ましく、75μm~275μmの範囲であることがより好ましく、90μm~250μmの範囲であることが特に好ましい。
さらにまた、前記熱伝導性充填剤の平均短軸長さについても、特に制限はなく適宜選択することができる。例えば、確実に高い熱伝導性を得る点から、前記平均単軸長さが、4μm~20μmの範囲であることが好ましく、5μm~14μmの範囲であることがより好ましい。
さらにまた、前記熱伝導性充填剤の平均短軸長さについても、特に制限はなく適宜選択することができる。例えば、確実に高い熱伝導性を得る点から、前記平均単軸長さが、4μm~20μmの範囲であることが好ましく、5μm~14μmの範囲であることがより好ましい。
前記熱伝導性充填剤のアスペクト比(平均長軸長さ/平均短軸長さ)については、高い熱伝導性を得る点から、6以上であることが好ましく、7~30であることがより好ましい。前記アスペクト比が小さい場合でも熱伝導率等の改善効果はみられるが、配向性が低下するなどにより大きな特性改善効果が得られないため、アスペクト比は6以上とする。一方、30を超えると、ノイズ抑制熱伝導シート中での分散性が低下するため、十分な熱伝導率を得られないおそれがある。
ここで、前記熱伝導性充填剤の平均長軸長さ及び平均短軸長さは、例えばマイクロスコープ、走査型電子顕微鏡(SEM)等によって測定し、複数のサンプルから平均を算出することができる。
ここで、前記熱伝導性充填剤の平均長軸長さ及び平均短軸長さは、例えばマイクロスコープ、走査型電子顕微鏡(SEM)等によって測定し、複数のサンプルから平均を算出することができる。
また、前記ノイズ抑制熱伝導シート30における、前記熱伝導性充填剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、4体積%~40体積%であることが好ましく、5体積%~30体積%であることがより好ましく、6体積%~20体積%であることが特に好ましい。前記含有量が4体積%未満であると、十分に低い熱抵抗を得ることが困難になるおそれがあり、40体積%を超えると、前記ノイズ抑制熱伝導シートの成型性及び前記繊維状の熱伝導性充填剤の配向性に影響を与えてしまうおそれがある。
さらに、前記ノイズ抑制熱伝導シート30では、前記熱伝導性充填剤が一方向又は複数の方向に配向していることが好ましい。前記熱伝導性充填剤を配向させることによって、より高い熱伝導性や電磁波吸収性を実現できるためである。
例えば、前記ノイズ抑制熱伝導シート30による熱伝導性を高め、本発明の5G通信用アンテナアレイの放熱性を向上させたい場合には、前記熱伝導性充填剤をシート面に対して略垂直状に配向させることができる。一方、前記ノイズ抑制熱伝導シート中の電気の流れを変え、ノイズ抑制効果を高める場合等には、前記熱伝導性充填剤をシート面に対して略平行状やその他の方向に配向させることができる。
ここで、前記シート面に対して略垂直状や、略平行の方向は、前記シート面方向に対してほぼ垂直な方向やほぼ平行な方向を意味する。ただし、前記熱伝導性充填剤の配向方向は、製造時に多少のばらつきはあるため、本発明では、上述したシート面の延在方向に対して垂直な方向や平行な方向から±20°程度のズレは許容される。
例えば、前記ノイズ抑制熱伝導シート30による熱伝導性を高め、本発明の5G通信用アンテナアレイの放熱性を向上させたい場合には、前記熱伝導性充填剤をシート面に対して略垂直状に配向させることができる。一方、前記ノイズ抑制熱伝導シート中の電気の流れを変え、ノイズ抑制効果を高める場合等には、前記熱伝導性充填剤をシート面に対して略平行状やその他の方向に配向させることができる。
ここで、前記シート面に対して略垂直状や、略平行の方向は、前記シート面方向に対してほぼ垂直な方向やほぼ平行な方向を意味する。ただし、前記熱伝導性充填剤の配向方向は、製造時に多少のばらつきはあるため、本発明では、上述したシート面の延在方向に対して垂直な方向や平行な方向から±20°程度のズレは許容される。
なお、前記熱伝導性充填剤の配向角度を整える方法については、特に限定はされない。例えば、前記ノイズ抑制熱伝導シートの元になるシート用成形体を作製し、繊維状の熱伝導性充填剤を配向させた状態で、切り出し角度を調整することによって、配向角度の調整が可能となる。
・無機物フィラー
また、前記ノイズ抑制熱伝導シート30は、上述したバインダ樹脂及び熱伝導性繊維に加えて、無機物フィラーをさらに含むことができる。ノイズ抑制熱伝導シートの熱伝導性をより高めたり、シートの強度を向上できるためである。
前記無機物フィラーとしては、形状、材質、平均粒径等については特に制限がされず、目的に応じて適宜選択することができる。前記形状としては、例えば、球状、楕円球状、塊状、粒状、扁平状、針状等が挙げられる。これらの中でも、球状、楕円形状が充填性の点から好ましく、球状が特に好ましい。
また、前記ノイズ抑制熱伝導シート30は、上述したバインダ樹脂及び熱伝導性繊維に加えて、無機物フィラーをさらに含むことができる。ノイズ抑制熱伝導シートの熱伝導性をより高めたり、シートの強度を向上できるためである。
前記無機物フィラーとしては、形状、材質、平均粒径等については特に制限がされず、目的に応じて適宜選択することができる。前記形状としては、例えば、球状、楕円球状、塊状、粒状、扁平状、針状等が挙げられる。これらの中でも、球状、楕円形状が充填性の点から好ましく、球状が特に好ましい。
前記無機物フィラーの材料としては、例えば、窒化アルミニウム(窒化アルミ:AlN)、シリカ、アルミナ(酸化アルミニウム)、窒化ホウ素、チタニア、ガラス、酸化亜鉛、炭化ケイ素、ケイ素(シリコン)、酸化珪素、酸化アルミニウム、金属粒子等が挙げられる。これらは、一種単独で使用してもよいし、二種以上を併用してもよい。これらの中でも、アルミナ、窒化ホウ素、窒化アルミニウム、酸化亜鉛、シリカが好ましく、熱伝導率の点から、アルミナ、窒化アルミニウムが特に好ましい。
また、前記無機物フィラーは、表面処理が施されたものを用いることもできる。前記表面処理としてカップリング剤で前記無機物フィラーを処理すると、前記無機物フィラーの分散性が向上し、ノイズ抑制熱伝導シートの柔軟性が向上する。
前記無機物フィラーの平均粒径については、無機物の種類等に応じて適宜選択することができる。
前記無機物フィラーがアルミナの場合、その平均粒径は、1μm~10μmであることが好ましく、1μm~5μmであることがより好ましく、4μm~5μmであることが特に好ましい。前記平均粒径が1μm未満であると、粘度が大きくなり、混合しにくくなるおそれがある。一方、前記平均粒径が10μmを超えると、前記ノイズ抑制熱伝導シートの熱抵抗が大きくなるおそれがある。
さらに、前記無機物フィラーが窒化アルミニウムの場合、その平均粒径は、0.3μm~6.0μmであることが好ましく、0.3μm~2.0μmであることがより好ましく、0.5μm~1.5μmであることが特に好ましい。前記平均粒径が、0.3μm未満であると、粘度が大きくなり、混合しにくくなるおそれがあり、6.0μmを超えると、前記ノイズ抑制熱伝導シートの熱抵抗が大きくなるおそれがある。
なお、前記無機物フィラーの平均粒径については、例えば、粒度分布計、走査型電子顕微鏡(SEM)により測定することができる。
前記無機物フィラーがアルミナの場合、その平均粒径は、1μm~10μmであることが好ましく、1μm~5μmであることがより好ましく、4μm~5μmであることが特に好ましい。前記平均粒径が1μm未満であると、粘度が大きくなり、混合しにくくなるおそれがある。一方、前記平均粒径が10μmを超えると、前記ノイズ抑制熱伝導シートの熱抵抗が大きくなるおそれがある。
さらに、前記無機物フィラーが窒化アルミニウムの場合、その平均粒径は、0.3μm~6.0μmであることが好ましく、0.3μm~2.0μmであることがより好ましく、0.5μm~1.5μmであることが特に好ましい。前記平均粒径が、0.3μm未満であると、粘度が大きくなり、混合しにくくなるおそれがあり、6.0μmを超えると、前記ノイズ抑制熱伝導シートの熱抵抗が大きくなるおそれがある。
なお、前記無機物フィラーの平均粒径については、例えば、粒度分布計、走査型電子顕微鏡(SEM)により測定することができる。
・磁性金属粉
さらに、前記ノイズ抑制熱伝導シート30は、上述したバインダ樹脂、繊維状の熱伝導性繊維及び無機物フィラーに加えて、磁性金属粉をさらに含むことが好ましい。該磁性金属粉を含むことで、ノイズ抑制熱伝導シートのノイズ吸収性能を高め、本発明の5G通信用アンテナアレイのクロストーク抑制効果をより向上できる。
さらに、前記ノイズ抑制熱伝導シート30は、上述したバインダ樹脂、繊維状の熱伝導性繊維及び無機物フィラーに加えて、磁性金属粉をさらに含むことが好ましい。該磁性金属粉を含むことで、ノイズ抑制熱伝導シートのノイズ吸収性能を高め、本発明の5G通信用アンテナアレイのクロストーク抑制効果をより向上できる。
前記磁性金属粉の種類については、前記ノイズ抑制熱伝導シート30の磁気特性を高め、電磁波吸収性を向上できるものであること以外は、特に限定されず、公知の磁性金属粉を適宜選択することができる。例えば、アモルファス金属粉や、結晶質の金属粉末を用いることができる。アモルファス金属粉としては、例えば、Fe-Si-B-Cr系、Fe-Si-B系、Co-Si-B系、Co-Zr系、Co-Nb系、Co-Ta系のもの等が挙げられ、結晶質の金属粉としては、例えば、純鉄、Fe系、Co系、Ni系、Fe-Ni系、Fe-Co系、Fe-Al系、Fe-Si系、Fe-Si-Al系、Fe-Ni-Si-Al系のもの等が挙げられる。さらに、前記結晶質の金属粉としては、結晶質の金属粉に、N(窒素)、C(炭素)、O(酸素)、B(ホウ素)等を微量加えて微細化させた微結晶質金属粉を用いてもよい。
なお、前記磁性金属粉については、材料が異なるものや、平均粒径が異なるものを二種以上混合したものを用いてもよい。
なお、前記磁性金属粉については、材料が異なるものや、平均粒径が異なるものを二種以上混合したものを用いてもよい。
また、前記磁性金属粉については、球状、扁平状等の形状を調整することが好ましい。例えば、充填性を高くする場合には、粒径が数μm~数十μmであって、球状である磁性金属粉を用いることが好ましい。このような磁性金属粉末は、例えばアトマイズ法や、金属カルボニルを熱分解する方法により製造することができる。アトマイズ法とは、球状の粉末が作りやすい利点を有し、溶融金属をノズルから流出させ、流出させた溶融金属に空気、水、不活性ガス等のジェット流を吹き付けて液滴として凝固させて粉末を作る方法である。アトマイズ法によりアモルファス磁性金属粉末を製造する際には、溶融金属が結晶化しないようにするために、冷却速度を1×106(K/s)程度にすることが好ましい。
上述したアトマイズ法により、アモルファス合金粉を製造した場合には、アモルファス合金粉の表面を滑らかな状態とすることができる。このように表面凹凸が少なく、比表面積が小さいアモルファス合金粉を磁性金属粉として用いると、バインダ樹脂に対して充填性を高めることができる。さらに、カップリング処理を行うことで充填性をより向上できる。
なお、前記ノイズ抑制熱伝導シートは、上述した、バインダ樹脂、熱伝導性充填剤、無機物フィラー及び磁性金属粉に加えて、目的に応じてその他の成分を適宜含むことも可能である。
その他の成分としては、例えば、チキソトロピー性付与剤、分散剤、硬化促進剤、遅延剤、微粘着付与剤、可塑剤、難燃剤、酸化防止剤、安定剤、着色剤等が挙げられる。
その他の成分としては、例えば、チキソトロピー性付与剤、分散剤、硬化促進剤、遅延剤、微粘着付与剤、可塑剤、難燃剤、酸化防止剤、安定剤、着色剤等が挙げられる。
(第1放熱部材)
本発明の半導体装置1は、図1に示すように、前記基板10の一方の面10a側の、前記ノイズ抑制熱伝導シート30と接する位置に第1放熱部材41を備える。
ここで、前記第1放熱部材41は、前記熱源(高周波半導体装置20)から発生する熱を吸収し、外部に放散させる部材である。前記ノイズ抑制熱伝導シート30を介して前記高周波半導体装置20と接続されることによって、高周波半導体装置20が発生した熱を外部に拡散させ、5G通信用アンテナアレイ1の高い放熱性を実現できる。
本発明の半導体装置1は、図1に示すように、前記基板10の一方の面10a側の、前記ノイズ抑制熱伝導シート30と接する位置に第1放熱部材41を備える。
ここで、前記第1放熱部材41は、前記熱源(高周波半導体装置20)から発生する熱を吸収し、外部に放散させる部材である。前記ノイズ抑制熱伝導シート30を介して前記高周波半導体装置20と接続されることによって、高周波半導体装置20が発生した熱を外部に拡散させ、5G通信用アンテナアレイ1の高い放熱性を実現できる。
前記第1放熱部材41の種類については、特に限定はされず、本発明の5G通信用アンテナアレイに要求される放熱性に応じて適宜選択することができる。例えば、放熱器、冷却器、ヒートシンク、ヒートスプレッダ、ダイパッド、冷却ファン、ヒートパイプ、金属カバー、筐体等が挙げられる。これらの放熱部材の中でも、より優れた放熱性が得られる点からは、放熱器、冷却器又はヒートシンクを用いることが好ましい。なお、上述した第1放熱部材41を構成する材料については、熱伝導率を高める点から、アルミ、銅、ステンレス等の金属や、グラファイト等を含むこともできる。
(アンテナ)
本発明の一実施形態に係る5G通信用アンテナアレイ1は、図1に示すように、前記基板10の他方の面10b上に形成された少なくとも1つのアンテナ50を備える。
ここで、前記アンテナについては、無線による通信環境で電波を送受信するための装置である。本発明の一実施形態に係る5G通信用アンテナアレイ1では、通常のアンテナアレイに用いられるアンテナを用いることができ、5G通信用アンテナアレイに要求される性能に応じて適宜選択することができる。
本発明の一実施形態に係る5G通信用アンテナアレイ1は、図1に示すように、前記基板10の他方の面10b上に形成された少なくとも1つのアンテナ50を備える。
ここで、前記アンテナについては、無線による通信環境で電波を送受信するための装置である。本発明の一実施形態に係る5G通信用アンテナアレイ1では、通常のアンテナアレイに用いられるアンテナを用いることができ、5G通信用アンテナアレイに要求される性能に応じて適宜選択することができる。
なお、本発明の一実施形態に係る5G通信用アンテナアレイ1では、前記アンテナ50の配設ピッチPが、通信波長に対して1/4以上で且つ1以下であることが好ましく、1/4以上で且つ1/2以下であることが好ましい。例えば、使用する通信波長が28GHzの場合には、前記アンテナ50の配設ピッチPを2.5~10mmとすることが好ましく、2.5~5mmとすることがより好ましい。また使用する通信波長が24Ghzの場合には、18~75mmとすることが好ましく、18~37mmとすることがより好ましい。アンテナアレイの電波放射特性を向上させることができるためである。
また、本発明の一実施形態に係る5G通信用アンテナアレイ1における前記アンテナ50の数は、少なくとも1つであれば特に限定はされず、5G通信用アンテナアレイの仕様や要求される性能に応じて適宜決定することができる。
さらに、前記アンテナ50の数は、通信の速度向上や利用効率向上の観点からは、複数(2本以上)であることが好ましい。例えば、本発明の一実施形態に係る5G通信用アンテナアレイ1がMassive MIMOである場合には、前記アンテナ50の数を128本とすることができる。
さらに、前記アンテナ50の数は、通信の速度向上や利用効率向上の観点からは、複数(2本以上)であることが好ましい。例えば、本発明の一実施形態に係る5G通信用アンテナアレイ1がMassive MIMOである場合には、前記アンテナ50の数を128本とすることができる。
(第2放熱部材)
本発明の一実施形態に係る5G通信用アンテナアレイ1は、図1に示すように、前記基板10の他方の面10b側に、前記第2放熱部材42を備える。
ここで、前記第2放熱部材42は、熱源(アンテナ50)から発生する熱を吸収し、外部に放散させる部材である。
本発明の一実施形態に係る5G通信用アンテナアレイ1は、図1に示すように、前記基板10の他方の面10b側に、前記第2放熱部材42を備える。
ここで、前記第2放熱部材42は、熱源(アンテナ50)から発生する熱を吸収し、外部に放散させる部材である。
前記第2放熱部材42の種類については、特に限定はされず、本発明の半5G通信用アンテナアレイに要求される放熱性に応じて適宜選択することができる。例えば、上述した第1放熱部材41と同様に、放熱器、冷却器、ヒートシンク、ヒートスプレッダ、ダイパッド、冷却ファン、ヒートパイプ、金属カバー、筐体等を用いることができる。これらの放熱部材の中でも、優れた放熱性を得つつ、優れた省スペース性を実現できる点からは、ヒートスプレッダを用いることが好ましい。
なお、図1に示すように、前記第2放熱部材42の下には、アンテナ50が設けられているが、後述する熱伝導シート60を前記第2放熱部材42と前記アンテナ50との間に介在させない場合には、前記第2放熱部材42と前記アンテナ50とが接触しないように、前記第2放熱部材42と前記アンテナ50との間隔をある程度空けることが好ましい。その際の前記第2放熱部材42と前記アンテナ50との間隔については、特に限定はされないが、500~2000μm程度であることが好ましい。
(熱伝導シート)
また、本発明の一実施形態に係る5G通信用アンテナアレイ1は、図1に示すように、前記少なくとも1つのアンテナ50と前記第2放熱部材42との間に、熱伝導シート60をさらに備えることが好ましい。前記熱伝導シート60を介して前記アンテナ50と前記第2放熱部材42とを接続することによって、前記アンテナ50から発生した熱を外部に拡散させ、5G通信用アンテナアレイ1の高い放熱性を実現できる。
また、本発明の一実施形態に係る5G通信用アンテナアレイ1は、図1に示すように、前記少なくとも1つのアンテナ50と前記第2放熱部材42との間に、熱伝導シート60をさらに備えることが好ましい。前記熱伝導シート60を介して前記アンテナ50と前記第2放熱部材42とを接続することによって、前記アンテナ50から発生した熱を外部に拡散させ、5G通信用アンテナアレイ1の高い放熱性を実現できる。
ここで、熱伝導シート60とは、熱伝導性を有するシート状部材のことである。前記熱伝導性の性能については、特に限定はされず、基本的には本発明の5G通信用アンテナアレイに要求される性能に応じて適宜変更することが可能である。なお、前記熱伝導シート60は、上述したノイズ抑制熱伝導シート30とは異なり、ノイズ抑制効果を有することはない。前記熱伝導シート60がノイズ抑制効果を有する場合、前記アンテナ50の電波の送受信性能を低下させるおそれがあるためである。
また、前記熱伝導シート60のサイズ(シートの延在方向に沿ったサイズ(シートの厚さ方向を除く))については、特に限定はされない。例えば、図1に示すように、前記アンテナ50のサイズと同じようなサイズを有する複数のシートから構成することができる。また、図2に示すように、前記熱伝導シート60のサイズを大きくし、一枚の前記熱伝導シート30に対して複数の前記アンテナ50が形成されるようにすることもできる。
さらに、前記熱伝導シート60の厚さ(5G通信用アンテナアレイの各部材の積層方向に沿った厚さ)については、特に限定はされず、前記アンテナ50と第2放熱部材42との間隔や、5G通信用アンテナアレイ1のサイズ等に応じて適宜変更することができる。
例えば、放熱性をより高いレベルで実現できる点からは、前記熱伝導シート60の厚さが500μm以下であることが好ましく、300μm以下であることがより好ましい。前記熱伝導シート60の厚さが500μmを超えると、前記アンテナ50と前記第2放熱部材42との距離が長くなるため、熱伝導性が低下するおそれがある。
例えば、放熱性をより高いレベルで実現できる点からは、前記熱伝導シート60の厚さが500μm以下であることが好ましく、300μm以下であることがより好ましい。前記熱伝導シート60の厚さが500μmを超えると、前記アンテナ50と前記第2放熱部材42との距離が長くなるため、熱伝導性が低下するおそれがある。
さらに、前記熱伝導シート60は、熱抵抗が300Kmm2/W以下であることが好ましく、35Kmm2/W以下であることがより好ましく、30Kmm2/W以下であることが特に好ましい。前記アンテナ50から発生した熱を前記第2放熱部材42へより効率的に伝えることができ、放熱性をさらに向上できるためである。なお、前記熱伝導シート60の熱抵抗は、1Kmm2/W以上であることが好ましく、10Kmm2/W以上であることがより好ましい。前記熱伝導シート60の熱抵抗を1Kmm2/W以上とすることで、接触熱抵抗が変化した場合でも熱抵抗の変化割合が少なくなる。
また、前記熱伝導シート60は、表面に粘着性又は接着性を有することが好ましい。前記熱伝導シート60と他の部材(前記アンテナ50、第2放熱部材42)との接着性を向上できるからである。
なお、前記熱伝導シート60の表面にタック性を付与する方法については特に限定はされない。例えば、後述する熱伝導シート60を構成するバインダ樹脂の適正化を図ってタック性を持たせることもできるし、該熱伝導シート60の表面にタック性のある接着層を別途設けることも可能である。
なお、前記熱伝導シート60の表面にタック性を付与する方法については特に限定はされない。例えば、後述する熱伝導シート60を構成するバインダ樹脂の適正化を図ってタック性を持たせることもできるし、該熱伝導シート60の表面にタック性のある接着層を別途設けることも可能である。
さらにまた、前記熱伝導シート60は、柔軟性を有することが好ましい。前記熱伝導シート60の形状を変化しやすくできるため、5G通信用アンテナアレイ1を組み立てる際の容易性が向上するとともに、前記アンテナ50の表面形状に追従できるため、前記アンテナ50との接合力を高めることもできる。前記熱伝導シート60の柔軟性については、特に限定はされないが、例えば動的弾性率測定で測定される25℃での貯蔵弾性率を50kPa~50MPaの範囲とすることが好ましい。
なお、前記熱伝導シート60を構成する材料については、高い熱伝導性を有するものであれば特に限定はされない。
例えば、前記熱伝導シート30を、バインダ樹脂と、熱伝導性充填剤と、その他成分と、を含む材料から構成することができる。
例えば、前記熱伝導シート30を、バインダ樹脂と、熱伝導性充填剤と、その他成分と、を含む材料から構成することができる。
以下、熱伝導シート60を構成する材料について記載する。
前記熱伝導シート60を構成するバインダ樹脂は、熱伝導シートの基材となる樹脂成分である。その種類や含有量については、上述したノイズ抑制熱伝導シート30のバインダ樹脂と同様である。
前記熱伝導シート60を構成するバインダ樹脂は、熱伝導シートの基材となる樹脂成分である。その種類や含有量については、上述したノイズ抑制熱伝導シート30のバインダ樹脂と同様である。
前記熱伝導シート60に含有される熱伝導性充填剤は、シートの熱伝導性を向上させるための成分である。その形状、材料、平均粒径、含有量等については、上述したノイズ抑制熱伝導シート30のバインダ樹脂と同様である。
なお、前記熱伝導シート60は、上述した、バインダ樹脂及び熱伝導性充填剤に加えて、目的に応じてその他の成分を適宜含むことも可能である。
その他の成分としては、例えば、上述したノイズ抑制熱伝導シート30の中でも説明した無機物フィラーや、チキソトロピー性付与剤、分散剤、硬化促進剤、遅延剤、微粘着付与剤、可塑剤、難燃剤、酸化防止剤、安定剤、着色剤等が挙げられる。
なお、前記熱伝導シート60は、高いノイズ抑制効果は要求されないため、磁性粉は含有しないか、含有する場合でも少量であることが好ましい。
その他の成分としては、例えば、上述したノイズ抑制熱伝導シート30の中でも説明した無機物フィラーや、チキソトロピー性付与剤、分散剤、硬化促進剤、遅延剤、微粘着付与剤、可塑剤、難燃剤、酸化防止剤、安定剤、着色剤等が挙げられる。
なお、前記熱伝導シート60は、高いノイズ抑制効果は要求されないため、磁性粉は含有しないか、含有する場合でも少量であることが好ましい。
(その他部材)
本発明の一実施形態に係る5G通信用アンテナアレイ1は、上述した、基板10、高周波半導体装置20、ノイズ抑制熱伝導シート30、第1放熱部材41、第2放熱部材42、アンテナ50、及び、好適部材としての熱伝導シート60の他にも、通常アンテナアレイに用いられる部材を、適宜備えることが可能である。
本発明の一実施形態に係る5G通信用アンテナアレイ1は、上述した、基板10、高周波半導体装置20、ノイズ抑制熱伝導シート30、第1放熱部材41、第2放熱部材42、アンテナ50、及び、好適部材としての熱伝導シート60の他にも、通常アンテナアレイに用いられる部材を、適宜備えることが可能である。
例えば、図1に示すように、本発明の一実施形態に係る5G通信用アンテナアレイ1が、ケース部材70をさらに備えることができる。
また、図示はしていないが、各部材を接着するための接着層等を、必要に応じて形成することもできる。
また、図示はしていないが、各部材を接着するための接着層等を、必要に応じて形成することもできる。
<5G通信用アンテナアレイの製造方法>
本発明の5G通信用アンテナアレイの製造方法については、前記ノイズ抑制熱伝導シート30を前記少なくとも1つの高周波半導体装置20の上又は下に形成すること以外は、特に限定はされない。
例えば、図1に示すように、前記ノイズ抑制熱伝導シート30が、前記高周波半導体装置20のサイズと同じようなサイズを有する複数のシートから構成される場合には、予め前記ノイズ抑制熱伝導シート30を切断し、サイズを調整した上で、それぞれの高周波半導体装置20に積層し、圧着させる工程を具える。また、図2に示すように、一枚の前記ノイズ抑制熱伝導シート30から構成される場合には、基板10上に全ての高周波半導体装置20を形成した後、一枚の前記ノイズ抑制熱伝導シート30を積層し、圧着させる工程を具える。
なお、その他の工程については、従来のアンテナアレイの製造工程に沿って行うことができるが、
本発明の5G通信用アンテナアレイの製造方法については、前記ノイズ抑制熱伝導シート30を前記少なくとも1つの高周波半導体装置20の上又は下に形成すること以外は、特に限定はされない。
例えば、図1に示すように、前記ノイズ抑制熱伝導シート30が、前記高周波半導体装置20のサイズと同じようなサイズを有する複数のシートから構成される場合には、予め前記ノイズ抑制熱伝導シート30を切断し、サイズを調整した上で、それぞれの高周波半導体装置20に積層し、圧着させる工程を具える。また、図2に示すように、一枚の前記ノイズ抑制熱伝導シート30から構成される場合には、基板10上に全ての高周波半導体装置20を形成した後、一枚の前記ノイズ抑制熱伝導シート30を積層し、圧着させる工程を具える。
なお、その他の工程については、従来のアンテナアレイの製造工程に沿って行うことができるが、
また、前記アンテナ50と前記第2放熱部材42との間に、前記熱伝導シート60を備える場合には、前記ノイズ抑制熱伝導シート30の形成工程と同様に、前記アンテナ50を形成した後、前記熱伝導シート60をアンテナ50に積層し、圧着させる工程を、さらに具える。
<アンテナ構造>
本発明の一実施形態に係るアンテナ構造は、基板と、前記基板の一方の面に順次形成された、高周波半導体装置、ノイズ抑制熱伝導シート及び第1放熱部材と、前記基板の他方の面に順次形成された、アンテナ及び第2放熱部材と、を備える。
本発明の一実施形態に係るアンテナ構造では、前記基板の一方の面側に、ノイズ抑制熱伝導シートを設けることによって、ノイズとなる電磁波を吸収及び/又は遮断することが可能となるため、アンテナによる電波の送受信を阻害することなく、クロストークの増大を抑制できる。さらに、本発明の一実施形態に係るアンテナ構造では、前記ノイズ抑制熱伝導シートが、高周波半導体装置と第1放熱部材との間に設けられているため、高周波半導体装置から発生した熱を効率的に第1放熱部材へと伝えることができ、優れた放熱性を実現できる。
本発明の一実施形態に係るアンテナ構造は、基板と、前記基板の一方の面に順次形成された、高周波半導体装置、ノイズ抑制熱伝導シート及び第1放熱部材と、前記基板の他方の面に順次形成された、アンテナ及び第2放熱部材と、を備える。
本発明の一実施形態に係るアンテナ構造では、前記基板の一方の面側に、ノイズ抑制熱伝導シートを設けることによって、ノイズとなる電磁波を吸収及び/又は遮断することが可能となるため、アンテナによる電波の送受信を阻害することなく、クロストークの増大を抑制できる。さらに、本発明の一実施形態に係るアンテナ構造では、前記ノイズ抑制熱伝導シートが、高周波半導体装置と第1放熱部材との間に設けられているため、高周波半導体装置から発生した熱を効率的に第1放熱部材へと伝えることができ、優れた放熱性を実現できる。
なお、本発明におけるアンテナ構造とは、1本のアンテナからなるアンテナ装置や、複数のアンテナからなるアンテナアレイ等を含めた、アンテナ機能を有する構造体のことを意味している。
また、本発明の一実施形態に係るアンテナ構造を構成する各部材については、上述した本発明の一実施形態に係る5G通信用アンテナアレイで説明した部材と同様である。
また、本発明の一実施形態に係るアンテナ構造を構成する各部材については、上述した本発明の一実施形態に係る5G通信用アンテナアレイで説明した部材と同様である。
<ノイズ抑制熱伝導シート>
本発明の一実施形態に係るノイズ抑制熱伝導シートは、5G通信用アンテナアレイ用いられるノイズ抑制熱伝導シートである。
そして、本発明では、図1に示すように、5G通信用アンテナアレイ1の基板10上に形成された少なくとも1つの高周波半導体装置20と、放熱部材(図1では、第1放熱部材41)との間に設けられる。
本発明の一実施形態に係るノイズ抑制熱伝導シートは、5G通信用アンテナアレイ用いられるノイズ抑制熱伝導シートである。
そして、本発明では、図1に示すように、5G通信用アンテナアレイ1の基板10上に形成された少なくとも1つの高周波半導体装置20と、放熱部材(図1では、第1放熱部材41)との間に設けられる。
本発明の一実施形態に係るノイズ抑制熱伝導シート30は、ノイズとなる電磁波を吸収及び/又は遮断することができるとともに、熱伝導性に優れる。そのため、5G通信用アンテナアレイ1において、高周波半導体装置20と放熱部材との間に用いることによって、クロストークの増大を抑制できるとともに、放熱性を向上させることができる。そのため、本発明の一実施形態に係るノイズ抑制熱伝導シート30は、5G通信用アンテナアレイへ用いるのに適している。
なお、本発明の一実施形態に係るノイズ抑制熱伝導シート30の構成については、上述した本発明の一実施形態に係る5G通信用アンテナアレイの中で説明したノイズ抑制熱伝導シートと同様である。
<熱伝導シート>
本発明の一実施形態に係る熱伝導シートは、5G通信用アンテナアレイ用いられる熱伝導シートである。
そして、本発明では、図1に示すように、5G通信用アンテナアレイ1の基板10上に形成された少なくとも1つのアンテナ50と、放熱部材(図1では、第2放熱部材42)との間に設けられる。
本発明の一実施形態に係る熱伝導シートは、5G通信用アンテナアレイ用いられる熱伝導シートである。
そして、本発明では、図1に示すように、5G通信用アンテナアレイ1の基板10上に形成された少なくとも1つのアンテナ50と、放熱部材(図1では、第2放熱部材42)との間に設けられる。
本発明の一実施形態に係る熱伝導シート60は、熱伝導性に優れるため、5G通信用アンテナアレイ1において、アンテナ50と放熱部材との間に用いることによって、放熱性を向上させることができる。そのため、本発明の一実施形態に係る熱伝導シート60は、5G通信用アンテナアレイへ用いるのに適している。
なお、本発明の一実施形態に係る熱伝導シート60の構成については、上述した本発明の一実施形態に係る5G通信用アンテナアレイの中で説明した熱伝導シートと同様である。
次に、本発明を実施例に基づき具体的に説明する。ただし、本発明は下記の実施例に何ら限定されるものではない。
<実施例1>
実施例1では、3次元電磁界シミュレータANSYS HFSS(アンシス社製)を用いて、図1に示すようなアンテナアレイの解析モデルを作製し、ノイズ抑制熱伝導シートの条件を変えた際のクロストーク抑制効果及び放熱性について、評価を行った。
実施例1では、3次元電磁界シミュレータANSYS HFSS(アンシス社製)を用いて、図1に示すようなアンテナアレイの解析モデルを作製し、ノイズ抑制熱伝導シートの条件を変えた際のクロストーク抑制効果及び放熱性について、評価を行った。
(1)アンテナアレイのクロストーク抑制効果については、ノイズ抑制熱伝導シート以外は、全て同様の条件とした。アンテナアレイを構成する各部材の条件を以下に示す。アンテナアレイを模擬するために、アンテナアレイの2つのアンテナの部分だけを切り抜いたアンテナアレイのモデルを作成し、繰り返しの境界条件を適用した。切り抜いたアンテナ部分のモデルのサイズは、幅10mm、奥行き10mm、高さ5mmである。
また、2つのアンテナ部分だけを切り抜いたアンテナアレイのモデルでは、2つマイクロストリップラインが平行又は一直線上に並べたもので模擬し、アンテナが128個のアンテナアレイを想定した大きさとした。
基板10については、基板材料をFR4の両面ガラスエポキシ基板とした。
高周波半導体装置20については、幅55μm、厚み20μm、長さ2000μmのマイクロストリップラインで模擬した。また、各サンプルにおける、高周波半導体装置20の出力は5Wである。
第1放熱部材41については、アンテナアレイのモデルと同じサイズ(幅20mm、奥行き10mm)のアルミ板からなるヒートシンクとした。
アンテナ50については、28GHzを共振周波数に持つパッチアンテナとした。
熱伝導シート60については、樹脂バインダとして2液性の付加反応型液状シリコーンを用い、繊維状熱伝導性充填剤として平均繊維長150μmのピッチ系炭素繊維15質量%含有するものとした。熱伝導シート60の、サイズは、幅5mm、奥行き5mm、厚み0.5mmであり、熱抵抗は40 Kmm2/Wである。
第2放熱部材42については、アンテナアレイのモデルと同じサイズの窒化アルミからなるヒートスプレッダとした。
ケース部材70については、樹脂製のケースを用いた。
また、2つのアンテナ部分だけを切り抜いたアンテナアレイのモデルでは、2つマイクロストリップラインが平行又は一直線上に並べたもので模擬し、アンテナが128個のアンテナアレイを想定した大きさとした。
基板10については、基板材料をFR4の両面ガラスエポキシ基板とした。
高周波半導体装置20については、幅55μm、厚み20μm、長さ2000μmのマイクロストリップラインで模擬した。また、各サンプルにおける、高周波半導体装置20の出力は5Wである。
第1放熱部材41については、アンテナアレイのモデルと同じサイズ(幅20mm、奥行き10mm)のアルミ板からなるヒートシンクとした。
アンテナ50については、28GHzを共振周波数に持つパッチアンテナとした。
熱伝導シート60については、樹脂バインダとして2液性の付加反応型液状シリコーンを用い、繊維状熱伝導性充填剤として平均繊維長150μmのピッチ系炭素繊維15質量%含有するものとした。熱伝導シート60の、サイズは、幅5mm、奥行き5mm、厚み0.5mmであり、熱抵抗は40 Kmm2/Wである。
第2放熱部材42については、アンテナアレイのモデルと同じサイズの窒化アルミからなるヒートスプレッダとした。
ケース部材70については、樹脂製のケースを用いた。
(2)アンテナアレイの各解析モデルに用いられるノイズ抑制熱伝導シートの構成については、以下のとおりである。
比較例1-1:空気をノイズ抑制熱伝導シートとした。つまり、ノイズ抑制熱伝導シート30を用いず、高周波半導体装置20と第1放熱部材41との間に500μmの間隔を設けた。
比較例1-2:磁性粉を85質量%含有する絶縁性のシートをノイズ抑制熱伝導シート30として用いた。シートの厚さは500μm、熱抵抗は300Kmm2/Wである。
比較例1-3:誘電体(比誘電率4)からなるシートをノイズ抑制熱伝導シート30とし用いた。シートの厚さは500μm、熱抵抗は200 Kmm2/Wである。
発明例1-1:繊維状熱伝導性充填剤(平均繊維長200μmのピッチ系炭素繊維)を6質量%、磁性粉を85質量%含有するシートをノイズ抑制熱伝導シート30として用いた。シートの厚さは500μm、熱抵抗は40 Kmm2/Wである。
比較例1-1:空気をノイズ抑制熱伝導シートとした。つまり、ノイズ抑制熱伝導シート30を用いず、高周波半導体装置20と第1放熱部材41との間に500μmの間隔を設けた。
比較例1-2:磁性粉を85質量%含有する絶縁性のシートをノイズ抑制熱伝導シート30として用いた。シートの厚さは500μm、熱抵抗は300Kmm2/Wである。
比較例1-3:誘電体(比誘電率4)からなるシートをノイズ抑制熱伝導シート30とし用いた。シートの厚さは500μm、熱抵抗は200 Kmm2/Wである。
発明例1-1:繊維状熱伝導性充填剤(平均繊維長200μmのピッチ系炭素繊維)を6質量%、磁性粉を85質量%含有するシートをノイズ抑制熱伝導シート30として用いた。シートの厚さは500μm、熱抵抗は40 Kmm2/Wである。
(クロストーク抑制効果の評価)
アンテナアレイの各解析モデルのクロストーク抑制効果の評価は、2つのマイクロストリップライン間の伝送特性を測定することで行った。一つの高周波半導体装置に見立てたマイクロストリップライン両端の端子をモデルの長手方向に沿って、それぞれポート1及びポート2とし、もう一方のものを同様にポート3及びポート4とし、各解析モデルにおいて予想される近端クロストーク(S31)の量を算出した。算出されたS31について、図3に示す。
アンテナアレイの各解析モデルのクロストーク抑制効果の評価は、2つのマイクロストリップライン間の伝送特性を測定することで行った。一つの高周波半導体装置に見立てたマイクロストリップライン両端の端子をモデルの長手方向に沿って、それぞれポート1及びポート2とし、もう一方のものを同様にポート3及びポート4とし、各解析モデルにおいて予想される近端クロストーク(S31)の量を算出した。算出されたS31について、図3に示す。
図3の結果から、本発明の範囲に含まれる発明例1-1の解析モデル及びノイズ抑制熱伝導シート30を用いない比較例1-1の解析モデルについて、良好なクロストーク抑制効果が確認された。
(放熱性の評価)
アンテナアレイの各解析モデルの放熱性の評価は、温度25℃の条件で、定常状態後の予測される高周波半導体装置20の表面温度を算出した。算出された表面温度について、表1に示す。
アンテナアレイの各解析モデルの放熱性の評価は、温度25℃の条件で、定常状態後の予測される高周波半導体装置20の表面温度を算出した。算出された表面温度について、表1に示す。
表1の結果から、本発明の範囲に含まれる発明例1-1の解析モデルが、最も良好な放熱性を有することがわかった。一方、ノイズ抑制熱伝導シート30を用いない比較例1-1の解析モデルについては、高周波半導体装置20の表面温度が高くなっており、放熱性が得られていないことがわかった。
<実施例2>
実施例2では、実施例1と同様の条件で、前記3次元電磁界シミュレータを用いて、図1に示すようなアンテナアレイの解析モデルを作製し、ノイズ抑制熱伝導シートの誘電率を変えた際のクロストーク抑制効果の評価を行った。
実施例2では、実施例1と同様の条件で、前記3次元電磁界シミュレータを用いて、図1に示すようなアンテナアレイの解析モデルを作製し、ノイズ抑制熱伝導シートの誘電率を変えた際のクロストーク抑制効果の評価を行った。
(1)アンテナアレイの各解析モデルについては、ノイズ抑制熱伝導シートの条件以外は全て同様の条件とし、条件については実施例1に記載した通りである。
(2)アンテナアレイの各解析モデルに用いられるノイズ抑制熱伝導シートの誘電率及び透磁率については、以下の通りである。なお、サンプル1及び2は、ノイズ抑制熱伝導シートの誘電率以外の条件については、全て同じ条件とした。
サンプル2-1:誘電率10、透磁率5であるシートを、ノイズ抑制熱伝導シート30として用いた。
サンプル2-2:誘電率20、透磁率5であるシートを、ノイズ抑制熱伝導シート30として用いた。
(2)アンテナアレイの各解析モデルに用いられるノイズ抑制熱伝導シートの誘電率及び透磁率については、以下の通りである。なお、サンプル1及び2は、ノイズ抑制熱伝導シートの誘電率以外の条件については、全て同じ条件とした。
サンプル2-1:誘電率10、透磁率5であるシートを、ノイズ抑制熱伝導シート30として用いた。
サンプル2-2:誘電率20、透磁率5であるシートを、ノイズ抑制熱伝導シート30として用いた。
そして、クロストーク抑制効果についての評価は、電磁場解析ソフト(ANSYS、HFSS)によって、10GHz、20GHz、40GHz、60GHzでの各解析モデルにおいて予想される近端クロストーク(S31)の量を算出した。10GHz、20GHz、40GHz、60GHzにて算出されたS31について、図4(a)~(d)に示す。
図4(a)~(d)の結果から、いずれの周波数帯においても、ノイズ抑制熱伝導シート30の誘電率が20のサンプル2-2の方が、より高いクロストーク抑制効果が得られることがわかった。
<実施例3>
実施例3では、実施例1と同様の条件で、前記3次元電磁界シミュレータを用いて、図1に示すようなアンテナアレイの解析モデルを作製し、ノイズ抑制熱伝導シートの誘電率を変えた際のクロストーク抑制効果の評価を行った。
実施例3では、実施例1と同様の条件で、前記3次元電磁界シミュレータを用いて、図1に示すようなアンテナアレイの解析モデルを作製し、ノイズ抑制熱伝導シートの誘電率を変えた際のクロストーク抑制効果の評価を行った。
(1)アンテナアレイの各解析モデルについては、ノイズ抑制熱伝導シートの条件以外は全て同様の条件とし、各条件については実施例1に記載した通りである。
(2)アンテナアレイの各解析モデルに用いられるノイズ抑制熱伝導シートの誘電率及び透磁率については、以下の通りである。なお、サンプル1及び2は、ノイズ抑制熱伝導シートの誘電率以外の条件については、全て同じ条件とした。
サンプル3-1:誘電率10、透磁率5であるシートを、ノイズ抑制熱伝導シート30として用いた。
サンプル3-2:誘電率10、透磁率1であるシートを、ノイズ抑制熱伝導シート30として用いた。
(2)アンテナアレイの各解析モデルに用いられるノイズ抑制熱伝導シートの誘電率及び透磁率については、以下の通りである。なお、サンプル1及び2は、ノイズ抑制熱伝導シートの誘電率以外の条件については、全て同じ条件とした。
サンプル3-1:誘電率10、透磁率5であるシートを、ノイズ抑制熱伝導シート30として用いた。
サンプル3-2:誘電率10、透磁率1であるシートを、ノイズ抑制熱伝導シート30として用いた。
そして、クロストーク抑制効果についての評価は、電磁場解析ソフト(ANSYS、HFSS)によって、28GHzでの各解析モデルにおいて予想される近端クロストーク(S31)の量を算出した。算出されたS31について、図5に示す。
図5の結果から、ノイズ抑制熱伝導シート30の透磁率が高いサンプル3-1の方が、より高いクロストーク抑制効果が得られることがわかった。
本発明によれば、優れた放熱性及びクロストーク抑制効果を有する5G通信用アンテナアレイ及びアンテナ構造を提供することが可能となる。また、本発明によれば、優れた放熱性及びクロストーク抑制効果を有する5G通信用アンテナアレイ及びアンテナ構造へ用いるのに適した、ノイズ抑制熱伝導シート及び熱伝導シートを提供することが可能となる。
1 5G通信用アンテナアレイ
10 基板
10a 基板の一方の面、10b 基板の他方の面
20 高周波半導体装置
30 ノイズ抑制熱伝導シート
41 第1放熱部材
42 第2放熱部材
50 アンテナ
60 熱伝導シート
70 ケース部材
P アンテナの配設ピッチ
10 基板
10a 基板の一方の面、10b 基板の他方の面
20 高周波半導体装置
30 ノイズ抑制熱伝導シート
41 第1放熱部材
42 第2放熱部材
50 アンテナ
60 熱伝導シート
70 ケース部材
P アンテナの配設ピッチ
Claims (11)
- 基板と、
前記基板の一方の面に順次形成された、少なくとも1つの高周波半導体装置、ノイズ抑制熱伝導シート及び第1放熱部材と、
前記基板の他方の面に順次形成された、少なくとも1つのアンテナ及び第2放熱部材と、
を備えることを特徴とする、5G通信用アンテナアレイ。 - 前記少なくとも1つのアンテナと前記第2放熱部材との間に、熱伝導シートをさらに備えることを特徴とする、請求項1に記載の5G通信用アンテナアレイ。
- 前記ノイズ抑制熱伝導シートが、磁性粉を含むことを特徴とする、請求項1又は2に記載の5G通信用アンテナアレイ。
- 前記ノイズ抑制熱伝導シートが、炭素繊維を含むことを特徴とする、請求項1~3のいずれか1項に記載の5G通信用アンテナアレイ。
- 前記ノイズ抑制熱伝導シートは、誘電率が20以上であることを特徴とする、請求項1~4のいずれか1項に記載の5G通信用アンテナアレイ。
- 前記ノイズ抑制熱伝導シートは、透磁率が1を超えることを特徴とする、請求項1~5のいずれか1項に記載の5G通信用アンテナアレイ。
- 前記ノイズ抑制熱伝導シートは、熱抵抗が300Kmm2/W以下であることを特徴とする、請求項1~6のいずれか1項に記載の5G通信用アンテナアレイ。
- 前記5G通信用アンテナアレイは、Massive MIMOに用いられることを特徴とする、請求項1~7のいずれか1項に記載の5G通信用アンテナアレイ。
- 基板と、
前記基板の一方の面に順次形成された、高周波半導体装置、ノイズ抑制熱伝導シート及び第1放熱部材と、
前記基板の他方の面に順次形成された、アンテナ及び第2放熱部材と、
を備えることを特徴とする、アンテナ構造。 - 5G通信用アンテナアレイ用いられるノイズ抑制熱伝導シートであって、
基板上に形成された少なくとも1つの高周波半導体装置と、放熱部材との間に設けられることを特徴とする、ノイズ抑制熱伝導シート。 - 5G通信用アンテナアレイ用いられる熱伝導シートであって、
基板上に形成された少なくとも1つのアンテナと、放熱部材との間に設けられることを特徴とする、熱伝導シート。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202080037837.7A CN113826193A (zh) | 2019-03-29 | 2020-02-27 | 5g通信用天线阵列、天线构造、噪声抑制导热片及导热片 |
KR1020217030238A KR102541485B1 (ko) | 2019-03-29 | 2020-02-27 | 5g 통신용 안테나 어레이, 안테나 구조, 노이즈 억제 열전도 시트 및 열전도 시트 |
US17/593,631 US20220173494A1 (en) | 2019-03-29 | 2020-02-27 | Antenna array for 5g communications, antenna structure, noise-suppressing thermally conductive sheet, and thermally conductive sheet |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019067104 | 2019-03-29 | ||
JP2019-067104 | 2019-03-29 | ||
JP2020-030821 | 2020-02-26 | ||
JP2020030821A JP2020167667A (ja) | 2019-03-29 | 2020-02-26 | 5g通信用アンテナアレイ、アンテナ構造、ノイズ抑制熱伝導シート及び熱伝導シート |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020202939A1 true WO2020202939A1 (ja) | 2020-10-08 |
Family
ID=72668548
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/008178 WO2020202939A1 (ja) | 2019-03-29 | 2020-02-27 | 5g通信用アンテナアレイ、アンテナ構造、ノイズ抑制熱伝導シート及び熱伝導シート |
Country Status (3)
Country | Link |
---|---|
US (1) | US20220173494A1 (ja) |
CN (1) | CN113826193A (ja) |
WO (1) | WO2020202939A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE2051181A1 (en) * | 2020-10-09 | 2022-04-10 | Sjoeberg Daniel | Method, system and components for measuring an electromagnetic radiative near field and performing a radiation characterization using thermal imaging |
JP7478805B2 (ja) | 2021-12-31 | 2024-05-07 | ティエンジン レアード テクノロジーズ リミテッド | 新規な低オイルブリードサーマルギャップパッド材料 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7309089B1 (ja) * | 2023-01-23 | 2023-07-14 | 株式会社フジクラ | 無線モジュール |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010067725A1 (ja) * | 2008-12-12 | 2010-06-17 | 株式会社 村田製作所 | 回路モジュール |
WO2018147228A1 (ja) * | 2017-02-09 | 2018-08-16 | デクセリアルズ株式会社 | 電磁波抑制熱伝導シート、電磁波抑制熱伝導シートの製造方法及び半導体装置 |
JP6379320B1 (ja) * | 2018-07-03 | 2018-08-22 | デクセリアルズ株式会社 | 電磁波吸収熱伝導シート、電磁波吸収熱伝導シートの製造方法及び半導体装置 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4764220B2 (ja) * | 2005-03-30 | 2011-08-31 | 地方独立行政法人 大阪市立工業研究所 | 熱伝導性シート |
JP5438337B2 (ja) * | 2009-02-12 | 2014-03-12 | デクセリアルズ株式会社 | 熱伝導性シート、及び、その製造方法 |
JP4523063B1 (ja) * | 2009-03-30 | 2010-08-11 | エンパイア テクノロジー ディベロップメント エルエルシー | 磁性複合体及びその製造方法並びにシールド構造体 |
JP2018056315A (ja) * | 2016-09-28 | 2018-04-05 | デクセリアルズ株式会社 | 電磁波吸収熱伝導シート、電磁波吸収熱伝導シートの製造方法及び半導体装置 |
US11509038B2 (en) * | 2017-06-07 | 2022-11-22 | Mediatek Inc. | Semiconductor package having discrete antenna device |
EP3599664B1 (en) * | 2018-07-27 | 2022-08-31 | Xilinx, Inc. | Antenna module and massive mimo antenna |
KR102634784B1 (ko) * | 2019-04-26 | 2024-02-07 | 주식회사 아모센스 | 열차단부재를 구비한 반도체 소자 패키지 어셈블리 및 이를 포함하는 전자기기 |
-
2020
- 2020-02-27 WO PCT/JP2020/008178 patent/WO2020202939A1/ja active Application Filing
- 2020-02-27 US US17/593,631 patent/US20220173494A1/en not_active Abandoned
- 2020-02-27 CN CN202080037837.7A patent/CN113826193A/zh active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010067725A1 (ja) * | 2008-12-12 | 2010-06-17 | 株式会社 村田製作所 | 回路モジュール |
WO2018147228A1 (ja) * | 2017-02-09 | 2018-08-16 | デクセリアルズ株式会社 | 電磁波抑制熱伝導シート、電磁波抑制熱伝導シートの製造方法及び半導体装置 |
JP6379320B1 (ja) * | 2018-07-03 | 2018-08-22 | デクセリアルズ株式会社 | 電磁波吸収熱伝導シート、電磁波吸収熱伝導シートの製造方法及び半導体装置 |
Non-Patent Citations (1)
Title |
---|
KUMURA, TATSUO ET AL.: "High Thermal Conductive Sheets with Electromagnetic Interference Suppression Effects", PROCEEDINGS OF THE 31ST JIEP SPRING SYMPOSIUM, vol. 03, 2017, pages 264 - 266 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE2051181A1 (en) * | 2020-10-09 | 2022-04-10 | Sjoeberg Daniel | Method, system and components for measuring an electromagnetic radiative near field and performing a radiation characterization using thermal imaging |
SE2051181A2 (en) * | 2020-10-09 | 2023-04-18 | Mxwaves Ab | Absorption sheet, system and method for performing radiation characterization |
SE545290C2 (en) * | 2020-10-09 | 2023-06-20 | Mxwaves Ab | Absorption sheet, system and method for performing radiation characterization |
JP7478805B2 (ja) | 2021-12-31 | 2024-05-07 | ティエンジン レアード テクノロジーズ リミテッド | 新規な低オイルブリードサーマルギャップパッド材料 |
Also Published As
Publication number | Publication date |
---|---|
CN113826193A (zh) | 2021-12-21 |
US20220173494A1 (en) | 2022-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10892204B2 (en) | Electromagnetic wave absorbing heat conductive sheet, method for producing electromagnetic wave absorbing heat conductive sheet, and semiconductor device | |
KR102541485B1 (ko) | 5g 통신용 안테나 어레이, 안테나 구조, 노이즈 억제 열전도 시트 및 열전도 시트 | |
CN110140207B (zh) | 半导体装置 | |
JP7213621B2 (ja) | 半導体装置 | |
US20190246521A1 (en) | Heat conductive sheet, method of producing heat conductive sheet, and semiconductor device | |
WO2018061712A1 (ja) | 電磁波吸収熱伝導シート、電磁波吸収熱伝導シートの製造方法及び半導体装置 | |
JP6379320B1 (ja) | 電磁波吸収熱伝導シート、電磁波吸収熱伝導シートの製造方法及び半導体装置 | |
WO2020202939A1 (ja) | 5g通信用アンテナアレイ、アンテナ構造、ノイズ抑制熱伝導シート及び熱伝導シート | |
WO2020004157A1 (ja) | 電子機器 | |
US11329005B2 (en) | Semiconductor device and method of producing the same | |
KR102445111B1 (ko) | 반도체 장치 및 반도체 장치의 제조 방법 | |
WO2018147228A1 (ja) | 電磁波抑制熱伝導シート、電磁波抑制熱伝導シートの製造方法及び半導体装置 | |
JP2018157229A (ja) | 半導体装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20781848 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20217030238 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20781848 Country of ref document: EP Kind code of ref document: A1 |